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INTRODUCTION 

The technical content of the research carried out under the aegis of this contract is 

covered under two essentially distinct topics: 

A. Inversion problems associated with surface acoustic waves (SAW) 

B. Inversion problems associated with laser doppler velocimetry (LDV); signal-to-noise 

issues occurring in LDV. 

These two topics will be discussed separately. 

We should point out that no attempt was made to provide detailed numerical results as 

has been my custom for the last thirty years. The reasons are two-fold: firstly, these two topics 

do not lend themselves to a numerical description in terms of a few parameters (especially LDV) 

so that really detailed parameter calculations must be carried (it is my feeling that a limited 

parameter series of calculations will probably lead to such an incomplete numerical description 

that false "rule-of-thumb" conclusions may be drawn); secondly, the mathematical description of 

both topics leads to nonlinear mathematical operations that are just too complicated (and require 

enormous memory) to be run on workstations of even VAXs, we need massively parallel 

computing power to effect the numerical calculations such as a CONNECTION machine or the 

new IBM parallel machine on MAUL Nevertheless numerical computations were carried out on 

a VAX to illustrate some aspects of topic A. 



NUMERICAL INVERSION OF NONLINEAR INTEGRAL EQUATIONS OF THE FIRST 

KIND WITH APPLICATIONS TO SURFACE ACOUSTIC WAVE PROBLEMS 

The second topic: inversion of nonlinear integral equations of the first kind with 

applications to SAW (surface acoustic waves), has been treated in a quite general manner 

concentrating upon the development of an algorithm that is reasonably robust with respect to 

measurement noise. The technique developed depends upon a relatively new idea, that of "trust 

regions", in conjunction with Newton-like methods which involve exact calculations of both 

Jacobian and Hessians of the least squares objective function. The necessary reasons for using 

this approach (as well as the mathematical) are worked out and discussed in the main text of this 

section. Rather than attempting the inversion problem in the context of SAW, I have decided to 

cast the specifics in terms of a formally similar problem: "inversion of the modulus/phase of a 

coherently illuminated object from its measured diffraction image" as I have worked extensively 

in the area of optical diffraction theory with the result that I have a good heuristic feeling for the 

plausibility of the correctness of the "solution". I am now confident of the usefulness of the 

proposed algorithm having run some numerical inversions (see main text). It is now a 

straightforward matter to transform the algorithm specifics into the SAW inversion problem in 

accordance with information to be provided by Dr. W. Micelli. 

As noted in the last paragraph of page 20, a constrained version of the problem has been 

developed in order to handle (if necessary) the non-negativity of the solution. Further, as noted 

at the end of page 8, we really need to use a parallel machine (such as on Maui) if we are going 

to speed up the calculations for the SAW problem. The calculations presented here were carried 

out on a VAX, a truly slow machine by todays standards. 



ABSTRACT 

An algorithm for recovering the modulus and phase of a coherently illuminated object 

from its Measured diffraction image is presented. The algorithm is based upon the fact 

that both the Jacobian and Hessian matrices can be evaluated exactly so that both slope 

and curvature information is available. The inversion problem is cast as a nonlinear uncon- 

strained optimization problem, and trust region techniques are employed for its solution. 

Representative numericals are presented. 
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1. INTRODUCTION 

The problem of measuring the diffraction image of an incoherently illuminated 

object and working back to determine (or estimate) the object itself has been of great 

interest in many scientific and technical areas for the past twenty years. The subject has 

grown to such an extent that even listing the books and major review articles is a tedious 

undertaking. 

At the other extreme, we have the analogous problem for a coherently illuminated 

object, a much more difficult problem because the relation between object and diffraction 

image is nonlinear., whereas the corresponding relation for incoherently illuminated 

objects is linear. In many respects the coherently illuminated situation is much older than 

the incoherently illuminated situation in that light microscopists have always encountered 

such problems. Their "solutions" have generally been of the old-fashioned expert 

systems type; they have encountered over the years a variety of biological objects and 

developed an empirical expertise in sorting out situations. In a sense their primary 

artifact is the diffraction image, not eh actual object, as witness the various phase contrast 

methods [1,2]. Unlike the incoherent situation, there is no guarantee that the topology of 

the object bears any resemblance to its coherent diffraction image. As an example, see 

Figure 1 which shows the diffraction image of an edge viewed through an optical system 

with an annular aperture [3]. 
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In the present paper, a solution for the modulus and phase of a coherently 

illuminated object is obtained via a nonlinear regularized minimization algorithm. We 

have brought to bear powerful tools recently developed in numerical analysis (particularly 

trust region considerations) toward the efficient solution of the inversion problem. The 

present scheme takes advantage of the fact that we can evaluate both Jacobian and 

Hessian matrices exactly, thereby allowing use of slope and curvature information 

explicitly. There is no need to make the usual small residual approximation of the 

Hessian with its convergence limitation in the presence of measurement noise. A second 

benefit of knowing the Jacobian and Hessian explicitly is that we can make very efficient 

use of the trust region tests in determining the pat to local minima. There are a number of 

algorithms for the inversion of modulus/phase of coherently illuminated objects already 

published; see Stark [4] for an extremely useful summary. Practically all these algorithms 

will yield a reasonably accurate estimate of the support of the object, and the present 

algorithm is no exception. However, many coherently illuminated objects contain 

changes in modular/phase over the surface so that an algorithm (such as the one discussed 

here) which also can deliver information on the distribution of modulus/phase over the 

object is extremely useful for applications (e.g., biological light microscopy). 

Furthermore, the present method is reasonably robust with respect to noise because we 

operate in the large residual regime. 

W 



2. DIFFRACTION MODEL 

The diffraction image of a coherently illuminated object. I(x, y) in the image receiving 

plane with coordinates x, y is measured over a square lattice of points xm, yn: 

Xrn  — Pm 

yn = ßn 
m ,n = 0,±l,±2,...,±M (2.1) 

W 
here 3 is a numerical constant. It is assumed that M is large enough for 

I{x\u\,y\\i\) ~° 
(2.2) 

In what follows, it will be convenient to write {xm,ym) = hmn as a column vector I of 

length m = (2.1/ + I)2 using standard Fortran lexiographic ordering. 

