
A7/10 75o

An Exploratory Prototype for
Reactive Management of

Aeromedical Evacuation Plans

Ora Lassila, Marcel Becker, Stephen F. Smith
CMU-RI-TR-96-03

The Robotics Institute*
Carnegie Mellon University

Pittsburgh, PA 15213

February 1996

© 1996 Ora Lassila, Marcel Becker and Stephen F. Smith

19960719 073
* The aeromedical evacuation application of the DITOPS Planning

and Scheduling Framework described in this paper was supported
by a research grant from Carnegie Group Inc. Development of the
DrrOPS framework itself was sponsored in part by the Advanced
Research Projects Agency and Rome Laboratory, Air Force Mate-
rial Command, USAF, under grant numbers F30602-90-C-0119 and
F30602-95-1-0018 as well as F30602-91-C-0014 (under subcontract to
BBN Systems and Technologies), and the CMU Robotics Institute.
The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the
Advanced Research Projects Agency and Rome Laboratory the U.S.
Government, or Carnegie Group, Inc.

DTic QUAUTY m hIlM 4

REPOR T DOCUMENTATION PAGE 1 Form Approved___j MB Nlo. 0704-0188
Public M01111`1 buirdetf lot this CictOllio of informtinaon is estimated to average I hrour Der 'etooi'e. including the time for reviewing instructions. searching exnting cats ourceii.
gathering and maintaining the data needed, and complfeting arid reviewing the coIIrtoflo of trferrntion Send commentsfeqarclitti this burdenr estimnate or any other aspect of thisi
collection of nmfot~matrih, including suggestionsto~t teuicing this burdeni. to Washington Headcluartet Servicest. Ourectorate ot ntonrmation Oo~erstions aria Re~orls, 1215 Jefferson
Davis Hiigh'way, Suite 1204. Arlington, VA 22202-4302, and to the Office Of Management And Budget. PaPerwori Reduction Project (0704-018M). Washington, D)C 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE j3. REPORT TYPE AND DATES COVERED
February 1996 technical

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Exploratory Prototype for Air Medical Evacuation Re-Planning

6. AUTHOR(S)

Ora Lassalia, Marcel Becker, and Stephen F. Smith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

The Robotics Institute
Carnegie Mellon University CMU-RI-TR-96-03
Pittsburgh, PA 15213

9. SPONSORING i MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION! AVAILABILITY STATEMENT f12b. DISTRIBUTION CODE

Approved for public release;
Distribution unlimitedf-

13. ABSTRACT ýMaximurjm2C0worcjs)

This report Summarizes the results of an initial, four month project
demonstrating the applicability of the DITOPS scheduling system to
USTRANSCOM's Aeromedical Evacuation (MEDEVAC) re-planning problem. DMOPS is
an advanced prototype system developed at Carnegie Mellon University for
development, analysis and revision of large-scale schedules, applied
originally to the logistics domain of strategic deployment. DITOPS implements
areactive, constraint-based approach to scheduling, providing techniques and
system architecture for efficient, localized revision of plans/schedules in

response to changed constraints or decisions. Using DITOPS, a prototype
medical evacuation re-planner has been designed and implemented for
comparison with Carnegie Group's TRAC2ES reactive planner module.

From a system development perspective, DITOPS is a toolkit and a class
library for configuring planning and scheduling applications; the approach to
application design and construction relies on object-oriented programming
tehniques and software reuse, allowing applications to be constructed as a ___________

1.SUBJECT TERMS 1.NUMBER OF PAGES
55 pp

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF THIS PAGE OF ABSTRACTunlimited unlimited unlimited unlimited

DISCLAIMER NOTICE

THIS DOCUMENT -IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

9

ii

Abstract

This report summarizes the results of an initial, four month project demonstrat-
ing the applicability of the DITOPS scheduling system to USTRANSCOM's
Aeromedical Evacuation (MEDEVAC) re-planning problem. DITOPS is an ad-
vanced prototype system developed at Carnegie Mellon University for devel-
opment, analysis and revision of large-scale schedules, applied originally to
the logistics domain of strategic deployment. DITOPS implements a reactive,
constraint-based approach to scheduling, providing techniques and a system
architecture for efficient, localized revision of plans/schedules in response to
changed constraints or decisions. Using DITOPS, a prototype medical evac-
uation re-planner has been designed and implemented for comparison with
Carnegie Group's TRAC2ES reactive planner module.

