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Abstract

An iterative method is developed by which the contact forces required to apply

an arbitrary wrench (six elements of force and moment) to a stably grasped object

may be calculated quickly. The assignment of contact forces, given a required object

wrench, is accomplished with the use of fuzzy logic. This concept is referred to as

the fuzzy logic reactive system (FLRS). The solution is versatile with respect to

goals inherent in the rulebase and the input parameters, and is also applicable for

an arbitrary number of contacts. The goal presented in this research, to illustrate

the concept of the FLRS, is the minimization of the norm of the contact forces using

point contacts with friction. Results comparing the contact force assignment for

this method and the optimal method proposed by Nakamura are presented. The

results show that FLRS will satisfy the object wrench and frictional contacts while

achieving near optimal contact force assignment. This method is shown to require

significantly fewer floating point operations than the solution calculated using nu-

merical constrained optimization techniques.

xvii



Reaction Based Grasp Force Assignment

L Introduction

1.1 Motivation

The word robot was introduced to the world through a satirical drama writ-

ten in 1921 by the Czech playwright Karl Capek [26]. The robots were depicted as

anthropomorphic machines which excelled in the physically demanding work envi-

ronment of the early twentieth century. This idealistic vision of machines, equipped

with human looking dextrous hands, has yet to be realized. This is due in part to

the complex nature of object manipulation by multifingered dextrous hands.

Object manipulation is a common problem for robots, prosthetics, and artifi-

cially stimulated biological hands [14, 40, 36, 33, 23]. The recent past is filled with

various control architectures, grasp philosophies, and numerical methods which have

yet to equal the human ability to stably manipulate grasped objects [4, 37, 43].

Grasped object manipulation has been, and continues to be, an active area of re-

search with many papers produced for robotics journals, conferences, and sympo-

siums [60, 25, 9]. The goal of this research is to contribute to the body of knowledge

of real-time solution techniques, concerning the problem of stable manipulation of

grasped objects.

Many robots today are limited to environments where the robot tools are

essentially special end-effectors locked in place which may or may not be difficult

to change. In any case, the tools are of limited use and of special design consistent

with structured use of the robot. This lack of tool generality limits the ability of a

robot to function in unstructured environments. This in turn limits the argument for
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robots in general, since hard automation machines may be more suited for exclusively

repetitive tasks in a predictable environment.

The manipulation of an object by humans is greatly enhanced by the usually

seamless integration of sensors, actuators, and controllers acting on multiple levels.

The technological challenge facing engineers and scientists today, related to grasping

and manipulation, is the development of integrated artificial "hands" as capable as

those of humans. Such integration involves low level manipulative elements as well

as higher level planning elements. The lower level elements are responsible for the

mechanics of basic object manipulation. One of the elements necessary to successfully

control a redundantly grasped object is a fast contact force assignment method based

on commanded object behavior. Many current methods emphasize solutions which

are of limited application or numerically intensive and globally optimal. This work

investigates a different approach to the solution of this problem.

1.2 Overview of Conventional Grasped Object Manipulation Methods

The literature defines several classes of robotic grasps. Napier suggests that

human grasps are variations of either a power or precision grasp, we will examine

the precision grasp only [41]. The precision grasp is one in which the grasped object

is contacted by the fingertips only and is generally associated with fine manipulation

under low force applications. Different forms of control architectures for the manip-

ulation of grasped objects have been proposed. Nakamura, among others, separates

the grasped object control problem into two parts, dynamic and static. The dy-

namic portion concerns the determination of joint torques required to accelerate the

end-effectors of the finger manipulators to follow the motion of the contact points

on the accelerated object. The static portion controls the joint torques required to

satisfy contact stability and accelerate the object [39]. Schneider and Cannon use

this architecture, but also include external forces applied to the object among static

force components [49]. Schneider and Cannon describe a feedback system which is
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an implementation of object based impedance control based on the work of Hogan

[20]. Their control scheme enforces a controlled impedance of the object and thus

environmental contacts are easily handled.

Li, Hsu, and Sastry have proposed a unified control scheme which seeks to

control the manipulators and object together to yield a specified object position and

internal force trajectory [32]. Yoshikawa et al. have proposed using forms of the

so called hybrid position/force control; this method accomplishes force and posi-

tion control along orthogonal directions [61, 44, 63]. Again this method presupposes

the existence of a satisfactory internal force trajectory. Michelman and Allen have

proposed and demonstrated an elaboration of the hybrid scheme with the use of a

blend of predefined manipulative behaviors to accomplish a desired object manipu-

lation [34]. The predefined manipulative behaviors enforce the partition of the task

space into force or position controlled directions. However, this method also requires

knowledge of the internal force requirements necessary to maintain contact stability

while implementing the manipulation.

A common thread throughout the various control architectures is the require-

ment of contact stability and the need for commanded manipulator contact forces.

A stable contact is one in which the applicable frictional constraints are satisfied. In

other words,

ft -< fn. (1.1)

where fn is the normal contact force component, y is the coefficient of static friction,

and ft is the tangential force component, assuming a Coulomb friction model. The

vector of generalized contact forces, F, is related to the object wrench, Q, where the

wrench is a vector of object forces and moments at a specified point, through the

grasp matrix [7, 38, 32, 25]. The grasp matrix, W, maps contact forces to object

wrench,

Q=WF (1.2)
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where W is a matrix containing elements of the contact positions, in the object frame.

Full column rank of W implies the grasp is one of force closure. A force closure grasp

is one in which any object wrench may be resisted by some combination of contact

forces, i.e. a solution exists.

The kinematic solution commonly used to determine F decomposes contact

forces into two orthogonal sets.

F = Fext + Fint (1.3)

This is usually accomplished through the use of a generalized inverse of the grasp

matrix W. A common definition of external forces, Fext: are those forces, the sum of

which oppose the resultant wrench applied to the object in the course of accelerating

the object or reacting forces applied to the object. Internal forces, Fint, are those

forces, the sum of which produce no net wrench on the object but which serve

to achieve contact stability [39, 25, 35]. Thus, the external forces are dictated by

the desired object behavior, while the internal forces are dictated by the need to

maintain stable contacts on the object. Yoshikawa et al. have defined grasping and

manipulative forces similar to the internal and external forces described above [63].

Some authors propose using geometric properties of the grasp configuration to

determine internal forces; these solutions are not general in nature [47, 63, 10, 21,

24]. Park and Starr have proposed calculating the internal force for a given grasp

configuration and scaling this solution as necessary to satisfy contact stability [43].

Many authors refer to optimal contact forces. Some choose this to mean that the final

contact force solution lies as far from the constraint boundaries as possible [25]. This

definition of optimal solution suffers on two counts. First, since this solution entails

having larger forces than those required for contact stability, power requirements for

the manipulator will be higher than necessary. Second, small errors in the direction

of the contact forces, introduced by geometric uncertainties, may generate relatively
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large deviations from the desired object acceleration [15]. Nakamura has described

this effect as similar to tightly squeezing a wet bar of soap [40]. Kumar and Waldron

have proposed seeking solutions where all contact forces pass through a point of

concurrence. This point is chosen to be the centroid of the contact points [30]. Orin

and Oh have proposed a solution based on the minimization of the grasp power and

normal force; by linearizing the constraints, they propose to use linear programming

methods to solve the problem [42].

Nakamura, Yoshikawa, and other authors have defined optimal contact forces

as those which seek to minimize the Euclidean norm of the contact forces while

satisfying contact stability requirements [38, 63]. This objective function does not

suffer from the previously mentioned problem of squeezing too tightly, though the

frictional constraints must be shifted inward to allow some measure of solution ro-

bustness in the face of unknown disturbances. If one seeks the minimum Euclidean

norm of the contact forces, the pseudoinverse or weighted pseudoinverse solution may

be used for the calculation of external contact forces. This solution will provide the

minimum Euclidean norm of the external forces. However, the solution will almost

always violate the contact frictional constraints. The pseudoinverse solution has two

parts: the actual pseudoinverse of the grasp coefficient matrix multiplied with the

resultant force vector and the matrix, whose columns span the null space of the

grasp coefficient matrix, multiplied with an arbitrary vector which then defines the

internal force [43, 47]. It is the internal force components which must be added to

the external force components to achieve a valid solution. The pseudoinverse solu-

tion tends to distribute the object wrench equally between the contacts; the internal

forces (null space solution) modify the resultant force at each contact so as to satisfy

friction constraints.

For gripped contacts (i.e. contacts with no frictional constraints), the pseudoin-

verse solution is sufficient for implementation of a manipulation scheme [3, 6, 56, 59].

However, contacts involving friction require further constraints on the solution.
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Specifically, that the contact forces must lie in the friction cone. This additional

constraint requires the solution of a non-linear programming problem, which can

be accomplished in an iterative manner for planar problems, as proposed by some

authors [381. As mentioned earlier, the constraints on the Euclidean norm solution

should be modified to generate some measure of contact stability [39]. This method is

generally not satisfactory with regards to solution speed and has not been effectively

demonstrated [37, 30].

Recently, Buss et al. have proposed that this problem be viewed as a linearly

constrained semidefinite programming problem for which there are globally exponen-

tially convergent solutions via gradient flows [9]. The algorithm input requires an

initial solution satisfying the frictional constraints in order for the method to render

a valid solution. The objective function is a mix of the sum of the contact normal

forces and a quantity tending to infinity for contact forces on the edge of the friction

cone. This method also incorporates weighting matrices which allow the qualitative

weighting of the objective function. The method is reported to have real-time solu-

tion capabilities. Holzmann and McCarthy have also recently proposed computing

the friction forces associated with a three-fingered grasp using a genetic algorithm

[22]. Other recent papers include the impressive demonstration of a robust internal-

force based impedance control method accomplished by Bonitz and Hsia, which also

requires the specification of the internal forces required to maintain contact stability.

[8]. Sinha and Abel have proposed using elastic modeling of the manipulator/object

interface in order to avoid using the common Coulomb friction constraints [50].

1.3 Problem Statement

The focus of this research is the development of a real time capable, spatial con-

tact force assignment method for determining the individual contact contributions,

specifically the internal force contributions, for the manipulation of a redundantly

grasped object. Fast solution speed is important since ideal internal force magnitudes
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will vary with changing external load on the grasped object. Solutions qualitatively

similar to optimal solutions based on the minimization of the Euclidean norm of the

contact forces are sought. Additionally, the solution should be flexible with regards

to robust contact stability requirements and allow implicit control of the available

internal forces.

1.4 Proposed Solution

Some scientists have proposed a reaction based control scheme for basic ar-

tificial life forms [54]. This idea was born of the need to simplify the architecture

of decision making for artificially intelligent agents. Rather than having a large

centralized knowledge based inference engine forced to maintain a consistent logical

model of the outside world, subsumption architecture relies on a decentralized reac-

tionary control scheme with the intervention of higher level control in the event of

conflicting lower level components. This architecture builds complex behaviors from

conglomerations of far simpler ones.

The philosophy behind this research is the idea that perhaps a better way

to solve the grasping problem is similar to the subsumption architecture idea as

related to artificial intelligence; that is, to speed-up the problem solution by de-

centralizing the solution generation. In the past, authors have attempted to solve

the contact force assignment problem while considering all contacts simultaneously,

a computationally expensive proposition. This research will investigate the problem

solution through pair wise analysis of the contact forces. Thus, using the subsumption

analogy, the proposed method is reactive. This proposed method also shares a similar

solution structure with the subsumption architecture, both methods lend themselves

to parallel processing.

The proposed hand kinematic solution is for the spatial problem of grasping a

rigid object by multiple finger contacts stably. The contacts are assumed to be fric-

tional fingertip point contacts which can achieve arbitrary forces. Also, the contact
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geometry, friction constraints, and commanded object wrench are assumed known.

The solution involves the use of an iterative scheme which starts with the pseu-

doinverse solution of the contact forces. During each loop of the iterative portion,

incremental changes in the internal forces will be made based on outputs from a

non-linear inference process.

This inference will be accomplished through the use of a fuzzy logic system;

though, as proved later, this is not required for solution convergence. The process

developed to calculate the valid contact forces will be referred to as the fuzzy logic

reactive system (FLRS). The fuzzy inference portion of FLRS is comprised of a

knowledge-based system consisting of IF.. .THEN rules associated with vague predi-

cates and a fuzzy logic inference mechanism. The definition of the input parameters

and output values are based on the heuristic pair wise evaluation of the contact

forces and how the shared internal force may be used to satisfy the contact con-

straints efficiently. Thus, instead of globally driving all contact forces to minimize

some objective function, each internal force is evaluated separately and are then

combined to form the overall incremental change in contact forces.

Once a basic system has been demonstrated, one may use one of many auto-

mated adaptive techniques to tune the parameters controlling the mapping to achieve

better results [12, 16, 31]. An alternative approach would be to learn the FLRS pa-

rameters from sets of approved input-output data, much like the training of artificial

neural networks [46, 55, 53].

1.5 Solution Validation

The FLRS system developed will be validated on several levels.

Criteria for solution convergence of force closure grasps (grasps with stable solutions

to any commanded object wrench), will be shown for both the two and m-

contact cases.
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The FLRS algorithm will be compared to an exact solution as proposed by Naka-

mura for a two contact case. The FLRS method will also be compared with

numeric approximations of the Nakamura method, which determines contact

forces that satisfy the frictional constraints and minimize the Euclidean norm

of the contact forces through an optimization algorithm. The examples will

consist of various spatial grasp configurations with a range of commanded ob-

ject wrenches. A comparison of the contact forces will be made along with

the floating point operations required to calculate the solution. The numerical

environment used for the comparison will be MATLAB. The specific numeric

optimization algorithm used will be the CONSTR function. This function

solves the constrained optimization problem, in Kuhn-Tucker form, using se-

quential quadratic programming methods.

A test of the FLRS real time capability will be accomplished be translating the

algorithm to C and compiling the code for use by the Chimera real time oper-

ating system. The code will be executed on a Motorola 68030 microprocessor

on a VMEbus card.
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II. Background

2.1 The Multirobot Coordination Problem

As mentioned in the introduction, many authors have reported various levels of

success in developing control algorithms to coordinate multiple robotic mechanisms.

The following development of an overall control strategy is the concept proposed

by Nakamura [40]. As mentioned in Chapter I, there are other architectures, each

requiring contact forces which satisfy both contact stability and object manipulation

requirements. The Nakamura architecture is representative and is presented here to

define the context in which this research in contact force allocation can be used.

This research is applicable to other architectures as well. Nakamura proposes an

architecture which explicitly controls both the manipulator and the object as the

basis for solving the general precision grasping and manipulation problem.

Using the notation of Nakamura, the following is a development for coordi-

native manipulation of a grasped object by m robotic mechanisms, as shown in

Figure 2.1. The basic assumptions in this development are:

e Grasped object is rigid

9 Position of the contacts on the object are known

e Tangent plane of the object surface at the points of contact are known

* Object mass is known

* Object velocity can be measured

* Contact configuration provides force closure grasp

e Manipulator end point makes point contact with the surface of the object

* End points do not move on or away from the surface of the object

* Gravity vector is known
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0Q

0

Figure 2.1 Model and nomenclature for rigid object grasped by m manipulators

These assumptions allow us to consider contacts which produce only forces on

the grasped object and are capable of producing an arbitrary object wrench. The

object wrench, Q, at the object center of mass consists of forces, fLbJ, and moments,

nobj, due to the contact forces and may be represented by:

m

fob3 = i + mobjg (2.1)
i=1

m

nob= (pi x fi) (2.2)
i=1

where fi are the contact forces, mobJ is the mass of object, g is the gravitational

acceleration, and pi is the position of the ith contact in the object frame. The

equations of motion due to the contact forces may be represented by the Newton-

Euler equations:

mnobir = fob3  (2.3)
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Kw + w × (Iw) = nobi (2.4)

where i is the second derivative of the position vector of the object with respect

to some inertial frame, I is the moment of inertia matrix, and w is the rotational

velocity vector.

The above equations are used to formulate the equations of motion into the

compact form below:

Iobj + Qobj = Q (2.5)

where

jT TEUR6 (2.6)

q5=(rT OT)E R6 (2.7)

Ibj 0x(2.8)

Qobj = (-mobJgT w x (Iw)T (2.9)

Q = WF E R6  (2.10)

F fT f2T ... fT E 3- (2.11)

f =  f" fi2 fA3 ) E R3 (2.12)

W= E3 E3 ... E3 E 6×3,n 2.3
P1 P 2 ... Pm

0 -Pi3 Pi2

P A 3 0 -Pilf 3x 3  (2.14)

-Pi2 Pil 0

Pi Pil Pi2 Pia R (2.15)
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where E, is the nth order identity matrix and the position and force components 1, 2,

and 3 are nominally the object x, y, and z axes respectively. We could have included

an external applied force and moment in this development. Equations 2.1 through

2.5 would have reflected this change in the applied wrench; and would have been

similar to the development accomplished by Schneider and Cannon [49]. However,

for purposes of putting this research in context, that addition is not necessary.

If the desired object trajectory is given by Od(t) E R6; then, if the net wrench

Q = Qob + Iobj{d + Kl(qd - ) + K2(Od - 0)} (2.16)

is applied to the grasped object, the object's motion will be governed by

( d -- ) + Kl( d -- ) + K2(d - 0) = 0 (2.17)

where K1 and K 2 are constant coefficient matrices chosen to guarantee asymptotic

convergence and € is the actual object trajectory. Equation 2.17 indicates that the

actual object trajectory converges to the desired object trajectory. This behavior

translates into dynamically stable response to commanded object trajectories and

is referred to, by Nakamura, as object stability [40]. For this control scheme to be

implemented, one must have 0, , and the contact forces necessary to generate the

object wrench, Q.

The dynamic portion of this control problem seeks to generate the generalized

joint forces necessary to drive each manipulator through the commanded trajectory.

Below, the position control algorithm is formulated. The acceleration of any contact

point is:

Fi = i + x Pi + w x (w x Pi) (2.18)
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where the terms i: and c denote the object accelerations, both linear and rotational,

resulting from the object wrench, Q. These may also be represented as:

= bd + Kl($d - 4) + K2 (Od - 0) (2.20)

obj (Q - Qob3 ) (2.21)

The ith generalized manipulator joint force which results in end-effector ii ,

when the robot is not making contact with the object, is 7ip. This value is the

trajectory following generalized force associated with non-contact manipulators,

'rip = Di(Oi)OiCMD + Ci(0i, 9i) -+ gi(0i) (2.22)

where

jiCMD = Ji(O)'l (i 2 - d+J2 (OiAoi (2.23)

and Ji, Di, Ci, and gi denote manipulator Jacobian, inertial, Coriolis and centrifugal,

and gravity terms respectively for the ith manipulator, in terms of the generalized

manipulator coordinate vector Oi. This relationship, when coupled with an error

reducing feedback in position and velocity, is referred to as resolved acceleration

control [17].

Now consider the generalized force required of the ith manipulator to apply

the end-effector force fi statically to the grasped object. This generalized force is

denoted rif. Compute rif by multiplying the transposed Jacobian matrix of the ith

manipulator by the ith end-effector force fi. According to d'Alembert's principle, the

net generalized force ri required to manipulate the object is the sum of rip and rif, as

shown in Figure 2.2 [40]. The symbol fi represents the actual contact force applied

to the object by the ith manipulator.
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0 -i i-th ro botic
+ I mechanism

f tf
I fi if - - - - - -

--------------------- Multiple robotic
mechanismsController

Figure 2.2 Feed forward portion of object manipulation controller
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An important aspect of the control model developed are the assumptions that

the contact forces commanded can in fact be delivered by the grasping robot manip-

ulators and that the object position and velocity may be accurately determined. The

challenges regarding the physical implementation of a robot capable of operating as

modeled is not to be underestimated. Two key elements, of a physical implementa-

tion of a grasping robot, are the development of high fidelity fingertip force sensors

and actuators.

2.2 Grasp Force Assignment

The "Grasp Force Assignment" block of Figure 2.2 is the keystone of the

grasped object controller, this portion is solely responsible for the distribution of

the contact forces and the maintenance of contact stability. This block is required to

operate in real-time for hardware implementations of this architecture. Two methods

commonly referred to for this purpose will be presented. The first method, proposed

by Nakamura, attempts to find an optimal solution based on the minimum Euclidean

norm of the contact forces. The second method, proposed by Nagai and Yoshikawa,

places additional constraints on the same optimization solution in order to increase

solution speed.

2.2.1 Nakamura's Solution. A common method, for the calculation of the

finger contact forces necessary to generate a given object wrench, is the pseudoinverse

solution which is exemplified by the methods proposed by Nakamura et al. [38]. The

pseudoinverse is one of the infinite number of generalized inverse solutions for the

finger contact force vector F of Equation 2.10. In general, the contact forces, F,

constitute a redundant set for the solution of the equation. Thus, a solution for the

contact forces through a generalized inverse of the grasp matrix W will yield two

parts, as in Equation 2.24.

F = W#Q + Ay (2.24)
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where W# E R3mx6 is the pseudoinverse of the grasp matrix, W. The term A, is

the matrix of the orthonormals of the null space of W, and y is an arbitrary vector.

Thus, Ay is an element of the null space of W, and Dg = 3m - rank(W) is the

dimension of the null space of W. Many authors use the Moore-Penrose inverse, or

pseudoinverse, solution as this solution has the property that W#Q minimizes the

Euclidean norm of the contact forces [40].

The term W#Q is often referred to as the external force vector, Fext, since

this is the only term which contributes to the desired object wrench, Q.

Fext = W#Q (2.25)

/ ~ T

Fext= fextT fext T  fext T  eR 3

The other element of the solution, Ay, cannot contribute to the net wrench and is

thus referred to as the internal force vector, Fint.

Fint = Ay (2.27)

Fint = fint T  fintT  ... fint T ) e (2.28)

where
m

finti = E fintij (2.29)
j=1 ,ji

and fintij is the internal force from contact i to contact j. Figure 2.3 illustrates

the difference between the internal and external forces. Internal force pairs lie on

a line connecting any two contact points; thus their directions are dictated by the

geometry of the contact points, W. The external force directions are dictated by

both the contact geometry, and the object wrench, Q. As Figure 2.3 illustrates,

the effect of the pseudoinverse solution, for determining Fext, is to distribute the

external contact forces so as to resist a given object wrench in a minimum norm
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r~t Uontactkk

nint fij e fextkflnt..tfint ji\ i

Contactj '
fextj

Figure 2.3 Internal and external forces

sense. For rigid contact grasp problems, where the contacts are fixed to the object,

the W#Q solution is entirely effective and reasonable. However, for contacts which

rely on maintenance of contact forces that satisfy friction constraints, this solution

will almost always violate frictional constraints, as illustrated by external contact

forces fextk and fextj, in Figure 2.3.

In order to satisfy the frictional constraints, illustrated in Figure 2.4, the solu-

tion derived from the pseudoinverse must be modified. The modifiers to the W#Q

solution are the internal forces. Nakamura determines these internal forces while con-

tinuing to minimize the Euclidean norm of the contact forces. The method outlined

below is acceptable for solving the simple two contact problem but is prohibitively

expensive with respect to computational time for more complex problems [37, 30].

Nakamura formulates and solves the constrained optimization problem using

the Kuhn-Tucker theorem [40]. For the specified object wrench, Q, obtain F that
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Object Surface

Friction Cone

yi

Figure 2.4 Contact friction constraint

satisfies

min HFI1 (2.30)

with the constraints

Q = WF (2.31)

eTifi >--fl l[ Vi (2.32)

where fi = 1 +V /T;. We've previously assumed that the ith finger is capable

of applying an arbitrary force at the fingertip and that force closure exists. The

constraints of Equation 2.32 may be written as:

g(y) <0 i = 1,...,2m (2.33)

where
wher g(Y) = f TB if i  i =l,1..., }M (2.34)

-eN(i-m)fi i = m+ 1,...,2m
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and Bi = E3 - eNiei Since I[F[I is a positive function, we may declare an

equivalent objective function to Equation 2.30 as:

minh(y) (2.35)

where

h(y) = FTF (2.36)

Thus the problem of determining the contact forces which minimize H[F[] has been

reduced to minimizing a quadratic function with linear and quadratic inequality

constraints. To determine the unknown variable y, we apply the Kuhn-Tucker The-

orem [40]. An augmented objective function, e(y, A), is formed using the Lagrange
multipliers A= (A 1 A2 *" A2m e N2m,

2m

e(y, A) = h(y) + Aig(y) (2.37)
i=1

where Ai > 0. The Kuhn-Tucker Theorem, and the fact that the augmented objective

function can be shown to be a convex function with respect to y, leads to the

necessary and sufficient conditions for the global minimum of e(y, A), and thus

JIFHl [40].

ay y=yO,A=AO = 0 (2.38)
2m

E A~gi(y ° ) = 0 (2.39)
i

where y' and A' are the values of y and A which minimize the objective function

and satisfy the constraints.

