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Symbol List

The following is a list of symbols used in this dissertation:

a Plate length
[A] Plant matrix determined from the stiffness matrix and the inverse

of the mass matrix
A] Closed loop system matrix
AMy Eigenvectors of the plate
b Plate width
[B] Control matrix determined from the actuator coupling

coefficients, location matrix and the inverse of the mass matrix
[C] Sensor matrix determined from the sensor and dynamic coupling

coefficients
Cij Composite compliance Matrix Term
cl 1st element of the constraint matrix
c2  2nd element of the constrain matrix
Cr Location matrix for the difference between the left corner and

the center of the plate tip
Cb Location matrix for center of the plate tip
CN Constants
CE j Elastic modulus of the sensor material
d Torsional disturbance amplitude at free end of plate
6 First variation with respect to the dependent variables
d 31  Piezoelectric constant
Dii Stiffness matrix
F-. Normal strain in x direction
Fy YNormal strain in y direction
E( ) Expectation operator
El Elastic modulus - 1 direction
E, Elastic modulus - 2 direction
Ev  Elastic modulus
Fi Force
[G] Constant control gains
G Actuator gain matrix
G12 Shear modulus in 12 direction
Gv Shear modulus
h Thickness of the plate
[H] Disturbance matrix determined from the disturbance location

matrix and the inverse of the mass matrix
h/2 One half plate thickness
I Moment of Inertia

Simplifying Parameter
12 Simplifying Parameter
J Performance index/objective function
[K] Stiffness Matrix

Y.xy Shear strain in xy direction
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Ks  Sensor coefficient
Kv  Actuator coefficient
KX  X - axis curvature
KY Y - axis curvature

Kxy XY curvature
Relates to the natural frequencies of the plate --

[M] Mass matrix
M, Bending moment in x direction per unit length
My Bending moment in y direction per unit length
My Twisting moment in xy direction per unit length
N Number of sensor and actuators
v12 Possion's Ratio 12 direction
V21  Possion's Ratio 21 direction
p Frequency
pi Design parameters
p Density
q State variables
Q Covariance matrix from Lyapunov equation
Qi Nonconservative work term in La Grange equations
Qj Stiffness parameter in ij direction
r Position vector
RF Resistor associated with an ideal op amp used to acquire the

signal
Normal stress in x direction

cy) Normal stress in y direction
S1 1 S trai n
t Time
T Kinetic energy
e Ply angle
' y Shear stress in xy direction
U Potential/strain energy
u Control vector { actuator voltages)
u(x,z,t) Displacement in x direction
V Work done by external forces
VD Voltage across the piezoceramic actuator
V0  Measured voltage from the sensor
v(x,z,t) Displacement in y direction
w(x,z,t) Displacement in z direction
wd Sensor width
wo  Midplane displacement in z direction
wo.XX 2nd partial derivative with respect to x
w0,X y 2nd partial derivative with respect to x and y
W0-yy 2nd partial derivative with respect to y
wr Difference of the corner displacement vector and the center

displacement vector of the plate tip
wb Center displacement vector of the plate tip
X X - direction component of solution to equations of motion -

trigonometric functions

vi



X X component of buckling equation of motion
xj Endpoint of sensor
P(t) Time component of solution to equations of motion

y Sensor voltage signal (strain rate of the plate) collocated at
actuator position

Y Y - direction component of solution to equations of motion -
trigonometric functions

Y Y component of buckling equation of motion
Parameter to vary the weight on a torsional versus bending
motion
Fixed mean square control energy

E 1 Fixed mean square control energy for actuator one
S2 Fixed mean square control energy for actuator two
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A bstract

A method for the simultaneous structural and control optimization for torsional

vibration of a composite plate which simulates a spacecraft solar array-structure was developed

in this study. Included in the optimization of the plate are the location of the piezoceramic

actuators and sensors that provide bending/torsion actuation, the control gains, and the

orientation of the graphite fibers in the composite plies. This research included the effects of

using composite tailoring to promote the coupling of the twisting-bending mode to enhance the

damping system. The plate was modeled by classical lamination plate theory using a linear

elastic strain-displacement theory. This theory was then incorporated into a performance index

which contains both structural and control parameters that minimizes torsional and bending

motion at the tip of the plate due to a torsional force at the tip. Along with the performance

index, there are inequality constraints on the amount of power to the actuators. This

performance index and constraints, along with upper and lower bounds on the design variables,

were incorporated into an optimization subroutine which then produced an optimal design for

controlling both torsional and bending vibration. This optimal plate was fabricated and tested

with a torsional load to decide the validity of the theory in improving damping. A comparison

was made between the results of the theory and the experimental results of testing the

optimized plate and a baseline plate made up of a quasi-isotropic lay-up. The frequencies of

the experimental and the theoretical results were within 15% of each other. Also the damping

factor for the 1st torsional and 2nd torsional modes of vibration increased significantly for the

optimized plate versus the baseline plate which verifies the basic premise of the theory.

xii



SIMULTANEOUS COMPOSITE TAILORING AND BENDING CONTROL
OPTIMIZATION FOR DAMPING THE TORSIONAL VIBRATION OF A PLATE

I. Introduction

Background

Spacecraft have always been subjected to some form of disturbances. Some of these

disturbances can be classified as either random or persistent. The random disturbances are

caused by such things as micrometeorite impacts, increased solar activity, material degradation,

etc. The persistent disturbances can be caused by such things as cryo-cooling elements,

vibrations from flexible elements, momentum wheel mass imbalance or bearing noise, etc.

Some of these disturbances do not degrade the performance of the satellite due to their small

amplitude and the robustness of the control system. However these disturbances will degrade

the performance if they are large enough or if the pointing requirements of the satellite are

stringent enough. The twisting-bending motion of a solar array panel caused by either internal

or external forces can induce large vibrations on the main spacecraft structure called the

satellite bus.

Statement of the Problem

The flexible vibration of the solar arrays, that are connected to the satellite bus, are the

cause of one such disturbance source as shown on the IntelSat satellite in figure 1 which is

found in reference [1] and on the IntelSat WWW Home page. As satellites require more

power, the size of the solar



Figure 1 Spacecraft Bus and Solar Array Panels for IntelSat Satellite [1]
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array increases tremendously. These solar arrays are prone to vibrations due to their large size

and light weight. The solar arrays can be subjected to a multitude of loading conditions such

as bending, torsion, combined loading, etc. The bending vibration of a solar array can be

controlled by attaching bending force actuators and sensors to the array at various locations.

The sensors are able to detect mechanical motion and produce an electrical voltage. The

actuators receive an electrical signal and convert it to a mechanical motion. However, the

torsional vibrations are not easily controlled. There are very few ways to damp out torsional

vibrations in a flat panel and the ones that are available are very costly in terms of weight and

power requirements. This research centers on damping out these unwanted torsional vibrations

in the structure using a combination of bending force actuators and the structural bending-

torsion phenomenon exhibited by unbalanced composite plate layups.

Solution

This dissertation looks at controlling the vibrations which could occur in the solar

array by modeling it as a plate which will minimize both torsional and bending vibrations.

This plate is modeled by classical laminated plate theory using a linear elastic strain-

displacement theory for combined loading. The plate is then simultaneously optimized with

respect to both the structural and control system to isolate the satellite bus from the

disturbance source by improving the damping of the plate. Improving the damping of the

plate results in suppressing its motion caused by the external disturbance. If the motion of the

plate is suppressed, then the satellite bus is isolated from that external disturbance. The

control system performance is improved by enhancing the coupling of the twisting and

bending modes by altering the ply layup. Since this plate is made up of composite material,

the stiffness is optimized by varying the orientation of the composite fibers of each ply. The
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twisting-bending coupling due to an unbalanced ply-layup is designed to provide the maximum

energy to those vibratory modes which the control system can damp. Very few active

damping systems work well in damping out the torsional motion of spacecraft structures. If

the energy from the torsion mode can be transferred into a bending mode by ply coupling,

then the disturbance will be damped out by the active control system. In short, the entire

system consisting of the stiffness of the plate, location, and power requirements of the

actuators and sensors is optimized for maximized performance for torsional loading. A

comparison is then made experimentally between the modified structure versus the unmodified

structure for improved performance. The root mean squared (RMS) motion and damping

factors of the optimized structure are also compared to the theoretical results of this research to

determine if the modelling of the plate is accurate.

In this dissertation, the historical background will first be discussed along with the

formation of the theory. Once the theory is complete, the optimization is performed and from

this output an optimized plate is fabricated and tested. Finally comparisons are made between

the theoretical predictions and the experimental results.

4



II. Historical Development

Introduction

In this chapter, the work accomplished by previous researchers-.is discussed as it

directly relates to this dissertation. Also, the development of the fundamental composite

equations of the theory are discussed. The historic development is divided into two different

sections. The composite material theoretical equations are provided in the first section.

Instead of dealing with the historic development of composite material, the elasticity equations

are formulated which will be used later in the theoretical development. These elasticity

equations are derived from Hooke's Law for three dimensional stress-strain relationships.

The second section provides a background look at the theory of composite tailoring

and coupling. This section will present historical work in this area about aeroelasticity and

current work which deals with the problem defined in this research. Aeroelasticity

predominately deals with aircraft, but the same principles can also be applied to parts of the

spacecraft such as the solar arrays. The solar arrays sometimes act as large wings on a

spacecraft when in the presence of the low Earth orbit environment. Through the use of

aeroelastic tailoring, better control can be accomplished of the solar array structures.

Composite Material

A composite material consists of a reinforcement to provide strength and stiffness and

a matrix material that acts as a glue to hold the structure together. Early examples of

composite material include the clay/straw mixture used to make adobe structures to steel

reinforced concrete used to support very large structures such as bridges, dams, etc. When one

speaks of advanced composites, one usually means composites that use stiffening agents such

5



as glass, graphite, carbon, boron, and metal fibers; and matrix materials such as epoxy, metal,

and carbon versus the previously mentioned materials and glass composites. Composite

materials usually have very good stiffness and strength characteristics when compared to

conventional materials especially when weight is a factor. The specific stiffness, or stiffness to

weight ratio, and the specific strength, or strength to weight ratio, of composites are vastly

superior to conventional materials like aluminum, steel and even titanium.

All composite materials whether the are hand layed-up, filament wound, woven, or

pultruded are made up by stacking individual layers, called laminae, together to form the

structure. Each lamina consists of fibers oriented in the same direction held together by the

matrix material. (See figure 2.) The laminae are then stacked together, allowing the fiber

orientation to vary from one to another to form the laminate or structure. One of the

principal advantages of composite materials is that each individual lamina can have varying

fiber orientations with respect to one another. By stacking laminae with varying fiber

orientations, the properties of the structure will change. For example, to obtain maximum

longitudinal and bending stiffness, all of the fibers in each lamina need to be oriented in the

axial direction. The fiber orientation will decide the strength, stiffness, and almost every other

property of the structure. Figure 3 shows how each ply can be different from the preceding

ply by changing the orientation of the fibers. This allows the structure made out of composite

material to be tailored to meet any designers requirements. The plot in figure 4, made by an

engineer at the Phillips Laboratory using in-house composite test data, shows the design

versatility of using composite material with respect to aluminum. The properties of aluminum

are set to unity and the relative composite properties are shown. At least in the aerospace

industry, the trend is to fabricate almost everything out of composite materials due to their

6
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tailorability and superior properties.

Several assumptions are made to analyze composite laminae: [2]

(a) The fibers are homogeneous, linearly elastic and isotropic. They are equally

spaced and perfectly aligned.

(b) The matrix is homogeneous, linearly elastic and isotropic. Hooke's Law

governs the mechanical behavior of a composite lamina.

Jones [3] and Murray [4] provide a very good description of the macromechanical behavior of

a lamina and a laminate. The generalized Hooke's Law for an anisotropic material can be

written in matrix form as:

Ci C12 C13 C14 C15 C16

1 C12 C22 C23 C24 C25 C26 E

02 E2

03 C13 C23 C33 C34 C 3 5 C 3 6 C3

t 2 3  C 14 C 2 4 C34 C44 C45 C46 Y 2 3

~31 C C 31
31 15 C25 C35 C45 C55 C56 Y 12

C16 C26 C36 C46 C56 C66

where G, are the stress components, [C] is the stiffness matrix, and 6 are the strain

components. The stiffness matrix can be related to standard engineering constants such as

Young's Modulus E, Possion's Ratio v, and the shear modulus G for each direction. In

anisotropic materials there are no planes of symmetry, since none of the axes of the lamina

line up with the principal axes of material symmetry.

In most composites, two axes of the lamina line up with the principal axes of the

material which form two planes of symmetry. The 1 direction consists of fiber dominated

properties while the 2 direction consists of matrix dominated properties. This material is

9



defined to be an orthotropic material. The stress-strain relationship for this material is:

C11 C12 C13  0 0 0

O1 C 12 C22 C23 0 0 0

02 1 2

G3  C13 C23 C33  0 0 0 E3 (2)
T23  0 0 0 C44 0 0 Y23

231 0 0 0 0 C55  0 Y 1

0 0 0 0 0 C66

If a laminate is thin enough, a state of plane stress exists and is characterized by:

=23 31 = 0 (3)

This is shown in figure 5 which also shows the principle directions of the structure. The

stress-strain relationship expressed in equation 2 is now reduced to:

fox1 Q11 Q12  0 fE
Y 2 = Q 1 2 Q 22  0 jC2 (4)

.0 0 Q 6 6 .Y2

where:

Q11 = C11  c 13
2  El (5)

C33 1 - V12V21

2 C11 - C23C13 v 2 1E1  (6)
C33  1 -v 12V21

Q22 = C22 - -23 2 (7)
C33  1 - v12v21

10
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Q66 = C6 = G12 (8)

When the principle material directions move to a different coordinate system and differ from

the principle directions of the structure as in the case of angle ply layups, the stresses and

strains need to undergo a coordinate transformation. (See figure 6). The angle 0 is the angle

from the x-axis to the 1-axis. The transformation from the 1-2-3 coordinate system to the x-y-

z system is:

{O}=7 mAT 2 (9)

where [T] -1 is [5]:

cos 20 sin2o -2sinfcosO

[ 1  sin20 cos20 2sin~cosO (10)

sin0cosO -sinOcosO COS20 - sin20

Using the coordinate transformations, the relationship between stress and strain, in any

arbitrary direction, can be found. This relationship is:

{ok 11= [QI{E}.Y (11)

where

[Q] =[T 1-[Q] [T- T  (12)

The stress-strain relationships for transverse isotropy in xyz coordinates are then represented in

12



matrix form as:

l 12 16

(Y-11 =[ Y1  Q12 Q22 QV6  
(13

LYJ L Q16 Q26

in which:

Qll =Cl 1cOS4 +2(C2+2C66)sinOCOs 2 0 + C22sin4  (14)

Q12 =(C11 +C 22 -4C66)sinOCos 20 +C12(sin4O +cos4O) (15)

Q16 =(C11 -C 12 -2C66)sin 0 cos3 0 +(C12 -C 22 +2C66)sin3OcosO (16)

Q22 =Ce Isin40 +2(Cl 2 +2C66)sin2 0cos 20 +C22cos 40 (17)

Q26 =(C 11 -C 12 -2C66)sin 3OcosO +(C 12 -C 22 +2C66)sin0cos3O (18)

Q66=(C 11 +C 22 -2C 12 -2C 6 )S 2Oc O S2 0 +C6(sin4o +cos4 o) (19)

Now that the stress-strain relationships for any arbitrary ply angle are developed, the

equations relating strain to displacement for an anisotropic plate need to be derived. These

equations will be derived in chapter III using the strain relationships derived in a rectangular

cartesian coordinate system. A linear elastic theory will be used to describe this relationship.

The coordinate system used in this development is shown in figure 7. The x and y axis are

located at the mid-plane of the laminate. The displacements U0, V0, and Wo are the laminate

mid-surface displacements in the x, y, and z directions respectively.

Composite Tailoring

Composite tailoring has been used in aircraft and helicopter applications in the recent

past. The tailoring of the composite material properties such as the strength, stiffness,

13
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thermal coefficients, and coupling terms to meet an objective is what makes them very

attractive to use in all applications. This is especially true in the area of aeroelastic tailoring

which is "the incorporation of directional stiffness into an aircraft structural design to control

aeroelastic deformation, static or dynamic, in such a fashion as to affect the aerodynamic and

structural performance of that aircraft in a beneficial way." (See [6],[7],[8],[9].) Aeroelasticity

predominately deals with aircraft, but the same principles can also be applied to parts of the

spacecraft such as the solar arrays. The solar arrays sometimes act as large wings on a

spacecraft when in the presence of the low Earth orbit environment. Through the use of

aeroelasticity, better control can be accomplished of the solar array structures. In recent years,

most of the effort in aeroelastic tailoring has been conducted in identifying the effects of an

anisotropic design on the deformation coupling of fixed and swept wing aircraft. (See [6] [7]

[10] [11] [12] [14].) More recently, the shift in aeroelastic tailoring has turned to the effects

on rotorcraft and rotorsystems. (See [2] [13] [15].) Composite tailoring through anisotropic

design is ideal for this application since helicopter blades operate in an environment consisting

of inertial, aerodynamic and elastic loadings. The benefits of aeroelastic tailoring for

helicopter blades with an off-axis layup are that a twist will be induced in the blade when a

non-torsion force is exerted which will improve the performance of the lifting surface.

In this research, the idea of composite tailoring will be extended to the area of

controlling large space structures and modified slightly. The layup will remain symmetrical to

prevent warping, but it will be unbalanced which will cause the required coupling in motion.

The plates in a large space structure, with an anisotropic composite layup, will be optimized

with respect to their directional stiffness and coupling terms to enhance the effect of the

control system on the structure. The orientation of the composite fibers, which decide these

15



coupling and stiffness terms, will be optimized with respect to the active damping. The axial-

bending and torsion-bending coupling due to an anisotropic, unbalanced ply-layup will be

analyzed to provide the maximum energy to those vibratory modes that the control system can

damp. Very few active damping systems work well in damping axial and torsion motion. If

the energy from the axial and torsion modes can be transferred into a bending mode through

ply coupling, then the disturbance can be damped out by the active control system.

The idea of composite tailoring for structural elements in a spacecraft has been

presented only recently in the literature by Hwang and Gibson [16], Barrett [17] [18], Belknap

and Kosmatka [19], Bronowicki and Diaz [20], Olcott [21] [22] [23], Hwang, Hwang, and

Chul [24] [25] [26], and others [27] [28] [29] [31] [30]. Hwang and Gibson [16] presented

the influence of the vibration coupling effects, such as bending-twist and bending-extension,

on the damping of laminated composites. The only damping was the inherent material

damping of the composite, modelled by the strain energy damping. They concluded that the

coupling effects of the composite are dependent upon the fiber orientation and laminate

geometry. The coupling effects were found maximized at fiber orientations of 30 degrees.

Also, the coupling effects tended to increase the vibrational damping in the first two flexible

modes.

Barrett [17] [18] discussed the improvement of damping properties of axially loaded

structural members made up of anisotropic composite laminated and damping material. He

formulated a structural theory that characterizes the behavior of an axially loaded composite

cylinder and applied it to a three layered structure. This structure consisted of concentric

layers of both stiffness and damping materials. In his theory, the stiffened cylinders were

treated with thin wall theory that implies that the non-membrane stresses were negligible.

16



Different fiber orientation and layups were studied for controlling the resonant response of the

structures. These design study comparisons were not made on an equal mass basis which

accounts for some decrease in resonant frequency when the damping material is added to the

structures. The design studies proved the effectiveness of the coupling in suppressing and

controlling resonant vibration. Barrett discussed some difficulties associated with the addition

of anisotropic effects. Anisotropy will result in shear stresses and circumferential

displacements in the axial composite cylinder construction. These shear stresses may result in

new modes of failure such as delaminations in the cylindrical structure. The circumferential

displacements at the ends of the members will cause difficulties because they are usually

constrained in most boundary conditions. Barrett discusses, but does not analyze, some

possible solutions to these difficulties. One solution is to allow the stiffness to vary along the

length of the structure. This can be accomplished by allowing the thickness to vary or the ply

angle to change along the length. Barrett concludes that the anisotropic composite

construction is resistant to all modes of vibration. The axially, torsional, and flexural modes

of vibration are resisted by the coupling introduced by an anisotropic composite layup.

Belknap [19] discussed the design and fabrication of a thin walled composite structure

with an inner and outer layer of graphite epoxy shells and a center layer of viscoelastic

damping material. The graphite layers were fabricated so that when they are subjected to

either a bending or axial load, they counter-rotate to produce a large shear area at the

viscoelastic layer. Belknap used the stiffness characteristics of a laminated tube to choose ply

orientations that maximize damping and structural stiffness. In his theoretical development he

assumed a two-dimensional strain state when determining the displacement functions. A

separation of variables technique combined with the Ritz method was used to solve for the
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local cross-section warping functions. The extensional-bending-twisting coupling can be

represented by applying solely an axial force. By varying the ply angle, Belknap demonstrated

that the coupling is maximized when the angle is around 30 degrees. He also presented a very

detailed fabrication plan and problems associated with incorporating the viscoelastic material

into the tube. The main problem that he encountered was in testing the tube in the axial

mode. He said that special end fittings need to be fabricated to couple the stiffness of the two

composite shells with the viscoelastic core while allowing for the counter rotation of the two

shells at the tube's end. However, by conducting a simple impact-hammer modal test with the

tube in a near free-free suspension, the damping in the first mode was increased over seven

times by optimizing the ply layers and incorporating the damping layer.

Bronowicki and Diaz [20] present a semi-analytical finite element approach using a

pair of concentric cylindrical shells surrounding a viscoelastic medium. They present this

theory in an attempt to damp extensional motions in a truss member commonly found in a

space structure. The constitutive equations for the cylindrical shells are derived based upon a

plane stress, linear strain-displacement relationship for an orthotropic material. The

viscoelastic material is, as stated in this report, "assumed to be at a single operating frequency,

which allows the elastic and shear modulus, Ev and G,, to be defined as complex numbers

representing magnitude and phase of stiffness." The analysis that is performed is for that

single frequency and can be performed for different operating frequencies and temperatures.

The stress-strain relationship is derived using Hooke's Law. The displacements of the

viscoelastic material are assumed to vary linearly throughout the thickness between the inner

and outer shell. The outer and inner orthotropic shells are coupled to the viscoelastic layer

through surface tractions. From these combined equations, only allowing radial forces, a finite
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element is defined for the composite structure. These finite elements are combined to form a

coarse grid along the length of the tube. They say that due to the Bernoulli-Euler hypothesis,

the axial results can be applied to bending.

In his dissertation and other papers, Olcot [21] [22] [23] discusses a new damping

concept which uses the stress coupling effects inherent in composite materials to induce large

shear strains in co-cured damping layers. The ply angle is varied along the length (as shown

in figure 8) of the component to create multiple regions of high shear and to induce high

damping loss factors within the component. This concept was analyzed by a computer

program which was used to conduct parametric studies on the analytical models of flat

membranes and cylindrical damped components. Finally, several damped cylinders and I-

beams were built to test the validity of the theory and computer program. The model

developed by the theory predicted the natural vibration frequency and damping loss factors of

the cylinders to within 5%. The cylinders built and tested with this new concept have tested

loss factors of up to 8.5%.

The work presented in the papers by Hwang, Hwang, and Chul [25] [26] is very

similar to the work presented in this dissertation. Their theoretical model and approach are

presented next. However, the conclusions of their paper will not be discussed in this chapter.

A comparison of their theoretical and experimental work to the current approach is presented

in chapter VI. The conclusions of the paper by Hwang, Hwang, and Chul will be used as an

independent confirmation of this dissertation and compared with the results. Their basic

premise is to use an intelligent system concept design for vibration control of a laminated

composite plate with piezoelectric sensors and actuators attached. An intelligent system

concept design is another name for smart structures which is the addition of sensors, actuators,
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Figure 8 Ply Angle Varied Along X-Axis
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and control electronics to a structure to control the vibrations. Also included is an analysis of

altering the vibration modes of the composite structure by tailoring the stiffness and taking

into account the bending-torsional coupling. They determine the optimal size and location of

the sensor and actuator and the optimal ply layer angles which maximize the work done by the

controller. If the work done by the controller is maximized by optimizing the structural and

control parameters, then the control energy utilized is reduced. One of the major differences

between the referenced paper and this dissertation is how the equations of motion are

determined. Hwang et. al. derive the equations of motion by using Hamilton's Principle and

then discretize them by using the finite element method. The kinematics are derived by

expressing the displacement and curvature in terms of nodal displacements using the shape

functions of a 4 node, 12 degree of freedom quadrilateral plate bending element. In this

dissertation the equations of motion are formulated similarly using Hamilton's Principle.

However, the discrete equations of motion are found by using the Rayleigh-Ritz or Assumed

Modes method. Since finite element theory is a derivative of this energy methods, the

theoretical results should compare very well.

