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Abstract

The optical aberrations induced by mixing layers of dissimilar gases are recorded and

analyzed in order to characterize the spatial and temporal properties of the flow. Laser light

was propagated through a mixing layer of Helium and Nitrogen gas, having velocities of 8.5

m/sec and 1.5 m/sec, respectively. The light was propagated in a direction perpendicular to the

plane of the mixing layer. The mixing layer was evaluated in two experimental regimes: free

turbulent mixing, where the mixing layer spreads into the surrounding air; and channel flow,

where the mixing layer is confined to a rectangular channel. The optical perturbations induced

by the mixing layer were recorded using a lateral shearing interferometer and a point spread

function camera. Autocorrelation functions and structure functions were computed from the

spatially resolved phase surfaces obtained using the shearing interferometer. For both the

free and channel flows, the phase fluctuations were not wide-sense stationary. Consequently,

the Strehl ratio predicted by traditional aero-optical models did not agree with experimental

measurements except in regions of the flow where the Reynolds number was low. However,

the phase fluctuations were locally homogeneous. A two-dimensional power law model was

developed, analogous to the one-dimensional Kolmogorov model for isotropic turbulence.

This model predicted a relative Strehl ratio which closely matched experiment throughout

the flow. In a second series of experiments, the gas velocities were reduced to 4.5 m/s and

1.0 m/s for the Helium and nitrogen gas, respectively. The flow orientation was rotated

such that the laser light propagated in a direction parallel to the plane of the mixing layer.

Simultaneous high-speed measurements of shadowgraphs and wavefront slopes were used to

assess the applicability of Taylor's frozen flow hypothesis to the mixing layer. Comparison of

temporal and spatial correlation functions indicated that frozen flow is at best limited to time

scales on the order of 1 ms. For this flow orientation the phase fluctuations were found to be

nonhomogeneous for all regions analyzed.

xi



CHARACTERIZATION OF SPATIAL AND TEMPORAL

ANISOTROPY IN TURBULENT MIXING LAYERS

USING OPTICAL TECHNIQUES

I. INTRODUCTION

1.1 Overview

The characterization of interactions between optical waves and fluid flow is a

difficult problem for optical systems which require light propagation through complex flow

fields. Light waves which pass through turbulent mixing layers are aberrated by index-of-

refraction fluctuations in the flow [48]. These index-of-refraction fluctuations arise from

random spatial and temporal fluctuations in the gas density. The phase of an optical wave

that propagates through a turbulent region will be aberrated, degrading the performance

of imaging and beam projection systems. Imaging through aircraft optical windows, for

instance, is degraded by turbulence fluctuations of the mass density in the boundary layer on

the window [46], where the index-of-refraction, n , varies proportionally to the mass density

by the relationship:

n=1+G p  (1)
Ps

where G is the Gladstone-Dale constant, p is the mass density in the field, and p, is the

mass density at standard conditions. These randomly distributed index variations induce

phase perturbations in a transmitted optical field which may result in bore-sight and centroid

errors for tracking systems, blur and identification problems for imaging systems, and defocus

and jitter for directed energy systems [21], any of which can substantially impact mission

effectiveness.

Adaptively correcting for the random phase fluctuations requires an understanding of

the spatial and temporal characteristics of the turbulence; hence, a great deal of research



has been dedicated to developing various techniques for visualizing the turbulent flow and

predicting the optical effects. Examples of such techniques are shadowgraphs, schlieren,

laser light sheets, thin-beam raster scan, holography, and wave front sensors, such as shearing

interferometers and Hartmann sensors.

The problem of optical propagation through turbulence has been addressed for two gen-

eral applications: (1) imaging and laser beam projection through turbulence in the extended

free atmosphere, for example from a ground-based telescope, and (2) imaging and laser beam

projection through boundary layer turbulence generated near aerodynamic surfaces, for exam-

ple from a turret-mounted telescope on an aircraft (the aero-optical problem). Understanding

the optical effects of turbulence requires that the random nature of the turbulence be charac-

terized. However, a characterization appropriate for modeling atmospheric turbulence may

be completely inappropriate for modeling aerodynamic turbulence. For example, assuming

statistical isotropy to at least second order has been shown to be valid for atmospheric imaging

scenarios [26] and is often invoked as a means to reduce four-dimensional problems to one-

dimensional problems, allowing for a simpler analytical solution [6, 13]. Current analytical

models in use today for aero-optical scenarios attempt to make similar simplifications, often

with dubious success [15].

The purpose of this research is to develop a more thorough understanding of the statistical

properties of complex flow fields, such as that encountered in boundary layer turbulence. A

widely-accepted laboratory simulation of such a flow is obtained by the mixing of dissimilar

gases with high density ratios, such as Helium and Nitrogen [2, 3, 5, 55]. For this research,

the optical aberrations induced by the He/N2 mixing layer are evaluated for evidence of

stationarity. Both the atmospheric and aero-optical models are tested for applicability. A new

statistical model of the optical aberrations induced by the mixing layer is introduced. The

model is based on Kolmogorov-like properties observed in the mixing layer. In addition,

temporal properties of the mixing layer are investigated for applicability of frozen flow

assumptions.
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1.2 Historical Background and Motivation

In the late nineteenth century, Osborne Reynolds published a series of observations

on the transformation of laminar flow of fluids in pipes to turbulent flow. Reynolds found

the fluids transition according to a ratio of the inertial and viscous forces acting within the

fluid, a relationship which was later named the 'Reynolds Number' of the flow. The inertial

forces tend to contribute to the transfer of energy in the flow from large-scale components of

motion to smaller-scale components, leading to the emergence of small-scale inhomogeneities,

characteristic of turbulent flow. Meanwhile, the viscous forces tend to smooth the small-scale

inhomogeneities, eventually leading to the transfer of kinetic energy to heat dissipation in the

fluid [30]. Hence, flows with sufficiently low Reynolds numbers are usually laminar, while

those with sufficiently high Reynolds number are turbulent.

The concept of inertial forces in a fluid giving rise to a hierarchy of small-scale in-

homogeneities, coupled with viscous forces reducing the smallest scales of motion to heat

dissipation was summarized by Lewis Richardson [36] in this simple poem, published in

1922:

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity
(In the molecular sense)

In another significant contribution to the early theory of turbulence, Reynolds suggested

the hydrodynamic quantities in the turbulent flow might be divided into regular and irregu-

lar components, recognized today as the mean and fluctuating components. Additionally,

Reynolds introduced the concept of homogeneity and isotropy in the small-scale fluctuating

components of the fluid dynamics.

Following Reynolds early work, a vast amount of research was dedicated to under-

standing the mechanics of turbulence. Noted scientists such as Ludwig Prandtl and Theodor

von Karmon, one of Prandtl's students, formulated semi-empirical theories of turbulence.
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These formulations were derived through extensive measurements in pipe flow, channel flow,

and free turbulent flow, used to predict the outcome of subsequent experiments under similar

conditions [30]. The turbulence was theorized to be analogous to molecular chaos; hence,

properties such as mixing length, turbulence intensity, viscosity, thermal conductivity, and

diffusion were used to describe the transfer of momentum and heat through the large-scale

components of motion in the flow.

Today the study of turbulent flow fields may be divided into two distinct perspec-

tives. One approach views the turbulence as being composed of 'building blocks' of quasi-

deterministic vortex structures. Moon [31] makes the following assertion:

In the physical sciences, the paragon of chaotic behavior is turbulence. Thus,
a rising column of smoke or the eddies behind a boat or aircraft wing provide
graphic examples of chaotic motion. The fluid mechanician believes that these

events are not random because the governing equations of physics for each fluid
element can be written down. A great deal of excitement in nonlinear dynamics
today is centered around the hope that this transition from ordered to disordered
flow may be explained or modeled with relatively simple mathematical equations.

The evidence of large-scale coherent structures at high Reynolds numbers was confirmed

in early experiments by Brown and Roshko [2]. Consequently, significant effort has been

dedicated to modeling turbulence as a purely deterministic process. One extreme example

of this approach, which treats transition from laminar to turbulent flow in terms of chaotic

transitions may be found in Lee [24]. Significant contributions have been made by investigators

treating mixing layers as a deterministic process. Applying frozen flow assumptions, thin beam

transmissions at high pulse rates through the mixing layers have provided valuable insight

into the mixing transition effects, and characteristics of streamwise and spanwise coherent

structures [21, 55].

A contrasting approach, termed the 'classical theory' [ 18], views turbulence as a random

process, decomposed into a mean and fluctuating constituent which is analyzed statistically.

Monin and Yaglom [30], both students of A. N. Kolmogorov, described the nature of turbulence

as follows:
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The only possibility in the theory of turbulence is a statistical description, based
on the study of specific statistical laws, inherent in phenomena en masse , i.e.,
in large ensembles of similar objects. Thus only statistical fluid mechanics,
which studies the statistical properties of the ensembles of fluid flows under
macroscopically identical external conditions, can provide a turbulence theory.

Many significant contributions have been made using a statistical approach to turbu-

lence. The Kolmogorov model is firmly rooted in the analysis of optical propagation through

the turbulent atmosphere and has been verified using both laboratory measurements and di-

rect airborne measurements of the atmosphere [30]. Additionally, an abundance of airborne

measurements of propagation loss through boundary layer turbulence has been collected and

compared with statistical models [23, 32, 40, 48]. These models have shown various degrees

of success, limited primarily to the validity of the isotropy assumptions [15].

For the present research, the turbulent mixing layers are treated as a random process.

The clear persistence of orderly structures in the mixing layer cannot be ignored. In fact, this

research will capitalize on the presence of the coherent structures, through flow visualization

techniques, to estimate the evolution of the mixing layer. However, it's further assumed that

a sufficiently large ensemble of independent measurements will permit isolation of the deter-

ministic and random features in the flow, such that a statistical analysis may be performed.

No assumptions on stationarity are made, rather stationarity is tested on measurement ensem-

bles. A detailed discussion of the statistical treatment of the experimental data is presented in

Chapters III and IV.

Previous work at the Air Force Institute of Technology set the stage for the research

presented here. In 1992, Captain Eric Magee conducted statistical calculations on phase aber-

rations resulting from the propagation of plane waves through heated jets of air. The phase

surfaces were obtained using the same lateral shearing interferometer which was used for the

current research. Captain Magee concluded that the random phase fluctuations resulted in

phase structure functions which were approximately isotropic and could therefore be modeled

by Kolmogorov statistics [26]. A more detailed description of Kolmogorov turbulence and

phase structure functions is in Chapter II. Captain Magee's research was a testing ground for
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the lateral shearing interferometer for AFIT. In addition, his general technique for evaluating

isolated phase points on a 'grid' was followed for the current research. In 1994, Captain

Dan Jewell designed and fabricated the dual-chamber turbulence generator which was used

in the current research and is described in detail in Chapter III. Captain Jewell conducted

visualization experiments for a free-flowing mixing layer of Helium and Nitrogen gas. The vi-

sualizations consisted of orthogonal views of the mixing layer, represented by shadowgraphs,

interference images from the shearing interferometer cameras, and reconstructed phase sur-

faces from the shearing interferometer system [20]. In concert, these two research projects

provided the background knowledge and necessary resources to develop a novel method to

better understand the anisotropic properties of turbulent mixing layers.

1.3 Problem Statement and Scope

Turbulence-induced optical phase distortions have been studied and modeled exten-

sively. To reduce the complexity of the four-dimensional problem, homogeneous, isotropic,

and even ergodic statistics are assumed. These assumptions have been shown to be valid

for atmospheric propagation in most cases; however, the same assumptions fail for propaga-

tion through aero-optical turbulence, which involves shear layers, boundary layer separation,

shock layers, and the more 'benign' inviscid flow region. In spite of the complexity resident

in aero-optical flows, assumptions on homogeneity are typically applied for lack of a better

model [15]. A better measurement and analysis technique is needed for these complex flows;

i.e., one that can quantify the anisotropy and use this statistical property to generate a more

reliable analytical model of the optical aberrations encountered in these complex flows.

This research investigates the effects of light propagation in an aero-optical environment

via experimental measurements of turbulent mixing layers in an optical laboratory. A shear

layer mix of Helium and Nitrogen gas provides the complex flow field to evaluate. The mixing

layer is evaluated in a free flow environment, as well as in a confined channel flow. In total,

over 20,000 images were recorded for analysis. For both flow regimes, the random phase

fluctuations are assessed for wide-sense stationarity and stationarity in first increments. The
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research identifies Kolmogorov properties in an anisotropic flow, resulting in a new method

to model the turbulent mixing layer.

1.4 Summary of Key Results

This research uses a variety of techniques for analyzing the optical effects induced by

turbulent mixing layers. A summary of the key results from this research follows:

1. Statistical autocorrelation functions of the phase fluctuations are reported for a free tur-

bulent Helium/Nitrogen mixing layer. These functions were not wide-sense stationary

for any region in the flow; thus, application of the isotropic aero-optical model was

shown to be invalid.

2. Phase structure functions are reported for the free turbulence and are shown to be

locally homogeneous for all regions in the flow. Orthogonal components of the average

structure functions are used to generate a two-dimensional power law model for the

structure function of the phase aberration, analogous to the Kolmogorov five-thirds

power law for isotropic turbulence.

3. Relative Strehl ratio predictions, accounting for the statistical anisotropy, are derived

from the free turbulence model. The traditional aero-optical model is shown to be a

poor estimate of optical degradation at high Reynolds numbers in comparison to the

anisotropic model.

4. Results are reported on a Helium/Nitrogen mixing layer in a channel flow, similar to

items 1-3 above. These mixing layers are also shown to be locally homogeneous, but

not wide-sense stationary, and a two-dimensional power law model for the structure

function of the phase aberration is developed. The model predicts a cross-over region

in the flow for orthogonal components of the density fluctuations. The cross-over

indicates a region in the flow where the optical degradation in the streamwise direction

surpasses that of the cross stream direction, indicative of growth of the mixing layer

7



width coupled with molecular mixing of the gases. This region is shown to coincide

with the maximization of the mixing layer width in the channel.

5. For the channel flow, relative Strehl ratios are computed from measured average point

spread functions. The Strehl ratios predicted from the isotropic aero-optical model are

shown to match experiment only in regions close to the exit nozzle of the turbulence

generator, where the Reynolds number is low. The anisotropic model developed in this

research is shown to match closely with experiment for all locations in the flow.

6. Using the anisotropic model developed in this research and interferometric flow visual-

ization images of the flow, a technique is demonstrated for estimating fluid parameters

such as mixing layer width, local Reynolds number, and mixing layer experimental

coefficients.

7. High-speed slope measurements and frame-registered shadowgraphs are reported for

the channel flow with the mixing layer plane oriented parallel to the laser propagation.

A technique for computing an array of correlation coefficients over a two-dimensional

sliding window for various temporal separations is introduced. From the peaks of the

coefficient arrays, the temporal scale for frozen flow is determined. The temporal scales

are on the order of 4 ms for the shadowgraphs and 1 ms for the wavefront phase.

8. High-speed slope measurements and frame-registered point spread functions are re-

ported for the channel flow with the same mixing layer orientation. With this orien-

tation (orthogonal to the results in items 1-6 above) the phase structure functions are

shown to be nonhomogeneous. Relative Strehl ratios are computed from the average

point spread functions, with a minimum value substantiating the anisotropic model

previously developed in this research.

1.5 Dissertation Organization

The dissertation is organized into six chapters. Chapter II presents an overview of a

generally accepted aero-optical model, highlighting the basic assumption of statistical isotropy

inherent in the model. This is followed by a description of the Kolmogorov model for

8



atmospheric turbulence, also noting typical assumptions. Chapter III presents experimental

results performed on a free turbulent mixing layer of Helium and Nitrogen gas at fixed

velocities, interfacing with the surrounding ambient air. A lateral shearing interferometer

is used to obtain phase measurements with high spatial resolution. This chapter describes

the experimental setup, statistical calculations and homogeneity assessment, and some novel

modeling parameters which enable predictions of a relative Strehl ratio. The ratio is relative

because it relates the mixing-layer-induced aberrations to the experimental imaging system,

rather than a non-measurable, diffraction-limited system. This relative Strehl ratio is then

related to the Reynolds number in the flow. Chapter IV presents experimental results acquired

for the same Helium/Nitrogen mixing layer, this time confined within a rectangular channel.

Again, the shearing interferometer is used to obtain the phase measurements. Similar statistical

calculations and modeling parameters are presented. In these experiments, the point spread

function is also measured as an independent source for the Strehl ratio. While both the free

flow and channel flow experiments are modeled similarly, the techniques developed in this

research clearly distinguish the anisotropy characteristics in the two flows, a capability not

previously demonstrated with non-invasive measurements. In Chapter V, the channel flow

is revisited, this time using high-speed cameras. Phase measurements are obtained using a

two-dimensional Hartmann wave front sensor. Simultaneous, high-speed shadowgraphs are

recorded for visualization of the flow. The two sets of measurements are evaluated for frozen

flow using a novel technique of computing correlation coefficient arrays over a sliding two-

dimensional window. Finally, Chapter VI summarizes the findings and offers suggested areas

for further research.
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II. TURBULENCE MODELS

This chapter presents an overview of existing models for various turbulent media.

First, a generally accepted aero-optical model is described, highlighting the basic assumption of

statistical isotropy inherent in the model. This is followed by a description of the Kolmogorov

model for atmospheric turbulence, also noting typical assumptions. Finally, the notion of

a 'frozen flow' assumption is addressed with a discussion of its implications on turbulence

measurements.

First, some basic definitions regarding stationarity are presented, using the general

space-time correlation function as an example. The definitions are consistent with V.I.

Tatarski's, considered the standard in the field of optical propagation through turbulence [13].