This formulation solves for all internal forces simultaneously which leads to ex-

tremely large polynomial objective functions for even modest contact configurations.

The number of internal force pairs, NI, to simultaneously specify for a solution is

(m 2 -m)/2. For a five contact problem, ten internal forces must be determined. Con-

2-11



Contact 2 Cotc1
Contaat

Figure 2.5 Two contact grasp example

sidering the case of five contacts on an object, m = 5, JFi 112 is a 15 term quadratic

equation in terms of the four relevant internal force magnitudes. The number of

independent terms in JIF 112 is NF2 = 1 + NI + (N, - NI)/2, or 56 terms for the five

contact problem. Simultaneously determining a minimum norm solution among all

possible solutions is a daunting and time consuming task. Problems with more than

two contacts are generally solved using numeric optimization methods. The state-

ment of conditions for the global minimum allow numeric optimization algorithms

to be guaranteed to converge to the global minimum.

2.2.2 Exact Solution Example . The exact solution using the previously

outlined method can be determined for simple two contact problems. In this case

the problem must be reduced to a planar one as the grasp matrix, W, is not full

rank for the spatial case and thus force closure will not exist. The elements of

Equation 2.24 are thus reduced in dimension. The unknown variable y is a scalar for

this case, indicating that we have only a single internal force with which to apply to

the external force solution to enforce contact constraints.

Figure 2.5 illustrates the geometry, axis system, and commanded object wrench

of a two contact example, in which the grasped object is an ellipse. The contact

inward pointing normal directions are the negative of the respective position vectors.

Pos is the matrix of position vectors, in column order.
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Pos ] (2.40)
0 0

Let the coefficient of static friction for both contacts, P, be 0.4 and the commanded

planar object wrench, Q, be:

(2.41)

0

The grasp matrix, W, and the orthonormals of the null space of W, A, from Equa-

tion 2.40 are:
-0.7071

101 0
0

W= 0 1 0 1 A= (2.42)
0.7071

0 1 0 -1
0

The pseudoinverse of W is,

0.5 0 0

0 0.5 0.5 (2.43)
0.5 0 0

0 0.5 -0.5

and Equation 2.24 may now be written as:

0.5 0 0 -0.7071 [0.5' -0.7071

0 0.5 0.5 0 0.5 01 1+1, 1 y (2.44)
0.5 0 0 0.7071 0.5 | 0.7071 (

10
0 0.5 -0.5 0 0.5 0

Clearly, the sum of the external contact forces and moments equal the commanded

object wrench.
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By applying the only internal force available, the net contact forces will move

inward toward the friction cones as the internal force magnitude, y, is increased.

The contact force for the second contact, f2 will thus move inside the friction cone

before fl. Therefore, the constraint equation g2(y) < 0 and thus A2 = 0. We also

know that, in general, both contacts will be exerting force. Therefore, g3(y) < 0 and

g4(y) < 0 which requires A3 = 0 and A4 = 0. For this solution to be a minimum

norm solution, one contact force must be on the friction cone, therefore g1 (y) = 0

Thus, we have reduced the five equations from the Kuhn-Tucker formulation to two

equations, with two unknowns. y and A,.

The components of the augmented objective function of Equation 2.37 may

now be formed.

h(y) = (0.5 - 0.7071y) 2 + 0.5 2 + (0.5 + 0.7071y) 2 + 0.5 2 (2.45)

= I + y2 (2.46)

and

eN1- {} B 1 =, 0 /32 (2.47)

therefore

gl(y) = (0.5 - 0.7071y) 2 (/02 
- 1) + 0.52(02) (2.48)

Equations 2.38 and 2.39 may now be constructed,

= 2y° + 2A' [(-0.7071)(0.5 - 0.7071y)(l 2 - 1)] = 0 (2.49)

aY y=yO,A=AO

2m

2mA
i g i (y °) = At, [(0.5 - 0.7071y°) 2 (0 2 - 1) +0.25/32] =0 (2.50)
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and yo may be solved for:

yO= 0.7071 + .- (0.5 (2.51)

For this particular case, y' = 2.4744, and the contact forces are:

-1.25

0.5
F= (2.52)

2.25

0.5

For general and realistic grasping problems, at least one contact force will lie on

the friction cone (necessary for a minimum norm solution), thus the exact solution

to the two contact problem is relatively simple. Larger problems will in general

exhibit coupling between Equations 2.38 and 2.39. Grasp configurations may occur,

especially with large values of y, in which the pseudoinverse solution does lie within

all the contact constraints; one would then not need any additional contact force

components.

2.2.3 Yoshikawa's Method of Contact Assignment. The normal component

of the external force solution for Contact 1, of the two contact example above, was

away from the surface. The external contact force solution in and of itself is clearly

not sufficient for frictional contacts and is somewhat misleading in that some internal

and external forces may be equal and opposite producing no net contact force. The

method proposed by Yoshikawa and Nagai attempts to address this issue and to

speed up the solution with additional constraints.

The force space is decomposed into manipulative and grasping forces, similar

to the contact force development of Kobayashi [63, 27]. These forces are also similar

to the internal and external force definitions described earlier. The grasping forces
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are defined as those which lie in the null space of the grasp matrix W and satisfy the

contact friction constraints. The manipulating forces are those which produce the

desired resultant wrench, do not act in the inverse direction to the grasping force,

and are orthogonal to the grasping force components. It is the additional constraints

on the directions of the manipulating forces which differentiates this method from

the method proposed by Nakamura et al. The method is applicable for two, three,

and four contacts only. The contact forces are separated into two orthogonal sets:

F = F + Fm (2.53)

where Fg = Bghg and Fm = Bhm. B g e R3mX, hg E W, Bm E R 3mxl, and

hm e V?; where n = {1,3,6} and 1 = {3,6,6} for two, three, and four contact

problems respectively. The unknown variables are the grasp parameters, hg.

The matrix Bg is determined from the contact geometry. For a three contact

problem of a convex object,

0 e 1 3 e 1 2

Bg = e23  0 e21  (2.54)

e 32  e 3 l 0

The matrix B, is a function of both the contact geometry and the commanded

object wrench. Thus Bm must be calculated for each Q.

0 (1 - k2)e 13  k33e 12  e10  0 0

Bm k1 e 2 3  0 (1 - k 3 )e 2 1  0 e20 0 (2.55)

(1 - k1)Z32 k2 31 0 0 0 e30
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where ki are parameters which can take on the value of 0 or 1 and i~j are the basis

vectors of the manipulating force (unit vectors from contact i to contact j).

EiO ei(i+l) x ei(i+2) (2.56)
ei(i+l) x ei(i+ 2)

ei(i+l) = ei(i+2) X eio (2.57)

Ei(i+2) = ei 0 x ei(i+l) (2.58)

The parameters ki are chosen such that:

hm = (WB,. 1 Q (2.59)

where hmi > 0.

The solution method proposed by the authors requires either a planned trajec-

tory of grasp parameters, hg, which are known to satisfy the frictional constraints

or an iterative solution of the unknown grasp parameters [37]. This method may be

thought of as similar to the method of Nakamura with additional constraints asso-

ciated with the direction of the orthogonal forces. However, the extra computations

associated with Bm may make this method no faster than that proposed by Naka-

mura. And like the Nakamura algorithm, for problems with three of more contacts,

a numeric solution is required. The proposed method has not been extended to

consider over four contacts.

2.2.4 Exact Solution Example . An exact solution to the two contact prob-

lem described in Section 2.2.2 can also be calculated using the Yoshikawa algorithm.
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For the two contact problem, the matrix Bg is:

-1

B9 E12  0 (2.60)

0

and the unknown grasp parameter, hg, is a scalar. The grasp parameter is analogous

to the internal force magnitude, y, of Section 2.2.2. The basis vectors for matrix Bm

are:

e1 2  } e21 eo } e 2 o{ 0 (2.61)
0 0--1

and

1 0 0

B [ ke12 1oO0 0-10 (2.62)gm-= (I - kl)e21 0 eA20 2 0 0

0 0 1

for k, = -1. The vector h, may be calculated according to Equation 2.59:

0.3333

hm = (WBm)- q = -0.5 (2.63)

0.5

The contact force vector, F = Bmh, + Bghg may now be formed,

0.3333 -1

0.5 0
F = + hg (2.64)

0.6666 1

0.5 0
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where the first term is analogous to the external force of Equation 2.44, though

different in magnitude. An objective function and constraint equation similar to

Equation 2.45 and 2.48 may be formed using the above equation for the contact

forces. Solving the equivalent equations to Equation 2.49 and 2.50, the grasp pa-

rameter is calculated:

hg =0.6666 + (0.6666)2 - 4(0.3333)2(0.5)2 21) (2.65)

For this particular case, h. = 1.7338, and the contact forces are thus:

-1.4

0.5
=F (2.66)

2.4

0.5

which are greater than those calculated using the method of Nakamura. The differ-

ence lies in the calculation of the equivalent external force. The Nakamura algorithm

uses the pseudoinverse which guarantees a least squares solution of the external force,

while the Yoshikawa method does not. Thus, we have illustrated for one case, the

Yoshikawa solution will not result in the minimum norm of the contact forces.

2.3 Summary

We have reviewed contact force distribution methods associated with the pseu-

doinverse solution, proposed by Nakamura et al., and the method proposed by

Yoshikawa and Nagai. In general, the method proposed by Nakamura relies on

numerical solution methods which have been shown to lack real-time solution capa-

bility [63]. The Yoshikawa solution is similar, with the addition of some directional

constraints, and additional computational burden.
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III. Background to Fuzzy Logic

As the previous chapter pointed out, the nature of the contact force assignment

problem is the solution of a generalized inverse problem. Unfortunately, these solu-

tions are not unique [40]. The pseudoinverse solution is a convenient and relatively

simple inverse to pursue. A satisfactory solution, from the point of view of real time

manipulator control, of this problem with conventional mathematical tools is proba-

bly not a feasible solution in the near future [37]. As alluded to in the introductory

chapter, the proposed research is grounded in artificial intelligence methods to solve

this problem, specifically fuzzy logic.

3.1 Logic and Ambiguity

Binary logic was codified by Aristotle through his laws of logic based upon the

concept of A and not-A; the Law of the Excluded Middle. A particle cannot be both

in A and in not-A; there is no ambiguity about A. In a purist mathematical sense

this is correct. However, in order to maintain this boundary of what is and what

is not; artificial constraints must be applied. It is these artificial constraints which

divorce mathematical rules and logic from human perception of reality. For instance,

a heap of sand may be defined as a group of small particles, in close proximity, with

at least x number of particles and not one less. Thus we have defined a heap and a

non-heap; mathematically we can now differentiate between two piles of sand. One

pile having x particles is a heap, and one pile having x - 1 particles is not a heap.

The number of particles required to define a heap is only one aspect of the previous

definition which is open to ambiguity.

This black and white world of sets is particularly troublesome for rule-based

systems, such as knowledge-based artificial intelligence systems. Rules based on

absolute dichotomy are relatively inefficient since definitions must be numerous and
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overly precise. This precision leads away from generality which should be a goal for

such a system [18].

A number of modifications to the bivalent logic of Aristotle have been pro-

posed and used over the years. These modifications include the discretization of

the bivalent logic. A number of different theories of multivalued logics were pro-

posed in the early twentieth century by Bochvar, Kleene, Heyting, Reichenbach,

and Lukasiewicz. Generally, these theories were initially proposed to deal with the

Heisenburg uncertainty principle in quantum mechanics [29]. Lukasiewicz developed

the first N-valued logic in the 1930's, where N > 2 . Thus, for N = 2, the standard

bivalent logic applies. In an N-valued logic, the truth values are assumed evenly

distributed along the closed interval [ 0 1 ]. The nomenclature associated with the

multivalued logics is LN. Thus, an L 3 logic consists of truth values of { 0 1/2 1 }.

In this logic, a statement could be half-true. The discretization was eventually ex-

panded to N = o, where truth values were the real numbers in the closed interval

0 1 ]. However, the purpose behind the expanded logics still remained the same

as the earlier bivalent logic, exact reasoning [18].

In the 1930's another logician, Bertrand Russell used the term "vagueness" to

describe multivalence. In 1937, quantum philosopher Max Black published a paper

on "vague" sets, which were essentially the same as the "fuzzy" sets we speak of

today [29]. If the scientific community had lent more time to the concepts proposed

by Black, we might have had vague logic 50 years ago. Lotfi Zadeh first proposed

the basic theory of fuzzy sets in his 1965 paper 'Fuzzy Sets,' in which he referred to

the work of Kleene. The paper on fuzzy sets later served as the basis for the fuzzy

logic now common today. The math of fuzzy sets used the same algebra worked out

by Lukasiewicz in the 1930's, though today it has expanded.

The essential premise of fuzzy sets is the contradiction of Aristotle's Law of

Excluded Middle. A particle may exhibit a level of membership in one or more sets.

Thus a half eaten apple has a level of membership in the set of apples and in the
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sets of non-apples. Depending on the characteristics of the domain of interest, the

summation of the degree to which the half-eaten apple belongs to other sets may

exceed unity. This is a difference between fuzzy sets and other exact multivalence

set theories.

3.2 Fuzzy Sets and Fuzzy Logic

Zadeh showed how the concepts of fuzzy sets and fuzzy logic mimic the linguis-

tic constructs of human language and how such concepts may allow reasoning akin to

humans [28]. Rules based on ambiguous linguistic concepts may be used with fuzzy

logic; where fuzzy logic provides the numeric mechanism by which degrees of truth

of premises (antecedents) are manipulated through the rules to provide conclusions

(consequents).

The definition of membership is the degree of the truth of the statement: x is

a member of fuzzy set A. The membership value is in the closed interval [ 0 1 ], 0

indicating complete falsehood and 1 indicating complete truth. The finite fuzzy set

A can be represented as the set of ordered pairs A = (x, 77A(X)) X G X, where X

is the domain and 27A(X) is the membership function. Figure 3.1 demonstrates the

difference between fuzzy and binary (crisp) sets by plotting the membership functions

for the sets of medium and tall people. There are many subjective definitions of the

makeup of a fuzzy set which comprise the domain of interest. In Figure 3.1 sets of

both medium and tall people are described over the domain of height. The support

of each fuzzy set constitutes the portion of the domain where the membership values

are greater than zero. A common approach is the use of triangular membership

functions as this helps to speed up the numeric process [58].

Fuzzy logic is concerned with approximate reasoning rather than exact multival-

ued logic as proposed by Lukasiewicz et al. Fuzzy reasoning consists of the inference

of a possibly imprecise conclusion from a set of possibly imprecise premises. This is

the action involved with most human reasoning. There are basically two approaches
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Figure 3.1 Conventional and fuzzy sets

to using fuzzy logic to solve input-output mapping problems: develop a logical rule

base similar to a rule base a human might use to solve the same problem, or use

acquired data of correct input-output pairs to develop the rule base by learning the

mapping. The learning method strictly uses the current data to develop a fuzzy logic

system capable of generating the same output as the original system [55, 28].

This research will use a heuristic approach to the fuzzy logic rules and domains.

If somewhat promising, future research may strive for adaptive or learning systems

which seek to minimize some objective function. The primary concern of this research

is the development of tools for quick numeric solutions and will not strive to explicitly

produce a mathematically optimum solution of some objective function. The rules

and the domains of the relevant parameters will be derived in the spirit of traditional

expert systems.
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Figure 3.2 Fuzzy logic system

3.3 Fuzzy Logic Mechanics

A basic fuzzy logic system may be described by Figure 3.2. The inputs are

generally discrete values obtained from digital inputs or analog inputs, the latter

obtained from A/D devices. Note: Some fuzzy systems have been developed to take

advantage of direct analog inputs. The inputs are then categorized as fitting each of

the input membership functions to some degree. This process is commonly referred

to as fuzzification [64, 11]. The membership functions which span the input domain

are defined and fixed a priori for non-adaptive systems. The fuzzy inputs are then

fed across the fuzzy rule-base, where an inference is made from each instance of the

data. The inference mechanism is based on the rules which form the rule-base.

The rules consist of fuzzy antecedents, aggregation operators, and fuzzy conse-

quents. The antecedents and consequents are the fuzzy input and output sets. The

aggregation operators are from the t-norm and t-conorm set of operators which gen-

eralize the intersection (conjunction) and union (disjunction) operations respectively

[57]. An example of a rule is:

IF A is UAi AND B is UBj THEN C is Uci (3.1)

where A is the variable of the domain UA, B is the variable of the domain UB, and

C is the variable of the domain Uc. UAi, UBi, and Uci denote specific member-
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ship functions (fuzzy variables) of their respective domains. Equation 3.1 uses the

conjunctive aggregation operator, AND. Similarly, OR is a disjunctive operator.

The mechanism by which fuzzy sets are aggregated is not unique. However, all such

mechanisms do fall within the definitions of t-norm and t-conorm defined respec-

tively as the mappings T: [0, 1] x [0,1] -+ [0,1] and S: [0,1] x [0, 1] -* [0, 1] such

that these mappings meet the following criteria [28]:

T(a, b) = T(b, a) S(a, b) = S(b, a) Commutativity

T(a, T(b, c)) = T(T(a, b), c) S(a, S(b, c)) = S(S(a, b), c) Associativity

T(a, b) T(c, d) S(a, b) S(c, d) if a > c and b> d Monotonicity

T(a, 1) = a S(a, 0) = a Identity
(3.2)

where a and b are the degrees of membership in their appropriate membership func-

tions. The Min/Max operators,

a ± b+ la - b)
Max(a, b) = 2

a +b- la- blMin(a, b) = a 2 a-b

are commonly used t-norm/t-conorm mappings [57].

Though many other operators exist, Min/Max will be used for this research.

Thus, the conjunctive operator is:

Min(17A(XA), 7B(XB)) (3.3)

where XA and XB are the input values associated with the A domain and B domains,

respectively; determines the weight of the associated fuzzy consequent. Once the

fuzzy consequent and the weight associated with it are determined for all fuzzy input

pairs, one must derive a non-fuzzy output. This process is known as defuzzification

and again, there are many methods used for this purpose [58, 57, 13]. This research
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Figure 3.3 One dimensional example

will use the weighted average of fuzzy singletons which has a significant reduction in

computational costs compared with other common methods [51]. A summary of the

design parameters which must be defined include: parameters which constitute the

inputs, fuzzy domains which span the input and output space, fuzzy rule-base, ag-

gregation operators, and defuzzification procedure. A simple example of this process

follows.

3.4 Example of Fuzzy Control

A fuzzy logic system consisting of heuristically derived rules, consists of a rule

base, which is an nth order system of relationships among the input parameters

and output parameters. n being the number of input parameters in the rule base.

Typically, the rule base may be envisioned as an n th order matrix of cells. Each

cell corresponds to a fuzzy output set given the input fuzzy arguments. The fol-

lowing example models simplistic position control using acceleration inputs for an

automobile.

This example will concern the single dimensional problem controlling an auto-

mobile to a given position through commanded changes in acceleration. Assume the

input variables for an automobile controller can be reduced to two inputs, distance

to the target, x and current velocity v = i. Figure 3.3 illustrates the problem. Let

the output be the acceleration a = i. Assume the domains of interest are:

x: [-10 10
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Figure 3.4 Example fuzzy antecedent and consequent sets

v: [5 5]

a:[5 51

Further, assume the domains are divided among the five fuzzy sets: large negative

(LN), small negative (SN), zero (ZE), small positive (SP), and large positive (LP).

These domains are illustrated in Figure 3.4. Using the above assumptions, the

structure of the rule-base is defined. The rule-base will consist of a 25 element

matrix, which constitutes all the possible combinations of fuzzy set inputs. The

acceleration domain is made up of fuzzy singletons [51]. The output membership

functions are unit impulses, which when coupled with a weighted average inference

process, is commonly referred to as the Sugeno-style fuzzy inference. The heuristic

rules used to determine the output for each cell derive from various permutations of

the rule below:

3-8



LN SN ZE SP LP

LN LPLP LP SP ZE

SN LP LP SP ZE SN

ZE LP SP ZE SN LN

SP SP ZE SN LN LN

LP ZE SN LN LN LN

Figure 3.5 Example rulebase

IF v is LP AND x is SP THEN a is LN (3.4)

The control surface of these heuristically derived rules, is illustrated in Figure 3.5.

The operation of the inference mechanism, where an instance of inputs is

mapped to the output range through the rule-base, is described next. Given an input

pair v = -2.0, x = 3.3, the first step in the inference process is the fuzzification of

the inputs. The velocity and distance membership values are: {0.0, 0.8, 0.2, 0.0, 0.0}

and {0.0,0.0,0.34,0.66,0.0} respectively. Or, 77SN(-2.0) = 0.8, qZE(- 2 .0) = 0.2,
qZE( 3 .3 ) = 0.34, iSP( 3 .3) = 0.66, with the membership in the other functions zero.

For each cell in the rule-base matrix, the weight of the output cell is determined

by the value, Min(qv(v), 77,(x)). Thus, many of the cells result in zero output for a

given input set { x v }. Figure 3.6 illustrates the weight associated with each of

the input membership functions. In general, for two input systems, only four rules

of the rulebase will have greater than zero output.

rq(SN, ZE) = Min(0.8, 0.34) = 0.34

i7 (SN, SP) = Min(0.8,0.66) = 0.66
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Instance of Fuzzy Inputs

x=3.3

0.8

E2 0.6
.0
E 0.4

SID

0.2

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

1 v=-2.0

0.8

E2 0.6.8-

E 0.4

0.2

OL ZE
5 -2.5 0 2.5 5

V

Figure 3.6 Instance of x = 3.3, and v = -2.0

,7(ZE, ZE) = Min(0.2, 0.34) = 0.2

77(ZE, SP) = Min(0.2,0.66) = 0.2

The final output control value is the weighted average of the four consequents.

m

ZE Yi0lai

m = (3.5)
i=1

where m is the number of fuzzy consequents, y is the ith fuzzy singleton value, 7i

is the weight of the ith consequent

The SIMULINK model which was used to simulate this controller is illustrated

in Figure 3.7 [1, 2]. Two simulations are illustrated for two different initial conditions

in Figures 3.8 and 3.9.
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Figure 3.8 Position control results, Case A
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Position Control, Rulebase 1, Case B
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Figure 3.9 Position control results, Case B

The performance characteristics of the example position controller can be easily

changed by changing the values of the cells in the rule-base. The modified rule-base

along with the change in controller performance are illustrated in Figures 3.10, 3.11,

and 3.12

Note, this particular fuzzy control model functions similarly to a conventional

P'D controller. Simple fuzzy control models using inputs and outputs equivalent to

errors, change in errors, and sum of errors approximate various forms of PI, PD, and

PID control schemes [45, 48, 57].

3.5 Summary

In this chapter, a brief history of the concept of fuzzy sets and logic have been

presented. Also presented were the mechanics of a simple fuzzy logic controller,

including concepts surrounding construction of the system. The basic elements in the

fuzzy controller include definition of the input parameters in terms of a fuzzy domain,
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Figure 3.12 Modified position control results, Case B

the rule-base by which the inference mechanism can operate, and the determination

of the final consequent response. These elements are common to most fuzzy control

systems. The decisions concerning the details of the shape of the domains, the

aggregation operators, the rule-base, and the consequent analysis are flexible to the

extent that they can be compared with tuning parameters of conventional control

architectures.
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IV. Fuzzy Logic Reactive System

This research concerns the development and validation of an unconventional

approach to the problem of contact force assignment. Conventional methods based

on global optimization attempt to satisfy the stated objective functions while simul-

taneously considering all contact forces. These methods require numeric optimization

solutions for all but very simple contact configurations. This research will focus on

an alternative method which evaluates each internal force pair in turn and, through

fuzzy logic methods, then makes a global iterative adjustment of the internal forces.