We assume that the measured diffraction image can be modelled via scalar optical 

diffraction theory so that the model diffraction image, I(x,y). is given by the convolution 

l(x,y) = i{x - x',y - y')o{x',y') dx dy 

object 

(2.3) 

assuming the isoplanatic condition to hold. 

The coherently illuminated object is characterized by a complex-valued function 

o(x,y) with modulus |o(x,y)| and phase arctan[0i(x,y)/on(x,y)]. The function a(x,y) 

is the coherent point-spread function of the optical system performing the imaging; to 

within multiplicative factors it is 

a(x,y) = A(C,r?)e,7(rC+!"')^^ (2-4) 

exit pupil 
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with k as the mean wavenumber of the coherent light and / the focal length.  The pupil 

function A(C/) is given by 

A{(i,v) = B(C,r})t 
ikWU.r,) (2.5) 

with W((,-q) the wavefront aberration function over the exit pupil and B((,T]) the ampli- 

tude distribution over the exit pupil; both are assumed known in the present scenario. 

For the very important case of a circular aperture exit pupil of radius a for which 

B(C,rj) = 1 and W((, n) = 0, we have 

i{z,y) 
2.1, ftf y2)1/2 

tf(x* + ißyr- 
(2.6) 

Since in most applications, the exit pupil is circular; under these circumstances it is 

convenient to employ normalized coordinates: 

ka 
u = —x , 

P = a 

ka 
v = — y 

V q=- 
a 

Consequently Eqs. (2.3), (2.4), and (2.6) become 

l(u,v) = j  / a(u — u',v — v')o(u',v')du'dv' 

object 

a 

,^.i 

(2.3a) 

a(iz,i/) = .      I J      A(p,3)e''^+^   dpdq 

0<P2 + ?2<1 

(2.4a) 

a(u,v) 
2J1((u2+U

2)1/2) (2.6a) 
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Leaving aside the mathematical details for the moment, let us consider the task before 

us. We are given measured values of the diffracted intensity and are required to determine 

the modulus and phase of the object assuming that the measured diffracted intensity 

can be modeled as the convolution. Eq.   (2.3), and that we know the parameters of the 

optical system characterizing the coherent point spread function, Eq.   (2.4).   Said object 

is contained in the integrand of a double integral which is itself squared.   When viewed 

from this perspective, we should not be unduly optimistic about achieving an accurate 

solution because of the inherent nonlinearity and strong smoothing action of the double 

integral.   Irrespective of the actual inversion method, the strong smoothing action of the 

integration means that much high frequency data is lost and cannot be retrieved, even in 

principle.   Only a low frequency version of the object can be obtained.  Perhaps the best 

way to consider the problem is to interpret it thusly: we are given the "answer"' (= effect) 

in the form of a noisy diffraction image of the object and are attempting to determine 

the "question" (= cause), the coherently illuminated object.  The mathematical relation 

between answer and question is highly nonlinear by virtue of Eq.   (2.2), bearing in mind 

that a(u,v) is additionally an oscillating, complex-valued function. 

In a sense this problem can be considered as a two-dimensional phase retrieval problem, 

see f^Ü for various details.   We will not discuss the general issues of ill-posed inverse 
L \a,\3 

problems and refer the reader to [W*S] for some of the theoretical aspects. 

Our diffraction model image l{u,v) is to be determined by the values of the . image 

at the lattice points (u'„^) inside a square in the («>') plane that is large enough to 

contain the image. The number of object values, o(v'k,v't) = okt is taken to be N. It is 

important to remember that both modulus and phase must be determined at each of these 

lattice points. Let h be the number of unknown modulus and phase values (obviously n 

must be even); the unknown oki are to be written as a column vector o. 
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Although we have run several dozen inversions, we do not possess a sufficiently large 

base to estimate benchmark performance. However, many of our inversions, regardless 

of the initial guess, took 150-180 iterates to converge. In a few cases, convergence was 

achieved in half this number: nevertheless we also encountered some cases where conver- 

gence required 200 iterations. 

Generally the algorithm performance decomposed into two stages: (a) the initial stage 

wherein the objective functions went through wild gyrations in magnitude as the trust re- 

gion subalgorithm had to compute many new gradient and Hessian matrices while searching 

for an appropriate direction of descent; (b) the second stage, when the trust region subal- 

o-orithm has locked into a subset of -'optimal" directions of descent, the objective function 

then undergoes a monotone decrease to zero as the number of iterations is increased. We 

again warn the reader that although convergence is attained, there is no guarantee that 

the global minimum has been achieved. 

As a final remark, we note that as the analysis is heavily dependent upon linear algebra 

(matrices, vectors); it would be of some interest to consider doing calculations via parallel 

processing algorithms to speed up the computations even more. 
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In this notation Eq. (2.3a) becomes I(o) where 1 is a vector of length m. The 

inversion problem relates the unknown (complex-valued) object values o of the assumed 

diffraction model to the measured diffraction image I via the nonlinear relation 

I=I(o)    • (2-7) 

This equation is to be interpreted as a system of m nonlinear equations in n unknowns. 

Enough data must be given to allow some smoothing of the measured diffraction image 

data as regards the diffraction model; consequently we let m > n so that the nonlinear 

system is overdetermined. The problem now reduces to the solution of Eq. (2.7) in some 

normed sense. 

