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SUMMARY

Many empirical studies have found evidence that abrupt thinning of the crust can weaken the Ly
phase, and that contained sedimentary basins or mountain ranges on the path can completely or par-
tially block the phase. Theoretical (modeling) studies can provide insights for better understanding and
interpretations of the physical mechanisms involved (Blandford ef al., 1992). This study attempts to
quantitatively predict the waveguide effects using extensive two-dimensional linear elastic (P-SV) finite-
difference [LFD] calculations. Miscellaneous waveguide effects are analyzed and compared, both quali-
tatively and quantitatively, through visualization and spectral analysis. A pure L, wave packet is
injected into a stratified portion of the grid as the reference initial condition to trigger all LFD calculations
for a suite of heterogeneous crustal structures. An obvious advantage of this approach is that the
effects due to different types of heterogeneity on L, phase can be isolated and evaluated easily. Each
model contains a laterally heterogeneous crust superimposed on the homogeneous mantie. The hetero-
geneities examined include large-scale lateral structural variations in the crustal waveguide (such as
Moho uplift, crustal thickening, rugged free-surface topography, embedded thick sedimentary layers,
etc.), anelasticity, and small-scale random heterogeneity.

The LFD results demonstrate that indeed both abrupt changes in the Moho topography and a thick
contained sedimentary layer can cause Ly blockage primarily through strong Lg 0-S,, conversions (with
actually different physical mechanisms). Alluvial basin structures cause strong reverberations as well as
very strong L, -to-R, conversions. If the principle of seismic reciprocity is invoked, R, -to-Lg conver-
sion could be an important mechanism of L, excitation for certain structures. Unlike the case of A
waves, a moderate free-surface topography alone does not seem to affect L, propagation as much as
do other types of heterogeneity. Anelasticity and small-scale random heterogeneity can also explain the
L, blockage. An RMS velocity variation of 8 percent in the whole crust is equivalent to a Qo (Lgy) of
about 270, which would be sufficient to reduce the peak amplitude of 1Hz L, waves by 30 percent for
every 100 km it traverses. However, LFD calculations also indicate that these mechanisms exhibit some
systematic differences in the couplings of L into other phases. Thus, identifying the actual mechanism
responsible for the blockage along a specific path is possible.

Received for publication 21 December 1995.




WAVEGUIDE EFFECTS OF LARGE-SCALE STRUCTURAL
VARIATION, ANELASTIC ATTENUATION, AND

RANDOM HETEROGENEITY ON SV Lg PROPAGATION:
A FINITE-DIFFERENCE MODELING STUDY

1. INTRODUCTION

The most prominent regional phase generated by shallow events is the L, phase identified by
Press and Ewing (1952). The L, phase receives considerable attention in recent years because of its
potential use in yield estimation (e.g., Nuttli, 1986) and discriminating between earthquakes and explo-
sions at regional distances (e.g., Blandford, 1981; Pomeroy et al., 1982). Based on empirical observa-
tions, RMS L, has been recognized as a stable relative-yield indicator (Patton, 1988; Hansen et al.,
1990). However, it is also recognized that L, , like Ry, is sensitive to changes in structure along its
path, which can have deleterious effects on any role as a discriminant (see Lynnes and Baumstark,
1991) or magnitude measure (see Jih and Lynnes, 1993), unless the propagation effects are accurately
accounted for. Numerous studies have used the sensitivity of L, to structural effects to map regions of
anomalous propagation and to try to associate them with crustal structure. Bias in L, -based magnitude
measurements were reported by Gregersen (1984) in Greenland. Very low L, /S, amplitude ratios have
been observed after crossing the Tibetan plateau (Ruzaikin et al., 1977), the North Sea grabens (Gre-
gersen, 1984; Kennett et al., 1985), the Caspian Sea, or the Black Sea (Levshin and Berteussen, 1979,
Kadinsky-Cade et al., 1981). Chinn et al. (1980) (and Lynnes and Baumstark, 1991) observed that the
efficiency of the L, propagation is better for paths paralle! to the structural trend than for paths in the
perpendicular direction. Earlier studies (Press and Ewing, 1952; Oliver and Ewing, 1957; Savarensky
and Valdner, 1960) have established that L, does not propagate through crust overlain by water deeper
than 2 km. On the other hand, propagation across a marginal sea of continental shelf does not com-
pletely quench L, but can reduce its amplitude. Baumgardt (1991) compared the crustal cross-sections
for Ly propagation, and he found that the L, blockage correlates with thick sediment very well. Basi-
cally, his observation is that paths that do not cross basins or for which sediments do not vary by
greater than 3 km exhibit little or no L, blockage and scattering. Baumgardt (1991) also identified paths
for which the surface elevations and crustal thickness change substantially, and yet L, propagates
efficiently. Thus his observations suggest that the near-surface sediment-thickness variations seem to
correlate more strongly with L, blockage than do the crustal-thickness variations. Zhang and Lay
(1994) used surface topography as a manifestation of the varying crustal structures. They found a
strong correlation between S, /L, ratios for Eurasian explosions and roughness or mean altitude of the
topography along the path, based on a meager data set.
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Despite the long-time interest, there remain many fundamental questions about the excitation and
propagation of L, waves phases to be answered. Numerical modeling of the L; waves (and other
regional phases) would complement the empirical studies by providing more accurate interpretations and
better insight of the underlying physics. Theoretical studies of L, propagation across continental margins
have been conducted by Kennett (1986a), Maupin (1989), Regan and Harkrider (1989), Cao and Muir-
head (1993), and Gibson and Campillo (1994), using different techniques. A simple geometrical ray
theory can be used to predict the kinematic property in a qualitative manner, as Kennett (1986a) has
illustrated, but would fail to explain the dynamic properties for complex media. Kennett (1986b, 1989ab)
used a modal summation to investigate L, propagation in stratified and weakly heterogeneous media.
Mitchell and Hwang (1987) computed multi-mode synthetics for 1-D models with various thickness of
low-Q sediments. Regan and Harkrider (1989) used a hybrid of propagator matrix and the finite-element
[FE] methods to model the SH-L, -wave propagation. Cao and Muirhead (1993) applied a 2-dimensional
P-SV finite-difference method to explore L, blockage and argue that a water column over the crust is an
important factor in blocking L, propagation. Gibson and Campillo (1994) applied both the dynamic ray
tracing and the boundary-integral equation methods to model L, blockage in the west Pyrenees Range,
near the French-Spanish border. They suggest that the unmodeled scattering by small-scale features

within the lower crust is the reason for the observed blockage.

In this study the two-dimensional linear elastic (P-SV) finite-difference [LFD] method is utilized to
model the propagation and scattering of L, waves in a suite of crustal models. Each model contains a
laterally heterogeneous crust superimposed on the homogeneous mantle. The heterogeneities exam-
ined include anelasticity, random velocity variatibn, rugged interfaces, rugged free-surface topography,
as well as embedded thick sedimentary layers. The pure L, wave packet is injected into a stratified
portion of the LFD grid as the reference initial condition to trigger all LFD calculations. An obvious
advantage of this approach is that the effect due to different types of heterogeneity on the L, phase can
be easily isolated and evaluated. A number of different output formats are available from the LFD simu-
lation. In fact, one of the advantages of the LFD method (and the finite-element method) is the ability to
save particle displacements for any number of receivers in the grid and for all times. A particularly infor-
mative way to view wave propagation through the models is by using numerical Schlieren digrams, or
“snapshots”. Wavefield snapshots are extensively used as a visualization aid throughout the study.

The procedure of implementing a pure L, wave packet is described in Section 2 and validated
with a reference crustal model. LFD experiments are then conducted with a suite of canonical models
representing a variety of crustal structures. The geometrical effects of various structures on L; propaga-
tion are analyzed, both qualitatively and quantitatively. In Sections 4 and 5, similar analyses are con-
ducted for anelastic and random models, respectively. All three major categories of structures are com-
pared and equated, regarding their roles in causing L, blockage and the coupling of L, into other
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phases. A brief review on the reported observations of L, blockage is given in Section 6. Finally, a
quantitative way of describing L, blockage is explored, and an improved amplitude/magnitude correcting
procedure is presented, which includes a correction to account for the geometrical blockage.

2. LFD IMPLEMENTATION OF Lg WAVE PACKET

The LFD method has the advantage that the solution contains all conversions and all orders of
multiple scattering. It permits examinations of fairly general models with arbitrary complex variations in
material properties and free-surface geometry. Furthermore, it does not require many assumptions com-
monly invoked in other theoretical approaches. The basic limitations to the LFD method are the compu-
tational cost and memory requirements. These constrain the size of the grid and the number of time
steps that can be calculated in a reasonable time frame. Several non-standard features have been
incorporated into the LFD code used in this study:

[1] Explicit boundary conditions for the polygonal free-surface topography.

[2] The marching-grid technique for stretching the propagation distance in the lateral direction.

[3] A pure L, wave packet suitable for LFD simulations.

[4] A simple way to incorporate a causal, spatially-varying attenuation operator into LFD simulations.

Detailed descriptions of the explicit boundary conditions and the marching grid technique can be
found in Jih et al. (1988) and Jih (1993a). Incorporation of the causal, spatially-varying attenuation
operator will be described in Section 4 of this report. The algorithm generating the incident L; wave
packet is analogous to the one Boore (1970) developed for the fundamental-mode Love wave packet.
Given a stratified crustal model, the Thomson-Haskell method is used to compute the L, dispersion and
eigenfunctions associated with this structure. The L, eigenfunctions are modulated by a Ricker (1977)
wavelet in the wavenumber domain and then converted to the displacement field by the inverse Fourier
transform. The resulting wavefield is well localized in both spatial and wavenumber domains, and can be
easily embedded in complicated 2-dimensional models (for which other forward-modeling methods may
fail) as the initial condition to trigger the LFD simulation. Ever since Boore (1970) outlined the original
algorithm in his SH LFD calculations, the same procedure has been adopted frequently in elastic (P-SV)
LFD simulations of R, propagation/scattering problems. Just a few studies along this line include:
Munasinghe and Famell (1973), Martel et al. (1977), Fuyuki and Matsumoto (1 980), Fuyuki and Nakano
(1984), Levander (1985), Toksoz et al. (1986), McLaughlin and Jih (1986, 1987), and Jih (1993b, 1995).
The study described herein is an extension to L, of the A; analysis as presented in McLaughlin and Jih
(1986, 1987) and Jih (1993b, 1995). In an earlier study, Jih and McLaughlin (1988) applied the principle
of reciprocity to model the excitation of Ly in various source media. The goal of this study is to investi-

gate various path effects on Ly, not the excitation.




On real seismograms, the L, phase often lacks a clear onset, but it does have a well-defined
amplitude maximum with a group velocity around 3.5 km/sec. The L, waves are basically the interfer-
ence of multiply reflected S waves bouncing back and forth between the free surface and the Moho.
We can envision that a system of planar S waves is set off at the Moho at equal delay with the same
post-critical inclination, while another system of planar S waves is set off at the free surface in a sym-
metric manner, which corresponds to the bundle of reflected waves. If these two systems of waves (or
rays) are properly confined in the same stratified region of the crust, they will establish repetitive
reflections (at both the free surface and the Moho) with constructive interferences. By adjusting the time
delay between the consecutive S wavefronts, we can obtain a denser (or coarser) interference pattern.
The L, waves can also be described as the superposition of many higher-mode surface waves which
interfere to give the complex observed waveforms. For typical continental paths, the important contribu-
tions come from the stationary portions of the group velocity curves for about the first 10 modes up to 1
Hz (Knopoff et al., 1973). These modes correspond to waves trapped in the crustal wave guide.

The L, wave packet generated by the procedure described earlier exhibits all these expected
features. Figure 1 gives the vertical-component snapshots of L, wave propagation in a single-layer cru-
stal model taken at a temporal spacing of 10 seconds. The homogeneous crust is 30 km thick with P-
and S—wave velocities of 6.2 and 3.58 kim/sec, respectively (see Figure 5). The L; wave packet travels
at a group velocity of approximately 3.33 knvsec (see Figures 3 and 4), which is appropriate for areas
like the western U.S. as suggested by Mitchell and Hwang (1987). Since no scattering mechanism is
present, the checkerboard-like pattern due to the constructive interference of repeatedly reflected S
waves trapped in the crust is retained at all times (Figure 1). This checkerboard-like pattern undoubt-
edly indicates that both interpretations of L, waves, either as multiply reflected S waves or as higher-

mode surface waves, are indeed adequate.

Like the fundamental mode Rayleigh waves (A, ), planar body waves incident upon the free sur-
face at an oblique angle also exhibit a retrograde rolling. Since L, waves are repetitive reflections (at
both the free surface and the Moho) of planar S waves, it shares the same characteristics. At greater
depths, however, the particle motion of L, is very different from that of R;. Figure 2 shows particle
motion piots of L, synthetics recorded at five depths starting at the free surface and 2 km apart. At the
anti-nodes (for example, at 4 km), the particle motion is highly linear.