4.1 FLRS Concept

The FLRS algorithm is an iterative one. Starting with the known external force

solution, declare an error to exist among the contact forces which do not satisfy their

local frictional constraints. Next, evaluate how well each internal force can reduce the

associated contacts errors and proportionally weight each internal force accordingly.

All the internal forces are then scaled such that, when added to the previous contact

forces, they minimize the contact error for at least one contact. The contact used

to determine the scale of the internal force increment is the contact whose error is

most readily reduced by the application of internal forces. The iterative process is

continued until all contacts satisfy the friction constraints. Since only internal forces

are being added to the external force solution, the object wrench due to the contact

forces remains the same, i.e. the addition of null space forces to the pseudoinverse

solution cannot change the object wrench.

4.2 FLRS Parameters

Figure 4.1 illustrates how the FLRS algorithm calculates the internal forces for

a given grasp configuration and object wrench. No knowledge of a previous solution

is assumed. Before entering into the iterative portion of the algorithm, the external
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forces are calculated using the pseudoinverse of the grasp matrix. The first element

in the iterative portion of FLRS is the establishment of the contact errors which

are to be resolved, as indicated in Figure 4.2. The ith contact force error for the tth

iteration, er-fi(t), is the vector from the current contact force, fi(t), to the closest

point on the friction cone, in the zth coordinate frame,

[dxi (t) J ,(t)1

er-k(t) dxi(t) .cos(o,(t)) - fv(t) (4.1)
dxi(t) .p sin( Oi(t) ) fi(t)

where

dxi~) ma fi.t) +y~fi,(t)cos(Oi(t)) + fi-2(t) sin(Oi(t))) (42dx ()= a fi~ (t)+j~~() 1+~ ) (4.2)
m ax1 + 'U2/

and

= a tan 2(fiz(t), fiy(t)) (4.3)

The superscript '^' indicates force variables which exist in the iterative portion of

FLRS only. The x-coordinate, in the ith frame for the t t h iteration, of the closest point

on the friction cone to the current value of contact force, is denoted as dxi(t). The

max operation of Equation 4.2 is necessary to ensure dxi(t) >_ 0 even for fji(t) < 0.

Given an initial external contact force, fexti, and contact error, er-fi(1), if

internal forces were added to eliminate the contact error as defined, and ignoring

other contacts, the additional internal force would result in the minimum norm

contact force. The least internal force required to satisfy the friction constraints for

the given contact, is erfi(1). However, other contact errors exist and their resolution

may conflict in terms of the internal forces necessary to resolve the contact errors. A

method of quantifying the ability of a given internal force to constructively alter the

error in a given contact force, er-fi(t), is needed. Figure 4.3 illustrates the method.

The internal force unit vector, from contact i to contact j is denoted eIij and is
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of equal magnitude and opposite direction to eiLi. The vector dot product of an

internal force unit vector with an associated error in contact force, eIij * erli(t)

and eji * er-ij(t), are denoted by er-dotij and er-dotji respectively. The symbol '0'

denotes vector dot product. It is to be understood that erdotij is a function of the

iteration, t, of the algorithm.

The er-dotij scalar quantifies how effectively a particular internal force can

resolve an associated contact force error. Initially, er-dotij E ( -oc oo ); how-

ever, the FLRS algorithm will normalize this domain, during every iteration, such

that er-dotij E ( -1 1 ) by letting ER-dot = ER-dot/ max(abs(ERdot)), where

ER-dot G 2Ni denotes the vector of all er-dotij. Recall, N1 is the number of

internal force pairs, (m2 - m)/2.

So far we've addressed only the input, or antecedent, parameters which feed

into the fuzzy inference portion of FLRS. The goal of FLRS is to determine a solu-

tion to the frictional contact problem by iteratively adding necessary increments of
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internal force. Thus, the output, or consequent, parameter will be the relative weight

associated with a given internal force, wj(t). Fuzzification of the antecedents and

defuzzification of the consequents, using the method of Sugeno, will be accomplished

as described in Chapter III.

4.3 FLRS rulebase

The FLRS fuzzy inference portion operates on each internal force pair, in turn.

A relative evaluation as to the merit of an increase in one internal force pair over

another must be made. This will be accomplished through fuzzy inference using

a heuristically formed rulebase. The basis for the rulebase in evaluating the merit

of each internal force is straightforward and two-dimensional. If the effects of all

internal forces were considered simultaneously, the dimension of the rulebase would

increase to 2N and would dramatically increase the computations necessary for a

solution as well as the complexity of the rulebase. Assuming the FLRS algorithm
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converges, a two-dimensional rulebase will provide an improvement in solution speed

compared with the 2NI-dimensional rulebase.

Given the ith internal force and the associated er-dotij and er-dotji, the outline

of the rulebase is:

If er-dotij is PositiveLarge and er-dotji is PositiveLarge then wij(t) is Large

(4.4)

Equation 4.4 illustrates the concept that if er-dotij and er-dotji are relatively large

positive numbers, then an increase in the internal force associated with both i and

j contacts will greatly decrease the contact force error for both contacts. Likewise,

if both er-dotij and er-dotji are relatively large negative numbers, then a decrease

in the internal force associated with both i and j contacts will greatly decrease the

contact force error for both contacts. Also, the relative magnitudes of the input

er-dot will dictate the relative magnitude of the output, w(t). For instance, if both

er-dotij and er-dotji are relatively small positive numbers, then an increase in the

internal force associated with both i and j contacts will slightly decrease the contact

force error for both contacts.

Figure 4.4 illustrates the FLRS rulebase. The rulebase is symmetric with

respect to the ij and ji inputs. The diagonal elements, elements for which the ij

and ji inputs are equal, represent the qualitative arguments presented above. The

off diagonal terms represent the heuristic notion of tradeoffs. For example, if er-dotij

is a large positive number, reflecting the fact that an increase in the internal force

will greatly decrease the ith contact error, and er-dotji is a relatively small negative

number, then a moderate increase in the internal force associated with both i and

j is warranted as the benefits of such an increase outweigh the detriments. Again,

there is a full range of relative values for both the ith and jth contacts. At this point

some decisions, concerning the structure of the fuzzy inference portion of FLRS,

need to be made.
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Figure 4.4 FLRS rulebase

As Figure 4.4 illustrates, the number of input and output fuzzy sets has been

defined to be seven. The number of fuzzy sets reflects, to some degree, the level of

resolution required to adequately express the heuristic rules described above. Fig-

ure 4.5 illustrates the antecedent and consequent domain and their associated fuzzy

sets. These sets are symmetric about zero. The support of the antecedent sets,

the interval of the domain where the membership values are greater than zero, is

graduated with the support widening for the sets closer to the domain extremes.

This allows finer resolution of the antecedents when they are relatively small. The

output domain is defined for seven fuzzy singleton sets, as per the Sugeno method

of defuzzification [51]. Once the limits on the fuzzy domains were established, the

shape and mean of the fuzzy sets were chosen to resemble examples of fuzzy infer-

ence systems common in the literature, such as Ross [52]. The Sugeno method of

inference was chosen to speed the calculation of the fuzzy inference consequent.
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Figure 4.5 FLRS fuzzy antecedent and consequent sets

4.4 Change in Internal Force

After each internal force has received a weight, wij(t), the change to the internal

force associated with the ith contact is calculated as:

m

Afi(t) = E wjj(t).e-Iij (4.5)

j=1,joi

where '.' signifies scalar product. The change in internal forces are next scaled and

added to the current contact forces to form the updated contact forces, F(t).

F(t) = F(t) + k(t). AF(t) (4.6)

where

k(t) = (AfL(t))# er!L(t) (4.7)
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and L is the contact with the largest value of Af(t)j.er-i(t). The symbol '*' denotes

the pseudoinverse operator. This scale factor has the effect of reducing erJL(t) in

the next iteration and reducing the erfi(t) of the other contacts by lesser amounts.

This is discussed in more detail in Section 5.1.2. The above definition of the scale

factor, k(t) promotes the orderly solution of each contact force error. Orderly, in

this case, means that the contacts which will reach the friction constraint surface

first, due to the change in internal force, will control the solution process. As each

contact force, fi(t) is pushed into the friction cone by the addition of internal forces,

that contact ceases to have a contact force error. However, during following iterative

cycles, if necessary, the incremental addition of internal force may cause a previously

zero contact force error to become non-zero. The FLRS iteratively cycles until all

contact forces lie inside their respective friction cones. Bounds on k(t), for solution

convergence, will be established in Chapter V.

The scale factor k(t) may be viewed as a gain, dependent on the change in

the Lth contact internal forces and error in force. This algorithm is analogous to a

disturbance rejection proportional controller which seeks to reduce an error to zero.

Accordingly, this control scheme may take an excessive number of iterative steps

to reach a zero error state. Another source of slowed convergence can result when

k(t) is repeatedly established by the same contact. The issue of convergence speed

enhancements to the FLRS algorithm, will be addressed in Chapter VI.

4.5 Summary

The FLRS algorithm iteratively weights the use of internal forces without com-

plete knowledge of all the contact error states. This is the fundamental difference

between the FLRS and other optimal forms of grasp force assignment which consider

all error states simultaneously. Both the FLRS and other grasp force assignment

methods begin with some form of external force solution, upon which internal forces
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are added until the contact constraints are met. Useful extensions to the basic FLRS

algorithm are presented in Appendix A.
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V. FLRS Convergence Characterization

The grasp force assignment algorithm described in Chapter IV must be vali-

dated. This chapter will characterize the limitations on the parameters governing

the FLRS solution such that solution convergence is assured for both the two contact

case and multicontact (m > 2) case. Observations concerning the characteristics of

the FLRS solution with respect to the Nakamura optimal solution will also be made.

5.1 Convergence Analysis

The analysis which follows will be planar though it should be extendible to

spatial cases. The objective of this analysis is to characterize the functions and

parameters used in the FLRS algorithm which will ensure solution convergence. The

convergence criteria which will be satisfied is the decrease, at each iterative step, of

the sum of the norms of the error in contact force over all contacts,

m m

y erfi (t + 1) 11 < eri (t) (5.1)

where t is an integer and indicates the iteration number of the FLRS algorithm. It is

well known that a decreasing and bounded sequence is convergent [5]. As described

in Chapter IV the FLRS solution is iterative in nature and starts with the external

force solution,

F(1) = Fext= W#Q (5.2)

where W is the grasp matrix associated with the given grasp configuration and Q

is the commanded object wrench..

This analysis will assume that the grasp configuration is consistent with con-

cepts regarding force closure, [62]. Without a force closure grasp, there will exist

some commanded object wrench for which the FLRS algorithm will not converge to

a solution, nor would any other algorithm.
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This analysis will proceed by first establishing the contact force relationships

from one iteration to the next. Second, contact force errors will be defined. Third,

the square of the Euclidean norm of these errors will be developed for the th and

(t + i)th solution iterations, as in Equation 5.1. And finally, the requirements on

the contact geometry and solution parameters will be derived based on conformance

with solution convergence. Note, this convergence analysis uses subscript notation

which should not be confused with standard forms of tensor notation.

Given a contact force vector, P(t) at iteration t, the next contact force solution

will be:

F(t + 1) =F(t) + k(t)AF(t) (5.3)

where

= [ f, (t) ffl(t) ... f~t 54

and where AP(t) consists of internal force components only and k(t) is an overall

scale factor to be defined. A diagram of a three contact force assignment problem and

relevant nomenclature is shown in Figure 5.1. The contact coordinate systems are

such that the inward pointing normal is coincident with the local x-axis, the z-axis is

perpendicular and out of the page, and the y-axis is consistent with a right-handed

coordinate system.

The solution for the (t + I)th iteration in contact force for the ith contact is:

f2(t + 1) = fi(t) + k(t). Afi(t) (5.6)

where
m

Afi(t) = wij(t) . e1Jj (5.7)
j=1
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Figure 5.1 FLRS solution nomenclature for three contact problem

and wij(t) is a weight associated with the internal force between the ith and Pth

contacts. The term eJj~ is the unit vector from contact i to contact J, in the jth

coordinate frame. It is to be understood that the summation does not include j =Z

as there is no wii(t). Let

Wij(t) = wj~rdtjt + er-dotji(t)) = wj~rdtjt + er-dotji(t)) (5.8)

where wij (t) E [ -1 1I] is an increasing function of er-dotij (t) and er..dotji (t) which

passes through the origin, i.e. x > y --* wij(x) ! zij(y). Also, er-dotij(t) E

[-1 1 ], where

er-dotij(t) = (eli3 * er-ii(t)) l~dot (5.9)

and

Cdot = rnX(el~j erA'4~t)) (5.10)

5-3



Y
Object Surface

. B1  er _ (t)

el
B2  Friction Cone

Figure 5.2 Definition of contact force zones

As before, erAi(t) is the contact force error associated with the current ith contact

force, fi(t). The contact force fi(t) is defined to lie in one of four zones, A, B 1, B 2,

or C, as depicted in Figure 5.2. Each of these zones has a different definition of the

contact force error, erA(t). For the development which follows, assume ft(t) E B 1,

er~J.(t) = _/ -y(t) + 1f2..(t) (5.11)

er.fi,(t) - -. (t) + A2.(t)

1 +/ 2 (5.12)

We may now expand er-dotij(t):

er-dotij(t) = (e-Iij, . er-liJ(t) + eIiju . er-Ay(t)) /Cdot (5.13)

er-dotij(t) = (eIiji . +(-t +/Y.(t)+ eijy( -AM(t) +PA ) Cdoti+ p + P¥; 2
(5.14)
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er-doti(t) (1 + 2)(j1f(t) - fiv(t))(eI[jy - peIiy.) (5.15)

For this analysis, assume all contacts have the same value for A, the static

(Coulomb) coefficient of friction. Since the two components of the error vector are

related as:

er-f..(t) = - fi. _ t) (5.16)

then we may simplify the square of the norm of the error,

erf-f(t)2 + er-fiv(t)2 = (1 + p')eriiy(t)2 (5.17)

Substituting Equation 5.12 into Equation 5.17,

er-.x(t)2 + erjiy(t)2 = (-A~t) + pk(t))2  (5.18)
1 + p25

Similarly, both the local x and y components of the (t + 1) iteration of the jth error

in contact force are:

erfli(t + 1) dxi(t + 1) - fi,(t + 1) (5.19)

- (t + 1) +/liji(t + 1)+-1)= (t + 1) + 1 (5.20)

and

1 fE(t) + k(t). E I wij(t), eIij - ,t(fi (t) + k(t). E7 1 wij(t) , eIij.)
= / 1 + 2  3

(5.21)

er-fy(t + 1) = p. dxi(t + 1) - fiy(t + 1) (5.22)

erf y(t + 1) = -~fy(t + 1) + ,iJ-(t + 1) (5.23)
5 1 + I2



and

er1fiA(t+l) = -f(t) + k(t) . Eji wij(t), e-Iiy - j(fi.(t) + k(t) ?'Lj wij(t) , eIlj.)
1 + 2

(5.24)

Using Equation 5.17, the square of the norm of the (t + i)th iteration of the ith

contact force error is:

((yjj.(t) - jjy(t)) + k(t)"ET jmWj(t)(/peij.- e-lijy) )
2

erjx(t+1)2+er-ji(t+1)2 ) 2-
1+ 2

(5.25)

Equations 5.18 and 5.25, which describe the contact force errors for the (t+l)th

and tth iteration, can be substituted into Equation 5.1
m rn

E(er-,(t + 1)2 + er-_iy(t + 1)2) - Zerj,(t) 2 + er'._, (t)2 ) < 0 (5.26)
i=1 i=1

or equivalently,

m m

Re[-_i.+ 1)2 + _er (t + 1)2) - (erji(t)2 + erivf(t)2)] = E dn(t) < 0 (5.27)

where

2(pfi,(t) - fiy(t))k(t) E7 1 wij(t)(pe_[jj. - e- + 52)dni(t)- =_ 3= + + (5.28)
1 + p 2

k(t)2 (EL 1 w-j(t)(Ajj _ e_[,jy)) 2

1 + IL2

One could enforce a more conservative convergence requirement than Equation 5.27

by requiring each dni(t) < 0 V i. This requirement means, for each contact, that the

next iteration in contact force may not move away from the friction cone. In order to

assure this, equations relating all contact errors must be formed and solved simulta-

neously. Since the FLRS does not consider all contacts simultaneously, convergence

of each contact force at each step cannot be expected.
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Figure 5.3 Two contact problem

5.1.1 Two Contact Problem. Let's now reduce the problem to m =2, as

illustrated by Figure 5.3. Assuming the less stringent convergence requirements of

Equation 5.27, the sum of the difference of the contact force norms is:

Zdni (t) + I (ue.It -2 i__ 2 jtIf-ejiy)2 ] + (5.29)

2k(t) .wij(t)-e-+

I + p2 e-(iie (Ait) - lyt)

Forming the convergence requirement inequality and multiplying all terms by 1 + it 2

and dividing by k(t),

k(t) .w()
2 a +I 2wij(t) b < 0 (5.30)

where

a (ii~_- Ir 2 juIi. - eiy~)2  (5.31)
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and

b= (ueZij. - eI-Ijy) (p1 if(t) - fjy(t)) + (yeIji. - eIjiy) (Iiflj(t) - fir(t)) (5.32)

Substituting Equation 5.15 for the components in b,

b = -(1 + [ 2 )Cdot(er-dotij(t) + er-dotj,(t)) (5.33)

Equation 5.31 is maximized if both e-ijy = -Ie-Iij, and e-Ijiy = -. ueI-ji., resulting

in:

a = (2/e-Ijj) 2 + (2peIjix)2  (5.34)

Also, this assumption requires eIj = 1+7 and e_13 1 which further simplifies

Equation 5.34 to:
a -- 22) (5.35)

(1 ± pt2 )2

Substituting these terms into Equation 5.30,

. W~j(t)2 8/, 2 (_I+Y

k(t) .w(t)2 . (1 + 2)2 2wij(t) (-(12)Cdot) (er-dotij(t) + er-dotji(t)) < 0

(5.36)

or

k (1 + 2)3Cdot W ) (er-dotij(t) + er-dotji(t)) (5.37)k~)<4/t2w~j(t) 2 wj

The right hand side of Equation 5.37 is always positive since wij(t) will always have

the same sign as (er-dotij(t) + er-dotji(t)), from the definition of wij(t).

5.1.2 General Multicontact Problem . Now, let's consider the general mul-

ticontact case where m > 2. Assuming the less stringent convergence requirements,

of Equation 5.27,
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m m

0O> >1-  2(jt (t) - fi,(t))k(t) w i,(t)(e - I i, - e -I ij y )  (5.38)
+11=1
1 k(t)2 ( wij(t)(pe-Iij - _[,j?)) 2

i=1 j=1

We can form the equivalent to Equation 5.29 by multiplying all terms by 1 + /12 and

dividing by k(t):

m m 
m m

2 E (itA-(t) - y(0))wij (t) (p-e Jj- e-Ijy) + k(t) E(E wij (t) (/er-J,P 1 j._ Ij))2 < 0
i=1 j1 i1 j=1

(5.39)

which, after substituting Equation 5.15, becomes

mT m m m

- (1 + A 2)Cdot2 E wij(t) " er-dotij(t) + k(t) J(Z wij(t)(ue-Ijt - ei[jy))2 < 0
i=l j=1 i=1 j=1

(5.40)

Solving for the scale factor k(t):

k(t) < (1 + A
2)Cdt2 Eiml 2ml wij(t)• er-dotij(t) (5.41)E' 1=(E I w1J( t )(t)eIJ -e

So far we have only considered cases where fi(t) & fi(t + 1) lie in region B1 of

Figure 5.2; for fi(t) & fi(t + 1) lying in region B2 the convergence criteria becomes:

m 
m 

m

2 E E(Pjix(t)+.iy(t))wij(t)(pe-iJx+e-Iijy)+k(t) 1:(E wij(t)(pe-iJze-JjY))2 < 0
j=1 j=l

(5.42)

Solving for the scale factor k(t):

(1 + /. 2 )Cdt2 ET, 2L 1 wij(t) " er-dotij(t)k (t )<ot Z'=I ---- 1 (5.43)

2=( 1 wI= (t)(,u-! .i + 6_eij;)) 2

where

erdoto( ) (/li.(t) + iy(t))(e-[ijy + IueIj3 ) (5.44)
Cdt(1 + p 52) -9
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For the case of fi(t) & fi(t + 1) lying in region C, the contact force error is:

er-(t) =- { (t) }} (5.45)

The square of the magnitude of the contact force errors for the tth and (t + I)th

iteration are:

eri_.(t)2 + erfy(t)2 = fi.(t)2 + fY(t) 2  (5.46)

and

er_ (t + 1)2 + er_ y(t + 1)2 = f.(t + 1)2 + f!,(t + 1)2 (547)

(fi(t) + k(t) _,j (t)e-Iij.) 2 +
j=1

7n(Iiy(t) + k( t) I w~j(t)e-t jy)2
j=1

The convergence criteria equation, Equation 5.26, becomes:

((_ .(t) + kij ( w t)e_[,j.) 2 + (fI2 (t) + k(t) E w~j(t)e -_jy) 2
i=1 j=l j=l

i=1

(5.48)

which can be reformed into,

k(t) ( w 3(t)_[,j) 2 + (1 wj(t)e jy) 2 <
i=1 =j=1

-2E wij(t)eIij. + E wij(t)eIijy (5.49)
i=1 j=
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with which we may deduce

k(t) <_2 E7 1 wij(t) (i (t) * eJij) (5.50)
Emjl ((E 1 Wj(t)e-j)

2 + (E 1 Wij(t)e-ijy)2)

Of course, in general, any tth iteration solution will have contact forces lying in all

four regions. Assuming fi(t) & fi(t + 1) lie in the same region, for any i, and the

contacts lying in each region may be enumerated as:

I --+ mA fi(t) EA

mA + I -* mB1 fi(t) E B1

mBl + 1 M mB2 f?(t) E B2

mB2 + - m fi(t) E C

then

k~t) ( + j9)2Cd~ Z~mAl Z'L wij (t) er.dotij(t) +(.2
(1+ )2Cdot --MAm jk (t) < 171 (l1WjtIlej.-e[y)2 + (5.52)

t=mA+l kZ.j=l

(1 + IL2 )2Cdot "B +1 E I w~j(t). erdotij(t)
Em  E n 1 Wj(t)(jje_xjj + e_[,j,))2z=mBi +1 3 j=l

-2 EimB2+1 Z=1 wit(t) " (fi(t) * e1ij)

Ei=mB2+1 ((E7 1 wij(t)e-Ijj) 2 + (Em 1 wij(t)eJjy)2)

Thus, we have established an upper limit on the overall scale factor k(t). The

method described in Chapter IV to calculate k(t) must be checked to ensure it is less

than k(t) as calculated through Equation 5.52; alternatively, and more practically,

one could monitor the iT_1 dni(t) to ensure the sum is less than zero and only use

Equation 5.52 to develop a suitable k(t) when the convergence check fails. Next, we

need to establish a lower bound on k(t).

In Chapter IV, k(t) was calculated as:

k(t)- Af= L (t)erjL(t), (5.53)
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Figure 5.4 Relationship between k(t), erfL(t), and AfL(t)

where L is the contact which has the greatest value of Azf(t). erf(t). The superscript

# indicates the pseudoinverse operator, A# = (ATA) - 'AT. Since AfL(t) is a vector,

Equation 5.53 may be expanded to:

k(t) = (AfT(t)erJL(t))/(AfLT(t)AfL(t)). (5.54)

For AfL(t) e er-fL(t) > 0 : k(t) > 0 while for AfL(t) o er-fL(t) < 0 = k(t) < 0.

This overall scale factor provides a mechanism to ensure an appropriate magnitude

of change for the contact forces. Assuming that the Lh contact is known, k(t) scales

the change in contact force for the Lth contact such that the norm of the difference

between k(t). zAfL(t) and er_?L(t) is minimized. A graphical representation of this

solution is illustrated in Figure 5.4.

