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CHAPTER 1 

Introduction 

1.1    Objective 

The objective of this study is to investigate the propagation of acoustic waves 

in contiguous concentric cylinders of solid and fluid media. Wavenumber-frequency 

and/or transform methods are applied to several configurations of interest to de- 

termine the characteristics of acoustic wave propagation as functions of the spatial 

variables and the properties of the media. In the experimental work, joint time- 

frequency distribution functions such as the spectogram are used to study the 

propagation of transient disturbances in dispersive systems. The study is limited 

to systems of infinite extent in the axial direction. 

1.2    Background 

There are many practical situations in which it is desireable to understand the 

characteristics of the propagation of acoustical energy in physical systems which 

may be modeled in a cylindrical coordinate system. For example, in noise control 

problems, the objective is to reduce the transmission of sound from one region into 

another. Cases of interest include aircraft fuselages and submarine hulls in which 

turbulent boundary layer noise is generated by the motion of the platform through 

an external fluid medium. Another case is noise generated by fluid flow in pipes 

and ducts. Another problem of interest relates to sonar transducers, arrays, and 



domes of cylindrical geometry, in which it is desired to enhance the transmission 

of propagating acoustic waves in the external medium while discriminating against 

evanescent waves generated by turbulence or structural vibration. 

There is an extensive body of literature, including both textbooks and mono- 

graphs in technical journals, that deals with the problems considered in this dis- 

sertation. Specific subjects of interest include the propagation of acoustic waves in 

ducts, acoustic radiation in an infinite fluid medium, the transmission of acoustical 

waves in layered media, and the vibration of shells. 

In problems which involve fluid-structure interaction, the most complex task is 

analysis of the motion of the structure. Thus it is customary to first consider the 

vibration of the structure in vacuo and then to attempt to determine the effects of 

coupling to the fluid. 

1.3    Organization of the Study 

The general schema of the models studied in this work is outlined in Figure 

1-1. The general category of cylindrical models branches into fluid media and 

solid media. Under fluid media, models are developed for the fluid cylinder, a 

fluid tube, and the external fluid medium. The branch comprising elastic media is 

subdivided to include models which may be represented by thin shell theory, and 

those for which elasticity theory is required. This latter category includes thick 

shells, concentric elastic shells, and the external solid medium. Composite system 

models are constructed by combining the elementary models of system components 

through the transfer matrix approach. 



In this introductory chapter, we describe the transfer matrix method which 

was suggested by previous work on the propagation of plane waves through layered 

media. This is followed by a discussion of wavevectors in cylindrical coordinates, 

and the synthesis of cylindrical waves from plane waves. 

Chapter 2 begins with a discussion of the analytical approach followed for 

the study of fluid media. These methods are applied to the fluid cylinder, the 

fluid tube, and the external medium. For each of these components, the radial 

spectral impedance is computed. The dispersion equation is developed and used 

to study the propagation of free waves. The transfer matrix for each component 

is determined. 

In Chapter 3 we develop the transfer matrix for a thin elastic cylinder, using 

Donnell's formulation (Donnell 1933; Krauss 1967; Junger and Feit 1986) Disper- 

sion of harmonic waves for the axysimmetric mode is studied in the frequency 

domain. An analysis of low frequency axisymrnetric longitudinal modes of a har- 

monically driven finite length cylinder is presented. The transient response of a 

semi-infinite, radially excited elastic cylinder is studied using Laplace and Fourier 

transforms in the wavenumber and frequency domains. 

The models developed in the first three chapters are combined in Chapter 4 to 

describe several composite systems of interest. 

Chapter 5 describes the results of transient measurements on a thin brass 

cylinder. These results are compared to the predictions made in Chapter 3. 



1.4    Transfer Matrix Approach 

The transfer matrix approach followed in this study is similar to that employed 

by pervious authors in analyzing the propagation of plane waves in layered media. 

Thomson (1950) introduced the matrix method to study the transmission of plane 

elastic waves through any number of parallel plates of solid or fluid material. Shaw 

and Bugl (1969) employed matrix methods to study harmonic plane waves in 

viscoelastic media, using complex and frequency dependent Lame constants to 

describe the viscoelastic behavior. Folds and Loggins (1977) extended this work 

to include calculations of the transmission and reflection coefficients. They report 

experimental work which agrees well with the theory. Stepanishen and Strozeski 

(1982) employed transfer matrix and Fourier transform methods to analyze the 

response of layered viscoelastic media to a time dependent plane wave excitation. 

In this study models are constructed for each component of the concentric 

cylindrical system. Typical components include, for example, a fluid cylinder, a 

fluid tube, an elastic shell, and the external medium. 

For each component, the governing equations for the field variables in terms of 

time and spatial coordinates are converted via a two dimensional Fourier transform 

into a representation in wavevector-frequency space. The transfer function of the 

component is then formulated in terms of the state variables at the radial interfaces. 

The resulting matrix model is two by two (two port) for fluid-solid and fluid-fluid 

interfaces, for which the boundary conditions are continuity of pressure and radial 

velocity. For contiguous elastic solids in which shear stresses exist, continuity of the 



three components of displacement and stress results in a six port transfer matrix. 

A system model for any combination of components is constructed by cas- 

cading the component transfer matrices to obtain an overall transfer function. 

Specification of an appropriate spectral excitation function in one region of the 

system model enables the computation of state and field variables throughout the 

system. Non-axisymmetric excitations may be represented using a Fourier series 

expansion in terms of a discrete circumferential wavenumber. 

Thus the general problem of interest comprises a number of concentric circular 

cylinders imbedded in an infinite fluid medium. This system is excited by a pressure 

or velocity function specified at one of the radial interfaces. Figure 1-2 indicates 

the coordinates of a general cylindrical system with m components in which the 

center component is a cylinder of radius <Zi, surrounded by a tube of inner radius 

Oi and outer radius a2, etc. terminating in the (m — l)th tube of inner radius a, 

and outer radius am, which marks the boundary with the external medium. The 

general cylindrical coordinates are r,9, and z, representing the radius, azimuthal 

angle, and cylindrical axis, respectively. 

The two-port model for a fluid tube is shown in Figure 1-3. If this is the j th 

component in the system, with inner radius ci(j-i) and outer radius a,j , the state 

variables of pressure P(j-i) and velocity V(j_i) at the inner radius are related to 

the pressure Pj and velocity Vj at the outer radius by a transfer matrix [Tj] , viz. 

Pj 

V, 
= n X 

The outermost cylinder is surrounded by a fluid presumed to extend to infinity 



in the radial and axial directions. Application of the radiation condition that the 

pressure must decrease to zero at infinity leads to equations for the specific acoustic 

impedance at the last radial interface at r = am. 

A further requirement is that all concentric layers must exhibit the same pres- 

sure dependence in the axial direction as the excitation. 

For example, if the excitation is a traveling wave represented by 

pn(z, 8, a,j) = Pe cos(nö) exp (i (kzz — cot)) 

where kz is the axial wavenumber of the excitation, u is the angular frequency, 

t represents time, and n is the circumferential mode number, then each component 

of the system must have the same variation with kz and n. This condition results 

from the continuity of normal particle velocity and pressure across the interface 

between contiguous layers. 

1.5    Wavevectors 

The concept of a wavevector, also known as a vector wavenumber (Elmore & 

Heald, 1985) is highly useful in describing complex wave phenomena. We define 

the wavevector k for a monochromatic wave as a quantity having the magnitude 

of a wavenumber, Ikl = - and the direction of a unit vector which is normal to 
'    I      I c 

the wavefront, or surfaces of constant phase. For example, a propagating wave of 

frequency u may be expressed compactly as 

p{v,t) = Re{P0e
i^-^} (1.1) 

where P0 represents the complex wave amplitude and r is the spatial vector. In 



rectangular coordinates, r = exx+eyy+ezz where ex,ey,ez are unit vectors along 

the x,y, and z axes, respectively. In this formulation, surfaces of constant phase are 

described by r • k =constant. In a region with no acoustic sources, equation (1.1) 

must satisfy the reduced (Helmholtz) wave equation, (V2 + |k| J p = 0; application 

of this to (1.1) yields the result |k|2 = (*f) = A;2 + k2
y + k?z . The domain of 

the wavevector k is thus described by a sphere of radius |k| , as indicated in 

Figure 1-4. Propagating acoustic waves are represented by points on the surface 

of this sphere. Wavevectors falling within the surface of the sphere, where |k| < 

-, describe supersonic waves. Wavevectors exterior to the surface of the sphere 

describe evanescent sub-sonic waves. Note that the quantities *f,-f, and -f are 

the direction cosines of k with respect to the x, y. and z axes. We identify cx = 

■£-.cu = -r-, and cz = f- as the trace velocities of the wave along the respective 

axes. Similarly, since k = ^f where A is the wavelength of the propagating wave, 

the trace wavelengths are expressed as A^ = fj, \ = j-, and A^ = -—. 

We note that as the wavevector k approaches perpendicularity with respect 

to one of the coordinate axes, the trace velocity and wavelength tend to infinity 

along that axis. This concept is useful in understanding the cutoff phenonmenon 

which occurs under certain conditions in a propagating wave which is constrained 

by some physical boundary, such as within a waveguide. 

If p (r, t) describes a complex wave field for which the principle of superposition 

applies, we may define a wavevector spectrum in terms of a three dimensional 



spatial Fourier transform, 

oo 

p(kJt) = JJJp(r,t)e-ik*dk 

in whichj?(k,t) = p(kx,ky,kz,t) represents the spectral components of the 

wavefield in the wavevector domain in the same manner that the Fourier transform 

of a time dependent function depicts the spectral composition of the function in 

the frequency domain. 

In this study we are primarily concerned with wave propagation in cylindrical 

configurations with coordinates (r,6,z) and unit vectors (er, eg, e2). In this no- 

tation, the wavevector may be written \s.cyi = eTkr + e$ke + ezkz. A vector krect in- 

rectangular coordinates may be transformed into a cylindrical wavevector kcyl in 

cylindrical coordinates by means of an orthogonal transformation matrix [S] which 

has the following properties (Hughes and Gaylord 1964): 

1. The inverse of [S] is equal to the transpose of [S] , [S]"1 = [S]T, and 

[S] ■ [S]     = [I], the identity matrix. 

2. The determinant of [S] = ±1. 

The transformation equations are: kC2/Z = [S] • krect, and krect = [S]T • kcyl. 

where 

[S] 

cos 6     sin 6   0 

— sin 6   cos 6   0 

0 0      1 



and 

[Sf 

cos 8   — sin 9   0 

sin 9     cos 9     0 

0 0        1 

Applying this to the present case, the components of the cylindrical wavevector 

in terms of the elements of a rectangular wavevector are: 

kT = kx cos 8 + ky sin8; ke = —kx sin8 + ky cos 8\ and kz = kz. 

The inverse transformation results in: 

kx = kT cos # — fc<? sin 8; ky — kr sin 9 + k0 cos 9; and fc2 = fez. 

Propagating cylindrical waves must satisfy the equation 

|k|a = *? + jfc2 + fc? (1.2) 

Now let ke = 0. For this case, Eq. (1.2) defines a cone in k - u space, 

Figure 1-5. Points on the surface of this cone correspond to propagating acoustic 

waves. A plane at some particular frequency u0 which is parallel to the u = 0 

plane intersects the cone and defines a circle of radius fco, Figure 1-6. The two- 

dimensional wavevector k = erkr + ezkz represents propagating waves when |k| = 

fc0, supersonic waves when k is inside the circle, and sub-sonic evanescent waves 

when k is outside the circle. 

1.6    Synthesis of a Cylindrical Wave from Plane Waves 

A construction which is useful in the description of cylindrical waves comprises 

the synthesis of such waves from an infinite number of plane waves. (Lamont 1950; 

Redwood 1960) 
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Consider a plane wave of wavenumber k propagating in a rectangular (x, y, z) 

coordinate system, with wavevector k making an angle (ft with respect to the z 

axis, and oriented so that there is no component in the y direction, i. e., ky — 0. 

Such a wave may be described by 

p (x, y, z, t) = Re {Aei(-k*x+k*z-ut)} 

in which kx = k sin (ft and kz = k cos (ft. 

Now we hold the angle (ft constant and sum up an infinite number of such plane 

waves by rotating the x, y axes around the z axis. We consider a point at (r, 6,0) 

in the plane z = 0, Figure 1.7. The x axis is shown an an angle ip with respect to 

the polar coordinates (r,6,0) and thus x — rcosip. Now let the amplitude of the 

elementary wave associated with the point (r,6,z) be represented by 

dp = Re {Acosn (6 + ip) eH***<**1>+k*z-o*) ^ j 

The total pressure at (r, 9, z) is obtained by integrating tp over the range 0 < 

if> < 2TT, 

p{r,9,z,t) =Rel fV Acosn (^ +-0) e
i(fcrsin*cos^)e^2cos^a;t) dxp\ 

Using the identity (Gradshteyn and Ryzhik 1980) 

Z7T  JO 

and substituting u = kr sin (ft, we obtain 

p(r,9,z,t) = Re [27rin A cos n6 Jn(kr sin (ft) e^^°^-^)| (L3) 
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Making the substitutions kT = k sin0 and kz = k cos0 in Eq. (1.3) yields 

p (r, 9, z, t) = Re {27rin^cos n6 Jn (krr) e^2"^} (1.4) 

which is recognized as one solution of the cylindrical wave equation, and kr and 

kz are components of the cylindrical wave vector. For the axisymmetric (n = 0) 

case, Eq (1.4) specializes to 

p (r, z, t) = Re [2ixA J0 (krr) e*(*^-^)} 

This describes a wave diverging from the origin in a cone of half-angle <ß, as 

indicated in Figure 1.8. If the amplitude constant A is real, this may be written 

p (r, z, t) = 2-KA JO (krr) cos (kzz - ut) 

Using the asymptotic expresssion for the Bessel function for large values of the 

argument krr, we find 

p(r, z, t^r^oo = 2nA J—j— cos (krr - '-\ cos (kzz - ut) 

which describes a wave propagating in the z direction and with amplitude 

decreasing as (r)~5 in the radial direction. 

Using the momentum equation, the radial and axial components of velocity 

are determined to be: 

Radial: vr (r, z, t) = -27r^ sin </> J\ (krr) sin (kzz - wt) 

and Axial: vz (r, z, t) = 2TC^ cos 0 J0 (krr) cos (kzz - wt) 

Since the axial velocity and the pressure are in phase, energy is propagating 

in the axial direction. The radial velocity is orthogonal to the the pressure. 
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CHAPTER 2 

Fluid Media 

2.1    Analytical Approach 

In this chapter we develop the transfer matrices for three cylindrical fluid 

components of interest: a fluid cylinder, a fluid tube, and the external fluid. Wave 

propagation in these components is studied for limiting boundary conditions (rigid 

and soft) as a prelude to understanding the more complicated situation which 

obtains when composite (cascaded) systems are considered. 

For all fluid models we shall assume the fluid is inviscid and that the amplitudes 

of the field variables (pressure and particle velocity) are sufficiently small that the 

linearized wave equation is applicable. Thus we are concerned with solutions to 

n2       1 d2p 
p   c2 at2 

where p is the acoustic pressure in the fluid, c is the acoustic wave speed in the 

fluid, and V2 is the three-dimensional Laplacian operator. The particle velocity v 

is related to the pressure via the linearized momentum equation, 

Vp = -p0- 

where p0 is the equilibrium (static) density of the fluid. 

2.1.1     Wave Equation in Cylindrical Coordinates 

Consider the cylindrical coordinate system shown in Figure 2.1, in which r,z and 
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9 are the radial, axial, and angular variables, respectively; and er, e#, ez are the 

corresponding unit vectors. The wave equation for the pressure is 

IA I   *P\    :   i£P + f?E = LOUR (0 I) 
r dr \dr)     r2 89*     8z2      c2 dt2 K ' ' 

and the momentum equation is 

dp        I dp dp dv 

Two approaches in solving the cylindrical wave equation (2.1) are the separa- 

tion of variables and the use of integral transforms, such as the Fourier or Laplace 

transforms. 

In the separation of variables method, the solution is assumed to consist of the 

product of independent functions of r, z, 9 and t, such as 

p(r,9,z)t)=R(r)e(9)Z(z)T(t) (2.3) 

If harmonic time dependence of the form T(t) = exp(—iuit) is assumed, the 

reduced (harmonic) Helmholtz equation is obtained, 

(V2 + k2)p(r,9,z)=Q (2.4) 

where a/ is the angular frequency and k = f is the acoustic wavenumber. 

Operating on Eq.2.3 using Eq.2.4, and suppressing the time dependence, three 

independent ordinary differential equations are obtained: 

d2Z 

dz2 + kzZ = 0 (2.5) 

g + »'e=0 (2.6) 



14 

d2R     ldR       „       n ,     x 

In these equations, kz,kT} and n are separation constants, related by the ex- 

pression k2 — k2 + k2 + (^) . 

Solutions to 2.5 may be either exponential, Z (z) = Ae(±ikzZ\ representing 

traveling waves, or sinusoidal, ^{^(^2)} > ^or standing waves. 

Since 0 (9) repeats periodically with period IT , that is, Q (9) = 0 (9 + 2/T), 

n must be an integer, and solutions of 2.6 must be combinations of trigonometric 

functions, such as © (0) = B\ cos (n9) + B2 sin (nd). 

Equation 2.7 is recognized as Bessel's equation of integer order n, solutions to 

which comprise various linear combinations of Bessel functions of argument krr, 

such as: 

fin (r) = Cj Jn (krr) + iC2Yn (krr) 

or alternatively, 

Rn (r) = D,H^ {krr) + D2H
{2) (krr) 

In these equations, kz may be identified as an axial wavenumber, and kT as a 

radial wavenumber. At a particular value of the radial coordinate, r = a, we may 

define kn = ^, a discrete circumferential wavenumber. By use of the momentum 

equation at the radial interfaces r = alta2, ...am for a particular cylindrical fluid 

component, and recognizing that kz and n must be identical for each component 

in the system to insure the continuity of the radial particle velocity across each 

radial interface, the various coefficients A, B, C etc may be evaluated. 
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2.1.2    Integral Transform Approach 

A major advantage of integral transforms, such as the Fourier or Laplace trans- 

forms, is the reduction of differential equations to algebraic equations. In the solu- 

tion of transient problems, the Laplace transform is advantageous since it permits 

the initial conditions to be included in the formulation of the problem. 

To illustrate the application of integral transforms we will construct a Fourier 

transformed version of the cylindrical wave equation, transforming on the time t, 

and the spatial coordinates z and 9. 

For the continuous variables z and t we define the forward transform 

oo 

p(kz,u) = Jjp(z,t)e-^t+k^ dt dz (2.8) 
— oo 

The inverse transform is defined as 

oo 

P(z,t) = j±-2 ffp{kxtU) e*""-*-*) du, dkz 

^       '   —oo 

Since the circumferential variation is periodic, we may expand p (6) in a Fourier 

series, viz. 

n=-oo Z7r 

Multiplying both sides of Eq. (2.9) by e"imß and integrating over the range 

—7T, 7T we have 

f p{9)e-im6d6=   T   [* iP-e^-^dO (2.10) 

From the orthogonality of trigonometric functions, the integral on the right 

hand side of Eq. (2.10) is zero for all values of n ^ m and therefore 

p{n)= [* p{6)e-in9d6 (2.11) 
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Equations (2.9) and (2.11) define a transform pair on the circumferential co- 

ordinate 9 . 

Transforms of Derivatives    Differentiating Eq. (2.9) m times yields 

*w±=(in)m v £Me*- 
dOm        K   '   „f^   2TT 

and transforming both sides of this equation gives for the transform of the deriva- 

tive: 

T 
dmp{6) 

dOm iin)mp(e) 

The derivatives of the transforms of the continuous variables z and t are ob- 

tained by differentiating Eq. (2.8), viz 

~dmp (t) 
T 

df 
= (-iuJ)mp(u) 

and 

dmp (z) 
(-ikz)

mp(kz) 

2.1.3    Transformed Cylindrical Wave Equation 

Applying these transforms to the cylindrical wave equation (2.1) results in an 

ordinary differential equation in r and in p {kz,u, n), 

dr2     r dr      \ 
*-£   ß-0 (2.12) 

which is identical in form to Eq. (2.7) obtained by the method of separation of 

variables. Thus solutions of (2.12) will consist of combinations of Bessel functions 

of argument krr and coefficients determined by the boundary conditions which 

apply to the model of interest. 
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2.2   Fluid Cylinder 

2.2.1    Introduction 

The propagation of acoustic waves in a confined fluid has received extensive study 

in the literature. Redwood (1906) discusses continuous and transient (pulsed) 

propagation in rectangular and cylindrical fluid waveguides with both free and rigid 

boundaries. Morse and Ingard (1968) devote a chapter to "Sound Waves in Ducts 

and Rooms" in which both plane wave and higher order modes are considered. 

Their analysis includes an intermediate boundary condition in which the stiffness 

and mass of the duct walls are considered. A similar analysis is presented by 

Junger and Feit (1986). 

Anderson and Barnes (1953) studied the dispersion of a damped sinusoidal 

ultrasonic pulse in a water-filled thin walled cylinder lined with rubber to create 

a free radial boundary. Their experimental results agreed with the theoretical 

dispersion curve for the first axisymmetric (0,1) mode. They also developed an 

expression for the transient response as a function of time and axial distance for an 

impulsive (delta function) velocity input and related this result to the dispersion 

predicted from group velocity concepts. 

The dispersion of a rectangular narrow band pulse (tone burst) in a rectan- 

gular fluid waveguide with free boundaries was studied by Proud, Tamarkin, and 

Kornhauser (1956). They measured the phase velocity as a function of frequency 

for the (1,1) and (2,1) modes of the waveguide. The pulse envelopes were measured 

at various distances along the waveguide and compared with the predictions from 
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a theoretical model by Pearson (1953). 

Jacobi (1949) made an extensive theoretical and experimental study of the 

propagation of acoustic waves in fluid cylinders. His models included a fluid cylin- 

der with rigid and free walls, a fluid cylinder imbedded in an infinite fluid, a fluid 

cylinder with fluid walls, and a fluid cylinder within a thin elastic cylinder. Exper- 

imental results were obtained for the fluid cylinder with free boundaries and for 

the fluid cylinder in a thin shell. 

2.2.2    Physical Description 

Consider a cylinder of fluid of radius a, sound speed c, and density p extending 

infinitely in the axial (z) direction. The solution of the transformed wave equation 

(2.12) appropriate for this case is 

p(n,kg,u,r) = p(n,kz,u) Jn(krr), 

where k* = hf\ - k2
z - {^\ . (The Neumann function Nn (kTr) is excluded 

because of the singularity at r = 0.) 

The transformed momentum equation is 

dp         (in) _ , ,  . _        ,    . _      .    , _ 
er——h Be P + e.z \ikz) p = p (tu) v = tpckv 

Application of the momentum equation to the transformed wave equation re- 

sults in the three components of particle velocity: 

Axial: 

vz = -^- p Jn (krr) 



19 

Circumferential: 

Radial: 

Vr = -^PJn(krT) (2-13) 

where the prime denotes the derivative with respect to the argument (krr). 

These relationships will be used to develop the radial spectral impedance of 

the fluid cylinder, and to study the propagation of free waves in a fluid cylinder. 

2.2.3    Radial Spectral Impedance 

We define a radial spectral impedance as the ratio of the transformed pressure to 

the transformed radial component of velocity; 

p      ipck Jn (krr) 
Z {n,u),kz,r) = — = —7-—r— 

We now specialize this to the axisymmetric (n = 0) mode. The justification for 

this simplification is that any arbitrary circumferential excitation function may be 

expanded in a Fourier series as indicated in Eq. (2.9). Solutions would then consist 

of a summation of terms representing the harmonic components of the excitation. 

For the axisymmetric case, JQ (krr) = —kr J\ (krr) and the spectral impedance 

of the fluid cylinder is 

-ipck Jp (krr) 
Z^k"r) =     krJl(Kr) 

At the surface of the cylinder, r = a, we define the state variables of pressure 

Pa and Va in terms of the spectral impedance, viz: 

z  =Pa = -ipck Jp (kra) ^ ^ 

Va K Ji (kra) 
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The notation may be simplified somewhat by using the definition for the mod- 

ified quotients of Bessel functions (Onoe 1958). Therefore we define Jn (kra) as 

~ ,     . _ \kTa) Jn+i \kra) 
Jn (Mj -        Ijk^) 

This function is plotted in Figure 2.2 for n = 0 and values of the argument 

from 0 to 15. 

With this definition, the radial spectral impedance of Eq. (2.14) is written as 

_ —ipcka 
Zia = -^z>  

Jo (kra) 

To study the spectral impedance of the fluid cylinder, consider an excitation 

consisting of a spectrally pure traveling wave of pressure of arbitrary frequency u) 

and axial wavenumber kz applied at the boundary r = a. This condition could be 

physically realized, for example, by a membrane or thin elastic cylinder enclosing 

the fluid and driven by some external force. 