FDstep ©

VERT .000sec, 1 800 1 500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1 800 1 500
XTicMark= 10 km; Z TicMark= 10km
-0.34E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1 800 1 500

X TicMark= 10 km; Z Tic Mark= 10 km
-0.35E+00, 0.33E+00

FD step 1200

VERT 30.000sec, 1 800 1 500
XTicMark= 10 km; ZTicMark= 10 km
-0.34E+00, 0.34E+00

FD step 1600

VERT 40.000sec, 1 800 1 500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.33E+00, 0.34E+00

FD stop 2000

VERT 50.000sec, 1800 t 500

X TicMark = 10 km; Z Tic Mark= 10 km
-0.34E+00, 0.35E+00

LFD Simulation of Lg Propagation: Model 00

Figure 1. The vertical-component snapshots of L, wave propagation in a single-layer crustal model taken
at a temporal spacing of 10 seconds. The homogeneous crust is 30 km thick with P- and S-wave veloci-
ties of 6.2 and 3.58 km/s, respectively (see Figure 5). The L, wave packet travels at a group velocity of
approximately 3.33 km/s. Since no scattering mechanism is present, the checkerboard-like pattern due to
the constructive interference of repeatedly reflected S waves trapped in the crust is retained at all times.
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Figure 2. Synthetic seismogram (right) and corresponding particie motion (left) at five depths for the reference
1-layer model 00 (see Figure 1). Vertical and horizontal components are shown in solid and dashed lines,
respectively. The sensors are 2 km apart. Note the retrograde rolling at the free surface (top) and the highly

polarized shear motion at antinodes (for example, at 4-km depth).
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Figure 3. Vertical (top) and horizontal (bottom) seismic sections of Ly displacement synthetics for the reference 1-layer
model 00. The L, group velocity is about 3.33 (= 190/[65-8]) kmv/sec.
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Figure 4. Vertical (top) and horizontal (bottom) seismic sections of L, displacement synthetics recorded at a depth of
10 km for the reference 1-layer model 00. For the 6th overtone, this depth is very close to an antinode and hence the
motion is highly polarized. In later sections of this study, the efficiency of L, transmission is measured using a deep
receiver to avoid the contamination from the R, phase.
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3. Lg PROPAGATION IN MODELS
WITH IRREGULAR WAVEGUIDE GEOMETRY

Numerical experiments are first conducted to evaluate the effects of variable crustal thickness,
mountainous relief, and sediment thickness onv L, propagation. In order to isolate these effects, all the
crustal models used in the first set of LFD calculations are simple variations of the single-layer crustal
model (viz. Model 00). Table 1 below gives a brief description of these canonical models. The upper
portions of twenty five representative models are shown in Figures 5 through 9.

Table 1. Major Structural Feature(s) of Each Model

00 single-layer (homogeneous) crust of 30 km thick
0A abrupt Moho uplift (30—6—30)

OAa gentle Moho uplift (30—-6—30)

0B a thinning crust (extended Moho uplift) (30—6)
0OBa similar to OB, with a gentle transition (30—6)

oC extended thick sediment

0Ca similar to 0C, with a gentle, linear transition

0Ca similar to 0C, with a smooth transition

oD a contained sedimentary basin

ODa similar to 0D, with a smooth boundary

0Db 0D + a sedimentary layer

OE crustal thickening (30—45—-30, polygonal Moho)
OEa crustal thickening (30—-45—30, smooth Moho)
OEb crustal thickening (30—40—30, smooth Moho)
OEc crustal thickening (30-50—30, smooth Moho)
OEd crustal thickening (30—50—30, polygonal Moho)
OF Moho uplift + a sedimentary basin

OFa similar to OF, with a smooth boundary

OFb Moho uplift + a sedimentary basin of slow velocity
OFc similar to OFb, with a smooth boundary

2 a moderate topography

2a same topography as 2 with isostatic compensation
3 a moderate topography

3a same topography as 3 with isostatic compensation
4 thickened crust with a trapezoidal Moho and free surface

1
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Figure 5. Five of the canonical crustal models tested in this study. Only the uppermost portion of
each model is shown. The actual grid size used in LFD calculation is 1000 by 500, corresponding to
250 km by 125 km. The material parameters of each model are shown on the right. In each LFD
experiment, the pure L, wave packet is initialized in the stratified portion of the model, near the left
edge of the grid. Model 00 is the laterally-invariant reference model.
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Figure 6. Same as Figure 5 except for models 0C, 0Ca, 0D, ODa, and 0Db. Both “C” and “D”
series of models have a thick sedimentary layer in the structure. The sediment is contained in
models of the “D” series.
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Figure 7. Same as Figure 5 except for models OE, OEa, OEb, OEc, and OEd. All “E” series models

have thickened crust.
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Figure 8. Same as Figure 5 except for models OF, OFa, OFb, 2a, and 4. “F series models are very
similar to those of “D” series except that a Moho uplift is added. Model 2a has a moderate topogra-
phy with a full isostatic compensation. Model 2 (not shown) has an identical free-surface topography

with a flat Moho.
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Figure 9 shows the vertical-component snapshots of L, wave propagation in the model 0A, which
has an abrupt Moho uplift. The bulk of the L, energy is converted to S, at the ascending crust-mantie
interface, as shown in Figure 9 at 20 seconds. As a result, the L, eigenfunction is broken up and only
a fraction of the L; energy would enter the oceanic crust. The amplitude of the direct L, phase is
further reduced, due to the geometric spreading, when it passes the shallow crust to enter the suddenly
thickened continental crust (see, at 40 seconds). Record sections of surface synthetics for the model
OA are shown in Figure 10. While R; remains intact, the L, is effectively blocked, although the oceanic
crust is only 50 km long. The majority of L, energy is converted to S, of which some crosses the des-
cending Moho and re-enters the crust. Due to the post-critical direction, this phase will stay in the crust
and become L, at a larger distance. This phase is most prominent at 43 seconds on trace 20, and is

outside the expected “on-time L, * window.

Model 0Aa is similar to OA except that a gentie, piecewise-linear Moho is used instead (Figure 11).
The L, -to-S, conversion is quite clear at 20 and 30 seconds. The energy which crosses the oceanic
crust as the 3rd overtone (see, at 30 seconds) does not touch the free surface as the crust thickens.
instead, it propagates along the descending Moho (see, at 40 and 50 seconds) before it reaches the flat
Moho and starts to bounce back to the ground (see, at 60 seconds). The “L, blockage” occurs because
only S, and R, could reach ground sensors in the oceanic-to-continental transition zone. Figure 12
shows that the dominating phase of this model is the “early L, ” with a group velocity about 4.0 km/sec,
followed by A, waves with a group velocity of 3.0 km/sec. There is no prominent phase arriving at the

expected “on-time” L, window of 3.3 km/sec.

Model OB, shown in Figure 13, has a crust that thins abruptly from a thickness of 30 km to 6 km.
As it does in the “A”-series of models, a significant fraction of L, energy enters the deeper mantie and
detaches from the Moho (see, 30, 40, and 50 seconds of Figure 13). This energy never reaches the
surface sensors, and as a result, the most prominent phase is the stabilized 3rd overtone, which stays in
the thin crust. Record sections of this model (Figure 14) indicate that no “L; blockage” would be
observed here since the 3rd overtone has a peak amplitude and a group velocity very similar to those of
the “on-time L, ” in the reference model. Changing the Moho shape does not affect these observations
(see Figures 15 and 16).

All “C"-series models have a sedimentary layer 16 km thick. The sediment slows down the L,

waves, as expected (Figures 17 and 19). However, this structure does not generate a S,, conversion
as strong as in other models with an irregular Moho or contained basin (Figures 18 and 20).

For models of the “D” series, because of the contained structure of the basin, the L, wave that
tunnels undemeath the basin eventually recovers characteristics like a multiply bouncing SmS (Figure

21). This phase has the same group velocity of the “on-time L, ” on those surface sensors co-located
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at the bounce points. The amplitude is smaller, however. A more prominent phase comes from the
energy that first enters the basin and then leaks out from the ascending edge of the basin. The comer
where the pinched basin ends also radiates some body waves. Figure 22 illustrates that the contained
basin structure removes some energy of the “on-time L, ” and converts it to the so-called “late L, "
which has the same phase velocity as the reference L, but is significantly delayed. Depending on the
location of surface sensors, some seismographs will observe either complete or partial blockage of the
“on-time L, ”. Figures 23-26 show results for similar structures (models ODa and 0DDb).

Model OE has a thickened crust and a very strong L -to-S,, conversion occurs along the ascend-
ing interface (see, 30, 40, and 50 seconds of Figure 27). Horizontal-component snapshots (not shown)
indicate that some focusing of energy occurs at the comer where the Moho tums flat. This comer
becomes a secondary point source radiating upgoing body waves. Sensors right above this corner would
detect a prominent arrival due to a nearly vertical incidence of shear waves (see traces 16 and 17 of
Figure 28). Figures 29-36 show variations of thickened sections of crust (models OEa through OEd).

“Fr_series models have both a sedimentary basin and a Moho uplift. Figure 37 shows the basic
geometry. The Moho uplift causes a strong S, conversion (see, at 20 seconds of Figure 38). The
pinched end of the basin radiates body waves outward, and some of those rays leak into deeper mantle.
Figure 39 shows the horizontal-component snapshots of L, wave propagation in the model OFa which is
similar to OF except for a smooth interfaces. Observations similar to those with the model OF can be
made. The pinched end of the basin radiates body waves outward, and some of those rays leak into
deeper mantle (see, at 50 seconds). Some direct P waves are also present (see, at 40 seconds). Direct
P waves radiated from the basin’s terminating edge can be seen on the horizontal components of Figure
40. Figure 41-44 show the geometry and results for some other variations (models OFb and OFc).

Model 2 has a flat Moho and a moderate free-surface topography (Figure 45). The L, —to-S,
conversion is relatively weak (see Figure 46). This is very different from the case of A, where scatter-
ing by rough topography would cause very strong apparent attenuation. Model 2a has a fully compen-
sated Moho added to the model (Figure 47). The fully compensated Moho gives results similar to those
from the flat Moho of model 2. Figures 47 through 54 give results from models 2a, 3, 3a, 3a, and 4,
which are all similar to model 2.

Figures 55 and 56 display the vertical-component synthetic seismograms recorded at 3 depths
(Okm, 10km, and 40km) and started at 20 seconds for models 00, OA, 0Aa, 0B, 0Ba, 0C, 0Ca, 0D, 0Da,
and ODb. Figures 57 and 58 show the same for models O, OF, OFa, OFc, and 2a starting at time zero.
Note that although the “on-time L, ” on surface synthetics of models OB and OBa (bottom left) have a
peak amplitude in the same order as that of the reference model, they are not the same overtone of the
Rayleigh mode. The moderate surface and Moho topography in the model 2a only affect L, waveform
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characteristics mildly. Note that model OFc excites very strong R, phase, very similar to the model 0Db.
Among all structures tested, “E” series of models (with a thickened crust) excites the strongest S,

conversion (see Figure 27).

It is interesting to note that all models of the “F” series exhibit significant L, -to-P; conversion.
The peak horizontal amplitude on trace No.25 ranges from 10% to 15% of that of the original L, wave
train. To a lesser extent, models of “C” and “D” series as well as models 0A and 0Ba also generate

the same conversion.

For each model, the synthetic seismograms are recorded at three linear arrays at three different
depths: 0 km, 10 km, and 40 km. Several parameters are measured to infer the relationship between the
major geological/geophysical/geometrical features and possible blockage and S,, coupling. The ampli-
tude spectrum of a surface synthetic seismogram far away from the heterogeneous structure is com-
puted using a window of 12.8 seconds (512 data points) around the group velocity of 3.33 km/sec. Using
the spectrum of model 00 as a reference, the amplitude ratio at 1 Hz is denoted as “BK” in Table 2 to
quantify the L, blockage. This ratio is also used to compute the equivalent apparent attenuation of the
“on-ime L, ”. Both the quality factor Q, and the attenuation coefficient y are printed in Table 2. To
measure the total transmitted L, energy, a sensor at 10 km depth is used. The spectral amplitude ratio
at 1 Hz computed with this sensor is denoted as “T” in Table 2. The converted S,, energy is measured
with a sensor at a depth of 40 km, below the flat Moho. Another sensor, which is near the bottom of the
model and under the major heterogeneous feature, records the waveform representing the converted
teleseismic energy. Except for the quantity BK, all other ratios are normalized to the 10km-deep syn-
thetic of the model 00 as the reference. The results in Table 2 are sorted by the the major structural
features of the models. There appear to be some systematic patterns that are very interesting.
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Table 2. Ly Propagation Statistics of Deterministic Models

Model BK T Sn/Lg far-P/L, far-S/L, Qo v (1 Hz)
0A 0349 | 0.346 0.164 0.110 0.105 o1 0.0105
0Aa 0416 | 0.689 0.216 0.083 0.087 109 0.0088
0Ab 0384 | 0624 | 0233 0.080 0.079 100 0.0096
0B 1.035 . 0.546 0.109 0.103 L .
0Ba 0.848 L 0.482 0.041 0.044 581 0.0016
oC 0.354 | 0.790 0.084 0.061 0.048 92 0.0104
0Ca 0237 | 0521 0.076 0.026 0.010 66 0.0144
0Cb 0.307 | 0.49 0.065 0.051 0.034 81 0.0118
oD 0595 | 0.565 0.161 0.075 0.084 185 0.0052
0Da 0317 | 0577 0.185 0.073 0.096 84 0.0115
0Db 0.508 | 0.409 0.102 0.083 0.086 142 0.0068
OE 0977 | 0.779 0.468 0.046 0.051 4136 | 0.0002
OEa 0963 | 0.723 0.459 0.038 0.082 2534 | 0.0004
OEb 0.967 | 0.649 0.201 0.032 0.050 2821 0.0003
OEc 0983 | 0719 0.478 0.052 0.070 5558 0.0002
0Ed 0.923 | 0.741 0.318 0.058 0.039 1191 0.0008
OF 0228 | 0.580 0.177 0.058 0.062 65 0.0148
OFa 0.789 | 0595 0.225 0.076 0.084 405 0.0024
OFb 0.318 | 0533 0.157 0.070 0.087 84 0.0115
OFc 0473 | 0.560 0.194 0.078 0.098 128 0.0075

2 1.023 | 0574 0.087 0.058 0.127 L .
2a 1.020 | 0717 0.152 0.059 0.138 . .
3 0.875 | 0.829 0.091 0.061 0.145 721 0.0013
3a 1111 | 0715 0.133 0.070 0.150 - .
4 1738 | 0.408 0.319 0.050 0.072 - .