5.1.3 FLRS and the Optimal Solution. Both the FLRS algorithm and the

optimal solution proposed by Nakamura begin with the external force solution, which
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is itself the minimum norm of the contact force solution, without constraints. The

FLRS seeks solutions whereby internal forces are added to any contact forces which

violate the friction constraints. Ideally, for a given contact, FLRS adds internal forces

which are coincident with a vector from the external force to the nearest point in

force space which satisfies the friction constraints, i.e. perpendicular to the nearest

point on the surface of the friction cone in Figure 5.4.

By defining er-fi(t) as the shortest path to the constraint surface, and using

the fuzzy control surface described in Chapter IV to calculate wij(t), we are seeking

a solution in which we attempt to use as little internal force as necessary to satisfy

the frictional constraints. This is qualitatively the same goal the optimal solution

seeks: the minimum internal force necessary to satisfy the frictional constraints. The

ability of the FLRS to accomplish this goal is hampered by the fact that the solution

is accomplished considering contacts pairwise while the optimal solution considers

all contacts together. Thus, in general, one should expect the FLRS solution to be

suboptimal with respect to the solution proposed by Nakamura.

We could change the character of the FLRS solution by altering the definition

of eri2(t) and/or the function wij(t). Appendix A documents how redefining er-i'(t)

and the FLRS exit criteria can enforce a given level of contact stability in the face

of contact force disturbances. By changing the definition of wij(t), we can further

alter the character of the solution, this is discussed in Appendix A.

5.2 Summary

This chapter has developed limits on the FLRS parameters in order for the

system to converge to a solution given a force closure grasp configuration and object

wrench. The internal force weighting function, wij(t) has been limited to one of an

increasing function of er-dotij and er-dotji. The scale factor, k(t), for the change in

internal forces for the tth iteration has an upper bound according to Equation 5.52

and a lower bound of zero. The nominal scale factor definition, from Chapter IV, has
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a specific geometric relationship between er-fL(t) and AfL(t). The FLRS solution

is suboptimal, with respect to the solution proposed by Nakamura, and it may be

altered by changing the rules/functions which govern its behavior.
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VI. FLRS Implementation Refinements

The FLRS algorithm defined in Chapter IV and analyzed in Chapter V may be

considered ideal. Since the FLRS solution may be characterized as a position control

scheme, though the solution will converge, it may take an excessive number of itera-

tions to do so. The initial implementation of the FLRS algorithm was accomplished

using the MATLAB computational environment. During the implementation of the

FLRS algorithm, two refinements were made related to solution acceleration. The

first change concerned the redefinition of er-fi(t). The second refinement was the

development of an alternative method, relative to the definition given in Chapter IV,

to determine the internal force scale factor, k(t).

6.1 Redefinition of Contact Force Errors

One absolute requirement of the FLRS algorithm is that no contact force may

violate the friction constraints. Thus, we require a zero error solution using a method

which may converge slowly near the constraint surface due to the position control

characteristics of the solution. In order to speed the convergence of the FLRS so-

lution, er-fi(t) is redefined to promote faster convergence. The new definition of

er-fi(t) will be equivalent to shifting the friction cone of the ith contact inward along

the local xi axis by a distance &x and will be called the convergence cone, as illus-

trated in Figure 6.1. The distance x will be referred to as the convergence cone

offset.

Referring to Figure 6.1, the new definition of the contact force error where

f (t) E B1 will be:

erfi(t)={ dxi(t) }-{ A(t) } (6.1)
p • (dx6(t) - x) A(t)
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Figure 6.1 Definition of convergence cone

where

dx(t) + 2  (6.2)

For contact forces ft(t) E B 2,

ert(t) { dx(t) } (6.3)- .(dxi(t) - bx) AV(t)

where

dx (t) = zr(t) - .1 + 2 x
dx~)=AM 1 + p 2  (6.4)

and for fi(t) e C,

er_'f(t)={ bx }-{ (t ) } (6.5)0 AVtM

Referring to Figure 4.1, the friction constraint satisfaction check made at the end

of every iteration is still based on the friction cone, not the convergence cone. The
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Figure 6.2 FLRS solution steps for two contact problem

effect of this change in the FLRS algorithm may be demonstrated using the two

contact example of Chapter II.

Recall the problem and solution to the two contact example solved using the

optimal method described by Nakamura:

-1.251 01 0 1
0.5

W 0 1 0 1 Q= ,and F (6.6)
2.25
0.5

Now examine the solution using the original FLRS algorithm without the new def-

inition for er-fi(t). Figure 6.2 illustrates the iterative development of the contact

force components for both Contacts 1 and 2. Even after 30 iterations of the FLRS

algorithm, the friction constraints have not been satisfied. It should be clear that

the contact forces will not satisfy the constraints in a finite number of iterations.
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Figure 6.3 FLRS solution steps with convergence cone

Figure 6.3 illustrate the FLRS solution using the redefined erJi(t), where 5x = 0.05.

These solutions satisfy the frictional constraints after 24 of iterations of the FLRS

algorithm. Solution sensitivity to the convergence cone offset will be addressed later.

6.2 Refined Scale Factor

Another situation leading to slowed solution convergence is the case where a

single contact L, is repeatedly controlling solution convergence through the calcula-

tion of k(t), as defined by Equation 5.54. This situation typically occurs when all but

one or two contact forces satisfy the friction constraints, and A/L(t) o erJfL(t) < 1.

Referring to Figure 5.4, this situation arises when AfL(t) e erJfL(t) < 1, or AfL(t)

is nearly perpendicular to erJL(t). Thus, k(t)AfL(t) will be small and the solution

will slowly converge. For these cases, a refined definition for k(t) will allow a speedy
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Figure 6.4 FLRS solution steps with convergence cone and k

solution. This situation may be demonstrated using the two contact example of

Chapter II.

Using the redefined er-fi(t), where 6x = 0.05, the FLRS algorithm exhibited

the slow convergence behavior seen in Figure 6.3. Recognizing the repetitive nature

of the solution, one could extrapolate a previous solution to determine a better value

for the scale factor k(t). Assume the FLRS algorithm has just calculated k(t) using

the same contact L for the past n iterations, where n is the iteration threshold above

which FLRS will use an alternative method to calculate k(t). Instead of using k(t),

we will extrapolate to determine a value k(t) which will cause 1erJfL(t + 1)= 0.

Let,

kerIL(t) 2

)=AfL(t) * erA'L(t) (6.7)

Figure 6.4 illustrates the change in FLRS solution behavior with the refined scale

factor definition included. The solution converged in just five iterations.
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These two refinements to the FLRS algorithm allow, what is essentially a

proportion control law, to converge relatively quickly. Chapter VII explores numeric

examples of FLRS solution sensitivity to changing Sx and ft. Section A.4 discusses

other means by which the FLRS convergence properties may be improved.
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VII. FLRS Numeric Examples

Three grasp configurations were used to numerically validate the FLRS solution

method. The FLRS algorithm is now assumed to include both the convergence cone

and k amendments discussed in Chapter VI. The three configurations consist of

three, four, and five contacts on a unit radius sphere. Each configuration was tested

with 72 coplanar commanded object wrenches. Each solution was accomplished using

the FLRS algorithm, the numerical equivalent to the Nakamura optimal solution,

and a realistic approximation to the Nakamura optimal solution. The three contact

case was also solved using the method proposed by Yoshikawa. Also, the five contact

configuration was tested with 72 random spatial commanded object wrenches. The

MATLAB code used to generate the FLRS solutions is included in Appendix B.

7.1 Grasp configurations

The five contacts used for the numeric examples are illustrated in Figure 7.1.

The ith column of the matrix Pos is the position vector of the zth contact in the

object frame.

1 0 -1 0 0

Pos = 0 -1 0 0.707 0.707 (7.1)

0 0 0 0.707 -0.707 J
The three, four, and five contact configurations applied contacts {1, 2, 3}, {1, 2, 3, 4},

and {1, 2, 3, 4, 5} respectively. The commanded object wrenches, for the first series

of examples, coincides with the object (x, y) plane.

Q cos() sin(6) 0 0 0 0 (7.2)

where 0 = i * 7r/36, and has units of degrees, and i = 1 : 72. Contacts {1, 2, 3} lie in

the plane of the commanded object wrenches.
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Figure 7.1 Example object and five contacts

7.2 Solution methods

All numeric examples were solved using three methods. The first method

used the FLRS algorithm. The second consisted of a numeric approximation to

the Nakamura optimal solution. The numeric approximation was accomplished us-

ing the MATLAB constrained optimization function CONSTR [1, 19]. This algo-

rithm solves the Kuhn-Tucker equations, Equation 2.38 and 2.39, through the use

of constrained quasi-Newton methods which guarantee superlinear convergence by

accumulating second order information regarding the Kuhn-Tucker equations using

a quasi-Newton updating procedure. These methods are commonly referred to as

sequential quadratic programming (SQP) methods. A quadratic programming sub-

problem is solved at each major iteration which is then used to generate the search

direction for a line search procedure. The CONSTR function may be given analytic

gradients for the objective function and constraint functions, or the gradients may

be numerically approximated.
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The CONSTR function allows the user to set the acceptable error bounds on

the independent variable, the constraint functions, and the objective function. For

this case, the independent variable was the vector y, the constraint functions, g(y),

were those of Equation 2.34, and the objective function, h(y), was FTF. For the

numeric approximation to the optimal solution, the error bounds for these elements

were set very small, ey = 0.001, sq = 0.00001, Ch = 0.001. However, even with the

error bounds set very small, many of the solutions obtained through the CONSTR

function actually violate the frictional constraints. For the purposes of these exam-

ples, we will ignore this fact. The figures below present this CONSTR solution as

the theoretical Nakamura solution.

A practical analog to the above optimal solution was used to make relevant

comparisons between the method proposed by Nakamura and the FLRS method.

The realistic analog uses a displaced friction cone, similar to the one used for the

FLRS convergence cone. Since errors exist in the numeric solution and the frictional

constraints cannot be violated, the nominal frictional constraints used in the CON-

STR function must be displaced inward from the actual constraints. This allows all

solutions within the given error bounds to fall inside the actual constraint boundary.

In an effort to achieve similar solutions between the realistic optimal method and the

FLRS method, the nominal friction constraints were equivalent to the convergence

cone of the FLRS solution. The friction constraints were shifted inward &x along the

local x-axes.

With the nominal frictional constraints set, the error bounds on the indepen-

dent variables and the objective function were relaxed to: e. = 0.1 and 6h = 0.1.

The error bound on the constraint functions, C., was increased until solutions for F,

began to exceed the original friction constraint boundary. The same error bound was

used for all examples, eg = 0.027. Thus, the practical Nakamura solution achieved

admissible results, nominally the same results as the FLRS algorithm, while reducing
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the number of iterations necessary to converge, by relaxing the error bounds. This

solution will be referred to as the practical Nakamura solution.

The three contact problem is also solved using the method proposed by Yoshikawa.

This method also uses the CONSTR optimization routine to solve for internal forces.

As with the Nakamura solution, the Yoshikawa solution will have both a theoretical

and practical solution. The optimization related error bounds on the Yoshikawa

solutions will be the same as those for the Nakamura solutions for the sake of com-

parison.

As mentioned above, the CONSTR algorithm is capable of using analytic gra-

dient input for both the objective function and constraint functions, with respect

to the unknown variable y. The CONSTR solution data included in this document

were obtained using the default numeric approximation for the objective and con-

straint function gradients. Results obtained using analytic gradient information were

not significantly different in terms of contact force solution or the number of FPOs

required for the solution.

7.3 Planar Object Wrench Study

Figures 7.2, 7.4, and 7.6 illustrate how well the practical Nakamura and FLRS

solutions followed the theoretical Nakamura solution. Both the practical Nakamura

and the FLRS solutions appear to be close to the theoretical Nakamura solution such

that one would conclude they approximate a least squares solution. Figure 7.2 also

illustrates the Yoshikawa solution; for the most part, the theoretical solution lies on

theoretical Nakamura solution. One area where there is some noticeable deviation is

near 0 = 900. This is a manifestation of the Yoshikawa definition of manipulating and

grasping force directions which can generate asymmetric grasping and manipulative

force directions for a symmetric problem.

The Euclidean norm of the contact forces is presented rather than all the

components of all the contact forces, which would appear as almost identical plots

7-4



Norm of Applied Contact Force

- Nakamura (Theoretical)
0 Nakamura (Practical)

2.5- + FLRS
_. - Yoshikawa (Theoretical)
K Yoshikawa (Practical) e

2-+ +- -+ ++++++

1.+I + ++ 5

1.5-

.
+

0 60 120 180 240 300 360

0 (Degrees)

Figure 7.2 Norm(F) for three contact problem

between the three solution methods. The plot of norm(F) actually exaggerates dif-

ferences between the solutions. Figures 7.3, 7.5, and 7.7 illustrate the number of

floating point operations (FPOs) required to achieve admissible solutions for both

the practical Nakamura algorithm and the FLRS algorithm. The FPO count began

just before external force calculation was performed until an admissible contact force

solution was accomplished, for all methods. The pseudoinverse of the grasp matrix is

required only once for a given grasp configuration for the methods illustrated, except

the Yoshikawa solution which doesn't use one. The plots illustrate the dramatic de-

crease in required FPOs for the FLRS solution compared to the practical Nakamura

solution.

Figure 7.8 illustrates the root mean square (RMS) of the FPOs for the 72

solutions for the three, four, and five contact problems. The results for the practical

Nakamura case show the dramatic increase in required FPOs with an increase in the

number of contacts. The FLRS case illustrates relative independence between the

7-5



EPOs per Commanded Wrench

CO 00

00 000 0 0

Q.0 to' +++ ..
LL00000... ++ ++ + +

++ -+-4 0 Nakamura (Practical)
+ FLRS

+4-4-4- ;K44 Yoshikawa (Practical)

10'
0 60 120 180 240 300 360

0 (Degrees)

Figure 7.3 FPOs for three contact problem
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Figure 7.5 FPOs for four contact problem
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Figure 7.6 Norm(F) for five contact problem
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Figure 7.7 FPOs for five contact problem

required FPOs and the number of contacts. The Yoshikawa data point illustrates

the degree to which his proposed solution accelerated the internal force solution

process. The increase associated with the FLRS solution of the four contact problem

is due, in part, to the asymmetry of the particular grasp configuration, relative to the

commanded object wrenches. The ratio of RMS FPOs for the practical Nakamura

solutions to the FLRS solutions are: 4.6, 19.7, and 81.3 for the three, four, and five

contact problems respectively.

7.4 Random Object Wrench Study

The following numeric example used the five contact configuration illustrated

in Figure 7.1. However, the commanded object wrenches consisted of 72 random

spatial vectors where each element of the wrench was bounded, Qi E [ -1 1 ].

Figure 7.9 illustrates the norm(F) results for the commanded wrenches. The data

was sorted such that the norm(F) for the theoretical Nakamura solution increases
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Figure 7.8 RMS FPOs for the three, four, and five contact problems

from the first commanded wrench to the last. This was accomplished to order to

present coherent results rather than noise. Figure 7.10 presents the FPO data which

again shows the superiority of the FLRS algorithm compared with the practical

Nakamura solution, the RMS FPO ratio was 49.8. The FLRS algorithm did not fail

to converge to any of the random object wrenches.

The illustrated results of the numeric examples clearly show the tremendous

advantage in terms of FPOs of the FLRS algorithm over the practical Nakamura

solution. The norm(F) plots show that both algorithms obtain contact force solu-

tions close to the theoretical Nakamura solution. The advantage in FPOs translates

into a significant computational advantage for real-time applications using the FLRS

method as will be quantified in Section 7.7 which discusses a real-time implementa-

tion of the FLRS algorithm and the results.
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7.5 FLRS Convergence Cone offset Sensitivity

As mentioned earlier, the convergence cone offset, for the numeric examples

illustrated, has been 8x = 0.05. The fact that the convergence cone is used requires

the contact force solutions, determined through the FLRS algorithm, to have greater

levels of contact force relative to the theoretical minimum norm solution. This is

apparent in all the previous figures. Clearly, larger convergence cone offsets will

cause the FLRS solutions to have larger normed contact forces. Conversely, smaller

convergence cone offsets will require a greater number of solution steps in order to

converge to a solution. Clearly, a tradeoff exists between solution accuracy (based

on the theoretical solution) and solution speed.

Figures 7.11 and 7.12 illustrate this tradeoff for the three contact example of

Section 7.3. The ordinate of Figure 7.11 refers to the RMS of the difference between

the norm of the contact forces calculated by the FLRS algorithm and the theoretical

Nakamura method for 72 planar input wrenches. The input wrenches are the same

as those used for the previous three contact example, Equation 7.2. Figure 7.12

illustrates the change in the RMS of the floating point operations required for each

solution for progressively larger values of 6x. The significant aspect of these figures

is the knee of the curves, which is the basis for the decision to use bx = 0.05 as the

nominal setting throughout this paper.

7.6 FLRS Coefficient of Friction Sensitivity

Up to this point, all examples have used a coefficient of friction, y = 0.4.

Figure 7.13 illustrates the difference is contact force solutions for several values of

y. The three contact example of Section 7.3 is used for this illustration. Figure 7.14

illustrates a decrease in number of FPOs with an increase in p. The RMS FPOs are

6160, 4127, and 3178 for / = 0.4, 0.5, and 0.6 respectively.
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7.7 Real- Time FLRS

The final step of the validation process involved a real-time evaluation of the

FLRS algorithm. The FLRS algorithm was converted from the MATLAB interpre-

tive environment to a common form of the C language. Gnu C is a common Unix

based C compiler, and one which supports the Chimera real-time operating system.

The Chimera 3.1 real-time operating system which was used for the validation was

developed at Carnegie Mellon University (CMU).

Chimera resides on a host computer, which in this case is a Sun SPARCsta-

tion2, and provides control over at least one single board computer, or real-time

processing unit (RTPU), installed in a VMEbus system. Chimera allows properly

written and compiled modules, similar to conventional functions, to be downloaded

from the host machine to the RTPU and executed. Chimera provides the neces-

sary overhead to synchronize the execution of the modules and to exchange data

between them through a common global state variable table. The RTPU used for

the validation was a Motorola 68030 microprocessor.

The converted FLRS code was completed as a single Chimera module and is

included in Appendix C. In order to test the module, an input/output module was

written to provide the input data; grasp configuration, external force solution, and

start time; and record the output data; contact forces and end time. The output

contact forces were used to verify proper module execution while the difference in

start and end times were used to characterize the real-time capability of the FLRS

algorithm. The real-time test involved the three contact problem of Section 7.3. The

72 planar wrenches were consecutively input to the FLRS module and the results

were recorded. Figure 7.15 illustrates the time required for the contact force solution

for each of the input wrenches. The maximum time required for a solution was

58 milliseconds. This is fast, though improvements in speed may be accomplished

by optimizing the FLRS code and taking advantage of the parallel aspects of the

algorithm. Since the FLRS algorithm evaluates the internal force weight, wij(t)
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Figure 7.15 FLRS execution time for the three contact problem

independently for each internal force pair, a parallel implementation of the FLRS

may reduce the execution time markedly.

7.8 Summary

The numeric examples illustrated the dramatic decrease in solution FPOs of

the FLRS algorithm relative to the practical Nakamura method. The FLRS was also

shown to achieve results very close to the optimal solution formulated by Nakamura.

Finally, the FLRS algorithm was shown to be fast when implemented on real-time

hardware.
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VIII. Conclusion

This research explores a new method for calculating the contact forces required

to stably manipulate a grasped object with frictional point contacts. Many authors in

the field of robotic grasping have conducted extensive research in this area. One long

standing problem in this area has been the determination of the static forces required

to resist a given object wrench with a known contact configuration. A consistent

theme throughout the published works is the need for a fast, reasonable, and flexible

method to determine the internal forces for such a problem. The difficulty arises

from the fact that, in general, an infinite number of valid solutions exist. Various

definitions of optimal solutions have been proposed to limit the solution space. This

research used the optimal definitions associated with Nakamura et al. His work

has emphasized grasp force solutions which minimize the Euclidean norm of all the

contact forces applied to the grasped object.

The goal of this research was to develop a fast, reasonable, and flexible method

to determine the internal forces for a given grasp configuration and object wrench.

Fast, means an algorithm capable of real time results required for successful robot

grasping. Reasonable in this case refers to solutions qualitatively similar to the

minimum Euclidean norm solutions proposed by Nakamura. Flexible is with regard

to algorithm changes. One can easily change the character of the solution while still

using the same fundamental algorithm. The algorithm which was developed, FLRS,

accomplishes these tasks.

The FLRS algorithm is based on a tunable fuzzy logic inference method which

can be altered to achieve changes in the character of the FLRS solutions. The

rulebase used in this paper has emphasized solutions qualitatively similar to the

minimum norm solutions of Nakamura. FLRS does not seek to simultaneously resolve

appropriate internal force levels for a given contact force error state, as do published
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optimization methods. Instead, FLRS weights changes in the internal forces on a

pairwise basis. This results in a comparatively fast algorithm.

Based on a comparison with the Nakamura solution method, FLRS is signifi-

cantly faster for a three contact problem and is dramatically faster for the four and

five contact problems explored. The solutions are very close to the theoretical min-

imum norm solutions. In order to verify the real time capability, the three contact

problem was accomplished using a compiled version of FLRS uploaded to a Motorola

68030 processor. The real time results were also good, with a mean of 24ms for each

solution and a maximum of 58ms.

8.1 Contributions

This research has made a number of important contributions to the field:

9 Established a floating point operation baseline of Nakamura's algorithm

* Differentiated between 'theoretical' and 'practical' problem formulations for

optimal solutions

e The algorithm of Yoshikawa was shown to be suboptimal with respect to

norm(F)

* The FLRS algorithm was established

- Defined the contact force error

- Evaluated the internal forces on a pairwise basis

- Used a least squares internal force scale factor

- Established an upper bounds on the scale factor to ensure solution con-

vergence

- Enhanced the convergence speed through the definition of a convergence

cone and through scale factor extrapolation
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9 FLRS has dramatically decreased solution floating point operations relative to

Nakamura's solution

e FLRS solution mimics the minimum norm solution proposed by Nakamura

* FLRS algorithm robustly solved problem of random spatial object wrenches

8.2 Recommendations

The FLRS algorithm is poised to enable strides in both simulation and hard-

ware implementations of stable grasping algorithms. Currently, work is proceeding

at AFIT which can use the FLRS algorithm as an integral part of the object resolved

telerobotic (ORT) architecture for multifingered grasps. This work is partially an

extension of the force control concepts of Nakamura. The ORT requires an algo-

rithm which can calculate contact forces required to resist grasped object wrenches

and provide contact stability. The FLRS algorithm, documented here, can fill this

need.

One of the advantageous qualities of the FLRS algorithm is the ability to easily

take advantage of parallel computer architecture. The FLRS algorithm operates on

the contacts in an independent pairwise basis; this independence leads to a rela-

tively easy implementation of simultaneous computation on parallel processors. The

MATLAB and C code developed to date has not taken advantage of this possibility.

Decreased execution time would be the incentive for such a change.

This research has not included significant exploration of the rulebase space and

possible solution enhancements with changes in the rulebase. Typical methods for

such exploration use automatic genetic algorithms seeking extremes of a given objec-

tive function. Also, the functional dependence of the convergence offset parameter

with change in contact friction has not yet been fully characterized. These areas

suggest opportunities for further research.
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One final note concerning the physical implementation of a grasping robot. As

mentioned in Chapter II, hardware requirements include high fidelity contact force

sensors and force accuators. Without these elements, adequate control of the grasped

object may not be possible. Limitations on contact force output from the grasping

manipulators may be modeled in force space in addition to the friction constraint

surfaces.
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Appendix A. FLRS Extensions

This appendix documents some of the extensions to the FLRS algorithm. The

first enhancement is the ability to smoothly engage and disengage contacts from a

grasped object. This ability is crucial in order to accomplish grasp and regrasp of an

object. The second extension is the adjustment of the contact friction cones in order

to have some measure of robustness with regards to contact stability in the face

of random or unexpected perturbations. Another extension involves mixed-mode

contacts, where conventional point contacts with friction are used in conjunction

with bi-directional contacts. Bi-directional contacts depend on structural load paths

rather than friction constraint to maintain contact with the grasped object. The

last extension discusses alternative definitions of the FLRS fuzzy rulebase used for

weighting the internal forces.