The waves in the fluid cylinder must satisfy the dispersion equation k2 = 

f7) — k\. Thus as LU and kz take on all possible values the radial wavenumber kr 

may be real, zero, or imaginary. 

Case 1 - kr Real, Propagating Axial Wave     For k > kz,  kr is real, and kr = 

k2 — k2. The normalized spectral impedance, Za/pc, is plotted in Figure 2.3 as 

a function of the argument kra for ka = 1. 

The spectral impedance is purely reactive, alternating between stiffness and 

mass type reactances as the radial wavenumber kra increases. With kz real, waves 

may propagate along the z axis of the fluid cylinder. 
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Case 2 - No Axial Wave Propagation   Now if we let kz = 0, (i. e. there is no axial 

propagation in the fluid cylinder) then kr = k, and 

-ipc J0 (ka) 
Za =      .h (ka) (2-15) 

For low frequencies (ka -Cl, orwC c/a ), J0 (ka) « 1, and J1 (ka) P=S y, so 

that 

„       2pc2 

za;a 

Noting that pc2 = /?, the adiabatic bulk modulus of the fluid (Kinsler and Frey, 

1982; Junger and Feit, 1986), we may write Za « 2ß/iua. Now consider a section 

of the fluid cylinder of length I and area 2nal. The mechanical impedance of the 

section is 2italZa, thus, 

A-KW c 
ZM W ——,        w < - 

zo; a 

Thus for very low frequencies the fluid cylinder acts like a spring of stiffness 

4ivlß Newtons per meter. 

For values of the argument ka > 2TT, the Bessel function is approximated as 

Jn (ka) w J-jr cos (ka — ^ — |) . Using this relationship, the expression for 

the spectral impedance (with kz = 0) at high frequencies is 

Za F3 —ipc cot f ka — — J ,        ka > 2TC 

The exact value of normalized spectral impedance from Eq. (2.15 ) is shown 

in Figure 2.4. As in Case 1, it is purely reactive, alternating between stiffness and 

mass type reactance. The impedance is zero at the zeros of Jo (ka), and infinite 

at the zeros of J\ (ka). 
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Case 3 - kr Imaginary    When the axial wavenumber kz   exceeds the acoustic 

wavenumber k, the radial wavenumber is imaginary, and kr — %Jk\ — k2 = ikr. 

For an imaginary argument, the Bessel function of the first kind is replaced with 

the modified Bessel function of the first kind. Thus Jn (ikraj = inIn (kra\. Sub- 

stituting in (2.14), the spectral impedance is given by 

ipck I0 (kra\ 
a = ~— 7——\~ kr Ii [kra\ 

For small values of the argument,    In (kra\  —>    2nJ\      an(^ *^e sPec^ral 

impedance is approximated as 

(2.16) 

Za^ 
2i,6 

Loa m 
Now when kz 3> k, kT PH kz and for large values of kTa the large argument 

approximations for In (kra) yield 

Za 

—pck      ipco 
(2.17) 

2.2.4    Free Wave Propagation 

We now consider the propagation of free waves in a fluid cylinder for the limiting 

cases of a rigid and a free boundary. In contrast to the preceding discussion 

of spectral impedance in which both the frequency and the axial wavenumber 

were permitted to be free variables, we now seek values of the radial wavenumber 

kr which will satisfy specific boundary conditions. These particular values of kr 

determine the modes of free wave propagation. Again, the analysis is restricted to 

the axisymmetric case. 
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Free Radial Boundary The pressure must vanish at a free boundary, so we set 

Pa — 0 in Eq. (2.14). To satisfy this condition requres that J0(kra) = 0. Des- 

ignating the roots of this equation as j0>m, the allowable values of kr are given 

by 

kr,ma = Jo,m,      m = 1,2,6,. . . 

and     jo,i = 2.40,    j0,2 = 5.52,    j0,3 = 8.65,    etc. 

For values of m greater than 2 the roots may be approximated by jo,m « 

!(47?7, — 1) with an error of less than 0.1%. 

Each root determines the characteristics of wave propagation of a particular 

mode in the fluid cylinder. Since the axial wavenumber must be real for propaga- 

tion to occur, each mode will exhibit a cutoff frequency ajm> determined from the 

dispersion equation by setting kZyTn = 0, as 

UJr, 
JO,mC 

a 

The phase velocity of the wave, c^, is computed from the axial wavenumber 

(jj 

^<$>? = c 
30,mc 

and the group velocity cg is given by 

^g,m 
du 

= c 1- 
JO,mC 

uja 

The variation with frequency of the phase and group velocities for a fluid 

cylinder with a free radial boundary are shown in Figure 2.5. This is an example of 
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"normal" dispersion, in which the phase velocity decreases with frequency. (Elmore 

and Heald, 1985) 

Substitution of the modal radial wavenumber fcr,m = jo,m/a into the wave equa- 

tion yields the characteristic function describing the radial variation in pressure 

for the TO th mode: 

pm(r) = Am J0(jo,m-) 

where Am is a modal amplitude coefficient. The normalized modal amplitude, 

Pm/Am is plotted as a function of the normalized radius r/a in Figure 2.6 for the 

first three modes. We note that there is no plane wave mode (m = 0) for this 

case, since the pressure must be zero at r = a. For any mode, the pressure is a 

maximum at the center of the cylinder and zero at the boundary. 

As discussed in section 1.6, the wave in the fluid cylinder may be constructed 

from an infinite number of plane waves whose wavevector k makes an angle <j) with 

the z axis. This angle is determined from tan ^> = f21 and the angle for a particular 

mode is 

bm = arctan 

Rigid Radial Boundary The presence of a rigid boundary requires that the radial 

component of velocity be zero at r = a. From Eq.(2.13) this condition is satisfied 

when Ji (kra) = 0. Letting ji>m represent the roots of this equation, modes exist 

for values of kr given by 

kr,ma=jl,m,      TO = 0,   1,   2,   ... 
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where j1J0 = 0, ji,i = 3.83, ji>2 = 7.01, ji,3 = 10.17 For m greater than 5 

the approximation jljm ft* | (4m + 1) may be used with an error of less than 0.1%. 

The phase and group velocities for a fluid cylinder with a rigid boundary are 

presented in Figure 2.7. The ji,o = 0 root characterizes the plane wave mode which 

is supported by the rigid wall boundary condition. There is no cut-off frequency 

for this mode, and the phase and group velocities are independent of frequency 

and equal to the sound speed in the fluid. 

The modeshapes for this case are given by pm (r) = Am Jo (ji,ma) anc* are 

shown in Figure 2.8. For the plane wave mode, the pressure is independent of the 

radius. 

2.3    Fluid Tube 

2.3.1    Introduction 

We now consider a cylindrical tube of fluid, infinite in length, with inner radius 

a, outer radius b, sound speed c, and density p. Such a fluid cylinder could be 

physically realized, for example, by a fluid contained in the annular space between 

two concentric cylindrical shells. 

We seek to develop a transfer function relating the state variables of pressure 

P and radial velocity V at the inner boundary, r = a, to those at the outer 

boundary, r = b, for an arbitrary excitation comprising an axisymmetric traveling 

pressure wave at either boundary. The analysis is restricted to the axisymmetric 

case for clarity, but it may easily be extended to the more general non-axisymmetric 

case using the transform pair defined in equations 2.9 and 2.11 to describe the 
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circumferential variation. This will result in an infinite sum of transfer functions 

to represent the fluid tube. 

Figure 2.9 describes the model in block diagram form. Pa and Va represent the 

state variables of pressure and velocity at the inner radius, and P& and V& those at 

the outer radius. 

The desired transfer function is a matrix of the form 

Pb 

vb 

= 
A   B 

C   D 

Pa 

Va 

where the parameters A, B,  C, and D are defined as: 

A=% \Va=0,    B = %\Pa=0,     C=§ k=o    and D = |Hpa=0 

2.3.2    Development of Transfer Function 

The pressure within the fluid tube must satisfy the scalar Helmholtz equation, 

V2
r + k2)p(kz,u,r) = 0 

where p(kz,u,r) is the double Fourier transform of the pressure as described 

in equation 2.8 and V2. = ^ 

Now we assume a solution of the form 

rd_ 

r(D (2) p(kz,u7r) =  EH^{krr) + F H^> (krr) 0i(kzz—u)t) (2.18) 

where HQ (krr) is the Hankel function of the first kind, order 0, representing 

waves traveling outward in the positive r direction, and HQ (krr) is the Han- 

kel function of the second kind, representing waves traveling inward. A radial 

wavenumber kr is computed from k2. = k2 — k2 = f^J   — k2; and E and F are 
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complex coefficients to be determined.  The radial velocity vr is found using the 

momentum equation, 

d 
-Vrp{kz,u,r)= p-Q-dr (kz,ui,r) = -ipuvr (kz,u,r) 

Applying this to equation 2.18 results in 

vr (kz,u, r) = —\E Hi1] (krr)  + F H\
2)
 (krr) 

up L 
0i(kzz—u)t) 

Defining the radial spectral impedance of the fluid in the tube as 

Z 
pck 

the radial velocity may be expressed as 

(i) r(2) vr (kz,u,r) = -^{E H\X) (Kr) + F H\Z) (krr ^i(kzz—u}t) (2.19) 

The transformed state variables Pa, Va, Pb, and Vb are found by substituting 

r = a and r — b into equations 2.18 and 2.19. This results in the following four 

equations which must be solved to determine the complex coefficients E and F. 

The exponential function expi(kzz-Lüt) will be suppressed in subsequent equations 

for brevity. 

Pa = E H^ (kra) + F i42) (M 

V„ E H\l) (kra) + F H\Z) (kra) (2) 
a        z 

Pb = E H^ (krb) + F #<2) (kTb) 

Vb = 
%  r r(D E H?> (krb) + F HY1 (krb) (2) 
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These equations may be written in matrix form as 

Pb E 

vb 

Mb 

F 
(2.20) 

and 

Pa E 

Va 

Ma 

F 

(2.21) 

where 

and 

Ma — 
H^ (kra) 

^H[
1}
 (kra) 

H^] (kra) 

|#{2) (kra) 

= 

a3   a4 

Mt 
= 

H(
0
1} (krb) H^ (krb) 

iH{2) (krb)  _ 

= 
h   b2 

b3   b4 

(2.22) 

(2.23) 

Multiplying 2.20 by the inverse of 2.23 and 2.21 by the inverse of 2.22 leads to the 

elimination of the complex coefficients E and F, viz. 

(2.24) 
E -l Pb 

-1 Pa 

F 
Mb 

% 
Ma 

Va 

Multiplying 2.24 by 

identity matrix, result in: 

Mh 
and noting that Mb Mb 

-I 

I , the 

Pb -1 Pa 

vb 

Mb Ma 

Va 

By a similar method we obtain 

Pa -i Pb 

Va 

Ma Mb 

Vb 
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Thus Mh Ma 
is the transfer matrix from the inner surface of the fluid 

-l 

tube to the outer surface, and Ma Mh 
is the transfer matrix from the 

outer surface to the inner surface.   Substituting the expressions for M„ and 

Mh 
from (2.22) and (2.23) we have 

M, ab 

(&ia4 - M3)   (-M2 + Mi) 

(63O4 - M3)   (-M2 + Mi) 

Aa 

where Aa = 0102—020 and [Mab] represents the transfer matrix from the inner 

surface of the fluid tube at r = a to the outer surface, r — b. 

Substituting the Hankel functions into the expression for Aa we have 

Ao=- Hi1} (kra) H{2) {kra) - HP (kra) H^ (kra) 

The Wronskian for the Hankel functions is 

-4i 
W {fl™ (x), Jtf> (x)} = ^ = H% (x) H™ (x) - J#> (x) H& (x) 

therefore Aa = -ijr-, and the desired A, B, C, D  parameters are: 

.71". 
A — —i—kra 

4 
HP (krb) H{2) (kra) - HS*

}
 (kTb) H{1} {kra) 

71 
B = —kraZ 

4 

C 

D = —i—kTa 
4 

H^ (Kb) i42) (kra) - H{2) (Kb) H^ (kra) 

* kra 'HP (Kb) H? (kTa) - H? (Kb) H? (kra) 

H[
2)
 (Kb) H^ (kra) - H^ (Kb) H^2) (kra) 

4 Z 

71", 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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A B C D  Parameters Expressed in Bessel Functions 

Using the definitions of the Hankel functions, H$p (x) = Jn (x)+iYn (x) and H^ (x) 

Jn {x) — iYn (x)  the AB C D  parameters may be expressed in the form 

A = ^kra [Ji {kra) Y0 {krb) - J0 (krb) Yx (kra)] (2.29) 

B = £kraZ [Jo {kra) Y0 (krb) - J0 (krb) Y0 {kTa)] (2.30) 

C = i7^ [Ji (kra) Yx {krb) - Ji {krb) Y1 {kra)\ (2.31) 
2  Z 

D = ^kra [ Jx {kTb) Y0 {kra) - J0 {kra) Y1 {krb)} (2.32) 

Note that A and D are real, whereas B and C are imaginary. 

A Compact Notation for A B C D Parameters 

Hermann and Mirsky (1956) defined a new symbol to represent combinations of 

Bessel functions of the form shown above. Their definition is: 

tymnyfcr) = Jm \Kr&) *n \KrO)       "n \K>rV) ^m \Krü) 

Using this definition facilitates a more compact expression of the   A B C D 

parameters, viz. 

7T 
A = -kraQ10{kr) 

7T 
B = i-kraZQoo{kr) 

C = i^Qn{K) 

7T 
D = --kraQ01{kr) 
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Zero Thickness Fluid Tube 

As a check on the preceding results, let a = b , that is, the tube has zero thickness. 

Substituting a = b in Equation 2.29 we have 

7T, 
A = -kra [Ji (kra) Y0 (kTa) — J0 (kra) Yi (kra)} 

The expression in brackets is the Wronskian, which equals ^^, thus for this 

case, A — l. The product terms in B and C cancel, so that B = C — 0. In similar 

fashion, D — 1. Therefore the transfer matrix reduces to 

pb 

vb 

= 
1   0 

0   1 

Pa 

va 

That is, Pb — Pa and Vb = Va , as expected. 

AB C D  For Imaginary Radial Wavenumber 

When the axial wavenumber kz exceeds the acoustic wavenumber k, the radial 

wavenumber is imaginary. Using the same notation as in Case 3 for the fluid 

cylinder we substitute kT = ikr into Equations 2.25 to 2.28 and replace the Hankel 

functions with the modified Bessel functions, viz. 

HP i^ra) = J^Kn (kra) 

and 
o 

Hi2) (ikra) = 2inIn (kra) - —if„ (kra) 

The resulting AB C D values for the fluid tube with imaginary radial wavenum- 

ber are 

A = kTa [KO (krb) Ix (kra) + K0 (fcPo) h (krb)\ (2.33) 
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B = ipckra [KQ (kraj I0 (krbj - K0 (k,rbj I0 (fcra)] (2.34) 

c _ ikja 
pck 

K\ (krb) h (kra) - Kx (kraj h (krb)] (2.35) 

D = kra [äO (kra) h (krb) + Kx (krb) I0 (fcra)] (2.36) 

Again we note that A and D are real, whereas B and C are imaginary. 

2.3.3   Transfer Function From b to a 

As mentioned earlier, the transfer function from the outer surface at r = b to the 

inner surface at r = a is defined by 

[M6o] = [Ma] [M,]-1 

When this is solved for the A B C D parameters in the same manner as for 

the preceding case, the expressions take the same form but with the values of a 

and b interchanged, viz. 

A = ^krb [Jj (krb) Y0 (kra) - J0 (kra) Yx (krb)} (2.37) 

B = i^krbZ [Jo {krb) Y0 {kra) - J0 (kra) Y0 (krb)} (2.38) 

C = v^- \JX (krb) Yx (kra) - Jx (kra) Yx (krb)} (2.39) 
Z   ZJ 

D = ^krb [Jx (kTa) Y0 (krb) - J0 {krb) Yx [kra)} (2.40) 
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2.3.4    Large Argument Approximations for Transfer Functions 

The AB C D parameters for large values of the argument are determined using 

the asymptotic values of the Hankel functions, 

and 

V 7TZ 

Substituting these relationships into Equations 2.25 to2.28 and simplifying the 

results yields the following expressions for A B C D for large real values of the 

non-dimensional radial wavenumbers, kra and krb : 

A^ \/T cosÄ;r(6-a) (2.41) 

B « izM sin kr (b - a) (2.42) 
V b 

Cf*-J- smkr(b-a) (2.43) 
Zi V o 

D^ \n> coskr(b-a) (2-44) 

Now if we let h represent the thickness of the fluid tube, that is h = b — a, and 

assume that h is very small compared to 6, so that 

b      V        o 
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then 

A = D ~ cos krh 

B « iZsmkrh 

C « — sinfcr/i 

Recalling that Z = ^-, k = ^, and fcr = w'fc2 - fc|, we observe that the 

asymptotic expressions for the two port model of a fluid tube reduce to those 

developed for plane waves in another study. (Stepanishen, 1985) 

Imaginary Large Argument 

When the non-dimensional radial wavenumber is large and imaginary, kra^> 2%, 

the modified Bessel functions are replaced with In(kra) «    j   1 ' and Kn (kra) »s 

\fi~a   6XP (~^a) 

Using these expressions in Equations 2.33 to 2.36 yields the following equations 

for the AB C D parameters for large imaginary values of the argument kra : 

A = D « J- cosh ( 1 1 exp (kra) 
V b \a       I        v     ' 

ipck  fä b - 
B ft* -=r—</-sinh( l)exp(£ra) 

kr   V o a 

C « —T^A/T 
sinh 1 1 exP (kra) pck V o \a       J        v     ' 

We note that these expressions indicate that the negative square root must be 

chosen for kr in order to represent an evanescent wave which decays with radial 

distance. 
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2.3.5    Discussion of Fluid Tube Transfer Function 

We now consider the behavior of the fluid tube AB C D parameters as functions 

of the radial wavenumber and the fluid tube radial dimensions. 

It is convenient to begin with the asymptotic approximations for large ar- 

guments since the trigonometric functions involved are simpler than the exact 

relationships which are the products of Bessel functions. 

We also introduce the dimensionless ratio of the outer to inner radius, s = b/a. 

Substituting into Equations 2.41 to 2.44 we have 

A = D m —p cos [kra (s - 1)] 
Vs 

B P» -—-j= sin [kra (s — 1)] 

C fa ——^-p sin [kra (s — 1)] 
pckyJS 

These functions are periodic with period fcr,„s (s - 1) = 27m. The amplitude 

coefficient 1 / \fi = J^ reflects the decrease in magnitude of the pressure and 

velocity at b relative to a due to cylindrical spreading. 

As s is increased the frequency of variation with radial wavenumber kra also 

increases; that is, there is a larger number of pressure and velocity cycles between 

the inner and outer radii. 

Now let the axial wavenumber kz = 0 so that there is no propagation in 

the axial direction. For this case the radial wavenumber kr equals the acoustic 

wavenumber k . The equations of state for this case are: 
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P<x PC ~ 
Pb = —% cos [ka (s — 1)] + i—j=Va sin [ka (s — 1)] 

V& = T= sin [fca (s — 1)1 H ^ cos [fca (s — 1)1 
pCy/S y/S 

Now when ka (s — 1) = rar,        n = 0,1,2,... the sine terms vanish, and the 

cosine terms equal (—l)n . The transfer equations reduce to 

P6 = (-l)"4= 
Vs 

and 

Thus the pressure and velocity at b are either in phase, or 180° out of phase 

with those at a. This condition occurs when the tube thickness, h = (b — a) is an 

integral number of half wavelengths, h = n\n/2 or at a frequency uin = irnc/h. 

Similarly, when ka (s — 1) = (2n + 1) 7r/2, the sine terms equal (—1)" and the 

cosine terms vanish. The result is 

Pb = i(-l)npc^ 

and 

p 
vb = i(-iy 

pCy/s 

This will be true when the thickness h is an odd number of quarter wavelengths, 

i. e. h = (2n + 1) A/4 , or un = (2n + 1) irc/2h 

The conditions just discussed describe a radial standing wave in the fluid tube. 
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For the general case of interest in which the large argument approximations 

are not valid, the A B C D parameters are computed using one of the sets of 

expressions presented earlier, such as Equations 2.29 to 2.32. The parameters are 

plotted in Figure 2-10 as a function of the non-dimensional wavenumber kra for 

three values of the ratio of radii, s = 1.5, 2, and 3. The plots for B and C are 

normalized with respect to the spectral impedance Z, that is, C — —iCZ and 

B' = -iB/Z. 

The behavior of the AB C D parameters in gross aspect follows the pattern 

indicated by the asymptotic approximations. Both A and D are similar to cosine 

functions, whereas B and C resemble sine functions. The amplitude of the envelope 

of the parameters decreases with increasing values of s. 

Using the asymptotic expressions for the Bessel functions with small argument 

in Equations 2.29 to 2.32 and taking the limit as kr > 0, we find: 

lim A=l:     lim B = lim C = 0;     lim D = - 

This condition will occur when the axial wavenumber kz equals the acoustic 

wavenumber A;. For this case, the pressures at a and b are equal, and Vb = Va/s. 

This would be the situation for a plane wave propagating in the fluid tube with 

no radial component. 

Figures 2-11 to 2-14 depict the A B C D parameters as three dimensional 

surfaces for values of kra ranging from 0 to 5, and for s ranging from 2 to 5. The 

features described above are clearly indicated in these plots. 
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2.3.6    Free Wave Propagation 

We now consider the propagation of free waves in a fluid tube. In contrast to the 

preceding analysis, in which both the the axial wavenumber kz and frequency were 

assumed to be independent variables, now their relationship is determined by the 

radial wavenumber kr, which in turn takes on discrete values that are established 

by the boundary conditions. 

The transfer function parameters provide a convenient means for determining 

the conditions which govern the propagation of free waves in the fluid tube. We 

recall that the transfer equations are: 

Pb = PaA + VaB (2.45) 

Vb = PaC + VaD (2.46) 

in which Pa,Pb,Va and Vb are the state variables at the surfaces r = a and 

r = b, respectively. Four cases for free wave propagation may be defined in terms 

of the state variables at the boundaries: 

Case Description Boundary Conditions 

I Free-Free Pa = 0,   Pb = 0 

II Free-Fixed Pa = Q,Vb = 0 

III Fixed-Free Va = 0, Pb = 0 

IV Fixed-Fixed va = o,vb = o 
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Case I, Free-Free Boundary 

Now consider Case I. For the free-free case, the pressure must be zero at both the 

inner and outer surfaces of the fluid cylinder. Setting Pa — Pb = 0 in Equations 

2.45 and 2.46 results in the following two equations: VaB = 0 and Vb — VaD. 

This in turn requires that B = 0. Substituting for B in Equation 2.26 yields the 

characteristic equation for the propagation of free waves: 

H£
}
 {kras) i42) (M - #<S2) (kras) HP (kra) = 0 (2.47) 

Denoting the roots of this equation as hm, free waves may exist for values of 

the radial wavenumber such that 

7    •hn 

a 

To investigate these roots, we first consider the case for which the argument 

kr^ma is large. Using the asymptotic expressions for the Hankel functions, the roots 

of Equation 2.47 occur at values of kr which satisfy the following relation: 

exp [i (2kra {s — 1})] = 1 

This condition is met for values of the radial wavenumber kr,m such that 

m7T 
kr,m = -r^,    m = l,2,3, ... (2.48) 

Expressing this in terms of the tube thickness (b — a), 

77Z7T 
"V,ro (b-a) 
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we see that the radial wavenumber kr^m for a given mode number m decreases 

as the tube thickness increases. 

The exact values of the roots hm must be determined by numerical solution 

of the characteristic equation, 2.47. The asymptotic value of the root kr>ma for a 

particular mode number m is used as the estimated root in a root solving algorithm. 

The roots for the first ten modes are listed in Table I for four values of s : 1.5,2,3, 

and 5. Also shown in Table I is the error (expressed as a percentage of the exact 

value) which results when the asymptotic approximation for the root is used. For 

a particular mode number, the error increases as the ratio s = b/a increases. 

The error is plotted as a function of the mode number for four values of s in 

Figure 2-15. 

Case II, Free-Fixed Boundary 

In Case II, the inner surface of the fluid tube is free, and the outer surface is 

blocked. Thus in Equations 2.45 and 2.46, Pa and Vb are zero. This is satisfied if 

the parameter D equals zero. From Equation 2.28, the characteristic equation for 

Case II is 

H{2) (kras) H£
}
 (kra) - H^ (kras) H£

]
 {kra) = 0 (2.49) 

Again, using the asymptotic expressions for the Hankel functions to determine 

the approximate roots of 2.49 we obtain 

7T 
e-xp[i2(kra{s — 1} — —)] = 1 
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Thus the approximate values of the roots for this case are given by 

hm = kr,ma = (2
07 + 1

1
),7r,        m = 1, 2, 3,... (2.50) 

2 (« - 1) 

This result was used in the characteristic equation to determine the exact 

values of the roots for the first ten modes as in Case I. The results are presented 

in Table II. Figure 2-16 shows the error as a function of the mode number for four 

values of s. 