BK: spectral amplitude ratio at 1 Hz of “on-time Lg » (3.33 km/sec) to that of the reference model.

T: spectral amplitude ratio at 1 Hz of transmitted Lg (recorded at a depth of 10 km) to that of the reference model.
Sn/Lg: spectral ampiitude ratio at 1 Hz of converted S,, to the reference Lg .

far-P/Lg: spectral amplitude ratio at 1 Hz of converted teleseismic P to the reference Lg .

far-S/Lg: spectral amplitude ratio at 1 Hz of converted teleseismic S to the reference Lg .

For seismic stations in northem Scandinavia, the 1 Hz L, waves from Novaya Zemlya are
severely blocked. Based on the coda Q method, Nuttli (1988) deduced a Q, value of 252 for the path
from Novaya Zemlya to WWSSN station KEV (Kevo, 69.755°N, 27.007°E). Using a joint inversion
method with L, amplitude measurements, Jih et al. (1995) point out that this Q, value appears to be
appropriate. Assuming that the coda Q method really provides an independent and consistent measure
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of L; Q, then there should be a L, ~mb bias of 0.26 magnitude unit [m.u] between the Eastern U.S.
and Novaya Zemlya. The Q, value of 252 for station KEV actually includes the gross reduction effects
on L, amplitude due to both the intrinsic attenuation and the geometrical blockage, of which the latter
was not fully studied or documented at the time Nuttli estimated the yield for Novaya Zemlya explosions.
The continental path crossing Barents Shelf is a classical example of “L; blockage” (Baumgardt, 1991).
For blockage of the “on-time L, ” to be noticeable at similar distance, it is reasonable to expect to have
a Q, value no more than 270, or equivalently, a BK no greater than approximately 0.7.

Using a BK of 0.7 as the threshold, we see that all models of the “A”, “C”, and “D” series as well
as most of the “F” series would block L, , while none of the “B” and “E” models or any model with a
mild topography would block L, . All “E”-type of models, which have a thickened crust, exhibit very little
attenuation. Most of the topographic models (that is, models 2, 2a, 3a, and 4) actually exhibit an
amplification, instead of reduction, in L, amplitude. The thinning of the crust is an important mechanism
to block L, (Figures 8 and 10), as reported in many observational studies. However, the thinning itself
has to be of finite span in the lateral direction. The two “B” series of models either show an
amplification or have a BK larger than 0.85 (see Figures 12 and 14).

The comparison of L, coupling to teleseismic phases is also described in Table 2. In terms of L -
to-S, conversion, models OB and OBa are the most efficient ones, followed by four models with thick-
ened crust, OE, OEa. OEc, and OEd. Another “E”-type model, OEb, with an elliptical Moho shape as in
model OEa but only 40 km thick, gives a much weaker S,, excitation. On the other hand, all these “E”
series models have very comparable efficiency in L, transmission - either measured at the free surface
or at a depth of 10 km. Model 4 has a trapezoidal mountain (5 km high) on the top and a trapezoidal
intrusion of 10 km in the bottom of the crust. Thus its overall increase in thickness is identical to that of
models OE and OEa. While the level of S, conversion is in the same range as other “E” models, the L,
transmission is actually amplified. If the models are sorted by the corresponding levels of S, conver-
sion, we have {0B,0Ba} > {OE,0OEa,0Ec,0Ed} >> 4 > 0A,0Eb > OF* > 0D*,2a,3a > 2,3 > 0C".
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FDstep O

VERT 0.000sec, 1800 1500
XTicMark= 10 kon; Z TicMark= 10km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; ZTic Mark= 10 km
-0.37E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500

X TicMark= 10 km; ZTic Mark= 10 km
-0.27E+00, 0.35E+00

FD step 1200

VERT 30.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.22E+00, 0.24E+00

FD step 1600

VERT 40.000sec, 1800 1500

X TicMark= 10 km; Z TlcMark= 10 km
-0.18E+00, 0.18E+00

FD step 2000

VERT 50.000s0c, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.15E+00, 0.16E+00

FD step 2400
VERT 60.000s0c, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km

-0.17E+00, 0.17E+00

LFD Simulation of Lg Propagation: Model 0A

Figure 9. The vertical-component snapshots of L, wave propagation in the model 0A, which has an
abrupt Moho uplift. The bulk of L, energy is converted to S, at the ascending crust-mantle interface
(see, at 20 seconds). As a result, the L, eigenfunction is broken up and only a fraction of the L, energy
would enter the oceanic crust. The amplitude of the direct L; phase is further reduced (due to the
geometric spreading) when it passes the shallow crust to enter the suddenly thickened continental crust (at
40 seconds). Although the oceanic crust is only 50 km long, it effectively blocks the Lg .
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Figure 10. Record sections of surface synthetics for the model 0A. While R, is intact, the L, is effectively blocked.
The majority of L, energy is converted to S, of which some crosses the descending Moho and re-enters the crust. Due
to the post-critical direction, this phase will stay in the crust and become L, at a larger distance. This phase is most
prominent at 43 seconds on frace 20, and is outside the expected “on-time L, ” window.

22




FDstep O

VERT 0.000sec, 1800 1500

X TicMark = 10 lan; Z Tic Mark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 kon; Z TicMark= 10 km
-0.37E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 kin; Z Tic Mark= 10 km
-0.36E+00, 0.34E+00

FD stop 1200

VERT 30.000sec, 1800 1500
XTicMark= 10 lan; Z TicMark= 10 km
-0.26E+00, 0.30E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.26E+00, 0.22E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 kmn; Z Tic Mark= 10 km
-0.19E+00, 0.18E+00

FD stop 2400

VERT 60.000soc, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.26E+00, 0.22E+00

LFD Simulation of Lg Propagation: Model 0Aa

Figure 11. Same as Figure 9 except for the model 0OAa, which has a gentle continental-to-oceanic transi-
tion. The Ly -to-S, conversion is quite clear at 20 and 30 seconds. The energy that crosses the oceanic
crust as the 3rd overtone (see, at 30 seconds) does not touch the free surface as the crust thickens.
Instead, it propagates along the descending Moho (at 40 and 50 seconds) before it reaches the flat Moho
and starts to bounce back to the ground (see, at 60 seconds). The “L, blockage” occurs because only
S, and R, could reach ground sensors in the oceanic-to-continental transition zone.
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Figure 12. Seismic sections of surface synthetics for the model 0Aa. The dominating phase is the “early Ly " with a
group velocity about 4.0 km/sec, followed by A, waves with a group velocity of 3.0 km/sec. There is no prominent
phase arriving at the expected “on-time” L, window at 3.3 km/sec.
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FDstep O

VERT 0.000sec, 1800 1500
XTicMark = 10 km; Z TicMark= 10 km
-0.36E+00, 0.36E+00

FD step 400
VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10km

-0.37E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.27E+00, 0.35E+00

FD step 1200

VERT 30.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.22E+00, 0.26E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10km; ZTicMark= 10km
-0.31E+00, 0.26E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 kon; Z TicMark= 10 lm
-0.21E+00, 0.25E+00

FD step 2400

VERT 60.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.26E+00, 0.27E+00

LFD Simulation of Lg Propagation: Mode!l 0B

Figure 13. The vertical-component snapshots of L, wave propagation in model 0B in which the crustal
thickness decreases abruptly from 30 to 6 km. A significant fraction of L, energy enters the deeper man-
tle and detaches from the Moho (see 30, 40, and 50 seconds). This energy never reaches the surface
sensors, and as a result, the most prominent phase is the stabilized 3rd overtone, which stays in the thin

crust.

25




T S U L (Y Sy

. ek el b ed ek A e o d b el ek ed eh ok ol ek ed e

I NN NN NN RN SN AN TN NN SN AR NI NN RN AN NN BRA KRR RN RN RNR RNEA AN

M,V/W\_,W_" y +0km 0.138E+00
+10.0km  0.162E+00

Y'Y YWY
vty Ao +20.0km 0.140E+00
10 vy Ao +30.0km 0.346E+00
11 v SO +40.0km  0.211E+00
12 - L~ +50.0km 0.172E+00
13 +60.0km 0.117E400

14 '.'A'A' \ A N\ - +70.0km 0.171E+00

15 oty A +80.0km  0.112E400
16 s e +90.0km  0.152E+400
17 Wi ‘_A:V\ - +100km  0.133E+00
18 .'._,,.'.1;\“: ;h,_ . +110km  0.126E+00
19 " _‘W\,M\r_,_ +120km  0.156E400

ANIY) +130km  0.101E400

20 A
D AR | | It

21 '.,A'MM\,.WV_ +140km  0.163E+00
22 i AL L L Nl +150km  0.983E-01
23 SUULPINNNY | 171 Y V.V SN +160km  0.152E+00
24 VoY VTS +170km  0.113E+00
25 e !'ﬁ'ﬂ,wv\ Ve +180km  0.132E400
26 DUUUSUA DLV [ TV BV V'§vS +190km  0.130E+00

T [ T T e T T T T T T TR T T e A T T I T T T er ey e e e ref ee eyt f Cererret

0. 10, 20. 30. 40. 50. 60. 70. 80. 90. Second

Synthetics at Okm Depth, Model 0B

VERT, same scale, decimated by 5

st oo oo b oo e
7 .M.NWuw.- v +0.km 0.982E-01
8 119 . +10.0km  0.156E+00
9 — v +20.0km  0.181E+00
10 A +30.0km  0.374E+00
11 > +40.0km 0.144E+00
12 b - +50.0km  0.188E+00
13 N W~ +60.0km  0.226E+00
14 B[ +70.0km  0.175E+00

v 'l’ y L A
15 “Aﬂ YV +80.0km  0.990E-01
hd """ ""'

16 vA'A'MV\ Y +90.0en  0.923E-01
17 MV~ +100km  0.978E-01
18 AWV VY +110km  0.869E-01
19 PPPPIS N TIOR8 +120km  0.102E+400
20 SUUUUN WINPT 7Y BAP +130km  0.772E-01
21 VY- +140km  0.105E400
22 S ISR vr Y — +150km  0.717E-01
23 ~ . VY™ +160km  0.103E400
24 —~ va,,,‘ —~ +170km  0.774E-01
25 TNV W +180km  0.937E-01
26 AW +190km  0.976E-01

T T T O T T T T T I T T e T e T T T T T e e T ey e i T

0 10. 20. 30. 40. 50. 60. 70. 80. 90. Second

Synthetics at Okm Depth, Mode! 0B
HORI, same scale, decimated by 5

Figure 14. Seismic sections of surface synthetics for model 0B. The most prominent phase is the 3rd overtone con-
verted from the original L. Note that no "L, blockage” would be observed here since this 3rd overtone has a peak
amplitude and a group velocity very similar to those of the “on-time L " in the reference model (see Figure 3).
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FDstep O

VERT 0.000sec, 1800 1500
XTicMark= 10 km; 2 Tic Mark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10km
-0.36E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.32E+00, 0.36E+00

FD step 1200

VERT 30.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.27E+00, 0.32E+00

FD step 1600

VERT 40.000s0c, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.26E+00, 0.25E+00

FD step 2000

VERT 50.000s0c, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.16E+00, 0.16E+00

FD step 2400

VERT 60.000sec, 1800 1500

X Tic Mark = 10 km; Z TicMark= 10 km
-0.21E+00, 0.21E+00

LFD Simulation of Lg Propagation: Model 0Ba

Figure 15. The vertical-component snapshots of L; wave propagation in model 0Ba with a crustal thick-
ness gradually decreasing from 30 to 6 km. As in model OB, the L, is only partially blocked with some
energy traveling within the thin crust as the 3rd overtone. Much of the energy leaks into deeper mantle
apparently in the form of body waves radiating from the corner where the thin crust starts, which is easier
to see on the horizontal component.
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Figure 16. Seismic sections of surface synthetics for model 0Ba. The most prominent phase on trace No. 26 is the 3rd
overtone converted from the original L, , which arrives “on-time” and hence only a partial blockage is observed. A
strong L, -to-P conversion at the corner generates a very prominent arrival on the horizontal component. This phase dies
out very fast on the surface recordings.
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FDstep 0

VERT 0.000sec, 1800 1500
XTicMark = 10 km; Z TicMark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10km
-0.35E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; 2 Tic Mark= 10 km
-0.33E+00, 0.33E+00

FD stop 1200

VERT 30.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.23E+00, 0.27E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10km
0.21E+00, 0.21E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10km
-0.25E+00, 0.2SE+00