From a system development perspective, DITOPS is a toolkit and a class library
for configuring planning and scheduling applications; the approach to applica-
tion design and construction relies on object-oriented programming techniques
and software reuse, allowing applications to be constructed as a "differential"
process, focusing primarily on the differences between existing software and
the system being constructed. During this project, the medical evacuation do-
main was modeled using the core modeling primitives available in DITOPS,
and rescheduling techniques were developed for responding to common med-
ical evacuation replanning problems, again using existing components from
DITOPS.

The evacuation re-planning prototype is currently capable of handling a sub-
stantial set of disruptive events, while maintaining feasible patient itineraries on
multi-leg missions. In this regard, the applicability of the DITOPS modeling and
scheduling framework to this problem and the efficacy of the object-oriented
approach to system configuration and customization has been clearly demon-
strated. At the same time, it is important to recognize that the planner has
been constructed in a very short period of time. Though the system's current
replanning capabilities are quite sophisticated, a systematic evaluation has not
been performed and we would expect further work in this area to lead to algo-
rithmic customizations and improvements. The underlying system architecture
provides a flexible basis for system expansion and refinement.

iii

iv

Contents

1 Introduction 1

1.1 Design Methodology 2

1.2 Modeling Components 3

2 Supporting Object Model 7

2.1 D em ands 7

2.2 Resources 8

2.3 O perations 9

3 MEDEVAC Domain Object Model 11

3.1 Object Model Description 13

4 Problem-Solving Architecture 17

4.1 Route Planner Knowledge Source 20

4.2 Patient Scheduler Knowledge Source 21

5 Reactive Capabilities 25

5.1 Disruptive Events 26

6 Conclusions 37

A Screen Dumps 41

V

vi

Chapter 1

Introduction

This report summarizes the results of a short-term project aimed at demonstrat-
ing the applicability of the DITOPS scheduling system [3, 4, 5] to the aeromed-
ical evacuation (MEDEVAC) re-planning problem faced by USTRANSCOM.
DITOPS is an advanced prototype system developed at Carnegie Mellon Uni-
versity for development, analysis and revision of large-scale transportation
schedules, and applied originally to the logistics domain of strategic deploy-
ment. DITOPS builds directly on concepts first demonstrated in the OPIS
scheduling system and emphasizes a reactive, constraint-based approach to
scheduling. It provides both specific techniques and a system architecture for ef-
ficient, localized revision of plans/schedules in response to changed constraints
or decisions. Typical of most practical planning and scheduling domains, such
reactive planning capabilities are recognized as central to effective MEDEVAC
decision-making.

Our specific goal has been to use DITOPS to construct an evaluation prototype
for reactive planning in the medical evacuation domain, to provide a benchmark
for and a point of comparison with the Carnegie Group's TRAC2ES reactive
planner component. From a system development perspective, DITOPS can
be seen as a toolkit and a class library for configuring different planning and
scheduling application systems [3]. We first outline the basic methodology
for application development taken in DITOPS and summarize the system's
core components for constructing domain models. In subsequent chapters we
describe the extensions and customizations developed to implement the current
medical evacuation planning prototype. The extent of the current prototype's
capabilities - which have been achieved in a very short period of time - clearly
demonstrates the potential of the approach.

1.1 Design Methodology

The DITOPS approach to knowledge-based planner and scheduler design (and
construction) relies heavily on object-oriented programming techniques and
software reuse, allowing schedulers and other planning applications to be con-
structed as a "differential" process, focusing primarily on the differences be-
tween existing software and the system being constructed. Object-oriented
programming techniques can provide high reusability of software, but only if
system design places special emphasis on the design of reusable components [7,
for example]. In DITOPS, the design of these components has been carried out
with generality and extensibility in mind.

Any scheduler construction project (potentially as part of a larger system design)
begins with:

"* Information gathering and knowledge acquisition, aiming to provide the
system designer with a sufficient amount of detailed information about
the production system.