Consider a random signal, u, with spatial coordinates, (x, y). The general space-time

autocorrelation function (ACF), R.,is given by:

7Zuu(Xl, yI, t1 ; x2 , Y2, t2) = {U(Xl, Yl, t)u*(x2,Y2, t2) } (2)

where E { } is the expected value operator, denoting a statistical average. For the moment,

we consider a special case of Eq. (2) where tl = t 2, the spatial ACE The temporal ACF (i.e.,

where (xi, Yi) = (x 2, Y2) and Eq. (2) is evaluated temporally) is discussed with regard to

frozen flow approximations in Section 2.4. For the spatial ACF, homogeneity implies that

Ru.(xl, Yl; x 2, Y2) depends only on the vector separation of (xj, yj) and (x 2, Y2). In this

case, the ACF reduces simply to R7uu(Ax, Ay), where Ax = X2 - x, and Ay = Y2 - Yl.

Wide-sense stationarity, in this context, is synonymous with homogeneity [22]. A more

restrictive condition is one of isotropy where uu (xl, Yl; x 2, Y2) depends only on the scalar

separation of (xi, Yi) and (x2, Y2). Isotropy may be viewed as circular symmetry of the two-

dimensional ACF, which then reduces Eq. (2) to a single dimensional function, Ruu (r), where

r = _(Ax)2 + (Ay) 2. The most restrictive condition is one of ergodicity, where the ACF

for any single realization of u is representative of the statistical ACF. The hierarchy of types
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Figure 1. The Hierarchy of Classes of Random Processes

of relevant random processes is illustrated in Fig. 1, analogous to Goodman's hierarchy where

an inner circle is a subset of the outer ones [13. Note that isotropy is a necessary condition

for ergodicity, and ergodicity is often imposed by necessity if multiple realizations of a

signal are unavailable or inconvenient (for example, see Verhoff[51] for modeling turbulent

boundary/shear layers).

Some useful properties of a homogeneous ACF are [13:

I. 7Z.-(0, 0) =g -Fu'(X, y)
2. 1 Rn,(Ax, Ay) I < u (0, 0)

3. Ru(-A, -AY) = R"(JA, AY)

The first property comes directly from the definition in Eq. (2). This mean square value

is a measure of the total power in the process, which sets the upper bound on the ACF as

indicated by property two. The third property reflects the Hermitian symmetry of the ACF.

These properties will be useful when assessing the ACF results for the free flow and channel

flow measurements.
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2.1 Aero-Optical Model

Airborne-platform flow fields induce three general classes of optical aberrations at

a sensor: Strehl loss, beam spread, and beam tilt [11]. The primary model used in aero-optical

applications for wave front phase variance (rad2) is given by [10, 15, 44, 49]

=2G2k2jUT2F(z)e(z)dz, (3)

where the subscripts 0 and p denote phase and density, respectively; G is the Gladstone-Dale

constant; k= (2ir/A) is the wave number for optical wavelength, A; o0, (z) is the variance

of the density fluctuations in the direction of beam propagation; 4, (z) is the turbulence scale

length in the direction of propagation; and 8 is the path length through the turbulence. For

low-speed mixing of dissimilar gases, 8 is the mixing layer thickness, which is a function

of the steamwise location in the flow [5]. The optical waves are assumed to propagate in

the z-direction with negligible refraction [15]. The applicability of the refractionless limit

approximation is addressed later in the chapter.

A derivation of Eq. (3), including typical assumptions, is presented here. The derivation

follows from first-order geometrical optics, where the index fluctuations are assumed to induce

negligible ray deflection over, for example, a thin boundary layer [49]. Thus, the random phase

shift at a point (x, y) is related to the random index fluctuations, n' by

O(x, y) = k fo n'(x, y, z)dz. (4)

The index fluctuations and density fluctuations, p', are related by the Gladstone-Dale law,

n'(x, y, z) = Gp'(x, y, z), (5)

so that, upon substitution into Eq. (4) we have

¢(x, y) = Gk j p'(x, y, z)dz. (6)
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The statistics of the phase fluctuations may be characterized by the spatial ACF, defined by

Eq. (2), for the random variable O(x, y) and the special case where t1 = t 2. Combining

Eq. (2) and (6) results in

RO(xl, yI; x 2 , Y2) G2k2j R p,(Xi,y, z; 2,y 2,z 2 )dzldz2 , (7)

where Rp, (xi, Y, z1 ; x 2, Y2, z 2) is the ACF of the density fluctuations. For a process which

is wide-sense stationary in the (x, y) plane, Eq. (7) reduces to [44]

TZ(Ax, Ay) =G 2k2 j j , (Ax, Ay; z1 , z2)dzidz2, (8)

where Ax = X2 - x, and Ay = Y2 - Yl. Previous experimental results [44] indicate that,

for the variable substitutions

z1 + z2
u - and v = z 2 - z1 , (9)2

Rp, (Ax, Ay; z1 , z2 ) can be represented as p, (Ax, Ay; u, v) which, for a zero-mean process,

is of the form

7ZP (XAy UV)= P2 ( ) xp -( AX 2 + y )2 + V 2 (0-(U ) .y (U)o

The terms lx(u), ly(u), and l(u) in Eq. (10) are the turbulence scale lengths in the x, y, and

z directions, respectively. Applying the variable substitution to Eq. (8) yields

7Ro(Ax, Ay) = G2k2 {612 J2 TR (Ax, Ay; u, v)dudv

fo f 26u)

-1 -2(6-u) p,(Ax, Ay;u,v)dudv}. (11)
JS/2Jf 2(8-U)J
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Finally, combining Eq. (10) and (11), assuming that 6 > 1 we obtain Eq. (3) [44],

RO(0, 0) = o 2G2k2 Orp,(z)ez(z)dz. (12)

Hence, applying the model given by Eq. (3) requires assumptions on wide-sense stationarity

and scale size of the turbulence. For the turbulent mixing layers generated in this research, an

estimate of the spatial ACF for the random phase fluctuations was computed. The results for

this calculation are presented in Chapters III and IV.

2.2 Atmospheric Model

The Kolmogorov model for turbulence is widely accepted in the analysis of optical

propagation through the turbulent atmosphere [13, 30]. For isotropic turbulence, the relative

abundance of eddies with dimensions L = 2r/, where r, is the wavenumber scalar, can be

described by the power spectral density (PSD) for index fluctuations, 4n (r,), which is given

by
• 2 -11

= 0.033C, 3-, (13)

where C2 is called the structure constant of the index fluctuation and is a local measure of

the strength of the fluctuations. In atmospheric turbulence, the phase structure function of the

random process 0(x, y), may be used to characterize the effects of refractive index fluctuations

on optical system performance. The phase structure function is defined by

D¢(xi,Y1 ;X2,Y 2) = E {[1(x1, yi) - O(x 2,Y2)]2} . (14)

When the random phase O(x, y) is stationary in first increments, the phase structure function

reduces to a two-dimensional function, depending only on the coordinate differences Ax and

Ay. Additionally, when the phase variation is a zero-mean, Gaussian random process; e.g. in

the turbulent atmosphere, the average optical transfer function (OTF), for spatial frequency
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variables 1/, and vy, is expressed in terms of the structure function as [13]

R8 (v., Vy) = exp { D¢(A f Vu, /fy)}, (15)

where f is the imaging system focal length. In addition, the average OTF of the imaging

system, !(v, vy), may be expressed as the product [ 13]

W(v., vy) = 7o(v, vy)Hs(v., v,), (16)

where 7HO is the OTF of the imaging system in the absence of the turbulence. Thus, evidence of

stationarity in first increments, a less restrictive case than wide-sense stationarity, is sufficient

for generating tractable mathematical expressions for the average OTF of the random turbulent

field. The average OTT provides predictions for the performance of the optical imaging system

in the presence of the turbulent field. When the phase fluctuations are statistically isotropic,

Eq. (14) reduces to a one-dimensional function, D o (r), where r = V(Ax) 2 + (Ay) 2 . In

regions where C2 is constant, the Kolmogorov model for the PSD in Eq. (13) results in a

phase structure function given by [13]

(27) 2C2 5/De(r) = 2.91 -- C zr 5/3 , (17)

where z is the propagation path length within the turbulence. Eq. (17) is referred to as

the Kolmogorov five-thirds power law. The model has been verified using both laboratory

measurements, and direct airborne measurements of the atmosphere [30]. More recently,

results have been reported on phase structure function estimates using wave front phase

measurements for laboratory-generated, free-turbulent heated air [27]. These experiments

were designed to simulate atmospheric turbulence. The conclusion was that statistical isotropy

was a valid assumption in the free atmosphere; hence, the phase structure functions could

be modeled by the Kolmogorov five-thirds power law. In contrast, the present research

investigates the optical phase effects induced by turbulent mixing layers. The molecular
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mixing of dissimilar gases generates large density fluctuations in the flow, not present in the

low-velocity heated air [45]. These density fluctuations, in turn, induce anisotropic phase

fluctuations.

It should be noted that the Earth's atmosphere is not entirely isotropic. Measurements

from space platforms have identified horizontally stratified non homogeneities of the refractive

index in regions of the stratosphere and upper troposphere. These regions cannot be accurately

modeled using Kolmogorov statistics due to the strong anisotropy [ 14]. In the present research,

a technique for characterizing the anisotropy of laboratory-generated, turbulent mixing layers

is introduced. This technique may prove to be equally valid for the anisotropic regions of the

atmosphere.

Imaging system performance is often expressed in terms of the average point spread

function (PSF) and the Strehl Ratio (SR). The average PSF is defined as [13]

9(x, y) = F - ' {(vx, vY)}, (18)

where Y-t is the two-dimensional inverse Fourier transform operator. The SR is defined as

the ratio of the on-axis intensity of the turbulence-aberrated beam, I, to the on-axis intensity

of an unaberrated beam, 10. Hence, for simplicity, the SR may be computed from the PSF by

I 9(xa, y ) (19)

10 so (X, Y.)

where the subscript, a, refers to the on-axis point, and s0 (x, y) is the PSF of a diffraction-

limited system. Note that from Eqs. (18) and (19), the SR may be equivalently expressed as

the normalized volume under the OTF of the aberrated system; that is [12]

SR= f ff'. H-(v., v.) aberrateddv.dvyffZ 7(Vx, Vy)I dv dv (20

unaberrated
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The present research introduces an alternate measure of image quality which replaces

the diffraction-limited PSF in the denominator of Eq. (19) with the PSF of the imaging

system in the absence of turbulence, a measurable quantity. Replacing the formal Strehl

definition with a relative measure of image degradation is not unusual in analysis of optical

systems [7, 50]. Furthermore, the relative SR provides a more meaningful comparison with

the other SR models presented below.

The conventional aero-optical technique for computing the SR is based on the on-axis,

rms phase variance, o-', by [281
1 21

= exp {-o-}. (21)

Here, the total wavefront variance is the sum of the phase variance due to the turbulent mixing

layer and the phase variance due to the imaging system [50]. But the phase variance due to

the imaging system is zero; hence, the Strehl ratio given by Eq. (21) is a relative measure.

For mixing of dissimilar gases, Eq. (21) can be approximated using [3]

10= exp 0.5k2 An262 (22)

where o is the scalar turbulence intensity, experimentally determined to be approximately 0.15

for mixing layers [52]; An is the refractive index difference for the two mixing gases; and 6

is the width of the mixing layer. Again, Eq. (22) is based on the assumption of wide-sense

stationarity [52] and is a relative measure.

In comparison, Eq. (19) is obtained with no assumptions on stationarity; however, a

tractable solution may be achieved when the average OTF can be represented by Eq. (15).

For the measurements presented in this research, an estimate of the structure function for the

random phase fluctuations was computed. The results for this calculation are presented in

Chapters III and IV.
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2.3 Refractionless Limit Approximation

This section addresses the limitation imposed by the geometrical optics assumption.

The geometrical optics approximation for light propagation through a region of fluctuating

density is valid when a ray propagating in the z direction leaves the region at approximately

the same (x, y) position it entered the region [13]. This is a valid approximation when the

integrated density of the flow evaluates to a small fraction of a radian. To quantify the

displacement of a ray after propagating through a gas flow, we model the flow as a phase-only

diffraction grating [25] with period equal to the smallest scale size present in the flow, 10.

This is analogous to the approach taken by Lee and Harp [25], where atmospheric turbulence-

induced aberrations were decomposed using the Fourier transform. The diffraction effects

were computed by first analyzing the effects of a single spatial frequency in the aberration,

and then integrating over all spatial frequencies. For an incident beam the angle of the first

diffracted order leaving a diffraction grating is given by [16]

out= +in1  ± sin Oin , (23)

where Oin and 0out are the incident and exiting angles measured with respect to the surface

normal of the grating, respectively. Using 10 as the spatial period of the diffraction grating

results in the maximum diffraction angle. The spatial displacement of a ray which is normally

incident to the grating, after propagating a distance, d, can be approximated for small departure

angles by the product Ooutd. For the gas flow region, this ray tracing process is more accurately

applied by stacking N layers of spatial gratings, each separated by a propagation distance, d,

such that the product, Nd equals the total propagation distance [39]. A reasonable separation

of layers for this model is d = 10 . Hence, the total displacement of the ray can be computed

by iteration through the N layers.

As an example, consider the case of a 2 cm thick layer which has a smallest scale size

of 2 nmm. Using the model described above, we would assume the refractive effects of the

layer could be approximated by 10 spatial gratings with a period of 2 mm, separated by 2 mm
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along the direction of light propagation. A ray entering this region would be displaced by 34

grm and depart the region with a deflection of 0.003 rad.

A reasonable criterion for determining how much displacement of the rays can be

tolerated is to restrict the total displacement to be less than or equal to the lateral shear applied

to the wave at the shearing interferometer [37]. This criterion is addressed in the Experimental

Setup section in Chapter III.

2.4 Frozen-Flow Turbulence Model

Measurements in the atmosphere and in laboratory-generated turbulence indicate

that velocity fluctuations are generally an order of magnitude less than the mean flow veloc-

ity [30, 45]. This implies that changes in the fluctuations with respect to some time interval,

at a fixed point, is predominantly due to the movement of the spatial fluctuations at the mean

stream velocity. The Taylor frozen-flow approximation, first introduced by Geoffrey I. Taylor,

states that over a small time interval, t2 - tl = -, the turbulent fluctuations have a constant

velocity, in space and time, equal to the mean velocity in the flow. Thus, over a sufficiently

small value of T, frozen flow implies [45]

u(x, , t) - u(x - UT, y - UT, t + T), (24)

where u is the velocity fluctuation, and U is the mean velocity. Substituting this approximation

into the space-time ACF given by Eq. (2) results in

R (x, y, t; x, Y, t + T) = T7uZ(X, y, t; x - UT, y - UT, t); (25)

i.e., the temporal ACF is represented by the spatial ACF for a fixed time. Note that the same

approximations may be applied to the structure function. In fact, Monin [30] distinguishes

between longitudinal (in the direction of the flow) and lateral (transverse direction) components

of the velocity field in expressing the spatial and temporal structure functions. This convention

is appropriate, as the scale sizes are generally directionally dependent [48], and the time
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interval, T, for which the frozen flow approximation is valid will be different for the two

directions. In summary, the tangible benefit of the frozen flow assumption is that it converts

a time shift into a spatial shift, enabling spatial analysis over relatively large regions of a flow

field.

In a real flow the velocity fluctuations evolve with time; hence, the validity of the

frozen-flow approximation lies in the specific time interval designated. Frozen turbulence has

been shown to be an accurate approximation for isotropic turbulence; however, in the case of

non-homogeneous turbulence, the mean velocity is not constant, and the validity of a frozen

flow will, at best, encompass very small time scales [15, 30]. Verification of the approximation

requires simultaneous measurements of highly-resolved spatial and temporal characteristics

of the flow.

The frozen-flow approximation is qualitatively assessed for a specific mixing layer in

Chapter V, where high-speed (i.e., 1 kHz) measurements of wave front phase and shadow-

graphs are reported.
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III. FREE TURBULENT MIXING LAYERS

3.1 Overview

Light waves passing through turbulent mixing layers are aberrated by index-

of-refraction fluctuations in the flow [48]. These index-of-refraction fluctuations arise from

random spatial and temporal fluctuations in the gas density. The phase of an optical wave

that propagates through a turbulent region will be aberrated, degrading the performance of

imaging and beam projection systems. Adaptively correcting for these phase aberrations

requires an understanding of the spatial and temporal characteristics of the turbulence; hence,

a great deal of research has been dedicated to developing various techniques for visualizing

the turbulent flow (e.g., shadowgraphs, schlieren, light sheets, interferometry) and predicting

the flow properties. The classical model for optical effects in turbulent flow assumes the

refractive index fluctuations are homogeneous and isotropic, providing predictions for Strehl

ratio [3]. The model tends to overestimate the optical degradation for anisotropic flows [15].

Additionally, the model has not been validated for complex flows such as the turbulent mixing

of dissimilar gases [15].

This chapter describes the use of a shearing interferometer wave front sensor to obtain

slope measurements of perturbed wave fronts after propagating through free turbulence. Free

turbulence is described as a high-Reynolds-number shear flow in an open ambient fluid; i.e.,

its motion is unaffected by solid boundaries [54]. Unbounded flow is more difficult to model

than pipe or channel flow (bounded) since, in conjunction with development in the streamwise

direction, the unbounded flow spreads laterally into the ambient fluid. The evolving flow

remains non-homogeneous, making modeling extremely difficult unless assumptions such as

self-similarity are applied [45]. Examples of free turbulence are turbulent jets, turbulent wakes

behind rigid bodies, and turbulent mixing layers occurring on the boundary between streams of

dissimilar gases. Characterization of free turbulent flows is important for naturally-occurring

phenomena as well as for numerous engineering applications. Experimental investigations of
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free turbulence have led to useful semi-empirical theories; however, the understanding of the

physical nature of free turbulence is still, at best, limited [30].