FD stop 2400

VERT 60.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.25E+00, 0.23E+00

LFD Simulation of Lg Propagation: Model 0C

Figure 17. The vertical-component snapshots of L, wave propagation in model 0C, which has a sedi-
mentary layer 16 km thick. The sediment slows down the L, waves, as expected. However, this structure
does not generate a S, conversion as strong as in other models with irregular Moho or contained basin.
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Figure 18. Seismic sections of surface synthetics for model 0C.
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FDstep 0

VERT 0.000sec, 1800 1500
XTicMark= 10 km; ZTlcMark =
-0.36E+00, 0.36E+00

FD stop 400

VERT 10.000sec, 1800 1500
X TicMark= 10 km; Z Tic Mark =
-0.34E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
X TicMark = 10 kam; Z Tic Mark =
-0.33E+00, 0.34E+00

FD step 1200

VERT 30.000sec, 1800 1500
X Tic Mark = 10 km; Z Tic Mark =
-0.27E+00, 0.29E+00

FD step 1600

VERT 40.000sec, 1800 1500
X TicMark= 10 km; Z Tic Mark =
-0.19E+00, 0.22E+00

FD step 2000

VERT 50.000sec, 1800 1500
X Tic Mark = 10 km; Z Tic Mark=
-0.28E+00, 0.28E+00

FD step 2400

VERT 60.000sec, 1800 1500
X TicMark= 10 km; Z TicMark =
-0.34E+00, 0.32E+00

LFD Simulation of Lg Propagation: Model 0Ca

Figure 19. Same as Figure 17 except that the basin has a gentle edge.
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Figure 20. Seismic sections of surface synthetics for model 0Ca.
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FDstep O

VERT 0.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.35E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.33E+00, 0.33E+00

FD step 1200

VERT 30.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.23E+00, 0.27E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.20E+00, 0.24E+00

FD step 2000

VERT 50.000s0c, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.20E+00, 0.20E+00

FD step 2400

VERT 60.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 lan
-0.16E+00, 0.17E+00

LFD Simulation of Lg Propagation: Model 0D

Figure 21. Because of the contained structure of the basin, the L, that tunnels underneath the basin
eventually recovers characteristics like a multiply bouncing SmS. This phase has the same group velocity
as the “on-time L, " on those surface sensors co-located at the bounce points. The amplitude is smaller,
however. A more prominent phase comes from the energy that first enters the basin and then leaks out
from the ascending edge of the basin. The comer where the pinched basin ends also radiates some body

waves.
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Figure 22. The contained basin structure removes some energy from the “on-time L, " and converts it to the so-called
“late L, ” which has the same phase velocity as the reference L, but is significantly delayed. Depending on the location
of surface sensors, some sensors will observe either complete or partial blockage of the “on-time L, ”.
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FDstep 0
VERT 0.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.34E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500

X Tic Mark= 10 km; ZTicMark= 10 km
-0.32E+00, 0.31E+00

FD step 1200

VERT 80.000sec, 1800 1500
XTicMark= 10 kam; Z Tic Mark= 10 km
-0.30E+00, 0.34E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.22E+00, 0.23E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 kmm; Z Tic Mark= 10 km
-0.20E+00, 0.19E+00

FD step 2400
VERT 60.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10km

-0.16E+00, 0.16E+00

LFD Simulation of Lg Propagation: Model 0Da

Figure 23. Same as Figure 21 except for an elliptical basin. The results are very similar to those of
model OD. Thus the details of the basin shape appear to be not that important.
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Figure 24. Similar to Figure 22 except for an elliptical basin. Although the results are very similar to those of model 0D,
the blockage of the “on-time L, ” is more apparent. Also note the strong backscattering at the terminating edge of the
basin.
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FDstep 0

VERT 0.000sec, 1800 1500
XTicMark= 10 jm; ZTicMark= 10km
-0.36E+00, 0.36E+00

FD step 400
VERT 10.000sec, 1800 1500
XTicMark= 10 lan; Z TicMark= 10 km
0.35E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10ian; ZTicMark= 10km
-0.33E+00, 0.33E+00

FD step 1200
VERT 30.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
0.22E+00, 0.22E+00

FD step 1600
VERT 40.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.20E+00, 0.25E+00

FD step 2000

VERT 50.000s0c, 1800 1500
XTicMark= 10km; ZTicMark= 10km
-0.20E+00, 0.19E+00

FD step 2400

VERT 60.000soc, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
0.15E+00, 0.18E+00

LFD Simulation of Lg Propagation: Model 0Db

Figure 25. The vertical-component snapshots of L, wave propagation in the basin model ODb. As in
models 0D and ODa, the bodywave coupling occurs at the pinched end of the basin where part of the
energy that traverses the basin starts to leak out (at 40 and 50 seconds). This suggests that even in a
model with no lateral variation in the Moho, the lateral structural heterogeneity in the uppermost crust still
can produce mantle phases through scattering. The pinched edge is essential in this mechanism.

37




BT S S P

L e S G Ty

LU e G ettt b iyt erpttaergeiagt
7 wqu +0.km 0.139E+00
8 ___,VW{WWV\'A +10.0km 0.109E+00

'VWW’WWVV +20.0km 0.102E+00
10 “ WiV +30.0km  0.132E+00
11 N WWVWMWW - +40.0km  0.127E+00
12 +50.0km  0.120E+00

A\ YW
13 Vv AV WWVWV\' —~— +60.0km 0.104E+00
AlA

+70.0km 0.114E+00

W poree——  +80.0km 0.839E-01

15 VWY "A' WYV YV VWYY N~ Yy

16 v 'A'A'A'A' A"A'.' AV ."A VY +90.0km 0.889E-01
17 SOV | 1" VOV BRI Wy +100km  0.113E+00
18 A'A' PPN VSO SYIVN TOS +110km  0.131E+00
19 A',.'A'A',.v_' UPTVVEUN FUTTPT WyWywv—  +120km  0.125E400
20 AV AN~ WV WiWwwvwe  +130km  0.101E+00
21 W A AV VYW wiwa  +140km  0.882E-01
22 Wy v W vy}  +150km  0.852E-01
23 "‘v‘W"""'WWV‘ VONIPUYI P v +160km  0.966E-01
24 WA VYR +170km  0.606E-01
25 v v‘-’WV”MM"'”VVWVWW" e +180.km 0.699E-01
26 VWV AV~ WV +190.km 0.520E-01

T T T T e e e e T e T e T e T T I v e e e e ey e T ey o
o 10. 20. 30. 40. 50. 60. 70. 80. 90. Second

Synthetics at 0km Depth, Model 0Db
VERT, same scale, decimated by 5

LLCLLL R g gyt e iy e i et et e tptiegteltsl

7 SN TE N +0.km 0.987E-01
8

Al LA +10.0km 0.112E+00
MiM/

s iV v - +20.0km  0.299E+00
10 ~ Wi~ ¥ SOPUNI +30.0km  0.142E400

1 AV AWV~ +40.0km  0.113E+00
12 v SN v +50.0km  0.174E+400
13 N TV ISP 'VWW‘v +60.0km  0.186E+00
14 “’WW\"' WV eV Wy e +70.0km 0.129E+00
15 PRI SN N VUNTEPON B MWW v +80.0km  0.759E-01
16 - WAV VWY Vrrverne WiV +90.0km  0.813E-01
17 A LAV Wi +100.km  0.775E-01
18 " - VYA —d WA +110.km  0.102E+00
19 " T TINUV EVUVIEUN WV VTN v Wy  +120km  0.873E-01
20 UYT TSN SNV VVTIN UNSIVIVA ¥ Mwvww  +130km  0.818E-01
21 Wi A MjWwn  +140km  0.815E-01
22 VOO UUIVORUS DUV Wy +150km  0.742E-0%
23 WA Y +160.km  0.687E-01
24 UINDVIN SUPPTIRPT TN VWV —v +170kn  0.446E-01
25 “ VONSTIYY VEONVNE BPVTV —~— +180km  0.530E-01
26 v rer ANV +130km  0.506E-01

T T T T T e T e I T T T T T T e T o TR e T TR T AT T T T
0 10. 20. 30. 40. 50. 60. 70. 80. 90. Second

Synthetics at 0km Depth, Model 0Db
HORI, same scale, decimated by 5

Figure 26. Similar to Figure 22 except that a thin, slow sedimentary layer is added. Both the R, phase and the “late
Ly * become prominent in this case. The “on-time L, " wave is weakened and only certain surface sensors at the right
locations can observe it.
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FDstep O
VERT 0.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000s0c, 1800 1500
XTicMark= 10 km; Z TicMark= 10km
-0.34E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.31E+00, 0.33E+00

FD step 1200

VERT 30.000scc, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.28E+00, 0.25E+00

FD step 1600
VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.29E+00, 0.31E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.26E+00, 0.29E+00

FD step 2400

VERT 60.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10lan
-0.22E+00, 0.24E+00

LFD Simulation of Lg Propagation: Model OE

Figure 27. The vertical-component snapshots of L, wave propagation in model OE with a thickened crust.
A very strong L, -to-S, conversion occurs along the ascending interface (see, 30, 40, and 50 seconds).
Horizontal-component snapshots (not shown) indicate that some focusing of energy occurs at the corner
where the Moho turns flat. This corner becomes a secondary point source, radiating upgoing body waves.
Sensors right above this corner would detect a prominent arrival due to a nearly vertical incidence of shear
waves (see traces No. 16 and 17 of Figure 28).
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Figure 28. Seismic sections of model OE, which has a thickened crust. The corner where the Moho turns flat is a
secondary point source radiating upgoing body waves. The prominent arrival on traces 16 and 17 has a very large
apparent velocity, due to a nearly normal incidence. The “on-time L, " is only partially blocked.
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LFD Simulation of Lg Propagation: Model OEa

FDstep O

VERT 0.000sec, 1800 1500
XTicMark= 10 km; Z Tlc Mark =
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
X TicMark= 10 km; Z Tic Mark =
-0.33E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
X Tic Mark = 10 km; Z Tic Mark =
-0.31E+00, 0.32E+00

FD stop 1200

VERT 30.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark =
-0.29E+00, 0.29E+00

FD step 1600

VERT 40.000sec, 1800 1500
X Tic Mark= 10 km; Z Tic Mark =
-0.28E+00, 0.31E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark =
-0.26E+00, 0.29E+00

FD step 2400

VERT 60.000sec, 1800 1500
X TicMark= 10 km; Z Tic Mark =
-0.21E+00, 0.23E+00

10 km

10 km

10 km

10 km

10 kam

10 km

10 km

Figure 29. The vertical-component snapshots of L, wave propagation in model OEa with a thickened

crust.
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Figure 30. Seismic sections of model OEa, which has a thickened crust. The corner where the Moho tumns fiat is a
secondary point source radiating upgoing body waves. The prominent arrival on traces 16 and 17 has a very large
apparent velocity, due to a nearly normal incidence. The “on-time L; " is only partially blocked.
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LFD Simulation of Lg Propagation: Model OEb

FDstep 0

VERT 0.000sec, 1800 1500
X TicMark= 10 km; Z Tic Mark =
-0.36E+00, 0.36E+00

FD stop 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark =
-0.33E+00, 0.34E+00

FD step 800

VERT 20.000s0c, 1800 1500
X Tic Mark = 10 km; Z Tic Mark =
-0.31E+00, 0.32E+00

FD step 1200
VERT 30.000s0c, 1800 1500
XTicMark= 10 km; Z Tic Mark =
0.41E+00, 0.37E+00

FD stop 1600

VERT 40.000sec, 1800 1500
X TicMark= 10 km; Z Tic Mark=
-0.29E+00, 0.31E+00

FD step 2000

VERT 50.0008ec, 1800 1500
XTicMark= 10 km; Z Tic Mark =
-0.26E+00, 0.29E+00

FD step 2400
VERT 60.000soc, 1800 1500
X TicMark= 10 km; Z Tic Mark =
-0.27E+00, 0.29E+00

10km

10 km

10 km

10 km

10 km

10 km

10 km

Figure 31. The vertical-component snapshots of L; wave propagation in model QEb, with a thickened

crust.
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Figure 32. Seismic sections of model OEb, which has a thickened crust. The comer where the Moho tums flat is a
secondary point source radiating upgoing body waves. The prominent arrival on traces 16 and 17 has a very large
apparent velocity, due to a nearly normal incidence. The “on-time L " is only partially blocked.
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FDstep 0

VERT 0.000sec, 1800 1500
XTicMark= 10 im; Z TicMark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.33E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10km
-0.32E+00, 0.32E+00

FD step 1200

VERT 80.000s0c, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.30E+00, 0.29E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.29E+00, 0.29E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.25E+00, 0.27E+00

FD step 2400

VERT 60.000sec, 1800 1500

X TicMark = 10 km; Z Tic Mark= 10 km
0.21E+00, 0.23E+00

LFD Simulation of Lg Propagation: Model OEc

Figure 33. The vertical-component snapshots of L, wave propagation in model OEc, with a thickened
crust.
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Figure 34. Seismic sections of model OEc, which has a thickened crust. The “on-time Lg " is only partially blocked.