A.1 Transitional Contacts

The FLRS algorithm may be modified to allow contact transitions that create

force closure grasps with varying number of contacts. That is, contacts may be

engaged and disengaged from the grasped object in a controlled manner. Recall,

Q = WF (A.1)

where F = [ f, f2 ... fn ] T and W is the grasp matrix. For a given contact i, let

si(t) denote the transition weight variable, s8i(t) E [ 0 1 ]. .si(t) corresponds to

the level of contact engagement. A contact that is fully engaged is defined to have

s-i(t) = 1, while a contact that is fully disengaged is defined to have s-i(t) = 0. Let

si(t) 0 0

SAi(t) = 0 s-i(t) 0 (A.2)

0 0 si (t)
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We may now form the weighted grasp matrix as

( E 3 ... Si(t)E3 ... E3
WsAi(t) (A.3)

Pi ... S-i(t)Pi ... Pm.

Thus, for a given object wrench and zth contact transition state, we may calculate

the weighted external force vector as: Fext = Wsi(t)#Q. The external forces so

determined reflect a minimum norm solution of the weighted contact forces. This

provides the basis for the FLRS algorithm to properly calculate the total transitional

contact forces.

During the erli calculation, the convergence cone offset, 6x, for the ith contact

is redefined as: 6xs_i(t) = si(t) * 6x. Thus the convergence cone and erJi transition

with the ith contact. The last change to the FLRS algorithm is the redefinition of

the change in internal force,

m

A'si(t) = si(t) * wi(t) . eIij (A.4)
j=1

this limits the use of internal forces associated with the ith contact.

A contact transition is composed of n transition steps. Where n is the number

of discrete solutions calculated during the transition. This value should depend on

urgency of the transition, the robustness of the contact solutions (discussed later),

and the force control capabilities of the manipulators in general. Each solution gen-

erated will be consistent with the overall FLRS algorithm, i.e. a minimum norm type

solution for the rulebase described in this paper. During each step of the contact

transition, the pseudoinverse of the weighted grasp matrix, Ws_i(t), will be calcu-

lated. This additional calculation will thus slow the FLRS algorithm. However, if

the number of transition steps is defined in advance, and the contact to be transi-

tioned is known, all the pseudoinverse calculations may be accomplished in advance

of the transition.
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Figure A.1 Contact one, applied force during contact transition

A.1.1 Numeric Example. To demonstrate the transition capabilities of the

FLRS, the five contact configuration of Figure 7.1 will be used. The example will

begin with Contacts 1 and 3 providing the contact forces necessary to stably grasp

the object and generate the object wrench, Q = [ -. 707 -. 707 0 0 0 0 T.

Contact 2 will be transitioned first to form a three contact grasp; likewise, Contacts

4 and 5 will be transitioned into contact with the object, in turn. At any given

moment during the contact transitions, the object wrench remains the same. The

solutions generated by the FLRS algorithm, during the transitions, will exhibit the

standard minimum norm behavior as before. Ten steps will be used for each contact

transition. Figures A.1-A.5 illustrate the change in contact force for all the contacts

during the transitions.
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Figure A.2 Contact two, applied force during contact transition
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Figure A.3 Contact three, applied force during contact transition
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Figure A.4 Contact four, applied force during contact transition
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Figure A.5 Contact five, applied force during contact transition
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A.2 Robust Contact Stability

During implementation of any control algorithm, system noise, from various

sources, is present. Generally, designers must assume some characterization for the

noise and design a control system which is stable in the face of such noise. The

grasp force assignment algorithms will face similar challenges. Nakamura has devel-

oped equations which relate friction cone constraints with specified levels of contact

stability [40]. A disturbance to the system is assumed to be an instantaneous accel-

eration of the grasped object. An equivalent contact disturbance, Id, may instead be

assumed to exist and have a known maximum magnitude such that:

J~fdJJ _< a. (A.5)

Nakamura then forms a contact-stability cone, similar to the FLRS convergence cone.

The analogous offset, the distance the cont act- stability cone is moved inward along
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Figure A.7 Contact-stability cone

the local xi axis, is
- a (A.6)

Figure A.7 illustrates the contact-stability cone. Thus disturbances, up to magnitude

a,, may be superposed on the contact force solution and the net contact force will

still have contact stability. This development assumed a known constant maximum

value of disturbance, independent of applied contact forces. If one wanted to also

assume a linear relationship between actuator noise and actuation force, one could

develop equations similar to Equations A.5 and A.6 but with an additional con-

straint on the cone angle of the contact-stability cone, as illustrated in Figure A.8.

This enhanced contact-stability cone would then allow increasing levels of actuator

noise with commanded actuator output, where am = a,(fi). The FLRS algorithm

would substitute the contact-stability cone for the friction cone, in the previous de-

velopment, and establish a convergence cone similar to the contact-stability cone but

displaced a further &x along the local xi axis.
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A.3 Mixed-mode Contact Grasps

Mixed-mode contact grasps are comprised of both conventional point contacts

with friction constraints, and bi-directional contacts. Bi-directional contacts depend

on structural load paths rather than friction constraint to maintain contact with

the grasped object. Thus they are contacts which do not need any internal forces,

and in fact should not have any for a minimum norm solution. The grasp force

assignment solution proceeds in the same way the standard solution of Chapter IV,

except that for any bi-directional contact, i, er-fA(t) = 0 and er.dotij = 0 V j. Thus,

any non-zero internal force pair associated with a bi-directional contact is the result

of internal force requirements of a conventional point contact associated with the

internal force pair.
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A.4 Alternate FLRS Rulebase

The FLRS algorithm uses a fuzzy inference method for the weighting function,

WiN. Chapter V showed that convergence of the FLRS algorithm is dependent on the

use of an appropriate weighting function; one could use an analytic function of the

type
wij(t) = (er dotij + er-dotji)n (A.7)

2n

where n is a positive odd integer. However, current research has proven that through

the use of a fuzzy proportional controller, proportional-plus-derivative response, for

a second order system can be obtained [45]. Thus, one can seek higher performance

solutions with proportional data than a conventional proportional control law would

allow. The fuzzy logic rulebase, and associated antecedent and consequent sets, al-

low for many degrees of freedom. Thus, one may seek varying solution behaviors by

changing the many parameters which govern the solution. Typically, one would spec-

ify a desired behavior in terms of an objective function and use a genetic algorithm

to determine a suitable fuzzy controller.
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Appendix B. MATLAB Script

This appendix documents the MATLAB script that was used to generate the

data presented in this document. This includes the code necessary to generate object

wrenches and obtain solutions through the FLRS algorithm. The code is rough. The

main code is: mainfnl. This code calls other script files and MATLAB functions,

some were developed for this research while others are standard MATLAB functions.

Any standard MATLAB functions will not be included in this appendix. Inside

main fnl are a number of flags which control solution and display modes. Hopefully,

anyone with the fortitude of an ox will be able to determine what the options are

and how to access them.

B.1 rmain fnl

%this is the example contact force assignment method

%This code allows individual weighting of contacts,

%which allows contact transitions, and can be used to

%determine minimum friction cone offsets for a given set

%of numerical optimization termination criteria. This

%code will also allow mixed mode contacts (uni-directional and

%bi-directional). The capability to capture the dF data as produced

%will allow analysis and graphical presentation of the solution

%process. Also capable of calling the Nakamura solution

% Mark Hunter, 25 Feb 96, Air Force Institute of Technology, WPAFB, OH.

clear

global T-i n in mu mu2 eta delX fc-x dX eI eIc numI RB-ef c-dot

cfd-wt afd-wt e-n-oi o-flag CT BC FIT EIT numit Ap-flag Fp-flag r Q

B-i



% if Ap-flag is on (1), plot graphical contact force convergence process

Ap-flag=O;

% if Fp-flag is on (1), plot F(i) vs i contact force convergence process

Fp-flag=O ;

% coeffecient of friction

mu=.4;

mu2=mu-2;

mu3=(l+mu2)-3/(2*mu2);

eta=l/sqrt(l+mu-2);

X call contact initialization routine

cf-ini; %contact information

delX=ones(n,1)*.05; %friction cone displaced in local x-dir for

%convergence reasons

fc-x=ones(n,1)*O; %additional friction cone displacement for

%robust stability

% maximum and minimum normal force, not used yet

XFn-max=4;

%Fn-min=.1;

% call grasp initialization routine

gf-ini

% initialize variables

in=l:n;
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num-I=(n*n-n)/2; ,number of internal forces

7, define the rule-bases with which the fuzzified contact information

, will be compared with

RB-ef= [ I 1 1 2 2 3 4; %1-Neg Lrg

1 2 2 3 3 4 5; %2-Neg Med

1 2 4 4 4 5 6; %3-Neg Sml

2 3 4 4 4 5 6; 74-Zero

2 3 4 4 4 6 7; %5-Pos Sml

3 4 5 5 6 6 7; %6-Pos Med

4 5 6 6 7 7 7]; %7-Pos Lrg

I6=eye(6);

A=null(W); %MATLAB 'null' command, calculates orthonormal basis

%for null of W, used in CONSTR solver

b=(3*n)-rank(W);

x-old=ones(b,l)/b; %used in CONSTR solver as initial guess

%define bi-directional contacts, BC(i)=(l or 0)

%thus the contact can support forces in all directions but no moments

BC=ones(n,l); %default setting is to have all contacts uni-directional

nct=lO; number of steps to transition a contact

7. begin input data cycle

%for it=l:l %number of solutions sought for this run

for it=1:72
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it

%pause

%for ait=l:6 %use with force closure test

%for sit=l:2 %use with force closure test

%it=(ait-l)*2+sit; %use with force closure test

%define input object wrench

th=(it)*pi/36;

fnet=[cos(th) sin(th) 0];

% f -net=[l 1 0];

m-net=[O 0 0];

Q=[f..net m.net]';

%random wrench test

% Q=(rand(6,1)-.5)*2;

%calculate the 12 manipulation unit vectors, force closure test

%if sit==1

SQ=16(:,ait);

%else

% Q=-16(:,ait);

%end

%define contact transition vector, n elements 0<=CT(i)<=1

CT=ones(n,l); %default setting is to have all contacts fully engaged

% CT(5)=(it-l)/nct; %transition contact two

% CT(4)=O;

% CT(5)=O;

WtW=W; %copy W into WtW to allow for weighted grasp matrix
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dX=delX+fc-x; %delX is the convergence buffer, fc-x is the

%stability offset

if min(CT)<1 %then at least one contact is transitional

for i=l:n

if (CT(i)<I)

WtW(:,(i-l)*3+1:i*3)=WtW(:,(i-l)*3+1:i*3)*CT(i);

dX(i)=dX(i)*CT(i);

end %if

end %for

end %if

%pi-flops=flops; %zero counter

Ff=pinv(WtW)*Q; %get psuedoinverse solution (external forces)

Fo=Ff;

%pause

%pi-flops=flops-pi-flops %report number of flops for psuedoinverse

flops(O); %zero flops counter

flrs-flg=l;

if flrs-flg==1 %calculate FLRS solution

% Fh=f-sol(Ff,Cf,wt-it); %call fuzzy solver as script

f-sol; %call fuzzy solver as function

Fh=F;
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%if algorithm plot switch, Ap-flag, is on,

%plot the contact force convergence;

if Ap-flag==l

a2_plot(FIT,numit,EIT);

end %if

%if contact force history plot switch is on, do it

if Fp-flag==l

fp-plot(FIT,numit);

[mi,ni]=size(FIT);

nn=l:ni;

fs=[ri' FIT'];

save dxOSq_2c.dat fs -ascii -tabs

end

% Fh is a 3 x n matrix of contact forces

hfpos=flops; %record FPOs

end %flrsflg

%save data to files for analysis

if flrs-flg==l

hm-fpos(it)=h-fpos/l.e6;

for i=l:n

F-h(i*3-2:i*3,1)=Fh(:,i);

end

% Qh.app(:,it)=W*F-h;

Chsave(:,it)=F-h;
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end

if 1flag==l

nlm-fpos(it)=nlfpos/l .e6;

Cnlsave(:,it)=Fn-l;

end

end %,end input loop

if flrs-flg==l

save diss-hS Ch-save hm-fpos %Qcom

% save dis-vmu4 Ch-save hmfpos

end

B.1.1 cf-ini.m.

% this is the contact initialization routine for the main-fl.m script

% degrees to radians

deg2rad=pi/180;

% establish object base coordinates

x=[1 0 011';

y=[O 1 0]';

z=[O 0 1]';

% enter number of contacts
%,n=2 ;

n=3;

%n=5B;
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Yassume object is unit sphere

rho=l;

% looking a the grasped object model,

%the x-z plane forms the zero meridian

Y, azimuth(theta) (j) measured from z-axis

% the z-x plane forms the equator with

%positive elevation up towards y-axis,

% or North pole.

% units in degrees

Y.azm=[90 -90];

azm=[ 90 0 -90]; Yr&a96 3 contacts

Yazm=[ 90 0 -90 0]; %r&a96 4 contacts

%azm=[ 90 0 -90 0 180]; '/,r&a96 5 contacts

%ele=[0 0];

ele=[O -90 0]; Yr&a96 3 contacts

Yele=[O -90 0 45]; %r&a96 4 contacts

%ele=[O -90 0 45 45]; Y.r&a96 5 contacts

Yazm=[ 90 -90 0 0];

ele=[ 0 0 90 -90];

% convert units to radians

azm=azm*deg2rad;

ele=eledeg2rad;

% calculate contact positions in x-y-z coordinates of r
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for i1l:n

r(1,i)=rho*sin(azm(i))*cos(ele(i));

r(2,i)=rho*sin(ele(i));

r(3,i)=rho*cos(azm(i))*cos(ele(i));

% contact normai~contact x-axis) in

%object frame, for a sphere is easy

% (negative unit vector of position vector, r)

e-.n-.oi(: ,i)=-r(: ,i)/norm(r(: ,i));

% determine appropriate tangent vectors to contact surface

e-.t (: ,1)=cross (e..n..oi(: ,i) ,x);

e..t(: ,2)=cross(e-n..oi(: ,i),y);

e..t(: ,3)=cross(e-n-.oi(: ,i) ,z);

for j=1:3

norm.e..t(j)=norm(e.t(: ,j));

end

i-.et=max(find(norm-.e-.t==max(norm..e-.t)));

T-.i(3*i-2:3*i,1:3)...

B-9



end

B.1.2 gf-ini.m.

% Mark Hunter, 25 Feb 96, Air Force Institute of Technology, WPAFB, OH.

% this code defines the fuzzy sets and domains.

%, also defines internal force unit vectors and grasp matrix

clear W

%vectors of center of triangular functions for input domain

c_dot=[-1 -.6 -.2 0 .2 .6 1]';

Yc-dot[Ability of Internal force to affect error-force]

%plot-mem(c-dot, 'Internal.Error');

%vector of fuzzy singletons for Sugeno type output domain

cfd-wt=[-1 -. 75 -. 35 0 .35 .75 1]';

Ycfd.wt=[-LrgWt -MedWt -SmlWt No-Wt SmlWt MedWt LrgWt]

%, hardwire weights(areas) of cfd-wt

afd-wt=[l 1 1 1 1 1 11';

d2r=pi/180; %,degree to radian conversion

e-y = [0 1 0]'; ,establish global basis vectors

e.x = [1 0 0]';

e.z = [0 0 1]';

%A establish internal force unit vectors

%and their weights associated with

% the fuzzy membership functions

for i=1:n
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for j=1:n

jj=(i-1)*n+j;

if i==j

e.I(:,jj)E0O 0 0]';

else

r-.ijr(: ,i)-r(: ,j);

eI(:,jj)=-r~ij/norm(r~ij); %internal force unit vectors

end

e-.Ic:,jj)=T-.i(3*i-2:3*i,1:3)'*e-I(:,jj);

Xe-.I in appropriate contact frame

end

end

% begin initialization for pseudo-inverse solution/external force solution

13=eye(3,3);

for i1l:n

r(3,1 int2str(i) ') 0 -r(1,1 int2str(i) ');

-r(2,' int2str(i) 1) r(1,1 int2str(i) ') 01')

end

for i1l:n

eval([ 'Wi=[13;P',int2str(i),'1;) ]);

w=[W Wi];

end

Wppinv(W);

%/end initialization routine
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B.1.3 f-sol.m.

This is the heart of the FLRS algorithm

%function F=f-sol(Fo,Cf,wt-it)

%global T-i n in mu mu2 mu3 eta delX fc-x dX

'eI e-Ic numI RB-ef c-dot cfdwt afd-wt e-n-oi

%o-flag CT BC FIT EIT numit Ap-flag Fp-flag

iq=zeros(3,1);

n-max=30; Ymaximum number of iterations allowed

%n-max=25; %for display purposes

numit=O; %initialize number of iterations until solution

if Ap-flag==l I Fp-flag==l

%record Fc so that the change in contact

% force may be graphically displayed

FIT=zeros(3*n,n-max);

EIT=zeros(3*n,n-max);

end

C=1; %initialize scale factor C

C-old=1;

for i=1:n

F.e(:,i)=Fo((i-1)*3+1:(i*3));

end

% determine the error between current commanded contact force

% and actual possible contact force. Use shortest path to the friction

% cone as the basis for the error.

F-i-old=zeros(3,n);
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calculate current contact forces

F(:,in)=F-e(:,in)+F.i-old(:,in);

for i=l:n

Fc(:,i)=Ti(3*i-2:3*i,1:3)'*F(:,i); %convert to local

%frame

theta(i)=atan2(Fc(3,i),Fc(2,i)); Yangle closest to

%original F-e

end

%Fc

numit=numit+1;

if Ap-flag==l I Fp-flag==l

%record Fc so that the change in contact force may be graphically

%displayed

for ic=l:n

FIT(ic*3-2:ic*3,numit)=F(:,ic);

end

end

% is any current contact force outside of friction cone

for i=l:n

fc-check(i)=-en-oi(:,i)'*F(:,i)+eta*norm(F(:,i));

end

% begin iterative loop to find solution

while (max(fc-check)>O & (numit-1)<n-max)%contact

%stability is violated

% determine what the goal vector should be based on the direction

% of F_e
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for i1l:n

% calculate error based on current F and goal

if fc..check(i)<0O

EB...fc(: ,i)=zeros(3,1);

else

% calculate closest point on friction cone from present contact force.

dx-.p(Fc( , i)+mu*( Fc(2, i)*cos (theta(i)) +...

Fc(3,i)*sin(theta(i)) ...

)+mu2*dX(i) )/(1+mu2);

% make any dx-.*<dX equal to dX

dxdx-.p*(dx.p>=dX(i))+dX(i)*(dx-.p<dX(i));

ER.f c (: , i) =[dx

(dx-dX(i) )*mu*cos (theta(i))

(dx-dX(i))*mu*sin(theta(i))]-Fc(: ,i);

end

%convert to global frame

ER-.f(: ,i)=T-.i(3*i-2:3*i,1:3)*ER-fc(: ,i);

nER-f(i)=norm(ER-f(:,4));

end

if Ap-.flag==1 I Fp-.flagl

%/record ER.f so that the change in contact force may be

%graphically displayed

for icl:n

E-.IT(ic*3-2:ic*3,nunit)=ER-.f(: ,ic);

end
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end

% loop through all the internal forces

wt-tot=zeros(1,n*n);

ER-dot=zeros(n*n,1);

for i=1:n

for j=l:n

jj=(i-1)*n+j;

% calculate the dot product between the contact error and the

% internal force for each contact

% ER-dot(jj)=dot(eIc(:,jj),ER.fc(:,i));

%do this in local frame

ER-dot(jj)=dot(e-I(:,jj),ER-f(:,i));

%try this in global frame, shouldn't make any difference

% if the finger being faded in or out is i, then weight the

% associated ER.dot's

ERdot(jj)=ER.dot(jj)*CT(j)*BC(j);

end

end

%determine max value of ER-dot

ER-dot-m=max(max(abs(ER-dot)));

ER-dot-m=ER-dot-m*(ER-dot-m>O)+(ERdot-m==O);

normalize ER-dot

ER_dot=ERdot/ER-dot-m;
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tst-.flag=O; %test the use of analytic function rather than fuzzy

if tst-.flagO

%calculate memberships of the ER-dot scalars

[mf-ERd,mu-ERdJ mem-.edci(ER-dot,c-.dot);

%A now apply the rule base to the input data to weight the

%A individual internal forces.

wt-.efzeros(7,numIn);

%A wt=zeros(7,nun..I);

I-count=O;

for i1l:n-1

for j1l:n

if i-=j & i<j

jj=(i-1)*n+j;

ii=(j-l)*n+i;

I-.count=Icount+1;

for 1=1:2

for k=1:2

i-.wtmf=RB-ef(mf-ERd(jj ,l) ,mf-ERd(ii,k));

wt-ef(i-.wt-mf ,I-count)=wtef(i.wt.mf ,I-count)+...

min(mu-ERd(jj ,l) ,mu-ERd(ii,k));

end

end

end

end

end
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%wt -ef

wt.tot(((afd-wt.*cfd-wt) '*wt-ef) ./(afd-wt'*wt-ef));

*/wt-tot

%define symetric internal force weighting matrix

for i1l:n-1

for j1l:n

if i-=j & i<j

I-countl..count+1;

w(i,j)=wt-.tot(I-.count);

w(j ,i)=wt-.tot(I-.count);

end

end

end

%/w

else %tst-flag-=O

%.this is a trial method to determine what interaction the internal

%forces should have without using fuzzy logic

kk=O;

I-count=O;

for i1l:n-1

for j1l:n

if i-=j & i<j

I-.couxtl..count+1;

jj=(i-l)*n+j;

ii=(j-l)*n+i;

if(nER-f(i)+nER-.f(j) )0=

wt-.tot (I-.count)0O;
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else

d-.er=ER-.dot(jj )+ER..dot(ii);

wt-.tot(I-.count)=d-.er/ (2+1/abs(d-er)-kk)* ...

(2+.5-kk)/2;

end

end

end

end

Y%[ER.dot wt..tot']

end %end tst..flag

dFzeros(3,n);

I-.count=O;

for i1l:n-I

for j1l:n

if i-=j & i<j

I-.count=I.count+1;

jj=(i-l)*n+j;

ii=(j-l)*n+i;

d..F(: ,i)=d-.F(: ,i)+wt-.tot(I-.count)*e-.I(: ,jj);

d-.F(:,j)=d-.F(: ,j)+wt-tot(I-count)*e-.I(: ,ii);

end

end

end

% keep track of last three contacts which have

% had greatest dot(d-.F,ER-f)

iq(3)=iq(2);
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iq(2)=iq(1); %update last iq

%find contact corresponding to the largest dot(dF,ER-f)

chk=O;

for i=1:n

dFER(i)=dot(dF(:,i),ER.f(:,i));

if dFER(i)>chk

chk=dFER(i);

iq(1)=i;

end

end

%keep track of past iq,ER-f(:,iq), and dF(:,iq)

%if iq doesn't change,

if numit>3 & iq==[iq(1) iq(1) iq(1)]'

c-flag=6;

% c_flag=2;

else

c-flag=2;

end

% determine C, in order to acheive least squares solution (min norm)

if c-flag==l

C=pinv(dF(:,iq(1)))*ER-f(:,iq(1));

% since inputs to pseudoinverse is a vector,

%we can simplify this procedure

elseif c-flag==2

C=(dF(:,iq(1))'*ER-f(:,iq(1)))/(dF(:,iq(1))'*dF(:,iq(1)));

% if dF is not along ERf, then C will be small, not much will happen
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% this is the case for slow converging problems. let's change the

error used to calculate C, by adding dF to ER-f by an amount inversely

proportionally to the dot product of the two.

elseif cflag==6

('used new C algorithm')

C=(norm(ER-f(:,iq(1)))-2)/ ...