Case HI, Fixed-Free Boundary Case III is the reverse of Case II in that the inner 

boundary is rigid and the outer boundary is free, so that Va and Pb are zero. Thus 

A = 0 and the characteristic equation is 

H^ {Kas) H{2) (kra) - H® (kras) H^ (kra) = 0 (2.51) 

For large values of the argument kra the asymptotic form of this equation is 

7T 
ex.-p[i2(kra{s — 1} — —)] = 1 

This is identical with the result for Case II, hence the approximate values for 

the roots of Equation 2.51 are given by Equation 2.50. Table III lists the exact 

values of the roots for the first ten modes of Case III for four values of s. Figure 

2-17 shows the error as a function of mode number for the same values of s. 

Comparing Figure 2-16 with Figure 2-17 we note that the approximate formula 

predicts a value of the roots which is too large in Case II, and too small in Case 

III. 
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Case IV, Fixed-Fixed Boundary Finally, for Case IV, the fixed boundaries at a 

and b imply that the radial velocities Va and Vj, vanish, which in turn requires that 

C = 0. The characteristic equation for this case is 

^- [Fj(1) (kras) H[2) (kTa) - H[
2)
 (kras) H[

1]
 (kra)} = 0 (2.52) 

pcka 

The asymptotic solution to this is identical with that for Case I, and the 

approximate roots are given by Equation 2.48. The exact roots for the first ten 

modes are listed in Table IV, and Figure 2-18 shows the error as a function of 

mode number and s. Comparing the results for Case I with those for Case IV, we 

note that the asymptotic formula yields a positive error for the free-free case, and 

a negative error for the fixed-fixed case. We note that Case IV is the only one to 

which supports a plane-wave mode. 

Up to this point in the analysis we have used the characterictic equations in 

complex form for ease of manipulation in determining the asymptotic expressions 

for the roots. The AB C D parameters may also be cast in the form given in Equa- 

tions 2.29 to 2.32, which results in the following expressions for the characteristic 

equations: 

Case I: 

J0 (kra) Y0 (kras) — J0 (kras) Y0 (kra) = 0 

Case II: 

J\ (kras) YQ {kra) — J0 (kra) Y\ (kras) = 0 

Case III: 

Ji (kra) YQ (kras) — J0 (kras) Y\ (kra) = 0 
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Case IV: 

^-[Ji (kra) Yx (kras) - Ji (kras) Y1 {kra)} = 0 
pcka 

The characteristic equations for the four cases analyzed for the fluid tube are 

plotted as a function of the non-dimensional wavenumber kra in Figures 2-19 to 

2-22 for radii ratios of 1.5, 2, and 3. We note that as the ratio of radii s increases, 

the number of zeros for a given range of the non-dimensional wavenumber also 

increases. Physically this simply means that the modal density is greater in a 

thick walled fluid tube than in a thin one. 

2.3.7    Mode Shapes in a Fluid Tube 

We now consider the mode shapes of the pressure and velocity in a fluid tube with 

the four sets of boundary conditions described above. Guidance for this effort is 

provided by the analysis of a rectangular fluid waveguide (Redwood, 1960). The 

rectangular waveguide is the limiting case of a fluid tube of infinite radius. The 

mode shapes in the rectangular waveguide comprise simple sinusoidal functions, 

considerably simpler than those of the finite radius fluid tube. 

To proceed, we use Equation 2.18 for pressure and Equation 2.19 for the radial 

velocity. Using the appropriate boundary conditions in these equations extablishes 

the relation between the unknown coefficients E and F. 

For example, in Case I, substitution of r = a and p = 0 yields 

p = -E H°   ^"^ 
H^2) {hm) 

where hm = kr^ma is the m th root of the characteristic equation. 
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Thus the pressure for the m th mode is given by 

pm(r,u,z) =E HP ( K 
a 

exp [i (kzz — ut)] 
'o.J      HP (hm) 

where the axial and time dependence have been included. 

The Hankel functions may be written in polar form as H^ (hm) = Mn (hm) exp (iOm) 

and HP (hm) = Mn (hm) exp (-iOm), where Mn (hm) = ±^/Jn {hmf + Yn {hmf 

and 6m = arctan (J^j) • Then H"2)j
ftmj = exp (2i0m), and the pressure may be 

written as: 

pm(r,u,z) — E 
a 

H$] (hm,-) exp (2iOm)  exp [i (kzz - ut)]  (2.53) 

Equation 2.53 expresses the solution for pressure in complex notation. To find 

the actual physical pressure, we replace the Hankel functions with the Bessel and 

Neuman functions, and the complex exponentials with sine and cosine functions. 

Expanding the result and taking the real part results in: 

Pm{r,u,z) = E<Jo(hm-j [1 -cos(20m)] - Y0 (hm-) sin (20m) | {cos (kzz - ut)} 

(2.54) 

The variable E is seen to be a real, arbitrary pressure amplitude coefficient. 

The radial velocity is obtained using Equation 2.19, 

vr (r,u, Z) = ^-\E #!(1) (krr) + F Fa
(2) (krr)) exp [i (kzz - ut)] 

pck L J 

Using the expression for F found above, the radial velocity for the m th mode 

is given by 

vTjm{r,u,z) 
pck 

| H[l) (hj-^j - H[2) (hm^j exp (2i$m)  exp [i {kzz - ut)] 
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Expanding and taking the real part, the final expression for the radial velocity 

is 

vr,m {r,u>,z) = ^ { Ji (hm^j sin (20m) - Y1 (hj-^j [1 + cos (20m)]} {cos(kzz - ut)} 

The axial velocity may be obtained by applying the momentum equation to 

Equation 2.54 with the result 

k 
vz,m(r,üj,z) = -^pm(r,u;,z) 

The axial velocity is real and in phase with the pressure, which one would 

expect for a propagating wave. 

The equations for the mode shapes of the remaining three cases are identi- 

cal with those for Case I, but with the appropriate root from the characteristic 

equation, and with the angle 9m determined by the boundary conditions. 

Thus for Case II (free-fixed), setting p = 0 at r = a results in the same value 

of 9m as was found for Case I. 

The boundary condition for Case III (fixed-free) requires that p = 0 at r = b 

with the result 

Yo (hms) 
9m — arctan 

Jo{hms)_ 

In Case IV (fixed-fixed), setting vr = 0 at r = a yields 

"n (hm)' 
9m = arctan 

Ji{hm)_ 

Plots of the pressure and radial velocity as a function of the normalized radius 

(u = z\ for the first three modes for each of the cases studied are presented in 

Figures 2-23 to 2-26. The radius ratio s = 10 for these plots. 



46 

The modes in the fluid tube are considerably more complicated than those in 

a rectangular fluid waveguide or in a fluid cylinder. This is primarily because the 

boundary conditions for the fluid cylinder are specified at two different physical di- 

mensions, the inner and outer radii (or, equivalently, the inner radius and the radii 

ratio), whereas the rectangular waveguide and the fluid cylinder are characterized 

by one physical dimension. In the case of the rectangular waveguide, it is the 

thickness h, and for the fluid cylinder, the radius a. In the rectangular waveguide, 

the modes are described by trigonometric functions (sines and cosines), and the 

peak modal amplitudes are ±1 for all cases. Also, there is "left-right" symmetry 

between the free-fixed modes of Case II and the fixed-free modes of Case III. That 

is, interchanging the boundaries results in a reflection of the mode shapes about 

the center of the waveguide. This is not the case for the fluid tube. 

Mode shapes for the free-free situation of Case I are shown in Figure 2-23. 

There is no "plane wave" (m = 0) mode, unless one considers the trivial case for 

which the pressure is everywhere zero. 

A salient feature of these plots is that the peak modal amplitudes of both 

pressure and radial velocity vary as functions both of the mode number and the 

radii ratio, s. 

For small values of s, eg s — 2, the mode shapes appear almost sinusoidal. 

As s increases, the mode shapes appear more like the Bessel functions, with large 

peak amplitudes near the inner radius, and decreasing in amplitude as the outer 

radius is approached.  With increasing s, the node for velocity in mode 1 moves 
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towards the inner radius a. 

The fluid cylinder with both boundaries fixed (Case IV) supports a plane 

wave mode, unlike the other three cases. This is evident by inspection of the 

characteristic equation for Case IV, which exhibits a root at kra = 0. Mode shapes 

for m = 1 to m = 3 are shown in Figure 2-24. As s increases, the node for the 

pressure in mode 1 moves towards the outer radius b. 

Cutoff Frequencies 

All of the modes for the fluid cylinder (with the exception of the plane wave mode 

for case IV) will exhibit a cutoff frequency below which propagation will not occur. 

This cutoff frequency is established by the root of the characteristic equation for 

the mode, hm, the inner radius a, and the sound speed c: 

uc =  
a 

2.4    External Fluid 

2.4.1    Introduction 

The final component in any arrangement of concentric cylindrical models is the 

external medium. In contrast to the other components, which have finite radial 

boundaries, the external medium is presumed to extend to infinity in the radial 

direction. This assumption permits the radiation of acoustical energy in the radial 

as well as in the axial direction. 

In this study we restrict our attention to inviscid fluid media, such as air and 

water.   However, solid external media could be incorporated if desired by using 
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elasticity theory. 

A number of authors have discussed the propagation of cylindrical waves, in- 

cluding Morse (1948), Rschevkin (1963), Morse and Ingard (1968), and Junger and 

Feit (1986). 

An especially cogent analysis by Junger (1953) provides an excellent paradigm 

for the present discussion. In his paper, Junger postulates an infinitely long cylin- 

drical surface which experiences a time harmonic, spatially periodic standing wave 

excitation in both the circumferential and axial directions. He then constructs 

solutions to the inhomogeneous wave equation and obtains expressions for the 

specific acoustic impedance in the external fluid. In a section titled "Physical In- 

terpretation" Junger presents an especially lucid description of cylindrical waves 

in the fluid medium. 

In this section, we analyze the propagation of cylindrical waves in the external 

medium. The pressure and particle velocity are described at the medium interface 

and in the field as functions of frequency (acoustic wavenumber) and the axial 

wavenumber, kz. The spectral impedance at the interface is also discussed. 

2.4.2    Physical Description 

Consider an infinite length cylinder of radius a immersed in an inviscid, homo- 

geneous fluid which extends radially to infinity. A travelling harmonic pressure 

wave of amplitude PQ, frequency ui, and axial wavenumber kz is postulated at the 

surface of the cylinder, as follows: 

pn(a, 9, z, t) = P0 cosinOy^2-^) 
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The waves in the external fluid medium must decay to zero at r = oo and also 

must satisfy the reduced Helmholtz equation, 

(V2 + e)p(r,6,z,t)=0 

where 

dr2     r dr     r2 do2     dz2 

Assume a field solution of the form 

Pn(r, 6,z,t) = cos n9 L^ffW (krr) + BnHn
2) {krr) i(kzz-u}t) 

For large values of the argument krr this may be written as 

pjr. 0. z. t) = cos(n9) J-$- f^^.-«t-T-}) + ^^-«^¥+5)" 
V KKrT  1- 

The first term within the brackets describes a wave propagating in the positive 

axial and radial directions, that is, an outgoing conical wave. The second term 

represents an incoming wave. Since we are interested only in the outgoing wave, 

we discard the second term, and the Bn coefficients are set equal to zero. Thus 

the pressure in the field is given by 

Pn(r, 9, z, t) = cos(n9) A» ff« (krr) e«*-*-«0 (2.55) 

Equating this expression to the excitation pressure wave at r = a enables 

determination of the coefficients An as: 

An  — 
Hn1] (M) 
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The velocity in the field is determined using the harmonic form of the momen- 

tum equation, 

Vp = ipckv 

In cylindrical coordinates this is written 

v = 
ipck 

dp     ee_dp        dp 
T dr      r 86       z dz 

= ervr + eeve + ezvz 

The three components of velocity thus are: 

Radial: 

Vr  = 
ikr cos(n9)P0 

pckHk' (kra) IKr 
-Z-HV (krr) - ff£>     (krr) 0i{kzz—ü)t) (2.56) 

Tangential: 

ve 
_ insm(n6)P0HW (krr) i(kzZ_ut) 

(i) pckrHn   (kra) 

Axial: 

= kzcos{ne)P0H^{krr)ciikrZ_^ 

pckHn   (kra) 

2.4.3    Wave Propagation 

Real Radial Wavenumber    For clarity we consider the axisymmetric case, n = 0, 

to investigate the propagation of cylindrical waves in the external medium. 

Thus for n = 0 the pressure in the field is given by: 

p(r,z,t) = PoH^{krr)ei^-^ 
H^ {kra) 
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Since n = 0 the tangential particle velocity is zero. The radial particle velocity 

is given by: 

r(i) 
Vr  = 

_ ikrPpH1   (Ayr) ukzZ-ut) 

pckHJ) ' (kra) 

and the axial particle velocity is 

r(i) 
v, = 

_ kzPpH0   (Ayr) jfaz-vt) 

pckHp   (kra) 

The Hankel functions may be written in polar form as 

#(D (z) = Mn(z)eie^z) 

where Mn(z) = yf'Jn {zf + Yn (zf and 0n(z) = arctan Jg . With this nota- 

tion, 

,      P0M0(kTr)e^e^k^-do(kra)+k^-ut) 

P^Z^ = Mö(M  

For large values of the argument Ayr,    d0 (krr) —> krr — \    and 

Mo (Ayr) —> J^f^:    thus the pressure in the limit becomes 

where (f) = 90 (kra + |) is a fixed phase angle This describes a traveling wave 

with wavevector components Ay and kz. The direction of propagation is indicated by 

the wavevector k = erkr+ezkz which is inclined at an angle ak = arctan ^ with 

respect to the z axis. 

The wavefront (surfaces of constant phase) are conical, symmetrical with re- 

spect to the z axis, and perpendicular to the wavevector k. These relationships 

are shown in Figure 2-25. 
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If the axial wavenumber kz is zero, the radial wavenumber kr equals the acoustic 

wavenumber k. This represents a cylindrical wave traveling in the radial direction, 

lim  p(r,t) = *U- —^— <.«*"-<"-*> 
krr^aory     '      y ixkrr M0(kra) 

Note that the amplitude decays as -4=, which is characteristic of cylindrical 

waves. This also satisfies the requirement that the wave vanish at r — oo. We 

may compare this, for instance, with a spherical wave which falls off as ~. The 

wavefronts are cylinders concentric with the z axis. 

Zero Radial Wavenumber As the axial wavenumber approaches the acoustic 

wavenumber A- the radial wavenumber approaches zero and radial phase veloc- 

ity, jr. becomes infinite. The result is a purely plane wave propagating in the z 

direction. 

Imaginary Radial Wavenumber When the axial wavenumber exceeds the acoustic 

wavenumber. the radial wavenumber takes on a purely imaginary value. We will use 

the notation kT to represent the magnitude of the imaginary radial wavenumber, 

that is, 

Using the expression for Hankel functions of imaginary argument, H^ (ix) 

-i~(n+l>Kn (x) , the expression for the pressure is 

P0K0 (krr)    „ 
P(r,z,t)=    °    i Ve,( } 
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For large arguments, Kn (x) -» J^e~x thus for krr large, the pressure becomes 

hm  p(r,z,t) = 7=-\\7Ti—e       e 

M--«   v K0(kra)\2krr 

which represents an evanescent wave propagating in the z direction and falling 

off rapidly in the radial direction as ./-=—e krT. 

1AA    Radial Spectral Impedance of External Fluid 

We wish to study the radial spectral impedance of the external fluid as a function of 

the axial wavenumber K and the acoustic wavenumber k. The general expression 

for the radial spectral impedance of the external fluid may be obtained by dividing 

equation 2.55 by equation 2.56, with the result: 

ipckHW (kra) 
^T.n. Jr'n ~ u  [.a. uW fu „\ _ nW _£Hki} (Kr) - H\^ (krr) 

Specializing this to the n = 0 case and evaluating at r = a results in 

"H^(kTa) 
Za = -ipc 

>-(*)' 
(2.57) 

H[1} (Ka) 

The nature of Za thus depends on the values of kz and k.   Three cases of 

interest include: 

(I) kz = 0; K = k (cylindrical wave) 

(II) kz < k; K is real (high frequency case) 

(III) kz > k; K is imaginary (low frequency case) 

Case I: Cylindrical Wave 

When kz — 0, there is no axial propagation and the impedance depends only on 
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the acoustic wavenumber. In normalized form, it is: 

Za=     H^jka) 

pc H[1] (ka) 

This may be separated into a real part, representing radiation resistance, and 

an imaginary part, representing reactance, as follows: 

_   (Za\      J1(ka)Y0(ka) + J0(ka)Y1(ka) 
He 

and 

pc) J^(ka)+Y1
2(ka) 

T    (Za\      Y0 (ka) Yx (ka) - J0 (ka) Jx (ka) 
1m — 

pc) Jf(ka)+Y?(ka) 

These functions are plotted in Figure 2-26 as functions of the non-dimensional 

acoustic wavenumber, ka. 

The radiation resistance increases from zero at ka = 0 and asymptotically ap- 

proaches unity for large values of the argument. This may be shown by considering 

.. ...      (H^(ka)\ . 7T 
km Za = -ipc km () = -?pcexp(z-) = pc 

ka^oo ka^°° \H\'(ka) J 2 

That is, the radiation resistance approaches the plane wave specific acoustic 

impedance for large values of ka. 

The normalized radiation reactance, Figure 2-26 b, increases from zero at ka = 

0 to a maximum magnitude of -0.3971 at ka = 0.4617, subsequently decreasing 

monotonicaUy to zero at large values of ka. The negative value of the reactance 

indicates that physically it is mass-like, representing the accession to inertia of the 

external fluid. 
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Case II: High Frequency 

When the axial wavenumber kz is less than the acoustic wavenumber fc, the radial 

wavenumber is real. The real and imaginary components of the normalized spectral 

impedance are: 

Re 

and 

\PC, 
1- 

~k 

Ji (ka) Y0 (ka) + Jp (ka) Yj (ka) 

J? (fca) H-^2 (fca) 

y0 (fca) F2 (fca) - Jp (ka) Jx (ka) 

J2 (fca) + Y? (ka) 

Case HI: Low Frequency 

For k < fc2,the normalized impedance is: 

2 
Za 
pc I)"1 K0 (fcra) 

K\ (kra\ 

Since KT0 (fcra) and K\ (kra) are both real, ^ is always imaginary for k < kz 

For very low frequencies, i. e. fc << kz, kr f» kz and for kra » 1, K )-  ( 

lim   Za = — i%r, a mass reactance. 
fc->0 ** 

fc2a»l 

l,and 

The real and imaginary components of the normalized spectral impedance are 

plotted as a function of ka in Figure 2-27. These curves are plotted for four values 

of fc2a; |, 7T, Y> 
and 27r- 

The value of kza divides the plots into the low frequency (fc < kz)) and high 

frequency (fc > kz)) regions. 

In the low frequency region, the real part of Za is zero and there is no radiated 

acoustical energy. The reactance Im(Za) increases with frequency. Both the real 
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and imaginary components become infinite at the cut-off frequency, where kr = 0. 

This marks the transition between an evanescent radial wave component and a 

radiating radial wave component. 

In the high frequency region the radiation resistance decreases as k increases, 

asymptotically approaching pc when k » kz, where kr FH k. 

The radiation reactance increases with frequency below the cutoff frequency, 

and decreases above cutoff, falling to zero at high values of ka. 
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CHAPTER 3 

Elastic Media 

3.1     Introduction 

A concise review of the historical development of vibration analysis is provided 

by Soedel (1981). Love (1888) is generally credited with having firmly established 

the basis for the analysis of vibrations in thin shells. The assumptions made in 

thin shell theory as described by Junger and Feit (1986) are: that the thickness 

of the shell is small compared with any length or surface dimension and with the 

smallest radius of curvature of the shell; that the displacement is small relative to 

the thickness; that the transverse normal stress acting on planes parallel to the shell 

middle surface is negligible; and that fibers of the shell normal to the middle surface 

remain so after deformation and are not subject to elongation. The problem is thus 

reduced to the determination of the deflection of the middle surface of the shell. 

Although there is no exact definition of " thinness", Krauss (1967) suggests that a 

maximum thickness to radius ratio of 1 to 10 defines the limitation of thin shell 

theory. Herrmann and Mirsky (1956) made a comparison between approximate 

shell theories with the exact solutions obtained using three dimensional elasticity 

theory. They concluded that when the wavelength of the vibration in the shell 

is greater than about thirty times the thickness of the shell, simple membrane 

shell theory adequately describes the shell behavior. For wavelengths greater than 
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about eight times the thickness, shell bending theory yields results which are in 

good agreement with the exact theory. 

Since the early work of Love a large number of investigators have developed 

differing equations of motion for thin cylindrical shells. Leissa (1973) published 

an extensive monograph in which many of the different thin shell theories are 

compared in great detail. Leissa's monograph contains over 500 references dealing 

with circular cylindrical shells. Junger and Feit (1986) emphasize that most of 

the differences in thin shell theories are related to small differences in the strain- 

displacement relationships, which do not significantly affect numerical results. 

The simplest theory for circular cylindrical shells includes only extensional 

(membrane) effects, resulting in a system of fourth order partial differential equa- 

tions in the axial and azimuthal coordinates. When bending effects are included, 

the resulting equations are of eighth order. The alternative formulations of the 

"classical" shell theory result from different approximations made in representing 

the bending effects. When transverse shear and rotary inertia are included, a set 

of tenth order equations results. This case has been investigated by Naghdi and 

Cooper (1956) and by Lin and Morgan (1956), using the "strength of materials" 

approach. These authors obtained the dispersion curves and amplitude ratios for 

the first three axisymmetric modes of an infinite cylindrical shell. Later Cooper 

and Naghdi (1957) extended their work to include the non-axisymmetric modes 

for the first five axial modes with ten circumferential modes. 
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3.2     Thin Shell Theory 

3.2.1    Equations of Motion for Thin Cylindrical Shells 

In the current work, we shall employ the simplified equations of motion derived by 

Donnell (1933) as described by Junger and Feit (1986). 

Thus we consider a thin cylindrical shell in a (r, 8, z) coordinate system. The 

thickness h of the shell is small compared with the mean radius a. The variables 

w, v,and u represent the radial, circumferential, and axial components of dynamic 

displacements of the shell midsurface, and are assumed to be small compared with 

the thickness h. A constant ß is defined as 

h2 

ß2  P       12a2 

Terms proportional to ß2 in the equations of motion are due to the presence of 

bending stresses. Let Ap represent the differential pressure between the inside and 

outside surfaces of the shell when fluid loading is present. The Donnell equations 

then may be written as: 

Axial: 

d2u     (1 - v) d2u     (1 + v) d2v      vdw      1 d2u = 

d?+    2a2    BO2 +     2a    Bzdd + a dz     c28t2~ 

Tangential: 

(1+v) d2u      (1 - v) d2v      1 d2v      1 dw      1 d2v _ 
2a    dzdO +      2     d? + tfdO2 + a2 86      c2

pdt2~ 

Radial: 

vdu      l_dv     w_      2f 2cPw        d4w       1 g4w\      1 d2w (1 - v2) _ 
adz~ + tfdÖ + ~al2+ß  [a !h*+   ¥zW + a* d*8    + c2 dt2 P    Eh 
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In these equations E is the Young's modulus of the shell material, v is Poisson's 

ratio,and cp is the low-frequency phase velocity of compressional waves in an elastic 

plate, given by 

Cp — 
E 

p(l - v2) 

in which p is the density of the shell material. 