46




LFD Simulation of Lg Propagation: Model 0Ed

FDstep 0

VERT 0.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark =
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
X TicMark= 10 kon; Z Tlc Mark =
0.34E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
X TicMark = 10 km; Z Tic Mark =
-0.31E+00, 0.32E+00

FD stop 1200

VERT 30.000sec, 1800 1500
X Tic Mark= 10 km; Z Tic Mark =
-0.26E+00, 0.25E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark =
-0.29E+00, 0.29E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTic Mark= 10 km; Z Tic Mark =
-0.25E+00, 0.28E+00

FD step 2400

VERT 60.000sec, 1800 1500
X TicMark= 10 lan; Z Tic Mark =
-0.21E+00, 0.23E+00

10 km

10 km

10 km

10 km

10 km

10 km

10 km

Figure 35. The vertical-component snapshots of L, wave propagation in model OEd, with a thickened

crust.
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Figure 36. Seismic sections of model OEd, which has a thickened crust. The comer where the Moho tums flat is a
secondary point source radiating upgoing body waves. The prominent arrival on traces 16 and 17 has a very large

apparent velocity, due fo a nearly normal incidence. The “on-time L, " is only partially blocked.
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FDstep 0O

VERT 0.000sec, 1800 1500
XTicMark= 10 km; 2 Tic Mark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 lan; Z TicMark= 10 km
-0.36E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.32E+00, 0.32E+00

FD step 1200

VERT 30.000s0c, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.25E+00, 0.22E+00

FD stop 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
0.24E400, 0.24E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 kom; Z TicMark= 10 km
-0.18E+00, 0.18E+00

FD step 2400

VERT 60.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.18E+00, 0.16E+00

LFD Simulation of Lg Propagation: Model OF

Figure 37. The vertical-component snapshots of L; wave propagation in model OF, which has both a
sedimentary basin and a Moho uplit. The Moho uplift causes a sirong S, conversion (see, at 20
seconds). The pinched end of the basin radiates body waves outward, and some of those rays leak into

deeper mantle.
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Figure 38. Seismic sections of model OF, which has a Moho uplift and a sedimentary basin.
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FDstep 0

HORI 0.000sec, 1800 1 500
XTicMark= 10km; ZTicMark= 10km
-0.13E+00, 0.13E+00

FD step 400

HORI 10.000sec, 1800 1500
XTicMark = 10 km; Z TicMark= 10 km
-0.14E+00, 0.20E+00

FD step 800

HORI 20.000s0c, 1800 1500
XTicMark= 10 km; ZTicMark= 10km
-0.18E+00, 0.18E+00

FD step 1200

HORI 30.000sec, 1800 1500
XTicMark= 10)mm; Z TicMark= 10 km
-0.14E+00, 0.15E+00

FD step 1600

HORI 40.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10km
-0.17E+00, 0.12E+00

FD step 2000

HORI 50.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.71E-01, 0.86E-01

FD step 2400

HORI 60.000sec, 1800 1500

- XTicMark= 10Jon; Z TicMark= 10km
-0.80E-01, 0.70E-01

LFD Simulation of Lg Propagation: Model OFa

Figure 39. The horizontal-component snapshots of L; wave propagation in model OFa, which has both a
sedimentary basin and a Moho uplift. Observations similar to those with the mode! OF can be made. The
pinched end of the basin radiates body waves outward, and some of those rays leak into deeper mantle
(see, at 50 seconds). Some direct P waves are also present (see, at 40 seconds).
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Synthetics at Okm Depth, Model OFa
HORY!, same scale, decimated by 5

Figure 40. Seismic sections of model OFa, which has a Moho uplift and a sedimentary basin. Partial blockage of “on-
time L, " is observable. Much of the energy is delayed because of the sedimentary basin. Direct P waves radiated from
the basin’s terminating edge can be seen on the horizontal components.
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FDstep 0

HORI 0.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.13E+00, 0.13E+00

FD stop 400

HORI 10.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.11E+00, 0.12E+00

FD step 800

HORI 20.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.18E+00, 0.19E+00

FD step 1200

HORI 30.000s0c, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.24E+00, 0.22E+00

FD step 1600

HORI 40. , 1800 1500

X Tic Mark = 10 km; Z Tic Mark= 10 km
-0.15E+00, 0.14E+00

FD step 2000

HORI 50.000s0c, 1800 1500

X Tic Mark = 10 km; Z TicMark= 10 km
-0.83E-01, 0.80E-01

FD step 2400

HORI 60.000s0c, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.94E-01, 0.93E-01

LFD Simulation of Lg Propagation: Model OFb

Figure 41. The horizontal-component snapshots of L, wave propagation in model OFb, which has two
sedimentary layers and a Moho uplift. Observations similar to those with the models OF and OFa can be
made: the basin edge acts like a secondary point source. A prominent SmS-mode of propagation is quite
clear at 50 seconds. The visibility of this phase is distance-dependent.
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Figure 42. Seismic sections of model OFb, which has a Moho uplift and two sedimentary layers. “On-time L " is essen-
tially blocked whereas two groups of “late L, ” waves as well as the further delayed A, are present. The prominent
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+40.0km 0.150E+00
+50.0km 0.118E+00
+60.0km 0.884E-01
+70.0km 0.103E+00
+80.0km 0.875E-01
+80.0km 0.913E-01
+100.km 0.802E-01
+110.km 0.978E-01
+120.km 0.863E-01
+130.km 0.981E-01
+140.km 0.135E+00
+150.km 0.113E+00
+160.km 0.714E-01
+170.km 0.816E-01
+180.km 0.511E-01
+190.km 0.449E-01
Second
+0.km 0.990E-01
+10.0km 0.112E400
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+40.0km 0.169E+00
+50.0km 0.129E+00
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+160.km 0.565E-01
+170.km 0.637E-01
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Second

phase arriving between 55 and 70 seconds on traces 20 through 24 is a SmS phase originated from the basin edge.
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FDstep O

VERT 0.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.32E+00, 0.36E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.28E+00, 0.27E+00

FD step 1200

VERT 80.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10km
-0.23E+00, 0.23E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.21E+00, 0.23E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.18E+00, 0.19E+00

FD step 2400

VERT €0.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.15E+00, 0.15E+00

LFD Simulation of Lg Propagation: Model OFc

Figure 43. The vertical-component snapshots of L; wave propagation in model OFc, which has two sedi-
mentary layers and a Moho uplift. Observations similar to those with model OFb can be made: the basin

, edge acts like a secondary point source. A prominent SmS-mode of propagation is quite clear at 50 and
60 seconds. The visibility of this phase is distance-dependent, however.
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Synthetics at Okm Depth, Model OFc
HORYI, same scale, decimated by 5

+0.km 0.136E+00
+10.0km 0.108E+00
+20.0km 0.104E+00
+30.0lan 0.154E+00
+40.0km 0.116E+00
+50.0km 0.113E+00
+60.0km 0.918E-01
+70.0km 0.101E+00
+80.0km 0.138E+00
+90.0km 0.782E-01
+100.kam 0.785E-01
+110.km 0.793E-01
+120.lm 0.749E-01
+130.km 0.695E-01
+140.km 0.731E-01
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Second
+0.km 0.103E+00
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Second

Figure 44. Seismic sections of model OFc, which has a Moho uplift and two sedimentary layers. The most prominent
phase before A, is the SmS radiated from the basin edge, which can be seen at certain receivers, depending on the
distance (see traces No. 21 through 26).
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FDstep 0

VERT .000sec, 1800 1 500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1 800 1 500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.36E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1 800 1 500

X Tic Mark= 10 km; Z Tlc Mark= 10 km
-0.38E+00, 0.38E+00

FD step 1200

VERT 30.000sec, 1 800 1 500
XTicMark= 10 km; Z TicMark= 10 km
-0.32E+00, 0.34E+00

FD stop 1600

VERT 40.000sec, 1 800 1 500
XTicMark= 10 km; ZTicMark= 10 km
-0.36E+00, 0.35E+00

FD step 2000

VERT 50.000sec, 1800 1500

X TicMark= 10 lan; ZTic Mark= 10 km
-0.26E+00, 0.28E+00

LFD Simulation of Lg Propagation: Model 2

Figure 45. The vertical-component snapshots of L, wave propagation of model 2, which has a flat Moho
and a moderate free-surface topography. The Lg-to-S, conversion is relatively weak. This is very
different from the case of R, where scattering by rough topography would cause very strong apparent
attenuation.
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Second
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Second

Figure 46. Seismic sections of model 2, which has a moderate free-surface topography. The scattering effects of
topography on L, are not as strong as those due to large-scale structural discontinuities.
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FDstep O

VERT .000sec, 1 800 1 500
XTicMark= 10 km; Z TicMark= 10km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1 aoo 1 500
XTicMark= 10 km; Z TicMark= 10 km
-0.36E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1 800 1 500

X TicMark= 10 km; Z TicMark= 10 km
-0.40E+00, 0.38E+00

FD step 1200

VERT 30.000sec, 1 800 1 500
XTicMark= 10 km; ZTicMark= 10km
-0.38E+00, 0.35E+00

FD step 1600

VERT 40.000sec, 1 800 1 500
XTicMark= 10 km; ZTicMark= 10 km
-0.33E+00, 0.33E+00

FD step 2000

VERT 50.000sec, 1 800 1 500

X TicMark= 10 km; Z TicMark= 10 km
-0.27E+00, 0.25E+00

LFD Simulation of Lg Propagation: Model 2a

Figure 47. The vertical-component snapshots of L, wave propagation of model 2a, in which the Moho is
fully compensated. The elevation change of this topographic profile is relatively small compared to the
thickness of the homogeneous crust, and hence the transmission of L, is still fairly efficient.
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Figure 48. Seismic sections of model 2a, which has a moderate free-surface topography and a fully compensated
Moho. The scattering effects of topography on L, are not as strong as those due to large-scale structural discontinuities.

60




FDstep ©

VERT .000sec, 1 800 1 500

X TicMark= 10 km; Z Tic Mark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1 500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.34E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1 500
XTicMark= 10 km; ZTicMark= 10 km
-0.33E+00, 0.33E+00

FD atep 1200

VERT 30.000sec, 1 800 1 500
XTicMark= 10 im; Z Tic Mark= 10 km
-0.30E+00, 0.30E+00

FD step 1600

VERT 40.000sec, 1800 1 500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.34E+00, 0.35E+00

FD step 2000

VERT 50.000sec, 1 800 1 500
XTicMark= 10 km; ZTicMark= 10km
-0.31E+00, 0.31E+00

LFD Simulation of Lg Propagation: Model 3

Figure 49. The vertical-component snapshots of L, wave propagation of model 3. The elevation change
of this topographic profile is relatively small compared to the thickness of the homogeneous crust, and
hence the transmission of L, is still fairly efficient.

61




e A A ek mh ek b b ed ek wd b mh ek A A =k ed A

T T N P i G (P OV G §ar gy

TR AT RN AR R RN E N AN SRR N RN AR NN RN RN A RARNR R A NRRANR AR NRARRANi
1 - Y UNIPOW VUL T PUVINY — -55km 0.607E-01
2 e WY VYWYV Frv v -45km 0.589E-01
3 N v W\ v -35km 0.998E-01
4 NA'A"A PUNS PUNIUNWY IV VY TS "f v -25km 0.122E400
5 SUSUT PN P VIV TV U8 o -15km 0.193E+00
6 -Skm 0.132E+00
7 y +5km 0.153E+00
8 " - +15km 0.116E+00
s +25km 0.192E+00
10 . v +35km 0.922E-01
11 DUV SO TSN § +45km 0.173E+00
12 v - +55km 0.219E+00
13 v - +65km 0.240E+00
14 v . +75km 0.841E-01
15 e OSSO +85km 0.260E+00
16 Vv +95km 0.108E+00
17 VYV Vv +105km 0.210E+00
18 VWV v — +115km 0.105E+00
19 NV~ — +125km 0.203E+00
20 A VWY v +135km 0.118E+00

T I I TR e b v Leee i IIHIIIII‘HHHIII T T T T T IO R T T TrTa

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. Second

Synthetics at Okm Depth, Model 3

VERT, same scale, decimated by 5

T TR R A RN RSN R R AN NN AR R RR RN AN A AR RURRRAR A NRRRAR RN NRANRAE
1 A v -55km 0.462E-01
2 N PUNYIVTY SUNUN - -45km 0.610E-01
3 P~ A ANV - -35km 0.922E-01
4 ¥ s Sy S A e w -25km 0.886E-01
5 MMVV'MJWNN""-‘.‘.‘ v . -15km 0.142E400
6 """"“W"‘ VWV “ -Skm 0.104E+00
7 | iy N +5km 0.214E+00
8 J ‘ﬁ'A'A_A'A A +15km 0.110E+00
9 WYTY! FOTY W PGPS U +25km 0.105E+00
10 ANV WY VA AWV w . v +35km 0.844E-01
11 A WY Wiy " +45km 0.911E-01
12 - VN ISR YINSUPIN A +55km 0.283E+00
13 v LYWW WV GO +65km 0.407E+00
14 VLTV UVVICUIUIIY +75km 0.782E-01
15 Wi VYV A +85kam 0.219E+00
16 W +95km 0.954E-01
17 —~ +105km 0.175E+00
18 - v +115m 0.102E+00
19 VY v +125m 0.162E+00
20 AV “ +135m 0.142E400