It is of some interest to contrast the differences between the incoherently illuminated 

and coherently illuminated object situations. The relation between object and image for 

incoherently illuminated objects, again assuming that the isoplanatic conditions holds, is 

Ii{x,y) = J J tix-x'ty-y'Mx'^dx'dy' (2.S) 

object 

where 

ot(x.y) = intensity distribution over the 

incoherently radiating object 

t(x,y) a \a{x,y)\2 = incoherent point-spread function 

J-(x, y) = intensity distribution over the diffraction 

image of   ot(x,y) 
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Two points to note: (1) all functions in Eq. (2.3) are real and nonnegative, (2) the relation 

between answer, I,(x, y), and question, o,(x, y), is linear. On the other hand, for the coher- 

ently illuminated object only the diffracted intensity is real and nonnegative. Furthermore 

the relation between I(x,y) and o{x,y) is nonlinear. Consequently the incoherently illu- 

minated object scenario is much easier to invert than the coherently illuminated object 

scenario. 
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3. PRELIMINARIES 

In order to proceed, we next discretize the double integral on the right-hand side of 

Eq. (2.3a) 

±{um,vmi Lmn — 

iV     iV 

C y Y^j akOtia(um - Ujfc, l'n ~ Vt)o{vk,Vit 

fc=ll=\ 

(3.1) 

Here u,, vt are the quadrature points and CLk,cn are the corresponding weight factors. 

In the numerical algorithm we employ for the inversion (see next section), we require 

the first and second derivatives of lmn with respect to oki in order to form Jacobian 

and Hessian matrices. We need not write out the explicit formulas because we employed 

a symbol manipulation program Jo "evaluate them directly in the computer from which 

numeric al values are obtained internally. 
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4. OUTLINE OF SOLUTION APPROACH 

We now outline the general features of our numerical approach to the nonlinear phase 

retrieval problem via regularized unconstrained minimization. Our version of the uncon- 

strained minimization problem is that of finding the least value of an objective function, 

e(o). The term unconstrained indicates that the variables o are not limited in any way. In 

our application, we wish to determine a global minimum of e, i.e., a point o* satisfying 

e(o)>e(o*), Vo    . (4.1) 

Unfortunately we must be content with a local minimum: 

e(o) > e(o*) Vo ,  in a neighborhood of o*     . (4.2) 

Solution of the global minimum problem is far harder than the solution of the local mini- 

mum problem which itself is extremely complicated [16,17]. 

The derivation of nearly all methods for unconstrained minimization is founded on the 

assumption that the objective function e(o) can be approximated by a quadratic function 

in the neighborhood of a minimum point.    Thus methods are sought which efficiently 

minimize quadratic functions in the hope that they will also be effective on more general 

functions, at least in the neighborhood of a minimum. When first and second derivatives of 

e(o) are known, such as in our case, then we can make use of both gradient and curvature 

information to effect a solution.  Furthermore, both gradient and curvature, as governed 

by G and H, see Eqs.   (4.4) and (4.5), can be calculated exactly in the context of the 

discretized version of our problem. Thus, we can avoid many of the difficulties associated 

with situations where G and H are known only approximately. The Taylor series expansion 

of the objective function can be used to approximate its minimum value from points o near 

to the minimum o* by moving in a direction Ao 

!'•      ^ e(o -f- Ao) « e(o) + GT(o)(Ao) + -(Ao)TH(o)(Ao) (4.3) 



G and H are the Gradient vector and Hessian matrix of the objective function, respectively 

GT = 
de      de de 

doi '  do2 doh 

(4.4) 

H = 

do\ 

d2e 

d2e 
8o\dOn 

d2e 

'A.o] 

don'äoi     '''       do'h 

Note that H is symmetric. Both G and H are exact within the context of the discretization. 

The strategy is to determine the vector Ao of the movements required to approximate the 

minimum from the current point o. 

Before proceeding further, it is important to state the conditions for a given point o to 

be an unconstrained strong minimum o* (i.e., a point o* for which the objective function 

increases locally in all directions. The first order necessary condition is [16,17] 

G(o*) = 0 (4.6) 

However, this condition is not sufficient as other types of minima (stationary points) also 

satisfv this condition. The second order condition follows from Eq. (4.2) and is [11,12] 

(Ao)iH(o*)(Ao)>0 (4.7; 

which is sufficient to ensure that e(o* + Ao) > <o*). If e(o) + 0, this implies that H(o*) 

is a positive definite matrix. Therefore the second-order sufficient condition for a strong 

minimum is that H(o*) should be positive definite. 

Returning to Eq.   (4.3), hereafter termed the local model of the object function, we 

initiate a search for o* by moving Ao.   This involves an iterative procedure in that we 
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Start from some point o and choose in some fashion a direction Ao in which the minimum 

is assumed to lie. This is repeated until the minimum is achieved (if possible). Because we 

are employing a quadratic version of e(o) then the local model of e(o) always allows us to 

find a solution. However, the local model of e(o) is certainly not a useful approximation 

to e(o) itself except near a minimum. It is an act of faith that the local model and the 

actual model are "close" in the vicinity of the minimum. Simple calculations [&&] show 

that at a minimum 

Ao = -[H(o)]-1G(o)    . (4-8) 

This equation represents the appropriate direction Ao to take to the minimum o*. based 

upon information at o.   This equation is fundamental to all second-order minimization 

algorithms (i.e., algorithms employing both G and H). However, on the actual objective 

function surface, such as we are faced with, the local model of e(o) is only accurate in 

the immediate vicinity of the minimum. This means that H may not be positive definite, 

as required by Eq.   (4.7). since it is evaluated at points other than the minimum.   This 

situation is most likely to occur at some distance from the minimum (i.e., for initial iter- 

ations) since at a point close to the minimum all sufficiently differentiable functions tend 

to behave as a quadratic function as their third and higher order derivatives in the Taylor 

series become negligible.   We will return to the necessity of keeping H positive definite 

verv shortly. 

The classic approach to limiting step size during the iteration is a line search [&&>]■ 

In line search tactics we compute a descent direction and subject this direction (which is 

generally not toward the unconstrained minimum) to a minimization procedure of which 

details can be found in the above references. Should the descent direction satisfy these 

criteria, this iteration is then terminated. We then repeat the process, etc. The difficulty 

of practical implementation is two-fold. First, such calculations are prohibitively expen- 

sive and the minimization criteria are therefore only approximate to save computer time; 



yet they must be made precise enough to ensure reasonably quick convergence. Second, 

fulfilling these contradictory goals is something of a black art and the programming effort 

is very substantial, often occupying up to two-thirds of the coding for the entire optimiza- 

tion. For small problems, such as the slit aperture, line search methods are very useful 

and were employed along with regularized singular value decomposition in [IS]. 