3.2.2   Axisymmetric Case 

In the present work, we are concerned with the axisymmetric response of the 

cylinder.   With this restriction, all of the partial derivatives with respect to the 

angular coordinate 9 vanish and the equations of motion simplify to: 

Axial: 

d2u     vdw      1 d2u 

d^2 +~a~d~z ~ cYm =° (3-1) v 

Tangential: 

(1 - v) 82v      1 d2v 
2      dz2     c2 dt2 = 0 (3.2) 

Radial: 

vdu     w      n2 2d
iw      1 d2w      .    (1-v2) ,     s 

a dz     a2 dz4      c2 dt2 Eh v     ' 

We note that in this simplified form, the equation for tangential displacement 

v is uncoupled from the equations for radial and axial motion. The latter two 

equations are cross-coupled via the Poisson's ratio, in the terms -f^ and -#* • 
' a dz a dz 

It is this cross coupling which is responsible for most of the complications in the 

behavior of thin elastic shells. 
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3.3    Transfer Matrix Model of a Thin Shell 

To obtain the transfer matrix for a thin shell, we apply the following two- 

dimensional Fourier transform to the axisymmetric thin shell equations, 3.1 and 

3.3. 
oo 

Application of this transformation to 3.1 yields: 

o V u  ^ 
—kzu — ikz—w -\—-u = 0 

and operation on 3.3 results in: 

1 

(3.4) 

v 
—ikz—u + w + ß*a?kt- 

ÜJ 
+ ApT = 0 (3.5) 

where ü = ü(kz,uj), w = w(kz,uj), and T = v Eh ' ■ 

Solving for u in 3.4, substitution into 3.5, multiplying through by a2, and 

collecting terms results in 

w 
-2„ ,2 2„2 
hiv* „ ^2   4,4        U"a z + 1 + ß2aAkA 

k2 "z       c2 + Apa2T = 0 (3.6) 

Substitution of the non-dimensional frequency Q = ua/cp and the non-dimensional 

axial wavenumber Kz = kza into equation 3.6 yields 

w 
K2v2 

+ i + ß2K*-a + Apa2T = 0 (3.7) 
(Q2 _ Kl) 

The Fourier transform of the radial velocity is obtained from the radial dis- 

placement, Vr(kz,u) = -iuw{kz,ui). Then the radial spectral impedance of the 

thin shell is calculated as the ratio of differential pressure to radial velocity, 

—iu>rph 
Zs(£l,Kz) n 

KW 
(ft2 - Kl) 

+ i + ß2K*z-a (3.8) 
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3.3.1    Two Port Matrix Model 

Pi 
= 

1  zs 

0    1 

p2 

v2 

Now let Pi represent the pressure acting on the inner wall of the shell, and P2 

be the pressure on the exterior surface of the shell. One of the assumptions of 

thin shell theory is that there is no radial deformation of the shell, so that the 

radial velocity Vi at the inner surface is equal to the radial velocity V2 at the outer 

surface. The differential pressure across the shell is Ap = P\ — P2, and thus the 

shell may be represented by the following two port matrix: 

(3.9) 

3.4    Analysis of Thin Shell in Wavenumber-Frequency Space 

The study of free wave propagation in thin cylindrical shells has received the 

attention of many investigators, including the authors cited in the introduction to 

this chapter. 

Smith (1955) used Kennard's equations of motion (Kennard, 1953) to compute 

the phase velocities and relative displacement magnitudes for all possible modes 

of free wave propagation in a thin shell. Naghdi and Cooper (1956) included the 

effects of transverse shear deformation and rotatory inertia in their model of a thin 

shell. Herrmann and Mirsky (1956) made a comparison of several thin shell theories 

with the exact results of elasticity theory. Their analysis determined the range of 

wall thickness to axial wavelength over which the various approximate theories 

are acceptable substitutes for the exact analysis. For the range of frequencies of 

interest in this study, the simplified equations of Donnell (1933) will adequately 
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describe the behavior of free waves in a thin cylindrical shell. 

For this analysis we make use of equations 3.4 and 3.5, with the pressure term 

in 3.5 set equal to zero. Writing these equations in matrix form, we have: 

rvo 

-ikz- z a 

z a 

h + ß2^t ~ 

U 

W 

0 

0 

(3.10) 

In order for free wave propagation to occur, the determinant of equation 3.10 

must equal zero. This is the dispersion equation, also known as the characteristic 

equation. Expanding the determinant of 3.10 and substituting the non-dimensional 

variables fi and Kz defined earlier results in the following form for the dispersion 

equation: 

n4 - n2 [l + Kl + ß2K$] + K2
Z [(l - v2) + ß2K- 0 (3.11) 

We note that equation 3.11 is of fourth order in Q, and sixth order in Kz. The 

only parameters which influence the behavior of equation 3.11 are Poisson's ratio 

v and the bending coefficient ß. In this study we shall use the values v = 0.37 and 

ß = 0.0103, which represent the experimental tube. 

As discussed previously, the Donnell theory is limited in frequency range. Using 

the Herrmann and Mirsky criterion that the minimum axial wavelength is eight 

times the shell thickness, we find that the upper limit on the non-dimensional axial 

wavenumber is JFG < ^, or Kz <  7r/15/?\/l2. 

The roots of 3.11 express the frequency as a function of the wavenumber for 

specified values of Poisson's ratio and ß. 
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Q 
[1 + K2 + ß2K$] ± yj[\ + K2 + ß2K$f - AK2 [(1 - v2) + ß2Kf\ 

^ -     = (3.12) 

The two roots of 3.12 define two branches of the dispersion equation for the 

n = 0 mode of the thin shell. The dispersion curves for the two branches are 

shown in figure 3-1, in which the frequencies are plotted as a function of the 

axial wavenumber. The dimensions of the experimental tube were used for these 

calculations. 

Branch 2 is cut off below the "ring" frequency, where Q = Kz, fr = 25.1 

kHz, and kz = ^ = 40 /meter. For wavenumbers far above the "ring" frequency, 

Branch 2 is not dispersive. 

Branch 1 is non-dispersive for very small wavenumbers. If ß — 0, that is, if 

there is no bending effect, the shell obeys membrane theory. For this situation, 

branch 1 will cut off slightly below the "ring" frequency. With ß finite, the bending 

terms serve to inhibit the cutoff of branch 1. The wavenumber at which the 

dispersion curve of branch 1 bends upward varies inversely with ß, that is, small 

values of ß delay the upturn to larger wavenumbers. 

The phase velocity, defined as cv = 2f^, is shown for the two branches in figure 

3-2. The phase velocity of branch 2 becomes infinite below the "ring" frequency, 

and is equal to the plate wavespeed, cp = 3939 meters/second at high wavenumbers. 

The phase velocity of branch 1 approaches the longitudinal bar velocity, Cb = 

CpVl — v2 = 3659 meters/second for very low wavenumbers (Graff, 1975). As the 

wavenumber increases, the phase velocity of branch 1 decreases to a minimum and 
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then begins to rise again.  The minimum phase velocity for branch 2 is given by 

^yj-mi-n ^V£v3' (Herrmann and Mirsky, 1956), and for the experimental tube, 

c^min = 544 meters/second. Lin and Morgan (1956) developed an approximate 

equation for the frequency of minimum phase velocity. Their result may be put 

into the form /min = fr^2(l-v2), where fr represents the ring frequency. For 

the experimental tube, fm\n = 33 kHz. 

The group velocity is denned as cg = ^p- and is plotted for the two branches 

in figure 3-3. The group velocity for branch 2 increases from zero as the branch 

cuts on at the ring frequency, then levels off at the plate wavespeed Cp at high 

frequencies. The group velocity for branch 1 is equal to the bar velocity cb at low 

wavenumbers and drops rapidly as the "ring" frequency is approached. A minimum 

of 46 meters/second occurs at kz = 121 /meter, corresponding to a frequency of 

about 23.3 kHz. From this minimum, the group phase velocity gradually increases 

with wavenumber and frequency. 

Figure 3-4 presents the ratio of radial to axial displacement for each branch as a 

function of the axial wavenumber. This figure indicates that at low wavenumbers, 

the displacement for branch 2 is primarily radial, and that at high wavenumbers, 

the displacement for branch 1 is primarily radial. 

3.5    Modes in Harmonically Driven Finite Length Tube 

In order to compare the experimental results with those predicted from theory, 

it is essential to accurately know the value of wave speed in the experimental tube. 

This problem is discussed in detail in Chapter 5.  The most precise method was 
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based on measurements of the frequency of longitudinal modes when the tube 

was driven with a continuous sinusoidal excitation. In this section we develop the 

theory used for the wave speed determination. 

Consider, then, a thin cylindrical shell of length L, thickness h, and mean radius 

a, which is freely suspended and driven radially by an axisymmetric "ring" source 

at one end. Since the excitation is axisymmetric, the tangential displacement v 

is uncoupled from the radial displacement w and the axial displacement u. We 

shall use the axial and radial equations for axisymmetric motion, 3.1 and 3.2. For 

frequencies at which the axial wavelength Xz is sufficiently large, that is, Xz > 

30/i, the term involving ß2 may be neglected. This condition is satisfied for the 

experimental tube for frequencies below the ring frequency, about 25 kilohertz. 

The resulting equations are identified as those for a thin membrane, viz: 

Axial: 

ä+zZ-k*-0        (3'i3) 

Radial: 

v du      w       1 d2w     „ .„    ,. 

ä& + 5 + 4~W = ° <3'14) 

The "ring" displacement input at z = 0 provides one boundary condition, viz 

w(0, t) = W0- exp(-iwt) (3.15) 

The second boundary condition is found from the requirement that the axial 

strain, |j, must be zero at the end of the tube, where z = L. 

Since a harmonic input is assumed, equations 3.13 and 3.14 are reduced to 
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ordinary differential equations. The axial displacement is described by 

d2u     v dw      (u 
+-—+      -       M=0 

dz2     a d 
(3.16) 

and the radial displacement (with the bending term deleted) is given by 

2" 
v du 

adz 
+ w 

U! 
= 0 (3.17) 

Re-arranging equation 3.17 and differentiating with respect to z yields 

dw va     a u d\ 

dz      (W - 1) dz2 (3.18) 

where the non-dimensional frequency Q, = ^ has been introduced.  Substitu- 

tion of 3.18 into 3.16 results in 

d2 u 
dz2 + j2u = 0 (3.19) 

where 

7 
ft2 (Vt2 - 1) 

a2 [f22 - (1 - i/2)] 

Now we assume a standing wave solution to equation 3.19, 

u(z) = A cos ^z + B sin 72; 

(3.20) 

(3.21) 

The boundary condition w = W0
-exp(—^) at 2: = 0 determines the coefficient 

B, 

B = 
Wo \n2-i)(n2-(i-v2)) 

and the boundary condition jz = 0 at z = L results in 

A = B cot 7L 
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Using these results, the axial and radial displacements are given by 

Wo 
«M = Z5 K«" ~!) ^" (' ~ ^)) 

cos 7(1/ — z) 

sinjL 
(3.22) 

and 

w » = w0 
sin ^{L — z) 

(3.23) 

Modal resonances will occur for values of 7 for which sm^L = 0, or 7 = 

™, m = 1, 2, 3 — Note that the axial displacement is zero at Q = 1, the ring 

frequency, and also at Q, = y/1 — u2, which for brass (u = .37) is at 0.93 times the 

ring frequency. 

The non-dimensional modal frequencies may be found from the real roots of 

ft4-fi2 
1
 + (—) 

+ (—) (1-"2) = ° 

or 

n = 
\ 

1+(T9I -JI+(T) 
A ( mir a )2(1-^) 

(3.24) 

The expected value of modal frequencies is then calculated for an assumed 

value of extensional wave speed cp for the non-dimensional frequencies in equation 

3.24 using 

c Q 
Jm — 

2ita 
(3.25) 

These are the relationships needed for the wave speed determination described 

in Chapter 5. 
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3.6    Membrane Transition Frequencies 

It is convenient at this point to develop an aspect of membrane theory which 

will be of use in the next topic. Thus we consider a harmonically driven, semi- 

infinite shell which meets the criteria for analysis as a membrane, as discussed 

previously. As before, the shell is radially driven at z = 0 with a harmonic input 

described by equation 3.15. However, for the present analysis, we shall assume a 

travelling wave solution for the axial displacement u of the form: 

u(z,i) = Aexp[-i("fz + ut)] + Bexpli^z - ut)] (3.26) 

Since we have assumed a semi-infinite tube extending in the positive z direc- 

tion, there can be no wave travelling in the negative z direction, and therefore 

A = 0. The radial displacement w is given by 

w(z> *) = 77T2—r?1B
«XPKT* ~ <*>*)] (3-27) 

Substituting 3.15 into 3.27 and evaluating at z = 0 determines B, 

D _ W0(n
a - 1) 

ivaj 

Thus the equations of motion for this case are: 

u{z,t) = Wo(-Q2     1} exp[i(7* - ut)] (3.28) 

and 

w(z,t) = W0exp[i(^z — tut)] 
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Replacing 7 in the denominator of equation 3.28 with the expression in equa- 

tion 3.20 and simplifying results in 

Woy/jW - 1) (ft2 ~ (1 - V2)) 
u(z,t) = * — exp[«(7x; -cot)] (3.29) 

Equation 3.29 implies that the horizontal displacement u will vanish for two 

values of the non-dimensional frequency, ft.   These are ft = 1, which is the well 

known ring frequency, and ft = y/l — v2, which we shall refer to as the "lower tran- 

sition frequency." For free waves propagating in an infinite membrane shell, this 

lower transition frequency corresponds to the cutoff of the flexural branch (iden- 

tified as "Branch 1" earlier). The ring frequency, or upper transition frequency, 

corresponds to the onset of propagation in the longitudinal mode. 

Now consider the wave number 7 for the present case. From equation 3.20, 

ft 
7=       n a 

ft2 - 1 
N HT3(T^j (3-30) 

If there were no Poisson coupling, that is, v = 0, then 7 = ft/a = UJ/CP, which is 

identified as an ordinary wave number for a non-dispersive wave. For values of ft < 

Vl — v2 and for ft > 1, the expression under the radical in equation 3.30 is positive, 

and 7 is real. For y/l — v2 < ft < 1, the expression is negative, and 7 is imaginary. 

Thus, 7 "jumps" from a real number to an imaginary number at the lower transition 

frequency, and back to a real number at the upper transition (or "ring") frequency. 

For the brass tube used in this study, the lower transition frequency is 23.338 

kilohertz, and the upper transition frequency is 25.121 kilohertz. Also note that 7 

has a pole at ft = y/l — v2, and a zero at ft = 1. 
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3.7     Transient Response of Thin Shell 

3.7.1    Previous Work on Transient Response 

In 1948, R. M. Davies published an 82 page paper titled "A Critical Study of 

the Hopkinson Pressure Bar." (The Hopkinson pressure bar is an apparataus 

which was used to study the propagation of stress pulses; a concise description is 

given by Kolsky (1963)). Davies used the exact equations of motion of a circular 

elastic cylinder developed by Pochhammer (1876) and Chree (1889), as presented 

by Love (1944) to compute the dispersion curves (phase and group velocity versus 

wavenumber) for the first three modes of vibration of an infinite length bar. He 

used the method of stationary phase to predict the displacements and stresss in 

a free bar excited by an impulse applied one end. The group velocity curves of 

the first two modes exhibit a "valley" which is also a characteristic of the fiexural 

mode of an axysymmetric thin shell. 

Using a very ingenious physical argument, Skalak (1957) constructed an in- 

tegral solution for the propagation of the pulse resulting from the longitudinal 

impact of two semi-infinite rods. The integral was evaluated via the asymptotic 

saddle-point method for large values of time. The resulting pulse is described 

by Airy integrals and is characterized by a smooth rise from zero to a maximum 

value, followed by a decaying oscillation about the level which is predicted from 

the elementary (non-dispersive) theory using the one dimensional wave equation. 

Berkowitz (1963) analyzed the response of a semi-infinite cylindrical shell mov- 

ing at constant velocity which impacts a rigid surface.   The impact provides an 
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axisymmetric step function velocity input in the longitudinal direction. He for- 

mulated the problem in terms of the Laplace transformed (in time) axysimmetric 

membrane equations for the radial and longitudinal displacements, and the axial 

and circumferential stresses. 

The resulting inversion integrals cannot be evaluated in closed form, so the 

method of stationary phase was used to obtain approximate asymptotic solutions 

for large values of non-dimensional time. The solution is characterized by an 

initial disturbance which propagates at the plate wavespeed, cp, followed by a 

steep wavefront travelling at the bar velocity, c0. This is followed by a damped 

oscillation which is described by the Airy integral. 

An excellent discussion of these and other investigators of transient phenomena 

is presented by Graff (1975). 

3.7.2    Synopsis of Approach 

The objective of the present study is to compute the predicted response of the 

experimental cylindrical shell to an axisymmetric radial impulse input applied at 

the origin of the axial coordinate, z = 0. A detailed description of the experiment 

is presented in Chapter 5. 

The axisymmetric equations of motion for the radial and axial displacements 

(Equations 3.1 and 3.3) are Fourier transformed in time and Laplace transformed 

in the axial coordinate z. The resulting transformed equations are algebraic in the 

transform variables kp and s where kp = u/cv is a frequency dependent wavenum- 

ber, and 5 is a complex spatial wavenumber, s = a + ikz, where kz is the real 
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valued axial wavenumber. An axisymmetric radial delta function input is applied 

to the system at the origin, z — 0. The inverse Laplace transform of the result is 

then computed by contour integration, which yields two equations in (kp, z) space. 

These equations are essentially transfer functions which describe the radial and 

longitudinal displacements at axial location z as a function of frequency u, that is, 

u(u, z) and w(u,z). When these functions are multiplied by the Fourier transform 

of an input at z = 0, and the inverse Fourier transform is applied to the product, 

the result is the response as a function of time at the axial position specified; that 

is, u(t,z0) and w (t,z0) where z0 is a particular observation point. 

3.7.3    Transformed Equations of Motion 

A double transform comprising a Fourier transform on the time variable, and a 

Laplace transform on the axial variable z defined as: 

^ /"OO TOO 

f{kp,a)= /    e**    ■  f(t,z)e-szdzdt 

is applied to the axysimmetric equations of radial and longitudinal motion, 3.1 

and 3.3 . The resulting transformed equations of motion are: 

Axial: 

U(s2 + k2
p)+w(s-) = 0 (3.31) 

Radial: 

,2 fi(a-) + w{-, + sAß2a2 - kl) = P(u, s) (3.32) 
a a* 
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where P(u, s) is the transform of the input, 

Ä /-CO POO 

P{u;,s)=: /    eiuJt /    P(t,z)e~szdz 
Joe J0 

dt 

The mechanical input for the experiment is provided by a piezoelectric disk which 

is bonded to the end of the brass tube. For transient measurements, a short 

rectangular pulse of voltage is applied to the disk. This results in a radial expansion 

of the disk, which in turn applies an axisymmetric radial displacement to the tube. 

We may approximate this input as P06(t)6(z), that is, a delta function of time 

and axial position, in which P0 has the dimensions of inverse length. Applying the 

double transform above to this input yields: 

Substitution of this input into equation 3.32 and solving for u and w results in 

u(kp, s) = 
svPp 

aD 
(3.33) 

and 

w (kpj s) 
(S2 + *j) Po 

D 
(3.34) 

In equations 3.33 and 3.34, D represents the dispersion equation, which is a 

polynomial of sixth order in s and fourth order in kp, as indicated below: 

D = se(ßa)2 + s\ßakpf + s2 (l-^2)        ,2 -ki 
az + k: PV 

ki (3.35) 
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3.7.4    Response in Spatial and Frequency Domain 

To obtain the radial and longitudinal displacements as functions of axial position 

z and frequency (or wavenumber, kp), we apply the complex inversion integral 

(Spiegel, 1971) to equations 3.33 and 3.34, 

1 /*c+ioo 
9{z) = — eszG(s)ds,        z>0 

AlXl Jc-ico 

This is accomplished by contour integration, using the Cauchy residue theorem 

(Hildebrand, 1962), that is, 

/ eszG(s) ds = 2-Ki V R{ak) (3.36) 

where R(ak) is the kth. residue. The residues are evaluated at the singularities 

of G(». 

We note that u(kp,s) and w(kp,s) share the same singularities, namely, the 

roots of equation 3.35. 

Location of Roots 

Consider the expression for D, equation 3.35. Although D is of sixth order in s, 

it is a cubic in s2. Now let q = s2; so that D may be written as 

D = q\ßaf + q2(ßakp)2 + q (1 ~ V2)        k2 + *jd-*J) (3-37) 

Equation 3.37 will have three roots. The roots will either be all real, or one real 

and one complex conjugate pair, depending on the discriminant of 3.37. (Spiegel, 

1968) Denoting the roots of 3.37 as Qn, n = 1, 2, 3, the six roots of equation 

3.35 are given by: 

Sj = ±jQ~n,       j = l,..-6 (3.38) 
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The values of S may be real, imaginary, or complex, depending on the values 

of Q. All of these roots will be functions of frequency due to the variable kp = ujcp 

in equations 3.35 and 3.37. Although exact literal expressions for the values of the 

roots S may be written, the results are so cumbersome algebraically that little 

insight into the behavior of the roots as a function of frequency is achieved. Thus 

in this study we pursue a numerical evaluation using the following values of the 

parameters appropriate for the experimental tube: 

Mean radius, meters: a — .0249555 

Thickness, meters: h = .000889 

Poisson's ratio: v = 0.37 

Plate wave speed, meters/second: cp = 3939 

The value of cp was determined experimentally, as discussed in Chapter 5. The 

frequency range of interest in this study is from 0 to 100 kilohertz, about four times 

the "ring" frequency, fT = cp/27ra, which is 25.12 kHz for the experimental tube. 

Variation of roots Qn with Frequency: 

We consider the nature of the roots Qn of equation 3.37 in three frequency 

regimes: (1) far below the lower transition frequency; (2) far above the upper 

transition frequency; and (3) in the range between the transition frequencies. The 

real and imaginary components of the three roots are shown in figure 3-5 for the 

frequency range from 10 kilohertz to 40 kilohertz. 
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(1) Below lower transition frequency: Below the lower transition frequency, 

roots Qi and Qi are a complex conjugate pair. Root Q% is negative and real. 

(2) Above the upper transition frequency: Far above the "ring" frequency, 

Q\ and Q3 are negative and real, and Qi is positive and real. 

(3) Between the transition frequencies: In this range, the behavior of the 

roots becomes very complicated. Figure 3-6 presents the frequency dependence 

of the roots in the region between the transition frequencies. Root Qi, which 

is complex with a positive imaginary component at low frequencies, experiences 

an increase in the real component slightly below the first transition frequency. 

The imaginary component, which has been decreasing with increasing frequency, 

suddenly drops to zero at the lower transition frequency. The real part of Qi 

jumps from a positive to a negative value, and continues to become more negative 

at higher frequencies.Root Qi is complex with a negative imaginary component 

at low frequencies. The imaginary component jumps to a positive value at the 

lower transition frequency, then decreases to zero. The positive component of Qi 

continually increases with frequency. 

Root Qz is negative and real at low frequencies, becoming more negative as 

the lower transition frequency is approached, at which point it becomes complex 

for a small range of frequencies. The real component jumps to a positive value 

at the lower transition frequency and remains positive up to the upper transition 

frequency. We shall find shortly that the bending term ß has an important effect 
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on these roots in the transition region. 

Figure 3-7 shows the behavior of the magnitude of all three roots in the region 

between the transition frequencies. Below the lower transition frequency, roots 

Qi and Q2 are equal in magnitude and are decreasing. Root Q3 (dashed line) is 

increasing. All three roots meet at the lower transition frequency, 23.338 kHz. At 

this frequency, root Qx becomes real and negative, increasing in magnitude with 

frequency. Roots Q2 and Q3 now form a complex conjugate pair until a second 

branch point is reached at 23.606 kHz. At the second branch point, Q2 becomes real 

and positive, increasing in magnitude with frequency. Root Qz becomes real and 

positive, decreasing rapidly with frequency until the "ring3', or upper transition, 

frequency, where it vanishes. Above the "ring" frequency, Q3 is real and negative, 

increasing in magnitude with frequency. The branch points just described are illus- 

trated in figure 3-8. where the path of the Q roots is plotted in the neighborhood 

of the lower transition frequency. 

Roots of Dispersion Equation 

The six roots of equation 3.37 in the complex wavenumber (s) plane are found 

from the values of Qn. as indicated in equation 3.38. Negative real values of the 

roots Qn give rise to imaginary values of Sj. The six roots in s occur in conjugate 

pairs, from taking both the positive and negative values of y/Q^. The relationship 

between the Q roots and the S roots is shown qualitatively in figure 3-9. Here 

the relative positions of the roots are shown in the complex Q and S planes. The 

arrows indicate the path followed by the roots as the frequency is increased.   In 
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figures 3-9 (a & b) the paths of the roots are shown for frequencies below the lower 

transition frequency. Figures 3-9 (c & d) present the relationships for frequencies 

above the upper transition frequency. 

Variation of Roots Sn With Frequency: For brevity, we shall focus on a de- 

scription of the behavior of the S roots which arise from the positive square root 

of the Q roots. A similar argument is easily constructed for the image roots. 

Below the lower transition frequency, roots Si and £2 are a complex conju- 

gate pair with positive real part. The magnitude of these roots decreases as the 

frequency increases. Root S3 derives from root Q3, which is negative and real in 

this frequency regime. Therefore, 63 is positive and imaginary below the lower 

transition frequency. Root S3 increases with frequency. 

Above the upper transition frequency, roots Si and S3 are both positive and 

imaginary. These roots increase with frequency. Root S2 is positive, real, and also 

increases with frequency. 

In the region between the lower and upper transition frequencies, the mag- 

nitudes of the S roots vary in a fashion similar to the behavior of the Q roots 

described above. This is shown in figure 3-10. The changes in the root S3 are of 

special interest and will be analyzed further. 