T T TR [T AT T i e IIlHWII'HHIIIlI T TR TR T T T T TTTATTTT

o 10. 20. 30. 40. 50. 60. 70. 80. 90. Second

Synthetics at Okm Depth, Model 3
HORI, same scale, decimated by 5

Figure 50. Seismic sections of mode! 3, which has a moderate free-surface topography and a flat Moho. The scattering

effects of topography on L, are not as strong as those due to large-scale structural discontinuities.
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LFD Simulation of Lg Propagation: Model 3a

FDstep O

VERT .000sec,

X TicMark= 10 lam;
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec,

X Tic Mark = 10 kan;
-0.35E+00, 0.33E+00

FD step 800

VERT 20.000sec,
XTicMark= 10 kan;
-0.35E+00, 0.30E+00

FD stop 1200

VERT 30.000sec,
XTicMark= 10 km;
-0.31E+00, 0.30E+00

FD step 1600

VERT 40.000sec,
XTicMark= 10 km;
-0.29E+00, 0.27E+00

FD step 2000

VERT 50.000sec,
XTicMark= 10 km;
-0.24E+00, 0.21E+00

FD step 2400

VERT 60.000sec,

X TicMark= 10 km;
-0.39E-01, 0.39E-01

1800 1 500

ZTicMark= 10 km

1800 1 500
ZTicMark= 10 km

1800 1 500
ZTicMark= 10 km

1 800 1 500
ZTicMark= 10km

1800 1 500
ZTicMark= 10 km

1800 1 500
ZTicMark= 10 km

1 800 1 500
ZTicMark= 10 km

Figure 51. The vertical-component snapshots of L; wave propagation of model 3a, in which the Moho is
fully compensated. The elevation change of this topographic profile is relatively small compared to the
thickness of the homogeneous crust, and hence the transmission of L, is still fairly efficient.
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Figure 52. Seismic sections of model 3a, which has a moderate free-surface topography and a fully compensated
Moho. The scattering effects of topography on L, are not as strong as those due to large-scale structural discontinuities.
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LFD Simulation of Lg Propagation: Model 4

FDstep 0

VERT .000sec,

X TicMark= 10 km;
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec,

X TicMark = 10 km;
-0.36E+00, 0.33E+00

FD stop 800

VERT 20.000sec,

X TicMark= 10 km;
-0.36E+00, 0.35E+00

FD step 1200

VERT 30.000sec,
XTicMark= 10 km;
0.27E+00, 0.29E+00

FD step 1600

VERT 40.000sec,
XTicMark= 10 km;
-0.25E+00, 0.28E+00

FD step 2000

VERT 50.000sec,
XTicMark= 10 lan;
-0.27E+00, 0.25E+00

FD step 2400

VERT 60.000sec,

X Tic Mark = 10 km;
-0.23E-01, 0.22E-01

Figure 53. The vertical-component snapshots of L; wave propagation of model 4.
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Figure 54. Seismic sections of model 4, which has a trapezoidal topography and a fully compensated Moho.
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4. Lg PROPAGATION IN ANELASTIC MODELS

The incorporation of intrinsic attenuation due to an arbitrary absorption law is believed to be
straightforward in frequency-domain methods. However, so far many codes used in waveform synthesis
(such as the reflectivity method and the wavenumber-integration method) can only handle a frequency-

independent Q.! Bache et al. (1981) found that L, synthetics made for models with frequency-
independent Q do not attenuate with the proper frequency dependence. If models are constructed that
match L, amplitude-distance relationship at 1 Hz, then L, synthetics would attenuate too rapidly at

higher frequencies.

For the time-domain-based numerical methods, it has been very difficult to add the intrinsic
attenuation because the anelastic stress-strain relation has the form of a convolution integral, which is
intractable in a numerical computation. Vidale and Helmberger (1988) convolved finite-difference syn-
thetics with a time-varying operator to model the effect of anelastic attenuation. This method is not suit-
able for media with spatially-varying Q. This method is also not appropriate when there are significant
wave conversions (P to S efc.) in media where Qp is not equal to Qg. The first successful attempt to
incorporate realistic attenuation laws into time-domain methods was made by Day and Minster (1984)
based on the method of Pade approximation, which yields an expansion of the frequency-dependent
viscoelastic modulus into a rational function. Emmerich and Ko (1987) propose a slightly different
method based on the rheological model of the generalized Maxwell body, which has a modulus of the
desired rational form. The major inconvenience of these approaches is that they demand a continual
storage of five or more time steps of the wave field, depending on the accuracy of the approximation.
The non-causal nature of some of these techniques is another fundamental drawback, at least conceptu-
ally, since in reality the anelastic attenuation of the Earth should act in a causal manner. That is, the dis-
sipation of energy should occur as soon as the seismic wave arrives, and that the resulting displacement

at the current time step should not be dependent on future displacement.

With all these considerations in mind, a different procedure is developed in this study to incor-
porate the anelastic attenuation. It tumns out that if we drop the ambitious attempt of imposing an arbi-
trary (that is, user-defined) frequency-dependence on the Q operator, then it becomes very easy to
implement a causal, phase-independent damping operator which is quite suitable for the LFD calcula-
tion. Several researchers have readily demonstrated that the performance of commonly used absorbing
boundary conditions can be greatly improved if a viscous damping zone is added to the grid boundary
(Cerjan et al., 1985; Levander, 1985a). The damping zone simply reduces the amplitude in a pointwise
manner. There is no reason why this technique can not be exploited to model the anelastic attenuation.

1 A wavenumber-integration code with this limitation lifted is being developed at S-Cubed by K. McLaughlin.
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Different seismic waves are used as the initial pulse in these examples to demonstrate the

effectiveness of this algorithm.

Consider the simplest isotropic homogeneous medium in which the amplitude of seismic waves

decays exponentially with traveling distance:

_'YA

Alf, ) = Ao(f) - G= Aq(f) - € : 0l
where y = —L—Jn—% U is the group velocity, and A is the distance traveled. In LFD calculations, A is taken
to be the distance that the seismic wave would travel within one temporal step of the LFD iteration, that

n-f-dt
is, A=U-dt. Thus G can also be written as e @ | There exists a constant n such that

Gs=e " =1-q-y-A. 2]
ﬂ'—’%ﬁ—'—f and hence Q = Qo - if we define Qy to be 1~ _ if the damp-
ing term G is a function of the grid coordinate only and invariant with frequency, then we would have a
Q increasing linearly with frequency. If, however, a frequency-dependent G is used at separate LFD
simulations, then combining the band-limited LFD results would produce the solution for that particular
frequency-dependent Q@ model. Here the parameter 1 is a function of y or G, and the means of deter-
mining 7 will be discussed later. In practice, however, the users only need to specify a multiplicative
constant G slightly less than 1 for each grid point. These localized damping factors are used to modify
the displacement field pointwise at each iteration step. The decay rate (y) and the quality factor (Q) can
be determined later, after the finite-difference calculation is done. A possibie drawback of this approach
is that if a specific frequency-dependent Q model is desired, then several separate LFD simulations
need to be carried out for each frequency—Q pair of interest, as discussed above. Nevertheless, this
possible shortcoming of this approach is outweighed by its simplicity. More importantly, this procedure
preserves the causality. Another characteristic of this approach is that, given a damping factor G in a P-

it impliesthat G = 1 - 111"iﬂ T

SV LFD calculation, Q = 111‘(-';-’1 would be applicable to both P and S phases. Thus, Qp and Qs

should be about the same.

So far we have derived several necessary conditions for an anelastic attenuation model, based on
the desired exponential decay of seismic amplitude. In the following, we shall take a schematic view of
this proposed algorithm. Consider the heterogeneous acoustic wave equation in the nondissipative

medium:

&P ¥p PP
22 ol

where P is the acoustic displacement potential, and c{(x, z) is the acoustic velocity at the node (x, z).
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LFD iteratively solves for the current pressure at (x, z) using that of the past within a spatially-limited
region surrounding the grid (x, z). The actual size of the temporal and spatial buffers required depends
on the order of the LFD scheme. At each time step, the resulting unattenuated pressure P is then multi-
plied by the damping G to get the dissipated P. Once the whole pressure field is updated and dissi-
pated (grid by grid) with the corresponding spatial damping factors, the standard LFD iteration restarts
for the next pressure field without damping, and then damping factors are applied again. The procedure
for the P-SV LFD calculation is exactly the same. It should be obvious that the extra calculation and
memory required in this procedure are minimum. We can envision the pointwise damping factor as a
degenerate digital filtter which has only one point of temporal span (that is, memory). It can be regarded
as the limiting case of the convolutional integral of many attenuation operators typically used in the

frequency-domain approach.

The attenuated pressure, P = P - G, can also be written as

5_p_Mm-om-dt-f
pP=P 5 P. [4]

That is, P can be obtained by adjusting the undissipated P a little. The coefficient of pressure loss,

dtf is very similar to the coefficient of friction term that Levander (1985) (and Frankel and Wenner-

berg, 1987) used in the telegraphy equation. The difference is that we have added the n term here to
account for the correct relationship between Q and the damping effect. Jih (1996) gives a more detailed
discussion as well as several examples using different seismic waves as input to demonstrate the

effectiveness of this algorithm.

Seven models with Q, values varying from 60 to 500 are tested in this study. The attenuative por-
tion is 100 km long and 30 km thick. In each case, a significant fraction of the energy is lost due to
absorption. Nevertheless, the chessboard pattern of the initial L, wave packet is retained for all models.
in fact, none of these seven models exhibits any notable scattering (see Figures 59 through 62). Also,
the linear frequency-dependence of the resulting Q is quite clear, so is the frequency-independent vy
(Table 3). These observations strongly indicate that the simple attenuation operator proposed for the

LFD method is adequate for operational purposes.

Following the same quantification procedure as in the previous section, amplitude ratios represent-
ing the L, transmission and coupling to other phases are computed. Instead of using the surface syn-
thetic to measure the quality factor and vy, the amplitude ratio of transmitted L, waves is based on that
at a depth of 10 km, which we find to be a more stable measure of the fransmitted energy. The results

are summarized in Table 3 below.
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Table 3. L; Propagation Statistics of 7 Anelastic Models

Model, e BK T | S\, | farPiL, | far-S/L, | Q | v(1H2) | QRHz) | v(2Hz)
0Qa, 0.99747 | 0.175 | 0.200 | 0053 | 0.026 0014 | 59 | 0.0162 139 0.0138
0Qb, 0.99873 | 0418 | 0.445 | 0049 | 0026 | 0013 | 117 | 0.0082 249 0.0077
0Qc, 0.99916 | 059 | 0.614 | 0.056 | 0.027 0.014 | 196 | 0.0049 398 0.0048
0Qd, 0.99937 | 0672 | 0695 | 0059 | 0.028 0015 | 263 | 0.0036 531 0.0036
0Qe, 0.99949 | 0.718 | 0.739 | 0.060 | 0.028 0017 | 316 | 0.0030 635 0.0030
0Qf, 0.99958 | 0.770 | 0.786 | 0.060 | 0.028 0018 | 396 | 0.0024 796 0.0024
0Qh, 0.99968 | 0.826 | 0.835 | 0.060 | 0.029 0020 | 530 | 00018 | 1054 | 0.0018

BK: spectral amplitude ratio at 1 Hz of “on-time Lg ” (3.33 km/sec) to that of the reference model.
T: spectral amplitude ratio at 1 Hz of transmitted Lg {recorded at a depth of 10 km) to that of the reference model.

Sn/Lg: spectral amplitude ratio at 1 Hz of converted S,, 1o the reference Lg .

far-P/Lg: spectral amplitude ratio at 1 Hz of converted teleseismic P to the reference Lg .
far-S/Lg: spectral amplitude ratio at 1 Hz of converted teleseismic S to the reference Lg .

