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MATHEMATICAL PROCESSING OF RANGE AND RANGE 
RATE TRACKING DATA 

Wang Zhengming Zhou Haiyin 
ABSTRACT Employing radar or optical equipment to carry out 

tracking measurements with regard to spacecraft, it is possible to 
ob?ain observation data associated with ranges and their rates of 
change  Due to causes in many areas such as measurement equipment 
Decision, environmental conditions, and so on, these measurement 
data include errors in all cases. Besides random errors associated 
with ranqe finding and range change rates, there are also systemic 
errors alsocited with range finding.  Through the setting up of 
Ippro^a^e mathematical models, spline functions and regression 
analvsis methods are employed to give a type of method for 
esSattng range, range rate, and range finding system errors.  The 
«llvw^e in nuoBtion are verv easy to realize and calculate. 
?heo?e?icaiqa:alysL^nd"simulation calculations clearly show that 
the methods in question possess very high accuracy. 

SUBJECT TERMS Spacecraft tracking Linear system Spline 
function Error analysis 



1  INTRODUCTION 

No matter what type of measurement system is used, carrying 
out tracking measurements with regard to spacecraft requires, in 
all cases, measurements [1] of ranges and their rates of change. 
Because of many types of complicated reasons, as far as measurement 
values are concerned—besides containing random errors—range 
finding also includes system errors[1-3].  These errors severely 
influence—even to the point of distorting—the true image of the 
facts. Also, because measurements are often indirect (for example, 
MISTRAM systems), when calculating parameter data which is 
necessary for use—during transmission processes determined by 
calculation formulae—errors are often enlarged from several times 
to several tens of times.  This is not permissible in a number of 
situations where there is a need for high precision measurement 
data, for example, those in such things as missile accuracy 
analyses, spacecraft orbital predictions and so on [4]. 

With regard to making use of measurement data to give high 
precision estimates of ranges and their rates of change, systemic 
errors associated with estimated range finding are problems jointly 
concerned with measurement units (precisions of equipment 
concerned) and data utilization units (concerned with accuracies of 
ranqe measurements and their rates of change). 

This article considers problems in launch coordinate systems. 
We first of all, demonstrate that—with respect to spacecraft in 
stable flight configurations (no stage separations)—observed 
ranges and their rates of change are capable, m all cases, of 
being expressed by the use of a cubic spline and its derived 
functions. On the basis of system error models—making use of 
spline function theory and regression analysis methods and through 
the setting up an appropriate mathematical model—mathematical 
methods are given which are not only able to estimate ranges and 
their rates of change but are also able to estimate range finding 
svstem errors. Theoretical analysis and simulation calculations 
both clearly show that the methods in question have trimmed errors 
which are small, and calculations are very convenient. 

2  SPLINE FUNCTION DESCRIPTIONS ASSOCIATED WITH RANGES AND THEIR 
RATES OF CHANGE 

Assuming oxyz to be the launch coordinate system, spacecraft 
orbit parameters are x(t), y(t), z(t),      t(t),?(t),i(t) 
Here, x(t), y(t), z(t) express the position of spacecraft at 

instant t.     *(0,*(0,i(0     is the speed of spacecraft at 

instant t . This article adds dots to the top of dependent   /18 
variables to stand for the derivatives of the functions in question 
with respect to time.  The number of dots on top stands for the 
order of the derivative. 



Assuming that the coordinates of observation stations in 
launch coordinate systems are (xo,yo,zo), then, observed ranges are: 

fi(t) =v/ (*-*,)1+(y-»,)x+(2-z,)1 (1) 

Assuming that xt,y(t),z(t) are all fourth order continuous 
differentiable functions, then, from equation (1), it is possible 
to deduce that R(t) is also a fourth order differentiable function. 
Making use of x(t),y(t),z(t) as well as the first, second, and 
third order derivatives of special points, direct solution is made 
with respect to R(t).  It is possible to demonstrate that R(4)(t) 
is a very small number. 

Below, we study data processing problems associated with 
sections where time length is [To,Tm]. Using subscripts To=tl, 
Tm=tn, Tj=To+h-j, j=-l,0... ,m+l.    ||2?"'(*)|L =m« \Rw(t)\. 

r,<«<r. 

Using Sj(t) to represent the jth spline, Bj(t) records the jth 
standard B spline. . 

