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PREFACE 

This research grew out of a desire to create a highly reflective multilayer film with 

very low resistance for vertical cavity surface emitting semiconductor lasers. The 

traditional cavity mirrors for these devices are formed by alternating layers of gallium 

arsenide and aluminum gallium arsenide. The abrupt changes in material which make a 

good mirror also make a poor conductor, so electrical pumping of these lasers is difficult. 

One solution is to design a mirror with no abrupt changes in material (lowering the 

resistance) while maintaining the high reflectance required for the laser cavity mirrors. In 

the course of the investigation, the original goal of designing, fabricating, and testing a 

vertical cavity laser device was found to be infeasible in the time available. My research 

therefore took a more theoretical path, and I decided to address the more general problem 

of gradient index thin film design. 

I would like to express my thanks to my advisor, Maj Jeffrey Grantham, for his 

aid and support in my ever evolving dissertation. Dr Peter Haaland was also of great help 

during the development of the SWIFT algorithm. I would also like to thank Maj Gregory 

Warhola for his willingness to adopt me as my dissertation topic took a more 

mathematical turn. Finally, I wish to thank my wife Joan for her patience, understanding, 

and support throughout the years it took to complete my studies. 
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AFIT/DS/ENP/96-03 

ABSTRACT 

Gradient index thin films provide greater flexibility for the design of optical coat- 

ings than the more conventional "layer" films. In addition, gradient index films have 

higher damage thresholds and better adhesion properties. In this dissertation I present an 

enhancement to the existing inverse Fourier transform gradient index design method, and 

develop a new optimal design method for gradient index films using a generalized Fourier 

series approach. The inverse Fourier transform method is modified to include use of the 

phase of the index profile as a variable in rugate filter design. Use of an optimal phase 

function in Fourier-based filter designs reduces the product of index contrast and 

thickness for desired reflectance spectra. The shape of the reflectance spectrum is recov- 

ered with greater fidelity by suppression of Gibbs oscillations and shifting of side-lobes 

into desired wavelength regions. A new method of gradient index thin film design using 

generalized Fourier series extends the domain of problems for which gradient index solu- 

tions can be found. The method is analogous to existing techniques for layer based 

coating design, but adds the flexibility of gradient index films. A subset of the 

coefficients of a generalized Fourier series representation of the gradient index of 

refraction profile are used as variables in a nonlinear constrained optimization 

formulation. The optimal values of the design coefficients are determined using a 

sequential quadratic programming algorithm. This method is particularly well suited for 

the design of coatings for laser applications, where only a few widely separated 

wavelength requirements exist. The generalized Fourier series method is extended to 

determined the minimum film thickness needed, as well as the index of refraction profile 

for the optimal film. 
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INTRODUCTION 

1.1.      Motivation 

The Air Force is interested in optical thin film coatings for a variety of uses, 

including broad band anti-reflection coatings for low-observable applications, narrow 

pass filters for sensor protection, and high power laser mirrors. Most current thin film 

coatings are designed and constructed using a number of slabs of materials with different 

indices of refraction and thicknesses. The most popular method consists of alternating 

layers of high and low index material. The properties of the film are determined by the 

two index values used and the thicknesses of each layer in the film. Recently, there has 

been a growing interest in inhomogeneous or gradient index thin films, which are 

characterized by a continuously varying index of refraction throughout the film. The 

advantages of such gradient index films over the alternating stack type films are based on 

the elimination of the abrupt interfaces between materials. In a slab based design, very 

large electric fields can develop at the material interfaces. This can lead to damage of the 

film in high power laser applications [47:272]. Also, the current deposition methods 

demonstrate columnar growth patterns in each material. The columnar growth patterns 

create voids in the structure, which can increase scattering. In addition, the different 

material properties lead to large inherent stress between layers in the film [47:271-272]. 

Elimination of the interfaces by using gradient index designs promotes better adhesion to 

the substrate, reduces internal stress in the film, reduces scattering, and increases the 

damage threshold for the film [43:2864]. 

Several basic approaches to thin film design exist, including graphical, analytical, 

and digital design methods [11:97].  Digital techniques are of particular interest because 



they can be used to design films with more complex properties than is possible 

analytically or graphically. Digital design techniques can be categorized as either 

refinement or synthesis techniques. Refinement techniques begin with an initial film 

design and iteratively refine it to achieve a better design. Synthesis techniques on the 

other hand generate a film design based on the desired film characteristics only. Several 

methods exist for both refinement of an initial design [11] or synthesis of a film [12]. 

One of the synthesis techniques relies on the inverse Fourier transform to relate the index 

of refraction of the film to the transmittance of the film. This technique, originally 

developed by Sossi and Kard [34,35,36], will be expanded upon in this work. In addition, 

new design techniques, based on a generalized Fourier series approach, will be 

developed. 

The objective in designing a thin film is to take the performance requirements for 

the film and generate a design subject to constraints of available indices of refraction and 

acceptable total thickness. The performance requirements are usually stated as 

reflectance, transmittance, or absorption versus wavelength, incident polarization or 

angle. The conventional variables in the design are the number of layers in the film, and 

the index and/or thickness of each layer. For "simple" filters, such as notch or bandpass 

filters, anti-reflection coatings, and reflectors, designs by graphical methods or by 

knowledge of the properties of periodic multilayers are possible [12, 24]. Films with 

more complex properties require digital design methods. 

1.2.      Problem Statement 

The purpose of this research is to create a design method to map between 

reflectivity and continuous index of refraction profiles that also allows for additional 



design constraints, such as limitations on the total film thickness and index of refraction 

range. The process of designing an optical filter requires a mapping between the space 

of all possible index profiles and the space of all possible reflectivity characteristics. A 

mapping from index to reflectivity can be generated from Maxwell's equations. This 

mapping allows one to evaluate the performance characteristics of a film, in terms of 

reflectivity as a function of wavelength, angle of incidence, polarization, etc.. 

Unfortunately, this mapping is not invertable, so it cannot be used to design a film 

(except by trial and error). Most of the existing design techniques rely on the trial and 

error approach. The corrections to the index are based on numerical principles of optimal 

design theory. One exception to this approach is the inverse Fourier transform technique. 

This design method is derived from Maxwell's equations by making several 

approximations. However, this method maps one reflectivity profile to many possible 

index profiles. In addition, there is no mechanism to impose additional constraints on the 

design, such as available index range or total thickness. 

This research is presented in two phases. The first phase is to investigate design 

of gradient index thin films by the inverse Fourier transform method. The second phase is 

to create a new method for solving the inverse problem of identifying an index of 

refraction profile for a given reflectivity, based on a generalized Fourier series approach. 

Two variations on this theme are explored: a Fourier series method and a wavelet 

method. The wavelets provide a different framework for analyzing the structure of the 

index of refraction. A wavelet decomposition of a "signal" is analogous to a Fourier 

series decomposition, but the information is packaged in terms of "scale" and "shift", 

rather than the more familiar frequency and phase. Another reason to use wavelets is that 

each wavelet has a finite extent, as opposed to the sines and cosines of Fourier series. 

This finite support is helpful because it allows one to focus only on the elements of the 

design that are important. As an example, the inverse Fourier transform method requires 



the user to specify the reflectivity over a broader range than the design requirements 

specify. This is required to achieve sufficient detail in the index of refraction profile. 

This forces the design to meet more stringent conditions than are really needed. The 

finite support of the wavelets should allow one to overcome such problems. The theory 

and concepts of this wavelet formalism are presented in more detail in Appendix C. 

1.3.      Organization 

Chapter 2 presents background information on existing thin film design 

techniques and the basic theory of thin films. Chapter 3 discusses the inverse Fourier 

transform method for synthesis of thin films, as well as a modification to the existing 

theory allowing optimal synthesis of a thin film. Chapter 4 discusses optimal design of 

gradient index films using Fourier series and wavelet series. The final chapter 

summarizes the dissertation and presents suggestions for future research in this area. The 

appendices include an explanation of the numerical considerations involved in 

implementing the inverse Fourier transform techniques of Chapter 3 (Appendix A), a 

brief outline of optimization theory (Appendix B), the wavelet theory needed in this 

research (Appendix C), and the programs used in this work (Appendix D). 



2.       Background 

This chapter presents the historical background of thin film design methods and 

the current state of the art for gradient index film design and fabrication. In addition, the 

basic theory of optical properties of thin films necessary for the analysis and synthesis of 

thin films is presented. 

2.1.     Historical Perspective 

To appreciate the significance of the new approach to gradient index thin film 

design presented in this dissertation, a brief history of thin film design techniques is 

needed. Thin films were first discovered in the late 1600's by Robert Hooke and Sir 

Isaac Newton in the phenomenon known as "Newton's rings" [19:299,24:2]. The first 

anti-reflection coatings were made by Fraunhaufer in 1817 [24:2]. The modern era of 

thin film manufacturing began in the 1930's, with the invention of reliable vapor 

deposition techniques [24:4]. 

Modern design techniques can be broken into three broad categories; analytical 

methods, graphical methods, and digital designs. Analytical techniques use a few simple 

elements as building blocks to design more complex filters. The building blocks used, 

such as quarter wave stacks, are selected because the relationship between the few 

variables of the basic element (i.e., index, thickness, number of layers) and the reflectivity 

(i.e., total reflectivity, pass band width, stop band location) are well known. A specific 

design is then created by combining a series of these building blocks until the desired 

profile is obtained [24:164-172]. This technique is effective for fairly simple designs, 

such as a bandpass filter, but does not work as well for more complex designs.   Many of 



the existing thin film design techniques rely on the intuition of the designer, based on his 

experience with basic elements of the design. One example of this is the design of 

bandpass filters from quarter wave stacks [24:164-172]. Another example is the design 

of rugate filters, where the basic building blocks are sinusoids [22]. It has been noted that 

one of the standard rugate filter profiles for a bandpass filter bears a remarkable 

resemblance to a Morlet wavelet [37]. 

Graphical techniques are closely related to the analytical methods described 

above. They consist of various methods to simplify the calculations necessary in the 

analytical method by graphing the relationships between the variables. Examples of these 

techniques include the Smith chart, reflection circles, and admittance loci [24:54-66]. 

The techniques of primary interest here are the digital design methods. Digital 

design methods can be further subdivided into two categories; refinement and synthesis 

techniques. Refinement techniques are characterized by the fact that they require an 

initial starting design. Synthesis techniques, on the other hand, create their design 

without an initial guess [11: 2876]. There are over a dozen published refinement 

methods, and about half a dozen synthesis methods. There are undoubtedly many more 

unpublished design methods that are proprietary to the thin film manufacturing 

companies. Most of the methods make use of a merit function, which is a measure of 

how close the existing design is to the desired result. Some of the methods are capable of 

locating a global minimum, which is the true optimal solution to the problem. Other 

methods only solve for local minima based on the initial guess. Brief descriptions of a 

few of the published design methods are given below. 

Refinement Methods: [11:2878-2882] 

1. Adaptive Random Search: This procedure takes a starting design and applies a 

random change to the parameters of the design. The results at each step are compared to 

the desired result through a merit function.  Changes in the design that reduce the merit 



function are kept, while others are discarded. The magnitude of the change in 

parameters is also changed at each step, making this procedure perform both a local and 

global search. This means that if the "best" design is very different from the starting 

design, this method may find it. Local search methods only make small changes to the 

initial design. This method stops its iteration when the merit function passes a preset 

threshold or the method stops converging 

2. Damped Least Squares: This method uses the derivatives of the quantities of 

interest in the merit function with respect to the construction parameters to determine the 

changes to be made to the design. Since the design problem is highly non-linear, the size 

of the change in any one step is limited by a damped least squares algorithm. This 

method performs a local search from the starting design. 

3. Golden Section Method: The golden section method takes and initial design 

and varies each of the construction parameters in sequence. The optimal value for each 

parameter is found, (within the preset limits for each) before continuing on to change the 

next parameter. This algorithm converges fairly rapidly, and can find solutions far from 

the initial design. 

4. Hookes and Jeeves Pattern Search: This technique is composed of two steps; 

an exploration and a pattern search. The exploration is to change each parameter up and 

down by a small amount, and determine which changes improve the merit function. The 

pattern search extrapolates in the direction of improvement from the exploration step. 

The step sizes are changed, and then the process is repeated. The process stops when the 

change in the merit function is smaller than a preset limit. 

5. Simulated Annealing: The physical process of annealing is heating a sample 

and allowing the molecules to find a minimum energy state during cooling. This idea is 

used mathematically in this design approach. This method can deal with arbitrarily large 

numbers of design parameters, and can find globally optimal solutions. 



Synthesis Methods: r23:3790-3791] 

1. Comprehensive Search Method: This method is limited to films with only a 

few layers (<6). The global optimal solution is found by testing every possible 

combination of index and thickness allowed. Clearly, only a limited number of indices 

and thickness can be used. The advantage of this method is that it finds the truly optimal 

solution given the constraints on index and thickness. The disadvantage is it takes so 

much computer time to check every possible combination that only very simple systems 

can be designed this way. 

2. Gradual-Evolution Method: This method is a modification of the 

comprehensive search described above. Instead of designing the whole film in one step, 

a smaller design, say three layers, is done by comprehensive search. The result is then 

added as part of the substrate, and an additional few layers are designed on this "new" 

substrate, again by comprehensive search. Since only a few layers are changed at a time, 

this method is much faster than the full comprehensive search method. However, there is 

no longer a guarantee that the global optimal solution will be found. 

3. Minus Filter Method: A minus filter is a design that transmits all incident 

radiation except that in a narrow spectral band. Thelen has shown that all dielectric 

minus filters can be made using quarter wave stacks with several indices of refraction 

[39:365-369]. This design technique breaks the desired reflectivity profile into several 

minus filters, and then places the individual designs in series. 

4. Flip-Flop Method: This unique approach uses many thin layers and only two 

indices of refraction. The algorithm is to pass through the film in sequences, flipping each 

layer between high and low index and calculating the resultant merit function. After 

several passes through the film, this method converges on a solution. The advantage to 

this technique is it uses only two materials, which is preferred by manufacturers, and it 



requires no initial design.  The method sometimes results in alternating very thin layers, 

but this can usually be corrected manually later. 

2.2.     Gradient Index Film Design and Fabrication 

The current gradient index film design techniques focus on the inverse Fourier 

transform method and the rugate film design method. The inverse Fourier transform 

method can be classified as a synthesis technique, since no initial design is required. The 

rugate design method is an analytical design technique. 

1. Inverse Fourier Transform Method: The use of Fourier transforms in the 

synthesis of thin films was first proposed by Delano in 1967 [9]. Sossi is generally 

credited with the development of the inverse Fourier transform method for thin film 

design [34,35,36]. Sossi's papers introduce a Fourier transform relationship between the 

logarithmic derivative of index of refraction and the reflectance of the film. This design 

technique was further developed by Dobrowolski and Lowe in 1978 [10]. Many authors 

have applied this method to various design problems, and offered modifications to the 

theory to better suit their needs. These include design of wideband anti-reflectance 

coatings [44] and high reflectance filters [16,43]. Other work has focused on modifying 

the theory of the method to improve the quality of the results or ease of computation 

[4,6,14,42]. This method, along with a modification of my design, will be described in 

detail in Section 3.2 below. 

2. Rugate Design Method: A rugate filter is composed of a number of basic 

elements combined to achieve the desired optical properties of the film. The fundamental 

rugate design element is a sine wave refractive index profile on a substrate [22]. The 

basic rugate film has a notch reflectance profile, with the location, width, and height of 

the notch controlled by five parameters.   More complicated rugate films are created by 



adding several basic rugates in parallel or in series, and including apodization functions 

or matching layers to suppress sidebands in the reflectance. 

The fabrication of films designed using these techniques is done in one of two 

ways. The first way is to use the concept of the Herpin equivalent index to convert a 

gradient index design into a two index material system, and make an equivalent film out 

of discrete layers [3,15,24:191-200]. This method allows the use of gradient index design 

methods to design conventional alternating layer based films, but does not offer the 

advantages an actual gradient index film would. The other fabrication possibility is to 

deposit the gradient index profile as designed. This is currently on the forefront of 

existing technology, and is an active area of research. There are several material systems 

that can be used to produce gradient index profiles. Table 2-1 lists some of the materials 

available, along with the index range and literature reference for additional information. 

Table 2-1: Gradient Index Film Materials 

Material System Index Range Reference 

Gei.xSx 3.5-4.0 [22:97] 

Ali_xGaxAs 2.9-3.6 [33:588] 

ZnSi_xSex 2.2 - 2.5 [22:97] 

SiOxNv 1.5-2.0 [22:97,29:179] 

Si02 - Ta205 1.65-2.0 [1:141-145] 

MgF2 - Ti02 1.38-2.3 [41:189-196] 

CeF3 - ZnS 1.6-2.2 [20:61] 

MgF2 - ZnSe 1.38-2.5 [20:197-204] 
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2.3.     Optical Properties of Thin Films 

This section presents the theory and methods for determining the reflectance 

properties of a film. The first section presents the derivation of the reflectance from 

Maxwell's equations, and the second section outlines the implementation of this 

formulation for a single thin film. The third section extends this implementation to 

gradient index films. 

2.3.1.   Derivation of Reflectance 

This section presents the formal derivation for determining the reflectance of a 

film starting from Maxwell's equations. Figure 2.1 shows the coordinates used in the 

derivation. The surface of the film is the x-y plane, and the physical thickness of the film 

is along z. The origin is at the film-substrate interface, and the thickness of the film is 

denoted by L. 

E(z) E 
•       0 

E    )/ 
§^ 

t      K \ 

0 L 
> L 

Substrate Film Air 

sub 
n(z) n 

air 

Figure 2.1: Geometry of Thin Film 
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Assuming a time dependence of exp[i"cof], Maxwell's equations in SI units are 

curl H = meE 

curl E = -i(£t\iH 

div E = 0 

div H = 0 

(2.1) 

where E is the electric field, H is the magnetic field, e is the permittivity, and |i is the 

permeability. 

Two polarizations must be considered to determine the electric field; the 

transverse electric (TE) case, which has its electric field aligned perpendicular to the 

plane of incidence, and the transverse magnetic (TM) case, which has its electric field 

aligned parallel to the plane of incidence. By the symmetry of Maxwell's equations, the 

TM case can be deduced from the TE case with a substitution of E for H and e for u,. The 

plane of incidence is defined by the direction of propagation of the incident light and the 

normal to the surface. Define the JC direction as the direction in which the electric field is 

aligned, so the fields can be written as 

E = 

Ex (z) exp[i(üt - ikSy] 

0 

0 

H = 

0 

Hy(z)exp[i(at-ikSy] 

Hz (z) exp[*'co? - ikSy] 

(2.2) 

Here 5 is an invariant, S = n0 sin(0 0), where no is the index of refraction of the incident 

medium, and 0o is the angle of incidence. Also, G) is the frequency of the incident light, k 

is the wave number of the light, k=2n/k, and X is the wavelength in vacuum. Substituting 

these expressions for E and H into Maxwell's equations yields 
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dHy(z) 

dz 

dEx(z) 

dz 

HAz)< 

= —ik 
(     52^ 

■ -ik\irZ0Hy(z) 

Ex(z) 

EAz) 

r   S    ^ 

Z0\ir 

(2.3) 

where ZQ is the impedance of free space, Z0 = -JIIQ/EQ , and 

e0> M-0    are the permitivity and permeability of free space, 

er, \ir    are the relative permittivity and permeability of the medium. 

Let N (z) = er(z)|ir - S , and consider only dielectric materials with |ir=l. N(z) 

is always a real valued function since S < 1 for all cases considered here and er > 1 for all 

dielectric materials. For normal incidence, 5=0, and N reduces to the usual definition of 

index of refraction. Also define two new complex valued variables w and v by 

u(z) = 
EAz) 

v(z) = -[irZc 

Hy(z) 
(2.4) 

The normalization factor Et is the complex amplitude of the transmitted wave. Using the 

new normalized field variables, Maxwell's equations reduce to the following pair of 

coupled first order ordinary differential equations 

i'(z) = ikv(z)    and       v'(z) = ikN2(z)u(z) (2.5) 

with boundary conditions 

M(0) = l v(0) = -nsubcos(Qt) (2.6) 
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In this formulation, the amplitude reflectance and transmittance of the film, r(k) 

and t(k) respectively, are found from the Fresnel equations: [40:4274] 

r(k) 
_ nairu{L, k) cos(6 0) + v(L, k) cos(0,) 

nairu{L, fc)cos(0 0) - v(L, &)cos(0 t) 

t{k) = 
2nairu(L,k)cos(Q0) 

nairu(L, &)cos(0 0) - v(L, &)cos(01) 

(2.7) 

Here the field variable dependence on the wave number k has been called out explicitly. 

2.3.2.   Multilayer Thin Films 

The optical properties of a multilayer thin film are based upon the Fresnel 

reflection at interfaces and the interference between multiple reflections. The reflectance 

of such a film can be determined by using Maxwell's equations and applying the 

boundary conditions at both interfaces. MacLeod has shown the fields at the first interface 

are related to the fields at the second interface by [24:35] 

'01 

H, 01 

cos(5)      isin(8)/T|j 

ir|, sin(5)      cos(5) 
'12 

H, 12. 
(2.8) 

where Eoi, Hoi represent the field at the interface between the incident media and the 

film, and En, Hn represent the field at the interface between film and the substrate. The 

optical admittance of the film material r|1 is given by 

14 



cos(6) 

= «[10 008(0) 

TM 

TE 

(2.9) 

with YQ= 1/377 Siemens. The phase shift 5 is given by 

8 =27m1dcos(0)/Ä, (2.10) 

where nj is the index of refraction of the film, d is the thickness of the film, 0 is the angle 

between the direction of propagation and the normal to the surface of the film, and X is 

the wavelength in vacuum. Note that the phase shift 8 can be complex, and the angle 0j, 

found using Snell's Law, may also be complex. The complex amplitude reflectivity, p, 

and the real intensity reflectance, R, can by found from Equation 2.8 by defining an input 

optical admittance for the assembly as 

Y=H0l/Et 01 (2.11) 

Then for an incident medium with an optical admittance of T|o 

P=n^l 
ri0 + F 

R = T\o-Y 

Vo + Y, 

V V 
(2.12) 

where the asterisk indicates complex conjugation. 

Since the reflectance depends only on the optical admittance of the film, Y, 

rearrange Equation 2.8 to find Y: 
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cos(8)      isinCS)/^! 

ir^sin^)       cos(8) 

Y=C/B 

1 

Tl2 

(2.13) 

The matrix above is the characteristic matrix for the film, and depends only on the 

film materials and the angle of incidence of the impinging light. This matrix technique 

can be directly extended to an assembly of many thin films. So, given q thin film layers, 

each with specified index and thickness, the characteristic matrix of the assembly is given 

by 

=n 
r=\ 

cos(5 r)      i sin(5 r) / T| r 
ir)rsin(8r)       cos(6r) 

1 
(2.14) 

where for each layer r the phase shift 8r is 

5 r = 27t nrdr cos(6 r )/X (2.15) 

and nr is the index of refraction of the layer, dr is the thickness of the layer, and the angle 

0r is found using Snell's Law. These equations form the basis for the design of thin film 

dielectric mirrors. 

In addition to determining the reflectivity of a multilayer thin film, the 

characteristic matrix above can also be used to determine the phase of the reflected field. 

Writing the optical admittance of the film as Y=a + bi, the phase, cp, of the field upon 

reflection is given by [24:37] 
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tan(cp) = -2frlo 

{<-a2S) 
(2.16) 

The simplest example of a mirror using these multilayer films is a quarter wave 

stack. This is a series of layers each with an optical thickness of one quarter of the 

wavelength of the incident light. If the index and thickness of each layer are chosen so 

the optical path length nd = X/4, and the light is at normal incidence, the phase shift 8 for 

each layer is n/2. The characteristic matrix then reduces to 

1 

■n 
r=l 

■ 0       i/Tl, 

inr    o 
l 

(2.17) 

This characteristic matrix is very easy to calculate. An example of such a quarter wave 

stack is 25 alternating layers of GaAs and AlAs on a GaAs substrate, which have indices 

of refraction of 3.6 and 3.2 respectively [33:588]. If the design wavelength is 1.0 

micron, this mirror is 93.6% reflective at this center wavelength and has a reflectivity 

versus wavelength profile as shown in Figure 2.2. 