"* Modeling and analysis of the domain.

In an object-oriented approach to software construction, these steps constitute
an object-oriented analysis of the scheduling system (they also constitute part of
the design). The approach taken in the DITOPS reconfigurable framework is the
introduction of a common scheduling and planning ontology which serves as
the starting point for a more detailed analysis of the target system. By ontology
we mean more than just a dictionary of terms: the system offers the scheduling
system designer a class library of common and general scheduling concepts,
such as activities, resources and demands. The ontology/library encodes a broad
range of constraints which are applicable in different domains. Constructing
a scheduler (or some other planning application) using the DITOPS approach
thus consists of the following:

" Selecting suitable classes from the library, matching features of the target
system with those of the library.

" Combining the selected classes into more complex services, using both
conceptual (i.e. multiple inheritance) and structural (i.e. aggregation and
delegation) techniques.

" Extending the existing classes to provide domain-specific functionality
when necessary. Typically this is done by specializing or overriding meth-
ods provided by the library.

2

The basic class library provides a general scheduling ontology. This ontol-
ogy can be specialized for specific domains (for example, we have built a
transportation-domain ontology for rapid configuration of various planning
systems for transportation-related problems). The general and domain-specific
ontologies can then be used to build organization-specific ontologies and ac-
tual planning applications. It should be noted that in addition to providing a
collection of domain modeling concepts, the class library has a set of classes for
building problem solvers and scheduling algorithms. This allows scheduling
procedures and associated heuristics to be constructed the same way domain
models are constructed.

DITOPS uses a constraint-based model of scheduling, well-suited to the reac-
tive decision-making requirements of practical scheduling domains. In broadest
generality, this model defines a problem solving organization that distinguishes
two components: a decision-making component, responsible for making choices
among alternative scheduling decisions and retracting those that have since
proved undesirable, and a constraint management component, whose role is to
propagate the consequences of decisions and incrementally maintain a repre-
sentation of the current set of feasible solutions (detecting inconsistent solution
states when they arise). Schedule construction, revision, and improvement
proceed iteratively within a basic decide and commit cycle.

The general philosophy of application construction is to use the library com-
ponents to build increasingly complex (and specialized) services, ultimately
resulting in an application. The configurable framework establishes a full hier-
archy of protocols implementing the aforementioned model of constraint-based
scheduling; it also provides a starting point for a scheduling application builder,
who will replace abstract classes of the framework with more specialized classes
that suit the problem at hand. This approach is analogous to modem application
development frameworks which provide the basic functionality of a complex
user-interface in the form of an application "skeleton" (e.g., [2]). In the case
of DITOPS, the "skeleton" is an empty, generic constraint-based scheduling
system. Solutions and classes defined in the framework will probably suit
the majority of application needs. However, there is always the possibility to
replace any component of the system with a different or more specialized com-
ponent. This flexibility is directly attributable to the abstract layering of object
interaction protocols provided by the framework.

1.2 Modeling Components

The DITOPS scheduler operates with respect to a hierarchical model of resources
and resource allocation constraints, enabling decision-making at different lev-
els of abstraction and supporting different stages of the overall planning pro-

3

cess. Models are composed from an extensible set of defined primitives, which
provide object structures for specifying various transportation scheduling con-
straints and an associated operational semantics. Resource representations, for
example, support specification of unit capacity resources, which must be allo-
cated exclusively to a single request (e.g., a loading/unloading crane), batch
capacity resources, which can simultaneously accommodate multiple requests
over the same interval (e.g., an aircraft or a tanker ship), and a variety of dis-
junctive and conjunctive aggregate capacity resources, where capacity can be
simultaneously allocated to multiple requests without temporal synchroniza-
tion (e.g., a C-5 plane fleet, a tanker ship fleet, an airport). Atomic resources are
grouped into composite resources (e.g. individual tankers into a tanker fleet
into an overall sea fleet; unloading equipment, storage capacity, parking places,
etc, into a port) to provide consistent descriptions of resources and utilization
constraints at multiple levels of abstraction, and a basis for hierarchical problem
decomposition (and distribution).