As Q increases, the transmission efficiency (T) also increases, as expected. However, the coupling
of L, into S, or teleseismic phases does not seem to be affected. Reducing the thickness of the
attenuating body does not seem to change this observation (Figure 62). This is different from the case
of A, in which Jih (1995, 1996) reported that the undissipated R, energy could actually be converted
into S or L, waves. The reason for this difference is not clear as yet. A possible explanation is that it
has to do with the fundamental difference between R, and the higher modes. The particle motion of A,
is very localized in that the energy causing retrograde (or prograde) rolling at greater depths does not
interact with the shallow portion of the crust. When the rolling at shallow depths is dissipated, the
“waveguide” is actually changed and the undissipated energy at greater depth can no longer propagate
in the same mode as A, . As a result, it is converted into a pure shear or L, -like wave (see Jih, 1995).
On the other hand, L, waves are the interference of planar S waves multiply reflected at the free sur-
face and the Moho. This mode of propagation is more robust in that even if part of the energy on the
wavefront is dissipated in the upper crust, the remaining part of the wavefront might still be able to pro-
pagate more or less along the original direction. L, energy in the deeper crust will also be dissipated
when it eventually reaches the upper crust. Likewise, the L, energy in the shallow portion of the crust
will be dissipated first and then eventually enter the deeper crust and so forth. Thus the shallow
attenuating layer will affect the whole L, wavefield in a relatively more uniform manner without breaking

up the mode (eigenfunction). As a result, there will be no notable enhancement of S, or teleseismic

coupling.
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FDstwep O

VERT 0.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.34E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500

X TicMark= 10 kam; Z Tic Mark= 10 km
-0.30E+00, 0.31E+00

FD step 1200

VERT 30.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 kmm
-0.26E+00, 0.26E+00

FD step 1600

VERT 40.000sec, 1800 1500

X TicMark= 10 km; Z Tic Mark= 10 lan
-0.24E+00, 0.23E+00

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 kam; Z Tic Mark= 10 km
-0.22E+00, 0.22E+00

FD step 2400

VERT 60.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 kam
-0.22E+00, 0.21E+00

LFD Simulation of Lg Propagation: Model 0Qd,122

Figure 59. The vertical-component snapshots of L; wave propagation in an anelastic mode, 0Qd, with
Qo (Ly) = 263 for L, waves. The anelastic portion of the model is 100 km long and 30 km thick. In this
case, the effect of the intrinsic attenuation is to reduce the amplitude through dissipation. No significant
scattering is observed.
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Figure 60. Seismic sections of model 0Qd,122 which has an attenuating body 100 km long, 30 km thick, with Qq(Lg) =
263.
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FDstep 0

VERT 0.000sec, 1800 1500
XTicMark= 10 kam; Z TicMark= 10 km
-0.36E+00, 0.36E+00

FD stop 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; Z Tic Mark= 10 km
-0.35E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark = 10 km; ZTic Mark= 10 km
-0.33E+00, 0.31E+00

FD stop 1200
VERT 30.000sec, 13800 1500
XTicMark= 10 km; ZTic Mark= 10 km
-0.29E+00, 0.32E+00

FD step 1600
VERT 40.000sec, 1800 1500
XTicMark= 10 km; 2 TicMark= 10 km
-0.32E+00, 0.34E+00

FD step 2000

VERT 50.000sec, 13800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.29E+00, 0.31E+00

FD step 2400
VERT 60.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.26E+00, 0.27E+00

LFD Simulation of Lg Propagation: Model 0Qd,62

Figure 62. Similar to Figure 59 except a 15km-thick attenuative layer. For the L, phase, the effect of
intrinsic attenuation is to reduce the amplitude through dissipation. Changing the volume size (that is, the
thickness) of the attenuating body does not seem to cause more mode conversion. This is very different
from the case for A, .
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5. Lg PROPAGATION IN MODELS WITH
RANDOM VELOCITY VARIATION

In an attempt to model the L, blockage observed in the west Pyrenees Range, Chazalon et al.
(1993) and Gibson and Campillo (1994) suggest that scattering by small-scale features within the lower
crust is the primary reason for the observed blockage. In this section, several heterogeneous models
with various RMS random velocity fluctuations are tested to quantify the scattering effects of small-scale
heterogeneity on Lg . Figure 63 shows the vertical-component snapshots of L; wave propagation in a
single-layer model with a heterogeneous portion 100 km long and 30 km thick embedded in it. The self-
similar random heterogeneity in this sandwiched portion has an RMS velocity fluctuation of 10 percent
and a scale length of 1 km. The random medium is generated with the procedure described in Frankel

and Clayton (1986).

As the RMS velocity variation increases to, say 20 percent, the scattered field becomes very com-
plicated (cf. Figures 63 and 65). Contrary to the case with intrinsic attenuation alone, the small-scale
random heterogeneity causes many kinds of coupling (scattering) (Figure 65). Table 4 below summar-
izes all the results. The “blocking” parameter (BK) was computed at two different depths, 0 and 10 km,
and the latter is used in determining Q, and y. Both the transmission of L, and the coupling of other
phases are directly affected by the change in the RMS velocity variation. As the RMS velocity variation
increases, the amplitude ratio of transmitted L, to the reference L, wave drops significantly. The scat-
tered energy enhances the coupling of S, as well as those of teleseismic phases. It is interesting to
note that Ly -to-S, coupling is not a simple linear function of RMS velocity variation, unlike the coupling
of teleseismic phases or L, transmission. Figure 68 and Table 4 indicate that below 10%, the Ly t0-S,
coupling does exhibit a highly linear trend with the increasing complexity of the medium. The coupling
drops as the RMS variation goes beyond 10%. Intuitively this could be because the scattered wavefield
would become dominant and the isotropic point scatterers would radiate the energy in all directions.

Another observation is that as the RMS variation increases, the delay of the centroid of the L,
wave packet on the surface synthetics (see Figure 67) becomes very obvious. This is similar to the “sto-
chastic dispersion” phenomenon McLaughlin and Anderson (1 987) reported for P waves. In theory, the
apparent attenuation and the dispersion should form a Hilbert transform pair, according to the Kramers-
Kronig relation (Jacobson, 1987). This can be tested if the frequency band is broad enough.
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Table 4. L, Propagation Statistics of Random Models

Model BK(O) | BK(10) | S./L, | far-PiL, | farS/L, | Q1 Hz) | v(1Hz)
OY.2% | 1020 | 0978 | 0.065 0.040 0.042 3934 0.0002
OY,3% | 1.032 | 0952 | 0.075 0.048 0.055 1878 0.0005
OY,4% | 1044 | 0917 | 0086 0.057 0.069 1088 0.0009
OY,5% | 1059 | 0873 | 0.097 0.065 0.083 707 0.0014
OY,6% | 1077 | 082 | 0.108 0.073 0.096 494 0.0019
OY,7% | 1095 | 0766 | 0.118 0.081 0.108 365 0.0026
OY,8% | 1114 | 0706 | 0.126 0.089 0.118 280 | 0.0034
oY,9% | 1132 | 0644 | 0.133 0.097 0.127 202 0.0043
oY, 10% | 1.146 | 0583 | 0.138 0.106 0.134 181 0.0053
OY,11% | 1.154 | 0524 | 0.141 0.115 0.140 150 0.0064
oY, 12% | 1.154 | 0.471 0.143 0.126 0.144 128 0.0075
OY,13% | 1.141 | 0423 | 0.143 0.136 0.147 111 0.0086
oY, 14% | 1.115 | 0.381 0.142 0.145 0.150 98 0.0098
OY,15% | 1.075 | 0344 | 0.138 0.154 0.155 88 0.0108
oY, 16% | 1.020 | 0313 | 0.133 0.161 0.161 81 0.0118
OY.17% | 0949 | 0285 | 0.126 0.167 0.167 75 0.0127
OY,18% | 0859 | 0260 | 0.118 0.171 0.173 70 0.0136
oY, 19% 0.749 0.235 0.110 0.174 0.177 66 0.0146
OY,20% | 0625 | 0210 | 0103 0.174 0.181 61 0.0158

BK(0): spectral amplitude ratio at 1 Hz of “on-time Lg » (3.33 km/sec) to that of the reference model.

BK(10): spectral amplitude ratio at 1 Hz of transmitted Lg (recorded at a depth of 10 km) to that of the reference model.
Sn/Lg: speciral amplitude ratio at 1 Hz of converted S, to the reference Lg .

far-P/Lg: spectral amplitude ratio at 1 Hz of converted teleseismic P to the reference Lg .

far-S/Lg: spectral amplitude ratio at 1 Hz of converted teleseismic S to the reference Lg .

Both anelasticity and small-scale random heterogeneity can contribute to the so-called “L, block-
age”. Note that in practice the L, blockage occurs whenever the peak L, amplitude is below the signal
level of other phases surrounding Lg. It certainly does not require the signal level in the predicted L,
window to be far below the noise level. In our calculations, a velocity variation of 8 percent or higher
leads to an equivalent spatial Q of 270 or less, which would be sufficient to reduce the L, amplitude by
30 percent or more for every 100 km it traverses (see the parameter T in Table 3). The classical exam-
ple of “L,; blockage” along the path from the Novaya Zemlya test site to northem Scandinavia has a
Qo(Ly) about 252, as discussed before. Based on Table 4, this level of attenuation is approximately
equivalent to a model with a velocity variation of 8 percent alone. Stable shield regions are reported to
have an RMS velocity variation less than 5 percent. For such paths, the corresponding spatial Q, value

would be 700 or larger.




Some comparisons of various conversion mechanisms may be interesting.' For a mountainous
model, L, -to-S is twice as strong as L, -to-P (Table 2). (Here P and S refer to the teleseismic P and S,
respectively.) For the “A” and “B” series of models, as well as the random media, these two mechan-
isms are about equally strong (see Tables 2 and 4). Anelastic models and “C”-type models have a L, -
to-S weaker than the L -to-P (Table 3), whereas models of the “D”, “E”, and “F” series show the oppo-

site trend (Table 2).
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FDstep O

VERT 0.000sec, 1800 1500
XTicMark= 10ian; ZTicMark= 10 km
-0.36E+00, 0.36E+00

FD atep 400

VERT 10.000sec, 1800 1500
XTicMark= 10ikm; ZTicMark= 10 km
-0.36E+00, 0.34E+00

FD step 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.31E+00, 0.36E+00

FD step 1200

VERT 30.000sec, 1800 1500
XTicMark= 10km; ZTicMark= 10 km
-0.27E+00, 0.31E+00

FD step 1600

VERT 40.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
-0.20E+00, 0.23E+00

FD step 2000
VERT 50.000sec, 1800 1500
XTicMark= 10 km; Z TicMark= 10 km
0.20E+00, 0.23E+00

FD step 2400
VERT 60.000sec, 1800 1500
XTicMark= 10km; ZTicMark= 10km

-0.21E+00, 0.21E+00

LFD Simulation of Lg Propagation: Model 0Y,10%

Figure 63. The vertical-component snapshots of L, wave propagation in a single-layer model with a
heterogeneous portion 100 km long and 30 km thick embedded in it. The self-similar random heterogeneity
in this sandwiched portion has an RMS velocity fluctuation of 10 percent and a scale length of 1 km.
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Figure 64. Seismic sections of the model 0Y,10%. This model has 10 percent velocity variation in an embedded
heterogeneous volume which is 100 km long and 30 km thick.
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FDstep 0O

VERT 0.000sec, 13800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.36E+00, 0.36E+00

FD step 400

VERT 10.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10 km
-0.38E+00, 0.32E+00

FD stop 800

VERT 20.000sec, 1800 1500
XTicMark= 10 km; Z Tlc Mark= 10 km
-0.28E+00, 0.22E+00

FD stop 1200

VERT 30.000sec, 1800 1500
XTicMark= 10km; ZTicMark= 10km
-0.11E+00, 0.11E+00

FD step 1600
VERT 40.000s0c, 1800 1500
XTicMark= 10 km; 2 Tic Mark= 10 km
-0.58E-01, 0.80E-01

FD step 2000

VERT 50.000sec, 1800 1500
XTicMark= 10 lm; Z TicMark= 10 km
-0.53E-01, 0.65E-01

FD step 2400

VERT 60.000sec, 1800 1500
XTicMark= 10 km; ZTicMark= 10km
-0.45E-01, 0.46E-01

LFD Simulation of Lg Propagation: Model 0Y,20%

Figure 65. The vertical-component snapshots of L, wave propagation in a single-layer model embedded
with a heterogeneous portion 100 km long and 30 km thick in it. The self-similar random heterogeneity in
this sandwiched portion has an RMS velocity fluctuation of 20% and a scale length of 1 km. The strong
scattering generates a very complicated wavefield (as compared to Figure 63). Much of the scattered
energy would contribute to coda waves.
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Figure 66. Seismic sections of the model 0Y,20%. This model has 20% velocity variation in an embedded heterogene-

ous volume which is 100 km long and 30 km thick. This model generates very long coda, as expected. Also note that
the centroid of the L, wave packet is delayed.
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6. REMARKS ON OBSERVATIONS OF Lg BLOCKAGE
AND A MODEL-BASED CORRECTION PROCEDURE

Baumgardt (1991) conducted a thorough observational study of L, blockage for Soviet explosions
recorded at regional or far-regional distances. He documented several examples of partial and complete
blockage and carefully related the possible cause of each case to geological and geophysical charac-
teristics along the path. Baumgardt found that in every instance of partial or complete biockage, the
great-circle path of L; between the source and the receiver crosses contained sedimentary basins and
adjacent topographic discontinuities. L, blockage does not seem to relate to variations in total crustal
thickness. Blockages result from basins where there are unusually thick sediments, usually in excess of
10 km, where the basin is fully contained and the sediments pinch out at the edges of the basin, and/or
where there are topographic inhomogeneities at the edges of the basin. He observed less blockage for
events occurring inside sedimentary basins themselves, where the basins are not particularly thick, or
where the sediments thin very gradually with distance. Table 4 below summarizes observations of L,
blockage and weakening, along with the possible mechanism that has been proposed.

Table 5 Observed L, Blockage/Weakening and Proposed Mechanism(s)

Mechanism Proposed

Author(s)

Region Studied

Dramatic thinning of waveguide
Pure oceanic paths
Missing granitic layer

Crustal thickening
Variations in crustal thickness (+Q?%)
Variations in crustal thickness

Anelastic attenuation in sediments

Scattering by small-scale heterogeneity
Scattering by small-scale heterogeneity

Scattering from tectonic boundaries
Scattering from tectonic boundaries
Scattering from tectonic boundaries

Contained thick sedimentary basin
Contained thick sediments (+low Q?)

Ewing et al. (1957)
Knopoff et al. (1979)
Piwinskii (1981)

Ruzaikin et al. (1977)
Gregersen (1984)
Kennett et al. (1985)

Mitchell & Hwang (1987)

Campillo et al. (1993)
Chazalon et al. (1993)

Kadinsky-Cade et al. (1981)
Ni & Barazangi (1983)
Baumgardt (1985, 1990)

Baumgardt (1991)
Baumgardt (1991)

continent-ocean margin
Atlantic & Pacific Oceans
Caspian Sea

Himalayan Belt
North Sea Graben
North Sea Graben

u.s.