Figure 2.2: Reflectivity vs. wavelength for 25 layer quarter wave stack of 
GaAs/AlAs on a GaAs substrate. 
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2.3.3.   Gradient Index Films 

The analysis above assumes the mirror is formed by a discrete number of layers 

with well-defined thickness and index of refraction. How does one treat a structure where 

the index varies continuously? One approach, derived by Bovard, is to start from the 

beginning with Maxwell's equations and develop an expression for the characteristic 

matrix of the film based on the known index of refraction as a function of position in the 

film [4:1999-2001]. Unfortunately, the resultant expression contains an infinite series of 

integrals, which makes evaluation impracticable. Another alternative, and the one 

implemented here (see REFLECT.M in Appendix D), is to approximate the continuous 

film as a discrete film with many small layers. As a general rule, discrete layers on the 

order of 5 nm thick give a good approximation for the reflectance of a gradient index film 

for visible light [6:5429]. Since the formalism presented above includes the complex 

portion of the fields involved, the interference effects are already incorporated in the 

calculation. This is of critical importance to the validity of this approach, since high 

reflectivity depends on destructive interference of the transmitted fields. 

The reflectance is calculated by a "C" language version of REFLECT.M. The 

conversion of this program from the MATLAB™ language to "C" increases the speed of 

each reflectance calculation by at least a factor of ten. The "C" language program, 

REFLECT.C, is also included in Appendix D. The inputs to REFLECT.C are the 

sampled values of the index, the substrate index, the vector of wavenumbers k at which to 

determine the reflectance, and the array of sample positions in the film x. The output is 

an array of reflectances, one for each of the input wavenumbers k. The units for x and k 

must be consistent, i.e. microns and inverse microns or nanometers and inverse 

nanometers. The programs REFLECT.M and REFLECT.C are used throughout the 

dissertation to determine the reflectance characteristics of the gradient index thin film 

designs. 
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3.       Thin Film Design Using Inverse Fourier Transforms 

Synthesis of a thin film is the process of taking film performance requirements 

and creating a film that will meet those requirements. Several techniques exist in the 

literature for performing this task, including the comprehensive search method, the 

gradual evolution method, the flip-flop method, the minus filter method, and the inverse 

Fourier transform method [12:101-106]. Of these methods, the inverse Fourier transform 

method has an advantage in speed of computation. This is due to the use of matrix fast 

Fourier transform techniques [23:3799]. This chapter includes a description of the 

current inverse Fourier transform methods, and then presents a derivation of an 

enhancement, called the Stored Waveform Inverse Fourier Transform, or SWIFT, 

technique. The SWIFT technique provides a tool for the thin film designer to control the 

index of refraction range of the film designed with the inverse Fourier transform method. 

The SWIFT technique determines an optimal phase to use in the inverse Fourier 

transform, which has the effect of spreading the index contrast more evenly over the total 

thickness of the film. The SWIFT technique also generates film designs that better 

achieve the desired film reflectance profile, as compared to films designed without the 

SWIFT optimal phase. Several examples are given to illustrate the various properties of 

this new technique. 

3.1.      Inverse Fourier Transform Method 

One technique for designing continuous gradient index films is based on a Fourier 

transform relationship proposed by Sossi and Kard [34,35,36] and fully developed by 

Dobrowolski and Lowe [10] and Bovard [4]. The inverse Fourier transform relation is 

derived from Maxwell's equations by making several approximations.    The film is 
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assumed to be sandwiched between two identical media, and additional assumptions of 

no dispersion, no absorption, and normal incidence are made. An excellent presentation 

of this derivation is given (in English) in Bovard [4]. First the basic inverse Fourier 

transform relation will be stated, and then the end results of the derivation will be 

presented, in order to illustrate the approximations made to arrive at this inverse Fourier 

transform relation. 

Given a desired reflectance profile, R(X), the index profile, n(x), needed to gener- 

ate this reflectance is given approximately by a Fourier transform relation. Written in 

terms of the wavenumber k=2Ti/k, and the double optical path length x, the relation is 

ln[n(x)] = -J2^-exp[i®(k)-ikx]dk (3.1) 
7t AC 

where Q(k) is one of several functions of R(X), and O(k) is the complex phase of the 

index profile. The relation between the double optical path length in the medium, x, and 

the physical thickness, z, is 

x = 2JN(u)du (3.2) 

where N(z) is the index of refraction as a function of physical thickness. Note this is a 

different functional dependence than n(x), which is the index as a function of double 

optical path length. The solution of Equation 3.1 is the index of refraction for the film as 

a function of double optical thickness. The conversion of this index versus double optical 

path length to an index profile in terms of physical thickness is accomplished by inverting 

Equation 3.2 to find the physical thickness, z, for a given optical thickness, x: 
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'4/-7T (3'3) 
2 J0 n{u) 

The function N(z) is then constructed by noting that N(z)=n(x) when x and z are related by 

Equation 3.3 above. 

Bovard derives a rather complicated series of expressions describing the 

relationship between the complex amplitude reflection and transmission coefficients p 

and T as a function of wavelength to the index of refraction profile as a function of 

position [4]. The amplitude coefficients can be written 

P = 
Bx + B3 + B5+.. 

\ + B2 +54+., 
(3.4) 

x =■ 
l + B2 +B4+. 

The functions Bn are a family of functions: 

52„(CT)= [C2„(a)- i52„(o)]exp(-i7ca0j:) 

Bm+i (p) = C2n+X (a) - IS2B+1 (a) 
(3.5) 

where the wavenumber o=l/k, and x is the double optical phase thickness of the film. 

The functions Cn and Sn are 
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P 
C1(ß)=Jr(ß1)cos(2ß1)^ß1 

0 

ß 
51(ß) = Jr<ß1)sin(2ß1)dß, 

PPi 
C2(ß) = JJ, -(ß1)r(ß2)cos(2(ß2 -ß,))dß2<*ßi (3.6) 

ßßi 

S2(ß) = JJr 
0 0 

(ß,)r(ß2)sin(2(ß2- -ßi))<*ß2<*ßi 

or in general 

cB(ß)= 

*«(ß)= 

ßßi 

-11- 
0 0 

ßßi 

0 0 

.  Jr(ß,)r(ß2)...r(ß 
0 

ß«-i 

.  Jr(ß,)r(ß2)...r(ß 
0 

m)cos(2(ßffl-ßm_1 

w)sin(2(ßm-ßm_1 

+-ßi))^ßm- 

+...ß,))dßm.. 

.dß2dß! 

rfß2Jß! 

(3.7) 

The variable ß is an optical phase thickness, which is related to the double optical 

thickness x by 

R-m i ßo 
X      2 

(3.8) 

where ß o i s the total optical phase thickness. Finally, the function rfßj is the logarithmic 

derivative of the index of refraction: 

Kß)="'(ß) lP;    2n(ß) 
(3.9) 
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Equations 3.4 through 3.9 form the relationship between the amplitude reflectance 

coefficients as a function of wavelength and the index of refraction as a function of 

position. A Fourier transform relationship between p(k) and n(x) is derived by neglecting 

all terms in Equation 3.4 with n>2 and substituting for ß using Equation 3.9: 

1 n'{x) 
p(&)= J—--^-expt/fcx] dx (3.10) 

_J2n(x) 

The limits of integration have been extended to infinity without penalty because the index 

of refraction is assumed to be constant outside the film, so the derivative of the index is 

zero. The remaining step to achieve Sossi's form for the inverse Fourier transform 

relation of Equation 3.1 is to replace the complex amplitude reflectance p(k) with another 

function of the reflectance or transmittance, denoted by Q(k) exp[i&(k)]. This complex 

valued function is usually expressed in polar form in the literature. The Q function is 

used in place of the amplitude reflectance in an effort to improve the approximation by 

including some of the effects of the terms neglected in the derivation. The most obvious 

choice for the Q function is Q(k) = R(k)1'2 , which is just the magnitude of the complex 

amplitude reflectance, p(k). In this case the "correct" phase function <P(k) would be the 

phase of the complex amplitude reflectance. 

Several forms of Q(k) have been used by various authors, including [4:2002, 5:26, 

10:3043,42:3673] 

ß3 = Vr-1-l (3.11) 

QA = wVl-T + (1 -w)^T~l -1,        0<w<l 

ö5 = in(y +VyIzi)       y=i+i(rl-T) 
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Here T(k) = \ - R{k) is the transmission of the non-absorbing film as a function of wave 

number k. The Q functions in Equation 3.11 are not an exhaustive list of possible Q 

functions, nor are they exact for any particular problem. The choice of the form for Q(k) 

depends on the characteristics of the desired reflectance. The first three Q functions 

above are good for low rejection filters, while the last two are better for high rejection 

filters. For complicated reflectance profiles, an iterative scheme of linear combinations 

of these forms yields good results [43:2866]. 

Sossi proposed to overcome this limitation in the Q function of the Fourier 

transform relation by using a series of successive approximations [42:3673]. Applying 

Equation 3.1 to a desired reflectance profile generates an index of refraction profile. The 

reflectance of this index profile can be determined using the matrix techniques described 

previously in section 2.3. The resultant reflectance, Rx, will not exactly match the desired 

reflectance, R^. This difference can be used as the basis for the successive 

approximations. By adding the difference between the Q function of the desired 

reflectance, QiR^), and the Q function generated by using Rlt a new, hopefully better Q 

function can be formed. Mathematically, this algorithm is 

0*1=0,+Aß 

*Q = Q(Rd)-Q(Ri) (3.12) 

Qx=Q{Rd) 

Sossi only illustrated this method on a few simple examples, so the validity of this 

approach has not been rigorously established. Verly has recently expanded on this 

approach by incorporating iterations on the phase 0(7c) as well as the Q function 

24 



[42:3674]. He claims this approach reduced the thickness of the resultant film 

significantly. 

The phase function ®(k) has not received as much study as the Q function has. As 

was mentioned previously, for the case where the Q function is the square root of the 

reflectivity, the phase function <b(k) is the same as the desired phase of the reflected 

wave. However, for other forms of Q(k), the interpretation of the phase function is not so 

straightforward. The phase function was originally set to zero in Sossi's work [35:6]. 

Later, Dobrowolski and Lowe proposed using various analytic forms for ®(k) to improve 

the spectral fit between the design and film performance [10]. Another expression for the 

optimal phase is derived in detail in Section 3.2 below. 

Since both the Q(k) and 0>(k) are to some extent arbitrary functions, the Fourier 

transform relation does not give a single index profile to generate the desired reflectance. 

This is one of the major drawbacks to this method. The synthesis of a film for given 

desired reflectance depends on the form chosen for Q(k) and <P(k). The difficulty lies in 

choosing the functional forms that will give the "best" index profile. This is particularly 

true if the requirements of the film are not rigidly specified over the entire wavelength 

region of interest. For example, consider the design of a mirror for an optically pumped 

laser. The requirements are high reflectivity at the lasing wavelength, and high 

transmission at the pump wavelength. The rest of the reflectance profile does not matter. 

However, some form for this profile must be chosen in advance to use the inverse Fourier 

transform design method. The other drawback to this method is it does not allow for the 

application of additional constraints to the design, such as available index of refraction. 

The Stored Waveform Inverse Fourier Transform (SWIFT) technique described in the 

next section addresses the application of constraints on index range to this method. 
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3.2.      The SWIFT Technique 

This section describes the Stored Waveform Inverse Fourier Transform technique 

for calculating a phase function to use in the inverse Fourier transform which will account 

for constraints on the index of refraction range. First, the original use of this technique in 

mass spectrometry is discussed and then the theory is derived as it applies to gradient 

index thin film design. 

The reflectivity function Q(k) and the phase function Q>(k) in Equation 3.1 provide 

two degrees of freedom in designing an index profile to generate a desired reflectance. 

Several investigators have explored various functional forms for Q(k), as listed above, 

and Q>(k) [10,16,42,43]. In what follows, I present a technique for computing a phase 

function, <£>(&), that allows imposition of constraints on filter thickness and maximum 

index contrast [14]. The method, which derives from an analogous result in pulsed ion 

cyclotron resonance mass spectrometry [17], has the added benefit of producing the 

desired reflectance function with higher fidelity than alternative formulations. The new 

phase function is computed by a method called Stored Waveform Inverse Fourier 

Transform (SWIFT). The mathematical basis for SWIFT is described by Guan [17,18], 

and is outlined below. 

The connection between pulsed ion cyclotron resonance mass spectrometry work 

and design of thin films is that both rely on an inverse Fourier transform relationship. In 

the case of pulsed ion cyclotron resonance mass spectrometry, the inverse Fourier 

transform relates the voltage profile applied in time to the frequency distribution of the 

electric fields formed in the device. The objective is to create a field with very sharp turn 

on and turn off in frequency in order to selectively trap ion species. If the phase of the 

desired field is arbitrarily set to zero, the voltage profile in time required to generate a 

notch in frequency can easily exceed the equipment's abilities to switch large voltages. 

However, if the phase is properly selected for the desired frequency profile, the peak to 
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peak voltage oscillations required can be restricted to within an acceptable range. This 

method for producing notch field profiles was successfully demonstrated at AFIT by K. 

Reihl[31]. 

The goal of the SWIFT technique is to reduce the index range needed by 

distributing the "power" of the reflectance design region uniformly over a portion of the 

thickness of the film, referred to as the "power spread region" of the film. The "power" 

in a function is found by integrating its squared-magnitude. The terminology "power" is 

borrowed from the signal processing community, where much of the applied Fourier 

theory was developed. The Fourier transform pair considered here is ln(n(x)) and 

exp[iO(k)]Q(k)A. The reflectance design region contains those wavenumbers, k, 

satisfying ko<k<ki over which the reflectance design is to be satisfied, not necessarily 

containing the reflectance for all wavenumbers. Furthermore, the "power spread region" 

is not necessarily the total thickness of the film. Rather it is the subset of the film 

occupying positions x satisfying XQ < x < xj; the difference (xi - xo) is a design parameter 

referred to as the "power spread thickness." 

The goal of distributing the power uniformly across the thickness of the film is 

approached by considering the following: imagine the portion of the index, n(x), in the 

power spread region to be composed of infinitesimals of width dx, located at positions x, 

each of which is required to have constant power spatial density, denoted by lie. A 

second requirement, leading directly to the desired expression for O(k), is that the phase 

contributed to the reflectance by each slab follow a Fourier shift theorem. The results of 

these two requirements are obtained below and combined to achieve a phase in the 

reflectance design region to distribute the spatial power density over the power spread 

region of the index. 

Each infinitesimal of power in the reflectance design region is required to be 

contained in an infinitesimal of the index, all of which (recall) have constant power 
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density, lie.  Therefore, the width, dx, of an infinitesimal slab of the index can be related 

to the power in an infinitesimal slab of reflectance by 

dx = cG(k)dk (3.13) 

where the one-sided power spectral density, G(k), is given by [30:401] 

ß(*) G(k) = 2 k>0 (3.14) 

Now consider the phase shift associated with each infinitesimal index slab. If the 

phase shift contributed to the reflectance by each index slab of width dx were uniformly 

constant, the slabs would all be centered at the origin, and their index powers would add 

up to produce a large power concentrated around the origin. To create the desired uniform 

power spread in the power spread region, the phase at k is chosen to be that corresponding 

to shifts of the slabs to positions x according to a Fourier shift theorem, when the slabs 

are arranged so that if x < x then the slabs at x and x contain, respectively, the power in 

the reflectance design region at wavenumbers k and k' satisfying k < k'. If these uniform 

power slabs in index had finite widths Ax located at position x, the phase of their 

individual reflectance contributions would be piecewise linearly shifted by kx, so that x is 

the slope of the phase shift. In the limit of infinitesimal slabs of width dx, this is 

expressed by imposing the condition 

dÜJz) 
x = —— (3.15) 

dk 
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To combine the results obtained above from the impositions of constant spatial power 

density and appropriate phase, the expression in Equation 3.13 can be integrated to sum 

the index widths, dx, to yield the position, x, of the index slab containing the power at 

wavenumber, k, according to 

x = c 
"k. 
\kG(^)d^+x0 (3.16) 

The constant, c, can be determined by requiring the total power in the power spread 

region of the index and reflectance design region to be equal. Integrating over the 

respective regions in index and reflectance yields 

c=„X'   *° (3.17) r G(k)dk 

Integrating Equation 3.15 and using Equations 3.16 and 3.17 gives the phase function: 

<S(fc) = f/1"*0    [f G(T))dr)d$+x0(k-k0)+Q(k0),       k0<k<k{    (3.18) 
1 G(^4    °   ° 

The last, constant phase, term does not affect the index profile and is set to zero 

for all that follows. 

The SWIFT technique provides a method for indirectly (iteratively) including 

constraints on available index of refraction in the inverse Fourier transform design 

technique. As the desired power spread thickness for the phase calculation is increased, 

the index range decreases (see examples below). However, the SWIFT technique does 

not address the difficulty of choosing an appropriate form for the Q function.   Several 
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examples of applications of this technique to thin film designs are given in Section 3.3 

below. The details of the numerical considerations to generate these examples are in 

Appendix A. 

3.3.      SWIFT Gradient Index Film Design 

This section includes several design examples illustrating the various features of 

the SWIFT design technique. The first example design is a narrow band reflector, which 

illustrates the basic trade off between index range and film thickness. The second 

example is a broadband high reflector. The third and fourth examples are for an optically 

pumped neodymium : yttrium aluminum garnet (Nd:YAG) laser design, which will be 

used throughout the dissertation for comparison between design methods. The third 

example is an output coupling mirror, which has high reflectance at the lasing 

wavelengths and low reflectance at the pump wavelength. The fourth example is an anti- 

reflection coating for the gain medium of the laser. 

3.3.1. Notch filter design 

Consider a narrow-band reflectance filter with a reflectivity of 90% from 580 to 620 nm 

and 0% outside this band. In this example, the indices of the substrate and the incident 

medium are the same (nsub = nout = 1.50). The desired optical thickness of the film is 30 

urn The optical thickness of the film is a design choice, and is a trade off between the 

desire to minimize the film thickness and the desire to achieve the best performance 

possible. The numerical parameters for the sampling are found by requiring the index 

sample spacing, A, to be on the order of five nm, the number of non-zero samples, No, of 

the Q function to be about 25, and the total number of samples, Ns, to be a power of two. 

A detailed explanation of the relationship between these paramters, and an example of 
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how to use these values to choose appropriate design parameters is given in Appendix A. 

The parameters selected for this example, based on these values, are 

NS = 2U = 16,384 

dToui = 10° V-m (3 m 

A = 0.0061u.m 

7V0 => 23 non - zero samples of Q 

This choice for the total optical thickness of the film should also minimize any aliasing 

effects, since it is over three times the desired film optical thickness. 

The choice of a form for Q(k) is critical to the fidelity with which the computed 

reflectance spectra match the design goals. For this example a good form of Q(k) was 

found by trial and error to be an empirical combination of two forms derived by Bovard 

[5,6] : 

Q(k) = 0.5[- ln(r)]V2 + 0.5 -7= - VT (3.20) 

The index profile for this narrow-band filter calculated with Equation 3.1, 

<&(k)=0, and the reflectance spectra computed with standard matrix methods are shown in 

Figure 3.1. Optimization of <E>(k) for a design "power spread" optical thickness of 10 |im 

yields the index and the reflectance profiles shown in Figure 3.2. The range of indices is 

reduced by 20%, while the reflectance spectrum is closer to the design goal with a smaller 

variation over the notch and smaller dR/dX near its center. Recomputing Q>(k) for a filter 

with a design "power spread" optical thickness of 15 jxm further reduces the requirements 

on index contrast, as shown in Figure 3.3. In this case, the reflectance profile is not as 

good as the design using a 10 micron "power spread" optical thickness. This is due in 

part to the choice to limit the total film film optical thickness to 30 )im.   This design 
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method reduces the index range required by spreading the "active" portion of the index 

profile over a wider range of optical thickness. When the film design is truncated at 30 

Jim, some of the "active" portion of the film is lost. If the total film optical thickness is 

increased, the performance in terms of meeting the desired reflectance profile also 

improves. 
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Figure 3.1: Index and reflectance for zero phase narrow notch filter. 

32 



-10 0 10 
Optical Thickness in microns 

0 9 
1 \ 

- 

0 8 - - 

0 7 - 

g ° 
a 
(Ö 
-U 
ü 0 
0) 

r—i 

6 

5 - - 

o>  „ « 0 4 - - 

0 3 - 

0 2 - 

0 1 

■     . y\ _ 

- 

500 550     600     650 
Wavelength in nm 

700 

Figure 3.2: Index and reflectance for optimal narrow notch filter with 10 micron phase 
power spread thickness. 
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Figure 3.3: Index and reflectance for optimal narrow notch filter with 15 micron phase 
power spread thickness. 
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A portion of optimal phases used to generate these films are shown in Figure 3.4 

and Figure 3.5. The total spatial frequency used in the representation of the Q function is 

81.92 jim *'. The phase functions are essentially two linear segments, with a change in 

slope at the desired notch in reflectivity. This has been emphasized in the two figures by 

adding a dotted extension to the zero intercept line. The phase functions for these designs 

are two line segments because the notch in the visible is a very small part of the £-space 

spanned in the Fourier transform design. The Q function is specified over a range of 

81.92 |im "', but the non-zero portion only spans 0.111 |im "'. As ä: increases, the integral 

in the phase function definition (Equation 3.18) is zero before the notch, a continuum of 

values inside the notch, and a constant after the notch. The two optimal phase functions 

used are plotted together in Figure 3.6 to illustrate the difference between the two 

designs. 
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Figure 3.4: Optimal phase for narrow notch filter with 10 micron phase power spread thickness. 
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The effect of the design "power spread" thickness (x]-x0) is illustrated in Figure 

3.7 below. The relationship between index range and design thickness is approximately 

cubic over the range of thickness shown. There is no clear relationship between the 

parameters of the design problem and the design thickness. This is due in part to the fact 

that all films designed by this method are infinite in extent, and must be truncated by the 

designer. If the design thickness is chosen to match the desired physical thickness of the 

film, the output of the inverse Fourier transform will have significant index values far 

beyond the desired thickness. Truncation of the film will therefore have a significant 

effect on the film's actual reflectance properties. The SWIFT design method allows the 

exchange of increased thickness for decreased index range. 
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Figure 3.7: Effect of "power spread" thickness on index range. 
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3.3.2. Broadband Reflector Design 

The value of phase optimization is further illustrated in the design of a broadband, 

high-reflectance rugate mirror over the wavelength range available to TkSapphire lasers. 

This laser emits at wavelengths between 660 nm and 1.18 Jim [33:480]. Presently, it is 

necessary to change the laser's optics to run it over its full operating range. For this 

example, specify a reflectivity of 99% between 700 and 1100 nm and 0% outside this 

band. Simulating a CeF3:ZnS rugate filter, let n =1.89 at each boundary and permit an 

index variation from 1.6 to 2.2 [21:61]. Q(k) is chosen as in Equation 3.22, and the 

desired film optical thickness is chosen to be 40 urn. 

As before, the numerical parameters for the sampling are found by requiring the index 

sample spacing, A, to be on the order of five nm and the total number of samples, Ns, to 

be a power of two. Since the reflection band is much larger than in the previous example, 

the number of non-zero samples of the Q function, N0 , should be about 200. Again, for 

details refer to Appendix A. The parameters selected for this example, based on these 

values, are 

Ns = 215 = 32,768 
dToml = 200 n m 

(3 2D 
A = 0.0061 [im K '    ' 

N0 => 208 non - zero samples of Q 

Again, this choice for the total optical thickness of the film should also minimize any 

aliasing effects, since it is much greater than the desired film optical thickness. 