For the wave front slope measurements reported in this research, a turbulence generator

was used to mix Helium and Nitrogen gas at a sharp trailing edge, forming an unbounded

mixing layer surrounded by ambient air. This resulted in three distinct mixing layers: air/He,

N2/He, and N2/air, having density ratios of approximately 7.2, 7.0, and 1.0 respectively.

The slope measurements were used to reconstruct wave front phase surfaces. Shearing

interferometers overcome some of the weaknesses of other techniques for sensing density

fluctuations in gas flows. The shearing interferometer is non-invasive and requires that

only a single beam be passed through the flow, unlike holographic measurements which

require a separate reference beam. The shearing interferometer has been shown to be an

excellent flow visualization tool [17]; however, the application for the current research was

to generate a measured data set of random phase fluctuations for a given location in the

turbulent mixing layer. The intent was to capture the random index-of-refraction fluctuations

by means of phase reconstructions over a sufficiently large set of measured data. Statistical

autocorrelation functions and structure functions were calculated, and the results were assessed

for applicability of the aero-optical and atmospheric models described in Chapter II.

The chapter begins with a description of the experimental setup used to generate and

compute an ensemble of phase reconstructions of aberrated light waves. Next, a set of

statistical calculations is performed on the phase surfaces and the results are assessed for

statistical homogeneity and isotropy. Then, a set of modeling parameters is computed, based

on the structure functions, leading to a Strehl ratio prediction. Finally, this Strehl ratio is

related to the Reynolds number in the flow.

3.2 Experimental Setup

The optical bench used for the free turbulence experiments is shown in Fig. 2. A

2 cm diameter, collimated laser beam was transmitted through the turbulent flow at various

distances from the exit of the turbulence generator. The edge of the turbulent flow was imaged
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onto the entrance pupil of the wave front sensor. The lens pair, Lens 1 and Lens 2, provides

a magnification of 0.5 so that a 1 cm diameter image of the perturbed beam was presented at

the pupil plane of a lateral shearing interferometer. The image filled approximately 50% of

the pixels in a 512 x 484 detector array. This resulted in a single pixel subtending a region of

approximately 47 pm x 54 [m in the plane of the turbulence. The lateral shear for both the x

and y legs of the shearing interferometer was set to 1 pixel to enable detection of strong density

fluctuations [37]. A reasonable criterion for determining how much displacement of the rays

through the turbulence can be tolerated for the geometrical optics assumption to be valid, is

to restrict this displacement to be less than or equal to the lateral shear. Using the spatial

grating model described in Chapter II, the displacement was determined to be 34 micrometers

for a 2 cm thick layer and a smallest scale size of 2 mm. Therefore, the geometrical optics

assumption is valid for shears down to one pixel.

The 1 cm image was split at the non-polarizing beam splitter, providing a path to the

optional camera. For the free turbulence measurements, this camera remained inactive during

the phase measurements.

A turbulent shear layer generator was used to create a suitable gas flow to test this

method [20]. The shear layer generator is shown in Fig. 3. The shear layer generator allows

streams of two gases, generally with different speeds and densities, to mix at a sharp trailing

edge, forming a shear layer flow. The outer dimensions of the box holding the shear layer

generator are 14 cm x 14 cm x 43 cm. The box is constructed from 2.54 cm thick aluminum,

and all seams were sealed with o-rings to prevent gas leaks. Each gas enters a 9 cm x 4.5

cm stilling chamber through 0.635 cm plastic tubing, and exits through a 2.5 cm x 1.25 cm

opening. The curved taper of the output end of the shear layer generator was specified using

a third-order polynomial to provide a smooth reduction in the cross section of the flow. This

polynomial is given by

y = 0.0080x' - 0.1120x 2 - 0.0005x + 4.4695, (26)
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Figure 2. Optical bench used to obtain phase measurements for a laser beam propagating
through the free turbulent mixing layer.

where the center of the splitter plate is chosen as the x axis, the x = 0 point is 10 cm to the

left of the output opening, y is the distance of the tapered surface from the x axis, and all

distances are specified in cm. There is no particular importance attached to the choice of the

tapering function in Eq. (26). The tapering function in Eq. (26) simply provides a smooth

reduction in the cross section of the chamber over a reasonable distance. A pyramid filled

with 0.5 cm holes was placed in each chamber to distribute the flow of gas evenly across the

chamber. Honeycomb and screens were placed in the tunnels to straighten the flow and reduce

free stream turbulence. The splitter plate was made of 0.32 cm thick bronze plane which was

tapered over 10 cm to a sharp edge at the output opening.

The splitter plate in the turbulence generator was oriented in a direction normal to the

propagation vector of the laser beam. Hence, for propagation in the z direction and a vertical

flow of the gases in the x direction, the shear layer of the mixing gases is in the (X, y) plane.

In addition to the He/N 2 mixing layer, the unbounded flow interacts with the surrounding
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Figure 3. Shear layer turbulence generator: (a) Side view of the shear-layer turbulence
generator; and (b) Top view of the shear-layer turbulence generator.

ambient air, resulting in two additional mixing layers. Fig. 4 shows a schematic of the flow

field accompanied by the axis labeling convention.

Gas velocities were measured for every run using a micromanometer to measure the

difference between the atmospheric pressure and the pressure of each gas leaving the chamber,

AP. The gas velocities were calculated using a form of Bernoulli's equation

= p, (27)

where p is the gas density, which for an ideal gas is given by

P= T (28)
RT'
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Figure 4. Flow field schematic. (a) The orientation of the turbulence chamber and an aperture
location as viewed from the side. (b) Laser propagation through the shear layer as
viewed from the top. The N2/He mixing layer is in the center of the flow.

where p is the pressure of the gas, R is the engineering gas constant, and T is the gas

temperature. The engineering gas constant for Nitrogen is R = 296.5 N• rn/kg • K, and for

Helium it is R = 2079.8 N m/kg • K. The micromanometer measured AP in cm of water

with an accuracy of ±0.00127 cm. This translates to a velocity uncertainty of ±0.09 m/sec

for Helium and ±0.07 m/s for Nitrogen. For all experiments described in this research, the

gas velocities remained fixed at 8.5 m/sec for the He and 1.5 m/sec for the N2.

The Reynolds number, Re. for each mixing layer interface is given by [45]

xAU
Rex = --- (29)

where x is the streamwise distance from the generator output, A U is the velocity difference of

the two mixing gases, and 77 is the kinematic viscosity; i.e., the ratio of the absolute viscosity

to the gas density. Here, Tlair is used for all three mixing layers to be consistent with similar

studies [3, 55]. Using T air is a very good approximation for even the N2/He layer since the

density of N 2 is approximately equal to that of air [5]. Hence, Rex/x for each layer differs

only by AU. The width of the mixing layer region, which is a function of the N2 to He

density ratio pr, the low-speed to high-speed velocity ratio Ur, and downstream location may
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Table 1. Summary of Fluid Parameters for the Free Mixing Layers.

Mixing Layer AU (msec) Rex/x (cm - 1) 6(x)/x Re6/x (cm - ')
air/He 8.5 5397 0.76 4102
He/N 2  7.0 4444 0.41 1822
N2/air 1.5 952 0.37 352

be approximated by [5]

b(X) - XC 6 (1 - Ur)(1 + /--) { ( -\/-,)/ + /-1) }
2(1 + U*,-) 1 + 2.9(1+ U)/(1 - Ur) j' (30)

where the value of the coefficient, C, varies with initial conditions of the flow. The range of

C has been empirically determined to be [5]

0.25 < C < 0.45 . (31)

Applying the approximation for 6(x), the total path of propagation through the region of

mixing may be estimated by the sum of the three mixing layers. From Eq. (29) and Eq. (30),

a local Reynolds number, Re6 may be obtained, which is given by [55]

Rex
Reb = 6(x)- (32)

X

A summary of the fluid parameters is given in Table 1, where 6(x) was calculated using an

average C6 of 0.37.

The cameras used for this experiment have output consistent with standard television

format, providing one interlaced field to a monitor each 16.67 ms. However, within the

field time of 16.67 ms the cameras were read out twice. One readout was used to clear

any charge which accumulated in the time leading up to the actual exposure for the wave

front measurement. The second readout was for the actual wavefront exposure time which

was set at 0.5 ms for all experiments reported here. The simultaneous measurements over a
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two-dimensional space imply that frozen turbulence assumptions are not required to infer the

effects of the flow in the streamwise direction, as is required with other techniques [21, 29].

Hence, the ACF and structure function can be measured more precisely over a range of vector

separations [30]. With the gas velocities fixed at 8.5 m/sec for the Helium and 1.5 m/sec

for the Nitrogen, the optical phase perturbations were measured at six locations in the flow.

The locations were centered on 1.25 cm, 5.75 cm, 8.25 cm, 10.75 cm, 18.75 cm, and 28.75

cm downstream of the exit of the turbulence generator. These locations can be equivalently

expressed in terms of a dimensionless X/D parameter, where X is the location of the beam in

the flow, and D is the length of one side of the exit nozzle. Thus, for the present experiment,

the X/D locations are approximately 0.5, 2.3, 3.3, 4.3, 7.5, and 11.5.

The shearing interferometer was used to obtain slope measurements of perturbed wave

fronts after propagating through the free turbulent flow. The shearing interferometer senses

wave front slope in two orthogonal directions. Phase difference measurements for each

direction are obtained from three phase-shifted interference images using a three-bin algo-

rithm [41]. The wave front phase surfaces are then reconstructed using an algorithm developed

by Hudgin [19]. A thorough description of the lateral shearing interferometer can be found in

Magee [26].

The total reconstructed phase represents the sum of the density fluctuations due to the

turbulent mixing layer and any deterministic phase perturbations induced by imperfections

in the imaging optics. The deterministic effects can be measured by performing a phase

reconstruction in the absence of turbulence. This reference phase measurement is then sub-

tracted from subsequent phase reconstructions, resulting in phase fluctuations due to turbulent

mixing only. An example of a reconstructed phase surface is shown in Fig. 5, where the

deterministic effects have been subtracted. Fig. 5 is one realization for the aperture centered

at 10.75 cm in the flow, and is representative of the average dynamic range observed at that

location. Note that the x and y axis units in Fig. 5 are samples. The sample spacing in the

x-direction (streamwise) is approximately 95 [tm, and the sample spacing in the y-direction

(cross-stream) is approximately 105 tm. Additionally, the units for the phase are waves,

28



01

-1

c-2,

S-3-

-4,

-5

-6
150

1O 
""100 150

115

y0 0x

Figure 5. Reconstructed wavefront phase. Deterministic optical system effects have been
removed. Flow is in +x direction, propagation is in +z direction. Sample spacing
in x is 95 /Jm; sample spacing in y is 105 Itm.

which may be converted to radians by a 2w multiplication. Fig. 5 demonstrates the utility of

the shearing interferometer as a flow visualization tool. An ensemble of these phase surfaces

was used as a means to characterize the random fluctuations in the turbulent flow. Section 3.3

describes the statistical calculations performed.

3.3 Statistical Calculations

In this section the results of the ACF and the structure function calculations are

presented. First, a discussion of the general technique used for the statistical calculations,

including notation and terminology, is provided. The random fluctuating phase was obtained

by removing any underlying average phase across the measurement ensemble. The phase
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Figure 6. Surface contour of one phase realization, 4/ (x, y), with overlay of 81 anchor
points. Each 'x' indicates an anchor point. Sample spacing in x is 95 1am; sample
spacing in y is 105 tm. Spacing between each anchor point is eight samples.

surface shown in Fig. 5 can be represented as

(/)meas(X, Y) = avg(X, y) + 4'(x, y), (33)

where qCavg(x, y) is the deterministic, average phase and q'(x, y) is the random fluctuating

phase to characterize. Hence, for each measurement ensemble, qCavg (X, y) was computed,

then this value was subtracted from each realization to obtain 4/(x, y).

The reconstructed phase surfaces are 128 x 128 arrays. To reduce computational

complexity and allow the assumptions of homogeneity and isotropy to be tested, statistical

calculations were conducted on a sample set of 81 points, equally spaced across the aperture.

These will be referred to as anchor points. Fig. 6 shows an example of one phase realization,

q5'(x, y), displayed as a surface contour with an overlay of the 81 anchor points, where the

x and y spacing between each anchor point is eight samples. This grid of anchor points was

used for the ACF and structure function calculations for all free turbulence measurements.

All statistical calculations were based on an ensemble size of 160 realizations. This ensemble
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size was determined by evaluating the sample-based signal to noise ratio (SNR). For a set of

random variables, [fi, ... , fn], the n-sample SNR is given by [38, 33]

SNRn = Vn f (34)

where f is the sample-based estimate of the mean of fi, defined by

n

f-_ fi (35)

and T is the sample-based estimate of the variance of fi, defined by

V= _ :f _ y(36)n - 1 i=1

Eq. (34) is appropriate since the 16.67 ms delay between camera fields is sufficient for

the mixing volume in the optical path to completely change several times, and hence the

realizations of the phase, 0'(x, y) are independent. Using this technique, Eq. (34) may be

computed for the random variable [03(x, y)O$(x + Ax, y + Ay)], so that the sample mean

becomes an estimate of the ACF given by Eq. (2) for n samples. For an ensemble of 160

realizations, the SNR is approximately 8.5. When Eq. (34) is computed for the random

variable [(X, y) (x + Ax, y y)] 2 , the sample mean becomes an estimate of the

structure function given by Eq. (14) for n samples, and the SNR is approximately 10 for 160

realizations.

3.3.1 Autocorrelation Function. For clarity, the discussion is initially limited to a

single location in the turbulent flow, where the aperture is centered at 5.75 cm from the exit

of the turbulence generator (see Fig. 4). An estimate of the statistical ACF given by Eq. (2)

may be obtained from a finite number of experimental measurements using [22]

1 N

(x, y; x + Ax, y + Ay) = N 0 H '(x, Y)¢'i(x + Ax, y + Ay), (37)
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Figure 7. Pictorial representation of the operation performed to obtain the statistical ACF
for a single grid point.

where N is the number of realizations of the wave front phase. For each anchor point,

Eq. (37) was computed for zX and A.y on an interval of -10 samples to +10 samples using

an ensemble of 160 realizations of q5 (x, y). Fig. 7 shows a pictorial representation of the

operation used to compute the statistical ACF for a single grid point.

Eq. (37) is a four-dimensional function; however, for a single anchor point, it reduces

to a two-dimensional function of Ax and Ay. Figs. 8 and 9 show the ACF surface contours

for a sample set of eight anchor points for the aperture centered at 5.75 cm. For the random

process q$' (x, y) to be wide-sense stationary, all anchor points on the sample grid must exhibit

approximately the same ACF, indicative of the 7(Ax, Ay) functional form. Apparent from

the eight sample contours, this feature is not observed. Although several anchor points from
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the phase grid displayed similar ACF surfaces, none of the points satisfied the properties of the

homogeneous ACF, listed in Chapter II. For example, referring to any of the sample anchor

points, it is seen that the maximum value from the ACF does not occur at 1Zu (0, 0). A similar

result was obtained for the other five aperture locations in the turbulent flow. The conclusion

is that the free turbulent mixing layers generated in this experiment are not stationary in the

wide sense. Hence, application of the aero-optical model given by Eq. (3) is not appropriate.

The Strehl ratio estimates which are derived from the aero-optical model, as given in Eqs. (21)

and (22), were computed and compared to the Strehl ratio obtained from structure function

calculations. These results appear later in this chapter.

3.3.2 Structure Function. Again, the discussion is initially limited to a single

location in the turbulent flow, where the effective aperture is centered at 5.75 cm. An estimate

of the statistical phase structure function, given by Eq. (14), may be obtained from a finite

number of experimental measurements using

1 Nf)¢P(x, Y; x + Ax, Y + A~y) = N 0i(,Y) - 0'(x + Ax, y + Ay)]' .  (38)
i=l

Analogous to the ACF, an estimate of the phase structure function was computed for Ax

and Ay on an interval of -10 samples to +10 samples using an ensemble of 160 realizations.

Figs. 10 and 11 show the structure function for eight representative anchor points. Again, for a

single anchor point, the structure function is a two-dimensional function of Ax and Ay. For

the random process 0'(x, y) to be stationary in first increments, all anchor points must exhibit

approximately the same structure function. This feature is apparent in the eight-sample set

shown in Figs. 10 and 11; i.e., the grid points exhibit similar elliptical contours, symmetric

about bo(o, 0). In general, local homogeneity was a good approximation for anchor points

located near the center of the aperture. The absence of statistical homogeneity at the edge

of the aperture may be due to imprecise phase reconstruction by the Hudgin algorithm, as

documented by Southwell [43]. In addition, the edges of the turbulence generator produce shed

vortices which appear as large-scale coherent structures on the edge of the camera interference
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Figure 9. Surface contour of the autocorrelation function for four representative anchor
points from the sample grid. Contours are in units of waves 2. Each unit of Ax
and A~y is 95 gm and 105 /im, respectively.
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Figure 12. Average structure function surface contour for 59 anchor points. Aperture is
centered at 5.75 cm in the flow. Contours are in units of waves 2. Each unit of
Ax and Ay is 95 Mm and 105 /-m, respectively.

images. This region might be better modeled as a quasi-deterministic phenomena [2, 18]. The

results which follow pertain to the center 59 anchor points which exhibited stationarity in first

increments.