SW Alpine Range
Westemn Pyrenean Range

Turkish & lranian Plateaus
Tibetan Plateau
Ural Mountains

Barents Shelf
North Caspian Depression




The importance of understanding crustal waveguide effects on L, waves has motivated many
modeling studies of blockage in recent years (Kennett, 1986a; Maupin, 1989; Regan and Harkrider,
1989; Chazalon et al., 1993; Gibson and Campillo, 1994; and Cao and Muirhead, 1993). Some of
these authors suggest that the observed blockage is not straightforward to simulate, and that the unmo-
deled small-scale random heterogeneity is required to account for the blockage, on top of the large-scale
structural (that is, geometrical) variation of the waveguide. Although either low Q or large velocity varia-
tion can be invoked to explain the L, blockage of many paths, we might be able to narrow down the
possible mechanisms with some additional diagnostic information. For instance, if a pronounced L, -to-
S, conversion is observed along with the L blockage, then it is likely that the blocking mechanism is

not due to low Q.

One the major challenges in monitoring a Comprehensive Test Ban Treaty [CTBT] is discriminating
small events at regional distances. Various forms of compressional/shear (P/S) ratios have been pro-
posed and extensively tested as candidate discriminants. In tackling such problems, a better amplitude
(or, equivalently, magnitude) scale of the regional phase of interest, with respective path effects carefully
accounted for, is definitely useful or sometimes even necessary. Along this line of thought, Jih et al.
(1995) (and also Jih and Lynnes, 1993) suggest a simple, convenient magnitude scale for L, :

_ . 1 1 . A(km) v{A-10km)
m, = 4.0272 - Bias + logA(A) + 3 log(A(km)) + > logfsin( 1174 (km/deg) N+ n(i0) [5]
where y= 6"——6— , Qf)=Qp -,

A is the epicentral distance in km and A(4) is the observed raw L, amplitude measured in the time
domain in pm [microns] at the epicentral distance of A km. Or, equivalently,

1

1
A, = A(8) - 1049727822 - (ACkm))® - [sin(-——i—)——ﬁtqS (m/ 3o5) )2 - ere-tokm) [5a]

The “Bias” term in Egs. (5) and (5a) is meant to account for the different L, excitation (relative to my). it
is set to zero for the Eastern U.S. Thus a seismic source with 1-sec L, amplitude of 110 um at 10 km
(extrapolated) epicentral distance would correspond to a m, of 4.0272 + 2.0414 + 0.3333 - 1.4019 +
0.0000 = 5.000, which has been suggested to be appropriate for both Eastern North America and Semi-
palatinsk. That is to say, a seismic source in these two regions with m, 5.0 would have a m, approxi-
mately the same. Jih et al. (1995) suggest use of 0.34 and 0.26 m.u. for the “Bias”, respectively, for
Pahute Mesa and Novaya Zemlya explosions. For earthquakes in the Iranian Plateau, Nuttli (1980) sug-
gested a bias value of 0.39 m.u., which includes both the bias due to regional tectonics as well the

Ly -mb bias due to source type.




If the regionalized y map is available (such as those in Singh and Herrmann, 1983; Jih and
Lynnes, 1993; and many others) a path-specific y for an arbitrary source-station pair can simply be com-
puted as the weighted sum of the y,’s of the subregions that the ray path traverses:

K A
Y=Y % 5 - 6]

However, it is clear from Eq. (2) that an erroneous path y would yield a m, bias that increases with the

distance. Furthermore, this ermor is independent of the actual source size or the quality of the raw ampli-
tude measured at the recording station. It is the bias solely due to inaccurate calibration of the propaga-
tion effect. Jih and Lynnes (1993) gave several examples showing how L; amplitude measurements
could be severely biased if a poor estimate of the path vy is used or if the path vy is not used at all.
Baumgardt (1995) recently demonstrated that by incorporating a distance-correction term, which is
essentially the € 2 in Eq. (5a), into his Py /Ly ratio computation, a much better discrimination result
was obtained. In fact, this is exactly the same reason why Nuttli's (1986, 1988) absolute yield estimates
of underground nuclear explosions using path-corrected my, are good.

The seismic discrimination problem is actually intertwined with the source-size determination prob-
lem, despite the misperception that the estimation of source size in general (and the estimation of explo-
sive yield in particular) may no longer be as important in the CTBT context. P/S-ratio-based discrimina-
tion is a procedure to discem differences in energy partitioning among phases and among frequency
bands. Miscellaneous amplitude measurements needed to identify the event are actually reflecting
different parts of the focal sphere and/or frequency contents of the seismic source itself. These parame-
ters are often obscured by the path effects. Thus, a better path-calibration procedure would always

benefit the discrimination, for just the same reason it would benefit the source-size determination.?

In a situation where some geometrical blockage occurs along the path, that is, there is a major
structural variation along the path, it may be possible to further refine Eq. (5). As an example, the v-(A-
10km)/In(10) term for the path from Novaya Zemlya to KEV can be broken down into vy;-(A;-10km)/In(10)
+ vo-Ap/In(10), where v, = 0.0052 (that is, Q,=185; see the model 0D in Table 2), A, is the lateral span
of the Terrigenous Sediments (Baumgardt, 1991), and v, is the average L, attenuation along the great-
circle path excluding the sedimentary segment. Obviously it is necessary to acquire relevant geological
and geophysical information along the path before applying this model-based correction.

2 See discussion in Dainty (1995) and Blandford ef al. (1992).




7. DISCUSSION AND CONCLUSIONS

An accurate prediction of the regional phases in areas of high proliferation concern requires a
decent understanding of the attenuation and scattering mechanisms along the propagation paths. Syn-
thetic data have been of great benefit in gaining physical insight into discriminants, and may be the only
means of evaluating evasion scenarios. Synthetic seismograms are particularly useful for regions where
earthquake or explosion data are not available. There is no doubt that both geometrical blockage (due to
large-scale lateral structural variation), intrinsic attenuation, and small-scale random heterogeneity in the
crust affect L, propagation. But it is often very difficult to separate these effects observationally. Again,
numerical modeling could be the only means to quantitatively identify the respective roles played by

these factors.

In this study, the two-dimensional LFD method has been used to model the propagation and
scattering of L, waves in a suite of crustal models, including rough interfaces, rugged free-surface
topography, and embedded thick sedimentary layers. Two non-standard techniques have been
specifically developed for this study: [1] a pure L, wave packet (for triggering LFD calculations), and [2]
a crude, causal attenuation operator. The pure L, wave packet is injected into a stratified portion of the
grid as the reference initial condition to trigger all LFD calculations. This is a natural extension of Jih's
(1993b) work on R, to L, problems. In addition to those commonly recognized advantages of LFD
method, another obvious advantage of this approach is that the effect due to different types of hetero-
geneity on the seismic phase of interest can be isolated and evaluated easily. The other ool tested in
this study is a new attenuation operator suitable for time-domain numerical calculations. As a crude
approximation, it applies to only a narrow band within which it gives a nearly frequency-independent v,
as expected. The most notable advantage is its simplicity to implement. Furthermore, it is a causal
operator which, at least conceptually, is more realistic. Overall it appears to perform reasonably well.
Major observations made with LFD calculations are summarized in the following:

Early ng The Moho uplift, which is common in models of the “A” and “F” series, breaks down the
L, waveguide and causes L, to-S, coupling at the ascending interface. When the converted S, waves
encounter the descending Moho of these models, some energy penetrates the interface again, either as
aleg of S, or as converted Ly. The Moho uplift in “F".geries models is not as dramatic as in “A”-
series models. Nevertheless, both the L -to-S, and possibly S, -to-L, conversions are still apparent.
The early L, observed for paths from Novaya Zemlya to Scandinavia can be explained with this:
mechanism. The fact that L, can be excited at continental margins from oceanic S, conversion has

long been observed and reported (for example, Isacks and Stephens, 1975).

91




Late Lg and longer coda waves: The sedimentary layer, which is present in all “C”-series models

and some of “D” and “F” models, is the apparent cause of late L, arrivals. For models ODb, OFb and
OFc, the uppermost soft layer causes strong reverberations as well as a very strong L, -to-AR,; conver-
sion. By seismic reciprocity, there should be some structures that would cause strong R, -to-L, conver-
sion. Part of this issue has been addressed in Jih (1995). Regarding the coda decay rate, intrinsic
attenuation and scattering (particularly, that by random heterogeneity) appear to have different effects.
Increased scattering attenuation causes more energy to be distributed into the coda from the direct
phase with increasing time. On the other hand, increased intrinsic attenuation entails a greater loss of
elastic energy with time from both the coda and the direct wave. This observation can be verified by
comparing synthetic seismograms in Figures 61 and 67, and is in agreement with Frankel and Wenner-

berg (1987).

S, excitation and Sn/Lg ratios: Except for models 00, 2, 2a, 3, 3a, 0C, 0Ca, and 0Cb, all other

models excite significant S, waves through the L4 -to-S, conversion. A thick sedimentary layer by itself
does not necessarily cause strong Lg -to-S, conversion. Models of the “C”-series are such examples.
However, if the thick sediment layer is contained, such as in models of “D” series, then some S,, waves
can be generated at the pinched interface. Models with irregular Moho topography generate S, with a
different mechanism, as discussed above. Most models excite converted S, waves in the forward
direction. Hoever, models 0A and OB also excite some S, in the backward direction. The extremely
large S, /Ly ratio associated with models OE, OEa, and OEc (all with a thickened crust) offers an excel-
lent demonstration for the observation Ruzaikin et al. (1977) made.

Topographic relief: Models with a mild free-surface topography alone (for example, models 2 and
3) generate a relatively weak Ly -to-S, conversion comparable to that of “C” models. Comparing the
synthetics in Figures 55 and 58, it appears that the transmitted L; wave trains of models with mild
mountainous topography are very similar to those of the reference model 00. In fact, these mountainous
models and models with weak random heterogeneity as well as anelastic models would stand out
among all models in that the checkerboard-like interference pattern of the original L; wave train is
(somewhat) retained (see Figures 45, 49, 59, and 62). This is very different from the case of R, for
which the rugged free-surface topography is shown to be a strong scatterer (Jih, 1993b, 1995).

Lg to Pg conversion: All models of the “F’ series exhibit significant L, -to-P, conversion. The
peak horizontal amplitude on trace No. 25 ranges from 10 to 15 percent of that of the original L, wave
train. To a lesser extent, models of “C” and “D” series as well as models 0A and 0Ba also generate the
same conversion.

Coupling to teleseismic phases: For mountainous models, L -to-S is twice as strong as L -to-
P. For the “A” and “B” series of models, as well as the random media, these two mechanisms are
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about equally strong. For anelastic models and “C”-type models, L, -to-S is weaker than the’Lg -to-P,
whereas models of the “D”, “E”, and “F” series show the opposite trend (Table 2).

Lg blockage: Both abrupt changes in the Moho topography and a thick contained sedimentary
layer can cause strong Ly -to-S, conversions. The physical mechanisms underlying the conversion are
different for these two structures, however. The early L, observed for paths from Novaya Zemlya island
to Scandinavia is illustrated with LFD calculations. Alluvial basin structures cause strong reverberations
as well as very strong L, -to-A; conversions. Valley structures with large depth to width ratios and
large velocity contrast with the substrate support very large amplitude lateral resonance modes. If we
invoke the principle of seismic reciprocity, R, -to-L;, conversion could be an important mechanism of L,
excitation for certain structures. Recent observational study by Patton and Taylor (1995) suggests that

this is the case, at least for Yucca Flat explosions.

Other than major structural discontinuities in the crustal waveguide, both anelasticity and small-
scale random heterogeneity can also contribute to the so-called “L, blockage”. For instance, an RMS
velocity variation of 8 percent in the whole crust is equivalent to a Q (L, ) of about 270, which would be
sufficient to reduce the peak amplitude of 1Hz L, waves by 30 percent for every 100 km they traverse.
The dlassical example of an L -blocking path between Novaya Zemlya and northemn Scandinavia has a
Qo (Lg ) about 252 and could be modeled with an RMS velocity variation of 8 percent alone.

Unlike R, waves, L, propagation is not affected by a moderate free-surface topography alone as
much as other types of heterogeneity. Topographic relief has been shown to be a very strong scatterer
for the R, phase (Jih, 1993b, 1995). This is because R, energy is confined in the uppermost layer.
The energy of L, is evenly distributed in the crust, and the surface topography variations are generally
small relative to the crustal thickness. Thus it may be expected that the topographic variations alone
should have relatively weaker influence on L, propagation, as compared to R, . This is illustrated with
models 2 and 3 of this study. However, the topography may reflect the crustal thickness through isos-
tasy. Zhang and Lay (1994) suggest that S, /L, ratios may be correlated to some roughness measures
of the paths, based on a limited data set. LFD appears to be the ideal tool to test the existence of any
correlation between some roughness measure and the propagation characteristics of regional phases,
as demonstrated with the very few mountainous models tested in this study. Similar statistical analysis
should also be conducted to examine the effects of water column, random Moho topography, and irregu-
lar intra-crustal interfaces, as well as the combination of all these factors.
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