The index profiles and the reflectance spectra for this design with <b(k)=0 are 

shown in Figure 3.8. The index profile derived with zero phase ranges from 0.9 to 4.0 and 

is physically unrealizable. The resulting reflectance is a poor approximation to the design 

goal, with a reflectance as low as 98% over the desired wavelength range, and significant 

37 



reflectance outside the design band. Using the SWIFT algorithm for phase modulation 

with a "power spread" optical thickness of 35 fim, a film can be designed with an index 

contrast achievable using CeF3:ZnS and is predicted to have a reflectance of >99.8% over 

the entire design range. The index profiles and the reflectance spectra for the optimized 

design are shown in Figure 3.9. The optimized design is very close to the design goal. In 

particular, the edges of the reflectance profile at 700 nm and 1100 nm are very sharp, with 

small oscillations. This can be very important in some applications. The film is fairly 

thick (about 25 |im physical thickness), due to the requirement for high reflectance over a 

400 nm range, and zero reflectance outside this range. A portion of the optimized phase 

modulation is shown in Figure 3.10. As before, the rest of the phase is a linear 

continuation of the phase shown. 
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Figure 3.8: Index and reflectance for no phase Ti:Sapphire bandstop filter. 
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Figure 3.9: Index and reflectance for optimal Ti:Sapphire bandstop filter with 35 micron 

phase power spread thickness. 
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3.3.3. Nd:YAG Output Mirror Design 

This example is a design for the external cavity mirrors of the Nd:YAG laser. In 

this case, the mirror must allow the pump laser ( at 810 nm) to pass through the mirror, 

but reflect the other two laser wavelengths of 1.06 |im and 1.33 fim. For this example, 

the substrate index is nsut,=l.S16, and the desired reflectance is 99% between 1.00 and 

1.40 |im, and zero for all other wavelengths. The design notch is wider than the two 

design high reflectance points to minimize the "edge" effects and insure good high 

reflectance values. The previous examples illustrated small oscillations in the reflectance 

near the turn on and turn off wavelengths. The desired optical thickness for this film is 

20 fim, again selected based on the zero phase film calculation. 

As before, the numerical parameters for the sampling are found by requiring the index 

sample spacing, A, to be on the order of five nm and the total number of samples, Ns, to 

be a power of two. Since the reflection band is about half the size of the previous 

example, the number of non-zero samples of the Q function, No, should be about 100. The 

parameters selected for this example, based on these values, are 

Ns = 215 = 32,768 

dTotaI = H5\im 

A = 0.00534nm 

N0 => 100 non - zero samples of Q 

This choice for the total optical thickness of the film should also minimize any aliasing 

effects, since it is much greater than the desired film optical thickness. 

The index profiles and the reflectance spectra for this design with O(k)=0 are 

shown in Figure 3.11. The index profile derived with zero phase ranges from 1.0 to 3.25. 

The resulting reflectance is a poor approximation to the design goal, with a reflectance as 

low as 98% over the desired wavelength range.   Using the SWIFT algorithm for phase 
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modulation with a "power spread" optical thickness of 10 um, a film can be designed 

with an index contrast achievable using MgF2:ZnSe (index range 1.38 to 2.5) and is 

predicted to have a reflectance of >99.8% over the entire design range. The index 

profiles and the reflectance spectra for the optimized design are shown in Figure 3.12. A 

portion of the optimized phase modulation is shown in Figure 3.13 . As before, the rest 

of the phase is a linear continuation of the phase shown. 
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Figure 3.11: Index and reflectance for no phase Nd: YAG output coupler. 
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Figure 3.13: Optimal phase for Nd:YAG output coupler with 10 micron phase 
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One difficulty with using this method to perform realistic designs is the inverse 

Fourier transform assumes identical entrance and exit media. Using a structure of 

(Substrate : Film : Air) instead of (Substrate : Film : Substrate) in the reflectance calcula- 

tion results in significant degradation in the non-reflecting portion of the design, as 

illustrated in Figure 3.14. The figure shows significant ringing about the nominal 9.5% 

reflectance from the Substrate : Air interface. The other difficulty with this method lies in 

the choice of reflectance profile needed to solve the design problem. This problem only 

specified criteria at three wavelengths, but the SWIFT design requires a reflectance 

profile be specified over a much larger range. There are an infinite number of possible 

reflectance profiles that will satisfy the three wavelength design requirements. 

Unfortunately, there is no way to know a priori which reflectance profiles are "good" in 

terms of design costs (thickness) or performance. 
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Figure 3.14: Index and reflectance for optimal Nd:YAG output coupler with air boundary 
and 10 micron phase power spread thickness. 
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3.3.4. Antireflection Coating Design 

Another class of design problems to be addressed is that of an anti-reflective 

coating for an arbitrary substrate. The goal in this type of design problem is to reduce or 

eliminate the reflectance from the substrate-air interface. To design an anti-reflection 

coating using the inverse Fourier transform method, some of the assumptions used in the 

initial derivation must be changed. Specifically, the assumption of identical incident and 

exit media must be removed. The difference in the incident and exit media can be 

accommodated by taking advantage of the linearity of the Fourier transform. Consider an 

index profile consisting of a semi-infinite slab of substrate with an air interface. This 

single interface has a constant reflectance for all wavelengths (neglecting dispersion), 

given by the familiar Fresnel relations. The semi-infinite slab — constant reflectance also 

satisfies the inverse Fourier transform relation in Equation 3.1. Figure 3.15 illustrates this 

Fourier transform pair. Figure 3.15 (a) depicts a Heaviside distribution or "step function", 

and Figure 3.15 (b) illustrates its Fourier transform. 
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Figure 3.15 : Fourier transform of a semi-infinite slab. 
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Since the Fourier transform is a linear operation, an anti-reflection coating can be 

designed by superimposing two design elements; the slab-air interface and notch anti- 

reflector. The Fourier transform relations in Equation 3.1 are 

In 
n{x) 

V no  J 

Q(k) 
ink 

(3.23) 

The index profile can be separated into a step component, representing the slab-air 

interface, and a "film" component, which is responsible for the anti-reflective properties. 

These two elements are multiplied together as the argument of the logarithm, and so their 

Fourier transforms are summed: 

In ^ Lin 
V no  ) 

nstep(x)nfilmM 

= ln (
nsten(x) 

V      "0       J 
+ ln(>W*)) 

<=> l-{Qstep(k) + Qfilm(k)) 
in k 

(3.24) 

Since the index and Q function for the slab-air interface are known, only the index of the 

film corresponding to the anti-reflective region needs to be designed. The Q function for 

the desired anti-reflection property is found by taking the negative of the slab Q function 

in the wavelength region of interest. Thus, the anti-reflection coating problem reduces to 

the notch reflector solved previously. 
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As an example, consider the problem of designing an anti-reflection coating for 

the gain medium of the Nd:YAG laser. The Nd:YAG substrate has an index of refraction 

of 1.816, which causes a Fresnel reflectance at the substrate-air boundary of 8.4%. In 

order to eliminate this loss inside the cavity, the gain rod should have a coating which 

greatly reduces this reflectance at the pump (810 nm) and lasing wavelengths (1.06 (im 

and 1.33 |im). Thus the anti-reflection design requires the reflectance be minimized 

between 800 nm and 1.4 |im. The steps in this design process are: 1) design a notch 

reflector with a reflectance equal to the Fresnel reflectance using air as substrate and exit 

media; 2) form an index profile for the substrate - air boundary with the interface at the 

origin; and 3) form the film by dividing the substrate - air film by the notch reflector film. 

The optical thickness for each step in the final film is the same, and equal to the optical 

thickness of the notch reflector design. Thus, the division in step 3) above changes both 

the index and thickness of the film. 

The numerical design parameters are found as before. For 200 non-zero sample 

points of the notch, the appropriate sampling parameters are 

Ns = 215 = 32,768 

dTomI = 200 \i m Toml r (3.25) 
A = 0.0061 \lm 

N0 => 214 non - zero samples of Q 

Figure 3.16 shows the index profile which results from step one of this design 

method with no SWIFT phase optimization. Figure 3.17 shows the final index profile 

and resulting reflectance. The nominal reflectance of 8.4% has been reduced to less than 

0.2% across the design wavelength range. 
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Figure 3.17: Final Fourier transform anti-reflection coating design. 
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There is, however, one problem with this formulation. The slab-air interface is 

assumed to be at the origin in the above derivation. The film designed by subtracting a 

notch from the initial Q function profile is also centered on the origin. When this film is 

combined with the slab-air interface, half of the index profile is modifying the air side 

(see Figure 3.17). This results in non-physically realizable indices. This problem cannot 

be solved by shifting the slab-air interface, since the shift would be included as an 

oscillation in the Q function, and the resulting AR film would be shifted by the same 

amount. The SWIFT algorithm is also not able to address this problem. While SWIFT 

does affect the index of refraction range, it does so in a symmetric fashion about the 

origin. SWIFT does not introduce any linear shifts in the index profile. The inverse 

Fourier transform method is therefore not well suited to the problem of anti-reflection 

coating design. Other design methods, which are capable of addressing this Nd:YAG 

laser anti-reflection design problem, are presented in the next chapter. 

3.4.      Conclusion 

This chapter has introduced the inverse Fourier transform method for the design 

of gradient index optical coatings, and has presented a modification to this method, called 

the Stored Waveform Inverse Fourier Transform (SWIFT) technique, that allows the 

designer to control the index range used in the design. The SWIFT technique determines 

an optimal phase to use in the inverse Fourier transform, which has the effect of 

spreading the index contrast more evenly over the total thickness of the film. The SWIFT 

technique also generates film designs that better achieve the desired film reflectance 

profile, as compared to films designed without the SWIFT optimal phase. The preceding 

examples illustrated the class of problems for which the SWIFT method was well suited. 

Specifically, problems which require a complex reflectance profile over a broad range of 
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wavelengths. The method has several limitations, however. First, as shown above, the 

inverse Fourier transform cannot be directly applied to the anti-reflection coating class of 

problems for substrate — air interfaces. Second, the entire reflectance profile must be 

specified by the designer, even if the region of interest is only a small portion of the 

spectrum. While it is not difficult to arbitrarily specify additional desired reflectance 

values, it is difficult to choose the profile which will give the best performance in the 

region of interest. For this reason, the SWIFT method is not well suited for the design of 

coatings for laser applications in which only a few specific wavelengths are of interest. 
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Design of Gradient Index Films Using 
Generalized Fourier Series 

This chapter presents an alternative method for gradient index thin film design 

based on an iterative approach using generalized Fourier series. This new method of 

gradient index thin film design extends the domain of problems for which gradient index 

solutions can be found. The method is analogous to existing techniques for layer based 

coating design, but adds the flexibility of gradient index films by varying the index of 

refraction instead of the thickness of the layers. The coefficients of a generalized Fourier 

series representation of the gradient index of refraction profile are used as variables in a 

non-linear constrained optimization formulation. This allows one to design a piece-wise 

continuous gradient index film with limited number of variables. The optimal values of 

the design coefficients are determined using a sequential quadratic programming 

algorithm. The first section outlines the constrained optimization approach as applied to 

thin film design. The second section illustrates this method using the Fourier series basis 

to specify the film, and the third section applies this method using a wavelet basis to 

specify the film. The fourth section describes a method for finding the minimum 

thickness for an optimal thin film design. 

4.1.      Optimal Design Problem Formulation 

This section describes the constrained optimization problem for the design of 

gradient index thin films. The process of optimal design requires a statement of the 

problem to be solved, identification of alternative solutions, and some measure of what 

constitutes a "best" solution to the problem. For simple problems, it may be possible to 

exhaustively list all possible solutions to determine which one is best. For more complex 

problems, however, a more structured approach is needed to insure the "best" solution is 
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found. This structured approach consists of building a mathematical model for the 

system in question, identifying a set of variables to adjust in the design, and defining a 

"merit function" to numerically identify the best, or "optimal" solution. The general 

theory for numerical constrained optimization used in this dissertation is summarized in 

Appendix B. 

To apply this theory, the problem of thin film design must be stated in appropriate 

form. First the problem should be stated in physical terms, and then translated into a 

mathematical form. The physical statement of the problem is: given a desired reflectance 

as a function of wavelength and a range of available index of refraction values, generate 

an index of refraction as a function of thickness of the film. The film must use index 

values within the specified range and meet the desired reflectance profile. In the optimal 

design method, the merit (or objective) function stems from the desired reflectance, and 

the constraints are due to the requirement of an "acceptable" index profile. In this case 

"acceptable" means all index values are real (dielectrics only), the index must be the 

same for all wavelengths (neglect dispersion) and the index values must be within the 

specified range. 

Before this statement of the problem can be translated into a mathematical 

formulation, the variables of the model must be selected. The majority of the optimal 

design techniques in the literature focus on finding the thickness of alternating layers of 

predetermined high and low index materials. To use the theory of optimal design on a 

gradient index film, a different approach to the definition of variables is needed. Instead 

of describing the film as a collection of a few discrete layers, the film is specified by a 

collection of coefficients with respect to a basis. A basis is a linear algebra concept, 

defined as a set of vectors in a space such that any vector in the space can be represented 

in one and only one way by a linear combination of these "basis" vectors [38:228]. The 

two basis systems explored in this work are the Fourier basis of sine and cosine functions, 

and the basis of Daubechies' wavelets in a multiresolution analysis.   The Fourier basis 
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was selected because of its familiarity. The wavelet basis was selected because it 

provides a new paradigm for functional analysis. Each will be described further below. 

In general, the index of refraction as a function of position in the film can be 

formed by a weighted sum of the basis elements. The properties of the film must then be 

determined from this index of refraction. One method for determining the characteristics 

of a gradient index film is to approximate the film by a series of very thin homogeneous 

slabs, and then use standard matrix methods on this approximate film. The details of this 

approach to characterizing the reflectance of a multilayer thin film were discussed in 

Section 2.3.1. 

Now that the problem has been stated in physical terms, and the variables of the 

design have been selected, the optimal design problem can be stated mathematically: 

subject to: 

NL < N(z) < Nv 

where: (4.1) 
M 

N(z) = J,cfo(z),       ze[0,L] 
i=\ 

R(k) = f(k;N,L) 

That is, find the values of c„ which are restricted to real numbers, such that distance 

between Rd(k), the design reflectance profile at wavenumbers k, and R(k), the calculated 

reflectance of the film at wavenumbers k, is minimized. The minimization is subject to 

the constraint that the index of refraction as a function of position in the film, N(z), must 

be between the lower and upper limits on the index of refraction, NL and Nu respectively. 

The index of refraction as a function of position in the film, N(z), is expressed as a 

weighted sum of the unknown coefficients, c„ times the basis functions ty(z). The total 

thickness of the film is denoted by L.   The reflectance of the film is a function of the 
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wavenumber, k, and the index of refraction, N, over the total film thickness, L. The 

details of this functional dependence were previously described in Section 2.3.1. In 

practice, the reflectance is found using the matrix methods previously described in 

Section 2.3.2. The remaining variable, Nair, is the index of refraction of the exit media, 

assumed in this work to be air. The norm in Equation 4.1 to minimize is the L2 metric 

\\Rd ~ R j\Rd(k)-R(kfdk 
L 

(4.2) 

where &z, and kv are the lower and upper bounds of the wavenumbers of interest. 

The approach to solving the mathematical problem of Equation 4.1 is to 

approximate it with a discrete version of the problem. The wavenumber range of interest, 

kL to ku is converted to a sequence of wavenumbers of interest. This is not necessarily 

detrimental, particularly when designing thin films for laser applications. The continuous 

gradient index film is approximated by dividing it into a number of thin, homogeneous 

layers for constraint checking and reflectance evaluation. The objective function (or 

merit function) to minimize for the designs considered here involves the difference 

between the desired reflectance and the reflectance calculated for the film at a number of 

different design wavelengths. Numerous merit functions for optimal design of stack- 

based films have been explored [13:2825-2826]. The merit function, F, used here is the 

/ metric: 

F = XfacM-ÄC*,))2 

V .=1 ) 
(4.3) 

where Rdk{} are the design reflectances at specific wavenumbers &,, R(k{) is the calculated 

reflectance of the film at the design wavenumbers kt, and K is the total number of design 
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wavelengths used. This merit function was selected because it is continuous with respect 

to the variable argument R(kJ, and has been shown to provide good convergence for 

multilayer thin film optimal designs [13:2825-2826]. 

The main physical constraint on the problem is the index must always remain 

within a range of acceptable values. This is implemented by building samples of the 

index profile from the variables of the design, and constraining the samples to be within 

the range of allowable indices. For N samples, this generates 2N constraints (TV for the 

upper bound and TV for the lower bound). A statement of the numerical optimization 

problem, using the same notation as Appendix B with coefficients {chc2,...,cM) as 

variables is therefore 

min F = 
c.eSTC 

(K V/2 

X(*</(*/)-/w)2 

V i=i ) 

subject to: 

g(j) = N(zj)-Nu<0, j = l,2,...N 

g(N+j) = NL-N(Zj)<0,   ; = 1,2,... N (4.4) 

where: 
M 

R(ki) = f(ki,N{zl),N(z2)...N(zN)) 

Here the construction of the index profile from the variables is denoted by a generic basis 

function "())". The specific functional form will depend on the basis used. The 

calculation of the reflectance is done using the matrix methods described in Chapter 2, 

and is denoted by the function "/". 

4.1.1.   Optimal Design Algorithm 

This section discusses the implementation of this optimal design method.   The 

numeric optimizations were performed using the MATLAB™ programming environment. 
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The first step in the design process (after the statement of the problem), is to select the 

generalized Fourier series basis to use. This requires the user to specify a method for 

generating representations of the basis function and the algorithm for decomposition and 

reconstruction of an arbitrary function in this basis system. Two example basis systems, 

Fourier series and wavelets, will be illustrated in Sections 4.2 and 4.3 below. 

In order to describe a gradient index film by a set of decomposition coefficients 

with respect to some basis (the variables in the optimization), a number of parameters of 

the film are needed. The most important is the total thickness of the film. This is a key 

parameter because it determines the period of the periodic extension of the interval to the 

real line. This plays an important part in most representation schemes. Other parameters 

of the optimization problem include the substrate index, the range of indices to use, and 

the number of samples to use in the reflectance calculation. In addition, the number of 

non-zero decomposition coefficients to use as variables in the optimization must be 

determined. 

The sequential quadratic programming optimization method is a local 

minimization method. It requires an initial value for the variables. The variables 

considered here are coefficients of basis elements describing the index of the film. The 

initial estimate of the variables is an initial estimate of the film. In the absence of any 

knowledge about the final films characteristics, any feasible initial guess will produce a 

local solution, A feasible guess is defined as one that satisfies the constraints on the index 

values. It is reasonable to choose initial values corresponding to a flat film with an index 

in the acceptable range. Note that a "better" initial value for the variables may result in a 

faster optimization. Also, this technique does not guarantee a global minimum will be 

found. Different initial values may lead to different solutions. 

At this point it is useful to step through the optimization process. The optimiza- 

tion starts with an initial estimate of the film. This initial film is selected based on the 

designer's experience, and may be the result of other design techniques. In most cases in 
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this work, the initial design was a constant with the same index of refraction as the 

substrate. This estimate is then decomposed into coefficients with respect to the basis 

being used. For most cases, the number of coefficients used as variables in the 

optimization will be less than the total number of coefficients calculated, which is equal 

to the number of sample points. The coefficients not used as variables are fixed at their 

input values. These initial variable estimates are used to start the iterative optimization 

procedure. The main steps of the iteration are outlined below: 

1. Calculate the index represented by the current value of the variables. Method 
depends directly on choice of basis. 

2. Calculate the reflectance of this index profile at the design wavelengths using 
REFLECT.M. 

3. Calculate the value of the Merit Function F for this reflectance. (See Equation 
4.3 above) 

4. Calculate the values of each constraint on the index profile. 

5. Compare the Merit Function F and constraint values gt with the termination 
criteria. 

6. If termination criteria are satisfied, stop. Otherwise continue. 

7. The values of the Merit Function F and constraints g, are used in the sequential 
quadratic programming algorithm to determine the next guess for the values of the 
variables. 

8. Go back to step 1 and repeat until termination criteria are met or maximum 
number of iterations is exceeded. 

The details of the sequential quadratic programming algorithm used to determine 

the new estimates for the variables are discussed in Appendix B. The optimization goal 

is achieved when three termination criteria have been satisfied. There are three numerical 

tolerances to be met, one on the objective function, one on the variables, and one on the 

constraints.    The objective function tolerance specifies the precision required on the 
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objective function at the solution. The termination criteria for variables specify the 

minimum acceptable precision on the values of the variables. The constraint termination 

criterion is the maximum allowable violation of the constraints at the solution point. All 

three termination criteria must be satisfied simultaneously to achieve an optimal solution. 

The default termination tolerances are: objective — 10"4 , variables - 10"4 , and constraints 

— 10"7. All three can be adjusted if necessary. In addition, there is a maximum number of 

iterations allowed, which defaults to 10(W where N is number of variables but can also 

be set manually. In the event the maximum number of iterations is exceeded, the best 

solution found during the optimization is reported, along with the value of the merit 

function and a warning that the termination criteria were not met. 

The programs used to implement this method depend directly on the basis system 

selected. The specifics of the programs used will be addressed in the context of the 

examples below. The two basis systems explored in this work are the Fourier basis of 

sine and cosine functions, and the basis of Daubechies' wavelets in a multi-resolution 

analysis. Note that these are only two of many possible basis sets that could be used in 

this technique. Other familiar basis systems include Bessel functions, Legendre 

polynomials, Hermite polynomials, Laguerre polynomials and Chebyshev polynomials 

[2:525]. 

4.2.      Optimal Design using Fourier Series 

The first basis system to be considered is the Fourier basis of sines and cosines. 

This basis was selected because it should be familiar to most readers. The decomposition 

of an index profile on the interval into Fourier series coefficients is described very briefly 

below. Three examples of optimal designs using this approach are also given. 
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4.2A.   Fourier Basis 

The most well known basis for decomposing a periodic function is the Fourier 

basis of sines and cosines. The relation between the function,/(*), and the basis elements 

is 

f(x) = — + ]T an cos(nx) + ^bn sin(nx), 0 < x < 2% (4.5) 
2        n=\ n=\ 

where the coefficients are given by 

a   =— \ f(x)cos(nx)dx 

(4.6) 

b  =— \ f(x)sin(nx)dx n = 0,1,2... 
n  0 

Sine and cosine functions form a basis for functions that are square integrable over an 

interval from 0 to 2%. The first step in building an index profile from these basis 

elements is to map the film interval, which is 0 to the total thickness of the film, T, to the 

interval 0 to 2%. This is done by a change of variable from x to z, given by x = 2 n z / T. 

The next step is to identify a computationally efficient method for constructing samples 

of the index of refraction profile for a given set of Fourier coefficients. This is done by 

using the inverse fast Fourier transform algorithm. The inverse fast Fourier transform 

maps complex Fourier coefficients to samples of a complex valued function. The 

complex Fourier coefficient c is related to the a and b coefficients above by cn- an - ibn. 

In addition, the inverse fast Fourier transform algorithm uses both positive and negative 

frequencies. To insure the index profile is strictly real, the real Fourier coefficients must 

have even symmetry and the imaginary Fourier coefficients must have odd symmetry. 
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The optimal design method using Fourier series coefficients for the index of 

refraction as variables uses the inverse fast Fourier transform for the mapping function § 

described in Equation 4.4 above. The total thickness of the film must be divided into a 

number of very thin layers for the reflectivity calculation to be a good approximation of 

the actual gradient index film reflectivity. The thickness of the layers for this calculation 

should be less than about 5 nm [6:5429]. 

The inverse fast Fourier transform yields as many samples of the index of 

refraction as there are frequencies (both positive and negative). To obtain N samples of 

the index of refraction profile, the complex coefficients for N frequencies must be 

specified. Since the index of refraction must be real, the symmetry requirements on the 

coefficients described above reduces the 2N variables down to N variables. This is still 

much too large. However, by choosing to use only a few low frequency coefficients as 

variables and setting the coefficients of higher frequencies to zero, the size of the problem 

can be reduced while still achieving the required number of samples for the index. Thus, 

the number of frequencies to use as variables becomes one of the design parameters. 

Since the coefficients in the inverse fast Fourier transform are complex, there are two 

variables for each frequency used as a design variable. 