When the fluctuating phase is stationary in first increments, the phase structure function

given by Eq. (38) reduces to the two-dimensional function DO (Ax, Ay), which is represen-

tative of any point in the aperture. From the center 59 anchor points, an average structure

function was computed, and is shown as a surface contour in Fig. 12. Recall this average

structure function represents one beam location in the flow, centered at 5.25 cm from the exit

of the turbulence generator. Similar structure function results were obtained for the other

aperture locations in the flow. Fig. 13 shows average structure functions for four other down-

stream locations. Note that each average structure function exhibits similar elliptical contours,

differing only in scaling as a function of the downstream location in the flow. The next section

develops a technique to model these elliptical contours.
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Figure 13. Average structure function surface contours for 59 anchor points at four aperture
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3.4 Structure-Function-Based Modeling of Free Turbulence

In this section the local homogeneity observed at all six aperture locations is used to

develop a model analogous to the Kolmogorov model for atmospheric turbulence, described

in Chapter II. For clarity, this development is initially limited to a single location in the

turbulent flow, where the effective aperture is centered at 5.75 cm, and the average structure

function is represented in Fig. 12. Note this structure function does not exhibit circular

symmetry about b!O (0, 0), a requirement for statistical isotropy. Hence, an attempt to model

the structure function using the scalar r 5/ 3 power law given by Eq. (17) is not appropriate.

However, in an analogous manner, consider orthogonal slices, Do(Ax, 0) and De(0, Ay)

fitted to a. Jx 5/ 3 and ayIAy1S/ 3 functions, respectively. Fig. 14 is the result of this power

law fit resulting in ax = 0.0078 and ay = 0.0027. The phase structure functions are in units

of waves2 , while the Ax and Ay units are samples; hence the coefficients, ax and ay, have

units of waves 2 samples - 5/3. Equivalently, the alpha coefficients may be expressed in units of

rad2j/m- 5/z by the conversion factor, (27r) 2(sample spacing) - 5/3, where the sample spacing

is 95 pm and 105 [m in x and y, respectively. Similar functional fits were applied to the other

five locations. Fig. 15 is a plot of the coefficients ax and cy as a function of all six beam

locations in the flow. Note the coefficients peak at the same location in the flow, 10.75 cm, for

both the streamwise and cross-stream indices. Also, the streamwise coefficient is 2-3 times

greater than the cross-stream coefficient, consistent with the typical scale sizes reported by

Sutton [47].

An equivalent expression for the phase structure function given in Eq. (17) was intro-

duced by Fried [6] as

De(r) = 6.88 r ,5/3 (39)
ro

where the parameter, r0 , is referred to as the atmospheric coherence diameter [13]. Analo-

gously, for the turbulent mixing layers, consider two coherence dimensions, xO and yo, such
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Figure 16. Coherence parameters, x0 and yo as a function of downstream location. The

vertical axis is loglo scale.

that the orthogonal slices of b!o(Ax, Ay) may be represented by

5/3 b((oA_ __ 5/3

DO(Ax, 0) = 6.88 lxl and D (0, Ay) = 6.88 , (40)
XO / .YO

where
X0 a_ 6--... 5 and Y0 ay 3/5 (41)

O 6.88) an o 6.88)_(1

which have units of samples waves -6 5 .

The parameters x 0 and Yo were computed for the six aperture locations in the flow and

are shown in Fig. 16, where the result from Eq. (41) has been scaled by sample spacing and

(27) -6/5 to obtain units of centimeters. For an appreciation of the downstream anisotropy,

the vertical axis of Fig. 16 is on a logio scale. Hence, the values for xO and Yo range from

approximately 2 cm to less than 0.4 mm. For comparison, an average value for the atmospheric

parameter, r0 , for a good mountain-top observatory [13] is about 10 cm. Lower values of

r0 indicate poorer seeing conditions. While the average structure functions are not circularly

symmetric, they are approximately symmetric about the Ax and Ay axes. Therefore, in terms
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and 105 /um, respectively. (a) Surface contour, in units of waves 2; (b) Difference
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of the coherence dimensions, the structure functions may be approximated by

D(Ax, Ay) _ 6.88 - + - 0 (42)

A surface contour of Eq. (42) is shown in Fig. 17 for the aperture centered at 5.75 cm,

which may be compared with the experimental structure function shown in Fig. 12. Included

in Fig. 17 is a surface displaying the difference between the experimental and approximated

structure function. The maximum difference between the two surfaces is approximately 0.03

waves2 at (Ax, Ay) = (-10, -10), which is suggestive of the limited separation for which

the Kolmogorov-like model may be valid in this flow.

3.5 Strehl Ratio and Reynolds Number Effects

The PSF and SR were computed for an imaging aperture equal to the beam size

using Eq. (18) and Eq. (19). The SR is relative because the diffraction-limited PSF in the
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denominator of Eq. (19) was replaced with the PSF of the imaging system in the absence of

turbulence, a measurable quantity. This relative metric of image quality is similar to techniques

used previously [7, 50], and is consistent with direct measurements reported in Chapter IV.

Throughout this chapter, reference to SR implies a relative measure, unless noted otherwise.

The structure function, Do, was taken to be the average structure functions, D'P(Ax, Ay) for

each location in the flow, and determined from the experimental structure function parameters

using Eq. (42).

A plot of the SR is shown in Fig. 18, accompanied by two other SR calculations: the

SR using Eq. (21), where or 2 was computed from the center of the measured phase surfaces,

which is also a relative measure; and the theoretical SR using Eq. (22), an approximation of

Eq. (21) which assumes wide-sense stationarity. The vertical axis of Fig. 18 is on a log10

scale to highlight the significant differences in the three predictions. First, the SR computed

from the structure functions follows a curve similar to the coherence parameters, xO and

yo, predicting a minimum SR of approximately 0.02. Both the structure function and phase

variance calculations indicate a minimum in the region of 10.75 cm, where the coefficients

o. and ay peak. However, the SR computed from the on-axis phase variance overestimates

the optical degradation by nearly three orders of magnitude compared to the estimate obtained

using the structure functions. Note that 28.75 cm downstream, where significant diffusion of

the free mixing layers into the ambient air has occurred, these two predictions are nearly equal.

The theoretical SR given by Eq. (22) is a poor model for two reasons: first, the random phase

fluctuations for this flow are not wide-sense stationary; and second, Eq. (22) predicts continued

degradation with growth of the mixing layer width, not accounting for lateral diffusion.

The mixing layers may be characterized as being in a pre-transition, transition, or post-

transition state [55]. In the pre-transition state, the flow may be turbulent, but minimal mixing

of the two fluids has occurred. Mixing transition is characterized by a large increase in the

mixed fluid fraction, and is associated with a rapid decrease in the SR [3]. The transition

state has been reported [5] to occur for a local Reynolds number, as defined by Eq. (32), of

Re6 > 104 . Thus, referring to Table 1, the mixing transition for the present experiments occurs

44



10_2

2
cc 10

D] Computed from Phase
Structure functions

10 + Computed from on-axis

phase variance, Eq. (20).

.X( Approximation, from theory

10
0 5 10 15 20 25 30

Position in Flow (cm)
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in the range of 2.4 cm, 5.5 cm, and 28.4 cm for the air/He, N2/He, and N2/air mixing layers,

respectively. The effects of transition for the air/He and N2/He mixing layers may be seen

in Fig. 18, where the structure-function-based SR drops by approximately 95% between 1.25

and 5.75 cm. The SR continues to decrease downstream to 10.75 cm, then increases, although

the mixing transition for the N2/air has not yet occurred. We conjecture the improvement in

the SR beyond 10.75 cm is a result of the three mixing layers merging. Using Eq. (30), the

N2/He mixing layer is predicted to reach the width of the turbulence generator exit between 5

and 10 cm downstream for the range of 0Q given in Eq. (31). By this point, the three mixing

layers have merged, and a leveling of the SR should be observed [3]. The coefficients, a, and

c, and the SR indicate a maximum turbulence effect in the region of 10.75 cm, suggesting

the region where the mixing layers have merged. Consequently, we may conclude that the

coefficient, C6, is near the lower bound of Eq. (31) for these experiments. The increase in

SR beyond 10.75 cm is attributed to the continued diffusion of the unbounded mixing layers
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into the ambient air. The mixing transition for the N2/air mixing layer is predicted to occur

in the downstream region of 28 cm. With a density ratio of approximately one and a velocity

difference of 1.5 m/sec, this mixing layer has negligible effect on the SR.

3.6 Summary of Free Turbulent Mixing Layers

The shearing interferometer, a well-established flow visualization tool, was used to

generate a statistical ensemble of optical phase fluctuations due to propagation through high-

Reynolds-number mixing layers. An unbounded mix of Helium gas at 8.5 m/sec and Nitrogen

gas at 1.5 rn/sec in ambient air induced optical phase perturbations. An ensemble of wave front

phase measurements was obtained for six aperture locations in the flow. The autocorrelation

function and the phase structure function were computed for each ensemble. For each location

in the turbulent flow, the autocorrelation function indicated the random phase fluctuations were

not wide-sense stationary; thus, application of the previously described aero-optical model

is not appropriate. The structure function results indicated the random phase fluctuations

were stationary in first increments, though not isotropic. Hence, a direct application of a

Kolmogorov five-thirds power law was not appropriate. However, an analogous five-thirds

power law was developed for the streamwise and cross-stream indices separately. One-

dimensional coherence parameters were introduced, analogous to the atmospheric coherence

diameter, r0 , for Kolmogorov turbulence. The parameters provide a measure of the anisotropy

in the flow. Strehl ratios, computed from the phase structure functions, were reported and

compared with two aero-optical estimations based on on-axis phase variance and mixing layer

width. The aero-optical models overestimate the optical degradation by orders of magnitude

compared to the structure functions. These results suggest the potential for developing novel

prediction models for complex flows such as free turbulent mixing layers.
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IV TURBULENT MIXING LAYERS IN CHANNEL FLOW

4.1 Overview

In this chapter the shearing interferometer wave front sensor is used to obtain slope

measurements of perturbed wave fronts after propagating through a turbulent mixing layer

within a rectangular channel. The dynamics of turbulence in channels differ significantly from

free turbulence. The presence of the solid boundaries results in the generation of boundary

layers, characterized by a flow velocity of zero at the channel wall and a large velocity gradient

within close proximity. For high Reynolds numbers, the frictional forces due to viscous effects

near the wall are significant. As the flow develops, the boundary layer thickness grows, thus

affecting the flow properties throughout the channel [30, 45]. Experimental investigations of

the optical effects of mixing layers in channel flow is more prevalent in the literature than for

free mixing layers. These investigations, however, have been limited to thin beam techniques

or averaged Strehl ratios [3, 4, 21, 55]; hence, data on the anisotropic properties of the flows

have not been available.

For this portion of the research, the turbulence generator was used to mix Helium and

Nitrogen gas at a sharp trailing edge, forming a bounded mixing layer with a density ratio

of approximately seven. The slope measurements were used to reconstruct wave front phase

surfaces. Again, the intent was to capture the random index-of-refraction fluctuations by

means of phase reconstructions over a sufficiently large set of measured data. Autocorrelation

functions and phase structure functions were computed to assess the statistical stationarity of

the phase fluctuations. The previous chapter described similar measurements for free turbulent

mixing. In that chapter, the random phase fluctuations were not wide-sense stationary; hence,

application of classical aero-optical models assuming isotropy was not appropriate. However,

calculation of phase structure functions indicated stationarity in first increments, resulting in a

structure-function-based model of the average optical transfer function and Strehl ratio. In the

present chapter, the phase fluctuations are evaluated in a similar manner for a single mixing

layer of Helium and Nitrogen in a channel flow. Additionally, for each slope measurement, the
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corresponding point spread function was recorded. The point spread function is a measurement

capability that was added after the free turbulence experiments. The averaged set of point

spread functions provided an independent and direct measurement of a Strehl ratio. Finally,

two additional estimates of the Strehl ratio are presented. One is computed from the on-axis

variance of the reconstructed phase surfaces, and the other is computed from an empirical

formula using an estimate of the growth of the mixing layer width. The latter two estimates

assume an isotropic flow. These two models are shown to be accurate only for low Reynolds

numbers in the mixing layer, whereas, the Strehl ratios computed from the structure functions

are shown to be accurate throughout the flow.

The chapter begins with a description of the experimental setup used to generate and

compute an ensemble of phase reconstructions of aberrated light waves. Next, a set of

statistical calculations is performed on the phase surfaces and the results are assessed for

statistical homogeneity and isotropy. Then, a set of modeling parameters is computed, based

on the structure functions, leading to Strehl ratio predictions. Finally, the Strehl ratio is related

to the Reynolds number in the flow.

4.2 Experimental Setup

The optical bench used for the experiments is shown in Fig. 19. A 2 cm diameter,

collimated laser beam was transmitted through the turbulent flow at various distances from the

exit of the turbulence generator. The edge of the turbulent flow was imaged onto the entrance

pupil of the wave front sensor. The lens pair, Lens 1 and Lens 2, provides a magnification of

0.5 so that a 1 cm diameter image of the perturbed beam was presented at the pupil plane of

a lateral shearing interferometer. The image filled approximately 50% of the pixels in a 512

x 484 detector array. This resulted in a single pixel subtending a region of approximately 47

pum x 54 jim in the plane of the turbulence. Additionally, the 1 cm image was split at the

non-polarizing beam splitter, providing a path to the point spread function (PSF) camera. The

collimated beam was focused by lens 5, having a focal length of 1000 mm, on the PSF camera.

This camera was synchronized with the wave front sensor cameras, providing simultaneous
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Figure 19. Optical bench used to obtain phase measurements and point spread functions for
a laser beam propagating through the turbulent mixing layer.

measurements in the mixing layer. The flow field orientation with respect to the laser beam

was the same as for the free mixing layers described in Chapter III. Here, the flow is confined

within a rectangular channel. The channel cross-section is matched to the exit nozzle of the

turbulence generator to inhibit the creation of an additional boundary layer at the generator-

channel interface. The two transmitting sides of the channel are composed of 2.54 cm x 50

cm flats of glass, having an optical quality of 1/3 wave at 632.8 nm. The glass is a water white

material and is anti-reflective coated. The continuous-window channel was chosen to permit

a vertical translation of the generator-channel assembly, so that any location in the flow could

be analyzed. The optical phase perturbations and PSF were measured at eight locations in the

flow. The locations were centered on 1.25 cm, 2.25 cm, 3.75 cm, 5.75 cm, 8.25 cm, 10.75 cm,

13.25 cm, and 15.75 cm downstream of the exit of the turbulence generator. These locations

can be equivalently expressed in terms of a dimensionless X/D parameter, where X is the

location of the beam in the flow, and D is the length of one side of the exit nozzle. Thus, for
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the present experiment, the X/D locations are approximately 0.5, 0.9, 1.5, 2.3, 3.3, 4.3, 5.3,

and 6.3.

The relevant channel flow parameters may be obtained directly from Table 1 in Chap-

ter III for the He/N 2 mixing layer. Hence, the Reynolds number per centimeter, Re/,/x, for

the He/N2 mixing layer is 4444 cm - 1. For an average C6 of 0.37, the width per centimeter,

6(x)/x, of the He/N2 mixing layer is approximately 0.4, which results in a Reb/x of 1822

cm 1 "

An example of a reconstructed phase surface is shown in Fig. 20, where the deterministic

effects have been subtracted. Fig. 20 is one realization for the aperture centered at 8.25 cm

in the flow, and is representative of the average dynamic range observed at that location.

Note that the x and y axis units in Fig. 20 are samples. The sample spacing in the x-

direction (streamwise) is approximately 95 [tm, and the sample spacing in the y-direction

(cross-stream) is approximately 105 fim. An ensemble of these phase surfaces was used as a

means to characterize the random fluctuations in the turbulent flow. Section 4.3 describes the

statistical calculations performed.

The PSF camera was used to generate an ensemble of PSF measurements to be used

to calculate the average SR. The SR is relative because the diffraction-limited PSF in the

denominator of Eq. (19) was replaced with the PSF of the imaging system in the absence of

turbulence, a measurable quantity. Replacing the formal Strehl definition with a relative mea-

sure of image degradation is not unusual in analysis of optical systems [7, 50]. Furthermore,

this relative measure allows direct comparison with the phase-variance-based model, which

is also relative, as was discussed in Chapter II. The topic of relative SR is discussed in more

detail in Section 4.5.

For each aperture location in the flow, a PSF was initially recorded with the turbulence

generator off. This measurement was used as a reference for computing the SR given by

Eq. (19). An example of a reference PSF, for the aperture centered at 8.25 cm, is shown in

Fig. 21(a). The central maximum, recognized as the Airy disk in the diffraction-limited case,

has a 256 gray-scale intensity of approximately 100. Dark frame and flat field calibrations have
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Figure 20. Reconstructed wavefront phase. Deterministic optical system effects have been
removed. Flow is in +x direction, propagation is in +z direction. Sample spacing
in x is 95 /hm; sample spacing in y is 105 pm.

been performed [42]. Fig. 21(b) shows an example of a single realization of the PSF for the

He/N 2 mixing layer at the same aperture location. The horizontal and vertical scale represents

angular frequency of the perturbed wavefront in the streamwise and cross-stream directions,

respectively. This realization corresponds to the reconstructed phase surface depicted in

Fig. 20 and clearly exhibits the optical effects induced by the turbulent mixing. An image

of the average PSF, taken over 160 realizations, is shown in Fig. 21(c). The average optical

effects are characterized by blurring about a central maximum. The central maximum for

this example has a 256 gray-scale intensity of approximately 18. Thus, using Eq. (19), the

relative SR is about 0.18. PSF reference measurements and averages were obtained similarly

for the other seven beam locations, and the corresponding SR was computed. The results are

presented later in this chapter.
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(a)

(b)

(c)

Figure 21. PSF images for the turbulent mixing layer experiments. Aperture is centered at
8.25 cm: (a) Reference PSF (no turbulence); (b) Single realization; (c) Average
PSF taken over 160 independent realizations.
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4.3 Statistical Calculations

In this section the results of the ACF and the structure function calculations are

presented. First, a discussion of the general technique used for the statistical calculations is

provided. The procedure is nearly identical to that performed for the free turbulence. Only

the variations are presented here.