We advocate an object-oriented approach to modeling scheduling systems. A
model is specified in terms of basic types of entities, operations, resources, de-
mands, products and production units1, and the modeling framework defines
knowledge structuring primitives relative to each. These primitives provide
an extensible framework for representing relevant aspects of the system to be
modelea, a relational organization that reflects appropriate interdependencies
among the system entities that are modeled, and a model semantics relative to
scheduling and control decision-making. In more detail, the basic "building
blocks" of the modeling framework are the following:

* Demands specify requests for specific quantities of products or services
to be produced/undertaken within specific time constraints, as well as
client-dependent priority information. In other words, demands are used
for representing customer orders, move requirements and other external
demands to the scheduling system.

e Resources are objects representing machines, transportation resources (air-
craft, ships), ports etc. Resources are aggregates, so they can be organized
into hierarchies. Resource objects encode resource allocation constraints
and policies at different levels of abstraction, providing the basis for hier-
archical modeling of transportation processes.

Resources manage their time-varying available capacity, and allow capac-
ity to be queried and allocated (typically by operations). An operation,
to be executed (scheduled), will reserve a set of resources - reservation is
done by allocating all or some of the available capacity of each associated
resources over some period of time (the duration of the operation).

1Some of the terminology has been adapted from terms in the manufacturing scheduling
domain of the older OPIS scheduler, due to the lack of more general and neutral terms.

4

Several specialized resource classes exist, providing concepts like atomic,
aggregate and consumable resources, as well as transportation resources
(which manage their changeable location).

* Operations are used to represent different actions taken during a produc-
tion or transportation process. Generally speaking, an operation is a
specification of the set of constraints that define a particular activity (e.g.
resource requirements, duration constraints, temporal relations relative to
other activities, etc.).

Since operations relate to each other through temporal relations which spec-
ify the temporal and causal ordering of operations, they allow the forma-
tion of operation graphs (networks or sequences of operations). Op-
erations can also be organized hierarchically to describe transportation
processes at different levels of detail.

"* Products represent knowledge about how to turn demands into operation
graphs. In the manufacturing domain the definition of the term product is
clear: products are descriptions of the objects produced by the manufac-
turing system. In the transportation domain, however, a "product" is a
collection of information about how to move "packages" from one place
to another, i.e. products are general descriptions of missions.

" Production units represent the "objects" or "targets" of transportation oper-
ations, i.e. the actual entities manipulated by the system. Each production
unit represents a given set (or quantity) of goods to be transported.

It should be noted that products and production units (as basic concepts) were
not needed in the construction of an object model for the medical evacuation
planner.

5

6

Chapter 2

Supporting Object Model

This chapter will describe those concepts of the DITOPS standard library which
are used in the DITOPS medical evacuation planner prototype. The OMT dia-
gram (figure 2.1) summarizes this object model. Please refer to the introduction
chapter of this document for a quick overview of the DITOPS core concepts.

2.1 Demands

Demands specify requests for specific quantities of products (or services) within
specific time constraints, as well as client-dependent priority information. In
other words, demands are used for representing customer orders, move re-
quirements and other external demands to the scheduling system. In the trans-
portation domain, demands are requests for the transportation organization to

I relati....wner.mixln I EARLIEST-LATEST-MIXIN

relationA

/• • ~resources r-'-• children --- 1relation n e0Uc

BEOE same -stait saeedoperations aggregate paet

~I N TRANSPORT-OPERATION AGEAERSUC

sub-operatios aton~c.resource dmn

SMOVABLE-RESOURC

Figure 2.1: DITOPS OMT Diagram

7

have something (cargo, people) moved from one place to another.

The basic pieces of information a demand contains are:

"* Release date and due date establish the overall time bounds for scheduling a
demand. A demand cannot be scheduled before its release date; schedul-
ing a demand to complete after its due date is possible but undesirable (it
may sometimes be necessary to break the due date constraint to complete
a schedule).

" Quantity, specified in domain-specific units, informs the scheduling sys-
tem of the capacity requirements for a particular demand. The quantity
will ultimately translate to amount of available capacity being allocated
on those resources which execute the schedule generated for the demand.