The MATLAB™ programs used to perform the optimal designs in the Fourier 

basis system are included in Appendix D. Several functions are combined to make up the 

program. The script FFTRUN.M is the main function, which sets the initial parameters 

and calls the optimizer. The key element of this implementation is the MATLAB™ 

optimization toolbox function called CONSTR.M [26], which implements the 

sequential quadratic programming algorithm described in Appendix B. The MATLAB™ 

help file describing this function is also included in Appendix D. The CONSTR.M 

function requires inputs of: the name of the evaluation function containing the 

relationship between the variables and the merit function and constraints, the initial 

variable array, and an array specifying the optimization parameters.   The optimization 
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parameters include values for the termination criteria, maximum step size, etc. The 

function also requires inputs for the lower and upper bounds on the variables, and any 

parameters to be passed to the evaluation function. The outputs are the optimal values for 

the variables and an array containing the parameters used in the optimization. The output 

includes the final values of the termination criteria and the number of iterations used. 

The evaluation function FFTFUN.M contains the conversion between 

coefficients of the Fourier series expansion and samples of the index. It also calculates 

the reflectance of the film at each design wavelength, and the merit function and 

constraint values used in the optimization. The inputs to this function are: the current 

variables values, the number of sample points, the desired reflectance at each design 

wavelength, the substrate index, the film thickness in microns (or nanometers), the array 

of design wavenumbers k in inverse microns (or inverse nanometers), and the array of 

sample points x in microns (or nanometers). The units selected for length must be 

consistent. The outputs of the function are the values of the merit function and the 

constraints. The reflectance for the design is calculated using REFLECT.C, described in 

Chapter 2. 

4.2.2. Nd:YAG Laser Anti-Reflection Coating 

The first example of optimal design of a gradient index film is to create an anti- 

reflection (AR) coating for the gain medium of a neodymium : yttrium aluminum garnet 

(Nd:YAG) laser. The goal is to eliminate reflections at the two primary laser 

wavelengths of 1.06 |Lim and 1.33 (im, as well as the pump laser wavelength of 810 nm. 

The Nd:YAG material substrate has an index of refraction of 1.816, which means the 

uncoated surface has a reflectance of 8.4%. The index range for this design example is 

chosen based on a material system of MgF2 and ZnSe, which have indices of refraction of 

1.38 and 2.5 respectively. These materials have been successfully combined to form 

intermediate index films with good optical and mechanical properties [20:197-204]. 
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Several values for the thickness of the film are explored, all on the order of 

hundreds of nanometers. Note that these films are much thinner than any designed in 

Chapter 3 using the SWIFT technique. For this range of film thicknesses, the 5 nm sam- 

pling density desired for the reflectance calculation can be achieved in all cases with 128 

samples. This choice for the number of samples, and thus the total number of coefficients, 

insures the inverse Fourier transform used to calculate the decomposition coefficients is 

efficient. The thicknesses used in this design are 300 nm, 500 nm, 750 nm, and 1000 nm. 

In addition, the effect of the number of variables used in the optimization is also 

explored. The numbers of non-zero coefficients to use as variables are 8, 16, 32, and 64. 

All other coefficients are fixed at zero. Only even values for the number of coefficients 

are used because the two coefficients are required to specify one frequency in the Fourier 

series expansion. The values used here are also powers of two, though they need not be 

for this method. They were restricted to powers of two for ease of comparison with the 

wavelet based optimizations which follow. In all cases the initial film design used was a 

constant index equal to that of the substrate. 

The first parameter to vary is total thickness. The number of non-zero coefficients 

used as variables for these designs is fixed at 16. Figure 4.1 through Figure 4.4 below 

show the film designs and resultant reflectivity profiles for total thicknesses of 300 nm, 

500 nm, 750 nm, and 1000 nm respectively. The reflectances at the design wavelengths 

for all designs are given in Table 4-1, along with the value of the merit function for the 

design, which is the root mean square (RMS) error between the desired reflectivity and 

the design. The optimal designs for both the 300 nm and 500 nm thicknesses reduce the 

reflectance significantly from the nominal 8.4%, but neither is acceptable for use inside a 

laser cavity. The designs for 750 nm and 1000 nm both perform much better than the 

designs for 300nm and 500 nm. This demonstrates the importance of the total thickness 

as a parameter in the design. This is not a surprising result, but bears emphasizing. 

Increasing the film thickness enhances the film's performance and decreases the merit 
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function value for the design. In addition, as the film thickness increases the index range 

used to achieve the optimal design generally decreases. Figure 4.2 shows the 500 nm 

design used the entire available index range while the 750 nm and 1000 nm thickness 

designs (Figure 4.3 and Figure 4.4) did not. This means the index constraints were active 

at the 500 nm solution point. 

Table 4-1: Design results for various thicknesses of Fourier series Nd:YAG AR coatings. 

Wavelength (nm) 300 nm film 500 nm film 750 nm film 1000 nm film 

810 

1060 

1330 

0.006508 

0.005650 

0.009282 

0.001849 

0.003242 

0.002823 

3.034 x 10"8 

3.270 x 10"8 

5.603 x 10"8 

2.646 x 10"9 

7.896 x 10"9 

2.535 x 10"9 

Total RMS Error 0.012666 0.004679 7.162 x 10"8 8.705 x 10"9 
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Figure 4.1: Fourier series design for Nd:YAG AR coating for 300 nm thick film. 
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Figure 4.2: Fourier series design for Nd:YAG AR coating for 500 nm thick film. 
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Figure 4.3: Fourier series design for Nd:YAG AR coating for 750 nm thick film. 
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Figure 4.4: Fourier series design for Nd:YAG AR coating for 1000 nm thick film. 
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The next parameter to vary is the number of non-zero frequencies used in the 

design. For this series of designs, the thickness is fixed at 750 nm, since that is the 

smaller of the two "adequate" films found above. Figure 4.5 through Figure 4.8 illustrate 

the effects of varying the number of non-zero coefficients from 8 to 64. In all cases, the 

film thickness is fixed at 750 nm, and all other parameters are the same as the previous 

examples. Figure 4.5 shows the optimal design for a 750 nm film using only eight non- 

zero coefficients as design variables. The performance is quite poor (see Table 4-2), even 

though the thickness of the film has been shown previously to be sufficient. Figure 4.6 

shows the optimal design for 16 coefficients. This is the same film as Figure 4.3 repeated 

for ease of reference. Figure 4.7 is the optimal film for 32 non-zero coefficient variables. 

Notice that the general shape of the index profile for both the 16 and 32 coefficient cases 

is similar, although the 32 coefficient film exhibits more small variations, as expected. 

The film in Figure 4.8 is the optimal design for 64 coefficient variables. This film has 

very similar structure to the 32 coefficient film, but many of the small oscillations have 

been reduced. The errors reported in Table 4-2 for the 16, 32, and 64 coefficient films are 

all below the numerical conversion criteria, that is, all are equally valid solutions. This 

example indicates that there is an optimal choice for the number of frequencies to use in 

the optimization. Too few frequencies yields a poor solution, and too many increases the 

computation time without significantly affecting the results. 

Table 4-2: Design results for Fourier series Nd:YAG AR coatings with various number of 
design coefficients. 

Wavelength (nm) 8 coefficients 16 coefficients 32 coefficients 64 coefficients 

810 

1060 

1330 

0.033842 

0.041118 

0.000179 

3.034 x 10"8 

3.270 x 10"8 

5.603 x 10"8 

3.226 x 10~9 

5.564 x 10"9 

6.432 x 10"9 

1.044 x 10"8 

5.121 x 10"8 

4.772 x 10"8 

Total RMS Error 0.053254 7.162xl0"8 9.096 x 10~9 7.077 x 10"8 
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Figure 4.5: Fourier series design for Nd:YAG AR coating with 8 variable coefficients. 
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Figure 4.6: Fourier series design for Nd:YAG AR coating with 16 variable coefficients. 
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Figure 4.7: Fourier series design for Nd:YAG AR coating with 32 variable coefficients. 
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Figure 4.8: Fourier series design for Nd:YAG AR coating with 64 variable coefficients. 
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The 64 variable coefficient film in the example above was also designed using a 

different initial film to illustrate the effect of the input on the final design. The initial 

film for this example was a 750 nm film using 64 variables with an index profile given by 

N(z) = 1.59 + 0.2 sin 
UOKZ^ 

V750y 
e (0,750) (4.7) 

This film is a sinusoidal oscillation about an average index of 1.59 and a total of 20 

periods over the thickness of the film. The corresponding input to the numerical design is 

an index profile with two of the 64 coefficients having non-zero initial values. The result 

of this design is shown in Figure 4.9. Notice that the resulting film is quite different from 

the previous 64 variable design using a constant initial film shown in Figure 4.8, and the 

initial oscillation is still present in the final film. The performance of this film is very 

similar to that of the other 64 coefficient design with a constant initial film (see Table 4- 

3). The values in the table are all below the numerical termination criteria, indicating that 

both solutions are equally good. This illustrates both the effect of a poor initial film 

choice as well as the impact of too many variables in the design space. The difference 

between the two designs also serves to emphasize that this numerical optimal design 

method finds a local minimum solution, and not necessarily the global minimum. The 

true optimal design is achieved using the minimum number of variables and the minimum 

amount of film for the problem. The challenge for the thin film engineer lies in making 

good estimates of these parameters to use in this optimal design tool. 
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Table 4-3: Design results for Fourier series Nd:YAG AR coatings with 64 design 
coefficients for different initial films. 

Wavelength (nm) 
Sinusoidal 
Initial film 

Constant Initial 
film 

810 

1060 

1330 

4.81 x 10"8 

2.13 x 10"9 

6.56 x 10"9 

1.044 xlO"8 

5.121 x 10"8 

4.772 x 10~8 

Total RMS Error 4.86 x 10"8 7.077 x 10"8 
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Figure 4.9: Illustration of effect of initial film on Fourier series design of Nd: YAG AR 
coating using 64 coefficients. 
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4.2.3.   Dichroic Mirror for Nd:YAG Laser 

This second example is a design analogous to the external cavity mirrors of the 

Nd:YAG laser. In this case, the mirror must allow the pump laser at 810 nm to pass 

through the mirror, but reflect the other two laser wavelengths of 1.06 |im and 1.33 (im. 

The designs for this coating must be much thicker than the previous anti-reflection 

designs. This is due to the high reflectivity required at 1.06 Jim and 1.33 (im. The design 

parameters for this problem can be estimated by considering a basic quarter wave stack 

solution to the design problem. 

As was mentioned in Chapter 2, a series of alternating high and low index layers 

produces a high reflectance band centered on a desired wavelength X if each layer is one 

quarter of this wavelength in optical thickness. The reflectance of the film depends on 

the difference between the high and low index and the number of stack pairs in the film. 

The quarter wave stack design can be used to determine the design parameters for this 

Fourier series design by approximating an alternating quarter wave stack pair by a single 

period of a sinusoid. For this example, the desired high reflectance is centered on a 

wavelength of 1.2 Jim. Using the average index of about 2.0, the quarter wave physical 

thickness is about 150 nm, which means a sine with a period of 300 nm must be available 

in the optimization. To decide how many frequencies (and thus coefficients) to use in the 

optimization, the total thickness of the film must be selected. A film thickness of 3 (Xm 

would give about 10 quarter wave pairs, which should provide fairly good reflectance. 

Dividing this 3 (im film thickness by the 300 nm period of one sinusoid indicates that at 

least 10 non-zero frequencies are required in the optimization. So choose 32 non-zero 

coefficients to use as variables, which corresponds to 16 frequencies. The requirement to 

sample the film every 5 nm and the desire for the number of samples to be a power of two 

(for Fourier transform efficiency) leads to a choice of 512 samples. 
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As before, a flat index profile is used as the seed. Figure 4.10 shows the index of 

refraction and reflectivity for a 3 micron total film thickness. The resultant reflectivity at 

the three design points is not very good (see Table 4-4). The second design increases the 

total thickness to 4 Jim. This requires a change in the total number of samples to 1024 to 

maintain the quality of the reflectance calculation. The increase in film thickness changes 

the estimate of the number of frequencies required calculated above to 14, so the number 

of coefficients to use as variables remains the same at 32. Figure 4.11 shows the index 

of refraction profile and resultant reflectivity for a 4 micron design. This design is much 

better at the design wavelengths (see Table 4-4), and has a root mean squared error of 

0.8%. Also note that the index profile shows a fundamental periodicity corresponding to 

the 300 nm period estimated above. 

Table 4-4: Design values for Fourier series Dichroic mirror 

Wavelength (nm) 
Desired 

Reflectance 
Reflectance for 
3 micron film 

Reflectance for 
4 micron film 

810 0.0 0.047 0.003 

1060 1.0 0.9551 0.9944 

1330 1.0 0.9673 0.9946 

Total Error 0.0727 0.00833 
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Figure 4.10: Dichroic Mirror Fourier design for 3 micron thick film. 
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Figure 4.11: Dichroic Mirror Fourier design for 4 micron thick film. 
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4.2.4.   TkSapphire Bandpass film 

A third example using the Fourier design method is illustrated in the design of a 

broadband, high-reflectance rugate mirror over the wavelength range available to 

Ti:Sapphire lasers. This laser emits at wavelengths between 660 nm and 1.18 fim 

[33:480]. For this example, specify a reflectivity of >99% between 700 and 1100 nm. 

Simulating a CeF3:ZnS rugate filter, let n=1.89 at the substrate and permit an index 

variation from 1.6 to 2.2 [21:61]. This example is similar to the SWIFT design in 

Chapter 3, without the additional specification of zero reflectance outside the desired 

wavelength range. The desired reflectance here was specified to be 1.0 for 41 

wavelengths between 700 and 1100 nm (every 10 nm). 

The design parameters for this problem can be estimated by considering a quarter 

wave stack design, as was done above for the dichroic mirror example. This is a very 

broad range of wavelengths to cover with a singe notch design. However, the notch 

design considerations can help in making choices on the number of coefficients needed 

for the design. A conservative estimate can be made using the minimum wavelength in 

this design, 700 nm, and the maximum index available, 2.2. These values yield a 

physical thickness for a quarter wave of 80 nm, so a minimum periodicity of twice this 

number, or 160 nm, is required. A 15 micron film would allow for 93 equivalent quarter- 

wave periods, and require 93 non-zero frequencies in the optimization. So choose to use 

256 non-zero coefficients as variables (corresponding to 128 frequencies) and 2048 

samples to model the film, which insures film sample spacing less than 5 nm. 

Figure 4.12 illustrates the index of refraction and reflectance of the optimal film. 

The root sum squared error over the 41 design wavelengths is 1.287. As the figure shows, 

the reflectance profile is not flat (as desired). To achieve better performance, additional 

wavelength requirements must be specified, and the total thickness of the film would 

probably need to be increased as well. Unfortunately, this example as presented requires 
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almost two days of computation time (on a Sun Microsystems Sparc 20). This example 

illustrates a weakness in this design method; specifically the extensive computation 

required for broadband, high reflectivity problems. The high desired reflectance requires 

both a large total thickness and a large number of variable coefficients. A large number 

of samples for reflectance calculation are also required. While some speed enhancements 

of the design program are possible, the basic size of the design problem is too large for 

efficient application of the generalized Fourier series design method. 
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Figure 4.12: Fourier series optimal design for Ti:Sapphire broadband mirror. 
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4.3.      Optimal Design using Wavelets 

The second basis system to be considered is a wavelet basis. The wavelet theory 

used in this analysis is presented in Appendix C. The construction of an index profile on 

the interval from wavelet coefficients is described briefly below. The same example 

problems solved by the Fourier series method above are solved using a wavelet basis. 

4.3.1.   Wavelet Basis 

The wavelet decomposition and reconstruction theory presented in Appendix C 

describes a method for analyzing a function using wavelets. This idea can also be used to 

synthesize a function with certain desired characteristics. The wavelet representation of a 

function is similar to a Fourier series representation, except the basis elements are shifted 

and scaled versions of the "mother wavelet" instead of sines and cosines of different 

frequencies. In either case, the function is completely specified by the coefficients of the 

series.  Given an orthogonal "mother wavelet", \|/, and a "scaling function", <j),  one can 

write any function / £ L2 (9?) as 

/(*) = X C"> H* W + X X d^ m.n (*) 
n m<M   n 

where: (4.8) 

Vmjl(x) = 2-'>2v(2-'x-n) 

In practice, a continuous function / is represented by a sequence of sampled 

values. This sequence may be decomposed into a sequence of "approximation" 

coefficients, cm,„, and a sequence of "detail" coefficients, dm_n. The approximation 

coefficients are associated with a scaling function, ty(x), and the detail coefficients are 

associated with the wavelet function, \\f(x). In this discrete case, the scaling function §(x) 

can be represented by a sequence of values denoted by h(n) or hn, and the wavelet 
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function xj(x) can also be represented by a sequence of values, denoted by g(n) or gn (see 

Appendix C for details). The decomposition algorithm in this multi-resolution analysis 

requires only the filters h and g to define the wavelets to be used. In fact, the g filter can 

be derived from the h filter, so only one sequence is needed to completely determine the 

wavelets.   This relationship between h and g is 

g(n) = (-l)nh(n-l) (4.9) 

The coefficients needed to represent the sampled function are obtained using a 

recursion relation. This relation for the approximation coefficients is 

cm,n=^cm_uh{(>-2n) (4.10) 

A similar relation exists for the detail coefficients, dm,n: 

dm,n^cm_ug{t-2n) (4.11) 

Using the two recursion relations for cm,n and dmtH, any function can be 

decomposed into its approximation and detail coefficients from an initial sequence CQ. 

The recursive relation for reconstruction is 

cm-u = X cmXk ~ 2n) + 2 dmng{k - In) (4.12) 
neZ neZ 

The design of a film using wavelet coefficients is performed using only a few of 

these coefficients as variables in the numerical design. The film is created from the span 

of a few wavelet basis elements, then a large number of samples of the film is generated 
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using the reconstruction algorithm in Equation 4.12 and zeros for the values of the 

coefficients not used as variables in the design. This is similar to padding a sequence of 

numbers prior to performing a numerical Fourier transform. The crux of this point is the 

relationship between the number of samples of the film needed to adequately model its 

optical properties, and the number of wavelet coefficients needed to adequately model the 

film. While a large number of sample points may be needed to determine the reflectivity 

of the film (using the matrix methods as described in Chapter 2), the film can be specified 

with relatively few wavelet coefficients. 

The MATLAB™ programs used to perform the optimal designs in the wavelet 

basis system are included in Appendix D. Several functions are combined to make up the 

program. The script WAVRUN.M is the main function, which sets the initial parameters 

and calls the optimizer. As before, the key element of this implementation is the 

MATLAB™ optimization toolbox function called CONSTR.M [26], which implements 

the sequential quadratic programming algorithm described in Appendix B. The details of 

this function were presented in the previous section. 

The evaluation function WAVFUN.M contains the conversion between coeffi- 

cients of the wavelet expansion and samples of the index. It also calculates the 

reflectance of the film at each design wavelength, and the merit function and constraint 

values used in the optimization. The inputs to this function are: the current variables 

values, the number of sample points, the desired reflectance at each design wavelength, 

the substrate index, the film thickness in microns (or nanometers), the array of design 

wavenumbers k in inverse microns (or inverse nanometers), and the array of sample 

points x in microns (or nanometers), and the scaling function filter h. The units selected 

for length must be consistent. The outputs of the function are the values of the merit 

function and the constraints. The reconstruction of the index of refraction from the 

wavelet coefficients is accomplished by the function UP1D.M.  The decomposition of a 
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function is accomplished using the program DOWN1D.M, which is also included.   The 

reflectance is calculated by the "C" language program REFLECT.C as before. 

4.3.2.   Nd:YAG Laser AR Coating 

The first example of optimal design of a gradient index film is to create an anti- 

reflection coating for the gain medium of a neodymium : yttrium aluminum garnet 

(Nd:YAG) laser. Again the goal is to eliminate reflections at the two primary laser 

wavelengths of 1.06 |im and 1.33 |im, as well as the pump laser wavelength of 810 nm. 

The YAG material has an index of refraction of 1.816, which means the uncoated surface 

has a reflectance of 8.4%. As in the Fourier series design above, the parameters for this 

design are total film thickness, number of samples, available index range, and number of 

wavelet coefficients to use. The thicknesses used in this design are the same as in the 

Fourier example: 300 nm, 500 nm, 750 nm, and 1000 nm. The number of samples of the 

film to use is determined by the total thickness and the reflectance calculation 

requirement of approximately 5 nm per sample. The number of samples for this example 

case is 128. The index range is based on a material system of MgF2 and ZnSe, which 

have indices of refraction of 1.38 and 2.5 respectively. The wavelet used is Daubechies' 

8-tap wavelet [7]. The filter coefficients for this and other Daubechies wavelet are 

tabulated in Appendix C. The initial variable values for the first examples are for a flat 

film consisting entirely of the substrate material. This means that no discontinuity is 

introduced by periodization of the film. 

The first parameter to vary is total thickness. The number of non-zero wavelet 

coefficients for these designs is fixed at 16, for comparison with the Fourier series based 

designs of the section 4.2.2. Figure 4.13 through Figure 4.16 below show the film designs 

and resultant reflectivity profiles for total thicknesses of 300 nm, 500 nm, 750 nm, and 

1000 nm. The reflectances at the design wavelengths for these films are given in Table 4- 

5. As with the Fourier series designs for these thicknesses, the optimal designs for both 
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the 300 nm and 500 nm thicknesses reduce the reflectance significantly from the nominal 

8.4%, but neither is acceptable for use inside a laser cavity. In the wavelet design case, 

the 500 nm film has reflectances down to about one hundredth of a percent, as compared 

to the 500 nm Fourier film design, which had reflectances in the five hundredths of a 

percent. In at least this example, the wavelet design produced a superior film by a factor 

of about 3 for the given thickness. The designs for 750 nm and 1000 nm both perform as 

well as the Fourier designs for these thicknesses did, as indicated by the reflectances in 

Table 4-5. As before, this demonstrates the importance of the total thickness as a 

parameter in the design. 

Table 4-5: Desi gn results for various thicknesses of Wavelet Nd:YAG AR coatings. 

Wavelength (nm) 300 nm film 500 nm film 750 nm film 1000 nm film 

810 

1060 

1330 

3.138 xlO"4 

5.560 x 10"4 

6.238 x 10"4 

5.200 x 10"4 

9.440 x 10'4 

9.398 x 10~4 

3.916 x 10"9 

3.911 xlO"10 

9.863 x 10"10 

2.566 x 109 

6.612 x 10'9 

7.891 x 10"9 

Total Error 8.926 x 10"4 1.430 xlO"3 4.057x 10"9 1.061 x 10"8 
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Figure 4.13: Wavelet design of Nd:YAG AR coating for 300 nm thick film. 
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Figure 4.14: Wavelet design of Nd:YAG AR coating for 500 nm thick film. 
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Figure 4.15: Wavelet design of Nd:YAG AR coating for 750 nm thick film. 

2.5 

1.5 

100   200   300   400   500   600   700   800   900   1000 
Position in nm 

800     900 1000    1100    1200 
Wavelength in nm 

1300    1400 1500 

Figure 4.16: Wavelet design of Nd:YAG AR coating for 1000 nm thick film. 
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The other main design parameter is the number of non-zero wavelet coefficients 

to use as variables in the optimization. As in the Fourier series examples above, the total 

thickness is fixed at 750 nm, and the number of samples is 128. The number of wavelet 

coefficients must be a power of two in order to span the entire film. 

Figure 4.17 through Figure 4.20 illustrates the effects of varying the number of 

non-zero coefficients to use in the design process. Figure 4.17 shows the optimal design 

for a 750 nm film using only four non-zero wavelet coefficients as design variables. The 

performance is quite poor (see Table 4-6), even though the thickness of the film has been 

shown previously to be sufficient. Figure 4.19 is the optimal film for 16 wavelet 

coefficients. There is a marked improvement in the performance of the film. Figure 4.19 

shows the result of the 16 wavelet coefficient design, repeated from Figure 4.15 above for 

ease of reference. Finally, Figure 4.20 is the 32 wavelet coefficient design. Notice as the 

number of coefficients used increases, smaller scale feature become evident in the index 

designs. It is obvious that the additional small variations have little effect on the film 

performance. However, increasing the number of design variables also increases the 

computation time for the optimal design. It is therefore important to choose the smallest 

number of design coefficients that can still achieve the desired performance. 

Table 4-6: Desij *n results for Wavelet Nd:YAG AR coatings with various number of 
design coefficients. 