Figure 3-11 (a) is a plot of the real and imaginary components of S3 in the 

transition zone. Note that this root acquires a real component in this frequency 

range. This is the only part of the entire spectrum for which root S3 has a real 

part.   The imaginary part of £3 is positive below the lower transition frequency 
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(identified by the symbol "fl" on figure 3-11 (a)), where it "jumps" to a negative 

value. It remains negative until the second branch point (symbol "f2") at 23.606 

kHz, where it vanishes. The imaginary component continues to be zero until 

the "ring" frequency (symbol "£3"). At this frequency, the real component of S3 

vanishes, and the imaginary component returns, becoming positive and increasing 

with frequency. 

The rather unusual behavior of the S roots in the transition zone is related to 

the bending term ß in the governing equation for the radial diplacement, equation 

3.3. This will be demonstrated by plotting the components of £3 in the transition 

zone for several values of ß. 

Figures 3-11 (b), 3-11 (c), and 3-11 (d) present the components of root S3 for 

values of ß — .1, .001, and .0001, respectively. We see that as ß decreases, the 

second branch frequency moves towards the lower transition frequency. In addition, 

the magnitude of S3 increases substantially at the lower transition frequency. In 

the limit as ß —> 0,the real part of S3 and the second branch frequency both vanish. 

This limit represents the transition to shell membrane theory, for which there will 

only be two roots. 

Specification of Contour 

In order to apply the Cauchy residue method indicated in equation 3.36, the 

contour of integration must be specified. Since we are interested in wave propaga- 

tion in the positive z direction, we choose a Bromwich contour which includes the 

imaginary axis, and a semi-circle of infinite radius in the left half of the complex 
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s plane. This contour is shown in figure 3-12 for the pole locations in the low fre- 

quency regime (3-12 (a)) and for the high frequencies (3-12 (b)). We include the 

poles which derive from the negative roots of Qn, that is, S&, S5, and S6. Note that 

the poles which are excluded represent waves travelling in the negative z direction. 

Evaluation of Residues 

We now express equations 3.33 and 3.34 in terms of the poles which are to be 

included, viz. 

u(kp, s) = -—"7 pTYT EM (3.39) 
a (s - SA) (s - S5) (s - S6) 

and 

(s2 _j_ fc2\ pQ 

™&' s) = 7 cw cw,     <n (3-4°) (s - 54) {s - S5) (s - b6) 

Each of equations 3.39 and 3.40 will have three residues, which we shall desig- 

nate as UR1, UR2, URZ and WRl,WR2, WR3, respectively. Now if the function 

G(s) in equation 3.36 has a simple pole at s = ak, for instance, the fcth residue is 

found as: 

R(k) = lim [(s - ak) G(s) esz] (3.41) 

Applying equation 3.41 to 3.39 and 3.40, we have: 

um = (*
vPfvT' <n (3-42) 

UR2 =    <<:VPfuT  <n (3"43) 
a(55 - 64) (65- b6) 



82 

Um ~ a(S6-S,)(S6-S5) 
(3-44) 

and 

Po (SI + k>) es*z 

Po (Si + kl)es->z 

wm = (*-&)(&-*) (3'47) 

Equations 3.42 to 3.47 are essentially transfer functions which describe the 

frequency dependence of the three components of longitudinal displacement u and 

the three components of radial displacement w as functions of the axial position, 

z. The net displacements are obtained by summing the components, viz. 

w(kp, z) = WR1 + Wm + WRi (3.48) 

u(kp, z) = UR1 + UR2 + UR3 (3.49) 

3.8    Discussion of w(f, z) and u(f, z) Transfer Functions 

We now consider the transfer functions for the radial and longitudinal displace- 

ments in the spatial (z) and frequency (/ = cpkp/27r) domains. Figures 3-13 to 

3-16 present three dimensional surface plots of the magnitude (absolute value) of 
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the displacement functions w(f,z) and u(f,z) for frequencies ranging from 0 to 

50 kilohertz, and two ranges of axial distance, 0 to 5 cm, and 1 to 50 cm. Plots 

with a logarithmic scale for the functions are also included. The logarithmic plots 

enhance low amplitude characteristics which are not obvious on a linear scale. A 

small offset (.001) is added to the magnitude of the functions to provide a "floor" 

for the logarithmic plots. 

The far-field topography of w(f,z) is emphasized in figure 3-13 (a), which 

exhibits a plateau above the "ring" frequency, a steep cliff in the transition region, 

and a rather flat plain below the lower transition frequency. There is a ripple near 

the edge of the plateau which indicates a variation in the magnitude of the spectral 

components with axial distance. The logarithmic plot of this function (figure 3-13 

(b)) shows a smooth rise from the plain to the plateau. The ripples at the edge of 

the plateau are suppressed in this presentation. The "wall" at z = 0 cm is due to 

the near field. 

The predominant feature in the far field of the longitudinal displacement 

u(f, z), figure 3-14 (a), is a jagged ridge which is parallel to the z (distance) axis. 

This ridge is located in the transition region in frequency space.. The function 

falls off smoothly at lower frequencies. The logarithmic plot, figure 3-14 (b), shows 

a number of smaller ridges which radiate away from the primary ridge above the 

transition region. These minor ridges follow a curved trajectory in (/, z) space. 

Figures 3-15 and 3-16 focus on the near field. The "wall" parallel to the 

frequency axis at z = 0 in figure 3-15 (a) reflects the fact that the temporal input 
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to the model is a delta function in the time domain, which has a uniform spectral 

density in the frequency domain. The presence of evanescent near field frequency 

components is evident near the origin of figure 3-15 (a). The near field stucture of 

w(f,z) is more visible in the logarithmic plot, figure 3-15 (b). 

The near field of u(f,z) is shown in figures 3-16 (a) and 3-16 (b). The am- 

plitude of u (/, z) is zero for all frequencies at u = 0, since the axial strain, |^ is 

zero at this location. The formation of the ridge in the transition zone as the axial 

distance increases is clearly shown in this figure. The minor ridges which radiate 

in (f,z) space are visible in the logarithmic plot, figure 3-16 (b). 

The detailed structure of w(f,z) and u(f,z) is studied by taking "slices" of 

these functions at selected valaues of / and z. Figure 3-17 (a) is a plot of the 

magnitude of w (/, z) as a function of frequency at four axial positions in the near 

field. At z = .01 cm, the spectrum is nearly flat. This is the upper edge of the 

"wall" seen in figure 3-15 (a). As the distance increases, the lower frequencies 

diminish, whereas the high frequencies persist. The transition zone "ridge" is 

evident in this figure, at z — .11 and z = .21 cm. Figure 3-17 (b) shows the 

frequency spectrum at z = .91, .41, and 2.01 cm, indicating the formation of the 

"plain" and "plateau" regions as the far field is approached. In figure 3-17 (c), the 

frequency spectrum is plotted for .2, .4, .6, and 50 cm. The far field structure is 

indicated by the spectrum at z = 50 cm. 

The development of the topography of u(f,z) is illustrated in figure 3-18. 

Figures 3-18 (a) and 3-18 (b) show the growth of the ridge in the transition zone 
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of u(f, z). The spectrum at z = 50 cm in figure 3-18 (c) indicates the formation 

of the minor ridges in frequency space. 

The magnitudes of w(f, z) and u(f, z) as a function of axial distance is plotted 

in figures 3-19 to 3-22 for several frequencies of interest. The near field plots, 

figures 3-19 and 3-20 show the decay of the low frequency components at 10 and 

22 kilohertz as the far field is approached. 

Figures 3-21 and 3-22 emphasize the far field characteristics of w(f,z) and 

u(f,z) at 10, 22, 23.6, 25.1, and 50 kilohertz. The 10 kilohertz component attenu- 

ates rapidly with distance, whereas components at the lower and upper transition 

frequencies do not reach steady state until about 6 centimeters, or about 2.5 times 

the mean radius of the tube. These figures also demonstrate the stable spatial 

periodicity of the high frequency spectral components. 

3.9    Transformation to the Time Domain 

The next step in the analysis is to obtain the transient response of the tube 

as a function of distance by application of the inverse Fourier transform to the 

transfer functions, w(f,z) and u(f,z). Formally this is defined by: 

oo 

g{t,z) = 2* J g{f,z)ea«tdf (3.50) 
— oo 

We will perform the inversion numerically on the transfer functions by means 

of the Inverse Fast Fourier Transform (IFFT), which is a widely implemented 

version of the discrete Fourier transform (DFT). The theory and application of 

numerical versions of the Fourier transform has been extensively studied by many 
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authors, including, for instance, Bracewell (1965), Papoulis (1977), Burdic (1984), 

Oppenheim and Schäfer (1989), Jackson (1986, 1991), and Strum and Kirk (1995). 

Certain restrictions apply when using numerical tools such as the Fast Fourier 

Transform for the evaluation of integrals such as equation 3.50. First of all, the 

DFT uses a discrete infinite sum as an approximation to the continuous function 

implied in 3.50. Thus the differential df in the integral formulation is replaced 

by an increment A/ in the discrete version. This limits the resolution which may 

be attained with the discrete approximation. Nyquist (1928) proved that if a 

continuous time function g(t) is sampled at a frequency /s, then the upper limit in 

frequency space for spectral components of the Fourier transform of g(t) is at best 

equal to fs/2 , that is, one half of the sampling frequency. This is known as the 

Nyquist frequency, fN. In most practical applications, the bandwidth is restricted 

to slightly below the Nyquist frequency. The infinite DFT may be viewed as a 

Fourier series representation of a frequency function defined over a finite interval. 

This series will also represent the same function replicated at integral multiples 

of the sampling frequency. If the original time function is not band limited in 

frequency, artificial frequency conponents will appear in the DFT spectrum. This 

phenomenon is known as aliasing. 

A second constraint results as a consequence of replacing the infinite sum of 

the DFT with a finite sum of N terms as is the case with the FFT. The spectrum 

obtained with the finite FFT represents a function which is replicated in the time 

domain. Thus the period T of a time function obtained with the IFFT is limited 
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to T < l/Af. The temporal resolution of the time function is At = T/N, and 

therefore A/ At < 1/N. 

An additional constraint applies to the present analysis due to the limita- 

tions of the Donnell shell theory as described in the analysis of the thin shell in 

wavenumber-frequency space, that is, the transfer functions w(f,z) and u(f,z) 

must be band-limited in frequency to the region for which the thin shell theory is 

a valid model. 

We recall that the analysis which resulted in the transfer functions for w and 

u was predicated on a temporal input which is a delta function of time. A delta 

function in time transforms to an infinite spectrum in frequency space. Before 

applying the inverse transform to the transfer functions, we shall band limit the 

spectrum by multiplying each transfer function by an appropriate weighting func- 

tion H (/) chosen so as to assure that the desired constraints are realized. Thus 

the inversion integral 3.50 will take the form 

oo 

g(t,z) = 27T J g(f,z)H(f) ^ftdf (3.51) 
—oo 

where g(f,z) represents the transfer functions, and H(f) is a weighting func- 

tion to be determined. 

3.9.1    Development of Weighting Function 

The characteristics required of the weighting function H(f) are: 

(1) A uniform ("flat") spectral density from zero to some upper band limit, Fc 

(2) A rapid and smooth transition to zero spectral density for frequencies above 
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The first requirement stems from the need to simulate the spectrum of a delta 

function within the frequency range of interest.  A function which meets this re- 

quirement is the rectangular, or "boxcar" function, which is defined as: 

Hi(f) = 
1   for 0 < / < Fc 

(3.52) 

0   for/>Fc 

Unfortunately the Fourier transform of Hi(f) does not meet the second re- 

quirement. The abrupt discontinuity at the corner frequency, / = Fc, will produce 

the so-called "Gibbs' Phenomenon" (Strum and Kirk, 1995), which consists of 

overshoot and ripples in the transform (time) domain. 

One function which does meet the second criterion is the Gaussian waveform 

(Burdic, 1984, Bracewell, 1965). The Gaussian function may be expressed as 

tf2(/)=exp-V f 
(3.53) 

Equation 3.53 describes a Gaussian frequency distribution centered at Fc The 

parameter a controls the rate at which this function falls off on either side of the 

cutoff frequency Fc. 

The desired weighting function is synthesized from a combination of 3.52 and 

3.53: 

I  Hx{f)   forO</<Fc 
H(f) = (3.54) 

( H2(f)   for f>Fc 

3.9.2    Weighted Transfer Functions 

Examples of the weighted transfer functions are shown in figures 3-23 and 3-24 

for axial position z = 6 cm.   The weighting function H(f) (multiplied by \ for 
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greater visibility) is also included in the plot of w(f) in figure 3-23. The weighted 

transfer function is labeled H(f) * w(f) in this figure. We note that the weighted 

transfer functions make a gracefully smooth transition to zero in frequency space. 

Thus we have satisfied the requirement discussed earlier that the spectrum of the 

transfer functions must be band-limited before inversion to the time domain using 

the IFFT. Also note that the amplitude of u(f) is much lower than the amplitude 

of w(f) at this axial position. 

3.9.3    Time Domain Response 

Application of the IFFT to the weighted transfer functions shown in figures 3-23 

and 3-24 yields the radial and axial displacements as functions of time at the 

selected location, z = 6 cm. This result is shown in figures 3-25 and 3-26. The 

effects of dispersion on the propagation of waves in the tube is clearly evident 

in these plots. The high frequency components of the transient disturbance arrive 

first. These are followed by a long decaying "tail" in which the frequency gradually 

decreases. The frequency components in this "tail" are in the transition zone 

discussed earlier. The amplitude of the radial displacement w (t) is about 50 times 

that of the axial displacement u(t). 

The resolution in the time domain is determined by the number of points N and 

the frequency increment A/, as mentioned above. The frequency increment must 

be large enough so that period T of the IFFT includes the transient of interest. 

With these parameters established, the minimum number of points Nmia depends 

on the desired value of time resolution, At, thus Nmin — l/(Af At) = T/At. 
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3.10    Joint Time-Frequency Distributions 

The fundamental premise which supports the theory of Fourier transforms is 

that the process which generates the function in the time domain is stationary, 

that is, the statistical properties of the process are invariant in time. The Fourier 

integral itself is evaluated formally over an infinite time interval. In analyzing real 

physical data, of course, the sample space is of necessity finite. Real signals are 

limited both in bandwidth and in time. However, for many problems of interest, 

the spectral content of the process is sufficiently stable over the time span of 

the measurement that the conditions for the existence and validity of the Fourier 

transform are satisfied. 

However, there are many processes for which the spectral content varies sig- 

nificantly during the time sample of interest. Common examples include human 

speech, bird calls and other biological sounds, music, gravity waves in large bod- 

ies of water, and transients in dispersive systems, as is the case in the present 

study. A useful construction in understanding such phenomena is the concept of 

a joint time-frequency distribution, in which the energy or intensity of a signal is 

represented simultaneously in time and in frequency. 

The topic of joint time-frequency distributions has received intense investiga- 

tion by the signal processing community in recent years. An excellent review of the 

subject has been published by Cohen (1989). A study of joint time-frequency distri- 

butions usually begins with a discussion of the Wigner-Ville Distribution Function 

(WVDF). Wigner (1932) devised a distribution function to facilitate his study of 
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quantum statistical mechanics. Ville (1948) applied the same type of distribution 

function to signal analysis. 

Janse and Kaizer (1983) give the following formulation for generalized time- 

frequency distributions: 

oo 

Cffru;,*) = ^ jjj e^-^-^^r)f{u+T-)r{n-T-)dudrdi       (3.55) 
— oo 

in equation 3.55, /(it) is the time signal, f*(u) is the complex conjugate of the 

time signal, and <&(£, r) is a kernel function which determines the nature of the 

distribution function. The WVDF is obtained by setting $(£,r) = 1 in equa- 

tion 3.55. Claasen and Mecklenbrauker (1980) established that all time-frequency 

distribution functions may be obtained by convolution of the Wigner distribution 

with some window function. 

In the present study, the short term Fourier transform, or spectogram, will 

be used for analysis of the transient response of the tube in time-frequency space. 

The spectogram is a well known tool used in acoustical studies of speech, music, 

and biological events. Authors differ in their definition of the spectogram. Cohen 

(1989), Claasen and Mecklenbrauker (1980), and Janse and Kaizer (1983) define 

the spectogram as the square of the magnitude of the short term Fourier transform 

(SFT). This definition emphasizes the power spectral density of the signal. Oppen- 

heim and Schäfer (1989) and Rabiner and Schäfer (1978) define the spectogram as 

the magnitude of the SFT. We shall use the latter definition in the present study. 

The short-time Fourier transform is given by (Claasen and Mecklenbraucker, 
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1980): 

/oo 

e-™T f(r) h(r - t) dr (3.56) 
■oo 

in which h(r — t) is a window function centered at time £, and f(r) is the 

signal. Then the spectogram is Sf(t,u) = \Ft(ui)\. In this study we shall employ 

an algorithm for the spectogram which is implemented in the MATLAB (1994) 

system for numerical analysis. The spectogram is developed by sliding a window 

along the time axis. At each discrete position of the window, the SFT is com- 

puted. The result is a matrix in which each column represents the spectrum at a 

particular instant of time. The rows in the matrix contain the complex values of 

the spectogram at specific frequencies. 

The Uncertainty Problem There is an inherent fundamental limitation in the ap- 

plication of time-frequency distributions, namely, the duration of a signal and 

its bandwidth are reciprocally related. This is often referred to the "uncertainty 

principle," in analogy to the famous Heisenberg uncertainty priciple in quantum 

mechanics. As generally expressed, the uncertainty principle states that the dura- 

tion of a signal and the spectral bandwidth of its Fourier transform are bounded 

by 

(AT)(AF) > -L (3.57) 

where AT is the length of the signal in seconds, and AF is the spectral band- 

width in hertz. 

Proof of this may be found in Papoulis (1977), Claasen and Mecklenbrauker 

(1984) and Elmore and Heald (1985). Cohen (1989) offers the following quotation 
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from Skolnik (1980): "The use of the word 'uncertainty' is a misnomer, for there 

is nothing uncertain about the 'uncertainty relation.'. . . It states the well-known 

mathematical fact that a narrow waveform yields a wide spectrum and a wide 

waveform yields a narrow spectrum and both the time waveform and the frequency 

spectrum cannot be made arbitrarily small simultaneously." Applications of joint 

time-frequency distributions are described by Yen (1987), Janse and Kaizer (1983), 

Rossano, Shin, and Hamilton (1990), and Rao, Taylor, and Harrison (1990). 

The uncertainty relation enters into the computation of the time domain re- 

sponse in terms of the cutoff frequency of the weighting function, H(f). If the ef- 

fective bandwidth of the weighting function is Fc, then the minimum signal length 

in the time domain is given by AT = l/(47rFc). 

Spectogram Parameters: We now consider some of the factors which enter into the 

computation of the spectogram of discrete, finite time series. In the experimental 

study of time-dependent phenomena, measurements may be made as a continuous 

function of time with an analog device, such as a conventional tape recorder, or 

as a discrete function of time using a digital device such as an analog to digital 

(A/D) converter. In the first case, the temporal resolution is determined by the 

bandwidth of the measurement device. In the digital case, the limitations are set 

by the sampling frequency Fs (Hertz) and the maximum number of data points 

which may be recorded with the instrument, N. The bandwidth in the discrete case 

must be limited by anti-aliasing filters to a value less than the Nyquist frequency, 

Fs/2. 
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The sampling interval At is the reciprocal of the sampling frequency, At = 

1/FS, and the record length, or maximum signal duration, is Tmax = JV • At. (But 

note that for a signal that is bounded in time, such as a transient, the effective 

signal duration may be artificially extended by adding zeros to the time series, 

a technique known as "zero padding"). The uncertainty relation states that the 

minimum bandwidth of the Fourier transform is 

1 F 
AF> 

A-KN At     A-KN 

There is an inherent trade-off between the frequency and time resolution in a 

spectogram. The frequency resolution A/ of the spectrum of the entire time series 

of iV points is given by A/ = ^^ = jf. However, in the algorithm employed for 

the computation of the spectograms, the original time series of N data points is 

divided into sections of length Nfft, and then each section is multiplied by a window 

function. (The Hanning window is used in this study.) The frequency resolution of 

the spectogram is determined by the length of the original sampling interval and 

the length of the section, thus A/sp = l/NfftAt. Thus the frequency resolution 

is reduced in the spectogram in the ratio N/Nfft. Put another way, spectral lines 

which were narrow in the spectrum of the whole time series will be broadened 

or smeared in the spectogram. On the other hand, the time domain resolution is 

approximately determined by the same ratio, N/Nfft which determines the number 

of points in time at which the FFT is computed. This problem is endemic to all 

joint time-frequency distributions (Classen and Mecklenbrauker, 1980,1984). Thus 

a judicious compromise must be made in selecting Nfft for the spectogram. 
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Another factor which influences the appearance of spectograms is known as 

"overlap." It is customary to include a certain amount of overlap between con- 

tiguous sections of the subdivided time series. If the number of overlap samples 

is N0i, then the number of discrete time points in the spectogram is given by the 

integer part of (JV — N0i)/(Nfft — N0i). Generally the overlap is set to Nfft/2, so 

that half of the samples of the J th section are included in the (J + 1) th section. 

For this case the number of time points is the integer part of IN 
"/ft 

Spectograms of the waveforms displayed in figures 3-25 and 3-26 are presented 

as contour plots in figures 3-27 and 3-28 respectively. In this representation, the 

absolute value of the FFT results in the spectogram matrix are normalized to 

the global maximum. Contour lines connect points of equal magnitude. The 

spectograms are shaped somewhat like a boomerang, with a steep ridge parallel to 

the frequency axis occurrring early in time. The long tail parallel to the time axis 

represents the low frequency components. The spectogram results agree with the 

description of these waveforms earlier in the section "Time Domain Response." 

The longer tail in the spectogram of the axial component reflects the increased 

ralative amplitude of the low frequencies evident in figure 3-26. 

Figures 3-29 and 3-30 are three dimensional contour plots of the spectograms. 

In the three dimensional plots, contour planes of equal amplitude are drawn parallel 

to the time-frequency plane. The dispersive nature of the wave propagation is 

clearly evident in the contour plots. 
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CHAPTER 4 

Composite Systems 

4.1    Introduction 

The models developed in Chapters 2 and 3 are brought together here to for- 

mulate the description of various composite systems of interest. This will include 

models comprised of all fluid components, and systems in which elastic media are 

incorporated. The transfer matrix approach described in Chapter 1 will be used 

for this study. 

4.2    Fluid Systems 

4.2.1 Parameters for Two Fluid Systems:The behavior of a system which includes 

two different fluids will depend on the density and sound speed in the fluids as well 

as the frequency and wavenumber of the excitation. Analysis of such systems is 

simplified by defining several non-dimensional ratios of various physical param- 

eters. For a two fluid system, the subscript 1 will denote the inner fluid, and 

subscript 2 will represent the outer fluid. We now define the following ratios: 

Ratio of sound speeds: 

Ratio of densities: 

R   -P2 
tip — — 

P\ 
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Ratio of specific acoustic impedances: 

Rz = — RcRp 

Table 4-1, Parameter Matrix for Two-Fluid Problems 

Sound Speed C\ < c2 Cl =c2 Ci > c2 

Wavenumber h > k2 fci = k2 Cl > c2 

Density 

Pl<p2              RZ,RP,RC>1 Rz,Rp>l,Rc = l Rz=?,RP>l,Rc<l 

Pl=P2 RZ>1,RP = 1,RC>1 Rz,Rp,Rc = l Rz<l,Rp = l,Rc<l 

Pl>P2 Rz=?,Rp<l,Rc>l Rz,RP<l,Rc = l Rz>l,RP,Rc<l 

Table 4-1, "Parameter Matrix for Two-Fluid Problems", indicates that there 

are nine combinations of fluid density and sound speed which must be considered 

in two fluid problems. The relative magnitudes of the three ratios defined above 

are also indicated in Table 4-1. 

There will be two acoustic wavenumbers, fci = u/ci, and k2 = u/c2, and two 

radial wavenumbers, k2
rl = k\- k2

z, and k2
2 = k\- k\. When the frequency and 

axial wavenumber are both independent, we may define a variable cz = u)/kz which 

represents the speed at which a wave propagates in the z direction. (This is some- 

times called the "trace velocity"). We now define the ratio of radial wavenumbers 
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as: 

Rkr~T 

For propagation to occur in both fluids, kr2 and kr\ must be real. This will be 

true if both C\ and c2 are less than cz. For a system driven at the inner boundary 

of fluid 1, if cj < cz and c2 > cz, propagation will occur in fluid 1, but not in fluid 

2. If C\ > cz, propagation will not occur in either fluid. 

4.2.2 Fluid Tube in External FluidiThe first case consists of a fluid tube driven 

at its inner surface and imbedded in an external fluid. The external medium has 

a real component of radiation impedance, enabling the radiation of energy. 