Although it is possible to use line search methodology for the 2-D aperture, we have 

chosen to emplov a relatively new method which offers many advantages over the line search 

methodology, the trust region tactic [^»WcggBW- A particular advantage of the 

trust region approach is in the very strong global convergence properties which hold with 

no significant restrictions on the class of problems to which they apply making it especially 

useful for the nonlinear minimization of phase retrieval in two dimensions. In addition, the 

trust region philosophy requires less computation than does the line search philosophy in 

terms of gradient and Hessian, but more computations have to be performed on the local 

model of the objective function. 

Suppose we are at point o<*>, after the fc-th iteration. Now let us assume that there 

?2;ion A(fc), which we take to be in the shape of a sphere of radius hU) 

^ = {o:\\o-o^\\<h^} (4-9) 

m which the local model of e(o), given by the Taylor series Eq. (4.2) agrees with the actual 

objective function in some sense. One's obvious choice is to let 

where the correction A^ minimizes the local model (A) for all values of o^ + A in A<fc>. 

An iteration step in o is to be restricted by the region of validity of the Taylor series. Thus 

we compute the gradient and Hessian, G and H, appropriate to o<fc> and minimize the 
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local model of e(o) in order to determine the radius h^ of the trust region.   In formal 

language, we seek the solution of the problem 

minimize (local model) subject to constraint  ||A||2 < h{k) . (4.11) 

Before we can solve this subproblem it is necessary to choose some reasonable criterion 

on the radius h^ of the trust region. Obviously, the criterion should not present undue 

restrictions, so that h^k) should be as large as possible subject to some agreed-upon idea 

as to the degree of closeness of the local model of e(o) and e(o). One way is to define the 

quality coefficient 

where the denominator is the predicted reduction of the local model of e, now call it eq, 

while the numerator represents the reduction in the actual objective function. The closer 

r, is to unity, the better the agreement between e and eq. As a stopping criterion stop if 

r, > .8 and go to the next iteration. If rk < .8 reduce h^ and repeat the calculation. 

The literature contains other stopping criteria but the one quoted above seems adequate 

for our purposes. See the quoted references for more details. 

Thus far we have outlined the general features of the inversion problem, estimating 

o via minimization of an objective function e, as yet unspecified. We feel that there are 

two objective functions of possible interest. The first is the usual least squares (L2 norm) 

objective function 

£(o) = YJ& - J02     • (4-13) 
t=i 

In this version of the problem, we consider the estimation of o via an (unconstrained) 

nonlinear least squares minimization. A second objective function is for an Lx norm 

in 

e(o) = T\ii-m (4-14) 
t=i 
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Consequently we have allowed considerable flexibility in the e minimization algorithm so 

as to accommodate both objective functions as well as others that may arise. For the 

purposes of the present paper, we confine the discussion to the L2 norm aspects. 

Upon defining the vector 

$(o)=   X~l 
(4.15) 

w h ich is of length m. we can rewrite Eq. (4.13) as 

e(o) = $J(o)$(o) (4.16) 

The elements of G and H can be expressed directly in terms of the elements $ by 

introducing an ancillary matrix J given by 

dpi 

do- 
■  m 

This matrix is generally rectangular. Thus 

dp- 

~doh 

(4.17) 

de      0^,dp, (4.18) 

or 

G = 2JT$    . (4.19) 

The corresponding elements of H are 

^ dok  dot        4^      dokdot dokdot 
(4.20) 
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with k,E = 1,2,. • •, n.  The first term on the right-hand side is 2JTJ and we will call the 

second term S; thus 

H = 2JTJ + S (4-21) 

There is no guarantee that H will always be positive definite through the calculations; 

in fact H will become almost singular as we approach the strong minimum. To avoid 

this state of affairs, we consider a regularized version of H. In the regularized version, 

we replace H by H - ql where q, the regularizing parameter, is a small nonnegative real 

number. This procedure can remove H from near singularity and for sufficient large q 

restore the positive definite character of the Hessian. In linear problems, there is a well 

established method to estimate q [S*]. In the nonlinear problem we employed q in the 

range 0.01 < q < 0.05. There was not much difference in the final answers as long as 

q > 0; but setting o = 0 caused considerable numerical instability as expected. 

% 



5. A NUMERICAL EXAMPLE 

It is not our intention to present a catalog of numerical results at this time, yet we wish 

to discuss the numerical workings of the algorithm in the presence of "measurement" noise. 

To this end we considered a known object o(u,v) and from it calculated the diffraction 

image l(u,v) from Eq. (2.3a) using the point-spread function a(u,v) corresponding to an 

in-focus, aberration-free optical system as given by Eq. (2.6a). The measured diffraction 

image I(u, v) was taken to be given by 

I{u,v) = [l + 6n(u,v)]l(u,v) :s.r 

where 8 is a positive constant less than unity and p{um,vn) is a random variable uniformly 

distributed over (-1, -fl): 

f(ß) = \ > H < l 

= 0  , M > 1 (5-2) 

Values of S used in the present calculations, such as 8 = 0.04 are described loosely as 

4% a noise. Note that the noise we are introducing is intensity dependent noise; it is not 

intended to faithfully simulate actual detector noise but rather to mimic such noise for the 

purpose of testing the robustness of the inversion algorithm. 

We have chosen the following lone object to illustrate the calculations: 

o(u,«) = 0, , -oo<u<-15 

= ?[3 + erf(u)], -15<y<15 (5.3) 
8 

= 0, -15<u<co 

where erf(u) is the error function.   There are two reasons for choosing this object.   The 

first reason is that the modulus of the object exhibits a spatial variation.   One of the 



(as yet unstated) requirements on the algorithm is that it be able to recover reasonably 

accurate estimates of the object photometry in addition to estimating its size; as noted in 

the introduction almost any of the currently available algorithms can perform this; very 

few seem to be able to provide reasonably accurate estimates of photometry. The second 

reason for choosing this object is that it is very small in width being slightly less than Airy 

disk radius across (recall that an Airy disk radius « 3.S2). These two constraints present 

a severe test of the algorithm. 