Also in the paper by Hwang et.al., from finite element theory, the mass matrix M and

stiffness matrix K ate generated and used to solve the free vibration analysis for the natural

frequencies and mode shape vector. The equations of motion are transformed into state space

form through the use of modal state variables. The control equations are adjoined to the state

space equation of motion by using negative velocity feedback. The combined control

equations are written in terms of both the structural and control variables. An objective

function is formed based upon these variables whose solution will maximize the work done by

the feedback control forces, for a fixed energy input, by calculating the optimal solution. The
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optimal solution is dependent upon the design variables which are the ply layer angles and

number, size, location, and gains of each sensor and actuator pair. When the work done by

the feedback control forces is maximized, the control system is more effective. In this paper

[25], the numerical optimization is performed using the method of feasible directions.

Numerical calculations are performed on an eight ply laminated composite plate with two of

the plies variable. The stacking sequence is defined as [01/O0°/90°]S where 01 and 0', are the

ply angle design variables. The optimization is first conducted for an orthotropic plate to

determine the optimal size and location of the piezoelectric sensors and actuators. Initially, the

size of the sensors and actuators are unconstrained while the locations are not allowed to vary.

In the second case the sizes are constrained while the optimal locations are obtained. The

optimization is next conducted to determine the optimal ply angles of the laminated plate

which will maximize the control performance. The optimization is conducted with and

without the dynamic stability constraints. The optimizations are not performed simultaneously

or integrated as they are done in this dissertation. Instead they are performed sequentially

which may or may not produce the optimal result. Sequential optimization may be the easier

method because it reduces the number of parameters which are being searched for during the

optimization, but may not produce the best result as shown by Dracopoulos and Oz [32].

They show that using simultaneous or integrated optimization produced a solution which

lowered the control cost by 294.4% over a nonintegrated design procedure. The final result of

the papers by Hwang [25], [26] and in this dissertation, is that the control system performance

increases, as measured by the increased damping factors, as the bending-torsion coupling

increases. This research described in the referenced paper presents only a theoretical analysis,

but in this dissertation an experiment will be conducted to prove the feasibility of this
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proposed theory. However, the results of Hwang et.al. are very close to the results found in

this research even though the methodology is completely different: finite element method

versus Rayleigh-Ritz approximation and sequential versus simultaneous optimization.
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III. Theoy

Introduction

This chapter is separated into five main sections: derivation of the equations of -

motion for the composite plate, active control derivation, derivation of the complete equations

of motion, control theory and structural/control optimization formulation and solutions by an

optimization subroutine. In each section, the necessary equations are derived and main

assumptions are stated for each particular subject. How these particular sections fit together is

shown in figure 9 which is a flow chart outlining the theory. First the governing composite

equations are formulated for a particular strain field. These equations are converted from

partial differential equations to ordinary differential equations by incorporating assumed

solutions to the equations of motion. Next, the active control system is augmented to the

differential equations through the use of state space modelling. The equations are first order

differential equations. The optimization performance index and constraint equations are

deternined next. These equations are coded into a FORTRAN program and an optimum

solution is found using an optimization solver. Numerous cases are run and the lowest local

optimum solution is determined. Based upon the results of the optimization, an experimental

plate is fabricated and tested. Finally the results are documented comparing the theoretical

predictions with the experimental results.

Composite Plate Theory

This plate is (see figure 10 for dimensions) modeled by classical laminated plate

theory using a linear elastic strain-displacement theory when subjected to combined loading.

The thickness is approximately 100 times less than the next smallest dimension, the width.
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Figure 10 Dimensions of Composite Plate
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The deflections of the plate are assumed to be small. Also the plate is assumed loaded only in

torsion about the x-axis. The z-displacement, w0, is a function of both x and y. The force-

displacement equations and equations of motion will now be stated for the plate.

Moment Displacement Equations. The generalized displacement field (see [3], [33])

is:

awo 20
u(x,y,z,t) = -z (20)

ax

v(x,y,z,t) = -z a w°  (21)ay

w(x,y,z,t) = WO  (22)

The strains considered in this analysis are derived from linear elastic theory. The linearized

strain-displacement relationships are:

au (23)
ax

_v (24)

V + au (25)
ax ay

Substituting the above displacement relationships into the strain equations, the strain-

displacement equations become:

= -ZWo,. (26)

'y = -ZWo,, (27)

yxy = -2zwo,.y (28)
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Using classical laminated plate theory [3], the moment-strain relationship is presented using

the above strain-displacement equations which will be used to assist with the derivation of the

equations of motion is:

D11 D 12 D16 K

{M }D 2  2 2  2  XR (29)
[1)16 D26 66]

where:

1N
Dij= - (Qi),(zk - Z-,) (30)

where Qjj are given by eqs (14-19).

The above relationships are only valid if the ply layup is assumed to be symmetric.

Equations of Motion. The strain/displacement relationship developed previously will

now be used to derive the equations of motion and boundary conditions for the composite

plate. The equations of motion are derived using Hamilton's Principle [35] - [37] which is:

t2

f8(T - U - Vldt=O (31)
t
1

where T is the kinetic energy, U is the potential or strain energy, and V symbolizes the work

done by conservative or nonconservative external forces. The symbol 5 represents the first

variation with respect to the dependent variables.

The kinetic energy is defined as:
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h
b/2 a 2

T= f f f p[(2) + (12) + (-')]dzdxdy (32)

-b/20 _h
2

where p is the mass density per unit volume for the composite plate and the displacement

derivatives are with respect to time. The density is held constant throughout the laminate.

The displacement derivatives can now be calculated as:

(a2) = z2li,0 2 (33)
2)=Z2. 2 (34)

(*2) = 2 (35)

Before deriving the equation for the kinetic energy, the following simplifications are

introduced:

h
2

1, f pdz (36)
h
2

h
2

I3 = f pz2dz (37)

h
2

The expression for the kinetic energy is:

b/2 af f o,3, 2 + I3.0o,2 + Il wo]dXdy38

The first variation of the kinetic energy can now be found by taking the partial derivatives of
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T with respect to the dependent variables which are wo, wo, wo,. The first variation is now

derived as:

b12 a

8T= ftfii3w,,,9x + I31'olyb'oy + Ivo08 -Po drdY -(39)

-b2 0

The variation of the kinetic energy is then integrated by parts (see appendix A) with respect to

time to remove the partial derivatives from the variations. For simplification, this expression

is broken out into four parts: contribution to the equation of motion, contribution to the initial

conditions, contribution to the x-axis boundary conditions, and contribution to the y-axis

boundary conditions. These expressions are represented as:

t2

f8Tdt =T, + T2 + T3 + T4 (40)

Contribution to the Temporal Boundary Conditions can be stated as:

b/2 t2a a t2 b/2

T, = f 3vOO'3wo IHdy + fd'0 ,8Wo0  I dx
-1 2 tl0 0 t- b l2 ( 1

bi2ta t2

+ f- I3. 0 ,. - I31oy)8Wo] dxdy
-b/2 0 t

Contribution to the Equation of Motion can be stated as:

t2 b/2 a

T2 = f f ft(IV3*o, + I31o0yy - Ilpo)6wodxdydt (42)
e -b/2 0

Contribution to the X-Axis Boundary Condition can be stated as:
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t2 b12 a

T3 =- f f I 3 obwojdydt (43)
tt -b/2 0

Contribution to the Y-Axis Boundary Condition can be stated as:

t2 a hf 1 2 dxdt(4 
4)T4 =_f fl3a 0oW° idx t  44

t 0-b/2

The strain energy is defined as:

h

b/2 a 2

U= f f f + ayCy + Tyy)dzdxdy (45)

-b12 0 _h
2

or after taking the first variation, it can be written as:

h

b12 a 2

8 = f f f (oG.8 + y,8 y + rXy 8y,)dzdxdy (46)
-b12 0 h

2

This expression can be rewritten after substituting the terms for the displacements and

integrating the z dependence out of the expressions. This equation for the potential energy is:

b/2 a

8U f f[M.,w,, + Myw(,oyy + 2Mxygwo'ly&rd (47)
-b120

The variation of the potential energy is then integrated by parts twice with respect to x and y

to remove the partial derivatives on the variations. Again for simplification, this expression is
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broken out into four parts: contribution to the equation of motion, contribution to the

boundary condition along the x - axis, contribution to the boundary condition along the y-axis,

and contribution to the comer boundary condition. These expressions are represented as:

£2

f sUdt = U1 + U2 + U3 + U4  (48)

t1

Contribution to the Equation of Motion can be stated as:

t2 2 a

U, = f f f[M,,,6Wo + My,.8wo + 2Mxy,y8w]dxdydt (49)

t1 -b2 0

Contribution to the Boundary Condition Along the X - Axis can be stated as:

t2b12 a

U2 = f f [MxaWoI x - M~x,8Wo - 2Myy6Wo]dydt (50)
£1 -b/2 0

Contribution to the Boundary Condition Along the Y - Axis can be stated as:

t2 a b12

U 3 = ff[Mswoy - Myy5w 0 - 2Myxw 0 I dxdt (51)
ti 0 b12

Contribution to the Boundary Condition At the Comer of the Plate can be stated as:

t2 a b12

= f2M, 8woI Idt (52)
S 0-b12

For this analysis, the structural eigenvalue problem associated with harmonic solutions
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for the undamped free vibration case are formulated. Once that solution is found, the damped

disturbed vibration case will be formulated based upon the solution to the above problem. The

work done by external disturbances can be defined in terms of conservative torques and will

show up in the boundary conditions for the damped disturbance vibration case. After the

equations of motion are solved in the undamped free vibration case for their spatial

relationships, the external disturbances and the control force are adjoined to them by

LaGrange's Principle. Then the solutions for the damped disturbed vibration case are found.

The equations of motion, initial conditions, and boundary conditions can now be

derived by substituting the appropriate equations from the variation of the kinetic and potential

energies into Hamilton's Principle. The equations are:

Temporal Boundary Conditions are:

b12 t2a  a t2 b12

f 13V0,8Wo IIdy + fl3*0,8wo I dx
-b12 tV0 0 -hi2 (53)

b/2 a t2

+ f -(IlO -310. I3w' - I3 'yy ) 8w °
0 Idxdy 0

-b120 t,

The Equations of Motion are:

2 b12a

f f (- M ,- MyIyy - 2M y(4
t, -b120 (4

+ I3wxx + I 3woy - I1 ip o)wodxdydt = 0

The X-Axis Boundary Conditions are:

t2 b/2 a

+ f f [- MJWo,J + + xYy - I3w0,')8wo] I dydt = 0 (55)

t3 -b/2 0
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The Y-Axis Boundary Conditions are:

t2a b/2

+ ffr- My bwo,y + + 2M, - I3 -Oy) 6W0 I dxdt 0 (56)

th 0 -hb2

The Comer Boundary Conditions are:

C2 a b12

- f2M.,wo I Idt = 0 (57)

0 -b12

If the initial and final conditions of the problem are completely specified, then the variations

of the degrees of freedom over the interval t1 to t2 can be set to zero. The variations of the

degree of freedom, 3wo, is completely arbitrary and is not necessarily equal to zero. Therefore

the quantities multiplied by this variation must be set equal to zero in order to satisfy

Hamilton's Principle. The partial differential equation is defined as:

Mxxx + My, + 2M,y - I3i0,xx - I30,yy + 1V' 0 = 0 (58)

No assumptions will be made about the material properties until the equations for the

piezoceramic material are incorporated. Therefore, the natural and geometric boundary

conditions which are derived from Hamilton's Principle are along the X - Axis:

a

M.8w o,I = 0 (59)
0

a

(Mexx + 2MXY, - ,)6W = O, (60)
0
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along the Y - Axis:

b/2

9Y +)2 b2 (62)(MYy + M-, x' -13 o0y) 6Wo]_ I 
= O,-(2

-b/2

and at the corners:

a b/2

2M IyWo b12 (63)
0-bJ2

In order to complete the development, the strain-displacement expressions and the

moment resultants need to be substituted into the above equations. Also, the material constant

13 is much smaller than the other constants in the equations of motion and boundary conditions

by at least four orders of magnitude. Therefore, this constant can be neglected in the above

equations. Finally, in order to simulate a solar array structure attached to a satellite, the

boundary condition which approximates the physical conditions is a fixed-free condition in the

x-axis and free-free condition in the y-axis. This is a satisfactory boundary condition in order

to control the relative motion of the solar array with respect to the satellite bus. Both the

displacement wo and the slope of the displacement w0 ,× are specified at the fixed end at (x=0),

and- the variation of these variables are also set equal to zero. For the free ends in the x-axis

and y-axis, the displacement and slope cannot be specified so they are not necessarily zero.

The shear and moments are zero. These equations can now be rewritten into their final form

in terms of the unknown variables, material constants and proper boundary conditions. The

partial differential equation is defined as:
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+lw,., + ( 1 2D66 )W,) + 4D16W 0 ,xy (64)

+D22WO'yyyy 26 4MO'xyyy +1l 0

The natural and geometric boundary conditions become along the X - Axis,

at X =0:

a w0,.,(O) =0 -w 0,'(0) = 0 (65)

a WO(O) = 0 -w, 0(O) = 0 (66)

at X =a:

D11w,,(a) + D12W0,,y(a) + 2DI6W0,y(a) =0 (67)

D11W0,.(a) + (D12 + 4D6 )W,',,(a) (68)

+ 4D,6w,,,,a) + 2D26w,,ya) = 0

and along the Y - Axis,

at Y =-b2

D12w,.(-b/2) + D2Wy(-/)+ 2D26w05 y( -b/2) =0 (69)

(D12 + 4D 26 )W0,,(-b/2) + D22W,(-b/2) (70)

+ 2D16W0,.( -b/2) + 4D6 6W01,y( -b/2) = 0

at Y = b/2:
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D12 woxx(b/2) + D22woyy(b/2) + 2D 26Woxy(b/2) = 0 (71)

(D12 + 4D26)W0,,xy(b/2) + D22wo,y(b/2) (72)

+ 2D16wo,~xx(b/2) + 4D66Woxy(b/2) = 0

and at the Corners for X 0 and Y = -b/2:

8wo(O,-b/2) = 0 - wo(O,-b/2) = 0 (73)

for X =0 andY= b/2:

6wo(O,b/2) = 0 - wo(O,b/2) = 0 (74)

for X a and Y =-b/2:

D16w°,x(a,-b2) + D26W°'yy(a' -b/2)

+ 2D 66Woy(a,-b/2) = 0

for X a andY= b/2:

D16wo,,,(a,b[2) + D26Woyy(a,b/2)

+ 2D66W,,xy(a,b/2) 
= 0

Active Control Derivation

The equations of motion for the composite plate and the equations governing the

active control elements will now be combined to form the complete set of equations that

describe the structure. Figure 11 outlines how the active control elements are incorporated

into the structural equations of motion. The structural equations of motion are combined with
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the active control system by adjoining the equations of motions with the sensor and actuator

dynamic model equations. The performance index and the constraint equations are formulated

when the closed loop control equations are formulated from the combined state space model.

The active control elements, piezoceramic actuators and sensors, will be placed

opposite one another through the thickness of the plate and will be wired such that for a given

voltage, the actuator will either expand or contract producing a bending moment at the actuator

location. They will primarily be used to control the bending and coupled torsion - bending

modes of vibration. The equations for the bending force produced from the piezoceramic are

now stated. (See [8], [39] - [45].) These equations were originally derived for a beam. They

are applicable in this case due to the dimensions and directions of the capacitance of the

actuators and sensors. When an electrical charge is applied through the piezoceramics, they

will either expand or contract. The piezoelectric coefficient is significantly greater along the

length of the actuators and sensors than the width. Therefore, they will produce predominately

a pure bending moment along the length of the actuator. These equations will be derived for

the actuators attached on the top and sensors attached to the bottom of a structure. (See figure

12.) Some assumptions made in deriving these expressions are:

1. A perfect bond between the actuator and sensor and the structure.

2. The actuator's and sensor's mass do not contribute to the structure.

3. The capacitances of the sensor's leads are negligible.

Considering a structure with no external moments and actuators mounted either on the top or
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Figure 12 Actuator and Sensor Attached to Structure
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bottom, the expression for the displacement caused by these actuators can be expressed as

(see [39] - [45]):

K DVD X 2  (77)
E1 2

where KD is the piezoceramic actuator coefficient and VD is an applied DC voltage. This is

similar to the expression when the structure has no actuators present and is acted upon by a

point moment, M0:

W M x 2  (78)

2EI

Therefore, the piezoelectric actuators produce an equivalent point or concentrated moment

proportional to the applied voltage. As stated previously, the above derivation was conducted

for beams. Since the actuators and sensors only cover a small portion of the length and width

of the plate, the moment produced and the strain sensed will be at the attachment point. This

attachment point is assumed to be located at the center of both the piezoelectric actuator and

sensor.

A similar expression is stated for the piezoelectric sensors which work opposite to that

of the actuators. Instead of producing a strain from an applied voltage, the sensors produce a

current from an applied strain rate. The results of these sensor equations found in references

[39] - [45] are:

Xk

Vo(t) = K f (xt)dx , k = 1, 2, ... , N (79)
Xk-1
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After integrating, this equation becomes:

ax XkI

where:

K, = Wd2 3 lC RF (81)

and

Vok = Measured voltage from the kth sensor

Wd = sensor width

h/2 = one half plate thickness

N = number of sensor and actuator pairs

d31  = piezoelectric constant

c F I = elastic modulus of the sensor material

Xk1  - beginning point of kth sensor

xk  endpoint of the kth sensor

RF - resistor associated with an ideal operational amplifier used to acquire

the signal

In this research, N=2, two actuator and sensor pairs will be used and their locations and

control gains will be optimization parameters.

Discretization of the Equations of Motion

The equations of motion for the entire plate including the active control system will

40



now be reduced to ordinary differential equations with respect to time to formulate the closed

loop state space equations based upon the control theory used. From these closed loop state

space equations, the performance index and constraint equations are developed. This can be

done by determining the approximate solution to the spatial dependence and integrating this

solution over the volume of the plate leaving only an ordinary differential equation with

respect to time. An assumption concerning the above equations must be made to simplify the

expressions. This assumption is that the spatial dependence can be separated in the x and y

directions and from the time dependence terms in the equations of motion. This assumption is

hard to prove since it assumes that synchronous motion occurs from which orthogonality is

shown. Taking into account these assumptions, the x and y spatial coordinates and the time

dependence are separated and an approximate method such as the assumed-modes, Rayleigh-

Ritz method (see [33], [35], [36], [46] - [49]) or Galerkin (see [33], [35], [36], [46], [47], [49])

is used to solve the equations of motion. A typical Rayleigh-Ritz approimate solution for this

application is:

N M

wo(x,y,t) = , Aij*(t)X(x)iY(y)j (82)
I = I

Notice the spatial and temporal dependencies are separated. This approximate spatial

relationship or admissible function is assumed to satisfy only the geometric boundary

conditions. For this research with the above boundary conditions (eqs 65-76), fixed-free along

the X-axis and free-free along the Y-axis, geometric boundary conditions are present only

where the plate is fixed in the X-axis direction. The spatial properties or geometric boundary

conditions for the X-axis are satisfied by the admissible function [33], [49], [50]:
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X' (x)  = 1 -Cos[t-- I m = 1,2,3,4 .... (83)
Xm(X 1- os[2a

For the Y-axis, the function used is a comparison function for the flexible motion of a beam

made out of an isotropic material with free-free boundary conditions [33], [50]. This can be

derived from assuming motion is the sum of four trigonometric functions: cos, sin, cosh, and

sinh.

= Csyn + Y ihy+ccs (84)Sc si- + c2CoS + c3S +
b b b b

where

c1 , c, C3, c4  constants derived from the boundary conditions

21, solution to the characteristic equation

Substituting the above expression into the boundary conditions for free-free which are:

-,2y -3y
- (0) -(0) =0ay 2(85)

a2y a3y-(b)= (b) =0

yields the following four expressions:
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, 2 (86)b 2

(-c 2 o + c s) = 0 = c2 3 =0 (88)
b 3

b 2(-clsin. - cosX+ csnX+ C2o )= 0(8

b(-ClCOSX + c 2sinX + c1cosh, + c2sinhX) = 0 (89)

Solving equations (88, 89), assuming X doesn't equal 0 which would be the trivial solution,

one obtains:

cosXcoshX = 1 X = 4.73, 7.8532, 10.996, 14.137,.... (90)

and

-, [coshX - cosX] (91)
[sinhX _ Sin 2

Using the above equations, the expression for the flexible motion of a beam made out of an

isotropic material with free-free boundary conditions is:

Y cosh[-] + cos[- ]
b b (92)

(cosh[X] - cos[]) (sinh[k] + sin[k])

(sinh[X] -sin[X]) b b

However, additional terms are needed since the assumed comparison function modeled

only the flexible motion of the beam and the rigid body motion of the beam in the Y-axis also

needs to be taken into account. These additional terms capture the rigid body motion of the

plate in the Y-axis while the plate in the X-axis is undergoing flexible body motion. Also in
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order to simplify the equations, the coordinate system for the Y-axis was shifted from the

center of the plate to one end. This shift occurred over a distance of b/2 or half the width of

the plate. (See figure 13 for the new coordinate system.)

Y1 =1

y2 1 2y

b

Yn(y) =  cosh[ 2 ] + cos[(2] (93)

(cosh[X.(,l 2) - cos[X.(n 2)D) (n___ 2)) 2,
(sinh[ - ]- + sin[ - ]) n 3,4 ......

(sinh[X.(n- 2)] - sin[A(n 2)]) b b

where Xn is a solution to the characteristic equation given in equation (90). The approximate

periodic solution is a combination of both solutions and Wy(t) = sin[pt]:

m n

wo(x,y,t) = E E AoXiYfin[pt] (94)
i = lj = I

using a finite number of terms for X and Y (in this case 2 terms each):

Wo(x,y,t) = [Al(1 - coS-T) + A 12(1 - cos- )(1 - -)

w0x~~) [ 1 (1- 2a 2a b
(95)

cA21(1 - Cos-) + A22(1 - cos-)(1 - -)sinpt
a a b

and:

p = Modal frequency

Following the Rayleigh-Ritz approach, this approximation is then substituted into the following

expression for kinetic and potential energy from which the equations of motion for the

undamped, unforced plate were derived to determine the frequencies and mode shapes of the

plate:
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PLATE LOCAL COORDINATE SYSTEM

Z Wo

Vo

x U
Figure 13 New Plate Coordinate System
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V - T. = 0 (96)

where:

b a (97)
= M (xift[3ox + 13Wy + IW2dTdy)

00

h
ba 2

=Max ff f (E. + o +T yY.y)dzdxdy
00 h

2 (98)

ba
ff ltM2woM + MWoV + 2Mwodxdy

002

These are used to solve for the constants, Aij, and the frequencies of the approximate solution.

After the integrations with respect to x, y, and z are completed and the numerical values are

substituted in for the constants found in figure 10, the expressions for the potential and kinetic

energies become:

Tm = p2p[.54A 2 + .18A2 + 2.8An A21 + 3.6A2
2
1 + 1.2A2] (99)

Vmax = .00044A21D 1 + .00015A12D 1 + .0015AA 21D11

+ .0071A2 1D + .0005A2 A22D n + .0023A22D(
21 1112A222PI1(100)

-. 0086A11 A1 2D16 + .023AI2A21D16 -. 023AnA22D16

+ .1A2D + .35A12A22D6 + .41A 2 D6

The derivative of the above equation is taken with respect to the constants Aij and each is set
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equal to zero. This is used [36] to calculate the constants Aj from which the eigenvector can

be determined. This forms four separate equations in terms of the unknown Aii and

frequencies. These four equations are combined into a matrix/vector equation in order to solve

for the constants and frequencies. The constants and frequencies are then found by solving the

equations simultaneously.

The method that is used in this research is evaluated by differentiating each term

separately and formulating the following equation:

a V .a O T .a

aAll 2All

a V .a a T .aBA12 BA12 (101)

a V. aT x

aA21  BA21
a V., a Tto

BA22  BA22

Each term can be represented as a matrix multiplication using the symbols K and M for the

stiffness and mass matrices respectively.

aVm
BA11

BA1 x  A12 (102)

BA21 221

BA22
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a T.

aA110AT.Al

aA", P A1 (103)

aTaaA21
a T.

aA 22

where

.00088D11  -. 0086D 16  .0015D11  -. 023D 16

-.0086D 16 .00029D 11+.21D66 .023D 16 .0005D 1 +.35DD6

.0015D11  .023D16  .014D 11  0

-. 023D 16 .0005D11 +.35D66 0 .0047D11 +.82D66

and

1.1 0 2.76 0

0 .36 0 .92 (105)

p2.76 0 7.2 0

0 .92 0 2.4.

Substituting these expressions into the above equation, one obtains the following equation:

[K] A12 = p2 [M ] A1 (106)

221 [221

The frequencies and constants Aij are found by solving the generalized eigenvalue problem for

the above equation. The frequencies squared are the eigenvalues and the constants Ai1 are the

48



eigenvectors.

As a check to see if the selected approximate solution models the plate sufficiently, the

numerical frequencies and mode shapes were found by using typical realistic material constants

and various ply layups. For this check, typical composite parameters were substituted for the

composite properties. (See Table 1.)