(dot(dF(:,iq(1)),ER-f(:,iq(1))) ;

end %end c_flag if

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculate maximum value of C allowed

(and meet convergence reqt's)

%the calculation below assumes that f(i) lies

%in zone BI of th contact force zones

num=O;

den=O;

I-count=O;

for i=l:n

for j=l:n

if i'=j & i<j

Icount=I.count+1;

jj=(i-1)*n+j;

ii=(j-l)*n+i;

num=num+w(i,j)*ER-dot(jj)+w(j,i)*ER-dot(ii);

%this is like: w-ij*er-dot-ij+w-ji*er-dot-ji

end

end

den=den+sum(w(i,:))-2;

end
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C-max=num/den*mu3;

Y. [C Cmax]

if C>Cmax

('C exceeded C-max and was corrected')

% C=Cmax;

end

% update F_i

F-i-old=F-i-old+C*d-F;

% calculate current contact forces

F(: ,in)=F-e(: ,in)+F-i-old(: ,in);

for i=1:n

Fc(:,i)=T-i(3*i-2:3*i,1:3)'*F(:,i);

%convert to local frame

theta(i)=atan2(Fc(3,i) ,Fc(2,i));

%update angle

end

numit=numit+1; %increment interation number

if Ap-flag==l I Fp-flag==l

%.record Fc so that the change in contact force may

%be graphically displayed

for ic=l:n

FIT(ic3-2:ic*3,numit)=F(:, ic);

end

end
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is any current contact force outside of friction cone

for i=l:n

fc.check(i)=-enoi(:,i)'*F(:,i)+eta*norm(F(:,i));

end

end %end while loop for contact stability

if numit>=n-max

numit=n-max;

('Solution does not satisfy constraints')

end

B.1.4 mem-edci.m.

% subroutine which calculates the membership of a given input vector

% with respect to the triangular fuzzy membership functions defined

% by the vector of 'centers.' Use this version of membership calc-

% ulation for external force, dot product of internal and external

% forces,

% cross product of internal force and friction cone vectors, and output

% weights associated with each internal force.

% See cone-ctr.m

% Mark Hunter, 1 August 95, Air Force Institute of Technology, WPAFB, OH.

function [mf,muJ=memedci(x,centers)

%mf is the membership function label of the first non-zero membership
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7.mu(i,l) is the value of the membership of x(i) with repect to mf(i)

Xindex(i) refers to the number of membership functions crossed by x(i)

nmax(size(x)); %number of input data scalars

mmax(size(centers)); %number of membership functions

% initialize the two matrices

mfzeros(n,2);

mumf;

for i=l:n;

mf-inc=max(find(x(i)>=centers));

if mfjinc=[]

mf(i,:)=E1 2];

mu(i,:)=D. 0];

elseif mf-inc==m

mf (i,:)[Em-1 ml;

mu(i,:)[0O 1];

else

mf(i, :)=Emf-.inc mf-.inc+1];

mu(i,l)= (centers(mf-.inc+1) - xi) .

(centers(mf-.inc+1) - centers(mf-.inc));

mu(i,2)= (x(i) - centers(mf..inc))/ ...

(centers(mf-.inc+1) - centers(mf..inc));

end
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end

B.1.5 a2.plot.m.

function a2_plot(FIT,numit ,EIT)

this function opens figure windows for each contact and draws

the contact forces

as the FLRS algorithm calculates the next iteration

global n mu T-i r Q

% degrees to radians

deg2rad=pi/180;

colors=hsv(80); %set colors equal to matrix of default color map, hsv

bcolor=l; %base contact color

%figure window positions and sizes

Pos=[ .33 .66 .33 .33;

.66 0 .33 .33;

.33 0 .33 
.33;

0 0 .33 .33;

0 .4 .33 .33;

.66 .4 .33 .33];

%for display test purposes

%numit=1;

%display object as a unit radius sphere
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f-hdl(1)=figure(I);

clf

set(f-.hdl(),'Units','normal','Positiofl',P05(1,:),'MeluBar,flnone'

set (gca, 'NextPlot', 'add');

%plot contact surface (lies along y-axis) and friction cone

%plot in x-y plane

rol1;

for pol1: 3 7

theta=(po-l)* 10;

thetadeg2rad*theta;

sfco(1,po)=ro*cos(theta);

sfco(2,po)=ro*sin(theta);

sf co(3,po)=0;

end

so-hdlplot3(sfco(1,:)', sfco(2,:)', sfco(3,:)','c');

%draw surface line, cyan

set(so-hdl,'LineWidth',l); %set line width to 1

axis([-1 1 -1 1 -1 1])

axis ('square');

axis('off');

view(2)

% hold on

%/plot in x-z plane

sfco(3, :)=sfco(2,:);

sfco(2, :)=zeros(size(sfco(2,:)));
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%draw surface line, cyan

set(so-.hdl,'LineWidth',l); %set line width to 1

%plot the input wrench, 9

q-.hdl=arrow(Q(1:3), [0 0 0]'); %draw wrench yellow

arrow(q-.hdl, 'Length' ,10, 'LineWidth' ,2, 'Color', 'y');

for i1l:n

%/plot solution contact forces

cfs-hdl=arrow([0 0 0J+r(:,i)',....

[F..IT((i-l)*3+1,nunit) F-.IT((i-)*3+2,numit) ...

F-.IT((i-l)*3+3,nuinit)]+r(: ,i)');

arrow(cfs-hdl, 'Length' ,10, 'BaseAngle' ,45, 'LineWidth' ,2, 'Color',.

colors(80,:) )

%plot both halves of friction cone in green

k-.fc.S; %/scale friction cone

%plot in x-y plane

fc.n=i(3*i-2:3*i,1:3)*[1 -mu 0] '*k-fc;

fc-p=T..i(3*i-2:3*i,1:3)*El mu 1*-c

fc..hdl=plot3([0 fc-n(1)]'+[r(1,i) r(l,i)]',[0 fc..n(2)]' ...

+[r(2,i) r(2,i)]',[O fc-.n(3)]'.[r(3,i) r(3,i)]','g');

fc-.hdl=plot3([0 fc..p(1)]'+[r(l,i) r(1,i)]',[O fc..p(2)]' ...

+[r(2,i) r(2,i)]',[o fc..p(3)]'+[r(3,i) r(3,i)]','g');

%/plot in x-z plane

fc-.n=T..i(3*i-2:3*i,1:3)*El 0 -mu]'*k.fc;

fc-p=T-i(3*i-2:3*i,1:3)*E1 0 mu]'*k.fc;

fc..hdl=plot3([0 fc-n(1)]'+[r(1,i) r(l,i)]',[0 fc..n(2)]' ...
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+[r(2,i) r(2,i)]',[O fc-n(3)]'+[r(3,i) r(3,i)]','b');

fc-hdl=plot3([O fc-p(1)]'+[r(I,i) r(l,i)]',[O fc-p(2)]'...

+[r(2,i) r(2,i)]P,[O fc-p(3)]P+[r(3,i) r(3,i)]','b');

end

drawnow

%this function plots the contact force convergence history

%for each CFA solution

%numit - number of iterations for convergence

%FIT - matrix of contact forces applied during each step of soln.

%in object frame, column length = 3*n, row length = numit

%since forces are in local contact frame, only need x and y components

%for display purposes.

if size(EIT)>l

e-flag=l; %draw in the contact errors

end

for i=l:n

% determine axis scale to show the force changes throughout

% the convergence

% and make the axes square, ie all axes are the same length

xme=(FIT((i-l)*3+1,1:numit)+EIT((i-l)*3+1,1:numit));

yme=(FIT((i-l)*3+2,1:numit)+EIT((i-l)*3+2,1:numit));

zme=(FIT((i-)*3+3,1:numit)+EIT((i-l)*3+3,1:numit));

xm=FIT((i-l)*3+1,1:numit);

ym=FIT((i-l)*3+2,1:numit);

zm=FIT((i-l)*3+3,1:numit);

xmax=max([max(xm) max(xme) .05]);

xmin=min([min(xm) min(xme) -.05]);
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yxnax=max([max(ym) max(yme) .05]);

ymin=min([min(ym) min(yme) -. 05]);

zmax=max([max(zm) max(zme) .05]);

zmin=min([min(zm) min(zme) -.05]);

dx=xmax-xm in;

dy=ymax-ymin;

dz=zmax-zmin;

if dx>dy & dx>dz

ymaxymax+ (dx-dy) /2;

ymin=ymin- (dx-dy) /2;

zmax=zmax+ (dx-dz) /2;

zminzmin- (dx-dz) /2;

elseif dy>dx & dy>dz

xmaxxmax+ (dy-dx) /2;

xmin=xmin- (dy-dx) /2;

zmaxzmax+ (dy-dz) /2;

zmin=zmin- (dy-dz) /2;

else %dz>dx & dz>dy

xmax=xmax+ (dz-dx) /2;

xmin=xmin- (dz-dx) /2;

ymaxymax+ (dz-dy) /2;

yminymin- (dz-dy) /2;

end

a-limit(i, :)=[xmin xmax ymin ymax zmin zmax];

f-.hdl(i+1)=figure(i+l);

clf

set(f-.hdl(i+l),'Units','normal','Position',Pos(i+1,:),'MenuBar','noneI

B-28



ab-hdl(i)=axes;

set(ab-.hdl(i) ,'NextPlot' ,'add')

axis(ajlimit(i,:));

view(2);

xlabel('Xo');

ylabel(&Yo');

zlabel('Zo');

axis ('square');

hold on;

%plot contact surface (lies along y-axis) 'and friction cone

%plot in x-y plane

ri=norm(r(: ,i));

for pi=1:19

theta=(pi-1) *5+135;

theta=deg2rad*theta;

sfc(1,pi)=ri+ri*cos(theta);

sfc(2,pi)=ri*sin(theta);

sfc(3,pi)=O;

end

csfc=Ti(3*i-2:3*i, 1:3)*sfc;

s..hdlplot3(csfc(l,:)', csfc(2,:)', csfc(3,:)' , 'c);

%draw surface line, cyan

set(s-hdl,'LineWidth',2); %set line width to 2

%.plot in x-z plane

sfc(3, :)=sfc(2,:);

sfc(2, :)=zeros(size(sfc(2,:)));

csfc=T-.i(3*i-2:3*i, 1:3)*sfc;

s-.hdlplot3(csfc(1,:)', csfc(2,:)', csfc(3,:)','c');

%draw surface line, cyan
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set(s..hdl,'LineWidth',2); %set line width to 2

%plot large white arrows to indicate point contacts

pc-start=[-.2 0 01)';

pc-.start=T-.i(3*i-2:3*i,1:3) *pc-start;

pc.end=[0 0 0]1;

pc..hdl=arrow(pc-.start' ,pc..end');

arrow(pc-hdl, 'Length' ,30, 'LineWidth' ,4, 'Color', 'w');

%plot both halves of friction cone in green

%/plot in x-y plane

fcnT-i(3*i-2:3*i,1:3)*[1 -mu 0]';

fc-.p=T-.i(3*i-2:3*i,1:3)*[1 mu 0]';

fc-.hdlplot3([0 fc-.n(1)]',[0 fc-.n(2)]',[0 fc-.n(3)P','g');

fc-.hdl=plot3([0 fc-.p(l)]',[0 fc-.p(2)]',[0 fc-.p(3)]','g');

%plot in x-z plane

fc-n=Ti(3*i-2:3*i,1:3)*El 0 -mu]';

fc-.p=T-.i(3*i-2:3*i,1:3)*[1 0 mu]l;

fc-.hdl=plot3([0 fc-.n(l)]',[0 fc-n(2)]',[0 fc-.n(3)]','b');

fc.hdlplot3([0 fc-.p()]',[0 fc-.p(2)]',[0 fc-.p(3)]','b');

drawnow

%plot external contact force

% afo-hdl(i)=axes;

%. axis(a-limit(i,:));
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% view(2);

% axis('square');

%. axis('off');

fo-.hdlarrow([O 0 0],....

[F-IT((i-l)*3+1,1) F-.IT((i-1)*3+2,I) F-.IT((i-l)*3+3,1)]);

arrow(fo.hdl, 'BaseAngle' ,45, 'LineWidth' ,2, 'Color' ,colors (68,:));

end

for j=2:nuuit

for i1l:n

%plot contact forces

figure(f-hdl(i+l)); %make figure f-hdl(i) the current figure

7. af-.hdl(i)=axes;

% axis(a-.limit(i,:));

% view(2);

% axis('square');

% axis('off');

%h hold on;

fcolor=bcolor+3*j;

df-.hdlarrow([F-IT((i-l)*3+1,j-l) F-.IT((i-)*3+2,j-1)...

F-.IT((i-l)*3+3,j-1)] ....

[F-IT((i-l)*3+1,j) F-.IT((i-1)*3+2,j) ...

F-IT((i-1)*3+3,j)]);

arrow(df-.hdl, 'BaseAngle' ,45, 'LineWidth' ,2, 'Color' ,colors(fcolor,:));

if e-flag= & max(abs(E..IT((i-l)*3+1:(i-1)*3+3,j-1)))>0

%plot contact force errors

e..hdl=arrow( [FIT((i-l)*3+1,j-1) ...
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FIT((i-I)*3+2,j-1) FIT((i-l)*3+3,j-)],...

[(FIT((i-1)*3+1,j-1)+EIT((i-)*3+1,j-1)),...

(FIT(i-l)*3+2,j-l)+EIT((i-l)*3+2,j-1)),...

(FIT((i-)*3+3,j-1)+EIT((i-l)*3+3,j-1))]);

arrow(ehdl,'BaseAngle',16,'Color','w');

end

%drawnow

end

end

B.1.6 fp-plot.

function fp.plot(FIT,numit)

global n

%for display test purposes

%numit=1;

% degrees to radians

deg2rad=pi/180;

%this function plots the contact force convergence history

%for each CFA solution

%numit - number of iterations for convergence

%FIT - matrix of contact forces applied during each step of soln.

%in object frame, column length = 3*n, row length = numit

%since forces are in local contact frame, only need x and y components

%for display purposes.
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f igure

axis([1 numit min([min(F-.IT((i-l)*3+l,:))

min(F-IT((i-l)*3+2,:))])-.5 .

max([max(F-IT((i-l)*3+1,:))

max(F-IT((i-l)*3+2,:))])+.5 1

hold on

p..hdl= plot((l:numit),F_.IT((i-l)*3+1,1:numit),'ro')

set(p..hdl,'LineWidth',2); %/set line width to 2

p-.hdl= plot((l:numit),F-IT((i-l)*3+2,l:numit),'g*')

set(p-hdl,'LineWidth',2); Yset line width to 2

p-hdl= plot([l numit],[-1.25 -1.25],'w')

set(p-hdl,'LineWidth',2); %set line width to 2

p-hdl= plot([l numitj,[.5 .5],'w')

set(p~hdl,'LineWidth',2); %set line width to 2

title('FLRS Two Contact Solution')

xlabel('Iteration No.');

ylabel ('Contact Force');

axis ('square');

legend('ro' ,'Fix', 'g*' ,'Fly')

i=2;

figure

axis([l numit min([min(F..IT((i-l)*3+l,:)) min(F-IT((i-l)*3+2,:))])-.5

max([max(F-.IT((i-l)*3+l,:)) max(F-IT((i-l)*3+2,:))])+.5 1

hold on

p-.hdl= plot((l:numit),F-.IT((i-l)*3+l,l:numit),'ro')

set(p-hdl,ILineWidth',2); %set line width to 2
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p-.hdl= plot((1:ntumit),F-.IT((i-)*3+2,1:numit),'g*')

set(p-.hdl,'LineWidth',2); Yset line width to 2

p~hd1= plot([. nuinitl 112.25 2.25],'w')

set(p..hdl,LineWidth',2); Y.set line width to 2

p-.hd= plot([1 numit],[.5 .51,'w')

set(p-hdl,'LineWidth',2); */set line width to 2

title('FLRS Two Contact Solution')

xlabel('Iteration No.');

ylabel('Contact Force');

axis( 'square');

legend('ro' ,'F2x' ,'g*', 'F2y')
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Appendix C. Real- Time Code

The following C code is the FLRS algorithm incorporated into Chimera com-

pliant modules. The module cfaload.c generates the commanded object wrenches

and records the time elapsed for a solution. The module cfa. c actually solves for the

contact forces given the object wrench and grasp configuration data. Functions not

included include standard matrix manipulation routines by H.T. Lau, Numerical Li-

brary in Cfor Scientists and Engineers, CRC Press, Inc., 1995, ISBN 0-8493-7376-X.

C.1 cfaload.c

/, ******************************************************************** ,/

1, */

/* cfaload.c */
/* */

/* created by Mark W Hunter 12-13-95 */

/* Air Force Institute of Technology

/* */

/* modified: */
/* */

1. $ date $ $ initials $ $ comments $ */
/* */

reviewed by $ Some name here $ $ date $ */

/* */

/* ---------------------------------------------------------
/* */

/* cfaload: this module is used to test the cfa module by */

/* sending various wrench commands and sending the cfa contact */

/* dforce results to file along with cpu time required for */

/* solution. */
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/* */

/* State variable table: */

/* INCONST: none

/* OUTCOST: NCONTACT - number of contacts */

/* MU - coeffecient of friction between */

/* manipulators and object surface */
/* */

/* INVAR: SFLAG - signal flag, determines *I

/* which module should be */

/* currently running */

/* FCNT - contact force output */

from "cfa" */
/* *I

/* OUTVAR: WRENCH - commanded object wrench *I

/* CNTPOS - contact positions */

in object frame */

/* XCNT - orientation of contact x-axis*/

(which is an inward pointing*/

normal to surface) in object*/

frame. */

/* YCNT - orientation of contact y-axis*/

(tangent to contact surface)*/

/* SFLAG - signal flag, determines */

/* which module should be */

/* currently running ,/

/* *I

/* FCOFFSET - friction cone offset for grasp stability */

/* CONVOFFSET - solution convergence offset(.1 nominal) */

/* *I
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/* Special notes: */

/* include files */

#include <chimera.h>

#include <sbs.h>

#include <string.h> /* string functions */

#include <stdio.h> /* standard input/output library */

#include <stdarg.h>

#include <ctype.h>

#include <stdlib.h> /* standard library */

#include <math.h> /* standard math library */

/*#include <cfa.h>*/

/* macro definitions */

#define PI 3.141592654

float *temp;

/* ******************************************************************** */

/* module 'Localt' definition as required by Chimera */

/* ******************************************************************** */
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typedef struct{

char f name [80];

char title [80];

int *n;

float *mu;

float *del-X;

float *fc-x;

float *Q; /*Q[7]*/

int iQ-.ctr;

float *R-temp; /*R..temp[16]*/

float *XC~temp ;/*XC~temp [16] */

float *YC..temp; /*YC-temp [16] */

float *F-.temp;

int *s-flag;

svarVar-t *s-.flag..;

float *time;

} cfaloadLocal-t;

FILE *rec;

/* module initialization as required by Chimera *

SBSJ4ODULE(cfaload);
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/* functions *

/* function declarations *

/* cfaloadlnit Initialize the module. *

int cfaloadlnit(cinfo, local, stask)

cfignfo-.t *cinfo;

cfaloadLocal-t *local;

sbsTask-t *stask;

sbsSvar.t *svar = &stask->svar;

/* Get pointers to state variables (CONST). *

local->n =svarTranslateValue(svar->vartable, "N..CONTACT", int);

local->mu =svarTranslateValue(svar->vartable, "MU", float);

/* Get pointers to state variables. */

local->s-flag. = svarTranslate(svar->vartable, "S..FLAG");

local->s-flag = svarValue(local->s-.flag., int);

local->F..temp = svarTranslateValue(svar->vartable, "F.CNT", float);

local->time = svarTranslateValue(svar->vartable, "CPU-.TIME", float);
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local->Q = svarTranslateValue(svar->vartable, "WRENCH", float);

local->R-temp svarTranslateValue(svar->vartable, "CNT-POS", float);

local->XC-temp =svarTranslateValue(svar->vartable, "X-CNT", float);

local->YC-temp =svarTranslateValue(svar->vartable, "Y-CNT", float);

local->fc-x =svarTranslateValue(svar->vartable, "FC_.OFFSET", float);

local->del-.X =svarTranslateValue(svar->vartable, "CONV..OFFSET", float);

/* define OUTCONST contact parameters *

local->n[0Th3; /* number of contacts *

local->mu[O]=.5; /* coefficient of friction*/

return (int) local;

/* cfaloadReinit Re-Initialize the module. *

mnt cfaloadReinit(local, stask)
cfaloadLocal-t *local;

sbsTask.t *stask;

return 10OK;
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/* cfaload~n Start up the module. *

int cfaload0n(local, stask)

cfaloadLocal-t *local;

sbsTask-t *stask;

kprintf("cfaload: ON\n");

printf("Starting the Contact Force Assignment Test Module \n");

/* initialize signal flag *

/* explicit write to state variable table *

local->s-.flag [0] =2;

svarWrite(local->s~flag.D;

1* define contact parameters *

local->del-.X[0]=.1; /* convergence buffer *

local->fc-.x[0>=0; /* stability buffer *

/* define contact postions *

local->R..temp [0] =0;

local->R-temp [1] =1;

local->R-.t emp[2Th0;

C-7



local->R..temp [4] 0;

Jlocal->R-.temp [5] =-1;

local->R-temp [6] =0;

local->R.temp [7] =-1;

local->R-.temp [8] 0;

local->R-temp [9] 0;

/* define local x-axis in object frame *

local->XC-temp [0] =0;

local->XC-temp[1=-1;

local->XC-.temp [2] =0;

local->XC-temp [3] =0;

local->XC-.temp [41=0;

local->XC-temp [51=1;

local->XC..temp [61=0;

local->XC-temp [71=1;

local->XC-temp [81=0;

local->XC-temp [91=0;

/* define local y-axis in object frame *

local->YC-temp [01=0;
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local->YC-temp [11=0.0;

local->YC.temp [2] -1 .0;

local->YC-.temp [31 =0 .0;

local->YC-temp[41=-1 .0;

local->YC-.temp[5]=0.0;

local->YC-temp[61=0.0;

local->YC-temp [71=0;

local->YC.temp [81=1;

local->YC..temp [91=0;

/* initalize wrench values *

local->Q [01=0;

local->Q[1Th0;

local->Q[2Th0;

local->Q[3Th0;

local->Q [51=0;

local-X> [61=0;

local->iQ-.ctr=0;

kprintf("The current value of s-flag should

be 2, s-flag= Yd \n", local->s-flag[0]);

/* open a file to print results of test *

if ((rec = fopen("TEST.DAT","wt")) == NULL)
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kprintf('tCan not create '%,s'\n","TEST.DAT');

return I..OK;

/* cf aloadCycle Process module information. *

int cf aloadCycle(local, stask)

cfaloadLocal-t *local;

sbsTask-t *stask;

if (local->s-flag[O]==2) /*if s-.flag2, time to generate Q,*/

/* if s-.flag=, ignore this cycle *

fprintf(rec,"Yd \t 7.f

\t %f \t %f \t %/f

\t %f \t %/f \t %f

\t %f \t %/f \t %f

\t Yf \t %f \t %/f

\t %f \t %f \t X/f \n",
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local->F-.temp [1], local->F~temp [21, local- >F-.temp [3] ,

local->F.temp [4], local->F-.temp[5], local->F.temp [6],

local- >F-.temp [7] , local->F-.temp[8], local- >F.temp [9] ,

local- >F-.temp [10] , local->F-temp [11], local->F-.tempE[12],

local- >F-.temp [13] , local->F-.temp [14], local- >F-.temp [151) ;

kprintf("This is the current value of theta, %/d \n", local->iQ-ctr+l);

local->iQ-.ctr=local->iQ-ctr+l;

local->Q[1]=cos(local->iQ.ctr*PI/36);

local->Q [2] =sin(local->iQ-.ctr*PI/36);

local->s-flag[0]=1; 1* update S-.FLAG to 1, so that *
/* cf a will execute next cycle */

kprintf( "The current value of s-f lag should be 1,

s-.flag= %/d \n" ,local->s.flag [0]);

if (local->iQ-.ctr>72)/* finished with the input set, end test *

local->s-.f lag [01=3;

kprintf( "The input set is now finished, kill this process \n");
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return I-.OK;

/* cfaloadOff Stop the module. *

int cfaloadOff(local, stask)

cfaloadLocal-t *local;

sbsTaskst *stask;

kprintf("cfaload: OFF\n");

printf ("Stopping the Contact Force Assignment Test Module \n");

fclose(rec);

return I-OK;