Wavelength (nm) 4 coefficients 8 coefficients 16 coefficients 32 coefficients 

810 

1060 

1330 

1.610 x 10"2 

0.531 x 10'2 

1.380 xlO"2 

3.462 x 10"4 

5.715 xlO"4 

4.576 x 10~4 

3.916 xlO"9 

3.911 xlO10 

9.863 x 10"10 

2.507x 10"9 

8.336 x 10"9 

5.144 xlO"9 

Total Error 2.186xl0"2 8.098 x 10"4 4.057x 10"9 1.01 lxlO"8 
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Figure 4.17: Wavelet design of Nd:YAG AR coating using 4 coefficients. 
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Figure 4.18: Wavelet design of Nd:YAG AR coating using 8 coefficients. 
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Figure 4.19: Wavelet design of Nd:YAG AR coating using 16 coefficients. 
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Figure 4.20: Wavelet design of Nd:YAG AR coating using 32 coefficients. 
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4.3.3.   Dichroic Mirror 

This second example is a design for the external cavity mirrors of the Nd:YAG 

laser. In this case, the mirror must allow the pump laser (at 810 nm) to pass through the 

mirror, but reflect the other two laser wavelengths of 1.06 |im and 1.33 u\m. The design 

parameters for this problem can be estimated by considering a basic quarter wave stack 

solution to the design problem, as was done in the Fourier series example in Section 

4.2.3. 

As was mentioned in Chapter 2, a series of alternating high and low index layers 

produces a high reflectance band centered on a desired wavelength X if each layer is one 

quarter of this wavelength in optical thickness. The reflectance of the film depends on 

the difference between the high and low index and the number of stack pairs in the film. 

As was done in Section 4.2.3, the quarter wave stack design can be used to determine the 

design parameters for the wavelet based design by insuring the scale corresponding to the 

minimum quarter wave thickness is included in the design variables. As in the previous 

Fourier series dichroic mirror example, the desired high reflectance is centered on a 

wavelength of 1.2 microns. Using the average index of about 2.0, the quarter wave 

physical thickness is about 150 nm. To decide how many coefficients to use in the 

optimization, the total thickness of the film must be selected. A film thickness of 3 

microns would give about 10 quarter wave pairs, which should provide fairly good 

reflectance. Dividing this 3 micron film thickness by the 150 nm quarter wave thickness 

indicates that the optimization must be able to model at least 20 peaks (which is 

equivalent to the 10 frequencies found in the Fourier series example). The mother 

wavelets used here include several oscillations over their support. The wavelet detail 

coefficients must be grouped in powers of two to insure the entire film is spanned by the 

basis elements used. This means that the detail coefficients which break the film into 16 

sections must be included in the design. All detail coefficients of broader scale should 

also be included. So for this example at least 32 non-zero coefficients are needed as 
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variables. The requirement to sample the film every 5 nm and the requirement for the 

number of samples to be a power of two leads to a choice of 512 samples for the film. 

The wavelet used in this design is Daubechies' 16-tap wavelet. This wavelet has 5 peaks 

and troughs over its support. The coefficients for this wavelet are tabulated in Appendix 

C. 

Figure 4.21 shows a 3 micron thick wavelet design for this mirror. The design 

values for the 3 micron film are reported in Table 4-7. The 3 micron film has high 

reflectance values >98% and a low reflectance value at 810 nm of <0.01%. Figure 4.22 

shows a 4 micron thick design for the same mirror. The additional film thickness allows 

a maximum reflectance value of >99% and keeps the low reflectance < 0.06%. 

Additional gains in the high reflectance can be achieved by further increases in the total 

thickness. The specific design values for the 4 micron film are also reported in Table 4-7. 

The total error is the square root of the sum of the squares of the differences between the 

desired reflectance and the reflectance of the design at each wavelength (recall Equation 

4.3). 

Table 4-7: Design values for Wavelet Dichroic mirror. 

Wavelength (nm) 
Desired 

Reflectance 
Reflectance for 
3 micron film 

Reflectance for 
4 micron film 

810 0.0 0.00009 0.0006 

1060 1.0 0.9811 0.9939 

1330 1.0 0.9801 0.9910 

Total Error 0.02744 0.01089 
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Figure 4.21: Wavelet design of 3 micron thick dichroic mirror. 
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Figure 4.22: Wavelet design of 4 micron thick dichroic mirror. 
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4.3.4. Ti:Sapphire Bandpass film 

A third example using the wavelet design method is illustrated in the design of a 

broadband, high-reflectance rugate mirror over the wavelength range available to 

Ti:Sapphire lasers. This example is the same as the Fourier series example in Section 

4.2.4. This laser emits at wavelengths between 660 nm and 1.18 microns [33:480]. It is 

presently necessary to change the laser's optics in order to run it over its full operating 

range. For this example, specify a reflectivity of >99% between 700 and 1100 nm. 

Emulating a CeF3:ZnS rugate filter, let n=1.89 at each boundary and permit an index 

variation from 1.6 to 2.2 [21:61]. This example is similar to the SWIFT design in 

Chapter 3, without the additional specification of zero reflectance outside the desired 

wavelength range. The desired reflectance here was specified to be 1.0 for 41 

wavelengths between 700 and 1100 nm (every 10 nm). The design parameters used were 

a 10 micron total thickness, 2048 samples across the film, and 256 variable wavelet 

design coefficients, and a Daubechies' 16-tap wavelet. Figure 4.23 illustrates the index of 

refraction and reflectance of the optimal film. The root sum squared error over the 41 

design wavelengths is 0.109. All design wavelengths have reflectances >96%, but as the 

figure shows, the reflectance profile is not flat (as desired). To smooth the reflectance 

profile, additional wavelength requirements must be specified. In addition, the total 

thickness of the film would probably need to be increased as well. Unfortunately, this 

example as presented requires almost two days of computation time (on a Sun 

Microsystems Sparc 20). As in the Fourier series case, this example illustrates a weakness 

in this design method, specifically the extensive computation required for broadband, 

high reflectivity problems. The use of the wavelet basis improves the performance 

somewhat over the Fourier series basis, but does not solve the problem. The high desired 

reflectance requires both a large total thickness and a large number of variable 

coefficients. A large number of samples for reflectance calculation is also required. 

While some speed enhancements of the design program are possible (such as: lower level 
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program coding, more efficient wavelet decomposition and reconstruction 

implementations, more efficient reflectance calculation), the basic size of the design 

problem is too large for efficient application of the wavelet design method. 

2.5 
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500 600 700 800 900   1000   1100   1200   1300   1400   1500 
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Figure 4.23: Wavelet design for Ti:Sapphire broadband mirror. 

4.4.      Dual Goal Optimization 

One feature to note from the previous examples is the importance of the thickness 

of the film on the design. In practice, one of the objectives of a thin film design is to 

minimize the total thickness of the material, and another is to minimize the complexity of 

the film. A thinner, less complex film costs less to manufacture and can be produced 

more rapidly than a thicker, more complicated film. The traditional multilayer slab films 

are created by assuming a number of layers and then optimizing the thicknesses. The 

gradient index design process is almost the exact opposite: the thickness is fixed and the 
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"layer" structure is optimized. One of the aims of this research therefore was to develop a 

method for finding an optimal film that not only satisfied the requirements on reflectivity, 

but also minimized the total thickness of the film. 

The idea that there exists a minimal thickness for some level of film performance 

is based on the hypothesis that the merit function for the optimal solution depends 

monotonically on the total thickness of the film. This hypothesis can be justified by the 

following argument. For a given substrate and film index range (containing the substrate 

index), and any arbitrary desired reflectance, Rdesiredih), the merit function for the 

optimal film design is given by 

K Yi 

F■ = £(**rf„(,(*,)2 - *«**-(*,)2) (4-13) 
1=1 

where Rcaicuiated(ki) is determined by matrix methods as before. The film design with 

minimum thickness consists of the substrate-air interface only. This "film" of zero 

thickness has the same reflectance for all wavelengths (neglecting dispersion), given by 

the Fresnel relation: 

calculated 

f _,\2 
Thub_Ji\ (414) 

\nsub+lJ 

and value of the corresponding the merit function is found from Equation 4.13 above. 

Now if some small amount of film is included, the optimal design must have a merit 

function that is lower than the zero film case, because the optimal solution space includes 

the previous solution of substrate-air only. (Note this argument is only valid if the 

substrate index is in the allowed index range.) So the minimum merit function 

corresponding to the optimal solution is a non-increasing function of the total film 
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thickness. As the total thickness of the film increases, the minimum merit function will 

decrease until the termination tolerance of the optimization is reached. Once there is 

"sufficient" film, increasing the film thickness may produce different films, but the merit 

function should remain at the termination tolerance level. Figure 4.24 illustrates this 

theoretical relationship between minimum merit function value and total film thickness. 

Having established a monotonic relationship between the minimum merit function 

and the total film thickness, all that remains is to determine the minimum thickness for 

the desired performance level. This can be done by subtracting the acceptable 

performance level (in terms of the merit function) from the merit function curve. The 

zero crossing is then the minimum acceptable film thickness. 

The argument above provides a sound heuristic basis for this approach, but there 

are some additional issues associated with the implementation of this dual goal 

optimization algorithm. The first is to establish to what extent the curve of Figure 4.24 is 

actually produced. In practice, the optimization algorithm requires an initial film design, 

and the output depends on the initial design. To ensure a non-increasing merit function, 

the initial design used to seed the optimizer should be a previous (thinner) design padded 

with an appropriate amount of substrate. However, there are a number of difficulties with 

E 
=3 

£ 
E 

Film Thickness 

Figure 4.24: Theoretical dependence of merit function on film thickness. 
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this approach. First, the number of coefficients used must be a power of two, so a seed 

design formed by padding a previous solution must be resampled and decomposed, 

keeping only the few coefficients to be used as variables in the optimization. This makes 

the input seed much different from the padded version of the previous film, since the few 

coefficients used cannot accurately model the flat substrate and the gradient index film. 

Unfortunately, this resampled version of the index profile does not have the same reflec- 

tance as the original, since the resampled representation is not very good. While the 

differences between an index profile and the padded and resampled index profile are 

small, the coefficients that are used in the optimization are quite different, and can 

destroy the non-increasing nature of the merit function versus thickness curve. This can 

create shallow local minimums in this curve, which could lead to multiple roots for a 

minimum thickness. This problem can be reduced by increasing the number of 

coefficients used in the optimization, but that also increases the computation time. 

The second consideration in implementing this idea is that the optimizer only 

identifies local minima. If the seed value is a padded version of a previous solution, this 

initial guess may be in a local minimum for the new thickness. (Recall that the same 

effective film was an optimal solution before.) This approach may yield higher merit 

function values than other seed values that reach different optimal solutions. Similarly, 

the size of the change in thickness from the previous solution to the new input can affect 

the outcome. For example, to get from a solution at thickness "A" to a new solution at 

thickness "B", one could take one step or many steps. The film (and merit function) 

generated can be very different for the different initial guesses. This problem of different 

answers for the same thickness precludes the direct application of most root finding 

algorithms. This difficulty can be worked around by estimating a curve similar to that of 

Figure 4.24 using the optimizer, and then finding the root from a numerical fit to the 

curve. 
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The question of which seed film to choose remains unanswered. Choosing the 

same film for all thicknesses often yields lower merit function values than the "pad the 

previous solution" approach. However, the constant seed value does not guarantee a non- 

increasing merit function versus thickness. A solution is to use a constant seed value 

until the merit function increases. When the merit function increases, the optimal 

solution for that thickness is recalculated using a padded version of the previous solution 

as the initial seed film. If this film also has a larger merit function, the previous merit 

function can be assigned to the current thickness. This is justified by the fact that a 

thinner film padded with substrate is certainly a solution for a larger thickness. This 

approach compromises between minimizing the value of the merit function and ensuring 

a non-increasing merit function versus thickness. 

The minimization algorithm outlined above was implemented using the 

MATLAB™ programming language. Both the Fourier series optimization and the 

wavelet based optimization were implemented. The programs used are included in 

Appendix D. The Fourier series version starts with the function FFTMIN.M. This is a 

script function that requires an initial design in the MATLAB™ workspace that defines 

the variables. The function is similar to the FFTRUN.M function described previously to 

perform a single Fourier series optimal design. The FFTMIN.M function includes a loop 

which iterates several times to calculate the value of the merit function for different 

thicknesses. The program uses a constant film seed to start the optimizations (function 

FLATEVAL.M) unless the merit function increases. In this case the seed is formed by 

using the previous output padded with substrate and resampled using a cubic spline 

interpolation between points. This is implemented in the function FPADEVAL.M. The 

evaluation function for the optimization is the same as before, FFTFUN.M. The result of 

FFTMIN.M is an array of film thicknesses and merit function values. The minimum 

thickness for a specific desired merit function is found by using this data to define a 

functional dependence of the merit function on the film thickness.    The functional 
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dependence is a cubic spline interpolation between data points. The minimum thickness 

is found by using this function in the MATLAB™ function FZERO.M. This function 

uses Brent's algorithm to determine the zero of a function. Brent's algorithm for root 

finding is a combination of a simple bisection technique and inverse quadratic 

interpolation [30:267-269]. The bisection method locates the zero of a function by 

finding two values for the function argument which have opposite sign, and then halving 

the interval between successive estimates until a solution point is found. This method 

works reliably, but the convergence may be slow. The inverse quadratic interpolation 

method has the advantage of very rapid convergence in most cases, but not all. This 

method fits a quadratic between three points of the function and uses the root of the 

quadratic as the estimate for the next guess. The combination of the two methods 

guarantees at least linear convergence, but in most cases performs much better. 

Consider the example of the wavelet design of a Nd:YAG anti-reflection coating, 

as described in Section 4.3.2 above. The reflectance at the design wavelengths for use 

inside a laser cavity should be less than 0.01%. This will be the definition of an 

"acceptable" film. The examples of the various input thicknesses in that section 

demonstrated that a thickness of 500 nm was insufficient to generate a good anti- 

reflection coating, while the thickness of 750 nm or greater was acceptable. The number 

of non-zero coefficients is set at 32, to try to more accurately model a film padded with 

substrate. Figure 4.25 shows the result of the algorithm above to determine the merit 

function dependence on thickness. The open circles represent the data points, and the 

solid line is the cubic spline interpolation between points. Note that in this case the merit 

function is monotonically decreasing with increasing thickness. The minimum acceptable 

thickness is found by using the FZERO.M function described above, which determines 

the thickness with a merit function with a log of -4. The thinnest acceptable film was 

found to be 563 nm thick. This index profile and reflectance are illustrated in Figure 

4.26, and the reflectance values at the design wavelengths are tabulated in Table 4-8. 

94 



300 400 500 600 700 
Wavelength in nm 

800 900 

Figure 4.25: Log of Merit Function vs. Thickness for Nd:YAG AR coating design 
using wavelet method. 
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Figure 4.26: Index of Refraction and Reflectance of thinnest optimal film found using 
wavelet method. 
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This technique for finding a thinnest acceptable film can also be used with the Fourier 

series optimal design method. Figure 4.27 shows the estimate of the merit function 

dependence on thickness using the Fourier series method. Note that in this case the merit 

function has several points where it is constant with increasing thickness. These points 

correspond to thicknesses where the optimized solution was worse than the thinner 

solution. The minimum acceptable thickness is again found by using the FZERO.M 

function on a cubic spline interpolation of the data. The result is a film 568 nm thick 

which agrees well with the one found above. The minimum film found using the Fourier 

series method is shown in Figure 4.28, and the reflectance values at the design 

wavelengths are tabulated in Table 4-8. 

Table 4-8: Design Values for Minimum Thickness Antireflection Ccoating 

Wavelength (nm) 
Reflectance for 
Wavelet film 

Reflectance for 
Fourier Series film 

810 9.53 x 10"5 1.48 xlO"4 

1060 1.68 xlO"4 2.69 x 10~4 

1330 1.85 xlO"4 3.06 x 10"4 

Total Error 2.68 x 10"4 4.33 x 10"4 
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Figure 4.27: Log of Merit Function vs. Thickness for Nd: YAG AR coating design 
using Fourier series method. 
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Figure 4.28: Index of Refraction and Reflectance of thinnest optimal film found using 
Fourier series method. 
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4.5.      Comparison of Fourier Series and Wavelet Methods 

The preceding sections described two similar methods for optimal design of gradi- 

ent index thin films. In each case, similar examples were presented to illustrate the effect 

of the various parameters of the design. While the general optimal design method is the 

same, the choice of basis function does make a difference in the final design. Each of the 

two bases has advantages and disadvantages. In general, the Fourier series basis has the 

advantage of allowing the designer to choose any number of frequencies to use as design 

variables, so the number of design variables used can vary, for example, by factors of 

two. In contrast, the wavelet basis formulation requires the number of coefficients used 

as variables to be a power of two. For example, if 64 variable coefficients are not 

sufficient to solve the problem, the next design would need to use 128 variable 

coefficients. The Fourier series method also completed the optimization in a shorter time 

than the wavelet design for comparable examples, but this may be misleading. 

Comparison of computation time is not a "fair" test of the methods. The Fourier series 

decomposition and reconstruction was performed using the fast Fourier transform 

algorithm which is built in to the MATLAB™ kernel. The wavelet based decomposition 

and reconstruction was per-formed by higher level MATLAB™ programs, so the 

computation of coefficients was not as efficient. Theoretically, the discrete wavelet 

decomposition and reconstruction algorithms are 0(N) computations, where N is the 

number of samples of the function [8:152]. The fast Fourier transform, on the other hand, 

requires 0(N log2A0 computations [30: 408], where N is a power of 2. So if both 

algorithms are implemented at the same level (e.g., both compiled in C), the wavelet 

based computation of coefficients should take less time to compute. 

The wavelet based approach does offer a number of advantages over the Fourier 

approach. First, for a given design problem and parameter set, the optimal solution using 

the wavelet method is   usually found in fewer iterations of the main optimization loop 
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than the Fourier method (see Table 4-9 through Table 4-12 below). This would lead to 

faster computation times if both methods are implemented at the same level. In addition, 

the optimal wavelet based designs also tend to achieve a lower merit function value then 

the optimal Fourier series design for the same problem. 

Table 4-9: Fourier series Nd:YAG 
designs with various thicknesses. 

Thickness (nm) Iterations 

.    300 1996 

500 5863 

750 7996 

1000 1971 

Table 4-10: Wavelet Nd:YAG designs 
with various thicknesses 

Thickness (nm) Iterations 

300 1160 

500 6015 

750 1794 

1000 631 

Table 4-11: Fourier series Nd: YAG 
designs with constant thickness. 

Variables Iterations 

8 310 

16 2465 

32 7996 

64 18411 

Table 4-12: Wavelet Nd:YAG 
designs with constant thickness 

Variables Iterations 

4 76 

8 502 

16 1507 

32 1794 
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4.6.      Conclusions 

This chapter has introduced a new gradient index thin film design method based 

on a generalized Fourier series approach. This new method of gradient index thin film 

design extends the domain of problems for which gradient index solutions can be found. 

The method is analogous to existing techniques for layer based coating design, but adds 

the flexibility of gradient index films by varying the index of refraction instead of the 

thickness of the layers. The index of refraction for a film is specified by a few coefficients 

with respect to a basis. These coefficients are used as variables in a sequential quadratic 

programming optimization routine to design an index of refraction profile. Two basis 

systems were used to illustrate this method; Fourier series and a Daubechies wavelet 

multi-resolution analysis. The method works quite well for problems which require 

specific reflectances at a few specific wavelengths, both for high-reflection and anti- 

reflection applications. This method is not well suited for problems which require a large 

number off reflectance points be met. This technique is a good complement to the 

SWIFT algorithm of Chapter 3, since the strengths of the generalized Fourier series 

method are the weaknesses of SWIFT, and visa versa. 
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5.       Conclusion 

Gradient index thin films provide greater flexibility for the design of optical coat- 

ings than the more conventional "layer" films. In addition, gradient index films have 

higher damage thresholds and better adhesion properties. The design of such gradient 

index thin films, however, is a difficult problem. There are many different design 

techniques, based on vastly different approaches to the problem. Two aspects of gradient 

index thin film design have been presented. The first was the Stored Waveform Inverse 

Fourier Transform (SWIFT) enhancement of the inverse Fourier transform design 

method, and the second was optimal design of gradient index films using generalized 

Fourier series. 

The inverse Fourier transform method was modified using the SWIFT technique 

to include use of the phase of the index profile as a variable in rugate filter design. The 

SWIFT technique has two primary effects on the inverse Fourier transform design of 

gradient index thin films. First, it reduces the index of refraction range used in the design. 

The index range is reduced because the method shifts the high index contrast at the center 

of the film toward the edges, more evenly distributing the "work" of the film over the 

entire thickness. Second, the reflectance profile of the film designed using SWIFT is 

closer to the desired reflectance profile than films with no phase function. The edges of 

the reflectance profile, where the reflectance changes rapidly from low to high or high to 

low, are much sharper, with fewer, smaller oscillations than the non-SWlFT designs. 

Use of an optimal phase function in Fourier-based filter designs reduces the product of 

index contrast and thickness for desired reflectance spectra. The SWIFT technique 

enables the designer to generate an optimal design, including constraints on the index 

range available for the film.   A parameter of the SWIFT formulation, the "power spread 
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thickness", controls the index range. Increasing this parameter causes a decrease in the 

index range of the resultant film. The quantitative relationship between this "power 

spread thickness" parameter and the index range of the film is not clear, so the method for 

constraining the index range is one of designer trial and error or a stepwise search through 

the possible parameter values until an acceptable film is found. 

Several examples of this technique were presented. A basic narrow bandstop 

filter design was used to illustrate the trade off between index contrast and film thickness 

using the SWIFT technique. The SWIFT design method was used to reduce the index 

contrast needed for the film by increasing the "power spread thickness" parameter, thus 

distributing the index contrast more uniformly across the film thickness. A second 

example of a broadband reflector, suitable for a Ti:Sapphire laser mirror, illustrated the 

SWIFT technique's affect on the reflectance profile. The shape of the reflectance 

spectrum is recovered with greater fidelity by suppression of Gibbs oscillations and 

shifting of side-lobes into desired wavelength regions. A third example, that of a 

dichroic mirror for an Nd:YAG laser, illustrated some of the difficulties with applying 

the SWIFT technique. This design method is a good choice for problems with 

complicated desired reflectance profiles which span a broad range of wavelengths. It has 

several drawbacks, however. One is the assumption that the entrance and exit media are 

the same. This is generally not the case in practical applications, and the anti-reflectance 

portion of the design is not well satisfied. The inverse Fourier transform approach is also 

not well suited to problems with a few reflectance requirements sparsely spread in 

wavelength, since there is no way to select an optimal desired Q function based on only a 

few reflectance requirements. A fourth example, that of an anti-reflection coating for the 

Nd:YAG, further illustrated the limitations on the application of the SWIFT design 

technique. The attempt to modify the method to solve an anti-reflection problem met 

with little success. 
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The second aspect of gradient index design presented was optimal design of 

gradient index films using generalized Fourier series (GFS). This new method of gradient 

index thin film design extends the domain of problems for which gradient index solutions 

can be found. The method is analogous to existing techniques for layer based coating 

design, but adds the flexibility of gradient index films by varying the index of refraction 

instead of the thickness of the layers. The coefficients of a GFS representation of the 

gradient index of refraction profile are used as variables in a non-linear constrained 

optimization formulation. This allows one to design a piecewise continuous gradient 

index film with limited number of variables. The optimal values of the design coefficients 

are determined using a sequential quadratic programming algorithm. Two basis systems, 

the familiar Fourier series and the newer wavelet representations, were successfully used 

in a number of examples to illustrate the features of this design method. 