First, the random fluctuating phase, 0'(x, y) is obtained. Again, the reconstructed

phase surfaces are 128 x 128 arrays. To reduce computational complexity and allow the

assumptions of homogeneity and isotropy to be tested, a set of 81 anchor points was defined

on the aperture, similar to the free turbulence calculations. This time, however, the anchor

points were located more compactly towards the center region of the aperture since the edge

anchor points were not useful for the free turbulence measurements. Fig. 22 shows an example

of one phase realization, 0'(x, y), displayed as a surface contour with an overlay of the 81

anchor points, where the x and y spacing between each anchor point is five samples. This

grid of anchor points was used for the ACF and structure function calculations for all channel

turbulence measurements. All statistical calculations were based on an ensemble size of 160

realizations, based on the sample-based SNR given in Eq. (34). For 160 realizations, the SNR

is approximately 10 for both the ACF and the structure function, when the respective estimates

are substituted as the sample mean in Eq. (34).

4.3.1 Autocorrelation Function. The discussion is initially limited to a single

location in the turbulent flow, where the aperture is centered at 8.25 cm. An estimate of the

statistical ACF given by Eq. (2) was obtained using Eq. (37) for Ax and Ay on an interval

of -10 samples to +10 samples and an ensemble of 160 realizations of q (x, y). Figs. 23

and 24 show the ACF surface contours for a sample set of eight anchor points about the center

of the aperture. Each contour exhibits a similar ACF; however, as was observed with the

free turbulence, these ACF surfaces do not satisfy the second property of the homogeneous

ACF listed in Chapter II. A similar result was obtained for the other seven aperture locations

in the turbulent flow. The conclusion is that the phase fluctuations induced by the channel
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Figure 22. Surface contour of one phase realization, 0'(x, y), with overlay of 81 anchor
points. Each 'x' indicates an anchor point. Sample spacing in x is 95 ,um;
sample spacing in y is 105 [pm. Spacing between each anchor point is five
samples.

flow mixing layer are not wide-sense stationary, and the traditional aero-optical model is not

appropriate. Similar to the free turbulence experiment, the Strehl ratio estimates which are

derived from the aero-optical model, as given in Eqs. (21) and (22), were computed and

compared to the Strehl ratio obtained from structure function calculations. This time a direct

measurement acquired from the average point spread function is also available for comparison.

These results appear later in this chapter.

4.3.2 Structure Function. Again, the discussion is initially limited to a single

location in the turbulent flow, where the aperture is centered at 8.25 cm. An estimate of the

statistical phase structure function given by Eq. (14) was obtained using Eq. (38) for Ax and

Ay on an interval of -10 samples to +10 samples and an ensemble of 160 realizations of

0' (x, y). Figs. 25 and 26 show the structure function for eight representative anchor points

located near the center of the aperture. For the random process 0'(x, y) to be stationary

in first increments, all anchor points must exhibit approximately the same structure function.
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Figure 23. Surface contour of the autocorrelation function for four representative anchor
points from the sample grid. Contours are in units of waves 2 . Each unit of Ax
and Ay is 95 ttm and 105 jttm, respectively.
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Figure 25. Surface contour of the structure function for four representative anchor points
from the sample grid. Contours are in units of waves 2. Each unit of Ax and Ay
is 95 /jm and 105 /m, respectively.
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Figure 27. Average structure function surface contour for 81 anchor points. Aperture is
centered at 8.25 cm in the flow. Contours are in units of waves2 . Each unit of
A~x and Ay is 95 ,zm and 105 1um, respectively.

This feature is apparent in the eight-sample set shown in Figs. 25 and 26; i.e., the grid points

exhibit similar elliptical contours, symmetric about b)¢(0, 0). In general, local homogeneity

was a good approximation for all 81 anchor points. Hence, an average structure function,

D)¢(Ax, Ay), was computed for the aperture centered at 8.25 cm and is shown as a surface

contour in Fig. 27. Similar structure functions were obtained for the other seven aperture

locations in the flow. Figures 28 and 29 show average structure functions for the eight flow

locations. Note the transition in the elliptical shape of these contours in the region of 8.25 cm

to 10.75 cm. In this region the strength of the phase fluctuations in the streamwise direction

surpass those in the cross-stream direction. One implication is that there exists a location in this

region of the flow which has a circularly symmetric structure function contour, indicative of

statistical isotropy. This is a significantly different result from the free turbulence experiments,

where the streamwise fluctuations remained at a steady scale factor above the cross-stream

fluctuations. The distinction suggests the potential of this technique in characterizing the

anisotropy in various types of flow in a non-invasive manner.
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Figure 28. Average structure function surface contours for 81 anchor points at four aperture
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4.4 Structure-Function-Based Modeling of Channel Turbulence

As in the free turbulence experiment, the local homogeneity observed at all eight

aperture locations is used to develop a model analogous to the Kolmogorov model for atmo-

spheric turbulence, described in Chapter II. For clarity, this development is initially limited to

a single location in the turbulent flow, where the effective aperture is centered at 8.25 cm, and

the average structure function is represented in Fig. 27. Again, this structure function does not

exhibit circular symmetry, a requirement for statistical isotropy. Hence, an attempt to model

the structure function using the scalar r5/3 power law given by Eq. (17) is not appropriate.

However, as with the free turbulence, ., IZx I5/3 and o. IAy 5/3 functions are developed for

the orthogonal slices, b!p(Ax, 0) and Do(0, Ay), respectively. Fig. 30 is the result of this

power law fit resulting in ox = 4.4 x 10- 4 and ay = 9 x 10- 4. The phase structure functions

are in units of waves2 , while the Ax and Ay units are samples; hence the coefficients, o and

cy, have units of waves 2 samples - 5/ 3. Equivalently, the alpha coefficients may be expressed

in units of rad 2m - 5/3 by the conversion factor, (27r) 2(sample spacing) -5 /3 , where the sample

spacing is 95 /tm and 105 zm in x and y, respectively. Fig. 31 is a plot of the coefficients ax

and a. as a function of the beam locations. Again, the transition through isotropy is evident

in the region between 8.25 cm and 10.75 cm. As with the free turbulence measurements,

directional coherence parameters, x0 and Yo, are computed. The parameters were computed

for the eight aperture locations in the flow and are shown in Fig. 32, where the result from

Eq. (41) has been scaled by sample spacing and (27) - 6/5 to obtain units of centimeters. For

an appreciation of the anisotropy and the crossover of the parameters, the vertical axis of

Fig. 32 is on a log10 scale. Hence, the values for x0 and Yo range from approximately 10

cm to less than 0.2 rm, indicating better seeing conditions than that reported for the free

turbulence. This improvement is the result of adding the channel, which eliminated the two

mixing interfaces with the ambient air.
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Figure 31. Plot of the coefficients a, and oy as a function of the eight locations in the flow.
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In terms of the coherence dimensions, x0 and Yo, the structure functions may be ap-

proximated by

bo(ix, Ay) -_6.88 {( ) 12 AY z 2 5/6 (3+ (43)
SXo / Yo

a five-thirds power law representation for Kolmogorov-like, anisotropic flow.

4.5 Strehl ratio and Reynolds Number Effects

This section presents and compares four separate SR calculations. Recall from

Section 4.2, these are relative SR values; that is, the denominator of Eq. (19) was replaced with

the PSF of the imaging system in the absence of turbulence (the reference PSF), a measurable

quantity. For completeness, an 'absolute' SR was estimated to quantify the optical degradation

induced by the imaging system. The estimate was obtained from Eq. (20), where the integrals

were replaced with finite, two-dimensional summations. The numerator for Eq. (20) was the

normalized system OTF, computed from Eq. (18) for the reference PSF. The denominator for

Eq. (20) was a normalized autocorrelation of a zero-phase pupil function [13], where the pupil

function geometry may be obtained directly from a camera image (e.g., Fig 20). Using this

procedure, the absolute SR was approximately 0.2.

All four SR results are shown in Fig. 33. The first SR is computed from an average

of the 160 PSF measurements for each of the eight beam locations in the flow. This result is

obtained using Eq. (19) where, for each location, the denominator in Eq. (19) is taken to be

the maximum-intensity pixel in the reference PSF. The numerator in Eq. (19) is obtained from

the same pixel for the average PSF. This curve is designated by the symbol 'o' in Fig. 33.

This technique is the most direct for determining SR and the results may be compared, for

example, with time-averaged Strehl ratios reported by Chew and Christiansen for a similar

experiment [3, 4].

The second SR was computed using Eq. (18) and Eq. (19), where the structure function,

De, was taken to be the average structure function, !b¢(Ax, Ay) for each location in the

flow, and determined from the experimental structure function parameters using Eq. (43). The
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relative SR was obtained by including the system reference phase in 7-0 for Eq. (16). This

second curve is designated by the symbol 'x' in Fig. 33, and is seen to be in close agreement with

the PSF-based SR. This agreement reflects the appropriateness of the approximations leading

to the structure-function-based SR; e.g., that the phase, q(x, y) is a zero-mean, Gaussian

random process which is stationary in first increments.

The third SR was obtained using Eq. (21), where the on-axis phase variance, oo 2 , was

computed from the center point of the 160 measured phase surfaces for each location in the

flow. This is a relative SR. The curve is designated by the symbol '+' in Fig. 33. This

technique, which assumes the on-axis phase variance is representative of the entire aperture,

appears to be a reasonable estimate of the SR over the first few centimeters of the mixing where

the Reynolds number is low; however, as depicted in Fig. 33, it significantly underestimates

the optical degradation farther downstream.

Finally, the fourth SR, also relative, was computed using Eq. (22), an approximation of

Eq. (21) which assumes wide-sense stationarity. The curve is designated by the symbol '*' in

Fig. 33. This technique, which predicts the SR exponentially approaches zero as a function

of the growth of the shear layer, again appears to be a reasonable estimate over the first few

centimeters when compared to the PSF-based SR. However, it significantly overestimates the

optical degradation farther downstream, as shown previously by Chew and Christiansen [4].

A visualization of the flow evolution provides a useful reference for the remainder of this

discussion. Figs. 34 and 35 depict an interesting view of the mixing layer in the channel. The

images were obtained by propagating the laser beam through the generator-channel assembly

which was rotated 90 degrees from the orientation of the ensemble measurements. This

orientation provides a visualization of the width of the mixing layer. The flat sides of the

images are due to the walls of the channel. The views represent interference images from the

first camera in the x-leg of the shearing interferometer. Hence, the irradiance at the detector

plane, Ix (x, y), is indicative of the wavefront change in the flow and is given by [37]

IX(x, y) = [1 + cos (V.O(x, y)Ax)], (44)
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Figure 33. Relative Strehl ratio as a function of downstream location.
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where V is the x-component of the gradient of the density, and Ax is the lateral shear

applied to the wave in the x-leg of the shearing interferometer. For all experiments in this

research, Ax was set to approximately one pixel. Note that the images in Figs. 34 and 35 are

single realizations. While these realizations are generally representative of the flow evolution,

an attempt to physically connect the individual stages in the figures is not appropriate. For

this reason, an overlap of the visualization stages was intentionally recorded, providing two

independent realizations for some of the locations. In concert, the flow visualizations in

Figs. 34 and 35, the Strehl ratios in Fig. 33, the coherence parameters in Fig. 32, and the alpha

coefficients in Fig. 31 provide a means to thoroughly assess the flow.

The models which assume wide-sense stationarity appear to yield reasonable predictions

for the SR in the pre-transition state of the mixing layer; i.e., the region in the flow where

minimal mixing of the two fluids have occurred. For the present experiments this region is

within 2 cm of the exit nozzle of the turbulence generator. As seen from Fig. 34, this region

appears nearly laminar at the mixing layer interface (center of the aperture). Hence, although

the autocorrelation functions are not wide-sense stationary in this region, the limited mixing

of the two gases supports the approximations for the aero-optical models.

Mixing transition is characterized by a large increase in the mixed fluid fraction, and

is associated with a rapid decrease in the SR [3]. Referring to the Strehl ratios in Fig. 33,

transition appears to be in the region of 4 cm, indicated by all four SR calculations. Note

from Fig. 34 the mixing of the two fluids may be visualized in this region, evidenced by the

presence of a 'braided' core which spreads in width beyond 4 cm. That the yo parameter

improves beyond 4 cm in Fig. 32 is a consequence of the onset of molecular mixing which

would decrease optical degradation in the cross stream direction. The continued degradation

in the streamwise direction is a consequence of the continued growth of the mixing layer.

In the post-transition state, the SR has been shown to approach a constant value [3]. In

this region, the on-axis variance and mixing layer width models yield poor estimates of the

optical degradation. The structure-function-based SR appears to provide accurate predictions

in all three states. An interesting region in the flow to further investigate is where the coherence
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Figure 34. Interference images from one camera in the x-leg of the shearing interferometer.
Gas velocities are 1.5 m/s and 8.5 m/s for the Nitrogen and Helium respectively.
Distance along flow axis is with respect to the exit nozzle of the turbulence
generator. Channel width is approximately 2.5 cm.
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Figure 35. Interference images from one camera in the x-leg of the shearing interferometer.
Gas velocities are 1.5 m/s and 8.5 m/s for the Nitrogen and Helium respectively.
Distance along flow axis is with respect to the exit nozzle of the turbulence
generator. Channel width is approximately 2.5 cm.
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parameters cross over. This crossover occurs between 8.25 cm and 10.75 cm downstream

from the exit nozzle, as depicted in Fig. 32. From the flow visualization in Fig. 35, this

region is also characterized by a complete mixing in the channel; i.e., the mixing layer width

has reached the channel boundaries. Hence, the crossover of the coherence parameters may

provide additional insight into the mixing fluid properties. For example, a crossover at 9

cm suggests a 8(x)/x of 0.28. This growth rate implies a local Reynolds number, Re 6/x of

1244 cm - 1 and a mixing coefficient, C, of approximately 0.26. Note that the variance model

approaches the PSF and structure function models in the region of 16 cm. This property was

also observed in the region of 30 cm for the free turbulence [8], suggesting the variance model

may be appropriate well-beyond the transition region; i.e., in a fully-developed flow.

For the flow region beyond 13 cm, the two coherence parameters approach constant

values. This property may again be attributed to the full development of the mixing layer

within the channel. The similarity of the density fluctuations is evident in the flow visualization

images in Fig. 35. Referring to Fig. 31, the streamwise coefficient, oa, is approximately

three times that of the cross-stream coefficient, ay, in the region of 15 cm. This factor is

consistent with the results reported for the free turbulence in the region beyond 10 cm, and

with typical scale sizes reported by Sutton [48]. However, a crossover of the coefficients was

not observed in the free turbulence. Hence, the structure functions provide valuable insight

into the anisotropic properties of mixing layers in the transition and post-transition states of

the flow.

4.6 Mixing characteristics for other Reynolds numbers

For both the free-turbulence experiments and the channel-flow turbulence, the ve-

locities for the Helium and Nitrogen gases have remained fixed. This section provides a small

set of flow visualizations for mixing layers with different velocities. These are intended to

qualitatively complement the earlier experiments. Once again the visualizations are obtained

from a single camera in the x-leg of the shearing interferometer, providing an interference

image whose contrast variation is proportional to the density variation in the mixing layer.
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The turbulent flow is confined within the rectangular channel and is oriented for a 'side view'

of the mixing layer. The velocities were chosen such that the Reynolds number per centimeter,

Rex/x, is doubled over three sets of velocities. Recall the previous experiments had a Rex/x

of 4444 cm- 1. Thus two other velocity combinations were selected which provided a Rex /x of

2222 cm - 1 and 8888 cm - 1. The fluid parameters are summarized in Table 2, where the second

velocity profile is the one used for the previous experiments in this research, and whose flow

visualizations were previously presented in Figs. 34 and 35. The flow visualization images

for the other two velocity profiles are shown in Fig. 36 through Fig. 39. For the remainder of

this discussion the three entries in Table 2 will be referred to as profiles 1, 2, and 3, relating to

a Rex/x of 2222, 4444, and 8888 cm -1 , respectively. In Table 2 the growth rate, 8(x)Ix, was

estimated for profiles 1 and 3 using Eq. (30) and a mixing coefficient, C of 0.26. Recall this

mixing coefficient was estimated based on the crossover of the structure function coherence

parameters in Section 4.5. Since the mixing coefficient is highly dependent on initial condi-

tions [5], it's not clear that the estimate derived from profile 2 can be extended to profiles 1

and 3; however, the flow visualizations may provide an indication of the appropriateness of

this extension.

The mixing characteristics for profile 1, which has a Rex/x of 2222 cm - 1 is shown

in Figs. 36 and 37. In the region just beyond the exit jet of the turbulence chamber (i.e.,

0-3 cm), the contrast across the mixing layer appears less sharp than that observed with the

higher velocities of profile 2, as shown in Fig. 34. This is likely attributed to an earlier

mixing of the lower speed gases, although the Reynolds number is below that associated with

a turbulent transition. Furthermore, the emergence of the braided core structure, associated

with a molecular mixing transition, is delayed by approximately 1 cm in comparison to Fig. 34

for profile 2. From Fig. 37, the mixing layer was found to reach the width of the channel in the

region of 10 cm. This observation supports the estimate of a growth rate of 0.25, suggesting

that the mixing coefficient derived from profile 2 is also valid for profile 1.

The mixing characteristics for profile 3, which has a Rex/x of 8888 cm- 1 is shown

in Figs. 38 and 39. This profile is characterized by a rapid appearance of a braided core.
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Table 2. Fluid parameters for three He/N 2 mixing ratios (for 6 = 0.26).