Lemma 1 [5]  Assuming R(t)€C4[To,Tm] and S(t) satisfies the 
conditions 

|*(*) - S, it) I <-gfT IIRM it) II --AS !*<*> - *,(«| < ± II *<«>(«> II --Ä»  (2) 

of cubic interpolative spline functions, one then has 

fS,(r,)=Ä(re), ss(Tm)=MTm) 
\s3(T,)=R(T,),     ;'=0,l,-,m 

The first order and third order standard B splines which this 
article uses are respectively defined as: 

' » , x f0' |T|
 
>l 

Ba(T) = 

('O, |T|>2, 

4!-t»+i, M<1 2     3 

_J±!+T*-2|T|+4. KW<2 6 3 

Lemma 2 There exists a unique set of coefficients (b-1, bo, 
bl,..., bm+1) so that 



'-' (3) 

SatiSfSyS?hes?zing°?he2^o lemma above, it is possible to obtain 
Theorem 1 during the normal flight Pta" «LS'SSS S(t) of 

(refers to phase with no stage separatxon), tracking range R(t) ot 

spacecraft and the rate of change  *<»   can be described by the 

use of cubic spline function S3(t) as well as the derivative i,(0 
so lona as m is sufficiently large, making h=(tn-tl)/m 

sufficiently small, it is then possible to guarantee trimmed errors 
SSingsSficiently small.  In this, S3(t) is given by equation (3). 

3  MATHEMATICAL MODELS OF OBSERVATION DATA 

Observation data associated with R(t) can be represented as 

m this R(ti) is the true value of R(t) for instant ti ;  C(ti) is 
the observation system error associated with range finding at 
instant ti ; tL    is random error. 

Ä(0    observation data can be represented as 

p, = Mtt)+St <5> 

In 
this   &tu) is the true value of    *«>     at instant ti; 
5i ii random error associated with speed measurements. 
Below, we take problems associated with R(t),   Ü(0  / and C(t) 
and turn them into parameter estimation problems. 
AS far as the consideration of problems within the time phase 
?To £] is concerned, assuming that ti is the observation instant, 
k!s the number of observation iterations each second, and 
ti=To+(i-D/k, i=l,2,...,n, then, u w l   " ' Tj=tkhj+1, j=0,l,...,m;  n=khm+l 

On the basis of engineering background (see references [1- 
3]), within [To,Tm], C(t) can be described by the use of first 
order spline number Sl(t): 

(6) 



From discussions in 2, we already have 

«»«Wo-E M.(^). A(o*s,(» = £ ^^VO   <7) 

Because of this, from equations (4) ~ (7), it is possible 
to obtain 

Pt = mp_t^-$2(±lL-) + St,      i = l,2,...,n 
(8) 

If we are able to obtain from equation (8) 
estimates for (b-l,bo,...,bm+l) as well as (do,dl,—/dm), then, 
we 
are able to respectively obtain estimates for C(t), R(t), and R(t) 
from equation (6) and equation (7). 

4  ESTIMATION METHODS AND ERROR ANALYSIS 

It is clearly shown by theoretical analyses and 
simulation calculations that, durinq relatively stable fliqht 
phases, h can be selected as 5 ~ 10s.  It is possible to guarantee 
that || S,(0 -R(t) || . ,|| S3(t)-AV) || - ,11 S,(0-C(0 || ., 
are all very small (primarily comparatively random errors as well 
as being within the ranges permited by engineering background). 
During orbital tracking, each second, it is possible to obtain over 
20 observed data.  Thus, n^lOOm. 

On the basis of the special characteristics of measurement 
equipment, in relation to random errors, it is possible to assume 
that 

£e<=0,£5l=0,£e,5> = 0,  t\; = l,2,-,n j 

£e?=a?,£5J=0i,.Ee,e,=O,ESA=O **/' > 

Here, ai, 6i (i=l,2,...,n) are already known positive numbers.  It 
is possible to obtain them from appraisals of measurement equipment 
precisions. 



Below, use is made of observation data and model (8) ot give 
estimates of parameters (do, dl,..., dm) as well as (b-1, bo,..., 
bm+1). 

Lemma 3 [5] Assume A is any constant.  Then, A can be 
expressed as: 

From Lemma 3, it is possible to know that parameters which 
await estimation in model (8) equations are not completely 
independent.  We take model (8) and rewrite it as /20 

y--i 

(10) 

Here, use is made of Lemma 2 as well as 

Note 

E'Am- 
i--i 

a, = bj + d„ ; = -l,0, —,* + l 

gj = dj-.dt, ;' = 1,2, — ,m 

X—(.X,,S)   (II)   X   (I»+J) 

X(,j —   i 

a,       \      A      / , 

1     lp   ^tüizZülV f = n+l,n + 2,-,2n, 7 = 1,2,-fm + J 
e~r.T z\     h     r 

1_B. {U-Tj-«->\    ,- = i,2,-,«, ; = m + 4,-,2m + 3 
a,       V       A       / 

\0, i = n + l,-,2n,       ; = m + 4,-,2m + 3 

y~W   '^7' ö,'   '*./• v^       ff-  öl      ö"' 



in this way, we obtain linear regression model: 

(11) 
Y-Xß + e 1 
£c=0,COV(e)=J,,«1. * 

Theorem 2 Assume that random errors associated with range 
finrtlno anTits rate of change el and 61 respectively satisfy the 
cond^onfofequatfon (9). V it is possibleto obtain linear 
regression model (11). Moreover, square matrix X X is a positively 
defined matix. Thus, from formula 

ßl, = a'XrlX'Y <iZ' 

it is possible to give linear unbiased estimates associated with ß 
variances which are uniformly minimal. 