Consider, then, a fluid tube of inner radius a\ and outer radius a2, with fluid 

density pi, sound speed C\, and wavenumber k\ = —. The fluid tube is in intimate 

contact with the external fluid of density p2 and sound speed c2 at the boundary, 

r = a,2- The wavenumber in the external fluid is fc2 
= T~- The input to the system 

is a traveling wave of pressure or velocity of the form P0expi(kzz — cot), where 

P0 is an amplitude coefficient, kz is an arbitrary axial wavenumber, and u> is the 

angular frequency. 

This model could represent, for example, a cylindrical transducer or towed 

array in which a ceramic cylinder or array of cylinders is enclosed in a soft elastomer 

(with a negligible shear modulus), immersed in sea water. 

The boundary conditions which must be satisfied at the interface r = a2 are: 

(1) continuity of the state variables of pressure and radial velocity, and (2) waves 

in the fluid tube and in the external fluid must have the same axial wavenumber 
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kz if propagation is to occur. 

The pressure and radial velocity at r = a2 are related by the spectral impedance 

of the external fluid; that is, Pa2 = Z2Va2, where 

-ip2c2k2H^\kr2a2) 
Zl2   —    7TT  

kT2E\ '{kr2a2) 

Using the equations for a fluid tube, 

"p 1 02 = [Mab] IA1 

where 

[Mt ab\ 

A,   B, 

&   D1 

and AiB\,CiD\ are the ABCD parameters for the fluid tube as denned in 

Chapter 2. 

Solving for Vai we find 

{Al-C,Z2) 
vai     rai (DiZa _ Bi) 

and the pressure at r = a2 is 

P    = P ■'02 -1  Ol Al + 
^ (^ - dZ2)' 

(DiZ2-Bi)  . 

thus, all of the state variables are determined from either the applied pressure 

Pai or velocity Vai, the fluid tube dimensions Oi and o2, and the acoustic properties 

of both media. 

The ABCD parameters for the fluid tube are given by 

7T, 
Al — -fcriaiQlo(fcri) 



7T. 
B\ = i-kTlaiQoa (kTl) Z\ 

Ci 

7T. 
D\ = --kriaiQio(kri) 

where Z\ 
Pl^lfc 

rl 
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Now consider the spectral impedance at boundary a\, 

_ Pai _ D,Z2 - Bt 

ai     Vai      Al - CXZ2 

Substituting the explicit expressions into 4.1 and simplifying yields 

(4.1) 

Za-, =iZi ;M< 

For convenience we define the following ratios: 

(4.2) 

Ratio of Hankel functions: 

Hrat(x) = 
r(D H£>(x) 
r(D H?>(x) 

Ratio of radii: 

= ^1 

<m-Rc. Note that ^- = Rc, and also   z 

Substituting these quantities into 4.2 yields 

Rpj^Qoi (feri) Hrat (kr2sa) - Qm (fcn) 
Z ai iZA 

Qioykn) ~ Rpjr^Qn (fen) Hrat (kr2sa) 
(4.3) 

The response of this system to a specific excitation will depend on the wavenum- 

ber and frequency of the excitation {kz and ui), as well as the acoustical properties 
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of the fluid tube and the external medium. Several limiting cases of interest will 

be studied using equation 4.3. 

Case I - Zero Axial Wavenumber The simplest case is that for which there is no 

axial wave propagation, that is, kz = 0. The excitation at r = a^ is a pressure or 

velocity which is uniform in amplitude along the z axis, varying harmonically at 

frequency u. 

For this case, kn = k1} kr2 = k2, and ■£■ = Rc; also, Z\ = p\Ci. The spectral 

impedance at r = a\ (normalized to the specific acoustic impedance of medium 1, 

PiCi), is found from 4.3 as 

Zai 
—- = ^-T 
P\C\ 

RzQoi (fcl) Hrat^^-Qooih) 
(4.4) 

Q10(k1)-RzQ11(ki)Hrat(^)' 

The variables for this special case are the non-dimensional wavenumber in the 

fluid tube, k^i, the ratio of specific acoustic impedances Rz, the ratio of sound 

speeds Rc, and the ratio of radii, s. 

Now for large values of the arguments in equation 4.4, that is, kia-y, k\a2, and 

k2a2 are all greater than 27r, substitution of the asymptotic expressions developed 

in Chapter 2 leads to the following approximation: 

lim    (Z^\=R,-it,n[k^-a1)] 
fc:iai->oo \piCiJ      1 — iRztan[ki(a2 — ai)\ 

With these simplifications, the spectral impedance at the inner surface of the 

fluid tube is determined by Rz, the ratio of acoustic impedances, and the argument 
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of the tangent function, ki(a,2 — &i), the product of the wavenumber in fluid 1 and 

the thickness of the tube. Two limiting cases of interest will be discussed. 

(1) Tube thickness an integral number of half-wavelengths:    If the tube thickness 

a2 — a-i is an integral number of half-wavelengths, that is, 

JVK 
a2 — a1 = -—,        71=1,2,3... 

fci 

then Zai —> P2C2: the characteristic impedance of the external fluid. 

(2) Tube thickness an odd number of quarter-wavelengths:    If 

«.-«.-^l^.        « = 1,2,3... (4.6) 

then Zai —> ^p- = ~^p-. This relationship suggests an interesting method 

for "matching" the impedance of a source, such as a ceramic ring, to the specific 

acoustic impedance of the external fluid. If Zai represents the impedance of the 

source, the fluid in the tube would be chosen such that 

PlCl = \fZaiP2C2 

Of course, the assumptions made in obtaining equation 4.5 must hold, and 

exact "matching"" will occur only at frequencies satisfying equation 4.6. For other 

combinations of frequency and tube thickness, the impedance Zai will be complex. 

In rectangular components, this may be expressed as 

lim    (^2L\ =   -ft2+
tan2[fci(a2-Qi)] (fiz-l)tan[fci(a2-ai)] 

ftiai->oo \piCi J      1 + R% tan2 [ki (a2 — ai)]        1 + i?f tan2 [ki (a2 — ax)] 
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Returning to the general case described by equation 4.4, we will discuss the 

behavior of the normalized specific acoustic impedance as a function of the non- 

dimensional wavenumber k\ü\ for various combinations of the parameters RC,RZ, 

and s. 

(1) Variation with tube thickness, a^s - 1): For this case, we assume a sound 

speed ratio of Rc = 2, and an impedance ratio Rz = 2. Figure 4-1 presents the 

variation in impedance as a function of kicii for three values of the radius ratio, 

s = 1,2, and 4. The magnitude, phase angle, and rectangular components of the 

impedance are shown. 

The degenerate case s = 1, shown as a solid line, represents the impedance 

of the external medium alone, as discussed in Chapter 2. (For this case, there 

is no fluid tube in the system). For large values of the argument, the spectral 

impedance approaches the specific acoustic impedance of the external medium, 

p2c2. For s = 2 (dotted line) and s = 4 (dashed line) the impedance functions 

exhibit cyclic behavior as a function of acoustic wavenumber (or frequency). The 

period of the fluctuations decreases with increasing tube thickness, in a fashion 

similar to that discussed for the fluid tube in Chapter 2. The impedance magnitude 

varies from Rz to l/Rz, as in the simplified case described above. The imaginary 

component of impedance is skewed in a triangular fashion The real component 

waveform is less than unity for a greater part of the cycle, and exceeds unity 

for the remainder of the cycle. At large values of the argument, a steady-state 

condition is reached for the amplitude of the impedance variations. 
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(2) Variation with acoustic impedance ratio, Rz: In figure 4-2, a sound speed 

variation of two to one is assumed (Rc = 2), and the fluid tube thickness is twice 

the inner radius (s = 2). The spectral impedance is shown for three values of the 

impedance ratio, Rz = |,1, and 2. Since the sound speed ratio is fixed at 2, the 

impedance ratio Rz is determined by the fluid density in each medium. Thus for 

Rz = 1,    pi = ^, etc. 

Again, a cyclic variation of spectral impedance with wavenumber is observed. 

The phase of the variation is determined by the magnitude of the impedance 

ratio. (Compare, for example, the solid curves for Rz = | with the dashed curves 

for Rz = 2. ) The magnitude of the variation also depends on the value of Rz, 

being lowest for Rz — 1, and increasing for both larger and smaller values of 

the impedance ratio. The same comments regarding the waveforms of the real and 

imaginary components as made in the preceding case apply to the present analysis. 

(3) Variation with sound speed ratio, Rc: For this example, the impedance ratio 

is fixed at 1.5, and the ratio of radii is again 2. Figure 4-3 presents the spectral 

impedance versus frequency for Rc = ~: 1, and 10. When the sound speed in the 

external fluid exceeds that in the fluid tube (dashed line), the impedance variation 

is greatest at small values of fciOi, decreasing with increasing wavenumber until 

a steady state is reached. The reverse is true for C\ > C2, where the impedance 

variation builds up to a steady state value as the frequency increases. The same 

asymmetry previously noted in the real and imaginary components is apparent for 

this case. 
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In summary, there are three parameters which affect the normalized spectral 

impedance of the fluid tube - external fluid system. The tube radius ratio s controls 

the periodicity of the cyclic impedance variations, with the period decreasing as 

s increases. The fluid impedance ratio Rz and sound speed ratio Rc primarily 

influence the magnitude of the cyclic impedance variations. In all cases, the cyclic 

variations reach a steady state for k\a\ 3> 2TT. 

Case II - Finite Axial Wavenumber: The more general case in which the axial 

wavenumber is finite will include both propagating waves as described earlier, and 

standing waves in which the excitation may be of the form P0(cos kzz)(cos ut). The 

conditions for the existence of a standing or a propagating wave in the fluid tube 

were described earlier, that is, k\ > kz. The radial spectral impedance at r = di 

will be given by equation 4.3. The behavior of the impedance will be similar to that 

described for Case I when both radial wavenumbers kT\ and kTi are real. When 

k\ < kz an evanescent wave will occupy the fluid tube. This may "leak" into the 

external medium if the fluid tube is sufficiently thin. 

4.2.3 Multiple Concentric Fluid Tubes:We now consider a system comprised of 

any number N of concentric fluid tubes immersed in an external fluid, as illustrated 

in Figure 1-1. The first fluid tube extends radially from r = ax to r = a2 and 

contains a fluid of density p\ and sound speed cx. The j th tube is bounded by the 

inner radius <ij and outer radius aj+i, with fluid of characteristic impedance pjCj. 

The outermost fluid tube extends from radius a^-i to a^, where a^v is the radius 
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of the interface between the N th tube and the external fluid. 

Now let Pi and V\ be the state variables of pressure and radial velocity applied 

to the innermost fluid tube at r = a\. The pressure and radial velocity at the 

interface r = a2 are given by 

(4.7) 
P2    _    A1   B!        Px 

V2\      [d   D1       V, 

The values of P2 and V2 from equation 4.7 become the input for the second 

fluid tube of inner radius a2, so that the transfer function from a\ to as may be 

expressed as 

P* 

V, 

Ao   R 2     -D2 

Co   D, 

At   Bx Pi 

Vi 

This process is repeated for each fluid tube in the system, with the result 

N AT   B X     DT P 

Vx 

where py and VJv are the state variables at r = ajv, the interface with the 

external fluid, and PN = V^Z^, in which ZN is the spectral impedance of the 

external fluid, equation 2.57. 

The overall transfer matrix is obtained by cascading the matrices for each 

component, viz 

Ax   Bx AN-I   -BJV-I Aj   Bj At   Pi 

C/x    L*T C/v-i    Pjv-i Cj   D3 Cx   D1 

Care must be taken when using this model that the correct ABCD expressions 

are used in each component, depending on whether the radial wavenumber kj is 
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real or imaginary. The conditions discussed earlier in the section "Parameters 

for Two Fluid Systems" must be evaluated at each radial interface to determine 

whether propagating or evanescent waves will exist in the succeeding fluid tube. 

4.2.4 Systems Including a Fluid CylindenWhen a composite cylindrical system 

includes a fluid cylinder, this component may exert a major influence on wave 

propagation. When the radial wavenumber in the fluid cylinder is real, equation 

2.14 and Figure 2.3 show that the spectral impedance of the cylinder will cycle 

from zero to infinity as a function of the argument krca where krc is the radial 

wavenumber and a is the radius of the cylinder. This establishes the range of 

boundary conditions at the cylinder surface, ranging from zero velocity ("blocked" 

pressure) to zero pressure ("free" surface). 

When the axial wavenumber kz is much greater than the acoustic wavenumber 

in the fluid cylinder, equation 2.17 predicts a mass-like spectral impedance which 

increases with frequency and decreases with axial wavenumber. 

Fluid Cylinder within Fluid Tube: We now consider a fluid cylinder of radius a\ 

and specific acoustic impedance picx which is concentric with a fluid tube of outer 

radius a2 and filled with a fluid of impedance p2c2. This system is driven by a 

wave of frequency u and wavenumber kz applied at the outer radius. The transfer 

matrix for the fluid tube is 

Pi 

Vx 

A21   B21 

C21   D2i 

Po 

V, 

where the ABCD functions are as defined by equations 2.37 to 2.40.   The 
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pressure and velocity at r = ax are related by Px/Vx = Zfc, the spectral impedance 

of the fluid cylinder. Solving for the spectral impedance at the input, r = a2, we 

have 

v2 A21 — 021^/c 

When the impedance of the fluid cylinder is zero, Z2 is given by 

Z, 
_    B2X _    .P2U [Jp (fcr2a2) Y0 (kr2ax) - Jo (fcr2fli) Y0 {kr2a2)j 

Zjc-+o        A^ k^ ^ (kr2(l2j YQ (kr2ax) - J0 (fcr2ai) Yx (kr2a2)} 

Similarly, when the impedance of the fluid cylinder is infinite, Z2 is 

Z\ =    Dn = -p2U ^ ^kr2CL^ Y° (^2^2) ~ Jo (KiOg) Yx {kr2ai)] 
,fc-00 ^        ^ ^ (kr2Ü2j YX (kr2ax) - Jx (kr2ax) Yx {kr2a2)} 

The impedance Z2 is always reactive, since there is no dissipation or energy 

radiation in the system. The magnitude and phase of the spectral impedance will 

vary with the dimensions ax and o2, as well as the frequency and wavenumber of 

the excitation. 

4.3    Fluid Loaded Elastic Shells 

One of the most widely studied topics in the area of structural acoustics is that 

of fluid loaded elastic shells. The preponderance of work has been concerned with 

cylindrical elastic shells, first, because of the multitude of practical problems which 

may be described by this configuration (several examples were cited in Chapter 1), 

and second, because the separability of the wave equation in cylindrical coordinates 

renders such problems analytically tractable. 

Junger and Feit (1986) devote substantial attention to both finite and infinite 

fluid loaded cylindrical shells, including sound radiation by driven shells and the 
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scattering of incident sound by elastic cylinders. Their book "Sound, Structures 

and Their Interaction" is an excellent starting point for the study of this topic. 

Most authors use thin shell theories, such as described in Chapter 3, to repre- 

sent the elastic cylinder in their analyses of fluid loaded shells. One exception is 

Greenspan (1960) who used elasticity theory in his study of an elastic shell with 

fluid loading on both surfaces and driven by a spatially arbitrary, time harmonic 

pressure applied to the inner surface. A more recent example is Pathak (1993) who 

applied elasticity theory to study the radiated pressure from an infinite length thick 

cylindrical shell harmonically driven by a ring force. The present discussion will 

employ the axisymmetric thin shell model developed in Chapter 3. 

4.3.1 Elastic Shell in Fluid System:Now consider a consider a system with a fluid 

tube of inner radius a\ and outer radius a2, with an elastic shell at this outer 

radius. Since the thickness of the elastic shell is very small compared to its radius, 

we may neglect it when computing fluid impedances. A second fluid tube extends 

radially from a2 to a3 where it meets the external fluid. The specific acoustic 

impedance of the first fluid is p\C\, the second fluid is piCi-, and the external fluid 

is p3c3. This model could represent, for example, a sonar transducer comprising a 

piezoelectric ceramic cylinder surrounded by a coupling fluid, such as castor oil or 

isoper, a thin metal casing, and a protective outer elastomeric jacket of a material 

with negligible shear modulus. The external fluid in this case would be water. The 

system input at r = a\ would be provided by the piezoelectric ceramic cylinder. 

Following the method described under "Multiple Concentric Fluid Tubes," the 
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model for such a system is: 

p4 
= 

Cz   Dz 

1   Za 

0   1 

At   B, Pi 

Vx 

in which P\ and V\ are the pressure and radial velocity at the interface between 

the ceramic cylinder and the first fluid tube; A\ B\ C\ D\ represent the first fluid 

tube, A3 B3 Cz D3 represent the second fluid tube, and Zs is the spectral impedance 

of the shell, from Eq. 3.8. The pressure and radial velocity at r = a3 are related 

by the spectral impedance of the external fluid, P4 = Z4T4, where Z± is computed 

by substitution of the characteristics of the external fluid into Eq. 2.57. Thus the 

state and field variables of the entire system may be determined. 

A generalized discussion of this system is not feasible due to the large number 

of parameters involved (three radii, three fluids, and the shell characteristics). 

However, a specific design problem is easily approached following the methods 

described in this and earlier chapters. 

4.3.2 Elastic Shell With Fluid CylindenThe problem of wave propagation in a 

fluid filled elastic shell has been approached by many authors, including Thomson 

(1953), Skalak (1956), White and Sawley (1972), Kumar (1966,1972). Merkulov, 

Prikhod'ko and Tyutekin (1978), Fuller (1981, 1988), Ujihashi et al (1987), Fuller 

and Fahy (1982), and more recently, Brevart and Fuller (1994). The great interest 

in this problem stems from practical considerations such as noise (e.g. "water 

hammer") in piping systems and the reduction of noise from the exhaust of internal 

combustion engines. 
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The propagation of free waves in a fluid filled thin elastic cylinder was studied 

by Fuller and Fahy. They computed the dispersion curves for circumferential modes 

of order n = 0,1 and 2 for steel and hard rubber shells filled with water. The 

coupling of the fluid to the shell complicates the solution for the complex roots of 

the characteristic equation because the roots are embedded in the argument of the 

Bessel functions which represent the fluid loading term (that is, the argument kTa 

in Eq. 2.14 of this study). This requires that the roots be determined by numerical 

analysis. 

Brevart and Fuller computed the response of an infinite fluid filled elastic 

shell to a radial impulse defined as a delta function in both time and space. The 

axisymmetric description of this system may be constructed using Eqs. 2.14 and 

3.8 as follows: 

vu.(n, KZ) =        r   2 2   . , ,     °.   _ol , iPfQcPJo(Kr)      (4-9) VjJ-rpsh 
n 

KW       ,   -,    ,   ai K4 _ n2l    i     iPfQcP J°(K^ 
.(fi4-**) + i + P  *z       " J +        Kr Ji(Kr) 

where K,(fi, Kz) is the double Fourier transform of the radial velocity in 

frequency-wavenumber space, ps is the density of the shell material, pf is the den- 

sity of the fluid, cp is the extensional wave speed of the shell, Kr = J (^^J — -K? 

is the non-dimensional radial wavenumber for the fluid cylinder, and P0 is the 

Fourier transform of the input ring force function, P06(t)6(z). The authors ob- 

tained the time domain response by numerical inversion of the three dimensional 

version of Eq. 4.9. The inversion in wavenumber space was computed by sum- 

ming the residues of the transfer receptance, as previously described by Fuller 

(1983).  This required knowledge of the location of the poles of the transfer mo- 
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bility, which occur at the zeros of the characteristic equation for free vibrations of 

the fluid loaded cylinder. The earlier paper by Fuller and Fahy (1982) provided 

this information. 

4.3.3 Elastic Shell with External Fluid:The response of an infinite cylindrical 

shell with external fluid loading to harmonic excitation from a ring force has been 

studied by Photiadis (1990). In contrast with the internal fluid problem, where 

all radial impedances are purely reactive and energy flow is confined to the axial 

direction in the shell and fluid, the propagation of waves outward in the external 

fluid complicates the analysis of this case. 

In terms of the present study, the problem discussed by Photiadis may be 

expressed as 

Vw(n, Kz) = ^^ : m  (4.10) 

n      [{&-KD + i + P *z      " J +      Kr HW(KT) 

in which Po(^) is the spatial Fourier transform of the harmonic input, P0(Q)6(t), 

and the Bessel functions representing the fluid cylinder impedance in Eq. 4.9 have 

been replaced with the Hankel functions to represent the external medium, as 

written in Eq. 2.57. The other quantities in Eq. 4.10 are as defined above. 

Photiadis constructs a Green's function solution for the radial velocity as a 

function of axial distance by inverse Fourier transformation of the denominator of 

Eq. 4.10, that is, 

Vw(Q,z) = P0(Q)G{z) 
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where 

1    fa X) eiK*~« dKz 

oo iuirpsh 
a. [^5 + 1 + ^4-n»] iP/f2cp H£\KT) 

The inversion integral is evaluated by contour integration in the complex Kz 

plane. The analysis is fairly recondite and will not be pursued at length here. 

Essentially, Photiadis evaluates the integral at the various poles by introducing 

simplifying approximations based on physical reasoning. The approximate analyt- 

ical results compare favorably with the exact values computed numerically. 
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CHAPTER 5 

Experimental Work 

5.1    Introduction 

In this chapter we discuss an experiment which was conducted to study the 

propagation of transients in a thin cylindrical shell for comparison with the the- 

oretical predictions described in Chapter 3. We begin with a description of the 

experimental apparatus and the considerations which affected the design of the ex- 

periment. This is followed by a discussion of the measurements obtained. Results 

of the experimental work are compared with the predicted values. 

5.2    Design of Experiment 

5.2.1    Description of Experiment 

The experimental apparatus comprised a thin brass tube which was freely sus- 

pended on very compliant supports (bungee cords) at two axial locations. The 

tube was mechanically driven by a piezoelectric disk which was bonded to one 

end. The disk was driven from an electronic function generator, thus various wave- 

forms of interest (such as sinusoidal, triangular, or rectangular) could be applied 

to the tube. The radial displacement of the tube was measured with gages made 

from poly-vinylidene fluoride film applied circumferentially to the exterior wall of 

the tube at various locations of interest. Electrical output from the displacement 

gages was amplified, filtered, and displayed on a digital oscilloscope. The oscillo- 
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scope has a transient capture capability and a digital recorder. Raw data obtained 

with the digital oscilloscope was saved on computer data storage disks for off-line 

processing. A sketch of the apparatus is shown in figure 5-1. 

5.2.2    Selection of Tube 

The important factors involved in the selection of a tube for the experiment include 

the tube material, the length, the diameter, the wall thickness, the availability, and 

the cost. The most significant factor in the selection of the material is the wave 

speed. For a finite length tube, a low wave speed maximizes the time in which 

transients may be observed before echoes occur. Unfortunately the materials with 

the lowest wave speeds, such as plastics and lead, are also lossy. For a given 

material, the diameter will determine the ring frequency. This should be chosen 

so as to be within the bandwidth of the available instrumentation. The wall 

thickness should be selected to meet the criteria for a "thin" shell, as indicated by 

the analytical models. 

The criteria of cost and availability limited the choices to aluminum, brass, 

copper, and steel. Brass was selected since it has the lowest wave speed of the four 

choices (a dilatational wave speed of 4700 meters per second, compared with 6300 

m/s for aluminum, 5000 m/s for copper, and 6100 m/s for steel) and is readily 

available. Standard brass tube is available in 12 foot (3.61 meter) lengths, and this 

would conveniently fit in the available laboratory space. A diameter of 2 inches (5 

cm) was selected, which places the ring frequency at approximately 25 kilohertz. 

The wall thickness of the experimental tube is 0.035 inches (.89 millimeters), so 
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the thickness to mean radius ratio is 0.036. 

5.2.3    Displacement Gages 

In order to observe wave propagation and dispersion in the experimental tube, it 

is necessary to measure the components of displacement at various axial positions 

along the length of the tube. Since axisymmetric radial excitation is employed, only 

radial and axial displacements are expected. An ideal displacement gage would 

have the following attributes: high sensitivity, low noise, minimum interference 

with the signal, and dimensions which are small compared with the wavelength 

of the stress waves to be measured. For measurement of the radial displacement, 

a gage which wraps around the circumference of the tube will provide spatial 

integration of any non-axisymmetric signal components. 

Graff (1975) describes several methods which have been employed for the ex- 

perimental investigation of stress waves. These include the electrical-resistance 

strain gage, capacitance gages, inductance effects, piezoelectric devices, and photo- 

elasticity. More recently, laser velocimeters have been employed by a number of 

investigators. 

For the present application, a relatively new plastic piezoelectric material, 

polarized poly-vinylidene fluoride film (PVDF), offered several advantages. This 

film is produced by stretching extruded PVDF film to induce a phase transition 

from the non-polar alpha phase, to the polar beta phase. The beta phase film is 

then polarized by exposure to a high electrostatic field at elevated temperature. 

The resulting permanent alignment of molecular dipoles in the film produces the 
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piezoelectric activity. Electrodes are applied to the film either by sputtering or 

by silk-screening using conductive silver ink. Electrodes may be produced in any 

desired pattern. 