Calculations were run for the completely unrealistic case of the noise-free, measured 

diffraction image of the object given by Eq. (5.3). The inversion algorithm was able to 

return reasonable answers as compared to the true values. We will not quote any of these 

results and go to the ■"noisy" measurement situation. 

In Figure 2 we show a sample realization of the reconstruction in the presence of 27c 

measurement noise. Xote the presence of negative values of the modulus at the edges of 

the object; however the photometry of the reconstruction follows the true object very well 

except at the edges. Two sample realizations of the reconstruction of the modulus of the 

object, in the presence of #c measurement noise are shown in Figs. 3 and 4. Again note 

the unphysical negative values of the modulus at the edges of the object. Considering 

the fact that the object is so small the modulus is in reasonable agreement with the true 

object in spite of measurement noise. 

The troublesome feature of the present inversion algorithm is obviously the occurrence 

of negative modulus values at the edges of the object. The edges are somewhat unrealistic 

because they are of infinite slope and the algorithm tends to overshoot in the manner of a 

Gibbs phenomenon. We could, of course, consider objects with finite slopes at the edges 

to minimize the overshoots and undershoots; instead we have decided to develop a vari- 

ant of the inversion algorithm using constrained minimization to surmount this annoying 

problem. Details will be reported in the near future. 
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6. SUMMARY 

Given the rather discursive presentation, we feel it is useful to summarize the essentials 

of our approach to the problem. We consider the problem of determining the modulus and 

phase of the object at the lattice points as one of unconstrained minimization. A local 

(i.e., quadratic) model approach is used. We are in the fortunate position of employing 

both the Jacobian and Hessian, which, in the context of the discretized diffraction model, 

can be evaluated analytically! Thus we make use of both slope and curvature information, 

other methods only use slope information. The relatively new, and powerful trust region 

algorithm is then utilized in place of the usual line search algorithm. The trust region 

algorithm makes full use of the local model and takes into account local validity; moreover 

the algorithm exhibits global convergence properties. 

&l 
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FIGURE LEGENDS 

Fig. 1 Distribution of illuminence in the diffraction image of a coherently illuminated opaque 

edge: o(v) = 0, v < 0 and o(v) = 1 for v > 0 viewed through an annular aperture 

of obscuration radius e = 0.05. The solid line is for the in-focus situation, the dotted 

line is for a half-wave of defocus. Taken from Reference 

Fig. 2 Sample realization of reconstruction of modulus and phase of coherently illuminated 

object (dashed lines) in the presence of 2% measurement "noise". 

Fi-   3 Sample realization  of reconstruction of modulus of coherently illuminated object 

(dashed line) in the presence of ^o measurement ' noise . 

Fio-   A Sample realization of reconstruction of modulus of coherently illuminated object 

$1* ..    •    -, 
(dashed line) in the presence of 4^C measurement "noise . 
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LASER DOPPLER VELOCIMETRY ISSUES 

The subject of laser doppler velocimetry (LDV) has been of interest to the Navy for many 

years and for a variety of reasons we need not chronicle. I have been tasked by Dr. William 

Statnick to investigate theoretical issues relating to this topic; this section contains some of my 

preliminary investigations into the subject, of which there are three subtopics reported at this 

time. 

The first subtopic is devoted to the subject of increasing the signal-to-noise ratio in 

multichannel data for use in LDV. This I have accomplished by employing a deterministic 

version of the KL-expansion, the details are sketched out in the report. A second subtopic which 

arose from the first subtopic is that of determining a harmonic signal buried in Gaussian noise. 

While working on the deterministic KL-expansion, I figured a way to extend the stochastic KL- 

expansion to second order statistics. The work has been written for possible publication, and the 

details are given here in the form of a paper. The third subtopic is that of LDV itself. 



SIGNAL-TO-NOISE ENHANCEMENT IN MULTICHANNEL 

DATA FOR USE IN LVD 

Dr. William Statnick has raised the issue of understanding how to increase signal to noise 

ratios (SNR) in multichannel data for use in LDV, a very important topic with practical bearing. 

I have been able to develop an approach to the SNR enhancement problem using the Karhunen- 

Loeve transform. This approach will now be sketched; as noted in the introduction numerical 

computations were not attempted because of the necessity of having to use a parallel machine 

such as the CONNECTION machine or the PS-2 IBM machine (at MALT). Hopefully if a 

follow-on is granted, then I intend to apply for time on the MAUI machine to perform the 

numerical calculations. The reason is quite simple, we need to look at as many of 200 channels 

in order to be realistic, serial machines are simply too slow. I doubt that a small number of 

channels (say 10 or 20) is of any real importance. 

The basic idea behind my use of the KL expansion (or transform) is that it is the optimal 

way to extract coherent information from multichannel input data (such as is needed in some 

LDV scenarios) in a least squares norm sense. There are many ways to derive the KL expansion, 

but the present approach is probably the simplest for our purposes. A more mathematical 

approach using gap integral equations is discussed in the next subsection. 

Suppose we have a set of n real signals (we could consider n complex signals, but the 

analysis becomes very elaborate without any additional insight). Call these signals Xj(t) where j 

= l,2,...,n. Define a transform Xj(t) with an associated transformation matrix A (as yet 

undefined) such that 

x,(t)=i\x,(t) 
' .=1 



where ar are the elements of matrix A. We want to choose the X/t) such that they form an 

orthogonal basis, that is 

n 

xi(t) = EbijXj(t), (i = l,2,-,n) 
j=i 

If the number of channels is very large, then we approximate the above by 

m 

yi(t) = Zbuxj(t) 

where m < n. How large m must be to approximate n can only be determined by numerical 

computation. The y,(t) are the reconstructed signals and by are the matrix elements of B, the 

inverse expansion matrix. 

Our object is to reconstruct the Xj(t) using the smallest number of basis signals m, of 

course to some specified error. We choose (given a fixed m) to require that the matrices A and B 

are such that they minimize the least-squares error 

(m) = Zfh(t)-yi(t)]2dt 
i=l° 

where T is the observation time. 