/* cfaloadKill Clean up after the module. *

int cfaloadKill(local, stask)

cfaloadLocal-t *local;
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sbsTask-t *stask;

kprintf("cfaload: FINISHED\n");

return I-OK;

/* cfaloadError Attempt automatic error recovery. *

int cfaloadError(local, stask, mptr, errmsg, errcode)

cfaloadLocal-t *local;

sbsTask.S *stask;

errModule-t *mptr;

char *errmsg;

int errcode;

/* Return after not correcting error. *

return SBS-ERROR;

/* cfaloadClear Clear error state of the module. *

int cfaloadClear(local, stask, mptr, errmsg, errcode)

cfaloadLocal-t *local;
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sbsTask-.t *stask;

errModule.t *mptr;

char *errmsg;

int errcode;

/* Return after not clearing error.

sbsNewError(stask, "Clear not defined, still in error stt", errcode);

return SBS.ERRJR;

/* cfaloadSet Set module parameters. *

mnt cf aloadSet(local, stask)

cfaloadLocal-t *local;

sbsTask-t *stask;

return I.0K;

/* cfaloadGet Get module parameters. *

mnt cf aloadGet(local, stask)

cf aloadLocal-t *local;
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sbsTask-t *stask;

{

return IOK;

}

/* cfaloadSync For modules which synchronize to*/

/* something other than the clock. */
/, ********************************************************************* */

int cfaloadSync(local, stask)

cfaloadLocal-t *local;

sbsTask-t *stask;

{

return IOK;

}

C.2 cfa.c

I* *1

/* cfa.c

/* */

created by Mark W Hunter 12-05-95

Air Force Institute of Technology */
/* */

/* modified: */

/* */
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/* $ date $ $ initials $ $ comments $
/* */

/* reviewed by $ Some name here $ $ date $ */
/* */

* -------------------------------------------
/* *I

/* cfaload: this module is used to test the cfa module by */

/* sending various wrench commands and sending the cfa contact */

/* dforce results to file along with cpu time required for */

/* solution. */
/* */

/* State variable table: */

/* INCONST: NCONTACT - number of contacts */

/* MU - coeffecient of friction between */

/* manipulators and object surface */

/* OUTCONST: none

/* */

/* INVAR: WRENCH - commanded object wrench */

/* CNTPOS - contact positions */

in object frame */

/* XCNT - orientation of contact x-axis*/

/* (which is an inward pointing*/

/* normal to surface) in object*/

/* frame. */

/* YCNT - orientation of contact y-axis*/

(tangent to contact surface)*/

/* SFLAG - signal flag, determines */

/* which module should be */

currently running */

/* */
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FCOFFSET - friction cone offset for grasp stability */

CONVOFFSET - solution convergence offset(.1 nominal) */

/* OUTVAR: FCNT - contact forces necessary to */

/* generate the required object*/

/* wrench */

/* SFLAG - signal flag, determines */

/* which module should be */

/* currently running */

/* */

/* Special notes: */

/* */

/* */

/* ******************************************************************** */

/* ******************************************************************** */

/* include files *1

#include <chimera.h>

#include <sbs.h>

#include <string.h> /* string functions */

#include <stdio.h> /* standard input/output library */

#include <stdarg.h>

#include <ctype.h>

#include <stdlib.h> /* standard library */

#include <math.h> /* standard math library */

/*#include <cfa.h>*/
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/, ******************************************************************** ,/

/* macro definitions */
/* ******************************************************************** ,/

#define PI 3.141592654

/* ******************************************************************** ,/

/* module 'Local-t' definition as required by Chimera */
/* ******************************************************************** */

typedef struct {

char fname[80]; /* file name for output data

char title[80]; /* title of output vector or matrix

int *n; /* number of contacts (assume 5 is the max number) */

int i3n,inn,numI;

float *mu; /* coeffecient of friction */

float *delX; /* convergence buffer for fuzzy solver */

float *fcx; /* friction cone offset, for contact stability */

/* rulebase for fuzzy logic system 7x7 plus zero'th row and col offsets */

int **RB-ef;

/* fuzzy domain for dot product information 7x1 plus zero'th element*/

float *c-dot;

/* fuzzy range of eI effectiveness 7xl plus zero'th element */

float *cfd-wt;

/* area of fuzzy membership functions of cfd-wt 7xl */
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float *afd-wt;

/* number of membership functions which comprise the domain of inputs */

/* to the fuzzy analysis portion of this code */

int nc;

/* input contact positions as col. vectors, allow up to five contacts */

float **r;

/* xc[] [] and yc[] [] are inputs of contact orientation */

/* *c is the contact *-axis direction in object frame */

float **xc, **yc, **zc;

float **Fo; /* external contact force solution, 3xn */

float *Q; /* object wrench 6xl plus zero'th element */

float **F; /* matrix of contact forces 3xn */

float **T-i; /*[3+1] [d3nl] ;/* transformation matrix 3x3n */

float **eI;/*[3+1][dnnl];/* internal force unit vectors, 3xn*n */

float **eIc;/*[3+1][dnnl];/*eI in local coordinates for each contact */

float **W; /*[6+1][d3nl];/* grasp matrix */

float **Wp; /*[6+1I1[d3nl];/* psuedoinverse of grasp matrix */

/* below are arrays used in 'hsol' */
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float **FJi-old, **Fc, *theta, *fc-check, **ER-f, **ER-fc;

float *vl-l;

float *ER-dot, *wt-tot;

float **muERd, **wt-ef, *nER-f, **dF, **dFc;

float *d;

int **imfERd;

/* these variables are used for temporary storage of state varibles which */

/* are in vector form and must be converted to matrix form */

float *F-temp, *R-temp, *XC-temp, *YC-temp;

float *time;

int *sflag;

} cfaLocal-t;

/* ******************************************************************** */

/* module initialization as required by Chimera */

/* ******************************************************************** */

SBSMODULE(cfa);

/* functions */

/* ******************************************************************** */

/* function declarations */

/* unless otherwise noted, these functions are authored by: */

/* H.T. Lau */

/* Numerical Library in C for Scientists and Engineers */

/* 1995 CRC Press, Inc. */

/* ISBN 0-8493-7376-X */
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void inivec(int, int, float [,float);

/* initializes a real vector to a given value *

void inimat(int, int, int, int, float *,float);

/* initializes a real matrix *

void ini-imat(int, int, int, int, mnt *,int);

/* initializes an mnt matri */

float matvec(int, int, int, float *,float [1);

/* smat(row)*vec */

float tamvec(int, int, int, float *,float []);

/* smat(col)*vec */

float matmat(int, int, int, int, float **, float *)

void fulmatvec(int, int, int, int, float *,float Ufloat [)

/* c[]=mat*vec */

void fultamvec(int, int int, int, float *,float [,float [)

/* c[]=mat(col)*vec */

void dupmat(int, int, nt, int, float **, float *)

/* copy b[][] into a[][] */

float vecvec(int, int, int, float [I, float [)

/* inner vector product */

float **allocate-.real-matrix(int, nt, mnt3 int);

mnt **allocate-.int-.matrix(int, mnt, int, int);

float *allocate-real.vector(int, int);

void free-real-.matrix(float **, int int, int);

void free..int-matrix(int **, int, mnt, int);

void free-real-vector(float *, int);

mnt psdinv(float **, int, int, float []);/* psuedo inverse solution *
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ilt qrisngvaldec(float **, int, int, float [I, float **, float [1);

void hshreabid(float **, int, ilt, float [I, float [I, float [1);

float tanunat(int, ilt, int, int, float *,float *)

float mattam(int, int, int, int, float *,float *)

void elmcol(int, int, int, int, float *,float *,float);

void elmrow(int, int, int, int, float *,float *,float);

void psttfmmat(float **, int, float **, float [1);

/* matmat, elmcol */

void pretfmmat(float **, int, int, float [1);

/* tammat, elmcol */

ilt qrisilgvaldecbid(float [I, float [I, ilt, ilt, float **, float*,

f loat El) ;

void rotcol(iit, ilt, ilt, ilt, float **, float, float);

void psdiilvsvd(float **, float [0, float ** ilt, ilt, float [1);

/*matvec*/

void system-error(char []);

/* euclidean norm of vector (mhunter) *

float euclilorm(ilt, ilt, float [)

/* cross product of two spatial (x,y,z) input vectors (mhunter) *

void cross(iit, int, float[], float[], float[]);

1* priilt out real matrix to file (mhunter) */

void m-out(float **, iilt, ilt, ilt, iilt, char[], charE]);

/* prinlt out ilt matrix to file (mhunter) */

void im-.out(int **, iilt, ilt, ilt, ilt, char[], char[]);

C-22



/* print out real vector to file (mhunter) */

void v-out(float [], int, int, char[], char[]);

/* print out real scalar to file (mhunter) */

void sout(float, char[], char[]);

/* solve for the contact forces given the object wrench (mhunter) */

void h.sol( float, float, float, int, int, int,

int **, float [I, int, float [], float [1,

float **, float **, float **,

float **, float **, float [], float **,

float **, float **, float [],

float [], float **, float **, float [],

float [], float [, int **, float **, float **,

float [, float **, float **, float [1);

/* determine maximum value from given vector (mhunter) */

float mymax(int, int, float []);

/* determine maximum value from given vector (mhunter) */

float mymin(int, int, float []);

/* fuzzy inference mechanism (mhunter) */

void mem.edci( int **, float **, float [], int, float [1, int);

/* ******************************************************************** ./

/* cfaInit Initialize the module. */

/* ******************************************************************** */
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int cf alnit(cinfo, local, stask)

cfiglnfo-.t *cinfo;

cfaLocal-t *local;

sbsTask-t *stask;

sbsSvar-t *svar = &stask->svar;

/* Get pointers to state variables (CONST).

local->n = svarTranslateValue(svar->vartable, "N.CONTACT", int);

local->mu =svarTranslateValue(svar->vartable, "MU", float);

local->s-f lag = svarTranslateValue(svar->vartable, "S-.FLAG", int);

local->Q = svarTraxislateValue(svar->vartable, "WRENCH", float);

local->R-.temp =svarTranslateValue(svar->vartable, "CNT.POS", float);

local->XC-temp =svarTranslateValue(svar->vartable, "X.CNT", float);

local->YC-temp =svarTranslateValue(svar->vartable, "Y.CNT", float);

local->fc-.x = svarTranslateValue(svar->vartable, "FC..OFFSET", float);

local->del-X = svarTranslateValue(svar->vartable, "CONV-.OFFSET", float);

local->F-.temp = svarTranslateValue(svar->vartable, "F..CNT", float);

local->time = svarTranslateValue(svar->vartable, "CPU-.TIME", float);

return (int) local;

/* cf aReinit Re-Initialize the module. *
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int cfaReinit(local, stask)

cfaLocal-.t *local;

sbsTask.t *stask;

return I-JK;

/* cfaOn Start up the module. *

int cfa~n(local, stask)

cfaLocal.t *local;

sbsTask-.t *stask;

float vl[4Th {O,O,O,O};

float v2E4= {O,O,O,O};

float v3[4= {O,O,O,O};

float r-.ij[4]= {0,0,0,01;

float rij[4J= {O,O,O,O};

float r-.norm[4>{O0,O,O,O};

float 13[4J[4J= { {, 0, 0, 0},

{0, 1, 0, 01,

{0, 0, 1, 01,

{0, 0, 0, 1} };
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float Pi[4][4]{ {0,0,0,0},

{0,0,0,0},

{0,0,0,0},

{0,0,0,0} };

/* em[] controls exit convergence criteria on psuedoinverse solution *

float em[8]={1.Oe-14, 0.0, 1.Oe-12, 0.0, 40.0, 0.0, 1.Oe-10, 0.0};

int i,j,jj,k; /* counters *

kprintf("cfa: ON\n");

kprintf("Starting the Contact Force Assignment Module \n");

local->nc=7;/* number of fuzzy membership functions across input domains *

/* Get pointers to state variables. *

/* local->Q=allocate-.real-vector(1,6);

local->R-tempallocate-.real-vector(1 ,15);

local->XC-temp=allocate-real.vector(1, 15);

local->YC-temp=allocate-.real-vector(1,15);

local->F-temp=allocate-real-vector(1 .15); *

/* Allocate memory and intialize variables *

local->i3n=3.0 * (local->n[0]);

local->inn=local->n[0] * (local->n[0]);

local->num-.I=(local->n[0] * (local->n[0]) -local->n[0])/2;

/* number of internal forces *
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local->RB..ef=allocate-.int-natrix(1,7,1,7);

local->c-.dotallocate-real-.vector(l,7);

local->cfd..wtallocate-real-vector(1 ,7);

local->afd-.wtallocate-real-vector(1 ,7);

local->rallocate-real-.matrix(1 ,3, 1,local->n[II);

local->xc=allocate-.real-.matrix(1,3,1,local->n[O]);

local->ycallocate-real-.matrix (1,3, 1 ,local->n [0]);

local->zcallocate-real.matrix(1 ,3, 1,local->n[0]);

local->Fo=allocate-real-.matrix (1,3, 1, local->n [0]);

local->F=allocate-real-.matrix (1,3, 1, local->n [0]);

local->T-.iallocate-.real-matrix(1,3, 1,local->i3n);

local->e-Iallocate-.real-matrix(1 ,3, 1,local->inn);

local->e-c=allocate-real-.matrix (1 ,3, 1,local->inn);

local->Wallocate.real-matrix(1 ,6, 1,local->i3n);

local->Wp=allocate-.real-matrix(1 ,local->i3n, 1,6);

local->F.L-old=allocate-real-matrix(1,3,1,local->nolO);

local->Fc=allocate-r.eal.matrix(1,3,1,local->n[0]);

local->theta=allocate-real-.vector(1, local->n[0]);

local->fc-.check=allocate-real..yector(1, local->n[O]);

local->ER-.f=allocate-.real-matrix(1,3,1,local->n[0]);

local->ER-.fc=allocate-.real-.matrix(1,3,1,local->n[O]);

local->vlallocate-.realvector(1, 3);

local->ER-dot=allocate-real-vector(1, local->inn);

local->wt..tot=allocate-real-.vector(1, local->inn);

local->nER-.f=allocate-.real-vector(1, local->n[0]);

local->imf-ERd=allocatentmatrix(,local->inn,1,2);

local->mu-ERd=allocate-.real.matrix(1,local->inn,1,2);
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local->wt-ef=allocate-real-matrix(1,local->nc, 1, local->num-I);

local->d-.F=allocate-.real-matrix(1,3,1,local->l[01);

local->d-.Fcallocate.real-.matrix(1,3,1,local->fl[0]);

local->d=allocate-real-.vector(1, local->inn);

/* Reformat *-temp vectors is matrix format as noted below in the example *

for(i1l;i<=local->n[01 ;i++)

for(j1l;j<=3;j++)

local->r[j] [illocal->R-.temp[(i-1)* (local->n[0])+j];

local->xc~j1 [illocal->XC-.temp[(i-1)* (local->n[0])+j];

local->yc[jl [il=local->YC-.temp[(i-1)* (local->n[01)+j];

/* example of what input matrices should look like *

/* r[l[11=1; r[11[21= 0; r[1l[3]=-1; r[11[41=0; r[11[51=0; *

/* r[21 [11=0; r[21 [21=-i; r[21 [31=0; r[21 [41=0; r[21 E51=0;

/* r[31 [11=0; r[3] [21= 0; r[31 [31=0; r[31 [41=0; r[3] [51=0; *

/* xc[II11=-1; xc[11[21= 0; xc[11[31=1; xc[1][4]=0; xc[11[51=0;*/

/* xc[21 [11=0; xc[21 [21=1; xc[21 [31=0; xc[21 [41=0; xc[21 [51=0;*/

/* xc[31 [11=0; xc[31 [21= 0; xc[31 [31=0; xc[31 [4>=0; xc[31 [5]=0;*/

/* yc[11 [11=0; yc[11 [21=-i; yc[11 [31=0; yc[11 [41=0; yc[I1 51=0;*/

/* yc[21 [11=-i; yc[21 [21=0; yc[21 [31=1; yc[21 [41=0; yc[21 [5>=0;*/

/* yc[31 [11=0; yc[31 [21= 0; yc[31 [31=0; yc[31 [41=0; yc[31 [51=0;*/
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/* calculate zc using cross product of xc and yc *

for(j=1; j<=local->n[O]; j++)

for(i=1; i<=local->n[O]; i++)

vi [ii local->xc [iiLi]l;

v2[ilhlocal->yc[i]Li]l;

cross(1, 3, v1, v2, v3);

for(i=i; i<=3;i++)

local->zc Li] j1=v3 Li];

I

I

for(i=i; i<=local->n[O]; i++) /* form coordinate transformation matrices *

for (k1 ;k<=3;k++)

local->T-.i[k]L[3*(i-l)+i]=local->xctk]Li];

local->T-.i[k] [3*(i-l)+2]local->yc~k] Li];

local->T-.i[k]l[3*(i-l)+3>=local->zc~k] Li];

for(i=1; i<=local->nLO]; i++) /* form internal force vectors *

for(j=1; j<=local->nLO]; j++)
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j j=i- 1) *local->n [O]+j;

if (i==j)

for(k1 ;k<=3;k++)

local->e-I[k] [jj]=O;

else

for(k1 ;k<=3;k++)

{-jk~oa-rk~i-oa-rk[]

r..ij [k] =local->r [k] Ei] -local->r [k [j];

r-.norm[jj=euclnorm(1,3,rij);

for(k=1 ;k<=3;k++)

local->e-.I[k]ljjl=-r-.ij [k/r-.norm~jj];

/* in order to calculate e-Ic, which is the internal *

/*force vectors in the *
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/*frame local to themselves, vectors vI and v2, and *

/*matrix zc will be over written *

for(i=1; i<=local->n[O]; i++)

for(j=i; j<=local->n[O1; j++)

jj=(i-i)*local->n[O]+j;

for(k1 ;k<=3;k++)

vl[k]=local->e_.I[k] [jji;

local->zc[k] [11= local->T-.i[k] [3*(i-l)+IJ;

local->zc[k] [21= local->T-.i[k] [3*(i-l)+21;

local->zc[k] [3>= local->T-i[k] [3*(i-l)+3];

I

fultainvec(1,3,i,3,local->zc,vl,v2);

/* the returned vector v2, is the result *

/* of transpose of transformation matrix *

/* multiplied by the global e-.I vectors *

/* associated with each contact. *

for(k=i ;k<=3;k++)

local->e-.Ic[k] [jjli=v2[k];

}/* end internal force vector formulation *
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/* begin grasp matrix formulation *

for(i1l;i<=local->n[o] ;i++)

Pi[l] [2T-local->r [3] Li];

Pi~l] [3> local->r[2] Li];

Pi[2] [1> local->r[3] Li];

PiL2] L3T-local->r [1][ii;

Pi[3] [l1=-local->r [2] Li];

PiL3] [2> local->r[l]l~i];

for(j1;j<=3;j++)

for(kl;k(=3;k++)

local->W~k] [(i-l)*3+j]=I3Lk]Li]l;

I

for(k=4;k<=6 ;k++)

local->W[k]L[(i-l)*3+j]=Pi~k-3] U];

I /* end grasp matrix formulation *

for(i=l; i<=local->i3n; i++)

for(j=l;j<=6;j++)
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local->Wp [il [j1local->W[j] [ii;

i=psdinv(local->Wp ,local->i3n,6 ,em);

/* initialize fuzzy rulebase and domain definitions *

local->RB-.ef [1] [1]1; local->RB-ef [1][2]= 1;

local->RB-.ef [1][31=1; local->RB-.ef[1[41=2;

local->RB-.ef [1] 51=2; local->RB-ef [1][6>=3;

local->RB-ef [11 7]=4;

local->RB-ef [2] [1]=l; local->RB-ef [2] [2]= 2;

local->RB-.ef [2][3] =2; local->RB-.ef [2] [4]=3;

local->RB-.ef [2] [5] 3; local->RB-ef [2][6] 4;

local->RB-.ef [2] [7]=5;

local->RB-ef [3] [11=1; local->RB-.ef [3] [21= 2;

local->RB..ef [3] [3>=4; local->R-ef [3] [41=4;

local->RB-ef [3] [5>=4; local->RB-.ef [3][6>=5;

local->RB-.ef [3] [71=6;

local->RB-.ef [4] [11=2; local->RB-ef [4][2]= 3;

local->RB-ef [4][3]=4; local->RB-ef [4][41=4;

local->RB-.ef [4] [51=4; local->RB-ef [4] [61=5;

local->R-ef [4] [71=6;

local->RB-ef [5][11=2; local->RB-ef [5] [21= 3;

local->RB-.ef [5] [31=4; local->RB-.ef [5] [41=4;

local->RB-.ef [5][5>=4; local->RB-ef [5] [61=6;
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local->RB..ef [51 [7] 7;

local->RB.ef [6] [1]3; local->RB-.ef [6] [2]= 4;

local->R-ef [6] [3]=5; local->RB-ef [6][4]=5;

local->RB..ef [6] [5]=6; local->RB..ef [6][6]=6;

local->RB-.ef [6] [7]=7;

local->RBef [7] [1]4; local->RB-ef [7][21= 5;

local->RB-ef [7] [31=6; local->RB-ef [7] [41=6;

local->RBef [7][5] 7; local->RB..ef [7] [6] 7;

local->RBef[7] [7] 7;

/* fuzzy domain for dot product information 7xl plus zerolth element*/

local->c~dot [1 -1;

local->c..dot[2]=-.6;

local->c-.dot[3>=-.2;

local->c-.dot [41=0;

local->c..dot [5] =.2;

local->c-dot[6Th.6;

local->c-.dot [71=1;

/* fuzzy range of e..I effectiveness 7xl plus zero'th element *

local-> cf d-wt [I] =-1;

local->cfd-.wt [21=- .5;

local->cfd.wt [31=- .2;

local->cfd.wt [41=0;

local->cfd.wt [5] =.2;

local->cfd-wt [6] =.5;

local->cfd-wt [71=1;

for(i=1; i<=local->nc; i++)
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/* calculate area of membership functions along cfd-wt *

if(i==1) local->afd.wt[i]=fabs(local->cfd-wt[i+]-local->cfd-wt [i] )/2;

else if (i=local->nc-1) local->afdwt [ii=

fabs(local->cfd.wt Fi] -local->cfd-wt [i-i] )/2;

else local->afd-.wt [i = (fabs (local->cfd-wt [i] -local->cfd-wt [i-i ) +

fabs(local->cfd-wt [i+1] -local->cfd-.wt [i ) )/2;

/* print out various vectors and matrices for checking purposes *

/* print out variables to file fname *

strcpy(local->fname, "cfa-.out"l);

strcpy(local->title,"Local X-Axes in Object Frame, xc\n;

m-.out(local->xc, 1, 3, 1, 3, local->title, local->fnanie);

/* print out variables to file fname *

/*strcpy(local->fname,"cfa-.out") ;*/

/*strcpy(local->title,"Local Y-Axes in Object Frame, yc \n");*/

/*m-.out(local->yc, 1, 3, 1, 3, local->title, local->fname);*/

/* print out variables to file fname *

/*strcpy(local->fname,"cfa-.out"); *

/*strcpy(local->title,"Local Z-Axes in Object Frame, zc n;*
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/*m-.out(zc, 1, 3, 1, 3, local->title, local->f name);*/

/* don't bother printing out zc, since this matrix has been recycled *

/* print out variables to file fname *

strcpy(local->fname, "cfa-.out"l);

strcpy(local->title,"Position Vector to Contacts, r W

m-out(local->r, 1, 3, 1, 3, local->title, local->fname);

/* print out variables to file fname *

/*strcpy(local->fname, "cfa-outl) ;*/

/*strcpy(local->title,"Transform ation Matrix, T-.i \n") ;*/

/*m..out(local->T.i, 1, 3, 1, local->i3n, local->title, local->fnaine);*/

/* print out variables to file fname *

/*strcpy(local->fname, "cfa-outl) ;*/

/*strcpy(local->title,"Contact Internal Force Vectors, e1I \nil);*/

/*m..out(local->e.I, 1, 3t 1, local->inn, local->title, local->fname);*/

/* print out variables to file fname *

/*strcpy(local>fname,cfa-outI) ;*/

/*strcpy(local->title,"Internal Force Vectors in Contact Frame, e-.Ic \nil);*/
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/*mout(local->ejIc, 1, 3, 1, local->inn, local->title, local-4fname);*/