TABLE 1 TYPICAL COMPOSITE PROPERTIES

Composite Parameter Value

El 137.25 GPa

E, 11.42 Gpa

G12  6.39 GPa

V12 0.3

V21 0.025

p .043

These results for the four-mode approximation (2 "x" terms and 2 "y" terms) also compare, at

least in first bending, to the one-mode approximation. The frequencies for the one-mode

approximation are now calculated for the following four test case ply layups: 1. [0/90/t45/0],

2. [0/±452]s, 3. [_t455], 4. [+305], and shown in table 2. They differ by between 1-3% for all

four cases. Since the Rayleigh-Ritz solution is an upper bound, the frequencies should

decrease for the more accurate four-mode approximation.
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TABLE 2 FREQUENCIES FOR THE TEST CASES FOR THE ONE MODE

APPROXIMATION

Case # Frequency (Hz)

1 1.3857

2 1.03544

3 1.46278

4 1.0116

These are the frequencies for the first bending mode of the structure. The frequencies and

associated mode shapes are now calculated for the four-mode approximate solution for the

above test cases and shown in table 3.

TABLE 3 FREQUENCIES AND MODE SHAPES FOR THE TEST CASES FOR THE

FOUR MODE APPROXIMATION

Case # Frequency (Hz) Mode Shape

1 1.3416 1st bending

11.207 1st torsion

12.45 2nd bending

49.11 2nd torsion

2 1.00831 1 st bending

9.2879 1 st torsion

18.745 2nd bending

81.138 2nd torsion

3 1.41583 1st bending

12.9074 1st torsion
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14.7732 2nd bending

63.697 2nd torsion

4 1.00395 1 st bending

7.535 1st torsion

17.67 2nd bending

73.43 2nd torsion

The mode shapes are what one would have expected for a plate geometry. However, it is

difficult to prove this, because there is no known solution for this problem and no one has

modelled this particular plate before. Other people have modelled plates with fixed-free end

conditions before, but one was not found for these particular ply layups and plate dimensions

[91, [331, [50], [51]. For a plate structure which is very long in one direction and very thin,

one would expect the low frequency mode shapes to be in the dominant direction. Also with

the purposeful ply angle selection to enhance the bending/torsion coupling, one would also

expect the combined bending/torsional mode shape to appear in the first few modes of

vibration. Furthermore, the frequency changes among the different test cases (ply angles)

make sense. The more rigid the plate is in torsion, the more the frequency for that particular

mode will increase. Also if there are 0 degree plies in the layup, the frequencies for the

bending modes will increase due to the increased longitudinal stiffness of the plate. Based

upon the calculated frequencies and mode shapes, it is assumed that the approximate solution

models the plate sufficiently for this research. As a final check, the frequencies of a nine-

mode approximation (3 'x terms and 3 "y" terms) are solved numerically for case number 1.

These results are compared with the one and four mode approximations for case 1. The

frequencies for all modes are presented in table 4.
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TABLE 4 TEST CASE I FREQUENCIES FOR THE NINE MODE APPROXIMATION

Mode Number Frequency (Hz)

1 1.31765

2 8.736

3 10.812

4 34.25

5 49.838

6 102.59

7 320.36

8 327.5

9 365.94

Table 5 shows the comparison of the first four modal frequencies for the one, four, and nine

mode approximations.

52



TABLE 5 TEST CASE 1 FREQUENCIES FOR THE ONE, FOUR, AND NINE MODE

APPROXIMATION

Mode Shape One Mode Four Mode Nine Mode Percent Difference 4 vs 9 Mode

1st Bending 1.3857 1.3416 1.31765 1.8%

2nd Bending X 11.207 8.736 22%

1st Torsion X 12.45 10.812 13.2%

2nd Torsion X 49.11 34.25 30%

As one can see, the frequencies for the nine mode approximation are lower than both the one

and four mode approximation. The frequencies for the four mode approximation vary from

the nine mode approximation by 2-30%. Clearly, the nine mode approximation would be a

better solution to use, but a symbolic solution was never calculated due to the limitation of the

computer workstations. It is assumed that the four mode approximation is sufficient for this

research. Also in Chapter VI, this approximation will be compared to experimental results and

the referenced paper. by Hwang [25] which used a finite element method. These comparisons

will show that this approximate solution models the plate sufficiently.

The Rayleigh-Ritz solution using generalized time functions, versus periodic

expressions for time, for the modal amplitudes can now be formulated using the approximate

solution. The dimensions of the plate are substituted into the appropriate equations prior to the

formulation. This solution is:

Wo(x,y,t) = w(x,Y)l1(t) + w(x,Y)2 4j2(t) + w(x,y)1*(t) + w(x,Y) 4 4ji 4(t) (107)

53



where:

w(x,y), = Aj 1 X1Y + A 12eXlY 2 + A21.X 2Y1 + A22iX2Y2  (108)

and:

X. =(1 -cosnT) m = 1,2 (109)

t= 1 (110)

Y2 =  - 1) (111)
2

In the above equations, the numerical plate dimensions were used versus the symbols, a and b.

The constants Aii vary for each spatial solution, w(x,y)i. These assumed modes, wo(x,y,t), can

not be substituted directly back into the equations of motion because not all of the boundary

conditions are satisfied. Only the geometric boundary conditions are satisfied. (Note that an

admissible function versus a comparison function was used in the Rayleigh-Ritz approximation

so only the geometric boundary conditions should be satisfied.) If we use only the equations

of motion, then we completely ignore the natural boundary conditions. The assumed modes

are then substituted into the expressions for potential and kinetic energies and the spatial

dependence is integrated out. To generate the new equations of motion we can use either

Hamiltion's Principle with the Wi(t)'s as independent variables or the Lagrange equation, since

we are dealing with conservative forces and motions in nature. For ease of use to generate the

new equations of motion and the ability to incorporate external forces, the Lagrange equation

is chosen. The Lagrange equation will generate four equations of motion for each of the
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independent variables.

d( aIT T + av = Q i 1,2,3,4 (112)

*t af (t)) a4i(t) a*,(t)

The complete equation of motion for the plate is formed by combining the four equations of

motion into a matrix equation:

[M]f (t) + [K] i (t) = Q (113)

where M and K are given in equation (102) and (103)

(t) = {4(t)V (114)

and Wg(t) represents the time dependent modal amplitudes of the approximated solution. The

next step is transforming this set of ordinary differential equations into a state space

representation. This is done in the next section in conjunction with adjoining the control

system dynamics to the flexible body equations of motion.

Control Theo), cd Optimization

In this section the equations of motion from the previous section are transformed from

a second-order ordinary differential equation into a state space format that is a first order

ordinary differential equation and then incorporated into a control theory for the active control

system. A performance index and constraint equations which formulate the optimization

problem are then determined by using the state space equations.

Control Theoy. The control theory used in this research is output feedback from

collocated sensors and actuators. Collocated is defined as occupying the same location on the
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plate along the X-axis and Y-axis. The sensors and actuators can be located on opposite sides

of the plate and still be collocated. Output feedback is defined as taking the signal obtained

by a sensor, multiplying the signal by a gain and transmitting it to a control actuator to

produce a force which could be a moment. This sensor senses the strain rate of the plate. An

active control electronic filter is sometimes needed to process the output signal that comes

from the sensors and is converted into a high voltage control signal that is provided to the

actuators. This filter is used only to eliminate any high frequency noise which is also detected

by the sensor. A standard active control feedback filter used with piezoceramic sensors and

actuators consists of a preamplifier, a bandpass filter, a phase shifting circuit, and a high

voltage output amplifier. A filter was needed and the center frequency was set to the torsional

frequency of the plate. From the definition of direct output feedback, one sensor controls only

one actuator.

The actuator moments and disturbance torques are added to the equations of motion

now by equating the individual equations of motion resulting from LaGrange's equation to a

work term.

d( aT U + av =Qi i = 1,2,3,4 (115)d #) a,,i(t + o,,(t)

where:

N a f .
k = . ai 1(t) lact + a d(t) bafce (116)

The force, Fk, in the above equation is the point actuator moment applied anywhere on the

structure where the actuator sensor pair is located. The force, Fj, in the above equation is the
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disturbance torque applied to the structure. Since the force is treated as a moment, the vector

r is the vector whose magnitude is the angle over which the moment acts. For the actuators,

the vector rk is the vector whose magnitude is the angle or X-axis rotation of the plate where

the actuator is located at x = XAk and y = YA.k- This is modelled as:

a a- a (117)
F k'-lact MAM Ix x y=

MAk = KD VDk (118)

The disturbance torque is applied to the free end of the plate producing a twisting of the plate.

Again, since the force, Fj, is a torque, the vector is the vector whose magnitude is the angle

over which the moment acts. This is modelled as:

a O. a19
F disturbance = d IX XD Y YD (119)

where d is the disturbance torque amplitude and x, = a and YD = b/2. The vector rj, in this

case, is the vector whose magnitude is the angle or Y-axis rotation of the plate.

Before reducing the ordinary differential equations to state space equations the above

actuator and disturbance models are incorporated into the model.

[MITi DVD + d 'Y Ix (120)
=a~ O X = X%, 'y = y k a* I ° y

The sensor equation makes up the last part of the state space transformation. This equation is:

57



xk (121)
V'() = K,z-(x,t) I= Kk zax O X , i_ xk-1

where xk is the end point and Xk-I is the beginning point of the sensor corresponding to the

actuator location. The second order equation of motion is rewritten as:

-fl-[K]*x + [At-[b] [v ,]

+ (-l (122)

+ [M]-I[D Ix x,y=yD]

where

I VD] (123)

is a vector of the control voltages and the ikth element of [b] is:

bik = Kk aq (124)

The state variable q is related to the physical variables with:

q (125)

(126)
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The second order differential equation can now be rewritten in first order state space notation

in which the vector q represents the assumed modal displacements and first derivatives. The

first order state space notation is given by:

A = [a]q + [B]u + [Hid (127)

y = [C]q (128)

where:

0 1

A =(129)

B (130)

0

H =( X DY2(131)

C = [0 [c]] (132)

where the kith element of [c] is:

K ____x k (133)
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and:

[A] Plant matrix determined from the stiffness matrix and the inverse of

the mass matrix

[B] Control matrix determined from the actuator coupling coefficients,

location matrix and the inverse of the mass matrix

u [VDk], Control input vector which is the actuator voltages at specific

locations

y Sensor voltage signal (strain rate of the plate) collocated at actuator

position

[C] Sensor matrix determined from the sensor and dynamic coupling

coefficients

[H] Disturbance matrix determined from the disturbance location matrix

and the inverse of the mass matrix

d - Torsional disturbance amplitude at free end of plate

In output feedback, the control vector u (voltages sent to the actuator) is proportional to the

output sensor vector y (strain rate of the plate) by a gain multiplier.

u = -[G]y (134)

where:

[G] constant control gains

Substituting equation (128) into the expression for y, one obtains:
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u = -[G][C]q (135)

Substituting the above equation into the state-space relationship, the closed loop state-space

equation can now be derived.

4 = [A]q - [B][G][C]q + [H]d (136)

4 = [A, 1jq + [H]d (137)

where:

[AC] = [A]-[B] [G] [C] (138)

Petfonnance hidex and Sensitivity Equations. The performance index or objective

function is a scalar measure that is to be minimized during the structural/control optimization.

The primary objective of the active damping system is to minimize the bending and torsional

motion of the plate while staying within the actuator voltage constraints. Previous papers that

use output feedback as their control system tend to minimize the norm of the output feedback

gain matrix [54] which was a function of the structural and control parameters or the

expectation of the standard Linear Quadratic Gaussian plus the penalized gain matrix [39].

This research will be similar to the work accomplished by Slater [56] in which he states "the

structure-control design is to find the structural parameters and the control law to minimize a

performance index while satisfying control energy and displacement constraints." The

structural equations of motion are assumed disturbed by a torsional zero mean white Gaussian
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noise disturbance with an intensity of D. A white Gaussian noise was chosen as the

disturbance to optimize the performance of the plate to a wide range of frequencies versus one

set of frequencies as in harmonic motion.

The performance index or objective function J used in this research will be based upon

the mean square motion of the free end of the plate wtip (p), where the pi are the structural and

control parameters to be optimized, e.g., the ply angle, location of the actuators, and

magnitude of the actuator gains. The stiffness of the plate, which reacts against the

disturbance force, is determined from the lamina stiffness which depends on the ply angle.

Also the coupling parameter is determined directly from the ply angle. Just increasing the ply

angle does not cause the coupling parameter to increase as shown by the equations for the

lamina stiffness. The coupling parameter will reach a relative maximum for some optimum ply

angle.

The determination of this optimum angle is shown next. This will show that there is

only one ply angle which maximizes the torsional/bending coupling coefficient, D16. Because

the Y-axis approximation used in this research is linear, the D, 6 coefficient is not taken into

account when calculating the equations of motion. The D26 coefficient is multiplied by the

second derivative of the displacement function, wo(x,y,t), with respect to y when forming the

potential energy equation. This expression is zero due to the linear Y-axis displacement

function. (See equations 110,111.) The equation for the D 1 6 coefficient can be expressed as:

N zk

D16  [Qiik*f zdz (139)
k=1 Zk_1

where:
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Q *16 = Q16- Q1226 (140)

Q22

and [Qij] given by eqs (14-19). For this problem, the experimentally determined values, with

the exception of v21 which is calculated, used for the material properties are:

El = 156.45 GPa

E, = 9.95 GPa

G12= 5.99 GPa

V12= .3056

v = .01925

The angle which optimizes the D16 coefficient can be determined by plotting this expression

for magnitude D16 versus 0 or by taking the first derivative of the expression for D16 and

setting it equal to zero and determining 0. (See Figure 14.) The angle (expressed in radians)

which maximizes the D16 coefficient is:

oPt = .312

or expressed in degrees:

opt = 18.0

The objective of the optimization problem in this research was to find the feedback

law-or gain G, actuator locations and ply angles which minimize J subject to certain

constraints which are related to the mean square control energy. The mean square control

energy constraint provides an upper limit on the amount of control energy expended since the

piezoceramic actuators do have an upper limit. This optimization problem can be stated as:

Minimize:

J = (E(WWr) + (1 - TE(wbw/) (141)
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Figure 14 DI6 Coefficient versus Ply Angle
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subject to:

E(uu T)  <-[ l(142)

where:

= Parameter to vary the weight on a torsional versus bending

motion

wr  Difference of the corner displacement vector and the center

displacement vector of the plate tip

wb = Center displacement vector of the plate tip

7 = Fixed mean square control energy

E( ) Expectation operator

u Control vector {actuator voltages}

The performance index and inequality constraints can be converted from statistical

notation in terms of the expectation operator to matrix notation using the Lyapunov equation

solution of the covariance matrix. The motion of the tip wr and wb are determined from

multiplying the location matrix by the state response:

Wr = [Crlq (143)

Wb = [C]q

For large time behavior the motion can be represented by the steady state covariance of the

states:
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E(qq7 ) = Q (144)

The steady state covariances can be calculated by solving a Lyapunov equation [56]. Both the

performance index and the constraint equations can be rewritten in terms of matrix equations

due to the relationship between the mean square response of the states and the covariance

matrix Q. The mean square responses of the states will be the diagonals of the covariance

matrix Q. Before the Lyapunov equation is solved, the closed loop plant matrix is calculated.

The closed loop plant is solved by substituting the output and control expression into the

equation of motion. This is represented as:

[A] = [A] - [B][G][C] (145)

The Lyapunov equation [56]:

[ACI[Q] + [QI[At] T 
+ [H][D][H]T = 0 (146)

is solved for the covariance matrix Q, where D is the intensity of the white Gaussian noise.

For steady state optimization, the performance index and actuator energy constraints can be

replaced by their respective covariance relationships. The performance index is rewritten in

matrix form by substituting the covariance matrix in for the expected value of the state:

E(WrW,) = E(Cqq TCT)

= CE(qq )CrT (147)

C'QCrT

E(wbw ) = E(Cbqq TC/)

= CbE(qq T)Cr (148)

= bQ b
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The constraint equations are rewritten in matrix form by substituting the covariance matrix in

for the expected value of the state:

E(u u T) = E(GCqq TC TG T)

= GCE(qq T)C TG T (149)

= GCQC TG T

The constraint equations form a two-by-two diagonal matrix whose elements are required to be

less than or equal to the total control energy the actuators can produce.

GCQC TG T = 1 (150)
0c2

The total control energy, E, is also a two-by-two diagonal matrix whose elements are equal

and equate to the allowable control energy each actuator can produce.

The performance index and constraint equation can be finally rewritten as:

minimize

J = q[Cr]Q[Cr] T + (1 - )[CbIQ[Cb] T  (152)

subject to

cl <g 1 
(153)

C2 : 2
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where:

= Parameter to vary the weight on a torsional versus bending

motion

Cr Location matrix for the difference between the left comer and

the center of the plate tip

Cb Location matrix for center of the plate tip

Q = Covariance matrix from Lyapunov equation (152)

= Fixed voltage control energy

= Fixed mean square control energy for actuator one

2 = Fixed mean square control energy for actuator two

C = Location matrix for sensor output

G Actuator gain matrix

The optimality conditions or sensitivity equations which arise from the optimization

are calculated by taking the partial derivative of the performance index and the constraint

equations with respect to the parameters to be optimized. These parameters for this

performance index are the structural and control parameters pi which include the actuator

locations, and the control gains G. These gradients are calculated numerically by the finite

difference method by an optimization program called DOT [55]. The search gradients

determine which direction the optimization program proceeds. This will be discussed in the

next chapter on optimization.
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IV. Optimization Results

A FORTRAN computer optimization program called DOT [55] was used to solve the

optimization problem in this research using numerical optimization. Numerical optimization

determines the "best" solution using a logical, systematic decision-making procedure. DOT is

a computer program created by VMA Engineering for optimization. DOT uses numerical

optimization to change the selected parameters based upon the search gradients to either

maximize or minimize an objective function nonlinear in the design variables. The main

optimization program DOT is coupled with an application program, which determines both the

constraints and the objective function, by writing a small interface FORTRAN program which

controls both programs [57]. An outline of the optimization process is shown in figure 15.

Prior to running the optimization, realistic material data on the piezoceramics and composite

need to be determined. The data on the piezoceramic is provided by the literature from the

various vendors [43]. The sensor and actuator width, wd, is 0.01905 m and the length of the

actuator is 0.0635 m and sensor 0.01905 m. The resistor associated with an ideal operational

amplifier used to acquire the sensor signal, RF, is 1E10 6 ohms. The elastic modulus of both

the sensor and actuator material, cE ,, is 5.847 MPa. The actuator location in the thickness or

z-direction is set equal to 0.000635 m. Finally, the piezoelectric constant, d31, is 1.498E10 -4

mn/V. The rest of the constants used in the optimization are combinations of the piezoelectric

material constants. However, the composite data cannot be taken directly from the user

material data sheet because the material ages and the properties are distinct for each

fabrication. These material properties must be determined experimentally. Tensile testing on
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three sets of specimens with different ply angles was completed to determine the various

composite properties required for this research.

The procedure, testing method, and results of determining the composite properties are

given in the next section when the experimental apparatus is discussed. Only the results of the

testing are presented in table 6.

TABLE 6 EXPERIMENTALLY DETERMINED COMPOSITE PROPERTIES

Composite E1  G2  v21  E, V1 2 p

Value 156.45 GPa 5.91 GPA .0107 9.95 GPa .306 1455

kg/m3

Prior to running the optimization computer program, the objective function was tested

for convexity. The objective function and the constraint equations defined as the functions

f(p), f1(p), and f2(p) respectively.

f(p) = C[Cr]Q[Cr]T + (I - () [Cb] Q [ Cb]
T  (154)

f! (p) = cl (155)

f2 (p) = c 2  (156)

In this research, the functions fl and f2 pertain to each actuator and sensor pair. Convexity

was tested for each of the functions. (See figure 16.) The symbol p represents a complete set

of optimization parameters such as the ply angle, control gains, and actuator locations. The

symbol o is an arbitrary multiplier which satisfies 0 < c _ 1. Some randomly generated

optimization parameters within the appropriate ranges were examined. The following test case
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variables are calculated from the above functions:

TEST = cxf(pl) + (1 - cL)f(p2) - f(cxpl + (1 - c)p2)

TESTI = cfl(pl) + (1 - x)fl(p2) - fl(cpl + (1 - o)p2)

TEST2 = c&f2(pl) + (1 - cx)f2(p2) - f2(apl + (1 - c)p2)

With this setup, convexity was tested for. If any of the TEST, TESTI, or TEST2 variables

were negative then the objective function or the constraint equations are not convex. After

thousands of runs, the objective function was determined to be not convex, because there were

cases in which the TEST function was negative. This means that a local minimum may not be

the global minimum for the function. However, there could be some local minima which can

be located using the optimization computer program. The constraint equations are considered

to be convex, because in every case both the TEST1 and TEST2 function were positive. This

is not a conclusive test for convexity, but it leads one to believe that they are perhaps convex.

The optimization is performed in order to determine the local minima and try to find the

smallest one by varying the optimization parameters.

In order to use DOT, a host program is required to control the optimization by

defining the optimization method used, number of design variables and constraints, and by

calling the main optimization program as a subroutine. This shell program is also used to

define the programming constants, upper and lower bounds, and initial designs. The shell

program also calls a subroutine which evaluates the objective function and the constraints for

the optimization. (See equations 152-153.) This subroutine takes the experimentally

determined composite constants, see table 1, and the sensor and actuator constants given by

equations (80) and (77) and formulates the mass and stiffness matrices defined by equations
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(104-105). From these matrices, the eigenvalues and eigenvectors are determined for the free

motion system. Both the eigenvalues and eigenvectors are determined by using subroutines

from the IMSL math libraries. Using the closed loop matrices, the Lyapunov equation (146) is

solved and used to calculate the performance index, equation (152). Finally, the constraint

inequality, equation (153), is calculated. All of these programs can be found in Appendix B of

this dissertation.

In this research the optimization method used by DOT is Modified Method of Feasible

Directions. This method is reliable and uses low amounts of computer memory. The

expressions for the gradients from the previous theoretical section are calculated numerically

by the finite difference method. The gradients determine which search direction along which

the optimization program is to proceed. In this type of optimization, the process moves down

to the minimum in the direction of the gradient as far as possible until a constraint is reached.

Once a constraint is reached, a new search direction is looked for. The number of design

variables used in the optimization is 14: 10 angles from each of the plies in the composite

layup, 2 from the control gain of each of the actuators, and 2 from the x-location of each of

the actuators. Actually, there are only 5 design variables for the ply angles due to the forced

symmetry. For each of the ply angles, the upper bound is +90 degrees and the lower bound is

-90 degrees. Anything beyond this range, the material properties are just repeating themselves.

The upper bound on the actuator control gains is 40000 and the lower bound is 0. This upper

bound is well beyond anything we could produce in the laboratory, since this is a gain

multiplier which amplifies the voltage signal from the sensor. The upper and lower bounds on

the actuator x axis locations are 0.5696m and 0.0127m which correspond to the beginning and

end dimensions of the plate. The complete actuator has to fit on the plate which is why 0 and
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0.6096 were not used. Finally, C was set equal to .5 which corresponds with minimizing the

combined bending and torsion motion of the plate. The parameters that were held fixed

during the optimization runs were the piezoelectric actuator and sensor material properties,

composite material properties, dimensions of the plate, location of the sensors and actuators

along the width of the plate, and the constant . The constant was used to weigh equally

the bending tip motion with the torsional tip motion of the plate. The main objective of this

research is to stop the complete motion, both bending and torsion, of the plate which is best

accomplished by setting to 0.5. (See Table 7) Later, was allowed to vary from 0 to 1 by

increments of .1 for one of the test cases to show the affect this parameter has on the

optimization.