It can be shown that the rows of the matrix A consist of the normalized eigenvectors of 

the matrix C 

=u = Jjx^OxjCOdt 



C is something like a covariance matrix, note that it is real, symmetric, and positive semi- 

definite; thus it possesses the decomposition 

A A    A      A 

c = usu+ 

The matrix U contains the normalized eigenvectors U; where 

A      A A 

and S is a diagonal matrix of eigenvalues (A.,, U, ..., ln). Note that these eigenvalues are 

nonnegative. When A=U, the rotated signals Xj(t) form an n-dimensional subspace and we can 

show that the least-squares error is now given by 

n 

e(m)=  J>. 
.   —      J 
j-m + ] 

Since the eigenvalues are arranged in descending order, it follows that the lower order basis 

functions can be used to reconstruct most of the signal (i.e., the lower order basis functions are 

somewhat like lower order Fourier basis functions). 

We note the following, for our SNR application: 

1. The KL-expansion produces a set of uncorrelated (or somewhat more precisely in the 

present context, orthogonal) basis functions from the data set. 

2. The magnitude of the j-th eigenvalue is a measure of the amount of coherent energy 

present in the j-th basis function (for the proof see the appendix). 

3. The fact in item 2 implies that the reconstructed signal using only the lower order 

basis functions amounts to reconstruction of the coherent energy present in the input. 



I want to emphasize that this version of the KL-transform is deterministic in that the input 

signals are deterministic, whereas the analysis in the next subsection deals with the stochastic 

aspects of the KL-transform. In view of this difference, I suggest that a detailed numerical 

solution of both cases be carried out in order to determine which case really applies to the LDV 

scenario. 

Appendix A 

The energy of the basis functions can be studied thusly: Given the data vector 

x(t) = {x,(t), i = 1,2,...,n}, compute the C matrix 

A A     A 

C = xx+ 

Since C is symmetric, then 

--, "■    A    A   + 

where U is the matrix of column eigenvectors Uj and A is the diagonal matrix of eigenvalues. 

Now x admits a singular value decomposition 

A A    A    A     - 

x = USV + 

w here A is the matrix containing the singular values and U, V are orthogonal matrices. It 

follows that 
A AAA+AA+A   + 

c = USV VS V 
A    A   A +"    A   + 

= USS V 



Next consider the basis function vector x = X (t): j = l,2,--,n which can be written as 

A A  +   A 

X = U x 

We can easily show that 

A     A  + A  +  AA+.A 

XX  =U xx U 
A   A + t\ 

= SS   =A 

after some straightforward manipulations. 

Additionally, we have 

trA= PZxfWdt 

trc 

Comments 

The above analysis permits us (at least in principle) to enhance SNR by orthogonal 

decomposition methods. Although succinctly stated, the numerical computations need to be 

carried out on a parallel machine to test the efficacy of the proposed method. 



ABSTRACT 

The statistics of a harmonic signal (coherent component) mixed with a random back- 

ground (incoherent component) of a specified spectral profile (power spectrum) is still a 

problem of interest. The purpose of the present paper is to study the second-order inten- 

sity statistics of such a signal/background situation using rhe generalized Karhunen-Loeve 

expansion. 



SECOND ORDER INTENSITY STATISTICS 
OF A COHERENT SIGNAL 

IN THE PRESENCE OF A RANDOM BACKGROUND 



1. INTRODUCTION 

In a classic paper written several years after the actual work (clone during World War 

II). Kac and Siegert [1] determined the exact first-order statistics (i.e.. probability density 

and moments) of a square law detector for a Gaussian random field, and for an harmonic 

signal buried in a Gaussian random field.   Their approach involves the construction of 

a homogeneous integral equation whose kernel is the covariance function of the random 

field using what is now termed the Karhuuen-Loeve expansion [2. 3j. although we can also 

term the construction the Kac-Siegert expansion in as much as they derived it indepen- 

dently. The eigenvalues determine the probability density function of the detected intensity 

(square of the field amplitude), while both eigenvalues and eigenfunctkms are needed for 

the probability density of the intensity of the signal and field.  Emerson [4] also discusses 

the problem from an alternative viewpoint using the method of cuinulants to avoid solving 

the associated homogeneous integral of Kac and Siegert.   For further work on the prob- 

lem, see Slepian [5]. As Mayer and Middleton [C] have pointed out. the original expansion 

method of Kac-Siegert is not general enough to handle higher-order statistics such as prod- 

uct moments. However. Kac-Siegert also present another method of solution, the "direct' 

method, which is capable of handling higher-order statistics.  The direct method requires 

an appropriate transformation to express the output in terms of the input; the statistics 

of the output are then determined by suitable additional transformations with respect to 

the original input statistics. Mayer and Middleton exploit this approach to determine the 

hio-her-order statistics of the output due to a square law detector for both narrow-band 

and broad-band inputs. Kac-Siegert only consider the broad-band situati tion. 

The purpose of the present paper is to restudy the above problems for the second-order 

intensity statistics using a generalization of the original Kac-Siegert expansion approach. 

I emplov two point detectors to interrogate1 the random input (with and without the har- 

signal present). These detectors operate for the same time interval but are delayed 



relative to each other by a variable time. The analysis is performed via an expansion of the 

random field over these two disjoint time intervals using a generalization of the Karhunen- 

Loeve series developed for similar problems in photon counting [7-9] and laser speckle [10]. 

In this approach, a homogeneous integral equation is constructed over the two disjoint time 

intervals wherein the two detectors operate. The eigenvalues and eigenfunctions (which 

obey an unusual orthogonality condition) are evaluated and used to fabricate a double 

generating function: from this double generating function the various product moments of 

the integrated intensities can be obtained by differentiation. The method can be carried 

out for the third order and higher statistics, see Blake and Barakat [11] for the third-order 

situation in the context of photon counting. Analysis is confined to the narrow-band situ- 

ation, although there is no difficult}- in studying the broad-band situation. I feel that the 

approach via the generalized Karhunen-hoeve expansion offers a more satisfying physical 

picture than the direct method in as much as the detector time intervals and delays are 

an inherent part of the analysis via the associated disjoint integral equation. 