"* Other domain-specific data possibly contained in a demand are informa-
tion about the requested product (in the transportation world, this would
be the type of cargo being transported, its packaging etc.), priority, and
additional constraints necessary for the successful scheduling of the de-
mand.

In short, demands are a summary of what the underlying system is expected to
produce. As an abstraction, demands map requests into sets of constraints.

2.2 Resources

Resources are objects representing machines, transportation resources (planes,
ships), ports etc. Resources are aggregates, so they can be organized into hier-
archies. Resource objects encode resource allocation constraints and policies at
different levels of abstraction. Resources manage their time-varying available
capacity, and allow capacity to be queried and allocated (typically by operations).
Capacities and Positions are used for representing time-varying parameters of re-
sources (e.g. available capacity, current position). Management of capacities
and positions is hidden behind resources.

The default DITOPS implementation of resources represents the (time-varying)
available capacity of a resource as a list of time intervals, each having a constant
amount of capacity available. For example, given an overall time window
from 0 to 10, an empty resource of capacity 5 would have one interval, from
0 to 10, with available capacity of 5. An allocation of 1 unit of capacity for an
operating starting at 2 and ending at 4 would result in a change in this interval:
the resource would now have three available capacity intervals, 0 to 2 with
capacity 5, 2 to 4 with capacity 4, and 4 to 10 with capacity 5.

8

A resource can be queried to find out the feasible time intervals for allocation
of a specified amount of capacity. This is true of all resources, and aggregate or
other special resources are guaranteed to adhere to this convention. Querying
a resource is handled by a functional interface defined for operations; in most
cases an applications programmer need not query resources directly.
Resources in the transportation domain need to be able to store, track and inter-
pret their physical location. The classes added implement these requirements:

the class movable-resource-mixin can be mixed into resource classes to
make them "movable", the class position is equivalent to capacity, it
keeps track of time-variable location, and the class location serves as the
base class for objects that denote different physical locations (such as airports,
for example).

2.3 Operations

Operations are used to represent different actions taken during a transportation
process. Generally speaking, an operation is a specification of the set of con-
straints that define a particular activity (e.g. resource requirements, duration
constraints, temporal relations relative to other activities, etc.). Since operations
relate to each other through temporal relations which specify the temporal and
causal ordering of operations, they allow the formation of operation graphs
(networks or sequences of operations). These are instantiations of processes
representing the activities actually taking place (or planned to take place). Op-
erations can also be organized hierarchically to describe processes at different
levels of detail. Furthermore, an operation always specifies a set of resources.
To schedule an operation, capacity has to be allocated on each of the resources
in the operation's resource set.

An operation maintains information about its time bounds, i.e. about a time
window during which the operation will be executed. For unscheduled opera-
tions, this time window consists of the earliest start time, latest start time, earliest
finish time, and latest finish time. These values are updated by the Time Bound
Propagator which uses the temporal relations of operations to traverse operation
graphs. When an operation is scheduled, these bounds are "collapsed" and will
subsequently indicate the exact execution window of the operation.

Operations also have information about their capacity requirements. This infor-
mation is computed when operation instances are created (during the so-called
instantiation). Given the assumption that resource alternatives are handled by
creating alternative operations which have "static" resource assignments, this
can be done.

9

The base class for operations is operation. It is an abstract class (i.e., not
instantiable) and implements the bulk of the functionality of operations. It
does not, however, implement duration calculations. When specializing an
operation class, the duration calculation methods have to be defined too.

Two additional operation classes are defined particularly for modeling trans-
portation domains: transport-operation which introduces the notion of
movement and locations, and transport-load which can be used to repre-
sent loading and unloading of cargo. Typically, the load and unload operations
specify the port (airport, seaport) as their resources, facilitating the reservation
of port capacity for transport operations.

10

Chapter 3

MEDEVAC Domain Object Model

The medical evacuation domain was modeled by selecting a subset of the DI-
TOPS core concepts and specializing them for this problem. This chapter will
present the object model developed for this domain. Standard DITOPS con-
cepts are referred to but not documented here. The reader is referred to the
previous chapter for a description of the standard DITOPS class library. The
OMT diagram of figure 3.1 describes the object model of the medical evacuation
domain. In this diagram, DITOPS core classes have their names in uppercase,
while the medical evacuation domain classes (in essence, classes designed and
implemented for this prototype) have their names in lowercase.