TABLE 7 DEFINITION OF OPTIMIZATION PARAMETERS

Optimization Parameter Held Constant # of Variables Optimized

Ply Angle, 0 5

Sensor/Actuator X-Location 2

Control Gains, G 2

Actuator/Sensor Properties X

Composite Properties X

Plate Dimensions, a,b,t X

Weighting Parameter X

Sensor/Actuator Y-Location X

In order to determine if the minimum objective reached during the optimization routine

is the lowest local minimum or possibly the global minimum, the optimization routine was

started at numerous locations for the design variables. The starting ply was varied from 5 to
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90 degrees by a 5 degree differential while the starting gain multiplier is varied from 10 to

.00001. Both starting actuators locations were varied from 0.0254 to 0.55 meters along the

length of the plate. The results of the optimization parameter study can be found in Appendix

C of this dissertation. Hundreds of computer runs were made to determine if a possible

global minimum solution could be found. From the computer runs, the value of the objective

function reached a maximum of 26875 which occurred with a starting ply angle of 90 degrees,

actuator location of 0.2032 and 0.4064 and gain multipliers of 10. The final results of this

optimization run were ply angles of 80.2 degrees, actuator location of 0.188 and 0.577, and

actuator gain multipliers of 8.86 and 0.12. This particular result from the optimization

program must be near one of the local minima since the optimized parameters are located near

the starting parameters. The minimum objective function of approximately 60-70 was reached

consistently by about 50% of the optimization runs. The final optimized results of these

optimization runs were all 10 ply angles with angles of about 20 degrees, actuator locations of

0.184 and 0.577 and actuator gains of 8.23 and 0.142. (See Table 8 for optimization details)

TABLE 8 SUMMARY OF "GLOBAL MINIMUM" SOLUTIONS FROM STARTING

POSITIONS

Parameters to be Optimized Starting Value Optimized Value

Ply Angle 1 50 - 750 200

Ply Angle 2 50 - 750 200

Ply Angle 3 50 - 750 200

Ply Angle 4 50 - 750 200

Ply Angle 5 50 - 750 200

Ply Angle 6 50 - 750 200

Ply Angle 7 50 - 750 200
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Ply Angle 8 50 - 750 200

Ply Angle 9 50 - 750 200

Ply Angle 10 50 - 750 200

Actuator 1 Location .2032 - .4064 meters "0.184 meters from base

Actuator 2 Location .2032 - .4064 meters 0.577 meters from base

Control Gain 1 .01 - 10.0 8.23

Control Gain 2 .01 - 10.0 0.142

Objective Function 60 - 70

Based upon the number of times this result was reached no matter where the optimization was

started, it was surmised that this was the "global optimal" solution for this problem.

There is a physical significance for the optimization program to choose those particular

parameters as the global solution. Both the coupled motion, bending, and torsional stiffness of

the plate are being used to stop the motion. For maximum bending stiffness, the optimum

angle is 0 degrees. For maximum torsional stiffness, the optimum angle is 45 degrees.

Finally, the angle which maximizes the bending/torsional coefficient, D 16, is 18 degrees. It is

reasonable to conclude that the optimum angle would occur near the angle which maximizes

this coefficient. It turns out to be slightly larger due to the fact that the disturbance is a

torsional force which excites predominately only the torsion and bending/torsional modes.

In order to verify the conclusions concerning the optimized ply layup, the optimization

program is rerun with different performance indices as varies. The constant, 4, is varied

from 0 to 1 by increments of 0.1. The results are presented in table 9.
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TABLE 9 EFFECTS OF ON THE PLY ANGLE, ACTUATOR LOCATION AND

OBJECTIVE FUNCTION

PLY ANGLE ACTUATOR. OBJECTIVE
(degrees) LOCATIONS FUNCTION

(meters)

0 [-4 5/4 52/34/2 8]s .156/.577 from base 2.81

0.1 [262/9 .8/2 1/16]s .186/.577 from base 21.3

0.2 [22/17/21/18/15]s .185/.577 from base 32.2

0.3 [20 3/19/ 16 ]s .185/.577 from base 42.2

0.4 [20 4/17 ]s .183/.577 from base 52.3

0.5 [2 05]s .184/.577 from base 61.7

0.6 [20 4/19]s .183/.577 from base 71.3

0.7 [19/203/18]s .180/.577 from base 81.4

0.8 [204/17]s .169/.577 from base 92.2

0.9 [202/17 ]s .161/.577 from base 101.3

1.0 [202/19 /16]s .149/.577 from base 109.5

From table 9, one notices that the objective function increases linearly as changes from 0 to

1. This general increase in the objective function, with increasing C, makes physical sense due

to the torsional disturbance input. The disturbance excites primarily the torsional modes of

vibration with bending coming from the coupling. One would expect that the torsional motion

of the plate would be larger than the bending motion so the objective function would increase

as the dependance upon the torsional motion is increased. One should note that for the = 0

case which is controlling pure bending, the objective function should approach 0 by choosing a

balanced layup which prevents any bending/torsional coupling. The optimization run for this

case is tending towards a balanced layup but hits a local minimum or simply terminates
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prematurely. This run was performed for only one starting ply and actuator location. Also,

notice that in all three cases the actuator location does not vary greatly.

Finally, it is important to determine how sensitive the optimized objective function is

to small changes in the optimized parameters. If the ply angle changes a few degrees, or if the

location of the actuators are not exactly .184 and .577 meters, what affect does this have on

the objective function? Using slightly different parameters, the computer program which

calculates the objective function when supplied the optimized parameters was run again. From

these results, it seems clear that the objective function is not sensitive to either minor

deviations in the ply angle or even several different ply angles as part of the 10. In fact, in

certain cases some of the ply angles ended up at 40 degrees and the objective function only

changed by less than 0.1%. Also, the objective is not sensitive to very small changes in the

actuator locations, but anything larger such as a couple of centimeters from the optimal

locations changes the objective function greatly. If the actuator location varies by more than

0.0762 to 0.1016 meters, then the objective function will change by over 20%. Also, changing

the disturbance force does not change some of the optimization parameters such as the actuator

and sensor locations and ply layup. However, the change in the disturbance force greatly

effects the actuator control gains. This effect is almost a one-to-one change. If the

disturbance force is doubled, then the actuator control gains are reduced by one half. Also if

the disturbance force is halved, then the actuator control gains are doubled. This relationship

between the disturbance force and the actuator control gains occurs because of the constraints

placed upon the total amount of energy supplied to the actuators. Because of physical

limitations of the actuator, such as shorting out and depoling, the total voltage supplied to

them is limited. This voltage is dependent upon both the strain signal of the sensor and the
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actuator control gains. In fact it is the product of the two. Therefore if the sensor strain

signal increases, then the actuator control gains must decrease in order for the total voltage to

remain constant. When the disturbance force is increased, the strain on the plate is also

increased which causes the sensor strain signal to increase. This is why the actuator control

gains decrease proportionally. The same is true if the disturbance force is decreased.

The next chapter contains information regarding the experimental portion of this

research. A plate was fabricated and tested with a ply angle of 21 degrees. The results of this

testing were then compared with a plate fabricated with a quasi-isotropic layup.
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V. Experiuental Apparatus and Procedure

The information presented in this chapter covers the experimental apparatus and

procedure for the fabrication, the testing methodology, the material characterization results of

the composite test specimens and the testing methodology and characterization of the vibration

testing. The procedures used to characterize the material follow the guidelines provided by

ASTM. The standards followed for determining the tensile and shear properties are ASTM

D3039-76 and ASTM D3518-76. The size of the specimen and the testing procedure are taken

from the reference, Experimental Characterization of Advanced Composite Materials by

Carlsson and Pipes [58]. The specimens were fabricated and prepared for testing.at the

Composites Structures Laboratory of the Applied Composite Branch, Phillips Laboratory

Edwards AFB, CA. The material used was Fiberite Graphite/Epoxy tape or specifically, IM-7

fiber and 977-2 thermoset epoxy resin on 12" wide preimpregnated tape. IM-7 fiber is a high

strength, medium modulus graphite fiber that has been used extensively for space applications.

The resin, 977-2, is a dicyanate ester resin which is space qualified and provides very little

microcracking and outgassing. This material definitely needed to be characterized because it

had surpassed its shelf life by about 2 years. The material had aged significantly. In order to

completely characterize the composite material, 3 sets of samples were fabricated with

different lay-ups to determine all of the material properties. The samples were fabricated with

the following ply angles: [0], to determine E1 and v 12, [90116 to determine E 2 and v21, and

[±45]2, to determine G,2. Also, the density of the composite material was determined by

measuring the volume and the weight of some of the test specimens.

The fabrication method used to make the specimens was hand layup. This is the

simplest metlhod for making flat panels from which the test specimens were machined. First,
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the composite material was taken out of a freezer and allowed to thaw while the mold surface

was being prepared. This preparation involves cleaning the mold with acetone to remove any

contaminates, spraying it with a release agent such as McLube or Freecote, and then attaching

a release cloth to the surface using teflon tape to prevent the composite from adhering to the

mold. The composite material used was .304 meters wide graphite/epoxy unidirectional tape

which means the reinforcing fibers all run in only one direction. The composite tape was

then cut into square and rectangular strips depending upon which layup was being fabricated.

These strips were then laid on top of one another in the proper fiber orientation on the mold to

form the specimens. A combination of release and bleeder cloth is then attached to the top of

the mold to capture the excess resin which flows from the prepreg material out of the

specimen panel. The release cloth is used to prevent the excess resin from sticking to the

formed part. A vacuum bag is then formed around the part by taping, with double-sided tape,

a thick plastic sheet to the mold. (See figure 17.) Using a vacuum pump, the air is removed

from the bag in order to apply uniform pressure on the composite part during the curing cycle.

The part is now ready for the cure cycle which completes the fabrication of the composite

material. (See figure 18) The cure cycle used ramps the temperature up to 180 degrees F. At

this temperature the resin becomes less viscous and starts to flow. Once this temperature is

reached 80 psig of pressure is applied. This temperature is maintained for 30 minutes to allow

the resin to heat up and begin to flow creating a uniform cross-sectional area of matrix

material. After 30 minutes the temperature ramps up to 350 degrees F and is held for 4 hours.

The resin or matrix material has then reached its TG, or gel temperature, and begins to set.

The pressure is held constant during this time. After four hours both the temperature and

pressure are lowered gradually to minimize any residual thermostresses which could be
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Figure 18 Standard Cure Cycle of Graphic Epoxy Materials
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induced into the composite material. The specimen panels are now complete and ready to be

machined to test specimens.

Loading tabs are attached to the specimen panels in order for the material testing

machine to grip the individual test specimens. These loading tabs are made out of glass epoxy

and are attached to the specimen using a Hysol 9394 epoxy resin. The resin has a 3-5 day

cure time at ambient temperature of 77 degrees F or an accelerated cure time of 1 hour at 150

degrees F. The loading tabs are cut into strips 0.0381 meter length and glued to the specimen

panels prior to machining. The reason the loading tabs are attached prior to machining is to

insure that the specimen and tabs are aligned with one another. This prevents any unwanted

bending force from entering into the tensile test. After the resin has cured, the specimen

panels are cut into their proper dimensions depending upon the ply angle orientation of the

fiber and what type of test is going to be performed. The test specimen panels were cut

according to the specifications stated in the relevant standards for shear and tension testing,

ASTM D3039-76 and D3518-76. Prior to testing, electric resistance foil strain gages are

attached both in the longitudinal and transverse directions to measure the strains in those

directions. These gages were purchased from Measurements Group, Inc. and are from the

CEA - Series. They are self compensating strain gages with a fully encapsulated copper grid

and exposed copper-coated integral solder tabs. From each test, different material constants

are derived. The specimens were loaded into a MTS material testing machine, making sure

they are aligned properly to prevent bending from occurring. The specimens are loaded at a

constant rate with data taken continuously until failure. Since the composite material

properties are directly related to minute changes in the environment during the fabrication and

curing cycle, numerous tests must be performed and then averaged to obtain the material
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constants. Nine specimens of each ply layup were tested to determine a statistical average of

the material properties. The results of the tests for 0 degrees are shown in table 10.

TABLE 10 RESULTS FOR THE 0 DEGREE COMPOSITE MATERIAL TESTS

Test Number E1  v12

1 166.93 GPa Bad Data

2 173.75 GPa Bad Data

3 163.54 GPa .360564

4 174.71 GPa .38231

5 152.21 GPa .285173

6 159.14 GPa .307589

7 147.76 GPa .296064

8 127.49 GPa .263132

9 142.52 GPa .244482

Average 156.45 GPa .305616286

The results of the tests for 45 degrees are shown in table 11.
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TABLE 11 RESULTS FOR THE 45 DEGREE COMPOSITE MATERIAL TESTS

Test Number G12

1 5.4 GPa

2 5.65 GPa

3 6.05 GPa

4 5.5 GPa

5 6.099 GPa

6 6.22 GPa

7 6.14 GPa

8 6.041 GPa

Average 5.91 GPa

The results of the tests for 90 degrees are shown in table 12.

TABLE 12 RESULTS FOR THE 90 DEGREE COMPOSITE MATERIAL TESTS

Test Number E2  V21

1 10.54 GPa .012422949

2 9.52 GPa .016004
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3 Bad Data .018734

4 8.83 GPa .007410486

5 10 GPa Bad Data

6 9.38 GPa 0.004059426

7 10.61 GPa .008723356

8 10.2 GPa .009075485

9 9.72 GPa .0098146

Average 9.95 GPa .010780538

The density was determined by cutting off a square piece of composite to exact dimension

using a computer controlled milling machine. The dimensions are checked with a calibrated

measuring device. Once the exact volume is known, the specimen is weighed on a precision

scale. The density is then calculated from these experimental measurements. The results of

these characterization tests are shown in table 6. However, as one can see there is a lot of

variance between the measured values of v21. It is extremely difficult to experimentally

measure v2,, because the strain gage slips and eventually falls off prior to completing the

testing. Prior to using these measured numbers, a simple check was made using the equation:

El - V 1 2  (157)

E2 V 2 1

It was determined that the measured value for v21, 0.010718, was inaccurate and the number

used in the optimization subroutine was calculated to be 0.01925. A similar fabrication
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procedure described above to make the test specimens was used to fabricate the optimized

plate for the experiment.

The results from the optimization program from the previous chapter, include the

optimal ply orientation and locations of the actuators, are used in the fabrication of the

composite plate. This structure was fabricated at the Composite Structures Laboratory,

Applied Composite Branch, Phillips Laboratory at Edwards AFB, CA. The plate was hand

layed up on an aluminum mandrel, vacuum bagged, and cured. The material used was Fiberite

Graphite/Epoxy tape or specifically, IM-7 fiber and 977-2 Thermoset Epoxy Resin on 0.304

meter wide preimpregnated tape. Plates having a quasi-isotropic and 21 degree layup were

fabricated. Quasi-isotropic means that the properties are the same in both the length and width

direction. This is accomplished by creating a layup that provides both the stiffness of the

fibers and the elasticity of the matrix in all directions. Plates that are quasi-isotropic usually

have a layup with a combination of 0, ±45, and 900 plies. Fabricating these plates with

various ply orientations is extremely difficult. The composite material is similar to a fabric

with sticky glue on it prior to its being cured. Trying to cut this fabric to the exact geometry

such as 21 or 45 degrees is nearly impossible. Since the optimized plies varied between 20

and 22.05 degrees, all of the plies of the optimized plate were attempted to be cut at 21

degrees. The difficulty involved in cutting causes at least a ±3 degree error in the ply angle.

Another factor which influences the ply angles is how the cut composite sheets are laid on top

of one another. When the plies are compacted to provide adequate bonding, the stretch in the

matrix directions causes the ply angle to change somewhat. These errors should not affect the

overall results of this research since it was shown in the last chapter that the optimized

objective function is not extremely sensitive to changes in the ply orientation. The plates were
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cured using a standard cure cycle at 176.67 degrees C at 551.6 kPa of pressure, the same as

the test coupons. After the plates were fabricated, the piezoceramic actuators and sensors were

attached to the plate at the optimized locations as determined by the optimization computer

program. The sensors and actuators were attached using room temperature cure epoxy resin.

The sensors are attached on one side of plate and the actuators are attached in the exact

location on the opposite side of the plate. (See figure 19.) Once finished, this completed plate

is then attached to the control electronics.

The structural assembly described above is attached to the control electronics described

in the theoretical section which contains among other things, a strain rate feedback circuit.

This circuit is shown in figure 20. For the testing, two circuits were built out of breadboard

electronics. The responses of both circuits targeted the torsional mode of the plate. This

means that the circuits provided the most damping at the torsional theoretical resonance

frequency of the plate. This response is shown in figures 21, 22. The output of the

piezoceramic sensors is conditioned by the feedback electronics which then supply a high

voltage control signal to an actuator. One sensor will control only one actuator in this

research. The feedback electronics consist of a preamplifer which converts the sensor signal to

a voltage, a bandpass filter with an adjustable center frequency and bandwidth which changes

the signals phase, and a high power output amplifier which amplifies the voltage signal to

power the actuators. The center frequency of the electronic circuit is centered around the

torsional and bending/torsional modes of the plates. The torsional vibration is provided by

using a piezoceramic sensor and actuator pair mounted halfway along the length of the plate at

a 45 degree to the longitudal axis. A pseudo-random signal of 500 mVrms is sent to the

actuators as the disturbance source.
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Figure 19 Location of Sensor and Actuator on Plate

Strain Rate Feedback Circuit

2.00 nF

-S~30ka-.100 nF

5 O kn. 20 k

PARTS LIST
2 10.o0onF capacitor

I. 2Q0j0k! r.sj7-tor
2. 00Hki resistor

MODEL LIST
lorlp OPAnP

1 10 R le.10
R. . p 16
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A schematic of the control electronics is shown in figure 23.

The main objective of the experimental portion is to characterize the damping of the

plate and its performance when subjected to random noise disturbances. The structural

response can be measured by exciting the structure with a piezoceramic actuator and

measuring the response with a piezoceramic sensor. The complex modal parameters and mode

shapes of the structure will be calculated using transfer function analysis techniques as

determined by the frequency response functions (FRF). Initially, the plates are characterized

with the control system turned off. The random noise signal is sent to the disturbance

piezoceramic actuator and the structural response is detected by the collocated sensor. The

response is the real time average of 100 signals. Once the plates are characterized, then the

above procedure is repeated with the control system turned on. The closed loop response of

the 21 degree plate is measured. The magnitude of the natural frequencies are compared with

the theoretical predictions. A HP 35665A Hewlet Packard Dynamic Signal Analyzer is used

to create the random noise signal and to calculate the (FRF)'s of the plates. The signal

analyzer is also used to characterize the response of each of the electronic circuits used to

control the plate.
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VL Comparisons Between Baseline, Modified Plate and Theoty

In this chapter, the 21 degree optimized plate is compared to a quasi-isotropic baseline

plate as well as the theoretical calculations in terms of performance. -When comparing the

optimized plate to the theoretical calculations, one should note that the actuator locations for

the experimental plate are not at the optimized locations. They were placed at their current

location of 0.531m based upon theoretical calculations that were in error. That error has been

corrected producing the new actuator locations, however a new experimental plate was not

fabricated. One should also note that the optimal ply angles did not change due to the error in

the theory. The theoretical calculations and experiments are also compared with the work

done by Hwang, Hwang, and Chul [25] [26]. Their work is very similar to the work

accomplished here with the exception of their modelling method. As stated previously, the

results found in Hwang, Hwang, and Chul's report are very close to the results found in this

dissertation even though the modelling methodology is completely different: finite element

method versus classical Rayleigh-Ritz modelling and sequential versus simultaneous

optimization. First, the work accomplished in the above paper is compared to theoretical

calculations in this dissertation.

In the papers by Hwang, Hwang, and Chul [25] [26], numerical calculations are

performed on an eight-ply laminated composite plate with two of the plies variable. The

stacking sequence is [e/0 2[O0 /90'], where 0, and 0 2 are the ply angle design variables. The

optimization is first conducted for an orthotropic plate with the design angles set equal to 0

degrees to determine the optimal size and location of the piezoelectric sensors and actuators.

Initially, the size of the sensors and actuators are unconstrained while the locations are not

allowed to vary. In the second case the actuator sizes are constrained while the optimal
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locations are obtained. The optimization conducted next is to determine the optimal ply layer

angles of the laminated plate which will maximize the control performance. The optimization

is conducted with and without dynamic stability constraints. The optimization is performed for

only a limited number of cases. The results of the optimized actuator locations are shown in

figure 24. As the reader can see they compare favorably with what this dissertation predicts.

The theory in this dissertation places the actuators at the optimum location of 0.184 and 0.577

meters from the base out of a plate length of 0.6096 meters or 30% and 95% down the length

of the plate. In Hwang's paper, the optimum location of the actuators are .41m from the base

out of a plate length of .5m or 82% down the length of the plate. Thus there is only a 13%

difference between one actuator location in these two theories which were developed

differently and independently. The results of the optimized ply angles also compare very

favorably to the theoretical predictions in this dissertation. These results are shown in table

13. The results from this dissertation predicts the ply angles to be 20-21 degrees while the

results from HHC's paper vary from 24.98 - 29.04 degrees. These ply angles differ from this

dissertation by 20 - 31% depending upon which ply angle you choose. This may seem high,

but remember that only two of the ply angles are allowed to vary in Hwang's paper and the

others are fixed. Since the fixed ply angles offer very little torsional stiffness, the optimized

ply angles are expected to be higher or closer to the 45 degree maximum torsional stiffness.

Table 14 shows the final optimized results of the two theories.
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TABLE 13 OPTIMAL PLY ANGLE FROM [241 [25] [261

Objective Function Case No. Design Variable 01., Design Variable 02

C3 for 1B 1 30.00/26.19 30.00/28.75

C3 for lB 2 30.00/25.10 -30.00/26.10

C3 for IT 1 30.00/26.12 30.00/29.04

C3 for IT 2 30.00/25.94 -30.00/24.98

TABLE 14 COMPARISON BETWEEN REFERENCED PAPER AND DISSERTATION

PARAMETERS

Optimized Parameter Referenced Paper Theory Dissertation Theory

Actuator Location #1 .41m/.5m 82% 0.184m/0.6096m 30%

Actuator Location #2 .41m/.5m 82% 0.577m/0.6096m 94%

Ply Angle #1 24.98 - 29.04 degrees 20-21 degrees

Ply Angle #2 24.98 - 29.04 degrees 20-21 degrees

The results of the experiment will now be presented and compared with the theoretical

calculations. The theoretical modes of vibration are shown in figures 25 - 28. Each figure

displays a different mode of vibration: figure 25 - 1st bending, figure 26 - 2nd bending, figure

27 - 1st torsi6n, figure 28 - 2nd torsion. The frequencies for the theoretical, both 4 and 9
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mode models, and experimental calculations of the 21 degree plate are shown in table 15.

TABLE 15 FREQUENCY COMPARISON OF THEORETICAL CALCULATIONS AND

EXPERIMENTAL MEASUREMENTS OF THE 21 DEGREE PLATE

Frequency 4 Mode 9 Mode Exp 4 Mode vs Exp 9 Mode vs Exp

1st Bending 1.224 1.15 1 22% 15%

2nd Bending 8.62 7.00 6 44% 17%

1st Torsion 16.35 14.66 18 -9.2% -19%

2nd Torsion 64.54 53.10 54 20% -1.7%

The percent difference in the frequencies between both the theoretical calculations and the

experimental measurements are not that significant when modelling composite structures

especially with the nine mode theoretical model. As one can see, in all but one case the

Rayleigh-Ritz approximate solution provides an upper bound to the experimental frequencies.

One reason that theoretically determined and experimentally measured frequencies varied is the

added weight and stiffness associated with the piezoceramics were not accounted for in the

analysis. The plate itself weighed only 149.9 g, each of the three actuator elements weighed

4.8 g, and each of the three sensor elements weighed 2.4 g bring the total weight of the

structure to 171.5 g. This is an increase in weight of 14.4%. The actuators and sensors also

provide extra stiffness in certain modes of the structure such as the torsional mode.

As far as how the optimized plate performed experimentally, both the open and closed

loop response to the 21 degree optimized plate showed a significant improvement in stopping

the tip motiofi over the open loop baseline isotropic plate. The performance of the open loop

97



-.

0.6 "

12 01

Figure 25 1st Bendinl Mode of the Plate Figure 26 2nd Bending Mode of the Plate

-0. 98
0 s2 02

10 is

20 0 020 0

Figure 27 1st Torsional Mode of the Plate Figure 28 2nd Torsional Mode of the Plate

98



response of the isotropic plate is shown in figure 29. The performance comparison between

the open and closed loop response of the optimized plates are shown in figure 30. Figures 29

and 30 show that both the open and closed loop response of the optimized plate perform

significantly better than the open loop response of the isotropic plate. The open loop response

of the optimized plate was 16.6% lower than the open loop response of the isotropic plate.

The closed loop response performed even better. The closed loop response of the optimized

plate was 29.8% lower than the open loop response of the isotropic plate.

In the case of the optimized plate, the performance improved with the addition of the

control system. The magnitude of the harmonic peak for the 1st torsional mode decreased by

11.3% and for the 2nd torsional mode by 6.7%. Both the isotropic and theoptimized plate

tests were repeated 10 times with excellent repeatable results. One comparison that was

unable to be made due to the limitations with the equipment that was used, was comparing the

damping factors of the theoretical predictions with the experimental measurements. The

damping factors are measurements of the inherent structural damping or added damping due to

the active control system. Next, the changes in the damping factors for the different ply are

presented. Note, the actuator gains and locations are the same for both plates in this

comparison. These are shown in table 16. These were determined from the theoretical

analysis from the closed loop plant matrix.
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TABLE 16 THEORETICAL DAMPING FACTORS FOR ISOTROPIC AND 21 DEGREE

PLATE

Mode of Vibration Isotropic Plate 21 degree Optimized Plate

1st Bending .00039 .000248

2nd Bending .0945 .025

1 st Torsion .0129 .0685

2nd Torsion .0000009781 .000084936

The damping factor is greater in the isotropic plate than in the optimized plate for the bending

modes of vibration. However, as one would expect, the damping factors are greater in the

torsion and combined bending/torsion modes of vibration. In fact, for the first torsional mode

the difference is a factor of 5 and for the second torsional mode the difference is two orders of

magnitude. This implies that the isotropic plate damps out the bending modes of vibration

better than the optimized plate. However, the optimized plate damps out both the 1st

torsional and 2nd torsional modes of vibration better than the isotropic plate. Since the

optimized plate was designed specifically to stop the motion of the plate when subjected to a

torsional disturbance, these results are expected.
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VII. Sumnaly

The results from this research are a design methodology and a plate which is optimized with

respect to both structural and control parameters. The design methodology demonstrates how to

achieve simultaneous structural and control optimization using the basic elastic and dynamic equations.