2. RANDOM INPUT FIELD 

The complex-valued amplitude U(t) of the total disturbance is the sum of a determin- 

istic (or coherent) component Uc[t) and a random background term Uh{t) 

U(t) = Uc{t) + Ub(t) 
-2.r 

The coherent component is given by 

Uc(t) = Zee-1"'1 (2-2) 

where £c is a constant. 

The random background Ub(t) is taken to be a zero-mean, complex-valued, spatially 

stationary Gaussian random process, i.e.. 

Uh(t) = Ui
b
r)U)+iU{

b
i\t) (2.3) 

where U{
b
i]{t) is the stochastic Hubert transform of U^li). Both U[

b
r) and U{

b
l) are real- 

valued. Now U{
b
r){t) and U{

b
l\t) have the same Gaussian probability density function 

(PDF) and are statistically independent. Furthermore 

(Ulr){t)) = (Ul
b
i]{t))=0 (2-4) 

(Ulr)(U)U{
b
r)(U)) = (U{

b
7)(t{)U{

b
l)(t2)) = ~n(U-t2) J.o 

(Lrir,(f,)^,',(i,))=0 (2.6) 



where a'l is the variance of Ub{t) and rb(tl - t2) is the corresponding correlation function. 

0 < \rb\ < 1. Since Ub{t) is a Gaussian random process, it is completely characterized by 

its mean, variance, and correlation function. 

The disturbance U(t) is interrogated by two-point detectors, the first detector op- 

erating during the time interval (-T/2,T/2) and the second during the time interval 

(r _ T/2,r + T/2) where r is the variable time delay. The integrated intensities Clj are 

'2.7 

,T/2 

Q, = /        \U{t)\2 dt 
J-T/2 
yr + T/J 

Q.» = /            \U(t)\- dt 
JT-T/2 

\Ye can expand Ub(t) in a generalized Kaihimen-Loeve series [C-9] over the disjoint 

intervals 

Ai =(-T/2,T/2),        A> = (T-T/2,T + T/2) (2.S) 

so that 

Ub(t) = 22Uki>k{t), t € Ay     and    A-, 

= 0 , t ff Ai     and    A2 

(2.9) 

The following conditions are to be satisfied: 

1) The {Uk} are random coefficients, independent of t: and are uncorrelated Gaussian 

random variables (hence, independent random variables) 

(ubu;) = alSkt (2-10) 

where {ak} are as yet unknown, real nonnegative constants. It is essential that 17(f) be 

Gaussian, for if it is not then the expansion coefficients {Uk} will not be statistically 

independent, although they will still be uncorrelated. 



2) The deterministic functions {ipk(t)} are to form a complete orthonormal set over 

both Ai and A,- 

The precise statement of the orthogonality condition is quite unusual. Consider the 

weighted sum of the integrated intensities: A, o[bi + A>Q.^ where AL A, are arbitrary real, 

nonnegative parameters appearing in the two-fold generating function of the integrated 

background intensities 9.- 

Q6(Al>A,) = (,xPl-A1«
(

1
6'-A,f)|!

6))>. (2.11) 

As described in [7-9]. we have 

subject to the requirement 

(I ipk(t)^(t) dt = Ski (2-13) 

where 

, rT-> /.r-rT/2 

i = \J        +A-, / • (2-14) 
/ J-T/2 JT-T/2 

To evaluate the unknown constants ak in Eq.   (2.10). we must construct an integral 

equation whose kernel is the correlation of function of Ub(t). The integral equation is 

Ax  /        +A, / n(U - UH'iih) dt, = [-)   $t{U) ■ (2-15) 

The correlation function rb[t\ - U) of the random background field is given by 



where gh(U - h) is the correlation function centered at zero frequency and u;0 is the 

frequency at which the pom spectrum (lineshape) of the background radiation is a max- 

imum. If we set 

then Eq.  (2.15) reads 

Lf~\x.iJ^\b[U-t,)0vt^ (2.1S) 

independent of wu. This is the basic integral equation for determining (<rt/cr)2: it is not of 

the standard Fredholm type because of the presence of two disjoint domains of integration. 

A second difficulty is that the eigenvalues aj are implicit functions of Aj and A2. 

The two-fold generating function ^.A^A,) ran be expressed as an infinite product. 

To prove this we note that from its definition. Eq.  i2.ll). 

CO 

<WA,A!= •••/     /llfUle-^0'' '-*'"'''n^* C2-19 

k-0 

where d2Uk  =  dü[r)dU^]. and }[{Uk)\ ^  tho joint probability density function of the 

statistically independent Gaussian random variables: 

/[{^}] = II ~7e :^r>i (2.201 
rcri- 

Upon substituting Eq.  (2.15) into the integrand, we encounter a standard Gaussian inte- 

gral. It can be shown [6-9] that 

CO 

Q6(Ai,A,) = n[i + °rfc(Ai.A2jrl. (2-21) 

Thus far we haw only considered the random background field Ub(t).   In the next 

section we will modify the analysis to include the coherent component (signal). 



3. RANDOM INPUT FIELD WITH COHERENT SIGNAL 

The starting point for the inclusion of the signal term, Uc{t), is the double generating 

function as given in Eq. (2.19) with Q^ replaced by fi,-. In particular 

Aift! + A2a2 = I \Uh{t)\2 dt+ I \Uc(t)\
2 dt 

+ lub(t)u;{i)dt- £u;(t)uc(t)dt. (3.1) 

The first term on the right-hand side has already been evaluated, see Eq. (2.12); while 

the second term yields 

I\Uc(t)\z dt = 2\(crT(X1 + A2). 

The interaction integrals (third and fourth terms) are 

CO * 

i ub[t)u;(t) dt = c V, uk j 6t(t)etAt dt 

:3.2) 

(3.3) 

oo » 

f u;a)uc(t) dt = tcj^uj: j 4>\{t)e -*At dt 

Vv •here 

is the frequency offset describing the position of the signal with respect to the maximum 

of the background power spectrum. 