He Velocity (r/sec) N2 Velocity (m/sec) Re,/x(cm- ) 6(x)/x Reb/x(cm -1)
4.5 1.0 2222 0.25 564
8.5 1.5 4444 0.28 1244
16.0 2.0 8888 0.34 3010

The mixing layer was found to reach the width of the channel in the region 7 cm. Again,

this observation supports the estimate of a growth rate of 0.34, suggesting that the mixing

coefficient derived from profile 2 is also valid for profile 3.

4.7 Summary of Turbulent Mixing Layers in Channel Flow

The shearing interferometer was used to generate a statistical ensemble of optical

phase fluctuations due to propagation through a high-Reynolds-number mixing layer. A

channel-flow mix of Helium gas at 8.5 m/sec and Nitrogen gas at 1.5 m/sec induced optical

phase perturbations. An ensemble of wave front phase measurements was obtained for eight

aperture locations in the flow. The autocorrelation function and phase structure function were

computed for each ensemble. Additionally, simultaneous measurements of the corresponding

point spread functions were obtained.

The autocorrelation function results indicate the phase fluctuations are not wide-sense

stationary; hence, as with the free turbulence measurements, the channel flow cannot be ap-

propriately modeled using the aero-optical equations. The structure function results indicated

the random phase fluctuations were stationary in first increments, though not isotropic. Hence,

a direct application of a Kolmogorov five-thirds power law was not appropriate. However,

an analogous five-thirds power law was developed for orthogonal flow components. Two

directionally-dependent coherence parameters were introduced, analogous to the single at-

mospheric coherence diameter, r0 , for Kolmogorov turbulence. The parameters provide a

measure of the anisotropy in the flow. A plot of the coherence parameters versus location in
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Figure 36. Interference images from one camera in the x-leg of the shearing interferometer.
Gas velocities are 1.0 m/s and 4.5 m/s for the Nitrogen and Helium respectively.
Distance along flow axis is with respect to the exit nozzle of the turbulence
generator. Channel width is approximately 2.5 cm.

73



15.5 CM

12.5 cm

13.0 CM

10.0 cm

10.5 cm

7.5 cm

Figure 37. Interference images from one camera in the x-leg of the shearing interferometer.
Gas velocities are 1.0 m/s and 4.5 m/s for the Nitrogen and Helium respectively.
Distance along flow axis is with respect to the exit nozzle of the turbulence
generator. Channel width is approximately 2.5 cm.
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Figure 38. Interference images from one camera in the x-leg of the shearing interferometer.
Gas velocities are 2.0 m/s and 16.0 m/s for the Nitrogen and Helium respectively.
Distance along flow axis is with respect to the exit nozzle of the turbulence
generator. Channel width is approximately 2.5 cm.
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Figure 39. Interference images from one camera in the x-leg of the shearing interferometer.
Gas velocities are 2.0 m/s and 16.0 m/s for the Nitrogen and Helium respectively.
Distance along flow axis is with respect to the exit nozzle of the turbulence
generator. Channel width is approximately 2.5 cm.
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the flow indicated a local region of isotropy in the region between 8.25 cm and 10.75 cm. This

region is coincident with a maximization of the mixing layer width in the channel.

Four independent, Strehl ratios were computed using the average point spread functions,

average structure functions, on-axis phase variance, and estimation of the mixing layer width.

The latter two calculations assume wide-sense stationarity and provide poor estimates of the

optical degradation beyond a few centimeters of the mixing, when compared to the point spread

function measurements. The structure function calculations provide a reasonable Strehl ratio

estimate throughout the flow, as well as a measure of the statistical anisotropy in the flow.
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V TIME-RESOLVED MEASUREMENTS IN CHANNEL FLOW

5.1 Overview

In this chapter a pair of high-speed (1kHz) cameras are used to obtain a large set of

measurements to characterize the He/N2 mixing layer in an orientation which was orthogonal

to the orientation described in Chapters III and IV. For the present measurements, the mixing

layer was oriented such that the laser propagation direction was parallel to the plane of

the mixing layer. These experiments were motivated by the need to assess the validity of

the Taylor hypothesis for frozen flow, an assumption which is often assumed for turbulent

mixing layers, particularly for small-aperture beam techniques [21]. The present mixing layer

orientation provides the best visualization of turbulent structures, as demonstrated by the flow

visualization images presented in Chapter IV.

The present experimental setup affords the capability of collecting simultaneous (i.e.,

frame-registered) images of the turbulent flow from a pair of cameras at rates of 1000 non-

interlaced frames per second. The combination of measurements reported are simultaneous

shadowgraphs and wavefront slopes which were used to evaluate the temporal characteristics

of the flow, and simultaneous point spread functions and wavefront slopes which were used

to evaluate the spatial characteristics of the flow, similar to the calculations presented in the

previous chapter. The wavefront slopes are obtained using a Hartmann wavefront sensor,

composed of a two-dimensional lenslet array coupled with one of the cameras.

The chapter begins with a description of the experimental setup used to obtain the

turbulence measurements. This is followed by a presentation of sequential shadowgraph

images. The shadowgraph images are assessed for frozen flow characteristics using a novel

technique of computing an array of correlation coefficients over a two-dimensional sliding

window for various temporal separations. The same computational technique is then applied

to a series of phase surfaces which were reconstructed from the slope measurements, collected

simultaneously with the shadowgraphs. Next the series of slope measurements which were

collected with the point spread functions are reconstructed and the phase surfaces are assessed
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for statistical homogeneity through structure function calculations. Finally, Strehl ratios are

reported from the average point spread functions.

5.2 Experimental Setup

The optical bench used for the experiments is shown in Fig. 40. A 2 cm diameter,

collimated laser beam was transmitted through the turbulent flow at various distances from

the exit of the turbulence generator. Note that the orientation of the splitter plate in the exit

nozzle of the turbulence generator has been rotated 90 degrees relative to the two previous

experiments. Hence, for propagation in the z direction and a vertical flow of the gases in the

x direction, the shear layer of the mixing gases is in the (X, z) plane. This orientation will be

referred to as a 'side view' of the mixing layer. It was determined that this orientation would

provide the most interesting view of the density gradients in the mixing layer. Note that this

orientation is the same as that used to generate the flow visualization images in the previous

chapter in Fig. 34 through Fig. 39. The velocity profile selected for these experiments is profile

1 from Table 2. This profile gives a Rex/x of 2222 cm - 1 . The rationale for this selection is

discussed later in this section.

At the first non-polarizing beam splitter (NPBS), the laser power was evenly divided

between the shearing interferometer and the path to the two high-speed cameras. The path

for the shearing interferometer was identical to the description given in Chapter IV. For this

experiment, the shearing interferometer was used primarily as a flow visualization tool. The

interference images provided a real-time capability to monitor the mixing characteristics at

the various flow positions during data collection.

At the second NPBS, half of the power was transmitted to the optional high-speed cam-

era. This path was configured for two different experiments. The first configuration recorded

shadowgraph images. In this configuration, lens 5 consisted of a 450 mm lens, placed in the

path at approximately 550 mm from the camera. This provided a shadowgraph image of the

turbulent field which just filled the camera detector. The shadowgraph technique is described

in more detail in Section 5.3.1. The second configuration recorded point spread functions
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Figure 40. Optical bench used to obtain shadowgraphs, point spread functions, and phase
measurements for a laser beam propagating through the turbulent mixing layer.

(PSF) using a 1000 mm focal length lens in the lens 5 position. This measurement was similar

to the PSF's which were recorded for the channel flow measurements in Chapter IV. The

present PSF configuration differs in several ways from the earlier channel measurements. The

present PSF's were collected at much faster rates (1000 Hz versus 60 Hz). Additionally, they

were collected at a different velocity profile (profile 1 versus profile 2) and at a different beam

propagation orientation to the mixing layer. Results from the two experimental configurations

will be presented separately in this chapter.

The remaining power from the second NPBS was transmitted through a collimating

lens pair, lens 6 and lens 7, which provided sufficient demagnification for the beam to fill the

CCD array of the Hartmann camera. The Hartmann wavefront sensor system consisted of a

monolithic lenslet array and the high-speed camera. The lenslet array consisted of a grid of

20 x 20 square subapertures, each measuring 203 microns on a side and having a focal length

of 7.8 mm. In concert, the lenslet array and the imaging camera provided a two-dimensional
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measure of the wavefront slope of the perturbed beam. The technique will be described in

more detail later in this chapter.

Both of the high-speed cameras used for these experiments were MD4256C solid state

video cameras manufactured by EG&G Reticon. The CCD array had an active imaging area

of 4.1 x 4.1 mm, composed of 256 x 256 pixels. The cameras were capable of operating

at a maximum frame rate of 1000 non-interlaced frames per second (fps). For all of the

measurements reported in this chapter, the maximum frame rate was used. One disadvantage

with these cameras was the absence of a built-in, adjustable shutter. When the camera was

running at 1000 fps, the integration time was approximately 1 ms. Recall that the slower 60

Hz cameras on the shearing interferometer had a selectable shutter which enabled an exposure

time of 0.5 ms. It was determined that the longer exposure times on the EG&G cameras

dictated the need to reduce the gas velocities for these experiments. Note that a better solution

is to place in the path an optical shutter which is capable of sub-millisecond cycling. This

device was not available at the time of this research; however, it is highly recommended for

future experiments using these cameras.

For both experimental configurations, the Hartmann camera and the optional camera

were triggered externally from a function generator to obtain simultaneous, frame-registered

images of the turbulent flow at rates of 1kHz. A triggering anomaly was observed in the

procedure which proved to be a useful quality control test. It was noted that when the function

generator was switched off (manually) at the conclusion of a recording session, the last

recorded frame was completely washed out. Hence, for a 256-frame measurement, only 255

frames were usable. The camera software was designed to overwrite frames in the 256-frame

buffer until recording was terminated; therefore, the washed out frame could occur on any

of the frames for a given experiment. A simple test for frame registration was to confirm

the washed out frame occurred at the same frame number for both cameras. Over 16 sets of

measurements, this test was satisfied every time.

Given the need for a lower velocity profile, the gas velocities selected for these experi-

ments were 4.5 m/s for the Helium gas and 1.0 m/s for the Nitrogen gas. Note this is profile 1
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given in Table 2. Hence, the Reynolds number, Re,/x, for these experiments was 2222 cm -1 .

A flow visualization of this profile for a region covering 0 to 15 cm from the exit nozzle of

the turbulence generator may be seen in Figs. 36 and 37 in Chapter IV. Wavefront slopes

and either PSF's or shadowgraphs were measured at eight locations in the flow. The locations

were centered on 1.25 cm, 2.5 cm, 3.75 cm, 5.0 cm, 7.5 cm, 10.0 cm, 12.5 cm, and 15.0

cm downstream of the exit of the turbulence generator. These locations can be equivalently

expressed in terms of a dimensionless X/D parameter, where X is the location of the beam in

the flow, and D is the length of one side of the exit nozzle. Thus, for the present experiment,

the X/D locations are approximately 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, and 6.0.

5.3 Simultaneous Shadowgraphs and Wavefront Measurements

This section presents the results from the simultaneous realizations of shadowgraphs

and wavefront slopes for eight beam locations in the turbulent mixing layer. The full data set

consisted of 255 frame-registered images for each flow location, for a total of 4096 images,

excluding flat field, dark frame, and reference measurements. For all images reported in this

section, dark frame and flat field calibrations have been performed [42]. Statistical calculations

reported in this section are with regard to the temporal properties of the phase fluctuations.

Spatial statistics (e.g.; phase structure functions) are addressed in the next section which

reports the simultaneous point spread functions and wavefront slopes.

5.3.1 Time-resolved Shadowgraphs. In this section, a series of shadowgraph images

is reported for the eight locations in the flow. The shadowgraphs provide an additional flow

visualization of the mixing layer. Additionally, the shadowgraphs provide a means to 'track'

the propagation of coherent structures as a visual assessment of the frozen flow hypothesis.

The shadowgraph is a relatively simple means for visualizing turbulent flows when

fine details of the density variations are not required [17]. The contrast, h, observed in a

shadowgraph is related to the density by [1]
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h= Lf (,-2 _-y dz, (45)

where L is the distance from the centerline of the channel to the shadowgraph plane. It may be

seen from the optical bench schematic in Fig. 40 that the placement of imaging lens 1 in close

proximity to the channel ensures a good spatial correspondence between the shadowgraph and

the true density field [17]. The relationship between the shadowgraph and density fluctuations

is based on geometrical optics approximations, which was shown in Chapter II to be limited

to regions of slowly varying density. However, extraction of density fluctuations have been

performed digitally using the model in Eq. (45) on shadowgraphs obtained from air flows with

a free stream Reynolds number of 7 x 105 cm- 1 [1]. The results were in excellent agreement

with independent measurements from cross-wire anemometry.

Figures 41 through 43 provide single realizations of shadowgraphs for the eight beam

locations in the mixing layer. As with the interference images presented in Chapter IV,

these are independent realizations, and an attempt to physically connect the figures is not

appropriate. The contrast variations across the aperture are indicative of the second derivative

of the density in the flow. Hence, the dark vertical bands seen in the center of the aperture

in Fig. 41 are due to the strong density gradient which occurs at the He/N 2 interface. As

noted in the figures, the Helium gas is on the left side of the aperture. It's not clear what

mixing phenomena are responsible for the striated bands on the Helium side of the aperture;

however, it's noted that these bands vanish in the flow region of 10 cm where the mixing layer

is maximized in the channel.

A preliminary, and somewhat qualitative assessment of the frozen flow hypothesis may

be performed on the time-resolved shadowgraphs. An interesting test point to evaluate is

at 15 cm in the flow where, as seen from Fig. 43, the turbulent mixing is characterized by

relatively small and scattered structures. It should be noted that even for the low velocity

profile and high frame rates for this experiment, there still exists some substantial averaging

of the turbulence. The laser beam diameter is 2 cm in the turbulent flow. If the mean velocity

of the flow is assumed to be approximately equivalent to 4.5 m/s (i.e., the velocity of the
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Figure 41. Shadowgraph images for a 2 cm diameter beam in the mixing layer. Helium is
on the left; Nitrogen is on the right. Flow is upward. Aperture is centered at (a)
1.25 cm, (b) 2.5 cm, and (c) 3.75 cm in the flow.
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Figure 42. Shadowgraph images for a 2 cm diameter beam in the mixing layer. Helium is
on the left; Nitrogen is on the right. Flow is upward. Aperture is centered at (a)
5.0 cm, (b) 7.5 cm, and (c) 10.0 cm in the flow.
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Figure 43. Shadowgraph images for a 2 cm diameter beam in the mixing layer. Helium is
on the left; Nitrogen is on the right. Flow is upward. Aperture is centered at (a)
12.5 cm, and (b) 15.0 cm in the flow.
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higher-speed gas), then a particle moving at the mean velocity will traverse the aperture in 4.4

ms. The EG&G camera, operating at 1000 fps, has an integration time of approximately 1 ms;

hence, the movement of the particle will be temporally averaged over approximately one-fifth

of the aperture. The consequence of this averaging will be indicated by a smearing of the

coherent structures in the shadowgraphs. The Taylor hypothesis states that over a small time

interval, t2 - tl = 7, the turbulent fluctuations have a constant velocity, in space and time,

equal to the mean velocity in the flow. In the shadowgraphs, frozen flow will be indicated by

the persistence of coherent structures over several consecutive flow realizations.

Figures 44 through 47 display a series of 16 sequential shadowgraph realizations at 15

cm in the flow, recorded at 1000 fps. The image sequence is (a) through (d) for each figure.

An example of an isolated structure which appears to persist with little visible change has

been designated with a series of arrows in Fig. 44 (b) through (d) and continuing in Fig. 45 (a)

and (b). Note that the presence of the structure over five shadowgraph realizations suggests a

velocity of the structure in the range of 4 to 4.5 m/s. Similar examples of structure preservation

may be 'tracked' in the 16-frame sequence. In general, small isolated structures appeared to

be preserved over 3 to 5 frames for realizations beyond 10 cm. This would suggest some

validity to the frozen flow hypothesis for these experimental conditions for isolated examples.

For regions closer to the exit nozzle, the shadowgraphs lacked the morphology to make any

conclusions. It should be noted, however, that the smaller structures were generally observed

in a vertical band near the center of the aperture. At the outer regions of the aperture, the

structures were generally longer with less morphology. This may be, in part, due to the

boundary layer effects induced by the channel wall. Therefore, frozen flow indications are

generally more difficult to determine on the outer region of the aperture. As a final observation,

referring to the structure designated by the arrows in Figs. 44 and 45, the structure is seen

to move slightly in the cross stream direction (left to right) as it propagates streamwise. In

general, all structures observed in the shadowgraphs exhibited some lateral displacement in the

visualization sequences. The displacement was observed to be nonuniform in both magnitude

and direction. The next section presents a more quantitative assessment of the shadowgraphs
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for frozen flow characteristics using a technique which evaluates the average flow properties

over a 255-frame ensemble.

5.3.2 Temporal Analysis of Shadowgraphs. This section introduces a spatial-

temporal analysis technique to determine the validity of the frozen flow hypothesis for the

measured shadowgraphs. The technique was one which digitally computed correlation co-

efficients using a windowed region of a shadowgraph realization, which was slid across the

aperture of a frame separated in time by T. The full ensemble of 255 frames was used such

that the coefficients were time- averaged. Recall the shadowgraph time sequences indicated

a lateral displacement of the turbulent structures as they propagated in the streamwise direc-

tion. It was determined that this characteristic dictated the need for a two-dimensional sliding

window algorithm in computing the frame to frame correlations. For the two-dimensional

signals, A(m, n) and B(m, n), the correlation coefficient, r, is given by [22]

S EEnA(m, n)B(m, n) (46)

EJnA 2 (m, n)mnE B 2(m, n)

Note that when A and B are equal, the correlation coefficient is unity. For the shadowgraph

images, a three-dimensional coefficient array was computed which accounted for the temporal

separation, T, of the images as well as the spatial shift parameters, (k, 1), of the sliding window.