The first examples in each basis were to design anti-reflection coatings for the 

Nd:YAG laser. These illustrated the effect of the film thickness and number of design 

variables used on the index design. In each case, there is some minimum thickness of film 

needed to achieve the design goals. Similarly, one must use a sufficient number of 

generalized Fourier series coefficients as index design variables to design a film that 

meets the reflectance goals. However, using too many variables complicates the index 

design without improving the reflectance of the design, and should be avoided. The 

second example was the dichroic mirror for the Nd:YAG laser. This example illustrated 

the ability to successfully specify both high and low reflectances in this design method, 

and allows comparison with the similar, unsuccessful SWIFT design. The third example 

was the broadband reflector for a Ti:Sapphire laser. Both the Fourier series and wavelet 

versions of the generalized Fourier series design method had difficulty with this design, 

illustrating a limitation of this design method. Each of the two basis systems used has 

advantages and disadvantages. In general, the Fourier series basis has the advantage of 
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choosing any number of frequencies to use as design variables, so the number of design 

variables used can be chosen to be any product of small prime numbers. In contrast, the 

wavelet basis formulation requires the number of coefficients used as variables to be a 

power of two. The wavelet based approach does offer a number of advantages over the 

Fourier series approach. First, for a given design problem and parameter set, the optimal 

solution using the wavelet method is usually found in fewer iterations of the main 

optimization loop than the Fourier method. Since the wavelet decomposition algorithm 

has lower computational complexity than the fast Fourier transform algorithm, the 

wavelet basis approach should also take the least computation time. In addition, the 

optimal wavelet based designs also tend to achieve a lower merit function value than the 

optimal Fourier series design for the same problem. The GFS approach is ideal for the 

design of coatings for laser applications, were only a few reflectance values are specified. 

In contrast, this optimal design method is not very effective for problems with required 

reflectances specified for a broad, dense set of wavelengths. In current form, some of the 

larger problems, such as the Ti:Sapphire example, required days of computation time to 

arrive at a solution. 

The generalized Fourier series method was also extended to determine the 

minimum film thickness needed, as well as the index of refraction profile for the optimal 

film. The minimum acceptable thickness for a film is determined by calculating the 

optimal film design for a number of thicknesses. The merit function for the film, which 

is a measure of performance for the film, was shown to be constant or monotonically 

decreasing as the film thickness increased. For a pre-defined level of acceptable 

performance, the minimum film thickness to achieve that performance can be determined. 

This thickness minimization was illustrated for both the wavelet and Fourier series bases 

using the Nd:YAG anti-reflector example described previously. The two methods 

produced similar films and minimum thicknesses. 
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Comparison between the SWIFT method and the generalized Fourier series 

method is complicated by the fact that the two techniques approach the problem of 

gradient index film design differently. The SWIFT approach states the problem as an 

attempt to map a reflectance specified over all wavelengths to a continuous, infinite 

extent index of refraction profile. In contrast, the GFS approach is formulated to map 

discrete reflectance requirements to a continuous index profile of finite extent. Further, 

in the SWIFT design the index profile is truncated after the design is complete, so the 

film thickness is chosen a posteriori, while in the GFS case, the film thickness must be 

chosen a priori. The similarity of the examples for the SWIFT method and the GFS 

method allows some comparison between the two techniques. Table 5-1 summarizes the 

three examples used and the applicability of each of the design techniques to those 

examples. The value in the table is physical thickness of the film for the best case 

example, and the NA indicates the method does not apply to the example. Note that the 

index profiles plotted in Chapter 3 are all plotted as a function of double optical path 

length, so the values in the table do not appear to match the illustrations. The physical 

thickness for the films were calculated from the double optical path lengths using 

Equation 3.3. In general, the GFS solution is achieved with much thinner films than the 

SWIFT solution. However, as the table indicates the SWIFT technique was not effective 

in the design of an anti-reflective coating, and the GFS method was not effective for the 

broadband reflector Ti:Sapphire mirror design. The generalized Fourier series method is a 

nice complement to the SWIFT method, since the strength of each method is the 

weakness of the other. 
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Table 5-1: Comparison of SWIFT and GFS design physical thickness. 

Design Example SWIFT GFS-Wavelet GFS-Fourier 

Anti-Reflection Coating NA 563 nm 567 nm 

Dichroic Mirror 11.1 |im 4|im 4(im 

Ti:Sapphire Mirror 15.9 |im NA NA 

This work revealed several avenues for future research. In the SWIFT research 

area, these include characterizing the quantitative relationship between the "power spread 

thickness" parameter and the index range needed, investigating and quantifying the 

effects of truncating the film to a finite thickness on the resultant reflectance profile, and 

exploring methods to successfully incorporate a different entrance and exit media into the 

formulation. In the case of the generalized Fourier series optimal design technique, other 

areas for study include: developing faster computational algorithms and codes to allow 

the timely solution of larger scale problems, investigating the effects of other basis 

systems on optimization performance, and exploring the potential to use the multi- 

resolution wavelet decomposition strategy to enhance the optimization algorithm. 
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Appendix A : SWIFT Numerical Design Considerations 

The discrete implementation of the inverse Fourier transform relation in Equation 

3.1 is accomplished using the fast Fourier transform (FFT) algorithm in the MATLAB™ 

programming environment. MATLAB™ is a "technical computing environment for high- 

performance numeric computation and visualization" [27:/], which includes a high level 

programming capability. The MATLAB™ programs developed for this work are 

included in Appendix D. The implementation of the SWIFT technique is done using two 

programs: QUE.M and SWIFT.M. The program QUE.M uses a valid expression for 

Q(k) such as one of the forms of Equation 3.11 to generate a sampled version of Q(k)/k 

for notch reflectance profiles. SWIFT.M calculates the phase function for given Q(k)/k 

using the SWIFT technique (Equations 3.13 and 3.18), and then calculates the index 

profile using the built in inverse Fourier transform (Equation 3.1). This program 

numerically estimates the integral in Equation 3.18 from the sampled values of Q(k) 

using a simple trapezoid summation algorithm. A third program, REFLECT.M, is used 

to estimate the reflectance for a gradient index film by approximating the film by thin, 

homogeneous layers at each sample index value and implementing Equations 2.12 

through 2.15. 

The inputs to QUE.M are the lower and upper wavelength limits for the notch 

reflector in microns, the reflectivity of the notch (between 0 and 1), the number of 

samples to use, and the total thickness of the film to model in microns. Note that the total 

thickness of the film here is not the same as the desired film thickness, nor the "power 

spread" thickness of the SWIFT theory. The relationship among these three design 

parameters will be further discussed below. The functional dependence of Q(k) on the 

reflectivity or transmission of the film (such as in Equation 3.11) is hard coded in the 
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program. The output of the QUE.M program is a vector containing the samples values of 

Q(k)A. 

The inputs to the SWIFT.M program are the vector of Q(k)/k values output by 

QUE.M, the number of samples, the lower and upper wavelength values in microns used 

to generate the Q function, the total film thickness, and the "power spread" thickness for 

the SWIFT algorithm. Again, this need not be the same as the desired film thickness. 

The output of the program is a matrix; the first column contains the sample values of the 

index, the second column contains the optical thickness of that layer, and the third 

column is the position of the sample in optical thickness. 

The inputs to the REFLECT.M program are the index matrix of index values and 

layer thicknesses from SWIFT.M, and the number of plot points. The index of the 

substrate and exit medium are fixed in the code, as is the wavelength range to calculate. 

The output is a matrix with the reflectance in column one and the wavelength in microns 

in column two. 

There are a few numerical computation issues associated with using the discrete 

implementation of the Fourier transform. The functions QUE.M and SWIFT.M above 

require the user to define the sampling scheme to use in the Fourier transform calculation. 

The goal is to accurately specify an index of refraction profile over some finite thickness 

of film. There are several related parameters that must be specified to calculate a discrete 

Fourier transform. Note that the Fourier transform variables in the theory are the double 

optical thickness, x, of the index of refraction and the wavenumber, k, of the Q function. 

However, the reflectance calculation requires the index profile be specified in terms of 

optical thickness. For consistency, all thicknesses specified as inputs to and outputs from 

the programs are in optical thickness, and the conversion to double optical thickness in 

done inside the programs as necessary. 
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The parameters for the index profile are: number of sample values, denoted by Ns, 

the spacing of samples in optical thickness, denoted by A, the total optical thickness of 

the film sampled, dTotai, and the design optical thickness of the film, dßm. The parameters 

for the Q function in fc-space are: the number of samples, Ns, the spacing of samples, 8 = 

V(d.Totai), and the total range of &-space sampled, 1/(A). Clearly, the number of samples 

can be found from the simple relation: Ns = dTotail^- The critical frequency, or Nyquist 

frequency, is related to the sample spacing of the index by /C=1/(2A). The various 

parameters for specifying the numerical sampling are illustrated in Figure A.l below. 

The sampling densities actually used for calculation are much higher than depicted in this 

figure. The method for determining the sampling density needed is illustrated in the 

example below. All the examples in Section 3.3 use the same approach. 

Q(k) 

Total 

Figure A. 1: Illustration of numerical parameters for discrete Fourier transform. 
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Acceptable values for the design parameters are found by considering the physical 

constraints on the design problem. First, the number of samples, Ns, should be a power 

of two to take advantage of the efficiency of the fast Fourier transform algorithm. The 

sample spacing of the index of refraction profile, A, should be on the order of one sample 

every five nm, to ensure the reflectivity calculation is accurate. Also, the Q function, 

which is the starting point for this design, must be adequately sampled. The number of 

non-zero samples of the Q function is denoted by No. Finally, the total spatial thickness of 

the film, djotai, must be sufficiently large to minimize spatial aliasing in the index. 

Aliasing arises from the finite sampling of a function. Any power that lies outside the 

Nyquist range is folded back inside the range, generating in this case an inverse Fourier 

transform that is incorrect [30:387]. Viewed another way, this means that the sampling of 

the Q function must be sufficiently high to insure the index profile calculated is near the 

substrate value at the edges of the film. 

To illustrate the process to determine acceptable parameter values for a problem, 

the parameters for the first example in Section 3.3.1 will be found below. Recall this 

example is to design a narrow-band reflectance filter with a reflectivity of 90% from the 

lower (initial) design wavelength, ^.,=580, to the upper (final) design wavelength, ^/=620 

nm, and 0% outside this band. The indices of the substrate and the incident medium are 

the same (nsub = nout = 1.50). The desired optical thickness of the film is dfiim=30 (im. The 

numerical parameters for the sampling are found by requiring the index sample spacing, 

A, to be on the order of five nm in optical thickness, the number of non-zero samples, N0, 

of the Q function to be about 25, and the total number of samples, Ns, to be a power of 

two. The first step in determining appropriate parameter values is to make a rough 

estimate, based on the values above. The second step will be to evaluate the numerical 

values produced, and then select a set of new numerical values that satisfy all the 

constraints. 
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First, since the sample spacing in fc-space is the inverse of the total thickness (see 

Figure A.l), the requirement for 25 non-zero samples of the Q function over notch design 

wavelengths can be used to determine the total double optical thickness: 

N0 25 
dTota, = ~Yl  = — — = 225 V™ (A-!) 

X,    Xf     0.58    0.62 

Note that for this calculation the spatial frequencies are defined as Ifk, rather than 

2it/X. This is to be consistent with the QUE.M and SWIFT.M programs in Appendix D. 

This value for djotai can be used along with the sample spacing, A, of the index profile to 

estimate the number of samples needed, Ns. The sample spacing, A, must be multiplied 

by a factor of 2 to convert the requirement on the sample spacing in the index from 

optical thickness (required by the reflectance calculation program) to double optical 

thickness, which is the variable of the Fourier transform relation. The sample spacing 

value to use in these calculations is therefore A=2(0.005)=0.010 urn. 

N^=H-0
=22m (A-2) 

At this point, constrain the number of samples, Ns , to be a power of two. 

Unfortunately, the Ns found above is not a power of two, and the closest powers of 2 are 

214=16,384, and 215=32,786. In the interest of minimizing computation time, choose the 

lower number of samples, and then determine the impact on the other parameters. So, for 

iVj=214= 16,384, and keeping the original desired sample spacing in double optical path 

length, A=0.010 u\m, the new total film thickness, drotai, would be 
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d,o,al = NSA 

= (16,384)(0.010) 

= 163.84 nm 

(A.3) 

Using this new value for dTotai„ the number of non-zero samples of the Q function for this 

parameter choice can be determined by 

^0 = dto,al 

1 1 

f J 

= (163.84)1 
1 1 

.0.58    0.62, 
18 non - zero samples of Q{k) 

(A.4) 

At this point the designer can decide to accept this set of parameters, or decide to try a 

different combination of values. For example, one might decide that 18 samples of the Q 

function is not enough, and decide to adjust the total thickness again to increase the 

number of samples. This would also affect the sample spacing of the index profile. To 

illustrate this, choose to keep the total number of samples 7Vf=214=16,384, but now choose 

to increase the total film thickness to be dTotai = 200 |im. Using this new value for dTotaU 

the number of non-zero samples of the Q function is 

N0=d,o!a, 

= (200)1 
1 1 

0.58    0.62, 

23 non - zero samples of Q(k), 

(A.5) 

and the sample spacing in index, A, would be 
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A _     total 

200 

.6,384 (A'6) 

= 0.0122    )im 

This corresponds to an optical thickness sample spacing of 0.0061 urn, which is 

sufficient. 

This collection of design parameters is closer to the original objectives, so they 

are selected to use in the example. The final parameters required as input to the programs 

in Appendix D are expressed in optical path length (not double optical path length). The 

conversion from optical path length to double optical path length is done in the programs 

as needed. The reason for this is to keep the input consistent with that required by the 

reflectance calculation. Therefore the final parameter values for total film thickness, dTotai, 

and sample spacing in index, A, are the values found above divided by 2. For the 

example of Section 3.3.1 the parameters are: 

Ns = 2]4 = 16,384 

dToul = lOO\im 

A = 0.0061nm (   ' } 

N0 => 23 non - zero samples of Q 

This choice for the total optical thickness of the film should also minimize any aliasing 

effects, since it is over three times the desired film optical thickness. The same process is 

used to determine the parameters used in all of the examples in Chapter 3. 
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Appendix B : Optimization Theory 

Introduction 

The process of design requires a statement of the problem to be solved, 

identification of alternative solutions, and some measure of what constitutes a "best" 

solution to the problem. For simple problems, it may be possible to exhaustively list all 

possible solutions and "obviously" determine which one is best. For more complex 

problems, however, a more structured approach is needed to ensure the "best" solution is 

found. This structured approach consists of building a mathematical model for the 

system in question, identifying a set of variables to adjust in the design, and defining a 

"merit function" to numerically identify the best, or "optimal" solution. This section will 

summarize the theory of optimal design, which will be applied to the problem of gradient 

index thin film design in Chapter 4. 

Statement of Optimal Design Problem 

To express a design problem in mathematical form, one first must define the 

physical system to be modeled and identify the inputs to and outputs from this system. 

The next step is to construct a mathematical model of the system which approximates its 

performance by correctly mapping inputs to outputs. The model consists of a set of 

design variables and a collection of functions of these variables that define the objective 

and the constraints on the problem. The objective function (sometimes referred to as the 

merit function) is usually constructed such that its minimum value represents the optimal 
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design. The formal definition of the constrained optimization problem with n real-valued 

variables is therefore 

minimize    f(x) 
xeSR" 

Subject to: 

8i(x) = 0 i = l,2,...,me 

8j(x)<0 i = me + 1,..., m 

*rai„ ^ X < X ■*  —  ■* max 

(B.l) 

where x is a vector of the design variables, f(x) is the objective function, the gi(jt)'s are 

the constraint functions, and the jcmin and jcmax are vector bounds on the design variables. 

It should be noted here that there are two general classes of constrained optimization 

problems. The first class is characterized by the fact that all the functions in Equation B.l 

are linear functions of the design variables. This class of problems can be readily solved 

by the techniques of linear programming. The second class of problems, and the one with 

which the rest of this paper is concerned, have non-linear functions of the design 

variables as objective functions or constraints. This format of the optimal design problem 

with the constraints all expressed as less than or equal to zero is called the Null Negative 

Form [28:17]. The solution of the problem expressed by Equation B. 1 is denoted by JC*. 

A few additional definitions/concepts are needed before describing the methods 

used to solve the optimal design problem. First, a point x0 in the vector space 9tn is a 

"feasible" point if all constraints gt(x0) are satisfied by equality or inequality, as required 

by the constraint. Conversely, a point in 9tn where this is not true is called an "infeasible" 

point. The second concept is that of "active" constraints. A constraint is said to be active 

if it is equal to zero when evaluated at the solution point ( g,-(jc*)=0 ). Clearly, all 

equality constraints are active by definition. 
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Now that the mathematical problem has been defined, how is a solution 

determined? Conceptually, the most straightforward method would be to select a feasible 

point Xk in the vector space 9tn as a start, then explore the neighborhood by adjusting each 

element of the vector by a fixed amount. Then evaluate the objective function and 

constraints at each test point, and identify the feasible point for which the objective 

function is smallest. This test point would become the new starting point, Xk+i , and the 

procedure would be repeated until a minimum value for the objective function is found. 

While this method is easily visualized, it is not practical. There are much more efficient 

techniques for determining the solution to the constrained optimal design problem. The 

current state of the art in non-linear optimization is a method known as Sequential 

Quadratic Programming (SQP) [28:365-372]. The basic theory for this method is 

outlined below. 

Kuhn-Tucker Conditions and SQP 

The general approach to solving non-linear constrained optimization problems is 

to transform the problem into an easier sub-problem, which can be iterated to find the true 

solution. The foundation of this approach is a set of necessary conditions on the solution 

of a general constrained optimization problem known as the Kuhn-Tucker (KT) 

equations: [26:2-22] 

V/(**) + |>;Vg,.(x*) = 0 

X*gi(x*) = 0        i = l,...,m (B.2) 

X > 0 i = m +1,..., m 
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The first equation is the gradient of the Lagrangian, and describes a canceling of the 

gradients between the objective function,/, and the constraints, g„ weighted by Lagrange 

multipliers, A,,-. Only active constraints are included in this expression, so the Lagrange 

multiplier for any inactive constraint is set to zero. The solution point x* is assumed to 

be a "regular" point, which means that gradients of the constraints are linearly 

independent at that point. Note that the KT equations are not sufficient conditions for a 

solution, so each point which satisfies Equation B.2 must be checked individually to 

determine if it is the optimal solution. An additional sufficiency condition can be formed 

using information on the second derivative of the Lagrangian. For any regular solution 

point of the KT equations, x*, if the Hessian of the Lagrangian at x* is positive-definite, 

then the solution point is a local constrained minimum [28:184]. A positive-definite 

matrix is symmetric and has only positive, real elements. The mathematical expressions 

for the Lagrangian (denoted by L) and the Hessian of the Lagrangian (denoted by H), are 

given below: 

L(x,X) = f(x) + ^Xigi(x), 

d2L d2L 

H(x,X) = 

dxdx. 

X — ^JEj , JC2j •••■>Xn ) 

d2L 
dxtdxi dxxdx2 dx:dxn 

d2L d2L 
dx2dxx dx2dx2 

d2L d2L 
dxndx„ n n 

(B.3) 

These necessary and sufficient conditions for the solution of the original 

constrained optimization problem can be used in building a sequence of easier sub- 

problems to solve. 
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The easier sub-problem to be solved is to determine the best "direction" in the 

vector space of variables to move in for the next iteration, as well as the length of step to 

take along this direction. Again using the null negative form of the problem in Equation 

B.l, form the Lagrangian as 

L(x,X) = f(x) + %Xi8i(x) (B.4) 
1=1 

The simplified problem, called the Quadratic Programming (QP) sub-problem, is to solve 

the quadratic approximation to the Lagrangian above subject to linearized constraints 

[28:367]. The quadratic approximation to the Lagrangian is found by expanding in a 

Taylor's series and keeping terms up to second order in x. For any fixed point in the 

vector space of variables, x^ , the QP sub-problem can be written as 

minimize 
deft» 1* Hd + V/(*, )Td 

subject to: 

Vg,(x4)
7 d + g (xk ) = o, i = 1,2, • • • » me 

Vs,.(*j7 d + g (** )<o, i = me + 1, m 

(B.5) 

Here the functions / and g, are the original objective function and constraints, H is a 

positive-definite approximation to the Hessian of the Lagrangian, and d is the new step 

direction for the next iteration.    Bold typeface indicates a vector or matrix.    The 

superscript T indicates matrix transpose. The solution to this QP sub-problem is used to 

determine the next iteration point xk+l = xk + a d, where the step length a is to be 

determined. The step length a is needed to stabilize the algorithm, because it is possible 
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that the solution to the QP sub-problem is infeasible. It is found by performing a line 

search along the direction d and minimizing a merit function, which includes penalties for 

infeasible solutions. 

In summary, the SQP algorithm is: 

1. Select a starting point, x0, and an initial estimate for X0. (k=0) 

2. Solve the QP sub-problem above to determine the step direction d and 
the new estimate of Xk+\. (k=k+l) 

3. Set Xjt+i = je* + aJ. 

4. Test for termination. If criteria not satisfied, goto step 2. 

The SQP algorithm for solution of non-linear optimization problems is available in the 

MATLAB™ Optimization Toolbox [26, 27]. MATLAB™ is an interactive software 

package for scientific and engineering numeric computation [27:4]. The next section 

outlines the numerical methods used by MATLAB™   to implement this algorithm. 

MATLAB™   Implementation of SQP 

The numerical optimizations performed in this research were done using the 

MATLAB™ software package and in particular the MATLAB™ optimization toolbox 

[26,27]. The MATLAB™ software uses the SQP algorithm described above in its 

constrained optimization routines. To implement the theory above, the program must 

estimate the gradients and the Hessian at each point. The implementation of the SQP is 

done in three main stages [26:2-26]: 

1. Update the estimate for the Hessian matrix of the Lagrangian. 

2. Solve the QP sub-problem. 

3. Perform line search and merit function minimization. 
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Equality vs. Inequality Constraints 

The MATLAB™ algorithm differentiates between equality and inequality 

constraints. Equality constraints are active by definition, and have non-zero Lagrange 

multipliers. Inequality constraints are included in null negative form, and may or may not 

be active. The program uses an active set strategy approach to handle the inequality 

constraints. This means that an estimate of which constraints are active is calculated at 

each iteration. This estimate of activity figures in the merit function used in the 

determination of step size. Also, the zero tolerances for the equality and inequality 

constraints are controlled separately. This can impact the results, depending on how the 

problem is originally stated. 

Gradient Estimation 

If the objective functions and constraints are not known analytically, the partial 

derivatives needed to estimate the gradients must be calculated numerically. MATLAB™ 

uses an adaptive finite difference technique to find the values of the gradients as needed. 

The maximum and minimum perturbations for this calculation can be controlled by the 

user. 

BFGS Method for Hessian Estimation 

The key to the SQP algorithm is knowledge of the Hessian of the Lagrangian for 

the problem. Since this matrix is computationally expensive to calculate directly, it is 

estimated and refined through iteration using the formula devised by Broyden, Fletcher, 

Goldfarb, and Shanno (BFGS) [26:2-26]. In addition, the estimate for the Hessian is 

forced to remain positive-definite, so the solution to the original problem is a minimum. 
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Termination Criteria 

The optimization goal is achieved when three termination criteria have been satis- 

fied. There are three numerical tolerances to be met, one on the objective function, one 

on the variables, and one on the constraints. The objective function tolerance specifies 

the precision required on the objective function at the solution. The termination criteria 

for variables specify the minimum acceptable precision on the values of the variables. 

The constraint termination criterion is the maximum allowable violation of the 

constraints at the solution point. All three termination criteria must be satisfied 

simultaneously to achieve an optimal solution. The default termination tolerances are: 

objective —10" , variables — 10"4 , and constraints — 10"7. All three can be adjusted if 

necessary. 
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Appendix C: Wavelet Theory 

Wavelets are a relatively new mathematical technique. They are a form of 

generalized Fourier series, using wavelets as basis elements instead of sines and cosines. 

These new basis elements will be used to solve Maxwell's equations for the fields inside 

the film, and establish a new form for the mapping between index of refraction and 

reflectivity. The sections below will first introduce some of the basic concepts of 

wavelets, and then describe the technique of multi-resolution analysis. 

Basic Wavelet Concepts 

The term wavelets was first coined in 1982 by Morlet, who used a mathematical 

technique similar to Fourier series but using "little waves" as the basis elements, instead 

of sines and cosines [8:2]. The wavelets must be oscillatory (the wave part) and must 

also decay rapidly (the little part). An example of such a wavelet, called the Morlet 

wavelet, is shown in Figure C.l. 