The ply layup and location of the piezoelectric actuators that provide bending torque only are

determined from the optimization routine. The ply orientation of the plate is optimized to enhance the

active control elements. The active control system is optimized with respect to actuator and sensor

location and the amount of voltage being applied to each of the actuators. Finally, the optimized ply

orientation produces coupling between the bending and torsion modes of vibration. With this

"tailored" coupling not only will the piezoelectric actuators damp bending, but they will also damp

the rotation motion.

The theoretical calculations provided the natural frequencies, mode shapes and damping factors

for the plates which corresponded very well with the measured experimental values. The percent

difference of the natural frequencies varied by only 9% to 44% which is well within experimental

error when modelling composite structures. The theory also predicted that the optimized plate would

achieve higher damping in the torsional mode than the quasi-isotropic plate. The factor of 5 increase

in torsional damping is a significant increase in damping considering the fact that the method used

secondary effects. The torsion modes are not being damped directly as in the 1st or 2nd bending

modes. Recall that the piezoceramic actuators only produce a bending moment which easily reacts

against the bending motion of the plate. This direct stopping motion produces large damping in the

1st or 2nd bending modes of the plate. Only the bending/torsional coupling motion of the plate

caused by the optimized ply layup and actuator location produces any increase in damping for a

torsional disturbaice force. This is verified by the figures in chapter VI, which show both the open

and closed loop response for the baseline plate and the optimized plate.
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The present theoretical calculations compare favorably with independent papers written by

Hwang, Hwang, and Chul [25] [26]. The concept of their papers and referenced PhD dissertation by

W. S. Hwang in 1993, is almost identical to what is proposed in this dissertation. However, it was

shown that in both chapters II and VI, their theory and approach are different. Their theory is based

upon finite element modelling and their optimization subroutine is performed sequentially whereas this

dissertation models the plate by using energy method models and simultaneous optimization. An even

greater difference between the two theories is in the geometry of the plate and materials used. Also,

experiments were conducted in this dissertation to back up the theory, while the referenced papers

discuss only theoretical work. Even though the differences in the theory are significant, what is even

more outstanding is the fact that the results compare so well. One of the optimized actuator locations

differ by only 13% and the optimized ply angles differ by 20% to 31%. Based upon the results of this

dissertation and the other referenced work, the concept of damping out torsional vibrations using

bending actuators enhanced by the coupled bending torsional motion of a plate is achievable and

worthwhile.

Further refinement of this theory with the addition of a combined bending/torsional disturbance

force and taking into account the viscoelastic damping effects of the matrix material would be a good

topic for further research. Substituting a combined bending/torsional force as the disturbance instead

of a torsional force would more than likely change the ply orientation and at least one of the actuator

locations. These would change in order to provide directly damping to the induced bending modes of

vibration of the plate. Also, taking into account the inherent damping effects of the composite

material would show conclusively the effects of the active control system. One other minor

modification which could be made to refine this theory would be to allow some of the fixed structural

parameters to vary such as the y - direction location of the actuator/sensor pair. If this theory and

design approach was used in an operational satellite system, the plate length and width could also be
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allowed to vary to determine the complete optimized structure for a given disturbance profile.

As stated in the introduction, as satellites require more power, the size of the solar array

increases tremendously which causes the solar arrays to be prone to vibrations due to their large size

and light weight. A design methodology and structure fully optimized with respect to its size, shape,

and structural makeup which can damp out both bending and torsional vibration would be greatly

beneficial to the military and commercial space community. This research centered on developing and

testing this design methodology by fabricating an optimized plate which provides positive proof of the

theoretical calculations.
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Appendix A

The information in this appendix will show the development of how the kinetic, strain,

and work energy expressions are integrated by parts. In the energy expressions there are -four

different integrations to be performed for the dependent variables. The first involves only one

derivative with respect to x on the variation:

a

fA(x, t) 6 B(x, t) , x = A (x, t) 6B(x, t)

0 (158)
a

-fA (x, t), x6B (x, t) dx
0

This integral contributes to the x boundary condition and the equation of motion.

The second integral to be performed involves two derivatives with respect to x on the

variation.

afA (x, t) 88 B x, t) , x., A (x, t) 58 (x, t) , x I
0 (159)

A A(x, L) ,xB(x, L) i + fA(x, t) , xx68B(X, 0) dx

0

This integral contributes to the x boundary conditions and the equation of motion.

The third integral to be performed involves one derivative with respect to t on the

variation.
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2 a a

ffA(x, t) 6.6(x, t) dxdt = fA(x, t) 6B(x, t) dx
(160)

t2 a

- ffA (x, t)&B(x, t)dxdt
t, 0

This integral contributes to both the initial conditions and the equation of motion.

The fourth integral to be performed involves one derivative with respect to t and one

with respect to x on the variation.

t2 a a t2ffA (x, C) 8.6x,t) ,,xdL= fA (x, t) 8B (x,L)t , d
t1 0 0 tl

(161)
t2 t:2 a

a~
- (x, t) 8B (x, t) Idt + (x, t) ,x8B(x, t) dxdt

tl t: 0

This integral contributes to both the initial conditions and the equation of motion.
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Appendix B

The optimization program is divided up into many different parts. There is an overall shell

program which calls the various subroutines to perform the optimization. Figure 31 shows a

flow chart diagraming this optimization program.

Overall Shell _,

Program

V,

Optimization DOT
Program No

ISML Math L_ Objective Function/ .

Libraries Constraint Subroutine Complete

V I?l Yes]
Lyapunov Y

Subroutine Done
Figure 31 Optimization Program Flow Chart
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This program is:

c Optimization Program
C
c Define Constants Make All Variables Double Precision
c

DOUBLE PRECISION X(14), OBJ, XL(14), XU(14), G(2),
* WK(2000), RPRM(200)

c

DIMENSION IWK(2000), IPRM(200)
c

c Define NRWK, NRIWK
C

NRWK 2000
NRIWK = 2000

C
c Zero RPRM And IPRM
C

DO 10 I = 1,200
RPRM(I) = 0.0D0

10 IPRM(I) = 0
C

c Define Method, NDV, NCON
c Sequential Quadratic Programming Method
c

METHOD = 1
c
c Design Variables
c

NDV = 14
c
c 2 Constraints
c

NCON = 2
c
c - Define Bounds and Initial Design For Theta's
c

DO 20K= 1,10
X(K) = 1.570796327D0

c
c Lower Bounds
c

XL(K) = -1.570796327D0
c
c
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20 XU(K) =1.570796327D0
C

c Define Bounds and Initial Design For Other Variables
C

C

X(1 1) =4 8.DO
X(12) =16.DO

X(13) =.00001DO

X(14) =.00OO1DO

C

c Lower Bounds
C

XL(1 1) = 1.25D0
XL(12) = 1.25D0
XL(13) = 0.ODO
XL(14) = 0.0130

C

c Upper Bounds
C

XU(l1) = 22.75D0
XU(12) =22.75D0
XU(13) = 400000.DO
XU(14) = 400000.DO

C

c Define IPRINT, MINMAX, INFO
C

c Print Control
C

IPRINT = 3
C

c MINIMIZE
C

MINMAX = -1
C

c Initialize INFO To Zero
C-

INFO = 0
C

c Optimize
C

100 CALL DOT (INFO, METHOD, ]PRINT, NDV, NCON, X, XL, XU, OBJ,
* MINMAX, G, RPRM, IPRM, WK, NRWK, IWK, NRIWK)

C

c Finished
C

IF(INFO'.EQ.0) STOP
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c

c Evaluate Objective and Constraint

C

Call Subprog(OBJ, X, G)
C

c Go Continue with Optimization
C

GO TO 100
C

end

The first subroutine called is the optimization program DOT. This program is too long to list
in this document. The second subroutine call evaluates the objective function and the
constraints. This program is:

SUBROUTINE Subprog(OBJ, X, G)
c
c Subroutine to Calculate Objective Function
c
c Define Constants Make All Variables Double Precision
c

INTEGER LDSF,LDMF,LDEVEC,N,K,NOUT,LDS,LDM,IROW(8),NA,NDIM
c

PARAMETER (LDM=4, LDMINV=4, LDS=4, LDT=4, NCIM=4, NCS=4, NCT=4,
" NRIM=4, NRS=4, NRT=4, N=4, LDT1=4, NCT1=2, NRT1=4, LDT2=4,
"NCT2=2, NRT2=4, LDT3=4, NCT3=1, NRT3=4, LDT4=4, NCT4=1, NRT4=4,

" LDG=2, NCG=2, NRG=2, LDC=2, NCC=8, NRC=2, LDT5=2, NCT5=8,
"NRT5=2, LDB1=8, NCB1=2, NRB1=8, LDT6=8, NCT6=8, NRT6=8, LDSF=4,

" LDMF=4, LDEVEC=4, NCD=1, NRD= 1, LDD=1I, NCH= 1, NRH=8, LDH=8,
" NCB=8, NRB=8, LDB=8, NCBD=8, NRBD=8, LDBD=8, NCA=8, NRA=8,
" LDA=8, NRASYS=8, NCASYS=8, LDASYS=8, NCW1=8, NRW14l, LDW1=1,
" NCW2=8, NRW2=1, LDW2=1, NCT8=8, NRT8=l, LDT8=1, NCTl1=8,
" NRT11=1, LDT11=1 NCT9=1, NRT9=1, LDT9=1, NCXRMS=l, NRXRMS=8,
" LDXRMS=8, NRT1O=1, NCT1O=l, LDT1O=1, NRT12=2, NCTl2=8, LDT12=2,

*NRTl3=2, NCT13=8, LDT13=2, NRT14=2, NCT14=2, LDT14=2, NRT15=2,
*NCT15=2, LDTl5=2, NCW3=8, NRW3=1, LDW3=1)

c
DOUBLE PRECISION El, E2, nu12, nu2l, g12, rho, e31, actioc,

*wd, Cu e, Rf, A1(4), A2(4), A3(4), A4(4), dll, dl112, dl113, dli1,
*d161, d162, d163, d164, d16, d661, d662, d663, d66,
*mfree(LDMF,N), sfree(LDSF,N), AMACH, BETA(N), mass(LDM,LDM),
*invmas(LDMINV,LDMINV), stiff(LDS,NCS), KD, KS, d31,
*GAIN(LDG,NCG), xd, Ls, Asys(LDASYS,NCASYS), Bl(LDBl,NCB),
*C(LDC,NCC), H(8, 1), A(LDA,NCA), TEMP(LDT,NCT), TEMPI1 (LDTl ,NCT),
*TEMP2(LDT2,NCT2), TEMP3 (LDT3 ,NCT3), TEMP4(LDT4,NCT4),
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" TEM\P5(LDT5, NCT5), TEMP6(LDT6,NCT6), X(14), G(2), OBJ,
"BETAl(N), B(LDB,NCB), BD(LDBD,NCBD), D(LDD, NCD),

" TEMP7(LDH, NCH), \V 1(LDWI1,NCW 1), W2(LDW2,NCW2), TEMP8(LDT8,NCT8),
" ZETA, TEMP9(LDT9,NCT9), TEMPI1O(LDT 10, NCT 10),
" TEMP II(LDT 11, NCT 11), TEMP1I2(LDT1I2,NCT 12), TEMP 13 (LDT 13, NCT 13),
" thick,TEMP14(LDT14, NCT14), TEMPi 5(LDT1 5, NCT15),-W3(LDW3,NCW3)

C

DOUBLE COMPLEX ALPHA(N), EVAL(N), EVEC(LDEVEC,N), ALPHA1(N),
" EVAL1(N), EVEC1(LDEVEC,N)

C

EXTERNAL DMRRRR, AMACH, GPIGR, DGVCRG, UMACH, DWRRRN
C

NA= 8
NDIM =8

C

c Define Composite Constants

d
El = 22691551.44D0
E2 =1429537.875D0
g-12 = 868816.825D0
nul2 =.305616286D0
nu2l = .019253424D0
rho =.052598707D0

C

c Weighting Matrices for the Performance Index
c

ZETA = .5D0
c
c Location of Disturbance Torque
c

xd =24.DO
C

c Strength of the Disturbance Torque
c

-D(1,1) = l.DO
c
c Define PZT Actuator and Sensor Constants
c

wd =1.5D0

Rf= 1.D+7
Clle = 8.844D+06
Ls = 2.5D0
actioc = .025D0
d31 = 6.7323D-9
e31 = Clle*d31
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KS -wd*actloc*d3 *C I1Ie*Rf
KD =e31*wd*actloc

c

c Evaluate Composite Constants
C

dlii = 2.54167D-6*E1*Cos(X(1))**4.DO/(1.D-nfl2*l2) +~*
"2.54167D-6*E1 *Cos(X(10))**4.DO/(l .D0-nu12*nu21)+
"1 .54167D-6*E1 *Cos(X(2))** 4.DO/(l .D0-nu12*'nu21 )+

" 7.91667D-7*E1 *Cos(X(3))**4.D0/(1 .D0-nu12*nu21)+
" 2.91667D-7*E1 *Cos(X(4))**4D0/(1.D0.nu12*nu2l)+

14. 16667D-8*E1 *Cos(X(5))**4.D0/(1 DO-nul 2*nu2l)+
" 4. 16667D-8*E1 *Cos(X(6))* *4.D0/( 1.D0-nu12*nu21 )+
" 2-.9 1667D-7*E1 *Cos(X(7))**4.DO/(1 .D0-nu 12*nu2l)+
" 7.9 1667D-7*E1 *Cos(X(8))**4.DO/Ii.D0-inu 2*nu2i)+
" 1 .54167D-6*E1 *Cos(X(9))**4.D0/(1 .D0-nu12*nu21)+
" 0.0000101 6666666666667D0*g12*Cos(X(1))**2*Sin(X(1))*-*2.DO+
" 5.08333D..6*E2*nul2*Cos(X(1))* 2.D0*Sjn(X(1))**2.D0/(1.D0-nu12*

"nu2l )+2.54167D-6*E2*Sin(X(1))**4.D0/(1 .D0-inu12*nu21)+
" 0.00001016666666666667D0*g12*Cos(X(10))*2.DO*Sin(X(1O))**2.DO+
" 5.08333D-6*E2*nu12*Cos(X(10))**2.D0*-
" Sin(X(10))*:*2.D0/(1.D0-nu12*nu21)+
" 2.54167D-6*E2*Sin(X(10))**4.D0/(1 DO- nul2*nu2l)

C

dl112 = 6.16667D-6*g,12*Cos(X(2))**2.D0*-Sin(X(2))**2-.D0 +
" 3.08333D-6*-E2*nu1 2*Cos(X(2))**2.D0*Sin(X(2))** 2.D0/(1.D0-nu12*
" inu2l )+1 .54167D-6*E2'*Sin(X(2))**4.D0/(1 .DO- nu 12*nu2l) +
" 3. 16667D-6*g12*Cos(X(3))*-*2.D0*Sin(X(3))**2.D0 +

" 1 .58333D-6*E2*nu12*Cos(X(3))**2.D0*Sini(X(3))**2.D/(.D-nfl2*
" nu21)+7.91667D-7*E2*Sin(X(3))**4.D0/I(.DO- nul2*nu2l) +
" 1. 16667D-6*g12*Cos(X(4))*:*2.D0*Sin(X(4))**2.D0 +
" 5.83333D-7*E2*nu12*Cos(X(4))**2.D0*Sin(X(4))**2.D0/(1 .D0-nu12*
" nu2l1)+2.9 1667D-7*E2*Sin(X(4))* *4.D01( 1.DO- flI2*nu2 1) +
" 1.66667D-7*g12*Cos(X(5))**2.D0*Sin(X(5))**2.D0 +
" 8.33333D-8*E2*nu 12*Cos(X(5))**2.DO*Sin(X(5))**2.DO/(1 .D0-nu12*

*nu2l)+4. 16667D-8*E2*Sin(X(5))**4.D0/(1 .DO- iiul2*nu2l) +
*1 .66667D-7*gl12*Cos(X(6))* *'2.DO*Sin(X(6))**2.DO +
*8.33333D-8*E2*nu12*Cos(X(6))**2.D0*Sin(X(6))**2.D0/(1 .D0-nu12*
*nu2l)

C

dl113 = 4. 16667D-8*E2*Sin(X(6))**4.D0/(1 .DO- nul 2*nu2l) +
" 1. 16667D-6*g12*Cos(X(7))**2.D0*Sin(X(7))**2.D0 +
" 5.83333D-7*E2*nu1 2*Cos(X(7))**2.DO*S in(X(7))**2.DO/(1 .D0-nu12*
" nu21)+2.91667D-7*E2*Sin(X(7))**4.D0/I(.DO- nul2*nu2l) +
" 3. 16667D-6*g12*Cos(X(8))**2.D0*Sin(X(8))**2.D0 +
" 1 .58333D-6*E2*nul12*Cos(X(8))**2.DO*Sin(X(8))**2.DO/( 1.DO-nu 12*
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"nu21)+7.91667D-7*E2'*Sin(X(8))**4.DO/(1 DO- nul2*nu2l) +
" 6. 16667D-6*g1 2*Cos(X(9))**2.DO*Sin(X(9))**2.DO +
" 3.O8333D-6*E2'*fl2*Cos(X(9))**2.DO*-Sli(X(9))**2.DO/(1 .DO-nul 2*
" nu2l)+1 .54167D-6*E2*Sin(X(9))**4.DO/(1 .DO- nul 2*-nu2l)

C

dli = dill + d112 +d113
c

d16 I = -5.O8333D-6* gl2*Cos(X(l))**3.DO*Sin(X(l)) +
" 2.54167D-6*E1I *Cos (X(1)) * 3DO*Sin(X(l))/(l .DO- nul2*nu2l) -

" 2.54167D-6*E2*nu12*Cos(X(1 ))**3.DO*Sin(X(1 ))/(1 DO-nul 2*nu2l)+
" 5.O8333D-6*gl2*Cos(X())*Sin(X(1))**3.DO -

" 2.541 67D-6*E2*Cos(X(1))*Sin(X(1 ))**3.DO/(1 .DO-inu12*nu21) +
" 2.54l67D-6*E2*nul2*Cs(X(l))*Sin(X(l ))**3.DO/(1 .DO-nu12*nu2l)-
* 5.08333D..6*g,12*Cos(X(lO))**3.DO*sin(X(IO)) +
" 2.541 67D-6*E1 *Cos(X(1O))**3.DO*Sin(X(lO))/I.DO-nu12*nu2l)-
* 2.54l67D-6*E2*nu12*Cos(X(O))**3.DO*Sin(X(lO))/(1 .DO-nul2*nu2l)+
" 5.O8333D-6*g12*Cos(X(1O))*Sin(X(lO))**3.DO -

" 2.54167D-6*E2*Cos(X(1O))*Sin(X(lO))**3.DO/(l .DO-nul2*nu2l) +

" 2.54167D-6*E2*nul2*Cos(X(1O))*Sin(X(O))**3.DO/(1 .DO-nu12*nu21)-
" 3.O8333D-6*g-12*Cos(X(2))**3.DO*Sin(X(2)) +
" 1 .54l67D-6*El *Cos(X(2))**3.DO*Sin(X(2))/(l .DO-nu12*-nu21) -

" 1 .54167D-6*E2*nul2*Cos(X(2))**3.DO*Sin(X(2))/(l DO-nul 2*nu2l)+
" 3.O8333D-6*gl12*Cos(X(2))*Sin(X(2))**3.DO -

" 1.54 l67D-6*E2*Cos(X(2))*Sin(X(2))**3.DO/(1 .DO-nul2*niu2l)
C

d162 = I .54l67D-6*E2*niul 2*Cos(X(2))*Siin(X(2))**-3.DO/I.DO-nul 2*
" nu2l)-1.5S333D-6*g-12*Co s(X(3))**3.DO*'Sin(X(3)) +
" 7.91667D-7*E1 *Cos(X(3))**3.DO*Sin(X(3))/I.DO- nul2*nu2l) -

" 7.91667D-7*E2*nul2*Cos(X(3))**3.DO*Sin(X(3))/(1 .DO-nu12*nu21)+
" 1 .58333D-6*g12*Cos(X(3))*Sin(X(3))**3.DO -

" 7.9l667D-7*E2*Cos(X(3))*Sin(X(3))**3.DO/(l .DO- nul2*nu2l) +
" 7.91 667D-7*E.2*nul12*Cos(X(3))*Sin(X(3))* *3 .DO/I1.DO-nul12*nu2 1)-
* 5.83333D-7*g,12*Cos(X(4))**3.DO*Sin(X(4)) +
" 2.91667D-7*E1 *Cos(X(4))**3.DO*Sin(X(4))/(1 .DO- nul2*nu2l) -

2.91667D-7*E2*nu2*Cos(X(4))**3.DO*Sin(X(4))/(1 .DO-nul 2*nu2l)+
*5.83333D-7*g,12*Cos(X(4))*Sin(X(4))**3.DO -

*2.91667D-7 *E2*Cos(X(4)) *Sin (X(4)) **3.DO/(1 .DO- nul2*nu2l) +
*2.91667D-7*E2*nu2Cos(X(4))*Sin(X(4))**3.DO/(1 .DO-nu12*nu2l)-
*8.33333D-8*g12*Cos(X(5))**3.DO*Sin(X(5)) +

" 4. 16667D-8*E1 *Cos(X(5))**3.DO*Sin(X(5))/(1 .DO- nul2*nu21) -

" 4.1 6667D-8*E2*nu1 2*Cos(X(5))**3.DO*Sin(X(5))/(1 .DO-nu12*nu21)+
" 8.33333D-8*g12*Cos(X(5))*-Sin(X(5))**3.DO -

" 4. 16667D-8*E2*Cos(X(5))*Sin(X(5))**3.DO/(1 .DO- nul2*nu2l) +
" 4.16667D-8*E2*nu2*Cos(X(5))*Sin(X(5))**3.DO/(1 .DO-inu12*nu21)

C
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d163 = -8.33333D-8*g12* Cos(X(6))**3.DO*Sin(X(6)) +
" 4. 16667D-8*E1 *Cos(X(6))**3.DO*Sin(X(6))/(1 .DO- nul 2*nu2l) -

" 4. 16667D-8*E2*nu12*Cos(X(6))**3.D0*Sin(X(6))/(1 .DO-nu12*nu21)+
" 8.33333D-8*g,12 *Cos(X(6))* Si1n(X(6))**3.DO -

" 4. 16667D-8*E2'*Cos(X(6))*Sin(X(6))**3.DO/(l .DO-nu12*nu21) +
" 4.16667D-8*E2*nu2*Cos(X(6))*Sin(X(6))**3.D/(1 .DO-nul2*nu21)-
" 5.83333D-7*g,12*Cos(X(7))**3.DO*Sin(X(7)) +
" 2.9 1667D-7*E1 *Cos(X(7))**3.DO*Sin(X(7))/(1 .DO- nul2*nu2l) -

" 2.91667D-7*E2*nu1 2*Cos(X(7))**3.DO*Sin(X(7))/(1 .DO-nu12*nu21)+
" 5.83333D-7*g12*Cos(X(7))*Sin(X(7))**3.DO -

" 2.91 667D-7 *E2* Cos (X(7)) *Sin(X(7)) * *3. D0/(1 DO0- nul2*nu2l) +
" 2.91667D-7*E2*nu1 2*Cos(X(7))*Sin(X(7))**3.DO/I(.DO-nu12*nu21)-

" 1.58333D-6*g12*Cos(X(8))**3.DO*Sin(X(8)) +
"7.91667D-7 *E I 'Cos (X(8)) "*3.DO*Sin(X(8))/( I.DO- fl2*nu2l) -

" 7.91 667D-7*E2*nu12*Cos(X(8))**3.DO*Sin(X(8))/(1 .DO-nu12*nu21)+
" 1 .58333D-6*g12*Cos(X(8))*Sin(X(8))**3.DO -

" 7.91667D-7*E2*Cos(X(8))*Sin(X(8))**3.DO/(1 .DO- nul2*nu2l) +
" 7.91667D-7*E2*nu 12*Cos(X(8))*Sin(X(8))**3.D0/(1.DO-nu12*nu21)

C

d164 = -3.O8333D-6*g12*Cos(X(9))**3.DO*Sin(X(9)) +
"1 .54167D-6*E1 *Cos(X(9))**3.DO*Sin(X(9))/(1 DO- nul2*nu2l) -

" 1 .54167D-6*E2*nu12*Cos(X(9))**3.D0*Sin(X(9))/(1 .DO-nu12*nu21)+
"3.O8333D-6*g)12*Cos(X(9))*Sin(X(9))** 3.DO -