/* print out variables to file fname *

/*strcpy(local->fname, "cfasout") ;*/

/*strcpy(local->title,"Grasp Matrix, W \n") ;*/

/*m-.out(local->W, 1, 6, 1, local->i3n, local->title, local->fname);*/

/* print out variables to file fname *

/*strcpy(local->fname,"cfa-out") ;*/

/*strcpy(local->title,"Psuedolnverse of Grasp Matrix, Wp \n");*/

/*m-.out(local->Wp, 1, local->i3n, 1, 6, local->title, local->fname);*/

return I-.OK;

/* cfaCycle Process module information. *

int cfaCycle(local, stask)

cfaLocal-t *local;

sbsTask-t *stask;
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static int i,j;

if (local->s..flag[O1==1) /*if s-.flagl, time to execute h-.sol, *

/*if s.flag2, ignore this cycle *

kprintf("About to start the h-sol solution function \n");

local->time [0] clocko;

/* set time to RTPU clock time since system turned on (sec) *

/* for a given object wrench Q, calculate the contact forces *

h~sol( local->mu[0], local->delX[0], local->fc..x[0], local->n[0],

local->num-.I, local->inn,

local->RB-ef, local->c-dot, local->nc,

local->cfd-wt, local->afd-wt,

local->T-i, local->e-.I, local->e-.Ic,

local->Fo, local->F, local->Q, local->Wp,

local->F...Lold, local->Fc,

local->theta, local->fc-.check, local->ER.f, local->ER-fc,

local->vl_ ,local->ER.dot, local->wt-.tot, local->imf-.ERd,

local->mu-.ERd, local->wt-ef, local->nER-f, local->d-.F,

local->&..Fc, local->d);

/* Reformat force vectors is matrix format as noted below in the example *

for(i= ; i<=local->n [0] ;i++)
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for(j1l;j<=3;j++)

local->F-.temp[(i-l)*local->n[OJ+j]=local->F[j] [i];

/* set time equal to the time required to execute h-sol *

local->time[Ol=clock() - local->time[O];

/* update S-FLAG to 2, so that cfaload will execute next cycle *

local->s-.flag[O1=2;

kprintf("Finished the h-sol solution function \n");

/* print out variables to file fnane *

/*strcpy(local->fname, "cfa-wrench") ;*/

/*strcpy(local->title,"Input Object Wrench, Q \n");*/

/*v-.out(local->Q, 1, 6, local->title, local->fnaine);*/

/* print out variables to file fnaine

/*strcpy(local->fname, "cfa-outl) ;*/

/*strcpy(local->title,"Contact Forces, Fo \n") ;*/

/*m-.out(local->Fo, 1, 3, 1, local->n[O], local->title, local->fname);*/

/* print out variables to file fnaine

C-39



/*strcpy(local->f name, "cfa..force") ;*/

/*strcpy(local->title,"Contact Forces, F \n") ;*/

/*m-out(local->F, 1, 3, 1, local->n[O], local->title, local->fname);*/

/* print out variables to file fname 1

/*strcpy(local->fname, "cfa..time"l);*/

/*strcpy(local->title," \n") ;*/

/*s~out(local->time[O], local->title, local->fname);*/

}/* end if s..flag *

return I-.OK;

/* cfaOff Stop the module. *

int cfaOff(local, stask)

cfaLocal-t *local;

sbsTaskAt *stask;

/*release memory allocated above *
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free-.real-vector(loca->R.temp, 1);

free.real-vector(local->XC~temp,1);

free-.realvector(local->YC~temp, 1);

free..real-.vector(local->F.temp, 1);

free-int-matrix(local->RB~ef, 1,7,1);

free-.real-.vector(local->c~dot, 1);

free-.real-vector(local->cfd-wt, 1);

free-.real..ector(local->af&..wt, 1);

free-.real-matrix(local->r,1,3,1);

free-.rea-matrix(local->xc,1,3,1);

free..real-matrix (local->yc, 1,3, 1);

free-real-matrix(local->zc, 1,3,1);

free-.real-matrix(local->Fo,1,3,1);

free-real-.vector(local->Q, 1);

free-real-matrix(local->F,1,3,1);

free-real-matrix(local->TJi,1,3,1);

free-.real-.matrix(local->e_.I,1,3,1);

free-.real-.matrix (local->e-Ic, 1,3,1);

free-real-matrix(local->W,1 ,6, 1);

free-.real-matrix(local->Wp, 1,local->i3n, 1);

free-real-matrix(local->F..Lold, 1,3,1);

free-real-matrix(local->Fc,1,3,1);

free-real-vector(local->theta, 1);

free-real-vector(local->fc-check, 1);

free-real-matrix(local->ER-f,1,3,1);

free-real-matrix(local->ER-f c,1,3,1);

free-real-vector(local->vl-1 ,1);

free-.real-.vector(local->ER..dot,1);
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free-real-vector(local->wt-tot, 1);

free-.real.vector(local->nER.f, 1);

free-.int-.matrix(local->imf-.ERd, 1,local->inn, 1);

free.real-matrix(local->mu-ERd, 1,local->inn, 1);

free-.realmatrix(local->wtef,l,local->nc, 1);

free..real-.matrix(local->d.F, 1,3,1);

free-real..matrix(local->d-Fc,1,3,1);

free-.real-.vector(local->d, 1);

kprintfc2'cfa: OFF\n");

printf("Stopping the Contact Force Assignment Module \n");

return I-OK;

/* cfaKill Clean up after the module. *

int cfaKill(local, stask)

cfaLocal-.t *local;

sbsTask-t *stask;

kprintf("cf a: FINISHED\n");

return I.0K;

/* cfaError Attempt automatic error recovery. *
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int cfaError(local, stask, mptr, errmsg, errcode)

cfaLocal-t *local;

sbsTask-t *stask;

errModule-t *mptr;

char *errmsg;

int errcode;

/* Return after not correcting error. *

return SBS-ERROR;

/* cfaClear Clear error state of the module. *

int cfaClear(local, stask, mptr, errmsg, errcode)

cfaLocal-t *local;

sbsTask.t *stask;

errModule.t *mptr;

char *errmsg;

int errcode;

1* Return after not clearing error. *

sbsNewError(stask, "Clear not defined, still in error state", errcode);

return SBS..ERROR;
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}

/* cfaSet Set module parameters. */
/* ******************************************************************** ,/

int cfaSet(local, stask)

cfaLocal-t *local;

sbsTask.t *stask;

{

return IOK;

}

/* ******************************************************************** */

/* cfaGet Get module parameters. */
/* ******************************************************************** */

int cfaGet(local, stask)

cfaLocalt *local;

sbsTask-t *stask;

{

return IOK;

}

/* ******************************************************************** ,/

/* cfaSync For modules which synchronize to */

/* something other than the clock. */
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int cf aSync(local, stask)

cfaLocal-t *local;

sbsTask-t *stask;

return I-OK;

void h-sol( float mu, float del-.X, float fc-.x, int n, int nun..I, int inn,

int **RB-ef, float c-dot[1, int inunmmem,

float cfd~wt[], float afd-wt[],

float **T-i, float **e-I, float **e-Ic,

float **Fo, float **F, float QE], float **Wp,

float **F-i-old, float **Fc,

float *theta, float *fc-check, float **ER-f, float **ER-.fc,

float *vl, float *ER-dot, float *wt-tot, mnt **imf-ERd,

float **mu-.ERd, float **wt-ef, float *nER-f, float **d-.F,

float **d..Fc, float *d)

static char f namne [80];

static char title [801;

static mnt i,j ,k,l,jj ,ii,imn,jjl,imlnl,imln2,imln3,Icouit,iwt-mf,nr-.flag;

static float sum, sumi, ERdotmax, fabsERdot, C;

static float a,b,c,dp,dn;

static float mu2, fc..x2,d-.X,dX,dx;

static mnt i-.error;
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/* initialize vectors and matrices before starting the solution. *

inimat(1,3,1,n,F.i~old,O);

inimat(1,3,1,n,Fc,O);

inivec(1,n,theta,O);

inivec(l,n,fc-.check,O);

inimat(1,3,1,n,ER~f,O);

inimat(1,3,1,n,ER-fc,O);

inivec(1,3,vl,O);

inivec(1,inn,ER-dot,O);

inivec(1,inn,wt~tot,O);

inivec(l,n,nER-.f,O);

ini-.imat(1,inn,1,2,imf-.ERd,O);

inimat (1,inn, 1,2 ,mu-.ERd,O);

inimat(l,inummem,,nu..I,wt-.ef,O);

inimat(1,3,1,n,d.F,O);

inimat(1,3,1,n,d-.Fc,O);

inivec(l,inn,d,O);

mu2=mu*mu;

fc.x2fc-x*fc-.x;

/* deljX is the convergence buffer, fc-.x is the stability offset *

dXdelX+fc-x;

/* calculate external contact forces based on psuedoinverse and object wrench *

for(i1 ; i<=n;i++)
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for(1=1 ;l<3 ;1

sum=O;

for(j1l;j<6;j++)

sumsum+Wp[(i-1)*3+l] [j]*Q[j];

I

Fo~ll [iJ=sun;

/* calculate current contact forces *

for(j1l;j<=n;j++)

for(il; i<=3; i++)

F EiJ [jI Fo Ei] [j I+F- i-.old [i] [j]I

/* Fc=(T-.i)'*F; *

/* convert each contact force into local contact frame coordinates *

for(i1 ; i<=n; i++)

imln=(i-l)*n;

for(j1l;j<=3;j++)

jj~imln+j;
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sum=O;

for (k1 ;k<=3;k++)

suxn=sum+-i[k] [jj]*F~k] [i];

Fc~j] [i]=sum;

/* theta is angle, in local y-z plane, to the external contact point *

theta Eil atan2 (Fc [3] Li] ,Fc[2] Li]);

/* check to see if any current contact forces *

/* are outside of the friction cones *

for(il; i<=n; i++)

fc-.check [ii =(-mu2* (Fc Lli] ]*Fc lli]L]-2*Fcli] Li] *fc-x) *

(-(Fc~L]L~i]<O)+(Fc~lli]L>0)))-fcx2*mu2+

(Fc L2] Li] *Fc L2] Li] +Fc [3] Li] *Fc [3] i])

/* begin iterative loop to find viable solution *

1...error=O;

while(mymax(I,n,fc-.check)>O) /* contact stability violated *

i-errorLi-error+i;
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/* print out variables to file fname *

/*strcpy(fname, "hs-.out") ;*/

/*strcpy(title,"Contact Force, Contact Frame, Fc \n");*/

/*m-.out(Fc, 1, 3, 1, n, title, fname);*/

/* print out variables to file fname *

/*strcpy(fname,"hs-.out") ;*/

/*strcpy(title,"fc-.check \n") ;*/

/*v-.out(fc-.check, 1, n, title, fnaine);*/

/* determine what the goal vector should be, *

/* based on the direction of Fo *

for(i= ; i<=n;i++)

imln=(i-l)*n;

1* calculate error based on current F and goal *

if(fc.check[i]<0O) /*contact force is inside friction cone *

for(j=l;j<=3;j++)

ER-.fc[j] [i]=O;

/* move the friction cone to the inside of the nominal cone by dX *

/* along local x-axis; dX is used for solution convergence, not *
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/* contact stability, del-.X is used for sta bility *

else /* contact force is outside of friction cone *

dx=(Fc[1] Li]+mu* (Fc [2] Li]*cos (theta~i] )+

Fc[3] Li]*sin(theta[i] )+mu*dX))/(l+mu2);

dxdx*(dx>dX)+dX*(dx<dX);

ER-.fc[1i][i1=dx-FcE[1 i];

ER-.fc [2] Li]=(dx-dX) *mu*cos (theta Li] )-Fc [2] Li];

ER-.fc[3] i](dx-dX)*mu*sin(theta~i] )-Fc [3] Li];

/* convert errors in contact force, ER..fc, into object frame *

/* E&.f=T-i*ER-fc; *

for(k1 ;k<=3;k++)

sum=O;

for(j1l;j<=3;j++)

jj=imin+j;

sumsum+T-.i~k] jj]*ER-fciLj]Li];

ER-.f [k] Li] =sum;

for (j=1;j<=3;j++)
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vl [j]I=ER-fEj]I [ii;

nER-f[ilheuclnorm(1,3,vl);

/* print out variables to file fname *

/*strcpy(fname, "hs-out") ;*/

/*m-.out(ER-.f, 1, 3, 1,n, title, fnaine);*/

/* print out variables to file fname *

/*strcpy (fname, "hs-.out") ;*/

/*strcpy(title,"nER-f \n") ;*/

/*v..out(nER-f, 1, n, title, fname);*/

/* loop through all the internal forces *

ERdotmax=O;

for(i1 ; i<=n;i++)

imln=(i-l)*n;

for(j1l;j<=n;j++)

jjimln+j;

/* calculate the dot product between the contact error *
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/* and the internal force for each contact *

suxnO;

for(k1 ;k<=3;k++)

sumsum+e-.Ic[kJ [j j]*ER-fc[k] [ii;

ER-.dot [jjlhsun;

/* determine max value of ER-dot for normalization or ER.dot *

fabsERdotfabs (ER-dot [jj]);

if(fabsERdot > ERdotmax)

ERdotmax=fabsERdot;

/* can't divide by zero in normalization *

if (ERdotmaxO)

ERdotmaxl;

for(il; i<=inn; i++)

E&. dot [i] ER-.dot [ii /ERdotmax;
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/* print out variables to file fname *

/*strcpy(fname, "hs..out") ;*/

/*strcpy(title,"ER.dot \n") ;*/

/*v..out(ER-.dot, 1,inn, title, fname);*/

/* calculate memberships of the ER.dot scalars *

mem..edci(imL-ERd, mu-2Rd, ER-dot, inn, c-dot, inunmem);

/* print out variables to file fnaxne

/*strcpy(fname, "hssout") ;*/

/*strcpy(title,"imt.ERd \n") ;*/

/*im-.out(imfERd, 1,irm,1,2, title, fname);*/

/* print out variables to file fname *

/*strcpy(fnane, "hs-.out") ;*/

/*strcpy(title,"mu-.ERd \n") ;*/

/*m.out(mu-ERd, 1,inn,1,2, title, fname);*/

/now apply the rule base to the input data in order to weight the *

/* internal forces */

inimat (1, inxnamem,I, numnj,wt-.efO);

L-connt=O;

for(i1l;i<=n;i++)
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for(j1l;j<n;j++)

if(i!=j && i<j*)

jj=(i-l)*n+j;

ii=(j-l)*n+i;

I-.count=I-.count+i;

for(1=1 ;l<2;l++)

for(k1 ;k<=2;k++)

vl[ilhmu-ERd[jj] [1];

vi [2] mu-.ERd [ii] [k];

i-wt-mf=RBef[imf-ERd[jj] [1]][imf-ERd[iil [ki];

wt-efWi-wt-mf] [I-countlhwt-ef[i-wt-mf] [I.count]+mymin(,2,vl);

/* at this point, 'I..count' should equal 'nuxn.I'*/

/* which is the number of internal forces *

for(i1 ; i<=num-I; i++)

sum=O;

suiniO;
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for Q=1 I;ji<inuinem; j++)

sumsum+afd-.wt jL]*cfd-wt jL]*wt-ef i] [i];

sumlsuml+afd..tj]*wtef[j] Li];

I

wt.-tot Li] suin/suml;

/* print out variables to file fname *

/*strcpy(fname,"hs-.outl) ;*/

/*strcpy(title,"wt-tot \n") ;*/

I*v-.out(wt..tot, 1, num..I, title, fname);*f

inimat(1,3,1,n,d-.F,O);

I-count=O;

for(i1 ; i<=n;i++)

for(j=l;j<=n;j++)

if(i'=j && i<j)

jj=(i-l)*n+j;

ii=(j-l)*n+i;

I-count=I-.count+l;

for(k1 ;k<=3;k++)

d.F Lk]Li d-F Lk]Li] +wt-tot LI-.count] *e-I k]Lii]l;

d-.F Lk]Li] ~d-.F k]Li] +wt-tot[Llcount] *eI Lk] [ii];
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/* print out variables to file fname *

/*strcpy(fname, "hs-.out") ;*/

/*strcpy(title,"d-F \n") ;*/

/*m..out(d-.F, 1, 3, 1, n, title, fname);*/

/* determine contact, j, with most significant error, sum *

suxnO;

for(i=1 ;i<=n; i++)

if (nER-.f [ii >sum)

j i;

sur~nERj [ii;

/* determine the psuedoinverse of j'th column of -F *

/* since v1 is a vector, the transpose of the psuedoinverse is: *

/* vl#tvi / (vi [1] -2 + vI [21 -2 + vi [3]-2) *

suinO;

for(iil;i<3;i++)
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suxn=sum+d-.F [ii [jJ*d-.F[i] [j];

I

for(il; i<=3; i++)

v1 Eil =d-.F[i] [j]i/sum;

/* vI is now the transpose of the psuedoinverse of d.F[:]E[i *

C=0;

for(i1 ; i<=3; i++)

C=C+vi [j] *ERf [i] [j]I

/* C is the scale factor for the change in contact forces, d-.F *

/* print out variables to file fnane

/*strcpy(fname, "hsout") ;*/

/*strcpy(title,"C \n") ;*/

I*s..out(C, title, fname);*/

for(i1 ; i<=n;i++)

for(j1l;j<3;j++)

F-.i-.old[j] Ei] =F..i..old[j] Li] +C*d-.F[j] Ei];
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/* update contact forces *

for(j1l;j<=n;j++)

for(i1l;i<=3;i++)

FEL [j I Fo Li] [j]I+F-..i-.old Li] LjI

/* print out variables to file fnane *

/*strcpy(fname, "hs..out") ;*/

/*strcpy(title,"F \n"l);*/

/*m-out(F, 1,3,1,n, title, fname);*/

/* Fc=(T-.i)'*F; *

/* convert each contact force into local contact frame coordinates *

for(i1 ; i<=n;i++)

imln=(i-1)*n;

for(j1l;j<=3;j++)

jj=imln+j;

suinO;

for(k1 ;k<=3;k++)
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sum=sum+T-.i[k]ljj]*F~k] [i];

I

Fc[j] [ii =sum;

I

I

/* check to see if any current contact forces *

/* are outside of the friction cones *

for(il; i<=n; i++)

if (i-.error<15)

fc-.check Li]=(-mu2* (Fc lli] ]*Fc lli]L]-2*Fc [1]Li] *fc-x) *

(-(Fc[i] [i]<O)+(Fc[i] [i]>=O)))-fc-x2*mu2+

(Fc [2] Li] *Fc [2] Ei] +Fc [3] Li] *Fc [3] i])

else

fc..check Li]=-i;

/* print out variables to file fname *

/*strcpy(fname, "hs-.out") ;*/

/*strcpy(title,"i-error, Over 15 Attempts at Solution Failed \n");*/

/*s-.out(i..error, title, fname);*/
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} /* end while loop for contact stability */

} /* end h-sol */

float mymax(int 1, int u, float b[])

/* this function takes a vector and returns the maximum value of the vector */

/* 1 and u are the lower and upper indices of the vector. */
{

int i;

float max;

max=b [i];

for(i=1+1 ; i<u; i++)

{

if (b Ei] >max)

{

max=b [i];

}

}

return max;

} /* end max

float mymin(int 1, int u, float b[])

/* this function takes a vector and returns the minimum value of the vector */

/* 1 and u are the lower and upper indices of the vector. */

{
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int i;

float min;

min=b [1];

for(i=l+1;i<=u;i++)

{

if (b [i] <min)

{

min=b [i];

}

return min;

I /* end min */

void mem-edci( int **imfERd, float **muERd, float ER-dot[],

int n, float c.dot[], int m)

{

/* subroutine which calculates the membership of a given input vector */

/* with respect to the triangular fuzzy membership functions defined */

/* by the vector of 'centers.' Use this version of membership calc- */

/* ulation for external force, dot product of internal and external forces,*/

/* cross product of internal force and friction cone vectors, and output */

/* weights associated with each internal force.

/* Mark Hunter, 20 Nov 95, Air Force Institute of Technology, WPAFB, OH. */

/* mf is the membership function label of the first non-zero membership */

/* mu(i,l) is the value of the membership of x(i) with repect to mf(i) */

/* index(i) refers to the number of membership functions crossed by x(i) */

/* n is the number of contacts squared */
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/* m is the number of membership functions across the domain *

int i, j, j-.flag;

for(i1 ; i<=n;i++)

j=o;
j-.flag=O;

if (ER.dot [i] <c-.dot [1])

j..flag=1;

imf -ERd Li] [I] =1;

imf ..ERd Li] [21 =2;

mu-.ERd Li] [11 =1;

mu-ERd[i] [2]=0;

else if (ER..dot [ii >=c-dot Em])

j ..flag=l;

imf .ERd Li] [I] =m-1;

imf -ERd E i] [2]=m;

mu-ERd Li][i]0O;

mu-.ERdLiI]2=1;

while (j .flagO)
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jj+1;

if (ER-.dot [ii <c.dot [j+1])

j -f lagl;

imf ..ERd [ii Ell=j;

imf...ERd [i] E21 =j +1;

mu-ERd~i] [1Th(c-.dot~j+1] ER..dot[i] )/

(c..dot~j+1] - c-dot[j]);

mu-ERd [ii[2] =(ER-dot[ii -cdot [j) /

(c-dotj+l] - c-dot[j]);

}/* end while *

}/* end for *

}/* end mem-edci *

void cross(int 1, mnt u, float viE], float v2[], float v3[])

int mu-l;

v3[1El] 1 m]*v2 Eu] -v2 Em] *viEu];

v3 Em]=v1 Eu]*v2 El] -v2 Eu]*vi El];

v3 Eu] =vl El]*v2 Em] -v2 El] *viEm];
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float euclnorm(int 1, int u, float bE])

/* calculate euclidean norm of vector a[l:ul *

imt i;

float enorm=O.O;

for (i1l; i<=u; i++)

enorm = enorm + b Ei]*b Ei]

return sqrt(enorm);

I

void m..out(float **a, int ri, int ru, int cl,

int cu, char title[], char filefl)

/* print matrix value to file *

char fn[8];

mnt i,j;

FILE *fp;

for (i0O; i<8; i++)

f n Eilf ile Ei]

fp = fopen (filhial);

fprintf(fp,"%s" ,title);

C-64



for (i=rl; i<=ru; i++)

fprintf(fp, "\n");

for (jcl;j<=cu;j++)

fprintf(fp," %12.4e 11, a[i][jl);

fprintf(fp, "\n");

fclose(fp);

void im-.out(int **a, int rl, int ru,

ilt cl, int cu, char title[], char file[])

/* print matrix value to file *

char fn[8];

ilt i,j;

FILE *fp;

for (i0O; i<8; i++)

fn[il=file[i];

fp =fopen (fn,'&');

fprintf(fp, "7.s" ,title);
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for (irl;i<=ru;i++)

f printf (f p,"1\n");

for (jcl;j<=cu;j++)

fprintf(fp," Yd ", a[il[jl);

f printf (f p, "1\n");

fclose(fp);

void v-out(float bE], mnt 1, mnt u,
char title[], char file[])

/* print vector value to file *

char fn[8];

mnt i;
FILE *fp;

for (i0O; i<8; i++)

fn[i]=file[i];

fp = fopen (fn,"a");

fprintf(fp, "/.s" ,title);
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for (i1l;i<=u;i++)

fprintf(fp," %/12.4e \n ",b[i]);

f printf (f p, " \n");

fclose(fp);

void s-out(float c, char title[], char file[])

/* print scalar value to file *

char fn[8];

mnt i;

FILE *fp;

for (i0O; i<8; i++)

fn[ilfile[i];

fp = fopen (fn,"a");

fprintf(fp, 1"%s't,title);

fprintf(fp,' %12.4e \n ",c);

f printf (f p, " \n");
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fclose(fp);
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