Consequently Eq. (3.1) reduces to 

oo 

Alf]1 + A2fi2 = ^ \Uk\
2 + 2\U2T(\l + A,) 

co °° 

+ UYtU'kGk[XltX,\+CcY/
UkG^X^Xi) (3"5) 



w here 

Gk[XiA-i)= J4>k(t)e^ dt 13.6) 

Given Eq. (3.5). we have 

oo 

Q(A1,A2) = exp{-!^|2T(A1+A,)}  JJ Qk{\uM 
k=0 

\v here 

Qk(\u^-) = 
1X<J k   J -co 

(3.7) 

-d+*:-)\uu? e-vqGiuk-iqGku: £Vk _ (3.s; 

To evaluate Qk. we note that since Uk = Vk + iWk. then 

^GfcD't -'r^cGkUk =ak Vk+ibkWk (3.9; 

w /here 
ak - i'cG'k T icGk 

bk = CGl ~ icGk 

Consequently 

Qk = 
7T(J "^jfc   ./-co 

rliK^»-«^* dV*   /      e-(i+^2)^"-ib"^ dWfc 

Both integrals are known: 

■ll+r^WZ-aM   dy J- exp 
1  +<T~, 

4(1+<V 

(3-10) 

(3.11) 

(3.11 

v/TT 

-(1 + ^--)^-  a)S6jtTrfc cZIV^ = -7== exp 
V (1 + aD 

2        12 

-t(l + 0r- 
:3.i3) 



and Eq. (3.11) reduces tc 

Qfc(A,,A,: 
i + en.: 

exp 
(i + vi) 

:3.i4) 

Thus the double generating function for the background/signal is 

Q(A1,A2) = ^{-\^-T{\ + X-i)} ■ li(1 + a'^     ■ 11 exp | 71 cri 

= QdXi, Ao )Qb{Xu A, )Qbc(.Ai, A2) (3.15) 

spe 

here Qc. Qfe are the generating functions for the coherent, background components re- 

ctivelv and Qbc is the generating function for the interaction between background and 

The product moments of the integrated intensities can be obtained by differentiation 

of Q(AlsA2): 

fiP + Q 
(P.PQ?) = (-l)p+9 —^^ 0!A,.A2)k._1_n   ■ (3-16) 

0A?dA2 

10 



4. DOUBLE GENERATING FUNCTION:   SMALL APERTURE REGIME 

It should be obvious that the larger are the receiving apertures the greater is the 

smoothing of the field amplitudes. Consequently we want to use apertures as small as pos- 

sible, and now assume that T is small compared to the distance over which the correlation 

function gb{t) decays to its e"x value. 

Under this condition only the k = 0 terms in Qb and Qbc contribute. With reference 

to [7-9] we have 

<75(A1,A,) = <r-T(Al+A,.)-ralrJil-5'-(T)]A1A,   . (4.1) 

This leaves only the Go function to evaluate. We apply the mean value approximation to 

evaluate the integrals in Eq. (3.G). thereby obtaining 

G{i = b(XlT + X2TeiAr) (4-2) 

where ^0(0) = Mr) = constant (= b).  Xote that |G0|'
2 i* a quadratic function of Aj and 

Xo. Thus we have 

1^CGO|2CT5 
Q(A1,A2) = (l + (7J')-1cxp{-|^|-r(A1+A2)}exp| (1+ff2J (4.3) 

11 



5. PRODUCT MOMENTS:   BACKGROUND/SIGNAL 

The product moments of the integrated intensities were obtained by differentiation 

of Q(Ai,A2), Eq. (4.3), according to Eq. i 3.16): I employed the symbol manipulation 

program, SMP, using a VAX computer to effect the differentiations. The first few product 

moments are: 

(Qx) = (9,,) = o-2 + :tc\2 (.5-1) 

(0(0.) = o--'[l -rg-[r)} -T-2<T
2

1£C\
2
 -f \Wl 

(fi2Q2) = (0,0°]) =2ali{l + 2g2(T)} 

+ a4\U2^ + 2<?V) + b + 26cos Ar] + 2a2\^ + |£c|
6 (5.3; 

{ü'lül) =4<T8[l + 4<72(r) + 5 
■W,.< 

■ j 

+ <7<%|2{4 + Sg2(r)[l -f 6cos Ar] + Sb] 

+ o-4!^!4^ + s'V) + 46 + Sfccos AT] 

+ 4<r|£e|
6 + |k|8. ^5-4) 

Note that the frequency offset A only appears in (9J]9.2) and (üjül) and not in (Qifi2)- 

In the homodyne case where the frequency of the signal coincides with the maximum 

of the power spectrum of the background, then A vanishes and the product moments then 

depend upon g(r) only. 

12 
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LDV AND TURBULENCE ISSUES 

A considerable effort during this contract was devoted to the workings of LDV itself (as a 

measurement tool for turbulence). The basic paper in this area is 

W. George and J. Lumley, "The laser-doppler velocimeter and its application to the 

measurement of turbulence", J. Fluid Mech., 60, 321-362 (1973). 

The key issue is the measurement of the doppler shift on the frequency of the light scattered from 

small particles moving in the turbulent fluid. George and Lumley (as well as others since their 

work) have concentrated upon this doppler shift in instantaneous frequency by employing ideas 

from frequency modulation (FM) theory due to Wang: 

J. Lawson and G. Uhlenbeck, Threshold Signals, (McGraw-FIill. New York, 1950) see 

chapter 13. 

who investigated the unmodulated carrier plus noise case. Unfortunately this case yields a 

covariance function with an infinite variance (this being the cause of all the troubles in the 

George-Lumley approach). 

I have initiated (and essentially carried out) the analysis when the Gaussian noise is 

broad-band (as in the turbulence situation). Unfortunately the analysis is much more 

complicated than in the narrow-band case involving many multiple integrals over Bessel 

functions (which reduce to simple expressions in the narrow-band case). The main point, 

however, is that in this case the covariance function has a finite variance. 

Discussions with Barbara Sandier, who does most of my serious programming, have 

convinced me that about the only way to proceed is numerically. We have developed numerical 

integration schemes for other problems that can be used for the broad-band FM situation. Based 



on these considerations, I have decided to postpone writing up this material until I begin 

numerical computations. 