" 1.541 67D-6*E2*Cos(X(9))*Sin(X(9))**3 .DO/( I.DO-nul12*nu2l1)+
" 1 .54167D-6*E2*nu12*Cos(X(9))*Sin(X(9))**3.D0/(1 .DO-nu12*nu21)

c

d16 = d161 + d162 + d163 + d164
C

d661 = 2.54167D-6*g12*Cos(X(1))**4.D0 +
" 2.54167D-6*g12*Cos(X(1O))**4.DO +
" 1.54167D-6*g12*Cos(X(2))**4.DO+7.91667D-7*g12*Cos(X(3))* *4.D0+
" 2.91 667D-7*g 1 2*Cos(X(4))* *4.DO+4. 16667D-8*g1 2*Cos(X(5))* *4.DO+
" 4.16667D-8*gc12*Cos(X(6))**4.DO+2.9 1667D-7*gl12*Cos(X(7))**4.DO+
" 7.91667D-7*g12*Cos(X(8))*4.DO+i1 .54167D-6*g12*Cos(X(9))**4.DO-
-5.O8333D-6*g1 2*Cos(X(1))**2.DO* Sin(X(1))**2.DO +
*2.541671) 6 *E1I *Cos (X(I )) **2. DO* Sin(X(1 )) **2. DO/I.DO-nulI 2*nu2l1)+
*2.54167D-6*E2*Cos(X())**2.DO*Sin(X())**2.DO/(1 .DO-nu12*nu21)-
*5.08333D-6*E2*nu12*Cos(X(1))**2.DO*

*Sin(X(1))**2?.DO/(1 .DO-nul 2*nu21)+2.54167D-6*g12*Sin(X(1))**4.DO-
*5.08333D..6*g12*Cos(X(1O))**2.DO*Siii(X(1O))**2.DO +
*2.541 67D-6*E1 *Cos(X(10))**2.DO*Sin(X(10))**2.DO/(1 DO-nul 2*nu2l)+

" 2.54167D-6*E2*Cos(X(10))**2.DO*Sin(X(1))**2.DO/(1 .DO-nu12*nu21)-
* 5.O8333D-6*E2*nu12*Cos(X(1O))**2,DO*
" Sin(X(1O))**2.DO/(1 .DO-nu12*nu21)+2.54167D-6*g12*
" Sin(X(fO))**4.DO-3.O8333D-6*g,12*Cos(X(2))**2.DO*Sin(X(2))**2.DO+
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" 1 .54167D-6*E1 *Cos(X(2))**2.DO*Sin(X(2))**2.DO/(1 .DO- nul2*nu2l)
C

d662 == 1.54167D-6*E2'*Cos(X(2))**-2.DO*
" Sin(X(2))**2.DO/(1.DO-nu12*nu21)-
* 3.O8333D-6*E2*nu 12*Cos(X(2))**2.DO*Sin(X(2))""2.DO/(1 .DO-nu12*
" nu21)+1.54167D-6*g,12 *Sin(X(2))*-*4.DO --

" 1 .58333D-6*g12*Cos(X(3))**2.DO*Sin(X(3))** 2.DO +
" 7.9 1667D-7*E1 *Cos(X(3))**2.DO*Sin(X(3))**2.DO/(1 .DO-nu12*'nu21)+
" 7.91667D-7*E2*Cos(X(3))**2.D0*Sjn(X(3))**2.D0/(1 DO-nul 2*nu21)-
* 1.58333D-6*E2*nu12*Cos(X(3))**2.DO*
"Sin(X(3))**2.DO/(1 .DO-nu12*inu2)+i7.91 667D-7*g12* S in(X(3))**4.DO-

* 5.83333D-7*g12*Cos(X(4))**2.DO*Sin(X(4))**2.DO +
" 2.91667D-7*E1 *Cos(X(4))**2.DO*Sin(X(4))**2.DO/(1 .DO-nu12*nu21)+
" 2.91667D-7*E2*Cos(X(4))**2.DO*Sin(X(4))**2.DO/(1 .DO-nul2*nu21)-
" 5.83333D-7*E2*nu12*Cos(X(4))**2.DO*
" Sin(X(4))**2.DO/(1.DO-nu1 2*nu21)+2.91667D-7*g12*Sin(X(4))*-4.DO-
* 8.33333D-8*g12*Cos(X(5))**2.DO*Sin(X(5))**2.DO +
" 4. 16667D-8*E1 *Cos(X(5))**2.DO*Sin(X(5))**2 ?DO/(1 .DO-nu12*nu21)+
" 4. 16667D-8*E2*Cos(X(5))**2.DO* Sin(X(5))**2.DO/(1 .DO-nu12*nu21)-
" 8.33333D-8*E2*nu12*Cos(X(5))**2.DO*

" Sin(X(5))**2.DO/(1 .DO-nu12*nu21)+4. 16667D-8*g12*Sin(X(5))**4.DO
C

d663 = 8.33333D-8*g12* Cos(X(6))**2.DO*Sin(X(6))**2.DO +
" 4.1 6667D-8 *E1I *Cos (X(6)) **2. DO*Sin(X(6)) **2.DO/(1 .DO-iiu1I2*Du2 ])+
"4. 16667D-8*E2*Cos(X(6))**,2.DO*Sin(X(6))**2.DO/(1 .DO-nul2ThDu2l)-

* 8.33333)D-8*E2*niu12*Cos(X(6))**2.DO*
" Sin(X(6))**"2.DO/(l1.DO-nul12*nu2 1)±4. 16667D-8 *g1 2*Sin(X(6))**4.DO-
* 5.83333D-7*g12*Cos(X(7))**2.DO*~Sin(X(7))**2.DO +
" 2.91667D-7*E1*Cos(X(7))**2.DO*Sin(X(7))**2.DO/(1 .DO-nu12*nu2l)±
" 2.91 667D-7*E2*Cos(X(7))**2.DO*Sjn(X(7))**2.DO/(1 .DO-nu 12*nu21)-
" 5.83333D-7*E2*nu12*Cos(X(7))**2.DO*
" Sin(X(7))**2.DO/(1 .DO-nu12*nu21)+2.91667D-7*g12*Sin(X(7))**4.DO-
* 1 .58333D-6*g12*Cos(X(8))**2.DO*Sin(X(8))**2.DO +
" 7.91667D-7*E1 *Cos(X(8))**2.DO*Sjn(X(8))**2.DO/(1 .DO-nu12*nu21)+

*7.91667D-7*E2*Cos(X(8))**2.DO*Sjn(X(8))**2.DO/(1 .DO-nul 2*nu21)-
*1.58333D-6*E2*nu12*Cas(X(8))**2.DO*

*Sin(X(8))**2-.DO/(1 .DO-nu 12*nu21)+7.91667D-7*g12*Sin(X(8))**4.DO-
*3.O8333D-6*g12*Cos(X(9))**2.DO*Sin(X(9))**2.DO +
* I.54167D-6*E1 *Cos(X(9))**2.DO*Sin(X(9))**2.DO/I.DO-nu12*nu21)+
*1 .54167D-6*E2*Cos(X(9))**2.DO*Sjn(X(9))**2.DO/(.DO-nu12*nu21)-
*3.O8333D-6*E2*nu12*Cos(X(9))**2.DO*

*Sin(X(9))**2.DO/I(.DO-nu12*nu2)+1 .54167D-6*g12*Sin(X(9))**4.DO
C

d66 = d661 + d662 + d663
C
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c Calculate The Mass (mfree) And Stiffness (sfree) Matrices For The
c Free Motion System
c
c Mass Matrix
c

mfree(1, 1) =1.08845D0~rho
mfree(1,2) =O.DO
mfree(1,3) = 2.76282D0*rho
mfree(1,4) = 0.DO
mfree(2, 1) = mfree(1,2)
mfree(2,2) = 0.362874D0*rho
mfree(2,3) =0.D0
mfree(2,4) =0.921084D0*rho
rnfree(3, 1) = mfree(1,3)
mfree(3,2) = mfree(2,3)
mfree(3,3) = 7.20001D0*rho
mfree(3,4) = 0.D0
mfree(4, 1) =mfree(1,4)
mfree(4,2) = infree(2,4)
mfree(4,3) = mfree(3,4)
mfree(4,4) =2.400'38D0*rho

c
c Stiffness Matrix
c

sfree(1, 1) = 0.000880796902434194D0*dl 1
sfree(1,2) = -0.00856736D0*d16
sfree(1,3') =0.00 1495287262745941D0*dl 1
sfree(1,4) = -0.0228463D0*d16
sfree(2,1) = sfree(1,2)
sfree(2,2) =0.0002935989674780654D0*dl 1+0.205617D0*d66
sfree(2,3) =0.0228463064840031 4D0*dl 6
sfree(2,4) =0.000498429087581 9803D0*dl 1 +0.349066D0*d66
sfree(3, 1) = sfree(1,3)
sfree(3,2) = sfree(2,3)

-sfree(3,3) = 0.01409275043894711D0*dllI
sfree(3,4) = 0.DO
sfree(4,1) = sfree(1,4)
sfree(4,2) = sfree(2,4)
sfree(4,3) =sfree(3,4)
sfree(4,4) = 0.004697583479649038D0*d1 1 + 0.822467D0*d66

c
c Call a Subroutine Program Which Evaluates The Eigenvalues and
c Bigenvectors For The Free Motion System
c

CALL DGVCRG (N, sfree, LDSF, mnfree, LDMF, ALPHA, BETA, EVEC,
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"LDEVEC)

DO 10 K=1,N
IF (BETA(K) .NE. 0.0) THEN

EVAL(K) =ALPHA(K)/BETA(K)
ELSE

EVAL(K) = AMACH(2)
END IF

10 CONTINUE

Al(l) = EVEC(1,1)/(EVEC(1 ,1)**2.DO+EVEC(2,1)**2.DO+
" EVEC(3,1)**2.DO+EVEC(4,1 )*c2.D0)**.5D0

Al (2) =EVEC(2, 1)I(EVEC( 1, 1)**2.D0+EVEC(2,l)**2.DO+
" EVEC(3,1)**2.DO±EVEC(4, 1)**2.DO)**.5D0

C

Al (3) = EVEC(3,1)/(EVEC(1, l)** 2.DO±EVEC(2, 1 )42.D0+
" EVEC(3),1)**2.DO+EVEC(4,1 )**2.D0)**.5D0

A1(4) =EVEC(4,1)/(EVEC(1 ,1)**2.D0+EVEC(2,1)**2.D0+

" EVEC(3,1)**2.DO+EVEC(4, 1)**2.D0)**.5D0

A2( 1) =EVEC( 1,2)/(EVEC( 1,2)**2.DO+EVEC(2,2)**2.DO+
" EVEC(3,2)**2.DO EVEC(4,2)**2.DO)**.5D0

A2(2) =EVEC(2,2)/(EVEC( 1,2)* *2.DO+EVEC(2,2)* *2.DO+
" EVEC(3,2)**2.DO+EVEC(4,2)**2.DO)**.5D0

A2(3) = EVEC(3,2)/(EVEC( 1,2)**2.D0+EVEC(2,2) **2.D0+
" EVEC(3,2)* *2.DO+EVEC(4,2)**2.DO)* *.5D0

C

A2(4) = EVEC(4,2)/(EVEC( 1,2)**2.DO±EVEC(2,2)* *2.DO+
" EVEC(3,2)**2.DO+EVEC(4,2)**2.DO)**.5D0

-A3(1) = EVEC(1,3)/(EVEC(1 ,3)**2.D0+EVEC(2,3)**2.DO+
" EVEC(3,3)**2.D0+EVEC(4,3)**2.DO)**.5D0

A3(2) = EVEC(2,3)/(EVEC( 1,3)* *2.D0+EVEC(2,3)* *2.DO+
" EVEC(3,3)**2.DO+EVEC(4,3)**2.DO)**.5D0

A3(3) = EVEC(3,3)/(EVEC( 1,3) **2.DO+EVEC(2,3)* *2.DO+
" EVEC(3,3)**2.D0+EVEC(4,3)**2.DO)**.5D0

A3(4) = EVEC(4,3)/(EVEC( 1,3)**2.D0+EVEC(2,3)**2.DO+
" EVEC(3,3)**2.DO+EVEC(4,3)**2.DO)**.5D0
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C

A4( 1) =EVEC( 1,4)/(EVEC( 1,4)* *2.DO+EVEC(2,4)**2.DO+
* EVEC(3,4)**-2.DO+EVEC(4,4)**2.DO)**.5D0

C

A4(2) = EVEC(2,4)/(EVEC( I 4)**2.DO+EVEC(2,4)**2.DO+
* EVEC(3,4)**2.DO±EVEC(4,4)* *2.DO)**.5D0

C

A4(3) =EVEC(3 ,4)/(EVEC(1I,4)* *2.DO EVEC(2,4)**2.DO+
* EVEC(3,4)**2.D0OsEVEC(4,4)**2.D0)**.5D0

C

A4(4) = EVEC(4,4)/(EVEC( 1,4)**2.DO+EVEC(2,4)**2.DO+
* EVEC(3,4)**2.DO+EVEC(4,4)**2.DO)**.5D0

C

Calculate The Mass And Stiffness Matrices For The Forced Motion
c System
c
C' Stiffness Matrix
c

stiff( 1,1) = 0.000880796902434194D0*A1(1)**2.DO*dl 1 +
" 0.000293598967478065)4D0*AI(2)*:*2.DO*dl 1 +
" 0.002990574525491 88D0*A1(1)*A1(3)*dl 1 +
" 0.0140927504389471 1DO*A1(3)**2.DO*dl 1 +

"~ 0.000996858175163961D0*A1(2)*A1(4)*dll +
" 0.004697583479649034D0*-A1(4)*t*2.DO'-dl I 0.0171347DO*A1(1)*Al(2)*
" d16+0.04569261296800626D0*AI (2)*Al (3)*dl 6-0.0456926D0*A1(1)*
" Al (4)*d16+0.205617D0*A1(2)**2.DO*d66 + 0.698132D0*A1(2)*A1(4)*
" d66 +0.822467D0*A1(4)**2.DO*d66

c
stiff(1 ,2) = 0.000880796902434195D0*Al(1)*A2(l)*dl 1 +

" 0.000293598967478065D0*A1(2)*A2(2)*dl 1 +
" 0.00149528726274594D0*A2(1)*AI (3)*dl 1 +
" 0.00149528726274594D0*AI (1)*A2(3)*dl 1 +
" 0.0140927504389471 1DO*AI (3)*A2(3)*dl 1 +

*0.0004984290875819808D0*A2(2)*A1(4)*dl 1 +
*0.0004984290875819808D0*A1(2)*A2(4)*dl 1 +
*0.004697583479649042D0*A I(4)*A(4)*d 11 -

*0.00856736D0*A2(1)*A1(2)*d16-0.00856736D0*A1(1)*A2(2)*d16 +
*0.02284630648400313D0*A2(2)*A1(3)*d16 +
*0.02284630648400313D0*A1(2)*A2(3)*d16 -

" 0.0228463D0*A2(1)*A1(4)*d16 - 0.0228463D0*A1(1)*A2(4)*d16 +
" 0.20561 7D0*-A 1(2)*A2(2)*d66 + 0.349066D0*A2(2)*A 1(4)*d66 +
" 0.349066D0*A 1(2)*A2(4)*d66 + 0.822467D0*A 1(4)*A2(4)*d66

c
stiff(1 ,3) = 0.000880796902434195D0*A1 (1)*A3(1)*dl 1 +
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" 0.000293598967478065D0*A1 (2)*A3'(2)*4d1 I +
" 0.00149528726274594D0*A3( 1)*A1 (3)zdl 1 +
" 0.00149528726274594D0*A1 (1)*A3(3)*dl 1 +
" 0.0140927504389471 1D0*A1 (3)*A3(3):dl 1 +
" 0.00049842908758 19805D0*-A3(2)*A1 (4)*dl 1 +
" 0.00049842908758 19805D0*AI (2)*A3(4)*dl 1 +
" 0.004697583479649042D0*A 1(4)*A3(4)*d 11 -

" 0.00856736D0*A3(1)*A1(2)*d16-0.00856736D0*A1 (l)*A3(2)*d16 +
" 0.022846306484003 13D0*A3(2)*A1(3)*d16 +
" 0.02284630648400313D0*AI(2)*A3(3)*d16 -

" 0.0228463D0*A3(1)*A1(4)*d16 - 0.0228463D0*A1(1)*A3(4)*d16 +
" 0.205617D0*A1(2)*A3(2)*d66 + 0.349066D0*A3(2)*AI(4)*d66 +
" 0.349066D0*A1 (2)*A3(4)*d66 + 0.822467D0*A1 (4)*A3(4)*d66

C

stiff(1 ,4) = 0.000880796902434195D0*A(1)*A4(1)*dl 1 +
" 0.000293598967478065D0*A1(2)*;A4(2)*dl 1 +
" 0.00 149528726274594D0*A4(1)*A1(3)*dl I +
* 0.00149528726274594D0*A1 (1)*A4(3) dtl +
" 0.0140927504389471 1DO*A1(3)*A4(3)*dl 1 +
" 0.0004984290875819805D0*tA4(2)*AI(4)*d1 1 +
" 0.00049842908758 19805D0*A1(2)* A4(4)*dl 1 +
" 0.004697583479649042D0*A 1(4)*A4(4)*dl 1 -
" 0.00856736D0*A4(1)*A1(2)*d16-0.00856736D0*A1 (1)*A4(2)*d16 +
"k 0.02284630648400313D0*A4(2)*A1(3)*d16 +

" 0.022846306484003113D0*AI(2)*A4(3) -d16 -

" 0.0228463D0*A4(1)*"A1(4)*-d16-0.0228463D0*A1(1)*A4(4)*d1 6 +
" 0.205617D0*A1(2)*A4(2)*td66 + 0.349066D0*A4(2)*A1(4)*d66 +
" 0.349066D0*A1 (2) *A4(4)*d66 + 0. 822467D0*A 1(4)*A4(4)*d66

c

stiff(2,1) = stiff(1,2)
C

stiff(2,2) =0.0008807969024341 94D0*A2(1)**2.DO*dl I +
" 0.0002935989674780654D0*A2(2)**:2.DO*dl 1 +
" 0.00299057452549188D0*A2(1)*A2(3)*dl 1 +
*0.0140927504389471 1DO*A2(3)**2.DO*dl 1 +
*0.000996858175 163961D0*A2(2)*A2(4)*dl 1 +
*0.004697583479649034D0*A2(4)**2.DO*dl 1-0.0171347D0*A2(1)*A2(2)*
*dl 6+0.04569261 296800626D0*A2(2)*A2(3)*dl16-0.0456926D0*A2(1 )*
*A2(4)*dl 6+0.20561 7D0*A2(2)**2.DO*d66 + 0.6981 32D0*A2(2)*A2(4)*

" d66 +0. 822467D0*A2(4)* *2.D0*d66
C

stiff(2,3) = 0.000880796902434195D0*A2(1)*A3(1)*dl 1 +
" 0.000293598967478065D0*A2(2)*A3(2)*dl 1 +

*0.00149528726274594D0*A3(1)*A2(3)*dl 1 +
*0,00149528726274594D0*A2(I )*A3(3)*dl 1 +

125



" 0.0140927504389471 IDO*A2(3)*A3(3)'d1 1 +
" 0.0004984290875819805D0*A3(2)*-A2(4)*dl 1 +
" 0.000498429087581 9805D0*A2(2)*A3(4) dl 1 +
" 0.004697583479649042D0*:A2(4)*A3(4)*d 11 -

" 0.00856736D0*A3(1)*A2(2)*d16 - 0.00856736D0*A2(1)*A3(2)*d16 +
" 0.02284630648400313D0*A3(2)*A2(3)*d16 +
" 0.02284630648400313D0*A2(2)*A3(3)*d16 -

" 0.0228463D0*A3(1 )*A2(4)*d16 - 0.0228463D0*A2(1)*A3(4)*d16 +
" 0.205617D0*A2(2)*A3(2)*d66 + 0.349066D0*A3(2)*4A2(4)*d66 +
" 0.349066D0*A2(2)*A3(4)*d66 + 0.822467D0*A2(4)*A3(4)*d66

stiff(2,4) =0.000880796902434195D0',A2(1)*A4(1)*dl 1 +
" 0.000293598967478065D0*A2(2)*A4(2)*dl I +
" 0.00149528726274594D0*A4(1)*A2(3)*dl 1 +
" 0.00 149528726274594D0*A2(1)*A4(3)*dl I +
" 0.0140927504389471 1DO*A2(3)*A4(3)*dl 1 +
" 0.0004984290875819808D0*A4(2)*A2(4)*dl 1 +
* 0.0004984290875819808D0*A2(2)*A4(4) dllI +
" 0.0046975 83479649042D0*A2(4) *A4(4)*d 11 -

" 0.00856736D0*A4(1)*A2(2) d16 - 0.00856736D0'-A2(1)*A4(2)*d16 +
" 0.02284630648400313D0*:A4(2)*A2(3)*d16 +
" 0.0228463064840031 3D0*A2(2)*A4(3)*d 16 -

" 0.0228463D0*A4(1)*A2(4)*d16 - 0.0228463D0*A2(1)*A4(4)*d16 +
" 0.20561 7D0*A2(2)*A4(2)*d66 + 0.349066D0*A4(2)*A2(4)*d66 +
" 0.349066D0*A2(2) *A4(4)*d66 + 0.822467D0*A2(4)*-A4(4)*d66

c

stiff(3,1) =stiff(1,3)
C

stiff(3,2) = stiff(2,3)
C

stiff(3,3) = 0.000880796902434194D0*A3(1)**2.DO*dl 1 +
" 0.0002935989674780654D0*A3(2)**2.DO*dl 1 +
" 0.00299057452549188D0*A3(1)*A3(3)*dl 1 +
" 0.0 140927504389471 1DO*A3(3)**2.DO*dl 1 +

- 0.000996858 175163961D0*A3(2)*A3(4)*dl 1 +
*0.004697583479649034D0*A3(4)**2.DO*dl 1-0.0171 347D0*A3(1)*A3(2)*
*d16+0.04569261 296800626D0*A3(2)*A3(3)*d16-0.0456926D0*A3(1)*
*A3(4)*d16+0.205617D0*A3(2)**2.DO*d66 0.698132D0*A3(2)*A3(4)*:d66+
*0.822467D0*A3(4)**2.DO*d66

C

stiff(3,4) = 0.000880796902434195D0*A3(1)*A4(1)*dl 1 +
" 0.000293598967478065D0*A3(2)*A4(2)*d 11 +
" 0.00 149528726274594D0*A4(1)*A3(3)*dl 1 +
" 0.001 49528726274594D0*A3( 1)*A4(3)*d 11 +
" 0.01409127504389471 1DO*A3(3)*A4(3)*dl 1 +
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" .0004984290875819808D0*;A4(2)*A3(4)*dl 1 +
" .0004984290875819808D0*A3(2)*A4(4)*dl 1 +
" .004697583479649042D0*A3(4)*A4(4)*d 11 -

" .00856736D0*A4( 1)*A3(2)*d16 - .00856736D0*A3(l)*A4(2)*d16 +
" .02284630648400313D0*A4(2)*A3(3)*d16 +
" .022846306484003)13D0*A3(2)*A4(3)*d16 -

" .0228463D0*A4(1)*A3(4)*d16 - .0228463D0*A3(1 )*A4(4)*,d16 +
" .205617D0*A3(2)*A4(2)*d66 + O.349066D0*A4(2)*A3(4)*d66 +
" O.'349066D0*A3(2)*A4(4)*d66 + .822467D0*A3(4)*A4(4)*d66

C

stiff(4,1) = stiff(1,4)
c

stiff(4,2) = stiff(2,4)
C

stiff(4,3) = stiff(3,4)
C

stiff(4,4) = .000880796902434194D0*A4(1)**2.DO*dl 1 +
*0.0002935989674780654D0*A4(2)**2.D0*dl 1 +
0.00299057452549188D0*A4(1)*A4(3)*dl 1 +

*0.0140927504389471 IDO*A4(3)**2.D0*dl 1 +
0.000996858175 16396 1DO*A4(2)*A4(4)*dl 1 +
0 .004697583479649034D0*A4(4)**2.DO :dl 1-.171347D0*-A4(1)*A4(2)*

Sdl 6+0.04569261 296800626D0*A4(2)*A4(3)*dl 6-.O456926DO*A4( 1)*
*A4(4)*d16+0.205617D0*A4(2)**2).D0*d66 0.698132D0*-A4(2)*A4(4)*d66+
0.822467*A4(4)**2.DOI-d66

C

c Mass Matrix
C

mass(1 ,1) = 1 .08845D0*A1(1)**2.DO*rho+0.362874D0*A1 (2)**2.DO*rho+
*5.52564D0*A1 (1)*A1(3)*rho + 7.20001D0*A1 (3)**2.D0*rho +
*1 .84217D0*A1(2)*A1(4)*rho + 2.40038D0*A1(4)**2.DO*rho