Thus, Eq. (46) may be expanded to obtain

_(k,1,7)= Em En Ai (m, n)Bi+,(m + k, n + 1)
N- n )+r(i + k, n + 1)'

where T denotes an ensemble average. A pictorial representation of this operation is shown

in Fig. 48. A 41 x 21 template window, 'A', was uniquely defined on a 128 x 63 vertical

strip which encompassed the 128 x 128 image array. The spatial features within the fixed

window, A, were then correlated over the entire region of the vertical strip, for a given

frame separation, using (k, 1) shifts of one pixel in x or y. The vertical strip was defined to
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Figure 44. Shadowgraph sequence for four realizations at 1000 fps and 15 cm in the flow.
Flow is upward. Sequence is (a) through (d).
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Figure 45. Continuation of the shadowgraph sequence for four realizations at 1000 fps and

15 cm in the flow. Flow is upward. Sequence is (a) through (d).
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Figure 46. Continuation of te shadowgraph sequence for four realizations atl1000 fps and

15 cm in the flow. Flow is upward. Sequence is (a) through (d).
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Figure 47. Continuation of the shadowgraph sequence for four realizations at 1000 fps and

15 cm in the flow. Flow is upward. Sequence is (a) through (d).
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Ai (m,n)

Figure 48. Pictorial representation of the operation performed to obtain the correlation co-
efficient arrays.

encompass a maximum region of the aperture in the streamwise direction, while minimizing

multiplication of the window with regions outside the circular aperture. The window size

was empirically selected. The window had to be large enough to enclose morphologically

significant structures, yet small enough to provide a relevant array size for the correlation

coefficients. The scale size of the structures are largest in the streamwise direction, thus

permitting a rectangular window. Note the placement of the template window A is at the

bottom of the aperture and in the center of the vertical strip. This placement allowed for

complete tracking of a structure across the aperture in the streamwise direction, and laterally

for one full window width on either side in the cross stream direction. For a fixed k, 1, and r,

the parameter T was computed using Eq. (47). The window was then shifted until complete

coverage of the vertical strip was complete. The result for a given T- is a 87 x 43 array of

correlation coefficients.

Figs. 49 through 52 are images of the coefficient arrays for frame separations between

O and 5, where each frame is separated in time (T) by 1 mis. The figures are for the eight flow

locations. For example, Fig. 49 (a) shows a 6-frame sequence of array images at 1.25 cm
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in the flow. The whiter regions represent higher correlations, and the peak coefficient in the

array for each frame separation is designated by the symbol 'o'. Note for T = 0, the peak

coefficient is located where the window 'A' was defined, indicating an autocorrelation of the

window. For the frozen flow hypothesis to be valid, the correlation peak should move upward

with increasing values of T. This feature was found to be present for beam locations greater

than 1.25 cm, over 2 to 4 frame separations. At 1.25 cm in the flow, the laminar streams at the

mixing layer result in a structure which is highly-correlated in the streamwise direction over

the entire aperture. An interesting phenomenon seen in Fig. 49 (a) is the non-vertical aspect of

the correlated region in each array. This may be the effects of entrainment of the lower-speed

Nitrogen gas into the region of the higher-speed Helium gas, consistent with reports for this

type of mixing layer [5].

A relevant metric of the correlation coefficient arrays is the value of the correlation

peak. Figs. 53 and 54 show plots of the correlation peaks as a function of frame separation

for flow locations greater than 1.25 cm. For flow locations greater than 7.5 cm, the peak is

approximately 0.9 for 2 frames of separation, suggesting minimal evolution of the fluctuations

over 2 ms. However, even the most highly-correlated regions in the flow degrade by over 30

percent in 4 ms, suggesting the limited extent of validity for frozen flow assumptions. Note

that for the present velocity profile, a frozen flow limited to 4 frames of separation relates to a

temporal range of 4 ms or a spatial range of approximately 1.8 cm. Hence, techniques which

must assume frozen flow over many centimeters may have questionable validity for complex

mixing layers.

5.3.3 Time-resolved Wavefront Slope Measurements. For each shadowgraph mea-

surement, a simultaneous measurement of the wavefront slope was recorded using the Hart-

mann wavefront sensor (WFS). This section presents the statistical calculations which were

performed on the reconstructed phase surfaces obtained from the slope measurements. The

section begins with a description of the Hartmann WFS principle and the phase reconstruc-

tion technique. The Hartmann WFS utilized for the present experiments and the shearing

interferometer WFS utilized for the experiments described in Chapters III and IV are func-
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Figure 49. Correlation coefficient arrays computed on the shadowgraph images. Flow is
upward. Aperture is centered at (a) 1.25 cm, and (b) 2.5 cm in the flow.
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Figure 50. Correlation coefficient arrays computed on the shadowgraph images. Flow is
upward. Aperture is centered at (a) 3.75 cm, and (b) 5.0 cm in the flow.
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Figure 51. Correlation coefficient arrays computed on the shadowgraph images. Flow is
upward. Aperture is centered at (a) 7.5 cm, and (b) 10.0 cm in the flow.
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Figure 52. Correlation coefficient arrays computed on the shadowgraph images. Flow is
upward. Aperture is centered at (a) 12.5 cm, and (b) 15.0 cm in the flow.
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Figure 53. Peak values of the shadowgraph correlation coefficient arrays as a function of
frame separation. Aperture is centered at (a) 2.5 cm, (b) 3.75 cm, (c) 5.0 cm, and
(d) 7.5 cm in the flow.
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Figure 54. Peak values of the shadowgraph correlation coefficient arrays as a function of
frame separation. Aperture is centered at (a) 10.0 cm, (b) 12.5 cm, and (c) 15.0
cm in the flow.
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tionally equivalent. Both sensors provide measurements of phase slopes across the wavefront.

In weak turbulence the two have been shown to perform nearly identically [35], with the

Hartmann WFS being slightly less susceptible to shot noise errors in strong turbulence. A

detailed description of a performance comparison between the two sensors may be found in

Pennington [34].

The physical arrangement of a section of a Hartmann WFS is shown in Fig. 55. A colli-

mated laser beam is propagated through the turbulent region, illuminating a two-dimensional

Hartmann sensor. The sensor consists of a two-dimensional array of lenslets coupled with a

CCD-array of detectors. Incident light is focused onto the detectors by the lenslets. The slope

of the local phase aberration incident on each lenslet causes the image formed to be displaced

from the center of the focal plane. The centroid of each image is then computed to estimate

the local slope, Sn, of the wavefront phase. The output of a single Hartmann sensor is related

to the incident phase by [53]

= - _ J_ W(x, y)o(x, y)dxdy, (48)

where Sn is the slope output by the nth subaperture in the ( direction, and C indicates either the

x or the y component of the slope. The function, Wn (x, y) is the normalized phase weighting

function of the flth lenslet, which is a constant function inside the subaperture and zero outside.

The notation Wn (x, y) indicates the (-direction component of the gradient of Wn (x, y). Note

that the measurement of S.( implies temporal integration; hence, the frozen flow hypothesis

must be assumed in Eq.( 48). The temporal averaging for the slope measurements is identical

to the averaging described for the shadowgraphs in Section 5.3.1; i.e., the flow is averaged

over approximately one-fifth of the aperture. While this extent of temporal integration may be

considered long, the shadowgraphs indicate that the frozen flow hypothesis may be reasonably

valid over this extent.

The reconstructed phase, Omeas(x, Y), may be computed from the wavefront slope

measurements by [39]
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Figure 55. Hartmann WFS turbulence sensing system.

Omeas(X) Y) -- Z cej(x, y), (49)

where ej (x, y) is the jth elementary function used to estimate emeas (x, y), and cj is the weight

associated with that elementary function. The elementary functions were two-dimensional

triangle functions [9], with base width equal to two times the subaperture side length, centered

at the interior comers of the subapertures. For the present experiment, an array of 11 x 11

elementary functions was used. The weights, cj, are computed from the slope measurements

using [39]

Cj = Mj nS, (50)

where Min is the reconstruction matrix. The reconstruction matrix used for the present

experiments is a least-squares reconstructor. A more detailed explanation of this procedure

may be found in a paper by Roggemann et al. [39].

The reconstructed phase surfaces for the present experiments are bilinearly-interpolated,

41 x 41 arrays, expressed in units of waves to be consistent with the phase surfaces presented

from the shearing interferometer in the previous chapters. Additionally, the random phase

was isolated as before by removing the deterministic imaging system effects as well as the

average phase associated with the 255-sample ensemble. An example of a reconstructed
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Figure 56. Reconstructed wavefront phase from the Hartmann WFS. Optical system effect
and average phase have been removed. Flow is in the x direction. Propagation
is in the z direction. Sample spacing in x and y is 345 pm.

phase surface, where the system effects and average phase effects have been removed is

shown in Fig. 56. This realization was obtained at 15 cm in the flow, simultaneously with

the shadowgraph realization depicted in Fig. 44(a). Note the x and y units in Fig. 56 are

samples. The sample spacing in both directions is approximately 345 /hm. In the next section

these phase surfaces are evaluated for indications of frozen flow characteristics in a manner

analogous to the shadowgraph assessment.

5.3.4 TemporalAnalysis of the Wavefront Phase. This section presents the results of

the correlation coefficient arrays given by Eq. (47), computed for the ensemble of wavefront

phase measurements which were recorded simultaneously with the shadowgraphs. While

the temporal resolution of these measurements is the same as the shadowgraphs, the spatial

resolution is substantially less. The procedure is identical to the operation described in Sec-

tion 5.3.2. A quantitative assessment of frozen flow is more relevant for phase measurements

than shadowgraphs, given the role of frozen flow assumptions on adaptive optics. Here, a 15

x 15 window was chosen for the 41 x 41 phase surfaces. The window size was selected
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empirically. Smaller windows resulted in poor correlations. The present window afforded the

best indications of frozen flow.

Figs. 57 through 60 are images of the coefficient arrays for frame separations between

0 and 5, and for the eight flow locations. As before, the peak coefficient in the array for each

frame separation is designated by the symbol 'o'. As with the shadowgraphs, indications of

frozen flow was found to be present for flow locations greater than 1.25 cm, over 2 to 4 frame

separations.

The peak values of the correlation coefficient arrays were computed and are shown

in Figs. 61 and 62 as a function of frame separation for flow locations greater than 1.25

cm. Here, even for the most highly-correlated regions in the flow (greater than 10 cm), the

coefficients degrade by over 30 percent for a 1-frame separation, compared with 5 percent for

the shadowgraphs. Thus, although the frames appear to be correlated when Figs. 61 and 62

are visually assessed, the large degradation in the peak values suggests significant evolution

of the density fluctuations over sub-millisecond time scales.

An additional parameter of interest which is readily available from the correlation arrays

is an estimate of the velocity of the correlation peaks. The velocities may be estimated, based

on the frame rate, aperture size, and pixel separation of the peaks. This estimate may be used

to approximate the convection velocity of the turbulent structures. The average velocity of

the phase correlation peaks over three frames was computed and is shown in Fig. 63 as a

function of flow location. A velocity estimate at 1.25 cm was omitted due to the inconclusive

correlations at that location.

5.4 Simultaneous Wavefront Slope and PSF Measurements

This section presents the results from the simultaneous realizations of wavefront

slopes and PSF's for eight beam locations in the turbulent mixing layer. The full data set

consisted of 255 frame-registered images for each flow location, for a total of 4096 images,

excluding flat field, dark frame, and reference measurements. For all images reported in this
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Figure 57. Correlation coefficient arrays computed on the phase surfaces. Flow is upward.
Aperture is centered at (a) 1.25 cm, and (b) 2.5 cm in the flow.
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Figure 58. Correlation coefficient arrays computed on the phase surfaces. Flow is upward.
Aperture is centered at (a) 3.75 cm, and (b) 5.0 cm in the flow.
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Figure 59. Correlation coefficient arrays computed on the phase surfaces. Flow is upward.
Aperture is centered at (a) 7.5 cm, and (b) 10.0 cm in the flow.
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Figure 60. Correlation coefficient arrays computed on the phase surfaces. Flow is upward.
Aperture is centered at (a) 12.5 cm, and (b) 15.0 cm in the flow.
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Figure 61. Peak values of the phase correlation coefficient arrays as a function of frame
separation. Aperture is centered at (a) 2.5 cm, (b) 3.75 cm, (c) 5.0 cm, and (d)
7.5 cm in the flow.
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section, dark frame and flat field calibrations have been performed [42]. Statistical calculations

reported in this section are with regard to the spatial properties of the phase fluctuations.

5.4.1 Phase Structure Function Calculations. In this section phase structure

functions are reported for the eight aperture locations in the mixing layer. The structure

function was computed using a procedure analogous to the that described in Chapter III for the

free turbulence and Chapter IV for the channel flow turbulence. Recall these mixing layers

were shown to be nonhomogeneous for the statistical ACF with an orthogonal orientation

of the turbulence generator. It's anticipated that the present orientation, consisting of much

stronger density gradients in the mixing region, are similarly nonhomogeneous; hence, the

ACF calculation was not repeated. The present experiment had two important distinctions

from the two previous experiments with regard to statistical calculations. First, the present

orientation of the mixing layer introduced strong density gradients in the local mixing region

and negligible density gradients elsewhere. This was particularly significant for flow locations

greater than 10 cm; i.e., where the mixing width was still growing. The second distinction was

in the frame rate of the realizations. As shown in the two previous sections, the samples are

correlated for 2 to 3 frames; hence, the realizations are not independent, although the larger

data set (255 frames) provides increased confidence.

To compute the phase structure function using Eq. (14) for 255 realizations, a grid of

16 anchor points was defined on the 41 x 41 phase surfaces. Fig. 64 shows an example of

one phase realization, displayed as a surface contour with an overlay of the 16 anchor points,

where the x and y spacing between each anchor point is three samples.

An estimate of the phase structure function was obtained using Eq. (38) for AZx and Ay

on an interval of -5 samples to +5 samples. Figs. 65 and 66 show the structure function for

eight representative anchor points for the aperture centered at 15 cm.

For the random process 0'(x, y) to be stationary in first increments, all anchor points

must exhibit approximately the same structure function. From the eight-sample set shown in

Figs. 65 and 66, it may be seen that the anchor points exhibit similar, though not equivalent,
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contours; thus, an average of these points would not appropriately represent the region. In

general, the shapes of the contours shown in Figs. 65 and 66 are representative of the contour

shapes observed for flow locations greater than 10 cm. For regions closer to the exit nozzle of

the turbulence generator, the contours varied significantly for each anchor point. For example,

Fig. 67 shows the structure function for four representative anchor points where the aperture is

centered at 10 cm. Note that in the region of 10 cm, the mixing layer reaches the width of the

channel; hence, it is not surprising that the statistics are nonhomogeneous for locations closer

to the exit nozzle. The 'trend towards homogeneity' observed beyond 10 cm for full-channel

flow implies that statistical models such as those developed in Chapter IV may be appropriate

farther downstream.

In summary, the lack of homogeneity prohibited modeling the channel flow in the

present orientation as a Kolmogorov turbulence. Nevertheless, it was of interest to determine

the effects of 'forcing' the model on the average structure function data to see the effects

of invoking homogeneity assumptions inappropriately. Therefore, coherence dimensions, xo

and Yo, were estimated from the average structure functions for each flow location. For the

x-component, the r 513 functional fit was poor beyond 2 to 3 sample spacings for flow locations

between 1.25 cm and 7.5 cm. For flow locations greater than 10 cm, the functional fit was

somewhat better. For the y-component, the r 5 /3 power law followed the data reasonably

well for all locations. The coherence dimensions were then used to approximate the structure

function model, using

D~X(Ax, Ay) _ 6.88 ) 26 (51)
(\ XO) \ YO f

the familiar five-thirds power law representation for Kolmogorov-like, anisotropic flow. In

the next section, a Strehl ratio computed from this model will be compared to measurements.

5.4.2 Measurements of Strehl Ratio. In this section a Strehl Ratio (SR) is reported

for the eight aperture locations in the mixing layer. The SR is relative because the diffraction-

limited PSF in the denominator of Eq. (19) was replaced with the PSF of the imaging system
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in the absence of turbulence (the reference PSF), a measurable quantity. Replacing the formal

Strehl definition with a relative measure of image degradation is not unusual in analysis of

optical systems [7, 50]. Furthermore, this relative measure allows direct comparison with the

phase-variance-based model, which is also relative. For completeness, an 'absolute' SR was

estimated to quantify the optical degradation induced by the imaging system. The estimate

was obtained from Eq. (20), where the integrals were replaced with finite, two-dimensional

summations. The numerator for Eq. (20) was the normalized system OTF, computed from

Eq. (18) for the reference PSF The denominator for Eq. (20) was a normalized autocorrelation

of a zero-phase pupil function [13], where the pupil function geometry may be obtained

directly from a camera image. Using this procedure, the absolute SR was approximately 0.2.

The SR was computed from the average of an ensemble of PSF measurements, analogous

to the procedure described in Chapter IV. For each flow location, a reference PSF was

recorded along with 255 realizations of the perturbed PSF in the presence of the turbulence.

The perturbed PSF measurements were averaged, and the SR was computed using Eq. (19).

The resulting SR for the eight locations is shown in Fig. 68.