Proof From equation (9), it is possible to know that the 
second form of equation (11) is set up.  From discussions in 2, 
dimmed errors associated with using S3(t) to approximate R(t), trimmea erro» a       .       Ä(f)   and Usmg Sl(t) to 
^Limate^<trc^P™o?ed in'calculations.  Thus, the first 
form in equation (11) « set up.^ ^     ^^ by 

eltSSt" consitent with parameter f  variances associated with 
UneaThu:f :eSoniymneeo ro'prove that matrix X'X is postively 
defined.  Note 

_/xx   Xt\     x=(Xl   Xl) 

In this, ,,...., x. = (*».y)i<i<«.-♦«<'<*"♦" 

X, = <*,,,).+l<i<l". !«»<■« 

f ie  a   f2m+4}   row by   (2m+3)   column matrix formed 
?rom°tne'first row of X? the kh/2 row! the khj  row  (J-1,2 ■). 
rne mkh+1 row; the mkh+ kh/2)  row,  and the kn(»+j)   row 

-ements-iöceted at\he ^«»Ä» ,21 

-posedP
ore^ert:3iocaSnat tfe Ä?Ä,™ 

am Ssfd of elects X^T^^J^l»* "T 
"ar  S+2is reaVno Profe XZ\ wÄgard to any number  set   , - 



all have r'X'Xr >(illegible) r" X    '        X r. 

As L 
far as another definition from  X        is concerned, we have: 
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Making use of elementary transformation methods, it is possible to 
orove that   X is a full column ordered matrix.  Thus,   X 
^  Is positively defined.  Because  X    '   X        is positively 
defined, the theorems are proven. «„i»«.—* 

Below, we come to discussion of estimation errors associated 
with R(t)+C(To),   Mt)      ,  as well as C(T)-C(To). Assuming 

» --1 

c«)-ar,) = s,(o = E^f-1^) 

note /?« = ( a-,,«i, —i««*i»*t» — £«>'=<fl/»£'>' 

Use S,(0 = E ^^(^x--)' 
»--» 

to act, respectively, as estimates of S3(t), S3(t) , and Sl(t) 



Define     £(Sl)=£f; \S3(t<)-Ss(t,)\ \ £(.*,) = ££; |S,«,)-iV*«)l S 
«-» ■'-, 

£(S,) = El] |S,(f,)-Si(*,)(*, fl = («-i,«|t-,«—1>'. ? = ^i.ftt-f^>'f 

/22 

Z = (.Zi, >).* (.+i).Tr = (w,. ,).x(.+ 1). ,U-(ui§ )),„. 

In this, ,  / ♦ T  \ 

a. .=B^_iiZlL-), ,' = 1,2,-,n, 7 = 1,2,-,«. 

Because of this, £(Sj)=£|| Z(~_fl) ||% £(ss)=*il FoJ-) II', *<S,>=*|| tf<g-*> I«, 

Lemma 4 [6]  Under the assumptions of model (11), one has 

■JO"4, COV<a)=F„ COV<g)=7„E(0«>=0, *<*)=«,*<*>=*. COV </?*,) = <*' 
Here, (X'X)-l is a 2m+3 order square matrix.  VI is an m+3 order 
matrix.  It is composed of elements at locations where (X X)-l 
front m+3 lines and forward m+3 columns intersect.  V2 is an m 
order matrix.  It is composed of elements at locations where 
(X'X)-l rear m lines and rear m columns instersect. 

Theorem 3 Under the assumptions of model (11), we have 
E(S3)=tr(Z'ZVl), E( Ss )=tr(WWVl), and E(Sl)=tr(U'UV).  Here, MO 
stands for the sum of the elements of primary diagonals of square 

matrices^ ^^ proof is of the expression for E(S3).  The rest 

are similar. 