C

mass( 1,2) = 1 .08 845D0*A 1 (1) )*A2( 1)*rho+0. 362874D0*A 1 (2) *A2(2) *rho+
*2.76282D0*A2(1)*AI1(3)*'rho + 2.76282D0*A1(1)*A2(3)*rho +

-~7.20001D0*A1 (3)*A2(3)*rho + 0.921084D0*A2(2)*A 1(4) *rho +
*0.92 1084D0*A1(2)*A2(4)*rho + 2.40038D0*AI (4)*A2(4)*rho

C

mass(1 ,3) = 1 .08 845D0*AI1 (1) *A3 (1) *rho 0. 362874D0*A 1 (2) *A3 (2) *rho+
" 2.76282D0*A3(1 )*AI (3)*rho + 2.76282D0*A1(1)*A3(3)*rho +
" 7.20001D0*A1(3)*A3(3)*rho + 0.921084D0*A3(2)*A1(4)*rho +
" 0.921084D0*A1 (2)*A3(4)*rho + 2.40038D0*A1(4)*A3(4)*rho

C

mass(1 ,4) = 1 .08 845D0*AI1(1) *A4(1) *rho+0. 362874D0*A 1(2) *A4(2) *rho+
" 2.76282D0*A4(1)*A1(3)*-rho + 2.76282D0*A1(1)*A4(3)*rho +
" 7.20001D0*A1(3)*A4(3)*rho + 0.921084D0*A4(2)*A1(4)*rho +
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" 0.921084D0*AI (2)*A4(4)*'rho + 2.40038D0*A1 (4)*A4(4)*rho
c

rnass(2,1) = mass(1,2)
C

mass(2,2) = 1 .08845D0*A2(1)* *2.DOIrho+0.362874D0*A2(2)**2.DOrho+
" 5.52564D0*A2(1) *A2(3) *rho + 7.20001D0*A2(3)**2.DO*rho +--
" 1. 84217D0*A2(2)*A2(4) *rho + 2.40038D0*A2(4)**2.DO*rho

C

mass(2,3) = 1 .08 845D0*A2(1) *A3 (1) *rho+0. 362874D0*A2(2) *A3 (2) *rho+
" 2.76282D0*A3 (1) *A2(3) *rho + 2.76282D0*A2(1)*A3(3)*rho +
" 7.20001D0*A2(3)*A3(3)*rho + 0.921084D0*A3(2) *A2(4) *rho +
" 0.921 084D0*A2(2)*A3 (4)*rho + 2.4003 8D0*A2(4)*A3 (4)*rho

C

mass(2,4) = 1.08 845D0*A2(l 1 *A4(1)*rho+0.3 62874D0*A2(2) *A4(2) *rho+
" 2.76282D0*A4(l 1 *A2(3) *rho + 2.76282D0*A2(l I )A4(3) *rho +
" 7.20001 DO*A2(3)*A4(3)*rho + 0.921 084D0*A4(2)*A2(4)*rho +
" 0. 921 084D0*A2(2) *A4(4) *rho + 2.4003 8D0*A2(4)*A4(4) *rho

C7

rnass(3,1) =mass(1,3)
C

rnass(3,2) =mass(2,3)
C

mass(3,3) =1 .08845D0*A3(1)**2.DO*rho±0.362874D0*A3(2)**2.DO"-rho+
" 5.52564D0*A3(1)*A3(3)*rho + 7.20001D0*A3(3)**2.DO*rho +
" 1 .84217D0*A3(2)*A3(4)*rho + 2.40038D0*A3(4)**2.DO*rho

C

mass(3,4) =1 .0 8845D0 *A3 (1) *A4(1) *rho+0.362874D0*A3 (2) *A4(2) *rho+

" 2.76282D0*A4(1) *A3 (3) *rho + 2.76282D0*A3(1) *A4(3) *rho +
" 7.20001D0*A3(3)*A4(3')*rho + 0.921084D0*A4(2)*A3(4)*rho +
" 0.921 084D0*A3(2)*A4(4) *rho + 2.40038D0*A3(4)*A4(4)*rho

C

mass(4,1) = mdss(1,4)
C

mass(4,2) = nass(2,4)
C -

mass(4,3) =mass(3),4)
C

i-ass(4,4) = 1 .08 845D0 *A4(1) **2.DO*rhio+0.362874D0*A4(2) **2.DO *rho+
" 5.52564D0*A4(1)*A4(3) *rho + 7.20001D0*A4(3)**2.DO*rho +
" 1.8421 7D0*A4(2)*'A4(4)*rho + 2.40038D0*A4(4)**2,DO*rho

C

c Call a Subroutine Program Which Evaluates The Eigenvalues and
c Eigenvectors For The Free Motion System
C

CALL DGVCRG (N, stiff, LDS, mass, LDM, ALPHA1, BETAl, EVECI,
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*LDEVEC)
C

DO 100 K=1,N
IF (BETA 1 (K) .NE. 0.0) THEN

EVAL1(K) = ALPHA I(K)/BETA1I(K)
ELSE

EVAL1I(K) = AMACH(2)
END IF

100 CONTINUE
C

c Formulate The Open And Closed Loop State-Space Equations
c

C Formulate The Inverse Of the Mass Matrix
C

CALL DLINRG (N, mass, LDM, invmas, LDMINV)
C

c Multiply The Inverse Of the Mass Matrix By The Stiffness

CALL DMRRRR (NRIM, NCIM, invmas, LDMINV, NRS, NCS, stiff, LDS,
* NRT, NCT, TEMP, LDT)

TEMP 1(1,1) =KD*(0.0654498D0*A1(1)* Sin(0.0654498D0*X(1 1)) +
* 0. 1309D0*A1(3)*Sin(0. 1309D0*X(1 1)))

C

TEMP 1(2,1) = KD*(0.0654498D0*A2(1)*Sin(0.0654498D0*X(1 1)) +
* 0.l309D0*A2(3)*Sin(0.1309D0*X(1 1)))

C

TEMP1(3,1) = KD*-(0.0654498D0*A3(1)*Sin(0.0654498D0*X(1 1)) +

* 0.1 309D0*A3(3)*Sin(0.1I309D0*X( 11)))

TEMP1(4,1) =KD*(0.0654498D0*A4(1)*Sin(0.0654498D0*X(1 1)) +
* 0.1309D0*A4(3)*Sin(0.1309D0*X(1 1)))

C

TEMP1(1 ,2) = KD*(0.0654498D0*A1 (1)*Sin(0.0654498D0*X(12)) +
*0.1309D0*A1(3)*Sin(0.1309D0*X(12)))

C

TEMP1(2.2) = KD*(0.0654498D0*A2(1)*Sin(0.0654498D0*X(12)) +
" 0.1309D0*A2(3)*Sin(0.1309D0*X(12)))

C

TEMPI (3,2) = KD*(0.0654498D0*A3( 1)*Sin(0 0654498D0*X( 12)) +
" 0.1309D0*A3(3)*Sin(0.1309D0*X(12)))

C

TEMP 1(4,2) = KD*(0.0654498D0*A4( 1)*Sin(0.0654498D0*X( 12)) +
" 0.1309D0*A4(3)*Sin(0.1309D0*X(12)))

C
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CALL DMRRRR (NRIM, NCIM, invmas, LDMINV, NRT1, NCT1, TEMPI, LDT1,
" NRT2, NCT2. TEMP2, LDT2)

C

TEMP3(1,1) = -0.5DO*A1(2) + 0.5D0*AI(2)* Cos(O.0654498D0*xd) -

"0.5D0*A1(4) + 0.5D0*AI (4)*Cos(0.1309D0*xd)
C

TEMP3(2,1) = -0.5D0*A2(2) + 0.5D0*A2(2)*Cos(0.0654498D0*xd) -

" 0.5D0*A2(4) + 0.5D0*A2(4)*Cos(0.1309D0*xd)
C

TEMP3(3,I) = -0.5D0*A3(2) + 0.5D0*A3(2)*Cos(0.0654498D0*xd) -

" 0.5D0*A3(4) + 0.5D0*A3(4)*Cos(0.1 309D0*xd)
C

TEMP3(4,1) = -0.5D0*A4(2) + 0.5D0*A4(2)*Cos(0.0654498D0*xd) -

" 0.5D0*A4(4) + 0.5D0*A4(4)*Cos(0.1309D0*xd)
C

CALL DMRRRR (NRIM, NCIM, invmas, LDMINV, NRT3, NCT3, TEMP3, LDT3,
" NRT4, NCT4, TEMP4, LDT4)

c Derive The State Space Matrices
C

c Asys Matrix
C

Asys(1,1) = 0.DO
Asys(1,2) = 0.DO
Asys(1,3) = O.DO
Asys(1,4) = 0.0
Asys(1,5) = 1.DO
Asys(1,6) = O.DO
Asys(1,7) = O.DO

Asys(1,8) = 0.DO
Asys(2,I) = O.DO
Asys(2,2) = 0.DO
Asys(2,3) = O.DO
Asys(2,4) = 0.DO

-Asys(2,5) = O.DO
Asys(2,6) = 1.DO
Asys(2,7) = O.DO
Asys(2,8) = O.DO
Asys(3,I) = O.DO
Asys(3,2) = 0.DO
Asys(3,3) = 0.DO
Asys(3,4) = 0.DO
Asys(3,5) = 0.DO
Asys(3,6) = O.DO
Asys(3,'7) = I.DO
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Asys(3,8) = O.DO
Asys(4,1) =O.DO
Asys(4,2) =O.DO
Asys(4,3) = O.DO
Asys(4,4) = O.DO
Asys(4,5) = O.DO
Asys(4,6) = O.DO
Asys(4,7) = O.DO
Asys(4,8) = 1.DO
Asys(5, 1) = -TEMP(1, 1)
Asys(5,2) = -TEMP(1,2)
Asys(5,3) = -TEMP(1,3)
Asys(5,4) = -TEMP(1,4)
Asys(5,5) = ODO
Asys(5,6) = O.DO
Asys(5,7) = O.DO
Asys(5,8) = O.DO
Asys(6,1) = -TEMP(2,1)
Asys(6,2) = -TEMP(2,2)
Asys(6,3) = -TEMP(2,3)
Asys(6,4) =-TEMP(2,4)
Asys(6,5) =O.DO
Asys(6,6) = O.DO
Asys(6,7) = O.DO
Asys(6,8) =O.DO
Asys(7,I) = -TEMP(3,1)
Asys(7,2) = -TEMP(3,2)
Asys(7,3) =-TEMP(3,3)
Asys(7,4) = -TEMP(3,4)
Asys(7,5) =O.DO

Asys(7,6) = O.DO
Asys(7,7) = O.DO
Asys(7,8) = O.DO
Asys(8,1) = -TEMP(4,I)

-Asys(8,2) =-TEMP(4,2)
Asys(8,3) = -TEMP(4,3)
Asys(8,4) = -TEMP(4,4)
Asys(8,5) = O.DO
Asys(8,6) =O.DO
Asys(8,7) = O.DO
Asys(8,8) = O.DO

C

c B I Matrix
c

B1(1,1y'= O.DO
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B 1(1,2) = 0.DO
B 1(2, 1) = 0.D0
B 1 (2,2) = 0.DO
B 1(3, 1) = 0.DO
B 1(3,2) = O.DO
B 1(4, 1) = O.DO
B 1(4,2) = 0.DO
B 1(5,1) = TEMP2(1, I)
B 1(5,2) = TEMP2(1,2)
B1(6,1I) = TEMP2(2,1I)
B 1(6,2) =TEMP2(2,2)
B 1(7,1I) = TEMP2(3,1I)
B 1(7,2) =TEMP2(3,2)
B 1 (8, 1) = TEMP2(4, 1)
B 1(8,2) = TEMP2(4,2)

C

c Gain Matrix

GAIN(1,1) =X(13)
GAIN(1,2) = .DO
GAIN(2,1) = .D0
GAIN(2,2) =X(14)

c

c C Matrix
C

C(1,1) = 0.DO
C(1,2) = O.DO
C(1,3) = O.DO
C(1,4) = O.DO
C(1,5)= -.025*KS*(0.0654498D0*A1(1)*Sin(0.0654498D0*(X(1 1) +

*Ls/2.DO)) + 0.1309D0*A1(3)*Sin(0.1309D0*(X(11I) + Ls/2.DO)) -

" 0.0654498D0*AI(1)*Sin(0.0654498D0*(X(11I) - Ls/2.D0)) -

" 0. 1309D0*A1 (3)*Sin(O.1309D0*(X(1 1) - Ls/2.DO)))
C(1,6)= -.025*KS*(0.0654498D0*A2(1)*Sin(0.0654498DO*(X(1 1) +

-Ls/2.DO)) + 0. 1309D0*A2(3)*Sin(0. 1309D0*(X(1 1) + Ls/2.DO)) -

*0.0654498D0*A2(1)*Sin(0.0654498D0*(X(1 1) - Ls/2.D0)) -

S0. 1 309D0*A2(3)*Sin(0. 1 309D0*(X(1 1) - Ls/2.DO)))
C(1 ,7)= -.025*KS*(0.0654498DO*A3(1 )*Sin(O.0654498D0*(X(1 1) +

SLs/2.D0)) + 0. 1309D0*A3(3)*Sin(0. 1309D0*(X(1 1) + Ls/2.DO)) -
*0.0654498D0*A3(1)*Sin(0.0654498D0*(X(11) - Ls/2.DO)) -

*0. 1309D0*A3(3)*Sin(0.1309D0*(X(1 1) - Ls/2.DO)))
C(1 ,8)= -.025*KS*(.0654498D0*A4(1)*Sin(0.0654498D0*(X(1 1) +

*Ls/2.DO)) + 0. 1309D0*A4(3)*Sin(0. 1309D0*(X(1 1) + Ls/2.DO)) -

*0.0654498D0*A4(1)*Sin(0.0654498D0*(X(11) - Ls/2.DO)) -

*0.1 309D0*A4(3)*Sin(0. 1309D0*(X(1 1) - Ls/2.DO)))
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C(2,1) = O.DO
C(2,2) = O.DQ
C(2,3) = O.DO
C(2,4) = O.DO
C(2,5)= -.O25*KS*(O.O654498DO*A1(1)*Sin(O.O654498DO*(X(12) +

" Lsf2.DO)) + .1309D0*AI(3)*Sin(O.1309D0*(X(12) + Ls/2.DO))--
* .0654498D0* Al(1)*Sin(O.0654498D0*(X(12) - Ls/2.DO)) -

" 0. 1309D0*AI(3)*Sin(0. 1309D0*(X( 12) - Ls/2.DO)))
C(2,6)= -.025*KS*(0.0654498D0*A2(1)*Sin(O.0654498D0*(X(12) +

" Ls/2.DO)) + 0.1309D0*A2(3)*Sin(0.1309D0*(X(12) + Ls/2.DO)) -

"~ 0.0654498D0*A2(1)* Sin(0.0654498D0*(X(12) - Ls/2.DO)) -

" 0. 1309D0*A2(3)*Sin(0.1I3O9DO*'(X(12) - Ls/2.DO)))
C(2,7)= -.025*KS*(0.0654498D0*A3(1 )*Sin(0.0654498D0*(X(12) +

" Ls/2.DO)) + 0.1309D0*A3(3)*Sin(0.1309D0*(X(12) + Ls/2.DO)) -

" 0.0654498D0*A3(1)*Sin(0.0654498D0*(X(12) - Ls/2.DO)) -
" 0. 1309D0*A3(3)*Sin(0. 1309D0*(X(1 2) - Ls/2.D0)))

C(2,8)= -.025*KS*(0.0654498D0*A4(1)*Sin(0.0654498D0*(X(12) +
" Ls/2.DO)) + 0.1309D0*A4(3)*Sin(0.1309D0*(X(12) + Ls/2.DO)) -

" 0.0654498D0*A4( 1)*Sin(0.0654498D0* (X( 12) - Ls/2.D0)) -

" 0.1309D0*A4(3)*Sin(0.1309D0*(X(12) - Ls/2.D0)))
C

c H Matrix
c

H(1,1) = 0.D0
H(2,1I) = 0.D0
H(3,1) =0.D0
H(4,1I) = 0.D0
H(5,1) =TEMP4(1,1)
H(6,1) = TEMP4(2,1)
H(7,1) = TEMP4(3,1)
H(8,1) = TEMP4(4,1)

C

c Closed Loop Matrix
C

CALL DMRRRR (NRG, NCG, GAIN, LDG, NRC, NCC, C, LDC, NRT5, NCT5,
*TEMP5, LDT5)

C

CALL DMRRRR (NRB 1, NCB 1, Bi1, LDB 1, NRT5, NCT5, TEMP5, LDT5,
*NRT6, NCT6, TEMP6, LDT6)

C

A(1,1) = Asys(1,1) - TEMP6(1,1)
A(1,2) = Asys(1,2) - TEMP6(1,2)
A(1,3) = Asys(1,3) - TEMP6(1,3)
A(1,4) = Asys(1,4) - TEMP6(1,4)
A(1,5) -Asys(1,5) - TEMP6(1,5)
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A(1,6) =Asys(1,6) - TEMP6(1,6)
A(1,7) = Asys(1,7) - TEMP6(1,7)
A(1,8) = Asys(1,8) - TEMP6(1,8)
A(2,1) =Asys(2,1) - TEMP6(2,1)
A(2,2) = Asys(2,2) - TEMP6(2,2)
A(2,3) = Asys(2,3) - TEMP6(2,3)
A(2,4) = Asys(2,4) - TEMP6(2,4)
A(2,5) = Asys(2,5) - TEMP6(2,5)
A(2,6) =Asys(2,6) - TEMP6(2,6)
A(2,7) =Asys(2,7) - TEMP6(2,7)
A(2,8) = Asys(2,8) - TEMP6(2,8)
A(3,I) =Asys(3,1) - TEMP6(3,1)
A(3,2) = Asys(3,2) - TEMP6(3,2)
A(3,3) = Asys(3,3) - TEMP6(3,3)
A(3,4) = Asys(3,4) - TEMP6(3,4)
A(3,5) = Asys(3,5) - TEMP6(3,5)
A(3,6) = Asys(3,6) - TEMP6(3,6)
A(3,7) = Asys(3,7) - TEMP6(3,7)
A(3,8) =Asys(3,8) - TEMP6(3,8)
A(4,1) = Asys(4,1) - TEMP6(4,1)
A(4,2) =Asys(4,2) - TEMP6(4,2)
A(4,3) =Asys(4,3) - TEMP6(4,3)
A(4,4) = Asys(4,4) - TEMP6(4,4)
A(4,5) = Asys(4,5) - TEMP6(4,5)
A(4,6) = Asys(4,6) - TEMP6(4,6)
A(4,7) = Asys(4,7) - TEMP6(4,7)
A(4,8) =Asys(4,8) - TEMP6(4,S)
A(5,1) = Asys(5,1) - TEMP6(5,1)
A(5,2) = Asys(5,2) - TEMP6(5,2)
A(513) = Asys(5,3) - TEMP6(5,3)
A(5,4) =Asys(5,4) - TEMP6(5,4)
A(5,5) = Asys(5,5) - TEMP6(5,5)
A(5,6) = Asys(5,6) - TEMP6(5,6)

A(5,7) = Asys(5,7) - TEMP6(5,7)
A(5,8) = Asys(5,8) - TEMP6(5,8)
A(6,1) =Asys(6,1) - TEMP6(6,1)
A(6,2) = Asys(6,2) - TEMP6(6,2)
A(6,3) = Asys(6,3) - TEMP6(6,3)
A(6,4) = Asys(6,4) - TEMP6(6,4)
A(6,5) = Asys(6,5) - TEMP6(6,5)
A(6,6) = Asys(6,6) - TEMP6(6,6)
A(6,7) = Asys(6,7) - TEMP6(6,7)
A(6,8) = Asys(6,8) - TEMP6(6,8)
A(7,1) = Asys(7,1) - TEMP6(7,1)
A(7,2) ---Asys(7,2) - TEMP6(7,2)
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A(7.3) =Asys(7,3) - TEMP6(7,3)
A(7.4) = Asys(7,4) - TEMP6(7,4)
A(7,5) =Asys(7,5) - TEMP6(7,5)
A(7,6) = Asys(7,6) - TEMP6(7,6)
A(7,7) = Asys(7,7) - TEMP6(7,7)
A(7,8) = Asys(7,8) - TEMP6(7,8)
A(8,1) =Asys(8,1) - TEMP6(8,l)
A(8,2) = Asys(8,2) - TEMP6(8,2)
A(8,3) =Asys(8,3) - TEMP6(8,3)
A(8,4) =Asys(8,4) - TEMP6(8,4)
A(8,5) = Asys(8,5) - TEMP6(8,5)
A(8.6) = Asys(8,6) - TEMP6(8,6)
A(8.7) = Asys(8,7) - TEMP6(8,7)
A(8,8) = Asys(8,8) - TEMP6(8,8)

c

c Form the Constant Term in the Lyap Equation
C

CALL DMRRRR (NRH, NCH, H, LDH, NRD, NCD, D, LDD, NRH, NCH,
" TEMP7, LDH)

C

CALL DMXYTF (NRH, NCH, TEMP7, LDH, NRH, NCH, H, LDH, NRB,
" NCB, B, LDB)

C

c Calculate the Lyap Equation
C

Call lyap(A, B, NA, IROW, NDIM)
C

c Calculate the Performance Index
c

W1(1,1) = Al(l) + AI(2) + 2.DO*Al(3) + 2.DO*Al(4)
WI(1,2) = A2(1) + A2(2) + 2.DO*A2(3) + 2.DO*A2(4)
Wl(1,3) = A3(l) + A3(2) + 2.DO*A3(3) + 2.DO*A3(4)
W1(1,4) = A4(1) + A4(2) + 2.DO*A4(3) + 2.DO*A4(4)
Wl(1,5) = O.DO

-WI1,6) = O.DO
W1(1,7) =O.DO
W1(1,8) = 0.130

c
W2(l,1) = Al(l) + 2.DO*AI(3)
W2(1,2) = A2(1) + 2.DO*A2(3)
W2(1,3) = A3(1) + 2.DO*A3(3)
W2(1,4) = A4(1) + 2.DO*A4(3)
W2(1,5) = 0.130
W2(1,6) = O.DO
W2(1,7) = O.DO
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W2(1,8) =O.DO

W\3(1,2) = \V1(1,1) - WV2(1,2)
W3(1,3) = WI(1,3) - W2(1,3)
W3(1,4) = W(1,4) - W2(1,4)
W3(1,5) = W(1,4) - W2(1,5)

W3(1,6) =W(1,6) - W2(1,6)
W3(1,7) = W(1,7) - W2(1,7)
W3(1,8) = W(1,8) - W2(1,8)

c

CALL DMRRRR (NRW3, NCW3, W3, LDW3, NRB, NCB, B, LDB,
" NRT8, NCT8, TEMP8, LDT8)

C

CALL DMXYTF (NRT8, NCT8, TEMP8, LDT8, NRW3, NCW3, W3, LDW3,
" NRT9, NCT9, TEMP9, LDT9)

C

CALL DMRRRR (NRW2, NCW2, W2, LDW2, NRB, NCB, B, LDB,
" NRT 11, NCT 11, TEMP 11, LDT 11)

C

CALL DMXYTF (NRT 11, NCTl11, TEMPl11, LDTl11, NRW2, NCW2, W2,
"LDW2, NRT1O, NCT1O, TEMPlO, LDT1O)

C

OBI ZETA*TEMP9(1,1) + (1-ZETA)*TEMP1O(1 ,1)
C

c CALCULATE THE CONSTRAINTS
C

CALL DMRRRR (NRG, NCG, GAIN, LDG, NRC, NCC, C, LDC,
" NRT12, NCTI2, TEMPI2, LDT12)

C

CALL DMRRRR (NRT12, NCT12, TEMP12, LDT12, NRB, NCB, B, LDB,
" NRT13, NCT13, TEMPI3, LDT13)

C

CALL DMXYTF (NRT13, NCT13, TEMPI3, LDT13, NRC, NCC, C, LDC,
" NRT14, NCT14, TEMP14, LDT14)

C

CALL DMXYTF (NRT14, NCT14, TEMP14, LDT14, NRG, NCG, GAIN,
" LDG, NRT15, NCT15, TEMPI5, LDT15)

C

G(1) = TEMPI 5(1,1)/160000.DO - 1.DO
C

G(2) = TEMPI15(2,2)/160000.DO - l.DO
C

end

136



This program which calculates the objective function and constraints also calls a subroutine
which calculates the Lyapunov of the function. This subroutine is:

SUBROUTINE LYAP(A,B,NA,IROW,NDIM)
implicit double precis ion(a-h,o-z)
DOUBLE PRECISION A(NDIM,NDIM),B(NDIM,NDIM) -

DOUBLE PRECISION AMAT( 1200,1 200),RHS( 1200),X(20,20)
DOUBLE PRECISION WKAREA(10000)
INTEGER IROW(NDIM)
IA= 1200
DO 1 I=l,NA*NA