The area density of thin ( 52 • 1(T6 meters) PVDF film is about 93 grams 

per square meter, which represents a negligible mass load when applied to the 

experimental tube. The Young's modulus of PVDF is also very low, 2-109 Newtons 

per square meter, so that a thin strip will have a negligible stiffness effect when 

bonded to the tube. The film is easily attached either with cement or double sided 

plastic tape. 

The electrical and mechanical properties of piezoelectric film are categorized in 

terms of a 1, 2, 3 rectangular coordinate system. The axes are oriented such that 

1 corresponds to length (the direction in which the film is stretched), 2 corresponds 

to the width, and 3 to the thickness, which is the direction of polarization. The 

film is anisotropic, so that the piezoelectric constants are greatest in the 3,1 and 

3,3 directions, and minimum in the 3,2 direction. For example, the g31 constant is 

about 11 times greater than #32, which means that the voltage produced by a given 

stress in the length (1) direction is over 20 dB greater than the voltage resulting 

from the same stress in the width (2) direction. This is advantageous in the current 

application, as it discriminates against displacements which are orthogonal to the 

desired displacement. 

Sensitivity of PVDF Gages: The PVDF gages are applied circumferentially to the 

exterior surface of the brass tube. The active length of the gages is 155 millimeters, 
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about 5 mm less than the circumference of the tube. Since the Young's modulus 

of the tube is about 50 times that of the PVDF gages, we may assume that the 

strain in the gages is the same as that of the tube. The stress in the gage is the 

product of the strain and the Young's modulus of the gage, and the electric field 

Ez is #31 times the stress. The voltage developed is the product of the electric field 

times the thickness of the gage. Thus the voltage V resulting from a given strain 

e is given by V = (Ygtggz\) • e , where Yg is the Young's modulus of the PVDF 

and tg is the thickness of the PVDF film. Evaluation of this expression using the 

values for the circumferential gages results in V/e = 22.46 • 103 (volts/unit strain). 

A typical strain gage has a sensitivity of about 5 volts/unit strain, thus the PVDF 

film is about 73 dB more sensitive than a strain gage. The radial displacement w is 

eLg/2-K , since the length of the gage Lg is approximately equal to the circumference 

of the tube. Thus the radial sensitivity of the gage is w/V = 1.112 • 10~6 meters 

per volt, or -119 dB re 1 meter/volt. 

5.2.4    Piezoelectric Disk Driver 

Mechanical input to the experimental tube was generated with a lead zirconate 

titanate (PZT) ceramic disk which was bonded to one end of the tube with epoxy 

cement. The disk is 5.08 cm in diameter and 2.57 mm thick. Circular silver 

electrodes 4.85 cm in diameter are provided on the flat faces of the disk. When a 

voltage is applied to the electrodes, the 3,1 mode coupling in the disk produces an 

axisymmetric radial strain, which is communicated to the brass tube. The static 

radial displacement of a free thin piezoelectric ceramic disk is given by: (Vernitron, 
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1984) 

Ar = 2d^Vj 

where d3)1 is the piezoelectric strain constant for the 3,1 mode, V is the applied 

voltage, r is the radius of the disk,and t is the thickness. For the disk used in this 

experiment, d3]i = -109 • 1(T12 meters/volt and the ratio of radial displacement 

to applied voltage is Ar/V = 2.2 • 1CT6 millimeters per volt. 

The piezoelectric disk will have an infinite number number of radial and thick- 

ness vibrational modes. Since the disk is almost completely silvered on both flat 

surfaces, only the n = 0 (axisymmetric) radial modes will be excited. Since the 

radius of the disk is approximately 10 times the thickness, the lower order ra- 

dial modes will be independent from the thickness modes. The thickness mode 

frequencies are given by 

fm = ^,        m=l,2,3,... 

(Mason, 1964) where c® is the wave speed in the 3,3 direction at constant 

electric displacement D, and m is the mode number. Using the value cf = 4300 

meters/second (Berlincourt and Krueger, 1964) yields the value fx = 838 kilohertz 

for the first thickness mode of the disk. 

The frequencies of the axisymmetric radial modes are found from the roots of 

vMv) = (i-vE)JM (5-1) 

(Meitzler, O'Bryan, and Tiersten, 1973) where vE = -(sf2/
sn) = -315 is a 

planar Poisson's ratio, and the argument r? = 27cfa/cp. The quantity & in i\ is a 
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planar wave speed, 

in which p is the density of the ceramic material, and sfx and sf2 are the 

elastic compliance constants at constant electric field E. For the disk used in this 

experiment, cp = 3464 meters /second. Solving 5.1 the frequencies of the first seven 

radial modes are found as 44.61, 117,186.1, 254.7, 323.1, 391.4 and 459.7 kilohertz, 

respectively. 

Measurements made on the piezoelectric disk prior to installation are shown 

on figures 5-2, 5-3, and 5-4. Figures 5-2 and 5-3 present the magnitude of the 

electrical admittance of the disk as a function of frequency, plotted on logarithmic 

axes. The peak of the admittance magnitude on figure 5-2 at 44.61 kilohertz 

identifies the frequency of the first radial mode. The admittance minimum at 51.33 

kilohertz occurs at the antiresonant frequency for the first radial mode. From these 

frequencies, the planar coupling factor was determined to be kp = .55. (IEEE 1984) 

Radial modes two through seven are easily identified on figure 5-3, occurring at 

117.0, 184.4, 250.0, 311.3, 368.6, and 420.0 kilohertz, respectively. The magnitude 

of the ratio of maximum to minimum admittance at a specific mode decreases as the 

mode number increases, thus it is difficult to identify modes above the seventh on 

the plot of figure 5-3. The measured frequencies agree closely with those caclulated 

above, especially for the first four modes. Note that the difference between the 

predicted and measured nodal frequencies increased with mode number. This may 

be due to the fact that the diameter of the electrodes is 23 millimeters less than 
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the diameter of the disk. This creates a ring of inactive ceramic at the outer edge 

of the disk. The mass of this inactive ring will tend to lower the modal fequencies, 

becoming more significant at the higher frequencies. 

The first thickness mode appears at 808 kilohertz on figure 5-3. The rapid 

fluctuations in admittance near and above this resonance may be due to modal 

interaction with higher order radial modes. For example, the computed values for 

modes 12 to 14 are 800.9, 869.1, and 937.3 kilohertz, respectively. 

The complex admittance locus (susceptance versus conductance) for the first 

radial mode of the disk is shown in figure 5-4. The mechanical " Q", or quality 

factor, of the disk is determined from this plot as: 

° = üAö (5'2) 

in which fr is the mechanical resonance frequency, the frequency at which the 

conductance is a mazimum, and /x and f2 are the quadrantal frequencies, where 

the conductance is half of the maximum value. The Q for the experimental disk 

computed with equation 5.2 is 816, which indicates that the free disk has very low 

losses. 

5.2.5    Development of Dummy Load 

Initial measurements on the apparatus with a 2 microsecond rectangular pulse 

input applied to the piezoelectric disk revealed the presence of strong spectral 

components at frequencies near those of the first three radial modes of the free 

piezoelectric disk. Figure 5-5 presents the spectrum of the radial displacement 

at gage C-l, located approximately 7 cm from the piezoelectric disk.  Since it is 
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desireable to have a relatively flat spectrum in the mechanical input to the tube, 

various means for achieving this end were explored. 

The measurements on the free piezoelectric disk, before it was attached to the 

tube, were made with an impedance analyzer which applies a continuous harmonic 

excitation to the test specimen. However, driving the attached disk with a con- 

tinuous signal was not feasible due to the multiple resonant modes which were 

excited in the tube. Instead, the disk was driven with a tone burst comprised of a 

gated sinusoidal voltage signal at the first radial mode, about 44 kHz. The Q of 

the system was then estimated from the rise time of the current in the disk. With 

this method, the tone burst must be long enough to encompass the initial and final 

transients in the system response. 

Tone burst measurements indicated that the Q of the system at the first radial 

mode was approximately 50. One simple way to reduce the Q of a system is to 

increase the damping by adding resistive losses. Various lossy materials, such as 

a mastic material, and plastic tape, were applied to the free face of the piezo- 

electric disk, and the free end of the tube. The lowest value of Q which could be 

achieved with these methods was about 15, which was still too high for the planned 

measurements. 

A more sophisticated approach to increasing the bandwith of piezoelectric 

transducers is by the use of an electrical "dummy load." With this method, a 

second piezoelectric element is mechanically coupled to the driven device. The 

electrical output of the second, or "dummy," element is connected to a suitable 
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electrical network, which is designed to maximize the bandwidth of the system. 

Application of this method to ultrasonic transducers has been described by Gaza- 

let, Houze, et al (1988). For the present application, the dummy element comprises 

a piezoelectric disk which is identical to the driven disk. The dummy disc is ce- 

mented to the driven disk, with appropriate means for connection to an external 

electrical network. 

The first step in the development of the dummy load was to prepare a test setup 

comprising two piezoelectric disks which were bonded together, but not attached 

to the tube. This enabled the dummy load system to be optimized independent of 

the additional load imposed when the brass tube is driven. Initial measurements 

were made on the two disks to determine their free characteristics, then the disks 

were cemented together to form a prototype dummy load system. 

For frequencies in the vicinity of the first radial mode, the electromechanical 

characteristics of the piezoelectric disk may be represented by a lumped analogous 

electrical network, shown in figure 5-6 (a) (Mason, 1964; Kinsler, Frey et al, 1982). 

In figure 5-6 (a) we employ the impedance analogy, in which electrical voltage 

is analagous to force, and electrical current is analogous to velocity (Beranek, 

1954). The mechanical elements (mass, compliance, and loss resistance) have been 

converted into equivalent electrical circuit elements (inductance Lme, capacitance 

Cme, and resistance Rme) using the electromechanical transformation factor, N. 

The input electrical voltage E and current I are also indicated on figure 5-6 (a). 

The capacitor Coi represents the "blocked" capacitance of the disk, that is, the 
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capacitance which one would measure if the disk was physically restrained from any 

mechanical motion The mechanical variables, force and velocity, are shown as F/N 

and U • N. All of the elements shown in figure 5-6 (a) may be determined from the 

results of two terminal measurements of a "free" (that is, mechanically unloaded) 

disk. Since air has a very low specific acoustic impedance, the mechanical terminals 

of figure 5-6 (a) are effectively "short circuited" for air measurements, resulting 

in the equivalent cirtcuit of figure 5-6 (b). First, the capacitance of the disk is 

measured at a frequency far below resonance. This "free" capacitance is equal 

to the parallel combination of Co and Cme, which in turn may now be computed 

using the measured capacitance and the planar coupling factor, kp. The remaining 

elements, Lme and Kme are found using the complex admittance locus, such as 

shown in figure 5-4. The mechanical resonance frequency fr is the frequency at 

maximum conductance, Gmax. The inductance Lme = l/Cme(27r/r)
2, and the 

resistance Rme — 1/Gmax. These quantities were determined from measurements 

of several disks to implement the next stage in the dummy load design. 

Figure 5-6 (c) represents the equivalent circuit of the dummy load system. 

The driven disk is represented by the elements with subscript 1, and the dummy 

disk by elements with subscript 2. The blocks Zme\ and Zme2 comprise the se- 

ries mechanical branch of each disk. The dummy disk is connected to a circuit 

comprising a resistor Rd in parallel with an inductor Ld. When the dummy load 

system is connected to a mechanical load, such as the experimental brass tube, a 

load impedance Zie would appear at terminals a-a' in figure 5-6 (c). 
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A mathematical model was made of the equivalent circuit of figure 5-6 (c) using 

average values for the circuit elements from the measurements described above. 

The model enabled prediction of the response of the dummy load system as function 

of the electrical dummy load resistor and inductor. By extensive exercise of the 

model it was determined that a Q of 2.1 could be achieved with the proper values 

of Rd and Ld. Using these results, input admittance measurements were made on 

the prototype dummy load system with various combinations of Rd and Ld. The 

lowest Q obtained experimentally on the prototype system was 4, determined from 

analysis of the complex admittance locus. 

The next effort was focused on the application of the dummy load to the 

experimental apparatus. A dummy load disk was bonded to the primary driving 

disk with epoxy cement. A thin (0.2 millimeter) circular disk of expanded metal 

was placed between the piezoelectric disks to facilitate the electrical connection 

to the common silver interfaces of the disks. The dummy load disk was then 

connected to the electrical dummy load which had been developed previously using 

the prototype dummy load system. 

Addition of the dummy load produced a dramatic improvement in the opera- 

tion of the experimental system. This is illustrated in figure 5-7, which compares 

the system response with the dummy load "off," that is, electically disconnected, 

with that when the electrical dummy load was connected to the dummy load disk. 

The primary disk was driven with a 3.3 microsecond, 30 volt rectangular pulse for 

these measurements.  The output was taken as the voltage developed across the 
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dummy load disk, which is proportional to the radial displacement. 

Figure 5-7 (a) displays the dummy disk voltage with the dummy load "off." 

The system "rings" for about 800 microseconds with this input. The spectrum of 

this waveform is shown in figure 5-7 (c), in which a logarithmic scale is used on 

the ordinate. The major peak in the response occurs at 47.8 kilohertz, and the Q 

as determined from the frequencies at which the response has decreased by 3 dB 

is about 28. 

When the dummy load is connected (figure 5-7 (b)), the response decays to 

zero in less than 100 microseconds. The spectrum, in figure 5-7 (d), peaks at 43 

kilohertz. The Q has dropped to 2.7, a ten to one improvement over the first 

case. Figure 5-7 (d) also shows that the spectrum from 100 to 200 kilohertz has 

been elevated about 20 dB, indicating that the dummy load also improves the high 

frequency response of the system. 

5.2.6    Determination of Wave Speed 

In order to insure an accurate comparison of the results of experimental measure- 

ments with those predicted by theory, it is necessary to know the exact value of the 

wave speed in the experimental brass tube. Five independent methods were inves- 

tigated for this purpose. First, a review was made of published values for brass. 

The second approach was a calculation from the material properties published for 

the type of brass used. Then three experimental methods were considered: (1) 

Time of Flight measurement; (2) Ring Mode Resonance; and (3) Extrapolation 

from free longitudinal modal resonances.  The most accurate result was attained 
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with the last method. 

Review of Published Data: The results of a review of three texts Fahy (1985 ), 

Elmore and Heald (1985 ), and Kinsler and Frey, et. al. (1982 )) and tables 

from a commercial source (Metrotek (1982)) are presented in Table 5-1. The entry 

labeled "Cartridge Brass," which is the type of brass for the experimental tube, was 

computed from values of Young's modulus and density from Hoyt (1954). The table 

lists the source, the value of Young's Modulus £7, in Newtons per square meter; the 

density p, in kilograms per cubic meter; Poisson's ratio v; the longitudinal wave 

speed (also known as the "bulk wave speed" and the "dilatational wave speed") 

cd: the "thin plate" (or "extensional") wave speed cp; the "thin bar" wave speed 

cb; the shear wave speed cs; (all wave speeds are in units of meters per second); the 

shear modulus of elasticity G in Newtons per square meter (this is also the Lame 

coefficient //); the bulk modulus B in Newtons per square meter; and the Lame' 

coefficient A, Newtons per square meter. 

None of the sources reviewed published all of the properties listed in each row 

of Table 5-1. Any missing values were calculated from those published, using one 

or more of the equations fisted below. 

Dilatational (longitudinal) wave speed: 

ß 
cd = \ - 

£7(l-i/)        _   /A + 2p 

p     ^p (l + i/) (l-2i/) 

Extensional (thin plate) wave speed: 

£7 
v — 
  _     4^(A + /z) 
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Thin bar wave speed: 

IE H (3A + 2/x) 

P      \   p(x + ß) 

Shear wave speed: 

E hi 

]j2p{l + u)      \jp 

Bulk modulus of elasticity: 

ß = \ + \p 

Young's modulus of elasticity: 

v ; X + /J. 

Poisson's ratio: 

A 
v — 

2(A + yU) 

The mean and standard deviation of the published data are shown in the table. 

The deviation expressed as a percentage of the mean is also included. The large 

variation in the published data on brass may be due to the fact that brass is an 

alloy of copper and zinc, with trace quantities of lead and iron. Hoyt (1954) lists 

over 13 different types of brass. The copper content varies from 60% to 80%, 

and the lead from .07% to 2%. The iron content ranges from .05% to .15%. The 

balance of the alloy is zinc. The mean value of Young's modulus for these alloys 

is 10.65 x 1010 Newtons/square meter, with a standard deviation of 5.76%, and 

the mean value of density is 8.47 x 103 kg/cubic meter, with a standard deviation 

of 1.16%.  These values compare closely with those in Table 5-1.  Unfortunately, 
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Hoyt does not list the values of Poisson's ratio. The composition of the brass tube 

used in the experiment is: copper, 68.5% minimum, 71.5% maximum; lead, 0.07%, 

iron, 0.05%, and the remainder is zinc. This composition fits the description of 

cartridge brass in Hoyt. 

Time of Flight Measurement: In the time of flight method, the wave speed is 

measured by determination of the time required for a transient wave, such as 

an impulse or short rectangular pulse, to traverse a known distance. For a non- 

dispersive system (such as a string, or long thin bar), this method yields accurate 

results. With a dispersive system, such as the experimental tube, distortion of the 

input pulse with distance makes it difficult to identify the precise time of arrival 

of the signal. Nine measurements on the experimental tube gave values of cp 

ranging from 3696 to 4507 meters per second. The average value was 3959 meters 

per second, with a standard deviation of 244 meters per second. These results 

indicated the need for a more precise method for the determination of wave speed. 

Ring Mode Resonance: Another potential method for determining cp is based 

on harmonic excitation of the so-called "ring" frequency of the tube. With an 

axisymmetric (n = 0 mode) excitation, a strong resonance should occur at the 

"ring" frequency, where the axial wavelength is equal to the mean circumference 

of the tube. The extensional wave speed may then be computed from the relation 

Cp = 2irfra, where fr is the measured ring frequency, and a is the mean radius 

of the tube. This measurement was attempted by applying continuous sinusoidal 



130 

excitation to the piezoelectric driver disk and monitoring the radial displacement 

of the tube on the circumferential PVDF gages. Using the estimated value of 

cp = 3872 meters/sec from Table W-l, the ring frequency should occur at 24.69 

kilohertz. 

The problem with this approach is that since a finite length tube is used, many 

longitudinal modes are excited when a continuous harmonic excitation is applied. 

Modes were found at 24.431 kHz, 24.652 kHz, and 25.811 kHz. The dilemma in 

this approach is in separating the true ring frequency from the longitudinal modal 

frequencies. This difficulty, in fact, suggested that the low frequency longitudinal 

modes might be used to more accurately asses the wave speed of the tube. 

Longitudinal Modal Resonance: This method is based on an analysis of a finite 

length tube driven at frequencies far below the "ring" frequency, so that bending 

stresses may be neglected. The experimentally determined modal frequencies, 

which depend on the tube dimensions and the wave speed, are compared with 

those predicted by the model developed in Chapter 3. The value of wave speed in 

the model is adjusted until close agreement between the predicted and measured 

modal frequencies is achieved. 

The modal resonance frequencies were measured on the experimental tube for 

the first eight longitudinal modes. The piezoelectric disk was driven with a contin- 

uous sinusoidal waveform from a frequency synthesizer which could be controlled in 

increments of 0.1 Hertz. The radial and longitudinal displacements were monitored 

on four PVDF gages. The approximate location of the modal frequencies was de- 
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termined with equation 3.25 using the value of cv = 3872 meters/second calculated 

for cartridge brass. For a particular mode, the frequency synthesizer was set to 

the calculated frequency for that mode. The frequency was then adjusted until a 

maximum (peak displacement) was observed on one of the four gages. (Due to the 

sinusoidal nature of the mode shapes, a particular gage may be at a displacement 

node for some of the modes.) 

The measured modal frequencies are shown in Table 5-2, which also includes 

the modal frequencies computed from the model. Table 5-2 also includes for com- 

parison a list of modal frequencies computed for a free-free bar of the same length 

and material as the experimental tube. Such a bar would be non-dispersive, with 

modal frequencies given by 

_ m-Cp-v/l^-z^ 
Jndm 2-L 

where Cpy/l — v2 = cb = J^- is the thin bar wave speed. 

The best estimate for the extensional wave speed was determined by an itera- 

tive process in which a range of values were assumed. For each assumed value, the 

modal frequencies were computed for the membrane model, and also for the free- 

free bar model. Then the difference between the measured and calculated modal 

frequencies was obtained for the first eight modes. A typical plot of the difference 

frequency as a function of mode number is shown in figure 5-8. A positive value for 

the difference indicates that the calculated modal frequency exceeds the measured 

modal frequency for that mode. 

Then the mean and standard deviation was computed for each set of differ- 
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ence frequencies. The standard deviation is plotted in figure 5-9 as a function of 

the assumed values of extensional wave speed. Figure 5-9 indicates a minimum 

standard deviation of 2 Hertz for the membrane model at a wave speed of 3939 me- 

ters/second. Thus this value was chosen as being the most likely from a statistical 

viewpoint. 

Figure 5-10 presents the difference between the computed and measured modal 

frequencies expressed as a percentage of the measured frequency, using the final 

value of 3939 meters/second. The maximum deviation is in the order of 0.2%. 

5.3    Transient Measurements 

As indicated earlier, transient waves were applied to the experimental tube by 

exciting the piezoelectric disk with appropriate electrical waveforms, such as a short 

rectangular pulse. Circumferential PVDF gages were placed at axial locations 3.3 

(Gage C-3), 7.3 (Gage C-l), 19.6 (Gage C-2), and 151 (Gage C-2) centimeters. 

Gage outputs were applied directly to adjustable gain, high impedance instru- 

mentation amplifiers. Filtered outputs from the amplifiers were observed with a 

digital oscilloscope which had an 8 bit, 20 megahertz analog to digital converter. 

Captured signals were stored in a 2 by 4096 memory, from which they could be 

output to a computer via an RS-232 interface. The digital oscilloscope placed two 

constaints on the quality and quantity of data which could be measured. The 8 bit 

A/D converter limits the resolution, and the memory length of 4096 points limits 

the length of record which may be stored.A variety of electronic signal generators 

were used to generate input to the system. 
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The finite length of the tube, approximately 361 centimeters, meant that mul- 

tiple echos would be present in long records. The fastest wave components travel 

at 0.3939 cm/microsecond, so the first echo at a particular gage may be expected 

at te = (722 - L9)/(.3939) microseconds, where Lg is the distance from the input 

disk to the gage. Thus for gage C-2, at 151 cm, the echo appears about 1450 

microseconds after the first arrival at gage C-2. 

A large number of measurements were made over the course of the study. 

One such series will be described to illustrate the results obtained. In this set of 

tests, the input disk was driven with a rectangular pulse about 3.3 microseconds 

in length. 

The waveforms observed at the four gages are reproduced in figure 5-11. The 

effects of dispersion are evident in this figure, as the length of the transient increases 

at greater axial distances. The structure of the waveforms is similar to those 

which were computed, especially for the first two signals, exhibiting a burst of 

high frequency energy followed by a long tail of long period waves. Echos are 

evident on gages C-4, at 19.6 cm, and C-2, at 151 cm. The echo on gage C-2 is 

compressed in amplitude and extended in time compared to the direct arrival. The 

time scale for figure 5-11 is in milliseconds. 

The frequency spectra for the waveforms in figure 5-11 are shown in figure 

5-12, in which the magnitude of the FFT (normalized to the level of the largest 

component) is plotted as a function of frequency in kilohertz. The spectrum for 

gage C-3 at 3.3 cm is similar to that discussed earlier for the dummy load disk. 
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At gage C-l (7.3 cm), the spectrum is more complex, as the transient moves down 

the tube. The echos arriving at gages C-4 (19.6 cm) and C-2 (151 cm) produce 

rapid fluctuations in the spectra, figures 5-12 (c) and 5-12 (d). 

The effects of dispersion are clearly evident in the spectograms, figures 5-13 to 

5-16. At gage C-3 (fig 5-13)) we see the lag in the wave components near the ring 

frequency beginning to form as a little "nub." By the time the wave reaches gage 

C-l (figure 5-14) a well developed "tail" of low frequency energy is evident. 

Echos complicate the spectograms at gages C-4 and C-2. Figure 5-15 clearly 

shows dispersion on the first arrival, and the presence of the echo at 2 milliseconds. 

The lack of a " tail" on the echo is due to the limited length of the time series (see 

fig 5-11 (c)) which has truncated the echo.The echo and the first arrival are closer 

in time for gage C-2 (figure 5-11 (d)) and thus more of the echo energy appears 

in the spectogram, figure 5-16.. The "boomerang" shape of the joint distribution 

is clearly evident on this figure. The echo also displays the increased spreading 

in both frequency and time as a consequence of the transient travelling a greater 

distance than the first arrival. 