Accompanying the SR derived from PSF measurements, is the relative SR computed

from the structure function model given in Eq. (51), The relative measure was obtained by

including the system reference phase in 70 for Eq. (16). The structure function model tends

to underpredict the optical degradation with respect to experiment; however, it consistently

follows the measured curve for all locations in the flow. The fact that the structure function

model does not agree with experiment is a consequence of forcing the homogeneity assumption

for the mixing layer in the present orientation. Hence, the model fails in a manner similar to

the aero-optical model. Finally, the theoretical model given in Eq. (22) is displayed. This is

a poor predictor of optical degradation, due to it's functional form which predicts the same

degradation independent of the flow orientation.

Some interesting observations may be made from Fig. 68, with the assistance of the

flow visualization images in Figs. 36 and 37. Note that the maximum value for the SR is

approximately 0.4, occurring at the exit nozzle of the turbulence generator. For the orthog-
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onal orientation of the mixing layer, presented in Chapter IV, this region was shown to be

approximately laminar, with a Strehl ratio of 0.9. The degradation in the present experiment

is attributed to the large density gradients at the He/N2 interface. The SR displays a rapid

degradation through 3.75 cm. This region is associated with the transition of the mixing layer

from a laminar to turbulent flow. The SR then continues to degrade at a slower rate over the

region between 3.75 cm and 10 cm, a region characterized by a spreading of the mixing layer

within the channel, as can be seen in the flow visualization images. Note from Fig. 68 that the

SR reaches a minimum in the region of 10 cm, which corresponds to the location where the

width of the mixing layer was predicted to reach the channel width. Recall from Chapter IV,

the prediction for 6(x) for velocity profile 1 was based on an estimate of the mixing coef-

ficient, Cb, obtained from the crossover of the structure function coherence parameters, and

further validated by the flow visualization series. The flow visualization images supported

the theory that the value for C obtained from profile 2 could be applied to profiles 1 and 3.

The SR minimum in Fig. 68 further supports that theory. Beyond 10 cm the SR increases,

indicative of improved seeing conditions and consistent with the concept of the dissipation of

the small-scale structures in a fully-developed flow.

5.5 Summary of Time-resolved Measurements in Channel Flow

Two high-speed cameras were used to generate a large set of measurements of laser

light propagating through a high-Reynolds-number mixing layer. A channel-flow mix of

Helium gas at 4.5 m/sec and Nitrogen gas at 1.0 m/sec induced optical perturbations which

were sensed using shadowgraph, wavefront slope, and point spread function measurements.

The wavefront slopes were used to reconstruct phase surfaces. The mixing layer was oriented

such that the laser propagation direction was parallel to the plane of the mixing layer. An

ensemble of 255 measurements were obtained for each sensing technique at eight aperture

locations in the flow, spaced between 0 cm and 15 cm from the exit nozzle of the turbulence

generator. Shadowgraphs and wavefront slopes were recorded simultaneously, providing
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Figure 68. Relative Strehl ratio calculation as a function of downstream location.

frame-registered views of the flow. Additionally, point spread functions and wavefront slopes

were recorded simultaneously in a second experiment.

A technique was introduced which computes an array of correlation coefficients over

a two-dimensional sliding window for various temporal separations. For the shadowgraphs,

reasonable correlations were obtained for a maximum separation of 4 frames, equivalent to

4 ms. For the velocity profiles used in these experiments, this result implies the frozen flow

assumption is valid only within a spatial extent of approximately 2 cm. The correlation

coefficient arrays which were computed from the wavefront slopes exhibited similar correla-

tion properties; however, the peaks of the arrays degraded by 30 to 60 percent for 1-frame

separation.

Structure functions were computed on sets of phase surfaces for the eight locations in

the flow. The structure functions indicated the phase fluctuations were not homogeneous for

any of the locations, the worst case being in the flow region less than 10 cm, where the mixing

layer width had not reached the width of the channel.
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Strehl ratios were computed using the average point spread functions for the eight

locations in the flow. The maximum SR obtained was 0.4, occurring at the exit nozzle of

the turbulence generator. For the orthogonal orientation of the mixing layer, this region was

shown to be approximately laminar, with a SR of 0.9. The SR was minimum at 10 cm,

consistent with the prediction for the maximization of the mixing layer width. Two additional

Strehl ratios were computed. The first was from a structure function model which was forced

on the nonhomogeneous data. This prediction model underestimated the optical degradation

consistently across the flow. The second Strehl ratio was a theoretical model which provided

a poor prediction of the optical effects for this flow orientation.
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VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Overview

This research investigated the effects of light propagation in an aero-optical envi-

ronment via experimental measurements of turbulent mixing layers in an optical laboratory.

A shear layer mix of Helium and Nitrogen gas provided the complex flow field to evaluate

the spatial and temporal density fluctuations in a high-Reynolds-number flow. The mixing

layer was generated in two experimental configurations. The first configuration explored the

dynamics of a free turbulent mixing layer; i.e., one that was discharged into the ambient air.

For the free turbulence experiment, the Reynolds number was 4.4 x 103 cm - 1. The second

configuration explored the dynamics of the mixing layer discharged into a rectangular channel.

For this configuration the Reynolds number was 4.4 x 10 3 cm- 1 for one set of experiments

and 2.2 x 103 cm- 1 for another.

The turbulent mixing layer was sensed optically; thus, all measurements were non-

intrusive. The density fluctuations were treated as a random process, where no a priori

assumptions were made on statistical stationarity in the flow. Instead, the fluctuations were

tested over various locations in the flow for evidence of homogeneity or isotropy. This was

accomplished by computing spatial autocorrelation functions and structure functions on large

ensembles of two-dimensional optical phase measurements of laser light after propagating

through the mixing layer. Additionally, temporal correlation functions were computed on time-

resolved images to assess the validity of Taylor's frozen flow hypothesis on the experimental

data.

6.2 Conclusions

For the free turbulence experiments, phase measurements were obtained using a 60

Hz lateral shearing interferometer. The phase autocorrelation function indicated the random

phase fluctuations were not wide-sense stationary, when the turbulence was sensed in an orien-

tation where the laser propagated orthogonal to the plane of the mixing layer. Thus, application
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of classical aero-optical models, which assume statistical homogeneity were determined to

be inappropriate. The phase structure function indicated the random phase fluctuations were

stationary in first increments, though not isotropic. Hence, a direct application of a Kol-

mogorov five-thirds power law was not appropriate. However, an analogous five-thirds power

law was developed for the streamwise and cross-stream indices separately. One-dimensional

coherence parameters were introduced, analogous to the Fried atmospheric parameter, r0 ,

for Kolmogorov turbulence. The parameters provided a measure of the anisotropy in the

flow. Relative Strehl ratios, computed from the phase structure functions, were reported

and compared with two aero-optical estimations based on on-axis phase variance and mixing

layer width. The aero-optical models, which assume homogeneity, overestimated the optical

degradation by orders of magnitude compared to the structure functions. These results suggest

the potential for developing novel prediction models for complex flows such as free turbulent

mixing layers.

For the channel flow measurements, where the Reynolds number was 4.4 x 103

cm - 1 , phase measurements were obtained using a lateral shearing interferometer, and frame-

registered point spread functions were recorded. The turbulence was sensed in the same

orientation as the free turbulence. The phase autocorrelation function again indicated the

phase fluctuations were not wide-sense stationary. Therefore, as with the free turbulence

measurements, the channel flow could not be appropriately modeled using the aero-optical

equations. The structure function indicated the random phase fluctuations were stationary

in first increments, and coherence parameters were developed for this flow configuration,

analogous to the free turbulence. A plot of the coherence parameters versus location in the

flow revealed a local region of isotropy in the flow region coincident with a maximization

of the mixing layer width in the channel. The region was characterized by a cross-over of

the streamwise and cross stream coherence parameters, leading to a derivation of a mixing

coefficient for predicting the growth of the mixing layer width. The prediction was shown to

be in excellent agreement with flow visualization images.
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Four independent, relative Strehl ratios were computed using the average point spread

functions, average structure functions, on-axis phase variance, and estimation of the mixing

layer width. The latter two calculations assumed wide-sense stationarity and provided poor

estimates of the optical degradation beyond a few centimeters of the mixing, when compared

to the point spread function measurements. The structure function model provided an accurate

Strehl ratio estimate throughout the flow.

A second set of channel flow measurements was reported, where the Reynolds number

was 2.2 x 103 cm- 1, and the turbulence was sensed in an orientation where the laser propagated

parallel to the plane of the mixing layer. Phase measurements were obtained using a 1

kHz Hartmann wavefront sensor, while a second camera recorded either frame-registered

shadowgraphs or frame-registered point spread functions. A technique was introduced which

computed an array of correlation coefficients over a two-dimensional sliding window for

various temporal separations. For the velocity profiles used in these experiments, a frozen

flow assumption was found to be valid only within a spatial extent of one to two centimeters.

Phase structure functions indicated the phase fluctuations were not homogeneous when

viewed from the mixing layer orientation for these experiments. The lack of homogeneity

precluded the development of a structure function based model. Relative Strehl ratios were

reported using the average point spread functions. The maximum SR obtained was 0.4,

occurring at the exit nozzle of the turbulence generator. For the orthogonal orientation of

the mixing layer, this region was shown to be approximately laminar, with a relative SR of

0.9. The SR was minimum at 10 cm. This minimum was in excellent agreement with a

prediction based on the structure function model developed from the first set of channel flow

measurements.

6.3 Recommendations

This research was a natural progression in the evolution of a series of research

efforts at the Air Force Institute of Technology to better understand and model the effects

of turbulence on optical transmission. Although this research generated and analyzed over
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20,000 images, this is considered a small sample of the turbulence profiles which could be

further explored.

For the measurements recorded in Chapter V, the gas velocities were reduced to accom-

modate the longer integration times of the EG&G cameras. A worthwhile experiment would

be a similar set of measurements with substantially higher gas velocities. This experiment

would necessitate an optical shutter in the laser path in order to minimize the averaging effects

of the detectors. Current optical shutters can operate at 10 kHz with shutter times of 0.1 ms

or less. This device would permit a 10-fold increase in mean stream velocity with the same

averaging effects as that noted in Chapter V.

This research conducted in-depth analyses of mixing layers with two velocity profiles

resulting in Reynolds numbers of 4444 cm - 1 and 2222 cm - 1, and an additional set of flow

visualization images for a Reynolds number of 8888 cm - '. An interesting model could

be developed by computing structure function coherence parameters for mixing layers as

a function of the Reynolds number. For example, with equivalent mixing layer growth

functions, it would be interesting to see if the crossover of the x0 and Yo parameters, identified

in Chapter IV, occurred predictably for each velocity profile. One dividend from such a large

experimental campaign could be an analytical relationship between, for example, the optical

transfer function of the turbulent flow for a given Reynolds number. At this time, however,

it's not clear that the structure function is homogeneous for substantially higher Reynolds

numbers.

Another useful set of experiments would be obtaining three-dimensional tomography of

the mixing layer. The present optical bench can easily accommodate a radial series of optical

paths through a free-flowing mixing layer for measurements on a set of Hartmann wavefront

sensors. A more interesting measurement would likely be in a confined flow, but this would

require fabrication of a transmissive pipe of sufficient optical quality. The present research has

already solved the challenge of achieving frame synchronization of the high-speed cameras.

Finally, the thrust of this research has been loosely coupled to developing a more reliable

model for aero-optical turbulence. This research has introduced a prediction model for optical
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degradation in laboratory-generated mixing layers, which makes no a priori assumptions of

isotropy or homogeneity. The analogy between mixing layers of dissimilar gases and the

aero-optical environment appears to be understood [2]; however, development of structure

function models on data from a true aerodynamic flow could be of considerable interest.
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Appendix A. Data files for shearing interferometer

This Appendix provides a complete set of tables corresponding to the data collected

during this research on the shearing interferometer and point spread function camera, where

applicable. The free turbulence and channel turbulence measurements described in Chap-

ters III and IV follow the same numbering convention. Data groups are UNIX directories

which contain a set of images, and are numbered XXXP. When the frame grabber for the

shearing interferometer (SI) is activated, an image is acquired simultaneously from seven

cameras: three from the x-leg of the SI, three from the y-leg of the SI, and one from the

PSF camera. For both experiments described in Chapters III and IV the frame grabber was

programmed to capture four images for each group, the maximum capable for the buffer. The

frame capture sequence is numbered 0, 2, 4, 6. The specific cameras are numbered 00, 01, 02

for the x-leg; 10, 11, 12 for the y-leg; and 13 for the PSF camera. For example, a file called

2.01 refers to the second frame in the group for the second camera in the x-leg.

The ensemble size for one beam location in the flow was 160 realizations. This requires

20 data groups. A reference is also recorded. The reference was obtained by averaging eight

realizations within a dedicated data group. Thus, for the experiments described in Chapter III,

six beam locations were analyzed, requiring a total of 6 x 21 or 126 data groups and 7056

512 x 484 images.

The reconstructed phase surfaces, with deterministic system effects subtracted are la-

beled dphi-1 to dphi-160 within each corresponding beam location. The PSF is labeled

similarly. The two tables which follow identify an 8 mm tape number and the experimental

data which it contains, given by data group numbers.
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Table 3. Free Turbulence Experiments - Data Files

Tape Number Flow Location (cm) File Name Comments
1 1.25 358P-377P ref 317P; no PSF
2 5.75 213P-232P ref 212P; no PSF
3 8.25 178P-202P ref 175P; no PSF
4 10.75 234P-253P ref 212P; no PSF
4 18.75 254P-273P ref 212P; no PSF
4 28.75 274P-293P ref 212P; no PSF
5 1.25 dphi358-377.mat Matlab file
5 5.75 dphi2l3-232.mat Matlab file
5 8.25 dphil78-202.mat Matlab file
5 10.75 dphi234-253.mat Matlab file
5 18.75 dphi254-273.mat Matlab file
5 28.75 dphi274-293.mat Matlab file

127



Table 4. Channel Turbulence Experiments - Data Files

Tape Number Flow Location (cm) File Name Comments
6 1.25 582P-601P ref 581P; PSF frame 0.03
6 2.25 731P-750P ref 730P; PSF frame 0.03
6 3.75 603P-623P ref 602P; PSF frame 0.03
6 5.75 624P-643P ref 623P; PSF frame 0.03
6 8.25 645P-664P ref 644P; PSF frame 0.03
6 10.75 666P-685P ref 665P; PSF frame 0.03
6 13.25 687P-706P ref 686P; PSF frame 0.03
6 15.75 708P-727P ref 707P; PSF frame 0.03
7 1.25 dphi58l-601.mat Matlab file
7 2.25 dphi730-750.mat Matlab file
7 3.75 dphi602-623.mat Matlab file
7 5.75 dphi623-643.mat Matlab file
7 8.25 dphi644-664.mat Matlab file
7 10.75 dphi665-685.mat Matlab file
7 13.25 dphi686-706.mat Matlab file
7 15.75 dphi707-727.mat Matlab file
8 1.25 psfS8l-601.mat Matlab file
8 2.25 psf73O-750.mat Matlab file
8 3.75 psf6O2-623.mat Matlab file
8 5.75 psf623-643.mat Matlab file
8 8.25 psf644-664.mat Matlab file
8 10.75 psf665-685.mat Matlab file
8 13.25 psf686-706.mat Matlab file
8 15.75 psf'7O7-727.mat Matlab file
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Appendix B. Data files for high-speed cameras

This Appendix provides a complete set of tables corresponding to the data collected

during this research on the time-resolved, channel turbulence measurements described in

Chapter V. Measurements for each flow location are in separate directories. Each directory

holds the ensemble of slope or PSF/shadowgraph files as individual image files. For example,

615/615-0001.img refers to the first realization for the measurement group 615. Images are

256 x 256 arrays.

The ensemble size for one beam location in the flow was 255 realizations. All data files

are presently located on /elroy2/bernard/matlab/d on the Sparc20 work station in Bldg. 194,

Rm. 30.
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Table 5. Channel Turbulence Experiments - Slopes and Simultaneous Shadowgraphs

File Location Flow Location (cm) File Name Comments Flat/Dark/Reference

elroy2 1.25 343 Slopes 340/341/342
elroy2 2.0 346 Slopes 340/344/345
elroy2 3.75 349 Slopes 340/347/348
elroy2 5.0 352 Slopes 340/350/351

elroy2 7.5 355 Slopes 340/353/354

elroy2 10.0 358 Slopes 340/356/357

elroy2 12.5 361 Slopes 340/359/360

elroy2 15.0 364 Slopes 340/362/363
elroy2 1.25 643 Shadowgraphs 640/641/642
elroy2 2.0 646 Shadowgraphs 640/644/645
elroy2 3.75 649 Shadowgraphs 640/647/648
elroy2 5.0 652 Shadowgraphs 640/650/651
elroy2 7.5 655 Shadowgraphs 640/653/654
elroy2 10.0 658 Shadowgraphs 640/656/657
elroy2 12.5 661 Shadowgraphs 640/659/660
elroy2 15.0 664 Shadowgraphs 640/662/663

Table 6. Channel Turbulence Experiments - Slopes and Simultaneous PSF's

File Location Flow Location (cm) File Name Comments Flat/Dark/Reference

elroy2 1.25 372 Slopes 340/370/371
elroy2 2.0 375 Slopes 340/373/374
elroy2 3.75 378 Slopes 340/376/377
elroy2 5.0 381 Slopes 340/379/380
elroy2 7.5 384 Slopes 340/382/383
elroy2 10.0 387 Slopes 340/385/386
elroy2 12.5 390 Slopes 340/388/389
elroy2 15.0 393 Slopes 340/381/382

elroy2 1.25 672 PSF 640/670/671
elroy2 2.0 675 PSF 640/673/674
elroy2 3.75 678 PSF 640/676/677
elroy2 5.0 681 PSF 640/679/680
elroy2 7.5 684 PSF 640/682/683
elroy2 10.0 687 PSF 640/685/686
elroy2 12.5 690 PSF 640/688/689
elroy2 15.0 693 PSF 640/691/692
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