DO 1 J=1,NA*NA
AMAT(I.J)=0.0D0

1 CONTINUE
NUN=0
DO 10 I=l,NA
DO 10 J=4NA

NUN=NUN+1
RHS(NUN)=-B(I,J)
NEQ=0
DO 20 K=l,NA
DO 20 L=K,NA

NEQ=NEQ±1
DO' 30 M=1,NA
DO 30 N=l,NA
IF(K.EQ.M)THEN

IF(I.EQ.N.AND.J.EQ.L)THEN
AMAT(NEQ,NUN)=AMAT(NEQ,NUN)+A(M,N)

END IF
IF(I.EQ.L.AND.J.EQ.N.AND.I.NE.J)THEN
AMAT(NEQ,NUN)=AMAT(NEQ,NUN)+A(M,N)

END IF
END IF
IF(L.EQ.M)THEN

IF(I.EQ.N.AND.J.EQ.K)THEN
AMAT(NEQ,NUN)=AMAT(NEQ,NUN)+A(M,N)

END IF
IF(I.EQ.K.AND.J.EQ.N.AND.L.NE.J)THEN
AMAT(NEQ,NUN)=AMAT(NEQ,NUN)+A(M,N)

END IF
END IF

30 CONTINUE
20 CONTINUE
10 CONTINUE

CALL LUDCMP(AMAT,NEQ,IA,IROW,D)
CALL LUBKSB(AMAT,NEQ,IA,IROW,RHS)
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c CALL LEQT1F(AMAT,1 ,NEQ,IA,RHS,O,WKAREA,IER)
NEQ=O
DO 31 I=1,NA
DO 31 J=L.NA

NEQ=NEQ+ 1
B (I,J)=RHS (NEQ)
B(J,I)=B(LJ)

3 1 CONTINUE
RETURN
END
subroutine lubksb(a,n,np,indx,b)
implicit double precision (a-h, o-z)
double precision a(np.np),b(n)
integer indx(np)
ii=O
do 12 i=1,n

ll=indx(i)
sum=b(ll)
b(ll)=b(i)
if (ii.ne.O)then

do 11 J=ii,i- 1
sum=sum,-a(i,j)*b0j)

11 continue
else if (sum.ne.O.) then

ii=i

endif
b(i)=surn

12 continue
do 14 i=n,1,-1

sum=b(i)
if(i.lt.n)then

do 13 j=i+1,n
sum~sum-a(i ,j ) *b~)

13 continue
endif

- b(i)=sumla(i,i)
14 continue

return
end
subroutine ludcmp(a,n,np,indx,d)
implicit double precision(a-h,o-z)
parameter (nmax=500,tiny=1 .Od-20)
double precision a(np,np),vv(nmax)
integer indx(np)
d= 1.
do 12 i4l,n
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aamax=O.dO
do 11I j=1,n

if (abs(a(i,j)).gt.aamax) aamax=abs(a(ij))
11 continue

if (aamax.eq.O.dO) call exit(1)
vv(i)= .Iaamax

12 continue
do 19 j=1,n

if (j.gt.1) then
do 14 i=1,j-1

sum=a(i,j)
if (i.gt.1)then

do 13 k=1,i-1
surn=sum-a(i,k) *a(k,j)

13 continue
a(ij)=sum.

endif
14 continue

endif
aamax=O.
do 16 i=j,n

surn=a(i.j
if (j.gt.1)then

do 15 k=l,j-1
sum =sumr-a(i ,k)*a(kj)

15 continue
a(i,j )=sum

endif
dum=vv(i)*abs(sum)
if (dum.ge.aarnax) then

imax~i
aarnax=dum

endif
16 continue

if (j.ne.imax)then
do 17 k=1,n

dum=a(imax,k)
a(imax,k)=aoj,k)
aoj,k)=dum

17 continue
d=-d
vv(imax)=vvoj)

endif
indxOj)=imax
ifoj ne.n)then

if(aO'jj).eq.O.dO )aoj,j)=tiny
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durn~1./aoj,j)
do 18 i=j+1,n

a(i,j)=a(i,j)*durn
18 continue

endif
19 continue

if(a(n,n).eq.0.dO) a(n,n)=tiny
return
end
subroutine exit(iflag)
if (iflag .ne. 0) then

print 1% 'singular matrix.'
stop

endif
return
end
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Appendix C

This appendix contains the raw optimization data generated from the optimization program for each starting

location.

Disturbance Force I

Starting Actuator Location 8/16

Starting Gain Multiplier .00001

Start Finish Start Finish Start Finish

ply angle 1.57079 1.03-1.56 ply angle 1.48352 .519-1.47 ply angle 1.39626 0.88-1.39

loc 1/loc 2 8/16 8, 19.2 loc 1/loc 2 8/16 7.45, 22.7 loc !/loc 2 8/16 8, 22.7

gain 1/2 .00001 0, .0695 gain 1/2 .00001 .29, .12 gain 1/2 .00001 .56, .11

objective 4853.87 objective 467 objective 226

Start Finish Start Finish Start Finish

ply angle 1.30899 .78-1.3 ply angle 1.22173 .687-1.2 ply angle 1.13446 .286-1.12

loc 1/!oc 2 8/16 7.57, 22.7 loc 1/loc 2 8/16 6.43, 22.7 loc 1/loc 2 8/16 6.88, 22.7

gain 1/2 .00001 .413, 1.2 gain 1/2 .00001 .34, .124 gain 1/2 .00001 .929, .127

objective 191 objective 171 objective 124

Start Finish Start Finish Start Finish

ply angle 1.04719 .42-1.04 ply angle 0.95993 .496-.953 ply angle 0.87266 .511-.867

loc 1/loc 2 8/16 7.29, 22.7 loc /loc 2 8/16 7.52, 22.7 loc /loc 2 8/16 7.7, 22.7

gain 1/2 - .00001 1.1, .12 gain 1/2 .00001 1.25, .12 gain 1/2 .00001 1.43, .11

objective 138.4 objective 152 objective 158.8

Start Finish Start Finish Start Finish

ply angle 0.78539 .54-.78 ply angle 0.69813 .592-.696 ply angle 0.61086 .476-61

loc 1/loc 2 8/16 7.6, 22.7 Ic /loc 2 8/16 6.7, 22.7 Icc 1/loc 2 8/16 4.9, 22.7

gain 1/2 .00001 1.33, 1.14 gain 1/2 .00001 .933, .129 gain 1/2 .00001 .743, .14

objective 149.7 objective 130.5 objective 112.3

Start Finish Start Finish Start Finish
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ply angle 0.52359 .423-.522 ply angle 0.43633 .365-.435 ply angle 0.34906 .34-.35

loc 1/loc 2 8/16 5.03, 22.7 loc l/loc 2 8/16 4.9, 22.7 loc l/loc 2 8/16 5.07, 22.7

gain 1/2 .00001 .644, .137 gain 1/2 .00001 .669, .138 gain 1/2 .00001 .676, .138

objective 115 objective 109.3 objective 106.7

Start Finish Start Finish Start Finish

ply angle 0.26179 .263-.366 ply angle 0.17453 .181-.59 ply angle 0.08726 .097-.298

loc l/loc 2 8/16 5.24, 2.27 loc l/loc 2 8/16 4.98, 22.7 loc l/loc 2 8/16 6, 22.7

ain 1/2 .00001 .66. .137 gain 1/2 .00001 .50, .134 Cain 1/2 .00001 1.06.14

objective 106.3 objective 121.9 objective 93.4

Starting Gain Multiplier .0001

Start Finish Start Finish Start Finish

ply angle 1.57079 .383-1.54 ply angle 1.48352 1.18-1.48 ply angle 1.39626 .878-1.4

loc l/loc 2 8/16 8, 22.7 loc /oc 2 8/16 8, 20.6 loc l/loc 2 8/16 5.48, 22.7

gain 1/2 .0001 .529, .113 gain 1/2 .0001 .0001, .87 gain 1/2 .0001 .78, .14

objective 192 objective 4664 objective 486

Start Finish Start Finish Start Finish

ply angle 1.30899 .56-1.3 ply angle 1.22173 .304-1.2 ply angle 1.13446 .691-1.13

loc 1/loc 2 8/16 5, 22.7 loc l/loc 2 8/16 4.84, 22.7 loc l/loc 2 8/16 5.76, 22.7

gain 1/2 .0001 .55, .135 gain 1/2 .0001 .73, .14 gain 1/2 .0001 1.1, .14

objective 138 objective 118.4 objective 183.5

Start Finish Start Finish Start Finish

ply angle - 1.04719 .67-1.04 ply angle 0.95993 .644-.955 ply angle 0.87266 .611-.87

loc l/loc 2 8/16 5.76, 22.7 loc l/loc 2 8/16 5.77, 22.7 !oc l/loc 2 8/16 5.77, 22.7

gain 1/2 .0001 1.1, .14 gain 1/2 .0001 1.1, .14 gain 1/2 .0001 1.1, .14

objective 159 objective 141 objective 125

Start Finish Start Finish Start Finish

ply angle 0.78539 .586-78 ply angle 0.69813 .24-.69 ply angle 0.61086 .28-.61

oc l/loc 2 8/16 5.78, 22.7 loc l/loc 2 8/16 6.01, 22.3 loc l/loc 2 8/16 5.98, 22.3

gain 1/2 .0001 1.1, .14 gain 1/2 .0001 1.2, .134 gain 1/2 .0001 1.17, .135
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objective 114.6 objective 90 objective 87.4

Start Finish Start Finish Start Finish

ply angle 0.52359 .44-.52 ply angle 0.43633 .319-.435 ply angle 0.34906 .329-.347

loc I/loc 2 8/16 5.16, 22.7 Ic 1/loc 2 8/16 5.65, 22.7 loc 1i/1c 2 8/16 5.52, 22.7

gain 1/2 .0001 .82, .14 gain 1/2 .0001 1, .14 gain 1/2 .0001 .942, .14

objective 103 objective 86.7 objective 89.5

Start Finish Start Finish Start Finish

ply angle 0.26179 .262-.372 ply angle 0.17453 .15-.53 ply angle 0.08726 .0944-.53

loc 1/loc 2 8/16 5.49, 22.7 loc 1/loc 2 8/16 6.15, 22.7 Ic 1/loc 2 8/16 6.6, 22.7

gain 1/2 .0001 .93, .14 gain 1/2 .0001 1.38, .143 gain 1/2 .0001 .22, .122

objective 89 objective 81.6 objective 160.5

Starting Gain Multiplier .001

Start Finish Start Finish Start Finish

ply angle 1.57079 .5-1.51 ply angle 1.48352 .25-1.48 ply angle 1.39626 .552-1.39

loc 1/loc 2 8/16 8, 22.7 loc /loc 2 8/16 5.5, 22.7 Ic 1/loc 2 8/16 7.21, 22.7

gain 1/2 .001 .42, .115 gain 1/2 .001 .575, .133 gain 1/2 .001 .45, .12

objective 276 objective 194 objective 186.5

Start Finish Start Finish Start Finish

ply angle 1.30899 .286-1.3 ply angle 1.22173 .31-1.21 ply angle 1.13446 .45-1.12

loc I/loc 2 8/16 5.35, 22.7 loc 1/loc 2 8/16 4.3, 22.7 loc 1/loc 2 8/16 5.9, 22.7

gain 1/2 .001 .865, .14 gain 1/2 .001 .611, .14 gain 1/2 .001 1.17, .14

objective 105 objective 132 objective 92

Start Finish Start Finish Start Finish

ply angle 1.04719 .268-1.03 ply angle 0.95993 .329-.943 ply angle 0.87266 .3-.857

loc !/loc 2 8/16 5.97, 22.7 loc I/loc 2 8/16 6.2, 22.7 loc 1/loc 2 8/16 6.15, 22.7

gain 1/2 .001 1.22, .14 gain 1/2 .001 1.44, .14 gain 1/2 .001 1.37, .14

objective 85.5 objective 78.9 objective 78.6

Start Finish Start Finish Start Finish

ply angle 0.78539 .25-.77 ply angle 0.69813 .26-.68 ply angle 0.61086 .276-.597
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loc l/loc 2 8/16 6.15 loc 1/loc 2 8/16 6.37, 22.7 loc 1/loc 2 8/16 6.45, 22.7

gain 1/2 .001 1.37, .142 gain 1/2 .001 1.63, .143 gain 1/2 .001 1.76, .143

objective 80 objective 74.1 objective 72.9

Start Finish Start Finish Start Finish

ply angle 0.52359 .226-.52 ply angle 0.43633 .325-.436 ply angle 0.34906 .347-.365

loc 1/loc 2 8/16 6.34, 22.7 loc 1/loc 2 8/16 6.27, 22.7 loc 1/loc 2 8/16 6.3, 22.7

gain 1/2 .001 1.58, .142 gain 1/2 .001 1.5, .143 gain 1/2 .001 1.55, .143

objective 75.7 objective 76 objective 75.4

Start Finish Start Finish Start Finish

ply angle 0.26179 .25-.39 ply angle 0.17453 .176-.472 ply angle 0.08726 .089-543

loc 1/loc 2 8/16 6.39, 22.7 loc 1/loc 2 8/16 6.02, 22.7 loc 1/loc 2 8/16 5.92, 22.7

gain 1/2 .001 1.66, .143 gain 1/2 .001 1.26, .143 gain 1/2 .001 1.19, .143

objective 73.7 objective 79.5 objective 83.9

Starting Gain Multiplier .01

Start Finish Start Finish Start Finish

ply angle 1.57079 1.24-1.43 ply angle 1.48352 .195-1.48 ply angle 1.39626 .28-1.39

loc 1/loc 2 8/16 7.94, 19.6 loc 1/loc 2 8/16 7.95, 22.7 loc 1/loc 2 8/16 5.29, 22.7

gain 1/2 .01 0, .075 gain 1/2 .01 0, .12 gain 1/2 .01 .852, .14

objective 16979.8 objective 451.8 objective 106

Start Finish Start Finish Start Finish

ply angle 1.30899 .338-1.3 ply angle 1.22173 .28-1.21 ply angle 1.13446 .3-1.12

loc 1/loc 2- 8/16 5.22, 22.7 loc 1/loc 2 8/16 5.38, 22.6 loc 1/loc 2 8/16 5.79, 22.7

gain 1/2 .01 .84, .14 gain 1/2 .01 .878, .139 gain 1/2 .01 1.10, .142

objective 106.8 objective 98 objective 88

Start Finish Start Finish Start Finish

ply angle 1.04719 .374-1.03 ply angle 0.95993 .29-.926 ply angle 0.87266 .33-.845

loc 1/loc 2 8/16 5.77, 22.7 loc 1/loc 2 8/16 6.5, 22.7 loc 1/loc 2 8/16 6.38, 22.7

gain 1/2 .01 1.09, .142 gain 1/2 .01 1.84, .143 gain 1/2 .01 1.67, .143

objective 88.9 objective 72.7 objective 74.6
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Start Finish Start Finish Start Finish

ply angle 0.78539 .31-.76 ply angle 0.69813 .27-.68 ply angle 0.61086 .347-.581

lcc l/loc 2 8/16 6.48, 22.7 !oc l/loc 2 8/16 6.45, 22.7 Joc l/loc 2 8/16 6.74, 22.7

gain 1/2 .01 1.82, .143 gain 1/2 .01 1.75, .143 gain -/2 .01 2.46, .143

objective 72.7 objective 73.6 objective 68.4

Start Finish Start Finish Start Finish

ply angle 0.52359 .33-.52 ply angle 0.43633 .314-.431 ply angle 0.34906 .318-.347

loc l/loc 2 8/16 6.42, 22.7 Ic l/loc 2 8/16 6.71, 22.7 loc 1/loc 2 8/16 6.6, 2.27

cain 1/2 .01 1.72, .143 gain 1/2 .01 2.33, .143 gain 1/2 .01 2.03, .143

objective 73.4 objective 68.7 objective 70.8

Start Finish Start Finish Start Finish

ply angle 0.26179 .259-.347 ply angle 0.17453 .18-.344 ply angle 0.08726 .0935.47

loc 1/loc 2 8/16 6.67, 22.7 Ic 1/1oc 2 8/16 6.55, 22.7 loc 1/loc 2 8/16 6.1, 22.7

gain 1/2 .01 2.22, .143 gain 1/2 .01 1.93, .143 gain 1/2 .01 1.33, .143

objective 69.6 objective 71.9 objective 78.5

Starting Gain Multiplier .1

Start Finish Start Finish Start Finish

ply angle 1.57079 .866-1.55 ply angle 1.48352 .353-1.48 ply angle 1.39626 .349-1.39

loc 1/loc 2 8/16 8.8, 17.3 loc 1/loc 2 8/16 8.07, 17.5 loc 1/loc 2 8/16 8.12, 17.5

gain 1/2 .1 .18, 0 gain 1/2 .1 .436, 0 gain 1/2 .1 .40, 0

objective 15899 objective 2660.1 objective 2802

Start Finish Start Finish Start Finish

ply angle 1.30899 .355-1.30 ply angle 1.22173 .351-1.2 ply angle 1.13446 .30-1.1

Ic 1/loc 2 8/16 8.1, 17.5 oc /loc 2 8/16 6.4, 22.7 oc 1/loc 2 8/16 6.39, 22.7

gain 1/2 .1 .421, 0 gain 1/2 .1 1.69, .142 gain 1/2 .1 1.66, .143

objective 2791 objective 76.2 objective 75.4

Start Finish Start Finish Start Finish

ply angle 1.04719 .327-1.03 ply angle 0.95993 .326-.894 ply angle 0.87266 .33-.793

Ic 1/loc 2 8/16 7.95, 17.5 Ic 1/loc 2 8/16 6.87, 22.7 loc 1/loc 2 8/16 6.94, 22.7
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gain 1/2 .1 .54. 0 gain 1/2 .1 2.99, .143 gain 1/2 .1 3.35, .143

objective 2149 objective 66.88 objective 65.7

Start Finish Start Finish Start Finish

ply angle 0.78539 .33-.686 ply angle 0.69813 .33-.68 ply aingle 0.61086 .33-.597

loc 1/loc 2 8/16 7.1, 22.7 loc 1/loc 2 8/16 8, 17.5 loc 1/loc 2 8/16 8, 17.5

gain 1/2 .1 4.46, .143 gain 1/2 .1 .5, 0 gain 1/2 .1 .483, 0

objective 63.8 objective 2038 objective 2027

Start Finish Start Finish Start Finish

ply angle 0.52359 .33-.52 ply angle 0.43633 .343-.433 ply angle 0.34906 .345-.347

loc 1/loc 2 8/16 8.04, 17.5 loc 1/loc 2 8/16 8.14, 17.5 loc 1/loc 2 8/16 8.46, 17.6

gain 1/2 .1 .454, 0 gain 1/2 .1 .392, 0 gain 1/2 .1 .267, 0

objective 2016 objective 2021 objective 2079

Start Finish Start Finish Start Finish

ply angle 0.26179 .264-.34 ply angle 0.17453 .18-.36 ply angle 0.08726 .1-.354

loc 1/loc 2 8/16 8.29, 17.6 loc 1/loc 2 8/16 8.21, 17.6 loc 1/loc 2 8/16 6.56, 22.7

gain 1/2 .1 .326, 0 gain 1/2 .1 .363, 0 gain 1/2 .1 1.96, .143

objective 2049 objective 2046 objective 71.22

Starting Gain Multiplier 1

Start Finish Start Finish Start Finish

ply angle 1.57079 1.38-1.4 ply angle 1.48352 .378-1.48 ply angle 1.39626 .346-1.39

loc 1/loc 2 8/16 5.55, 22.7 loc 1/loc 2 8/16 .561, 22.7 loc 1/loc 2 8/16 6.09, 22.7

gain 1/2 1 .947, .141 gain 1/2 1 1, .141 gain 1/2 1 1.32, .143

objective 16699 objective 103 objective 94.2

Start Finish Start Finish Start Finish

ply angle 1.30899 .321-1.29 ply angle 1.22173 .34-1.16 ply angle 1.13446 .352-1

loc 1/loc 2 8/16 6.53, 22.7 loc I/loc 2 8/16 7.05, 22.7 loc 1/loc 2 8/16 7.15, 22.7

gain 1/2 1 1.91, .143 gain 1/2 1 4.25, .142 gain 1/2 1 5.83, .143

objective 74.8 objective 64.6 objective 62.7

Start Finish Start Finish Start Finish
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ply angle 1.04719 .35-.74 ply angle 0.95993 .352-.669 ply angle 0.87266 .351-.565

oc 1/lc 2 8/16 7.24, 22.7 loc 1/loc 2 8/16 7.24, 22.7 loc 1/loc 2 8/16 7.24, 22.7

gain 1/2 1 8.24, .141 gain 1/2 1 8.02, .142 gain 1/2 1 8.07, .142

objective 61.9 objective 61.9 objective 61.8

Start Finish Start Finish Start Finish

ply angle 0.78539 .349-.591 ply angle 0.69813 .352-.494 ply angle 0.61086 .351-.45

loc 1/loc 2 8/16 7.19, 22.7 loc 1/loc 2 8/16 7.22, 22.7 loc 1/loc 2 8/16 7.22, 22.7

Gain 1/2 1 6.57, .143 gain 1/2 1 7.58, .142 gain 1/2 1 7.47, .142

objective 61.9 objective 61.76 objective 61.9

Start Finish Start Finish Start Finish

ply angle 0.52359 .338-.426 ply angle 0.43633 .436-.444 ply angle 0.34906 .339-.352

oc 1/loc 2 8/16 7.22, 22.7 loc 1/loc 2 8/16 7.77, 22.7 loc 1/loc 2 8/16 7.22, 22.7

gain 1/2 1 7.36, .142 gain 1/2 1 .8, 0 gain 1/2 1 7.43, .142

objective 61.9 objective 2142 objective 61.8

Start Finish Start Finish Start Finish

ply angle 0.26179 .32-.353 ply angle 0.17453 .267.356 ply angle 0.08726 -1.57.35

loc 1/loc 2 8/16 7.24, 22.7 foc 1/loc 2 8/16 7.21, 22.7 loc 1/loc 2 8/16 7.13, 22.7

gain 1/2 1 7.93, .142 gain 1/2 1 7.03, .142 gain 1/2 1 5.28, .142

objective 61.65 objective 62 objective 63.4

Starting Gain Multiplier 10

Start Finish Start Finish Start Finish

ply angle 1.57079 1.4 ply angle 1.48352 .344-1.48 ply angle 1.39626 .372-1.39

loc 1/loc 2 8/16 7.39, 22.7 loc 1/loc 2 8/16 7.08, 22.7 loc 1/loc 2 8/16 7.24, 22.7

gain 1/2 10 8.86, .12 gain 1/2 10 4.8, .143 gain 1/2 10 8.81, .142

objective 26875 objective 81.9 objective 83.3

Start Finish Start Finish Start Finish

ply angle 1.30899 .349-1.32 ply angle 1.22173 .333-1.21 ply angle 1.13446 .35-1.1

loc 1/loc 2 8/16 7.25, 22.7 loc 1/loc 2 8/16 7.24, 22.7 loc 1/loc 2 8/16 7.24, 22.7

gain 1/2 10 8.46, .142 gain 1/2 10 8.47, .142 gain 1/2 10 8.33, .142
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objective 66.2 objective 66.45 objective 66

Start Finish Start Finish Start Finish

ply angle 1.04719 .34-1.0 ply angle 0.95993 .33-.93 ply angle 0.87266 .35-.85

loc 1/loc 2 8/16 7.24, 22.7 loc l/loc 2 8/16 7.24, 22.7 toc Iloc 2 8/16 7.23, 22.7

gain 1/2 10 8.23, .142 gain 1/2 10 8.2, .142 gain 1/2 10 8.17, .142

objective 65 objective 64.2 objective 63.6

Start Finish Start Finish Start Finish

ply angle 0.78539 .351-.761 ply angle 0.69813 .354-.679 ply angle 0.61086 .31-.6

loc 1/loc 2 8/16 7.24, 22.7 loc l/loc 2 8/16 7.24, 22.7 loc l/loc 2 8/16 7.25, 22.7

gain 1/2 10 8.18, .142 gain 1/2 10 8.21, .142 gain 1/2 10 8.4, .142

objective 63.1 objective 62.7 objective 62.45

Start Finish Start Finish Stdrt Finish

ply angle 0.52359 .364-.517 ply angle 0.43633 .33-.435 ply angle 0.34906 .348-.36

Ioc 1/loc 2 8/16 7.23, 22.7 loc 1/!oc 2 8/16 7.25, 22.7 loc l/loc 2 8/16 7.23, 22.7

gain 1/2 10 7.95, .142 gain 1/2 10 8.46, .142 gain 1/2 10 7.93, .142

objective 62.2 objective 61.8 objective 61.5

Start Finish Start Finish Start Finish

ply angle 0.26179 .263-.33 ply angle 0.17453 .183-.387 ply angle 0.08726 .288-.356

loc 1/loc 2 8/16. 7.46, 22.7 loc 1/loc 2 8/16 7.21, 22.7 loc 1/loc 2 8/16 7.24, 22.7

gain 1/2 10 7.67, 0 gain 1/2 10 7.12, .142 gain 1/2 10 8.09, .142

objective 3059 objective 62.3 objective 61.67
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