1 T 

)'J 

Figured: Morlet Wavelet 

122 



In Fourier analysis the pieces used to decompose and reconstruct a signal are sines 

and cosines of different frequencies. In wavelet analysis the building blocks are 

translated and dilated (shifted and scaled) versions of a single wavelet, called the "mother 

wavelet" [46:2]. Denoting the mother wavelet by h(t), the rest of the building blocks are 

given by 

1 
KAt)=-jnh 

{   a   J 
(C.l) 

where a is the scale and b is the shift [7:909].   The mother wavelet h must satisfy the 

condition 

f h(x)dx = 0 (C.2) 
J—oo 

which implies that h(0) = 0, where the A denotes Fourier transform. If the shift b and 

scale a vary continuously, the continuous wavelet transform based on this mother 

wavelet, h, maps a one dimensional function f(x) to a two dimensional surface Whf(a,b). 

The mathematical form of this transform is 

WJ(a, b) = £ f(x)hab(x)dx (C.3) 

If the shift and scale are restricted to a discrete sublattice, the continuous wavelet 

transform above becomes a discrete wavelet transform. The wavelets become [7:910] 

Kn (f) = a'o     h{a-Q
mt -nb0) m,neZ (C.4) 

where 
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b = nb0a™ (C.5) 

Z is the set of integers 

For this work it is convenient to choose ao=2, and bo=l, although other choices are 

possible. With this choice of ao and bo it is possible to construct an h(t) such that hm_n 

form an orthonormal basis for L2(9t) [7:911], where L2(Si) is the set of all measurable 

functions of finite energy, defined by 

L2(SR) = {/ : / is measurable and J~ \f(xfdx < °° j (C.6) 

Multiresolution Analysis 

A multiresolution analysis is a technique of representing a function fe L2(3i) as a 

limit of successive approximations, each of which is a smoothed version off [7:913, 25]. 

A multiresolution analysis consists of: [7:915,45:152-158] 

(i.) A group of embedded subspaces Vm c L2(9t), such as 

...cV2cV1cV0cV_1cV_2... (C.7) 

(ii.) These subspaces have only the zero element in common, and the sum of the 

spaces span all of L2(^R): 

l>„={0} \JVm = L2&) (C.8) 
meZ meZ 
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(iii.) If a function is an element of one space, then the same function scaled by a 

factor of 2 is an element of the next higher space: 

f(x)eVm f(2x)eVm_, (C.9) 

(iv.) There exists a function §e Vo such that shifted versions of this function form 

a basis for the space VQ. 

V0=span{$0 ,„,neZ} 
A,      / \ (C1°) 

The first property above means that any feature that can be seen at coarse 

resolution (like Vj) can also be seen at finer resolutions (like Vo). Naturally, the finer 

resolutions also contain more detailed features as well. The second property describes the 

limits of this ladder of subspaces. At the coarsest resolution there is nothing left but the 

zero element of the space, while in the limit of the finest resolution the Vm converge to 

L2(9t). The third property is the same scaling feature already identified as a property of 

wavelets. The last property is the building block for the analysis. For a fixed dilation 

(scale), translations (shifts) of the function <|> are basis elements for that subspace. These 

functions § are called scaling functions, or father wavelets. Only real scaling functions 

will be considered here, although complex <j) are possible. 

Since a space Vm has a basis given by <|v„, then any element of the space can be 

written as a linear combination of these basis elements. That is if x(t)e Vm , then there 

exist coefficients Cm,n such that 
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x{t) = YJcm^T^{T"'t-n) 
neZ 

v (Cll) 
£^    m,nTm,n V / 
m=Z 

The cm,„ are called approximation coefficients.    They are found by taking the inner 

product of the function x(t) with the scaling function (j)m,„ 

I \ (C12) 

The Dirac bracket notation is used to denote the inner product of two functions.   For 

fe L2(Si), a projection operator Pm can be defined by 

Pmf = yL{f^m,n)*m,n (C13) 
neZ 

which gives the expression for that part of f(t) that is an element of Vm. Since all the 

elements in Vm are in Vm.] (by the construction of the ladder of subspaces), what elements 

are in Vm.] that are not in Vml Construct a projection operator Qm that identifies such 

elements by 

Qmf = Pm^f-Pmf (C.14) 

By the Classical Projection Theorem, the Qmf is orthogonal to Vm, and so defines 

a space of all such elements, called Wm, whose inner product with elements of Vm is zero. 

In set notation, that is [45:162] 
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Wm={feV^:   (/,v) = OVvGVm} (C.15) 

So by definition of Wm and Q„ 

Pm-J = Pmf + Qmf 

vm-l=vm®wm 

(C.16) 

where the symbol "©" is the orthogonal direct sum of the two spaces. The direct sum is 

the set of vectors formed by adding one element from each of the orthogonal subspaces. 

Equation C.16 is a key point in the multiresolution analysis theory. Each subspace Vm.i 

consists of the direct sum of two other subspace, Vm and Wm. This idea is illustrated 

graphically in Figure C.2. 

Figure C.2: Structure of Nested Subspaces 

By the nature of the ladder of subspaces and the fact that Wm is orthogonal to Vm, 

the Wm's are all mutually orthogonal. Furthermore, the combination of all the Wm's spans 

the entire space of L2(9t) functions: 
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®Wm=L2(3i) (C.17) 
msZ 

Now identify the basis for each Wm as { ¥„,,„: ne Z}. This set of functions forms a basis 

for the entire space L2(9t), and they are the wavelets we seek. The details of the 

techniques used to construct the scaling function §m>n and the wavelets *?„,,„ are not 

necessary to understand the use of this theory. Several different types of scaling functions 

and wavelets have been developed in the literature. These include the Haar basis above, 

which is the simplest, as well as Daubechies' compactly supported wavelets [7:980]. 

Illustrations of some of Daubechies' wavelets and their associated scaling functions are 

shown in Figure C.3. The different wavelet-scaling function pairs shown are labeled by 

the number of filter coefficients, or "taps", needed to completely specify each wavelet. 

The functional form of the scaling functions and wavelets are not required to implement 

the method of multiresolution analysis, as will be seen in the next section. 
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Wavelet Function Scaling Function 

(a) 

0  0.5  1  1.5  2 
-2 

0  0.5  1  1.5  2 

Figure C.3: Illustration of Daubechies' compactly supported wavelets and scaling functions: 
(a) 2 tap (Haar), (b) 4 tap, (c) 8 tap, (d) 16 tap. 
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Function Decomposition and Reconstruction 

To make use of the multiresolution analysis theory, a method is needed to 

represent the function to be analyzed in each of the subspaces, preferably without 

performing numerous integrations. To develop such a method, define the coefficients of 

expansion for each level "m" by 

Pmf(t)=yLCmJmAt) 
nsZ 

(C.18) 

ßm/(0=£rf«,«Vm,n(0 
neZ 

The coefficients cm>„ are found by taking the inner product of the projection off(t) onto Vm 

with the scaling function §m>n. Applying the relationship between the projection operators 

in Equation C.17 to this expression for cm,„ yields 

c     =(p f,<\>     ) m,n        \   mJ  ' Y tn,n I 

I \    / \ (C.19) 

However, the second inner product is zero because Qmf(t) ± (J)mn by construction. 

This leaves a recursive relationship between the coefficients: 

cm,„=Xcm_M(<t>m_w,<|>mn) (C.20) 

Similarly for dmn 

130 



dm.n=(Qmf>Vm,n) 

= (^-l/.V«.n)-(^m/.V*,«> (C-21) 

= 2J 
Cm-l,X \§ m-lX '¥ m,n /• 

XsZ 

The recursive relations above show all that is needed to decompose a function is 

to find the inner products between a scaling function and the scaling function or wavelet 

of the next level down. Consider the explicit form of one of these inner products 

(4W .t) = 2-(m-,)/22-m/2£(t)(2-(m-l)t-l)<?{2-mt-n)dt (C.22) 

Let - = 2-'nt-n. Then 
2 

<<l>m-i,i'<>^) = 2~1/2Jl<t>(f)<t>("-[1-2"])^ (Q23) 

Define a sequence h(n) by 

then 

h(n) = 2-"2fj^(t-n)dt (C.24) 

(4W .«>.*.) = *(*<-2«) <C25) 

Notice this relation is independent of the level ml This means that the 

coefficients for any level can be found from the coefficients for the level above. (Also 

note the sequence h(n) defined in Equation C.25 above is not related to the wavelet h(t) 

defined in the previous section.  This conflicting notation is standard within the wavelet 
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literature.) The coefficients required to specify the Daubechies' wavelets shown in Figure 

C.3 are listed in Table C-l. 

Table C-l: Daubechies' wavelet coefficients [7:980] 

h=2: 0.7071067811865 h=16:  0.054415842243 

0.7071067811865 0.312871590914 

0.675630736297 

0.585354683654 h=4: 0.482962913145 

0.836516303738 -0.015829105256 

0.224143868042 -0.284015542962 

-0.129409522551 0.000472484574 

0.128747426620 

-0.017369301002 h=8: 0.230377813309 

0.714846570553 -0.044088253931 

0.630880767930 0.013981027917 

-0.027983769417 0.008746094047 

-0.187034811719 -0.004870352993 

0.030841381836 -0.000391740373 

0.032883011667 0.000675449406 

-0.010597401785 -0.000117476784 
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Thus, there is a recursion relation between levels that can be exploited to calculate 

the coefficients: 

cm,„=5>m_w/^-2n) (C.26) 
eeZ 

A similar relation exists for the detail coefficients, <im,„: 

(4WV».„ ) = *(*-2/0 

g(n) = 2-,/2£vj/(|)^)(r - n) dt (C.27) 

<„=Xcm-uS^-2") 
leZ 

The decomposition algorithm in this multiresolution analysis requires only the 

filters h and g to define the wavelets to be used. In fact, the g filter can be derived from 

the h filter, so only one sequence is needed to completely determine the wavelets.   This 

relationship between h and g is 

g(n) = (-l)"h(n-l) (C.28) 

Using the two recursion relations for cm,„ and dm,n, any function can be 

decomposed into its approximation and detail coefficients from an initial sequence Co- 

Figure C.4 illustrates the relationship between these coefficients. Note the structure of 

the coefficients is the same as the structure of the underlying spaces, Vm and Wm. 

Now that the technique used to decompose a function has been identified, how is 

the original function reconstructed from these coefficients? As can be seen from Figure 

C.4, only the coarsest (lowest) approximation coefficient and the detail coefficients are 

needed to reconstruct the original CQ. 
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Figure C.4: Wavelet decomposition tree. 

The recursive relation for reconstruction is 

-m-\,k Zc»-.-Ä^-2n) + X^,B^-2n) 
neZ neZ 

(C.29) 

A further simplification to the decomposition-reconstruction algorithm can be 

made by treating the initial sequence of coefficients as part of a periodic sequence. 

Wavelet transforms have the property that the transform of a periodic function is also 

periodic. In the case of the multiresolution decomposition, if the top sequence Co has N 

values, and N is a power of 2 (i.e., N=2M for some integer M), then the next level coarse 

coefficients c} will be 2MA periodic, as will the details for that level, dj. So the lowest 

level of decomposition consists of a 1-periodic coarse coefficient sequence (a constant), 

and a 1-periodic detail coefficient sequence. 
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Appendix D : COMPUTER PROGRAMS 

This appendix includes the MATLAB™ programs used to generate the thin film 

designs presented in this dissertation. The MATLAB™ language is designed to 

efficiently handle matrix and vector manipulations. The reader should bear in mind that 

each variable represents a matrix. MATLAB™ also does not require pre-definition of 

variables or variable typing. The colon operator (:) is used to access a series of elements 

of an array or matrix. For example A(l:5) refers to the first five elements of an array 

named A. Comments in the programs are denoted by the percent sign (%). For other 

details of the MATLAB™ programming language, see the user's manuals [26,27]. 

The first three programs are used in conjunction with the SWIFT algorithm 

described in Chapter 3. The function QUE.M calculates the Q function for a notch 

reflector. The SWIFT.M function converts the Q function into and index profile. The 

REFLECT.M function determines the reflectance of an input index profile. Each of 

these programs is described in some detail in Chapter 3. 

The next four files are used to perform the Fourier series based optimal designs of 

Chapter 4. The top level function is FFTRUN.M. The optimization is performed using 

the MATLAB optimization toolbox function CONSTR.M. The help file for this 

program is included to explain the input and output of this program. The evaluation 

function is FFTFUN.M, which converts the optimization variables to merit function and 

constraint values. The fourth program is a "C" language program, REFLECT.C, to 

calculate the reflectance for an input index at specific wavelengths. 

The next group of programs are used in the wavelet based optimal film design. 

They are a top level program, WAVRUN.M, the evaluation function WAVFUN.M, and 

the   wavelet   coefficient  to   function   conversion   function   called   UP1D.M.      The 
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CONSTR.M and REFLECT.C programs are also used along with these programs. The 

program DOWN1D.M, which is the complement to UP1D.M is also included. 

The next six programs are used to find the minimum thickness optimal film. The 

first three, FFTMIN.M, FLATEVAL.M, and FPADEVAL.M, are for the Fourier series 

version of the algorithm. The other three, WAVMIN.M, NFLTEVAL.M, and 

NPADEVAL.M, are used in the wavelet implementation of the algorithm. 
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QUE.M 

function Q = que(li,lf,nchan,scale,dtot) 

%    This program creates a Q function for a notch reflective filter over an input range 
from 
% li to If in 'nchan' channels. The output is Q(f)/f, as required for the inverse Fourier 
% transform relation with n(x). Inputs are: 
% li = the lower wavelength (microns) 
% If = the upper wavelength (microns) 
% nchan = number of channels (must be even number; mod(2) preferred) 
% scale = the desired reflectivity between 0 & 1. 
% dtot = the total thickness of film to model 
% (note: should be about 4 times the actual desired film thickness.) 
% 
% References: 
%    Bovard, Appl. Opt. 29:24, 1990. 
%    Dobrowolski and Lowe, Appl. Opt. 17:3039, 1978. 
%    Druessel, Grantham, Haaland, Opt. Let. 18:1583, 1993. 

% ('freq' and 'nchan' are the total freq range and number of channels) 
% The Nyquist frequency is found by taking 1/ 2 * total thickness. The total frequency 
% range is twice the Nyquist frequency. Note the total thickness input is an optical 
% thickness in microns. Since the theory relates the double optical thickness to the 
% wavenumber, the total thickness must be doubled before it is used in calculations. 
% freq is the total frequency range modeled. Delta is the size of a singe step in k. 
freq=nchan/2/dtot; 
delta=freq/nchan; 
% The max spatial frequency is 1/ (min wavelength) 
% convert endpoints to spatial frequencies. 

fi=l/lf; % fi is initial frequency 
ff= 1/li; % ff is final frequency 
f=zeros(nchan,l); 

% Treat the left half plane as positive frequencies and the right half plane as negative 
% frequencies so that the Nyquist frequency is 'freq/2' and it falls in 
%   channel '(nchan/2)+l'. The DC component is in channel 1. 

il=round(fi/delta)+l; 
ih=round(ff/delta)+l; 
f(il:ih)=ones(ih-il+1,1); 
% must divide by frequency of the bin for Q(x)/x 
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for i=il:ih 
f(i)=f(i)/((i-l)*delta); 

end 
% Scale Q using one of various techniques outlined in Bovard's paper. 
% 

Q(:)=f*sqrt(scale); 

% the next two lines are one alternative scaling function 
%Q(:)=0.5*f*sqrt(-log(l-scale)); 
%Q(:)=Q(:)+0.5*f*sqrt((l/sqrt(l-scale)-sqrt(l-scale))); 
return; 
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SWIFT.M 

function [nx,p] = swift(Q,nchan,li,lf,dtot,dtarget) 
% 
%   swift(Q,nchan,li,lf,dtot,dtarget) 
% 
%   This program computes the index of refraction n(x) and 
%   phase function p for an input symmetric modified 
%   transmission function Q. 
% Arguements: 
%     Q    = modified transmission vector (input from que.m) 
%     nchan = # of elements in vector 'Q' (i.e., # of channels) 
%     li    = lowest non-zero wavelength in Q 
%     If   = highest non-zero wavelength in Q 
%     dtot = total thickness of film modeled 
%     dtarget=swift optimization parameter 
% 
% Output: 
%     nx = n(x) with average n = nsub (coded in program) 
%     p = optimal phase function used 
% 
% From Guan and Mclver, J.Chem.Phys., 92:5841, 1990. 
% Bertrand, Appl. Opt., 27:1998, 1988. 
% Druessel, Grantham, and Haaland, Opt. Letters,18:1583, 1993. 

% the value nsub is the index of the substrate. 
nsub=1.50; 

% 'freq' is the twice the Nyquist frequency. 
% It's determined by nchan/(2*thickness) 
freq=nchan/2/dtot; 

% define spatial freq endpoint. note low=l/high 
fl=l/lf; 
fh=l/li; 

% 'nchan' is the no. of elements in vector 'Q' 
% For the organization (frequency tagging) of vector 'Q', 
% see notes in function QUE.M. 
% 
% 'delta' is the frequency (1/microns) per bin 
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delta=freq/nchan; 

%   Calculate the x-axis in units of 1/microns 

xf=(l:nchan/2+l)*delta -delta; 

% 'ichanl' and 'ichanh' track the lowest and highest non-zero 
%   bins in the frequency domain. 

ichanl=round(fl/delta)+1; 
ichanh=round(fh/delta)+1; 
if (ichanh>nchan),ichanh=nchan-l;,end; 

t=dtarget; 
% Must double the desired value for calculations, since the FT relation is in terms of 
% twice the optical thickness. This thickness contains most of the index change 
%, but the tails are not included. 

% tO is the starting point for desired actual thickness. 
% note that the desired thickness is a FWHM, not 0 to 0. 

t=2*t; 
t0=(l/delta-t)/2 

%—perform filtering on data  
% The Fourier transform of a function with sharp turn on has significant high frequency 
% components. Since these would be truncated in practice anyway, the input function 
% is filtered to smooth the sharp turn on features a little. 
%   specify the number of filters 
m=l; 
%   specify the filtering bandwidth (Hz) 
deltaw=0.5*delta; 
if deltaw > freq 

m=0; 
end 
ff=zeros(nchan, 1); 
k=round(0.5 * del taw/delta) 
ifk==0 

m=0; 
end 
ifm>0 
forj=l:m 
ill=ichanl-j*k-l; 
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ifill<= 1 
ill =2; % insures de component still 0 
end 

ihl=ichanh+j*k+l; 
if ihl > nchan/2 
ihl=nchan/2; 
end 

%   Test to ensure filtering doesn't exceed array dimensions 
fori=ill:ihl 
ikl=i-k; 
ik2=i+k; 
if ikl <=1 
ikl=2; 

end 
if ik2 > nchan/2 

ik2=nchan/2; 
end 

ff(i)=(sum(Q(ikl:ik2))-0.5*(Q(ikl)+Q(ik2)))/(2*k); 
end 
Q=ff; 

end 
end 
Q=Q'; 

%—begin phase function calculation— 

j=sqrt(-l); 
g=(abs(Q)).A2; 
gx=zeros(nchan,l); 
gsum=0; 
gxsum=0; 
ichanl 
ichanh 
denom=delta*(sum(g(l:ichanh+m*k+l))-0.5*(g(ichanl-m*k-l)+g(ichanh+m*k+l))); 
fori=l:nchan 

gsum=gsum+g(i); 
gx(i)=delta*(gsum-0.5*(g(l)+g(i))); 
gxsum=gxsum+gx(i); 
gy=delta*(gxsum-0.5*(gx(l)+gx(i))); 
shift=2*pi*i*delta*t0; 

%   Assume the initial phase (PO) is such that p(0)=0. 
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% 
p(i)=shift+2*pi*gy*t/denom; 

end 

%   Perform inverse fourier transform using matlab built in function. 
omeg=Q .*exp(p*j); 
ftemp=ifft(omeg); 

% calculate the optical thickness step. 
% note in the theory the index is a function of twice 
% the optical thickness, so must divide by 2. 
% 
del=l/(2*freq); 
% Perform the normalization. 
ftemp=ftemp/del/pi; 
ftemp=imag(ftemp); 

xt=(l:nchan)*del-(nchan*0.5)*del; 
ft(:)=ftemp'; 

% nx is a nchan x 3 matrix, the first column is the index 
% the second column is the thickness of that layer. 
% the third column is the position of the layer (for plotting). 

nx(:, 1 )=nsub*exp(real(ft)); 
nx(:,2)=del ./nx(:,l); 
nx(:,3)=xt'; 

return: 
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REFLECT.M 

function R = reflect(n,M) 
% reflect(n,M) calculates the Reflectivity of an index profile 'n' in nchan sections. 
%      n    = input index matrix, with index in column 1 and thickness of layer in column 
2. 
% (Assumes first row is on substrate) 
%     M    = number of points for output plot 
%    cutoff = min percentage of peak index to include 
% 
nchan=size(n) 
nchan=nchan(l); 
xt=[l:nchan]*n(2,l)*n(2,2); 
% 
incident=l; 
NGaAs=3.5986; 
NAlAs=2.9742; 
Nsub=1.52; 
Nair=l.; 
% assume incidence from substrate 
N0=Nsub; 
Nout=Nair; 
nx=n(:,l); 
d=n(:,2); 
% if incident from air, reverse order of indicies. 
% 
if incident == 1 
N0=Nair; 
Nout=Nair; 
nx=fliplr(nx')'; 
d=fliplr(d')'; 

end 
etaO=NO; 
% calculate phase delay delta and admittance for each layer. 
% note this phase delay does not yet include the division by 
% lambda, since lambda must be a variable to plot Reflectivity. 
% delta is a constant here, this assumes the input was generated 
% by the IFFT method using NOFAZ or SWEFTQ. 
delta=2*pi*nx(l)*d(l); 
eta = nx; 
% 
etaout=Nout; 
% 
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% now form the vector of [B C] used to find Reflectivity. 
% Also set the values of lambda to be ploted. The constant 
% M is the number of points to calculate. 
lambda=zeros( 1 ,M); 
film=zeros(2,2); 
J=sqrt(-1); 
% initialize the BC vector at the output end. 
fori=l:M 

lambda(i)=0.5+i*l/M; 
BC=[l,etaout]'; 
film(l,l) = cos(delta/lambda(i)); 
film(2,2) = cos(delta/lambda(i)); 
sini=J*(sin(delta/lambda(i))); 
for j=l:nchan 

film(l,2) = sini/eta(nchan-j+l); 
film(2,l) = sini*eta(nchan-j+l); 
BC = film*BC; 

end 
Y=BC(2)/BC(1); 
R(i) = (abs((etaO - Y)/(etaO+Y)))A2; 

end 
% 
% now plot the output, Reflectivity vs wavelength. 
plot(lambda,R) 
title('Reflectivity vs Wavelength') 
xlabel('Wavelength in microns') 
ylabel('Reflectivity') 
grid 
R=R; 
R(:,1)=R; 
R(:,2)=lambda'; 
return; 
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FFTRUN.M 

% Run for AR using fft. This is a script file. It is assumed the variables below 
% are defined in the MATLAB workspace. 
tic 
% 
[out,options]=constr('fftfun',input,optin,[],[],[],N,Rin,Nsub,din,k,x); 
I=sqrt(-1); 
fftN=zeros(N,l); 
fftN( 1 :Nd)=out( 1 :Nd)+I*out(Nd+1:2*Nd); 
fftN(N-Nd+2:N)=conj(flipud(fftN(2:Nd))); 
indexout=real(ifft(fftN)); % should be real by construction, just make sure. 

rplot=reflectn(indexout,Nsub,kplot,x'); 
time=toc 
eval(['save ',file]) 
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FFTFUN.M 

function [f,g]=fftfun(d,N,R,Nsub,din,k,x) 

% [f,g]=fftfun(d,R,Nsub,din,k,h) is a function to minimize in thin film optimization 
% This version uses sins as the building blocks instead of wavelets. 
% The first arguement is the vector of variables. R contains 
% the desired index profile, din is the thickness of the film, k is the vector 
% of wave numbers specified, and h is the wavelet filter to use. 
% 
%        d = vector of variable detail coefficients 
%        R = desired Reflectance vs k 
%       Nsub= index of substrate 
%       din = total thickness of film 
%        k = wavenumber vector 
% x = position vector 

I=sqrt(-1); 
Nd=length(d)/2; 
fftN=zeros(N,l); 
fftN(l:Nd)=d(l:Nd)+I*d(Nd+l:2*Nd); 
fftN(N-Nd+2:N)=conj(flipud(fftN(2:Nd))); 
Nx=real(ifft(fftN)); % should be real by construction, just make sure. 