Further insight is provided by the three dimensional contour plots of figures 5- 

17 to 5-20. In particular, the magnitude of the components of the joint distribution 

is more apparent in the 3 D contours. The peaks in the frequency domain correlate 

well with the maximum in the spectra of figure 5-12. The growth of the ring 

frequency "tail" is evident in figures 5-17 and 5-18. The stucture of the first 

arrival and the echo at gagaes C-4 and C-2 is evident in figures 5-19 and 5-20. 
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5.3.1    Comparison of Measured and Computed Results 

The theoretical results presented in Chapter 3 were obtained with an idealized 

band-limited frequency spectrum. In order to apply the analysis to the experi- 

mental situation, it is first necessary to simulate the spectrum of the test input. 

A first-order approximation to the experimental input spectrum shown in figure 

5-7 (d) is given by the Gaussian frequency distribution described in equation 3.53 

using a cutoff frequency Fc of 45 kilohertz and a standard deviation of 1.7. The 

predicted waveform of the radial displacement at gage C-l, located at 7.3 cm., 

is shown in figure 5.21. The measured displacement is presented in figure 5-11 

(b). The two waveforms are similar in general aspects. The spectogram for the 

computed waveform shown in figure 5-22 may be compared with the experimental 

spectogram at gage C-l, figure 5-14. The tip of the trailing "tail" occurs at 23.4 

kHz in the caculated spectrogram, and at 23.75 kHz on the experimental plot. 

Both figures indicated a concentration of energy at 38 kHz, and around 55 kHz. 

The maximum frequency component occurs at 89 kHz in figure 5-22, versus 83.6 

kHz for the experiment. 

The major difference is in the overall width in time. The computed spectogram 

is about 0.4 milloseconds in width, whereas the experimental spectogram shows 

a 1 milllisecond duration. The discrepancy is probably due to the approximate 

nature of the Gaussian simulation to the experimental spectrum. 
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CHAPTER 6 

Conclusions 

6.1    Transfer Matrix Method 

The transfer matrix method is a simple and straightforward approach to the 

solution of wave propagation problems for concentric cylindrical systems with fluid 

and elastic components. Models were developed for a fluid cylinder, a fluid tube, 

a thin elastic cylinder, and the external fluid. These models are easily combined 

to represent a complex system comprised of any number of components. 

Practical applications of this method include: (1) Analysis of cylindrical sonar 

transducers, (2) Study of the effects of turbulent boundary layer noise on the 

performance of towed arrays, (3) Analysis of sound transmission and noise reduc- 

tion in aircraft, submarines, piping systems, and other structures which may be 

approximated by elastic cylinders. 

The fluid models developed in this work were studied to examine the prop- 

agation of free waves in the fluid cylinder, the fluid tube, and the external fluid 

for fixed and free boundary conditions. These limiting values are useful in under- 

standing the effects of fluid density, sound speed, and the characteristics of external 

excitation (frequency and axial wavenumber) in multicomponent systems. 

Several examples of composite systems are described in Chapter 4, which be- 

gins with a discussion of the parameters for two fluid problems and the conditions 

under which wave propagation may occur. A detailed study of a fluid tube in an 
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external fluid illustrates the application of the transfer matrix method, and calcu- 

lations and plots of the radial spectral impedance at the inner surface of the fluid 

tube are shown for various combinations of fluid tube thickness and the charac- 

teristics of the two fluids. A practical application in which a fluid tube is used to 

match the impedance of a source to that of the external fluid is described. 

The special case of a system which includes a fluid cylinder is described. It is 

shown that the fluid cylinder has a major influence on the radial spectral impedane 

of the system. 

Two examples of systems including elastic shells are described briefly. 

6.2    Elastic Media 

An extensive study of the response of a semi-infinite thin elastic cylinder to 

axisyrnmetric harmonic and transient excitation is presented. Significant results 

include the transfer matrix model for a thin shell, an accurate method for the 

determination of extensional wave speed in a harmonically driven finite length 

shell, the effect of shell thickness on the roots of the dispersion equation, and the 

dispersion of transient waves in a thin shell. Joint time-frequency distributions 

are shown to be of value in understanding the propagation of transient waves in 

dispersive media. 

6.2.1    Thin Shell Model 

The transfer matrix model of a thin shell is developed for use in modeling mul- 

ticomponent cylindrical systems.  This model is valid for shells which satisfy the 
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assumptions made in the formulation of the Donnell shell equations.The radial 

spectral impedance of a thin shell is shown to be a function of the excitation 

frequency, the axial wavenumber, the shell thickness and radius, and the den- 

sity, elastic modulus and Poisson's ratio of the shell material. The radial spectral 

impedance, that is, the ratio of the differential pressure across the shell to the shell 

radial velocity, is the principal term in the two-port transfer matrix for the thin 

shell. 

6.2.2 Determination of Wave Speed 

A very accurate method was developed for the determination of the extensional 

wave speed in a thin elastic shell. In this approach, the longitudinal resonant 

frequencies are measured for the lower order modes of the finite length shell. The 

wave speed is computed from these frequencies using a model based on membrane 

theory, which is accurate for modal frequencies which are below the ring frequency. 

The extensional wave speed for the experimental shell was 3939 meters/second, 

with a maximum estimated error in the order of 0.2%. 

6.2.3 Effect of Shell Thickness on the Dispersion Equation 

The dispersion equation for a thin shell includes a bending term, ß, which is 

proportional to the ratio of shell thickness to radius. When ß is zero, the shell is 

characterized by membrane theory and there are two real roots in the solution of 

the dispersion equation. These roots define a lower transition frequency, at which 

free wave propagation of flexural waves in a membrane is cut off, and an upper 

transition frequency, at which longitudinal wave propagation cuts on. The upper 
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transition frequency is shown to be the traditional "ring" frequency of the shell. 

The separation of the transition frequencies depends solely on the Poisson's ratio 

for the material. 

When ß is finite, the dispersion equation is of sixth order in terms of the axial 

wavenumber. The bending term causes the dispersion curve of the flexural branch 

to dip to a minimum and then to increase indefinitely (a more sophisticated theory 

which includes rotatory inertia and shear effects is required to correctly predict the 

flattening of the dispersion curve at very high frequencies). The bending effects are 

responsible for the propagation of very slow waves for frequencies in the transition 

zone. 

6.2.4 Transfer Functions in Frequency and Spatial Domains 

Using Fourier and Laplace transform methods, two dimensional transfer functions 

for the radial and axial displacements were constructed with frequency and axial 

distance as arguments. These transfer functions are studied to provide understand- 

ing of the propagation of waves resulting from arbitrary axysimmetric inputs to 

the shell. The near field and far field behavior of these shell displacements are 

inferred from two and three dimensional representations of the transfer functions. 

6.2.5 Time and Frequency Domain Response of the Thin Shell 

The radial and axial displacement responses of the shell as functions of time and 

frequency at arbitrary axial positions are evaluated by inverse Fourier transfor- 

mation of the transfer functions on the frequency variable. A weighting function 

technique is introduced to band limit the transfer functions in frequency. This is 
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shown to be required to prevent aliasing when using discrete versions of the inverse 

Fourier transform, and also due to limitations on the bandwidth of the transfer 

functions which are imposed by the simplifications inherent in the formulation of 

the Donnell thin shell theory. The weighting function may also be tailored to rep- 

resent the spectra of various special temporal inputs, such as discrete frequency 

components. 

Plots of the radial and axial displacements as functions of time clearly show 

the dispersive nature of the waves propagating in a thin shell. Typically, the high 

frequency components arrive first, followed by a long "tail" of slower compononets 

at frequencies in the transition zone. The length of the transient increases at 

greater axial distances, due to the spatial separation of the fast and slow compo- 

nents of the transient wave. A beating effect is evident in the displacements due to 

constructive and destructive intereference between nearby frequency components 

in the transition zone. 

The temporal variation of the spectral components of the transient displace- 

ments are clearly shown by two and three dimensional contour plots of the joint 

time-frequency distribution obtained by application of the spectogram to the time 

waveform. The spectograms are shaped like a boomerang in the t — f plane, with a 

long tail parallel to the time axis representing the slow, low frequency components. 

6.3    Experimental Work 

Chapter 5 describes an apparatus constructed to generate and observe tran- 

sient wave propagation in a thin cylindrical shell.    Gages made from polarized 
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poly-vinylidene fluoride file (PVDF) were found to be an excellent means for the 

measurement of radial displacement. These gages have high sensitivity and do not 

provide a significant mechanical load on the metallic cylinder. 

Mechanical input to the shell was provided by an electrically driven piezoelec- 

tric ceramic disk. An electro-mechanical driver has several advantages over strictly 

mechanical devices (such as blows from an instumented hammer, explosive charges, 

or the impact from projectiles). Precise, repetitive inputs of arbitrary waveform 

are easily obtained from an electronic function generator. This approach enables a 

large volume of experimental data to be obtained in a relatively short time span. 

The ability to accurately repeat the test stimuli enhances the reliability of the 

results as compared to the less controllable mechanical sources. 

The initial test system had very low losses, which limited the available band- 

width. This was corrected by use of an electomechanical dummy load technique, in 

which a second, identical piezoelectric ceramic disk was bonded to the electrically 

driven disk. The second disk was connected to an electrical network which pro- 

vided overall damping to the system. The result was a ten fold increase in system 

bandwidth. 

Extensive measurements of transient wave propagation were made with the 

experimental apparatus. The results are in good agreement with those predicted 

by the theory. The joint time-frequency distribution analysis was shown to be an 

effective tool in understanding wave propagation in dispersive systems. 
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Fig.   1-2   General   Cylindrical   System 

Vj-1 —- 

Inner 
Radius 

Outer 
Radius 

Fig.   1-3   Transfer   Matrix   for   Fluid   Tube 
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Fig.   1-4  Wavevector   Domain 

Fig.   1-5   Wavevector-Frequency   Space 
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K, 

" IK|>K0.   Evanescent  Wave 

K I < K0.   Supersonic 
Wave 

K: 

|K|=  K0,   Propagating Wave 

Fig.   1-6  Wavevector   in   Cylindrical   Coordinates 

Fig.   1-7   Geometry   for   Synthesis   of   Cylindrical   Wave 



147 

Fig.   1-8   Diverging  Cylindrical   Wave 

Fig.   2-1  Cylindrical   Coordinate   System 



Jquo(Kra) 

148 

-5 

Kra 

Fig. 2-2  Modified Quotient of Bessel Functions vs. 
non-dimensional radial wavenumber, Kra 

4JC 

Za(Kra) 

-5 

^ 
1 

) J 

f r r r 

Kra 4-7C 

Fig. 2-3    Spectral Impedance of Fluid Cylinder vs Kra, 
computed for Ka = 1. 
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for a fluid cylinder with free radial boundary, modes 1, 2, and 3 
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Kr*aforS=1.5, 2, and 3. 
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Fig. 2-11, Surface Plot of Parameter A 
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Fig. 2-12, Surface Plot of Parameter B 
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Fig. 2-13, Surface Plot of Parameter C 
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Fig. 2-15 Percent error in the asymptotic expression for the 
roots of the free-free mode in a fluid tube vs mode number. 

Fig. 2-16 Percent error in the asymptotic expression for the 
roots of the fixed-free modes in a fluid tube vs mode number. 
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Fig. 2-17 Percent error in the asymptotic expression for the 
roots of the fixed-free modes in a fluid tube vs mode number. 
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160 

Fig. 2-19 Characteristic equations for free-free and fixed-fixed 
modes of a fluid tube for radii ratios s = 1.5, 2, and 3 
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Fig. 2-20 Characteristic equations for free-fixed and fixed-free 
modes of a fluid tube for radii ratios s = 1.5, 2, and 3 
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Fig 2-21 Pressure and radial velocity vs non-dimensional radius for the first three 
free-free modes in a fluid tube. Solid line = pressure; dashed line = velocity 
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Fig 2-22 Pressure and radial velocity vs non-dimensional radius for the first three 
free-fixed modes in a fluid tube. Solid line = pressure, dashed line = velocity. 
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Fig 2-23 Pressure and radial velocity vs non-dimensional radius for the first three 
fixed-free modes in a fluid tube. Solid line = pressure, dashed line = velocity. 
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Fig 2-24 Pressure and radial velocity vs non-dimensional radius for fixed-fixed 
modes in a fluid tube. Plane wave mode not shown. Solid line = pressure, 
dashed line = velocity. 
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Fig. 2-26  Normalized specific acoustic impedance of external fluid as 
a function of non-dimensional frequency ka for zero axial wavenumber kz. 
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Figure 2-27  Normalilzed specific acoustic impedance of external fluid as a 
function of non-dimensional frequency for four values of axial wavenumber. 
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Fig. 3-1 Branch 1 (solid line) and Branch 2 (dashed line) frequencies for thin elastic 
shell as functions of axial wavenumber. Frequencies in kilohertz, wavenumber in 
1/meters 
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Fig. 3-2 Phase velocity of Branch 1 (solid line) and Branch 2 (dashed line) for thin 
elastic shell as functions of axial wavenumber. Velocities in meters/second, 
wavenumber in 1 /meters 
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Fig. 3-3 Group velocity of Branch 1 (solid line) and Branch 2 (dashed line) for thin 
elastic shell as functions of axial wavenumber. Velocities in meters/second, 
wavenumber in 1/meters 
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Fig. 3-4 Ratio of radial to axial displacements for Branch 1 (solid line) and 
Branch 2 (dashed line) for thin elastic shell as functions of axial wavenumber. 

20-log(|Ratiol.|) 

20-log C Ratio2-| 

-^20 

-40 



171 

x 10 
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10* Fig. 3-6 (b) Root Q2 Variation in Transition Region 
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Fig. 3-7  Magnitude of Q Roots in Transition Zone 
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5 Fig. 3-9 (a) Low Frequency Locus of Q Roots 

-10000      -8000       -6000 -4000       -2000 
Real Part 

4000 

300 

200 

r   100 
03 

Q_ 

«j        0 
c 
03 
C3 

--100 

-200 

-300 
-300 

Fig. 3-9 (b) Low Frequency Locus of S Roots 

S5 

S4 

S3 

S6 

S1 

S2 

-200 -100 100 200 300 

Real Part 



176 

-0.5 

Fig. 3-9 (c) High Frequency Locus of Q Roots 
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Fig 3-10 Magnitude of S Roots in Transition Zone 
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Fig 3-11 (b) Components of S3 in Transition Zone, Beta = 0.1 

Fig 3-11 (c) Components of S3 in Transition Zone, Beta = 0.001 
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Fig 3-11 (d) Components of S3 in Transition Zone, Beta = 0.0001 
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Fig 3-13 (a) Magnitude of W(f,z) vs Distance and Frequency 
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Fig 3-14 (a) Magnitude of U(f,z) vs Distance and Frequency 
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Fig 3-14 (b) 20*!og Magnitude of U(f,z) vs Distance and Frequency 
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Fig 3-15 (a) Magnitude of W(f,z) vs Distance and Frequency 
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Fig 3-15 (b) 20*log Magnitude of W(f,z) vs Distance and Frequency 
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Fig 3-16 (a) Magnitude of U(f,z) vs Distance and Frequency 
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Fig 3-16 (b) Magnitude of U(f,z) vs Distance and Frequency 
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Fig 3-17 (a) Magnitude of W(f,z) vs Frequency (near field) 
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Fig 3-17 (c) Magnitude of W(f,z) vs Frequency 
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Fig 3-18 (b) Magnitude of U(f,z) vs Frequency 
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Fig 3-19 Magnitude of W(f,z) vs Distance at Fixed Frequencies 
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Fig 3-21 Magnitude of W(f,z) vs Distance at Fixed Frequencies 
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Fig. 3-23  Weighted Transfer Function W(f) at Z = 6 cm 
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Fig. 3-25  Radial Displacement W(t) at Z = 6 cm 
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Fig. 3-27  Spectogram countour plot of W(t) at Z = 6 cm 
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Fig. 3-28 Spectogram countour plot of U(t) at Z = 6 cm 
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Fig. 3-29 3-D Spectogram Contour Plot of W(t) at Z = 6 cm 
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Figure 4-1 Normalized Spectral Impedance of a Fluid Tube in an External Fluid. Impedance vs 
Wavenumber for radius ratio s = 1 (solid curve), 2 (dotted curve) and 4 (dashed curve). 
Sound Speed Ratio Re = 2; Fluid impedance ratio Rz = 2 
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Figure 4-2 Normalized Spectral Impedance of a Fluid Tube in an External Fluid Impedance vs 
Wavenumber for fluid impedance ratios Rz = .5 (solid curve), 1 (dotted curve) and 2 (dashed 
curve). Sound speed ratio Re = 2; ratio of radii: s = 2 
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Figure 4-3 Normalized Spectral Impedance of a Fluid Tube in an External Fluid. Impedance vs 
Wavenumber for sound speed ratios Re = 0.1 (solid curve), 1 (dotted curve) and 10 (dashed 
curve). Ratio of fluid impedance: Rz = 1.5; ratio of radii: s = 2. 
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Fig. 5-2 Admittance of Disk Near First Radial Mode 
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Fig. 5-4 Complex Admittance Locus of PZT Disk 
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Fig. 5-5 Early Spectrum at Gage C-l 
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Fig. 5-7 Performance Improvement with Dummy Load 
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Fig. 5-8 Difference between computed and measured modal frequencies (in kHz) vs mode 
number for the first eight modes. Solid curve from the membrane model, dashed curve 
represents a free-free bar. Calculated values based on wave speed of 3939 meters/second. 

Fig. 5-9  Standard deviation of the difference between measured and computed modal 
frequencies (in Hz) as a function of assumed wave speed. Solid curve is model, dashed 
curve is free-free bar. 
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Fig. 5-10 Difference between computed and measured modal frequencies vs mode number 
expressed as a percentage of the measured frequency. Model results indicated by "x", free-free 
bar by"+". 
Caclulated modal frequencies based on extensional wave speed of 3939 meters/second 
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Fig. 5-11 Radial displacements as functions of time at four axial locations. 
Plots show amplified outputs of circumferential gages (volts) vs time (ms). 
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Fig. 5-12 Spectra of radial displacements at four distances. Frequencies in kilohertz 
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Fig. 5-13 Spectogram contour plot of waveform at gage C-3 

Fig. 5-14 Spectogram contour plot of waveform at gage C-1 
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Fig. 5-15 Spectogram contour plot of waveform at gage C-4 

Fig. 5-16  Spectogram contour plot of waveform at gage C-2 
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Fig. 5-17 3 D Contour plot of spectogram of waveform at gage C-3 
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Fig. 5-18 3 D Contour plot of spectogram of waveform at gage C-1 
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Fig. 5-19 3 D Contour plot of spectogram of waveform at gage C-4 
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Fig. 5-20 3 D Contour plot of spectogram of waveform at gage C-2 
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Fig. 5-21   Computed waveform at gage C-1 
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Table 2-1 

Roots of the characteristic equation for free wave propagation in a fluid tube 
with free-free radial boundaries, for four values of radii ratio s. Columns labeled 
"Root()" show the exact value of the root for the mode indicated. Columns 
labeled "E ()" show the error between the asymptotic estimate and the exact 
root, expressed as a percent of the exact root. 

Mode 
Number s=1.5 s = 2 

m 

9_ 
10 

Rootl 
m El 

m 

6.27 0.207 
12.56 0.053 
18.845 0.023 
25.129 0.013 
31.413 0.008 
37.697 0.006 
43.98 0.004 

50.264 0.003 
56.547 0.003 
62.831 0.002 

Root2 
m E2 

m 

3.123 0.599 
6.273 0.156 
9.418 0.07 
12.561 0.039 
15.704 0.025 
18.846 0.018 
21.988 0.013 
25.13 0.01 

28.272 0.008 
31.414 0.006 

Mode 
Number 

s = 3 s = 5 

m 

10 

Root3 m E3 
m 

1.548 1.465 
3.129 0.402 
4.704 0.183 
6.277 0.104 
7.849 0.067 
9.42 0.047 
10.992 0.034 
12.563 0.026 
14.134 0.021 
15.705 0.017 

Root4 
m E4 

m 

0.763 3.001 
1.557 0.889 
2.346 0.419 
3.134 0.242 
3.921 0.157 
4.707 0.11 
5.493 0.081 
6.279 0.063 
7.065 0.05 
7.851 0.04 
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Table 2-2 

Roots of the characteristic equation for free wave propagation in a fluid tube 
with free boundary at inner radius and fixed boundary at outer radius, for four 
values of radii ratio s. 

Mode 
Number 

s=1.5 s = 2 

m 

10 

Rootl 
m El m 

9.344 0.865 

15.66 0.307 

21.957 0.156 

28.248 0.094 

34.536 0.063 

40.822 0.045 

47.108 0.034 

53.393 0.026 

59.678 0.021 

65.962 0.017 

Root2 E2 m 
4.645 1.455 

7.814 0.513 

10.967 0.26 

14.115 0.157 

17.261 0.105 

20.405 0.075 

23.549 0.056 

26.692 0.044 

29.835 0.035 

32.977 0.029 

Mode 
Number s = 3 s = 5 

m Root3 
m 

E3 
m 

2.303 2.326 

3.895 0.819 

5.475 0.416 

7.051 0.251 

8.625 0.168 

10.198 0.12 

11.77 0.09 

13.342 0.07 

14.914 0.056 

16.486 0.046 

Root4     E4 
m        m 

1.139 3.408 

1.939 1.275 

2.731 0.654 

3.52 0.397 

4.308 0.266 

5.095 0.191 

5.882 0.144 

6.668 0.112 

7.455 0.09 

8.241 0.073 
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Table 2-3 

Roots of the characteristic equation for free wave propagation in a fluid tube 
with fixed boundary at inner radius and free boundary at outer radius, for 
four values of radii ratio s. 

Mode 
Number s= 1.5 s = 2 

m Rootl 
m 

El 
m 

3.401 -7.636 
9.52 -0.998 
15.766 -0.367 
22.033 -0.189 
28.307 -0.114 
34.584 -0.077 
40.863 -0.055 
47.143 -0.041 
53.424 -0.032 
59.706 -0.026 

Root2 
m 

E2 
m 

1.794 -12.439 
4.801 -1.838 
7.909 -0.692 
11.035 -0.357 
14.168 -0.217 
17.304 -0.146 
20.442 -0.105 
23.58 -0.079 
26.72 -0.061 
29.86 -0.049 

Mode 
Number s = 3 s = 5 

m 

10 

Root3 
m 

E3 
m 

0.959 -18.129 
2.435 - 3.238 
3.978 -1.275 
5.535 - 0.669 
7.098 -0.409 
8.663 -0.276 
10.23 -0.198 
11.799 -0.149 
13.367 -0.116 
14.936 -0.093 

Root4 m E4 
m 

0.515 -23.706 
1.246 - 5.483 
2.009 -2.264 
2.783 -1.227 
3.561 - 0.763 
4.342 -0.519 
5.124 -0.375 
5.907 - 0.283 
6.691 -0.221 
7.475 -0.178 



Table 2-4 

Roots of the characteristic equation for free wave propagation in a fluid tube 
with fixed boundaries at both inner and outer radii, for four values of 
radii ratio s. 
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Mode 
Number s= 1.5 s = 2 

m Rootl 
m 

El 
m 

6.322 -0.609 
12.586 -0.157 
18.863 -0.07 
25.143 -0.04 
31.424 -0.025 
37.706 -0.018 

43.988 -0.013 
50.27 -0.01 

56.553 -0.008 
62.836 -0.006 

Root2 m E2 m 

3.196 -1.693 
6.312 -0.46 
9.444 -0.208 
12.581 -0.118 
15.72 -0.076 

18.859 -0.053 

22 -0.039 
25.14 -0.03 

28.281 -0.023 
31.422 -0.019 

Mode 
Number s = 3 s = 5 

m 

10 

Root3 m E3 
m 

1.636 -3.957 
3.178 -1.161 
4.738 -0.54 
6.303 -0.309 
7.87 -0.2 
9.438 -0.139 
11.007 -0.103 
12.576 -0.079 
14.146 -0.062 
15.716 -0.051 

Root4 m E4 
m 

0.847 -7.253 
1.61 -2.455 

2.385 -1.211 
3.164 -0.712 
3.945 -0.466 
4.728 -0.328 
5.511 -0.243 
6.295 -0.187 
7.079 -0.148 
7.863 -0.12 
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Table 5-2 

Comparison of measured and calculated modal frequencies (in Hz) 

Measured modal 
frequencies 

Modal frequencies 
calculated from 
membrane model 

Modal frequencies 
calculated for free- 
free bar 

meas 

506.38 

1014.937 

1523.59 

2029.92 

2535.514 

3042.169 

3543.690 

4044.796 

f model 

506.834 

1013.569 

1520.106 

2026.346 

2532.185 

3037.519 

3542.236 

4046.225 

[nd 

506.85 

1013.7 

1520.55 

2027.399 

2534.249 

3041.099 

3547.949 

4054.799 

The calculated modal frequencies were computed using an extensional 
wave speed of 3939 meters/second. 
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