E(SS) =£ II Z(?-a) || »=£(«-«)'n(«-«) 
= Etr£U-a)'Z'Z(Z-a-y)=EtrCZ'Z(7-a)'( a-a)} 

= tr (Z'ZCOVi *)) =tr{Z\ZVO 

What is worth pointing out is that the conclusions described 
above are obtained under the presupposition that trimmed errors can 
be assumed to be capable of being ignored in calculations. As far 
as how to guarantee this point is concerned, it is possible to make 
use of simulation methods—simulating the production of an orbit 
(for example, using actual orbit design tracks) as well as system 



errors. Assuming C(t)=at(a is a constant), calculations are done 
of R(t).  For cases where random errors are not added, calculations 
are done of S3(t) and Sl(t).  In conjunction with this, solutions 
are gotten for 

E \R(tt>-saiu)\%,i:\*ttt>-&%vt)\l, Eic<*,}-sI<*.>l\ 
i-, ,_, <-i appropriately 

selecting h to guarantee the above three summations are, 
respectively, smaller than 

iisS •,- i» S "■ K5 S "'• ■ 
Through large amounts of simulation calculations—during stable 
flight phases—selecting h=5s, it is possible to guarantee the 
requirements described above being satisfied. 

5  SIMULATION CALCULATION EXAMPLES 

Example 1 Assuming that orbital parameters *(0, y(t),  *(0,x(t), 
*(*) y(t)    r(0 satisfY orbital movement 

equations 

d* 

du 

dT=" 

dt = c„+gß+a,, + ae, 
(13) 

in these, ß is one of x(t), y(t), or z(t). e" 8ßt a"" a'" 
are, respectively, resistance acceleration, acceleration of 
gravity, drag acceleration, and Ke acceleration. 

Given initial values associated with the instant To [x(To,..., 
r  (To)]', from equation (13), it is possible to produce  /23 
orbits.  Thus, it is possible to calculate true values R(ti) and 

D (ti) associated with measured data for various instants ti. 
Assuming that range system error is C(t)=at—in situations 

where random errors are not added—one obtains observation data yi 
= R(ti) + Mti, pi = R(t,),.     Table 1 below gives the differences 
between estimated values and real values obtained by the use of the 
methods in this article. 

Trimmed error square summations are, respectively, 

E |-RCt«)-i?ai>r=1.455 66D-2, E I C(«,)-C(f,)| * 
i-l <-l 

»01 ^ 

E \ktt) -R(t,)\ *=4.352 95D-3 

10 



Table 1  Trimmed Errors Displayed by R(t), C(t), and R(t)Splines 

i R(ti> —R(ti) C«i>-C(ti) R(ti)—R((i) 

1 7.574 8SD-5 0 5.305 57D-3 

101 5.172 02D-3 -2.570 15D-3 -3.166 62D-4 

201 6.442 70D-3 -3.967 80D-3 1.282 69D-4 

301 4.707 85D-3 -2.830 16D-3 -3.003 38D-5 

401 '  5.650 41D-3 -5.002 75D-3 3.677 13D-5 

501 4.512 03D-3 -4.405 23D-3 3.422 08D-4 

601 —1.033 14D-4 -2.304 72D-3 -4.240 71D-3 

Examole 2 On the foundation of Example 1, there will )>© 
produced ?i) and   f  (ti) with random errors added to obtaxn 
observation values,  yi = R(ti) +C(u) + e„ p, = Mt,) + 8lf 

I. these   - -(OjO.012),  ^(....^OSJ,^ t, E-=»; ««i " ». 

a^ptÄ7
0itOiS

(posB^i-;o'consult reference ,1,.     ' 

Table 2. 
Table 2 Estimation Errors Associated with the Methods of This 
Article — 

We obtained 

R(ti)-R(t,) C((i)-C(ti) R(ti)-R(ti) 

1 1.877 43D-2 

101 2^155 90D-2 

201 3.293 63D- 2 

301 3.059 65D-2 

401 2.539 76D-2 

501 8.181 96D-3 

601 -4.683 51D-3 

-2.040 03D-2 

-5.126 47D-2 

-1.426 44D-?. 

-1.948 12D-2 

-1.262 67D-3 

-2.238 30D-2 

-8.308 79D-3 

-3.992 08D-3 

5.864 7 D -4 

-4.633 22D-4 

-2.134 26D-3 

-3.871 58D-3 

1.89023D-4 

Estimation error square summations  are,   respectively, 

£|J?<t,)-.R(*<>|i = 0.284 950,   E|C(t,)-C(.,)| * = 0.327 256, 
i-l 

£ 1 *<«,)- ht,)\ * = 1.031 883D-2 
i-l 

The methods of this  article are not only suitable  for use  in 

assumed that "n9? "™"jtlmic errors, then,  the methods of this 
article approprlarf for^sfL any other situation -sooiated 

SSs^ÄS.TSS.'SSi-.^nr^iÄ it-o an „4 
II 



appropriately high order spline function in order to guarantee 
i||C(J)-S,(t)||-'  being sufficiently small and estimation precisions 
not being influenced. Realizations of theoretical analyses and 
actual calculations are similar. 
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