Rcalc=reflectn(Nx,Nsub,k,x'); 

% f is the function to minimize, sum of squared error in reflectance 

f=sqrt(sum((R-Rcalc).A2)); 

% the g's are the constraints 

Nmin=1.38; 
Nmax=2.5; 
g(l:N)=Nmin-Nx; 
g(N+l:2*N)=Nx-Nmax; 
return 
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CONSTR.M 

function[x, OPTIONS,lambda, HESS]= constr(FUN,x,OPTIONS,VLB,VUB 
GRADFUN,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15) 

%CONSTR    Finds the constrained minimum of a function of several variables. 
% 
% X=CONSTR('FUN',X0) starts at XO and finds a constrained minimum to 
% the function which is described in FUN (usually an M-file: FUN.M). 
% The function 'FUN' should return two arguments: a scalar value of the 
% function to be minimized, F, and a matrix of constraints, G: 
% [F,G]=FUN(X). F is minimized such that G < zeros(G). 
% 
% X=CONSTR('FUN',X,OPTIONS) allows a vector of optional parameters to 
% be defined. For more information type HELP FOPTIONS. 
% 
% X=CONSTR('FUN',X,OPTIONS,VLB,VUB) defines a set of lower and upper 
% bounds on the design variables, X, so that the solution is always in 
% the range VLB < X < VUB. 
% 
% X=CONSTR('FUN',X,OPTIONS,VLB,VUB,'GRADFUN') allows a function 
% 'GRADFUN' to be entered which returns the partial derivatives of the 
% function and the constraints at X: [gf,GC] = GRADFUN(X). 
% 
% X=CONSTR('FUN',X,OPTIONS,VLB,VUB,GRADFUN,Pl,P2,..) allows 
% coefficients, PI, P2,... to be passed directly to FUN: 
% [F,G]=FUN(X,P1,P2,...). Empty arguments ([]) are ignored. 

% Copyright (c) 1990 by the MathWorks, Inc. 
% Andy Grace 7-9-90. 
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OPTIONS for CONSTR.M 

function OPTIONS=foptions(parain); 
%FOPTIONS Default parameters used by the optimization routines. 
% In MATLAB itself: 
% FMIN and FMINS. 
% In the Optimization Toolbox: 
% FMINU, CONSTR, ATTGOAL, MINIMAX, LEASTSQ, FSOLVE. 
% The parameters are: 
% OPTIONS(l)-Display parameter (Default:0). 1 displays some results 
% OPTIONS(2)-Termination tolerance for X.(Default: le-4). 
% OPTIONS(3)-Termination tolerance on F.(Default: le-4). 
% OPTIONS(4)-Termination criterion on constraint violation.(Default: le-6) 
% OPTIONS(5)-Algorithm: Strategy: Not always used. 
% OPTIONS(6)-Algorithm: Optimizer: Not always used. 
% OPTIONS(7)-Algorithm: Line Search Algorithm. (Default 0) 
% OPTIONS(8)-Function value. (Lambda in goal attainment.) 
% OPTIONS (9)-Set to 1 if you want to check user-supplied gradients 
% OPTIONS( 10)-Number of Function and Constraint Evaluations. 
% OPTIONS( 11 )-Number of Function Gradient Evaluations. 
% OPTIONS( 12)-Number of Constraint Evaluations 
% OPTIONS( 13)-Number of equality constraints. 
% OPTIONS(14)-Maximum number of iterations. (Default 100*no. of variables) 
% OPTIONS(15)-Used in goal attainment for special objectives. 
% OPTIONS(16)-Minimum change in variables for finite difference gradients. 
% OPTIONS(17)-Maximum change in variables for finite difference gradients. 
% OPTIONS(18)- Step length. (Default 1 or less). 

%        Andy Grace 7-9-90. 
%        Copyright (c) 1984-94 by The MathWorks, Inc. 

if nargin<l; parain = []; end 
sizep=length(parain); 
OPTIONS=zeros(l,18); 
OPTIONS (1 :sizep)=parain( 1 :sizep); 
default_options=[0, le-4,1 e-4,1 e-6,0,0,0,0,0,0,0,0,0,0,0,1 e-8,0.1,0]; 
OPTIONS=OPTIONS+(OPTIONS==0).*default_options; 
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REFLECTN.C 

/* 

reflectx.C      .MEX file corresponding to reflectn.M 
Calculates reflectance for input index profile 

The calling syntax is: 

[R] = reflectx(index,Nsub,k,x) 

Jeffrey J. Druessel Aug 19, 1995 

*/ 
/* */ 

/* function R = reflect(index,Nsub,k,x) 
/* reflect(index,Nsub,k,x) calculates the Reflectivity of a 
/* index profile in nchan sections. 
/*      index = input index matrix, with index in column 1 

and thickness of layer in column 2 
Nsub = index of substrate 

k   = wavenumber of points to plot 
x    = position of index values (units must match k) 

/* 
/* 
/* 
/* 
/* 
/* ref: MacLeod's book: Thin Film Optical Filters, Ch 2, 
/*   New York:MacMillian , 1986. 
/* */ 

*/ 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

#include <stdio.h> 
#include <math.h> 
#include "mex.h" 
#include "nrutil.h" 
#include "nrutil.c" 

/* Matlab provided header file for running with matlab */ 
/* Matlab provided header file for running with matlab */ 
/* Matlab provided functions for running with matlab */ 

/* Input Arguments */ 

#define INDEX_IN prhs[0] 
#define NSUBJN prhs[l] 
#define KJN prhs[2] 
#define X_IN prhs[3] 
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/* Output Arguments */ 

#define R_OUT plhs[0] 

#define max(A,B)       ((A) > (B) ? (A): (B)) 
#define min(A,B)       ((A) < (B) ? (A): (B)) 

#definepi 3.14159265 

static 
#ifdef_STDC_ 
int reflect(double n[],double x[],double R[],double k[], 

int nchan,double Nsub,int M) 
#else 
reflect(n,x,R,k,nchan,Nsub,M) 
double n[],x[],R[],k[]; 
int nchan; 
double Nsub; 
intM; 
#endif 

static double Nair=1.00; 
double NO,Nout,etaO,etaout; 
double a,b,c,d,RB,ffi,RCJC,RBO,ffiO,RCO,ICO,RY,IY; 
double *nx,*dl; 
double *delta,*eta; 
double * lambda; 
int ij; 

/* allocate vectors using dvector above */ 

nx=dvector( 1 ,nchan); 
d 1 =dvector( 1 ,nchan); 
delta=dvector( 1 ,nchan); 
eta=dvector( 1,nchan); 
lambda=dvector( 1 ,M); 

/* assume light is incident from air, film vector starts at substrate */ 
N0=Nair; 
Nout=Nsub; 
nx[nchan]=n[0]; 
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dl[nchan]=x[0]; 
for (i=l; i<nchan; i++) 
{ 
nx[i]=n[nchan-i]; 
dl[i]=x[nchan-i] - x[nchan-i-l]; 

} 

/* calculate phase delay delta and admittance eta for each layer.     */ 
/* note this phase delay does not yet include the division by */ 
/* lambda, since lambda must be a variable to plot Reflectivity.      */ 
/* The parameter etaO is the admittance of the incident media. */ 
/* */ 
/* */ 

etaO=NO; 

for (i=l; i<=nchan; i++) 
{ 

delta[i]=2.0 * pi * nx[i] * dl[i]; 
eta[i] = nx[i]; 

} 
etaout=Nout; 

/* now form the vector of [B C] used to find Reflectivity.  */ 
/* [B C] are both complex, so carry RB for real and IB for imag*/ 
/* Also set the values of lambda to be ploted. The values    */ 
/* below are for wavelengths between 500 and 1500 nm. The */ 
/* constant M is the number of points to calculate. */ 

for (i=l;i<=M;i++) { 
lambda[i]=2.0*pi/k[i-l]; 
RB0=1.0; 
roo=o.O; 
RC0=etaout; 
IC0=0.0; 
for (j=l;j<=nchan;j++) { 

a=cos(delta[nchan-j+1 ]/lambda[i]); 
b=(sin(delta[nchan-j+1 ]/lambda[i]))/eta[nchan-j+1 ]; 
c=(sin(delta[nchan-j+1 ]/lambda[i] ))*eta[nchan-j+1 ]; 
d=a; 

RB = a*RB0 - b*IC0; 
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IB = a*IBO + b*RCO; 
RC = d*RCO - c*ffiO; 
IC = d*ICO + c*RBO; 

RBO=RB; 
ffiO=IB; 
RCO=RC; 
ICO=IC; 

} 
RY=(RC*RB + IC*ffi)/(RB*RB+IB*IB); 
IY=(RB*IC - RC*IB)/(RB*RB+IB*IB); 

R[i-1] =((etaO-RY)*(etaO-RY)+IY*IY)/((etaO+RY)*(etaO+RY) + IY*IY); 

} 
free_dvector(nx); 
free_dvector(dl); 
free_dvector(delta); 
free_dvector(eta); 
free_dvector(lambda); 
return; 

#ifdef_STDC_ 
void mexFunction( 

int nlhs, 
Matrix *plhs[], 
int nrhs, 
Matrix *prhs[] 
) 

#else 
mexFunction(nlhs,plhs,nrhs,prhs) 
int nlhs,nrhs; 
Matrix *plhs[], *prhs[]; 
#endif 
{ 

double *index,*R; 
double *x,*k,*Nsub; 
unsigned int    m,n; 
int nchan,M; 
/* Check for proper number of arguments */ 

if (nrhs != 4) { 
mexErrMsgTxt("REFLECTX requires four input arguments."); 

} else if (nlhs > 1) { 
mexErrMsgTxt("REFLECTX requires one output argument."); 
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/* Check the dimensions of index, x. Determine number of k points */ 

m = mxGetM(INDEXJN); 
n = mxGetN(INDEX_IN); 
nchan=max(m,n); 
if (!mxIsNumeric(INDEX_IN) II mxIsComplex(INDEX_IN) II 

!mxIsFull(INDEX_IN) II !mxIsDouble(INDEX_IN) II 
(min(m,n) != 1)) { 
mexErrMsgTxt("REFLECTX requires that INDEX be a vector."); 

} 
m = mxGetM(X_IN); 
n = mxGetN(X_IN); 
if (!mxIsNumeric(X_IN) II mxIsComplex(X_IN) II 

!mxIsFull(X_IN) II !mxIsDouble(X_IN) II 
(max(m,n)!=nchan) II (min(m,n) != 1)) { 
mexErrMsgTxt("REFLECTX requires that X be a vector with same lenght 

as INDEX."); 

m = mxGetM(K_IN); 
n = mxGetN(K_IN); 
M = max(m,n); 
if (!mxIsNumeric(K_IN) II mxIsComplex(KJN) II 

!mxIsFull(K_IN) II !mxIsDouble(K_IN) II 
(min(m,n) != 1)) { 

mexErrMsgTxt("REFLECTX requires that K be a vector."); 
} 
/* Create a matrix for the return argument */ 
R_OUT = mxCreateFull(M, 1, REAL); 

/* Assign pointers to the various parameters */ 
R = mxGetPr(R_OUT); 
index = mxGetPr(INDEX_IN); 
Nsub = mxGetPr(NSUB_IN); 
k = mxGetPr(K_IN); 
x = mxGetPr(X_IN); 

/* Do the actual computations in a subroutine. Nsub is a double in the */ 
/* subroutine, so dereference before passing the value. */ 

reflect(index,x,R,k,nchan,*Nsub,M); 
return; 
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WAVRUN.M 

% Run for AR using wavelet with filter h 
tic 

input=nguess(Nbound,Nsub,din,N,k,h); 
VLB=-10*ones(Nvar,l); 
VUB=10*ones(Nvar,l); 
VLB(Nvar)=0; 
VUB(Nvar)=100; 

[out,options]=constr('wavfun',input(N-Nvar+l:N),optin,VLB,VUB,[], 
input(l:N-Nvar),Rin,Nsub,din,k,x,h); 

indexout=d_to_n(input( 1 :N-Nvar),out,h); 
rplot=reflectn(indexout,Nsub,kplot,x'); 
time=toc 
eval(['save ',file]) 
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WAVFUN.M 

function [f,g]=wavfun(d,Pl,R,Nsub,dhi,k,x,h) 
% [f,g]=wavfun(d,Pl,R,Nsub,din,k,h) is a function to minimize in thin film optimization 
% The first arguement is the vector of variables. PI on are parameter 
% vectors. PI contains the first level detail coefficeints, and R contains 
% the desired index profile, din is the thickness of the film, k is the vector 
% of wave numbers specified, and h is the wavelet filter to use. 
% 
%        d = vector of variable detail coefficients 
%        PI = vector of fixed detail coefficients 
%        R = desired Reflectance vs k 
%      Nsub= index of substrate 
%       din = total thickness of film 
%        k = wavenumber vector 
%        x = position vector 
%        h = wavelet filter 

Nd=length(d); 
NPl=length(Pl); 
N=Nd+NPl; 
decomp(l:NPl)=Pl; 
decomp(NPl+l:N)=d; 
Nx=upld(decomp',h); 

Rcalc=reflectn(Nx,Nsub,k,x'); 

% f is the function to minimize, sum of squared error in reflectance 

f=sqrt(sum((R-Rcalc).A2)); 

% the g's are the constraints 

Nmin=1.38; 
Nmax=2.5; 

g(l)=Nx(l)-Nsub; 
g(2:N+l)=Nrnin-Nx; 
g(N+2:2*N+l)=Nx-Nmax; 

return 
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UP1D.M 

function out=upld(A,h); 
% UP ID builds the rebuilds the sample value matrix from the matrix 
% of wavelet decomposition coefficients A with filter h. 
% This is a reconstruction for a ID decomposition 
% of coulumns of a matrix. 
% 
%      A =   matrix of wavelet coefficients. Should be power of 2. 
%      h =   column vector,wavelet filter to use. 
% 
% First check that h is a column vector. 
% 
temp=size(h); 
if temp(2)>temp(l) 

h=h'; 
end 
L=length(h); 
[N,P]=size(A); 
M=log2(N); 

% The matlab function spdiags(B,d,N,N) creates an N x N 
% sparse matrix with the elements of vector B on the diagonal d. 
% For more than one non-zero diagonal, B is a matrix and d is a vector 
% of which diagonals the columns of B go on. 

% for the wavelet filters, there are 2*L non-zero diagonals, 
% where L is the length of the filter h for the wavelet. 

% build filter matrix for h. 
B=ones(N,l)*[h',h']; 
ddd=[0:l:L-l,-N:L-N-l]; 
H=spdiags(B,ddd,N,N); 

% build filter matrix for g. 
g=flipud(h); 
g(2:2:L)=-g(2:2:L); 

B=ones(N,l)*[g',g']; 
ddd=[0:l:L-l,-N:L-N-l]; 
G=spdiags(B ,ddd,N,N); 
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% use transpose of G and H for reconstruction 
% Input is assumed to be arranged   I Dl      Dl    I 
% I D2     D2    I 
% I D3      D3    I 
% I   C        C     I 

C=A; 
N2=l; 
end 
pointN=N-2*N2+l; 
fori=M:-l:l 

Din=A(pointN: pointN+N2-1,:); 
Cin=C(pointN+N2:pointN+2*N2-l,:); 
N2=N2*2; 

D=zeros(N2,P); 
C=zeros(N2,P); 
C(1:2:N2, 
C(2:2:N2, 
D(1:2:N2, 

)=Cin; 
)=zeros(N2/2,P); 
)=Din; 

forj=l:log2(N/N2) 
C=[C;C]; 
D=[D;D]; 

end 
C=G'*D+H'*C; 
pointN=pointN-N2; 

end 
out=C; 
return 
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D0WN1D.M 

function out=downld(A,h); 
% DOWN ID builds the matrix of wavelet decomposition coefficients 
% for an input matrix A with filter h. This is a ID decomposition 
% of each colunm in the input matrix. 
% 
%     A =   matrix of sampled data. Should be power of 2. 
%      h =   column vector,wavelet filter to use. 
% 

% First check that h is a column vector. 
% 
temp=size(h); 
if temp(2)>temp( 1) 

h=h'; 
end 
L=length(h); 
[N,P]=size(A); 
M=log2(N); 

% The matlab function spdiags(B,d,N,N) creates an N x N 
% sparse matrix with the elements of vector B on the diagonal d. 
% For more than one non-zero diagonal, B is a matrix and d is a vector 
% of which diagonals the columns of B go on. 

% for the wavelet filters, there are 2*L non-zero diagonals, 
% where L is the length of the filter h for the wavelet. 

% build filter matrix for h. 
B=ones(N,l)*[h',h']; 
ddd=[0:l:L-l,-N:L-N-l]; 
H=spdiags(B,ddd,N,N); 

% build filter matrix for g. 
g=flipud(h); 
g(2:2:L)=-g(2:2:L); 

B=ones(N,l)*[g',g']; 
ddd=[0:l:L-l,-N:L-N-l]; 
G=spdiags(B ,ddd,N,N); 
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% This decomposition operates on columns. 
% the D matrices are the interactions at that level, 
% and the C matrix is the input for the next level of decomposition. 
% Output is arranged   I Dl      Dl    I 
% I D2     D2    I 
% I D3      D3    I 
% I   C        C     I 

out=zeros(N,P); 
Ain=A; 
pointN=l; 
N2=N; 
fori=l:M 

N2=N2/2; 
D=G*Ain;D=D(l:2:N,:); 
C=H*Ain;C=C(l:2:N,:); 
Ain=[C;C]; 

out(pointN:pointN+N2-l,:)=D(l:N2,:); 
pointN=pointN+N2; 

end 
out(N,:)=C(l,:); 

return 
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FFTMIN.M 

% Optimization script for finding the minimum film thickness 
% for a given reflection tolorance using fourier series method. 
% The matlab workspace must have a valid design loaded. 
% The design should be too thin to produce the desired performance. 
% The first part of the script calculates the value of the error as 
% a function of film thickness. The starting thickness, stop thickness, 
% and number of point is hard coded in below. A curve is then fit to 
% these points, and the min thickness is determined from the curve. 
% 

% This script uses a simple bisection method to find the zero intercept 
% of error-Rtol. 
% the variables used are: 
%      data is an array of each point and its function value 
tic 
load yagfft3 
file-fminpad'; 
Nvar=32; 
optin(14)=10000; 
start=300; 
stop=900; 
points=10; 
data=zeros(points+1,2); 
dx=(stop-start)/points; 

% Find index for starting thickness 

din=start; 
x=linspace(0,din,N+1); ,x( 1 )=[]; 
input=zeros(2*Nd,l); 
input(l)=Nsub*N/2; 
[out,options] =constr('fftfun',input,optin, [], [], [] ,N,Rin,Nsub,din,k,x); 
I=sqrt(-1); 
fftN=zeros(N,l); 
fftN( 1 :Nd)=out( 1 :Nd)+I*out(Nd+1:2*Nd); 
fftN(N-Nd+2:N)=conj(flipud(fftN(2:Nd))); 
indexout=real(ifft(fftN)); % should be real by construction, just make sure. 
data(l,:)=[din,options(8)]; 

oldindex(:, 1 )=indexout(:, 1); olddin=din; 
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for i=l: points 
newdin = start + i*dx; 
flateval; 
data(i+l,:)=[newdin,options(8)]; 
if(data(i,2)<data(i+l,2)) 

indexin=oldindex(: ,i); 
fpadeval; 
data(i+l,:)=[newdin,options(8)]; 

end 
oldindex(: ,i+1 )=indexout(:, 1);   olddin=newdin; 
eval(['save ',file]) 

end 

time=toc; 

FLATEVAL.M 

% Script to evaluate a point in frunmin with constant seed 

x=linspace(0,newdin,N+1) ;x( 1 )=[]; 
[out,options]=constr('fftfun',input,optin, [],[],[] ,N,Rin,Nsub,newdin,k,x); 
I=sqrt(-1); 
fftN=zeros(N,l); 
fftN( 1 :Nd)=out( 1 :Nd)+I*out(Nd+1:2*Nd); 
fftN(N-Nd+2:N)=conj(flipud(fftN(2:Nd))); 
indexout=real(ifft(fftN)); % should be real by construction, just make sure. 
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FPADEVAL.M 

% Script to evaluate a point in frunmin with substrate padding 

x=linspace(0,newdin,N+1) ;x( 1 )=[]; 
pad=((newdin/olddin-1) *N); 
padN=ceil(pad); 
newx=linspace((pad-padN)*olddin/N,newdin,N+padN+l); 
newindex=[Nsub*ones(padN+1,1) ;indexin]; 
index=interp 1 (newx,newindex,x,'spline'); 

fftin=fft(index); 
input( 1 :Nd)=real(fftin( 1 :Nd)); 
input(Nd+l:2*Nd)=imag(fftin(l:Nd)); 

[out,options]=constr('fftfun',input,optin,[],[],[],N,Rin,Nsub,newdin,k,x); 
I=sqrt(-1); 
fftN=zeros(N,l); 
fftN(l:Nd)=out(l:Nd)+I*out(Nd+l:2*Nd); 
fftN(N-Nd+2:N)=conj(flipud(fftN(2:Nd))); 
indexout=real(ifft(fftN)); % should be real by construction, just make sure. 
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WAVMIN.M 

% Optimization script for finding the minimum film thickness 
% for a given reflection tolorance. 
% The matlab workspace must have a valid design loaded. 
% The design should be too thin to produce the desired performance. 
% The first part of the script calculates the value of the error as 
% a function of film thickness. The starting thickness, stop thickness, 
% and number of point is hard coded in below. A curve is then fit to 
% these points, and the min thickness is determined from the curve. 
% 
% This script uses a simple bisection method to find the zero intercept 
%oferror-Rtol. 
% the variables used are: 
%      data is an array of each point and its function value 
tic 
load nmin350 
file='nminflta'; 
Nvar=32; 
optin( 14)= 10000; 
start=540; 
stop=900; 
points=6; 
data=zeros(points+l,2); 
dx=(stop-start)/points; 
logrtol=loglO(Rtol); 

% Find index for starting thickness 

din=start; 
x=linspace(0,din,N+1); ,x( 1 )=[]; 
indexin=Nsub*ones(N, 1); 
input=down 1 d(indexin,h); 
[out,options]=constr('wavfun',input(N-Nvar+l:N),optin,VLB,VUB,[], 

input( 1 :N-Nvar),Rin,Nsub,din,k,x,h); 
indexout=d_to_n(input( 1 :N-Nvar),out,h); 
data( 1,: )=[din,options(8)]; 

oldindex(:, 1 )=indexout(:, 1); olddin=din; 

for i=l: points 
newdin = start + i*dx; 
nfltevala; 
data(i+l,:)=[newdin,options(8)]; 
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if (data(i,2)<data(i+l ,2)) 
indexin=oldindex; 
npadeval; 
data(i+l,:)=[din,options(8)]; 

end 
oldindex(:,i+1 )=indexout(:, 1);   olddin=newdin; 
eval(['save ',file]) 

end 

time=toc; 

NFLTEVAL.M 

% Script to evaluate a point in wavmin with constant seed 

x=linspace(0,newdin,N+1) ;x( 1 )=[]; 
[out,options]=constr('minfun',input(N-Nvar+l:N),optin,VLB,VUB,[], 

input(l:N-Nvar),Rin,Nsub,newdin,k,x,h); 
indexout=d_to_n(input( 1 :N-Nvar),out,h); 

NPADEVAL.M 

% Script to evaluate a point in nrunmin with substrate padding 

x=linspace(0,newdin,N+1) ;x( 1 )=[]; ^ 
pad=((newdin/olddin-1) *N); 
padN=ceil(pad); 
newx=linspace((pad-padN)*olddin/N,newdin,N+padN+l); 
newindex=[Nsub*ones(padN+1,1) ;oldindex]; 
index=interpl(newx,newindex,x,'spline'); 
input=down 1 d(index,h); 
[out,options]=constr('minfun',input(-Nvar+l:N),optin,VLB,VUB,[], 

input( 1 :NNvar),Rin,Nsub,newdin,k,x,h); 
indexout=d_to_n(input( 1 :N-Nvar),out,h); 
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