The general structuring of the problem is as follows:

9 The system expects five different types of input: (1) descriptions of pa-
tients to be transported, (2) a set of scheduled missions flown by a set of
aircraft (possibly with some capacity already allocated), (3) a set of hospi-
tals with specified medical specialties, (4) a set of airfields, with associated
ASFs; finally, (5) disruptive events which modify the systems representation
of the world and have to be reacted to.

9 The system will perform both generative and reactive scheduling. In the
generative mode, routes (itineraries) are created for each unscheduled
patient. In the reactive mode, disruptions in the existing schedule are
being reacted to by repairing the schedule.

The general modeling approach taken can be described as follows:

* Patients are modeled as demands, incoming orders to the system.

11

TRANSPORT-LOAD EARUEST-LATEST-MMIN

tt TRANSPORT-OPERATION MONOTONrIC-TP.MIXIN

modlesirescoift

iid s c la s¢trs

.i .s 1,1.d ~ boFI isson

Figure 3.1: MEDEVAC Model OMT Diagram

*Aircraft are modeled as batch resources (multiple-capacity resources with
time-synchronized execution). They are also "movable", meaning that
they keep track of their geographical position.

Airfields, Medical Treatment Facilities and Air Staging Facilities are modeled

as aggregate resources (multiple-capacity resources with no requirement
for time-synchronized execution).

Missions, mission legs and medical treatment operations are modeled as trans-

port operations. These operations potentially change the position of their

executing resource (such as an aircraft).

*Constraints between mission legs (both from the missions' standpoint and
from the patients' standpoint) were modeled as types of before temporal
relations.

It should be noted that contrary to the normal approach of scheduling oPerations
"formedcas a response to receiving demands (orders), the scheduling process
in this prototype has been organized somewhat differently: operations are
"already scheduled (missions, mission legs), and the role of the scheduler is to
find suitable combinations of operations (routes) to satisfy as many demands as
"possible as well as possible. This can be seen as the mission legs in essence being
resources, since they impose allocation constraints on the "real" resources, the

aircraft.

12

3.1 Object Model Description

This section supplements the OMT diagram at the beginning of the chapter and
will give a detailed description of all modeling concepts of the prototype. The
documentation style mimics that of the book "Common Lisp: the Language"
[6, in particular see section 1.2.5]. Due to the fact that the implementation uses
an extension of CLOS called "PORK" [1], the notation has been extended to
include inverse relations, automatically updated pairs of slots (indicated with the

Ssymbol) used to implement 1-to-1, 1-to-many and many-to-many relations.

patient [Class]
:urgent [Initarg]
:medical-specialty-required [Initarg]
:real-name [Initarg]
:prescribed-destination [Initarg]
:hours-before-ron [Initarg]
relations ++ patients [Relation]
mission-legs +4 patients [Relation]

This class inherits directly from move-requirement. Instances of this class
represent patients to be moved, and are received by the system as input data.

The slot urgent is a boolean value specifying whether the patient is urgent or
regular. The slot medical-specialty-required specifies the particular constraints
the destination MTF has to satisfy. The slot hours-before-ron holds the maximum
number of hours a patient can fly before an overnight rest (at an ASF) is required
(the slot defaults to 12 hours).

aircraft [Class]
:velocity [Initarg]

This class inherits directly from batch-resource and movable-resource-
mixin. Instances of this class represent individual aircraft used for transporting
patients.

The slot velocity gives the speed of the aircraft used when estimating the flight
time between airfields.

airfield [Class]
:geoloc-code [Initarg]
:airfield-name [Initarg]
:longitude [Initarg]
:latitude [Initarg]
:missions [Initarg]
:patients [Initarg]
mtfs +- airfield [Relation]

13

asf 44 airfield [Relation]

This class inherits directly from aggregate-resource and location. In-
stances of this class represent airfields, with associated MTFs and possibly an
associated ASE Each airfield maintains a list of mission legs departing from
that airfield, in the order of their departure time (slot missions). These mission
legs link airfields in a web of possible routes that is used when searching for
feasible routes for patients.

medical-facility [Class]

This class inherits directly from aggregate-resource. Subclasses of this
class include mtf and asf. Instances of this class are used as resources for
operations of class medical-treatment.

asf [Class]
:airfield [Initarg]
airfield ++ asf [Relation]

This class inherits directly from medical - fac i l i ty.

mtf [Class]
:airfields [Initarg]
:medical-specialties [Initarg]
airfields ++ mtfs [Relation]

This class inherits directly from medical - fac i 1 i ty.

itinerary [Class]
:origin [Initarg]
:destination [Initarg]
:resource [Initarg]

This class inherits directly from transport-operation and monotonic-
tbp-mixin. Subclasses of this class include mission-leg and mission.
This is the base class for all mission and patient itinerary components. No
special functionality has been defined for this class.

The slots origin, destination and resource (from transport-operation) hold
the origin and destination airfield resources as well as the aircraft resource used.

mission [Class]
:id [Initarg]
:medical-or-cargo [Initarg]

This class inherits directly from itinerary. Instances of this class are aggre-
gate operations which represent entire missions. The relationship between a
mission instance and its constituent mission legs is implemented using the

14

children relation of DITOPS' operation class (in other words, mission legs
are children to a mission which in turn is the parent of the mission legs).

The slot id is a unique identifier for the mission. The slot medical-or-cargo
identifies the mission as either a dedicated medical evacuation mission or an
existing cargo mission having capacity for patient "cargo".

mission-leg [Class]
:depart-time [Initarg]
:arrival-time [Initarg]
:patients [Initarg]
patients <-+ mission-legs [Relation]

This class inherits directly from itinerary. Subclasses of this class include
medical- treatment. Instances of this class represent individual "steps" of
a mission.

The slot depart-time contains the scheduled start time of the particular mission
leg, similarly the slot arrival-time contains the scheduled end time of the leg.
The relation patients contains all patients scheduled to fly on this leg.

medical -treatment [Class]

This class inherits directly from mission-leg. Instance of this class represent
a patient's treatment at a medical facility.

patient-load [Class]

This class inherits directly from transport-load and earl iest- latest-
mixin. Instances of this class are sub-operations of mission-leg operations.
They represent the loading and unloading of patients to aircraft.

leg-connection [Class]
:patients [Initarg]
patients ++ relations [Relation]

This class inherits directly from before. Subclasses of this class include
patientleg-connection. Instances of this class represent connections be-
tween mission legs. They are used as temporal constraints (precedence con-
straints) by the Time Bound Propagator component of DITOPS.

The relation patients contains all patients whose itinerary includes this connec-
tion.

patient-leg-connection [Class]

This class inherits directly from leg- c onne c t i on. Instances of this class repre-
sent plane-change connections in patients' itineraries. Note: constraints of class

15

leg-connect ion represent intra-mission connections, whereas patient - leg-
con-nection constraints represent inter-mission connections.

16

Chapter 4

Problem-Solving Architecture

This chapter documents the DITOPS problem solving architecture and how it
was adapted for the medical evacuation domain.

Scheduling in DITOPS is formulated as a reactive process, reflecting the fact
that a schedule at any level or stage of the deployment planning process is a
dynamic evolving entity, and is continuously influenced by changing mission
requirements, conflicting decision-making perspectives/goals and changing
executional circumstances. This problem solving perspective in large part mo-
tivates the aforementioned representations of changing resource state over time
(i.e., available capacity, location). These representations are pre-requisites to
the specification of procedures for reflecting the consequences of changed con-
straints and for incrementally managing schedules in response to such changes.

Schedule generation and revision at a given level of detail is uniformly cast
as an opportunistic process that (potentially) selectively employs a number
of distinct scheduling methods. Methods defined in the core DITOPS im-
plementation include general-purpose procedures for "resource" and "move-
ment" oriented scheduling. These methods are derived from the original
multi-perspective concept of OPIS and are capable, respectively, of generat-
ing/revising the scheduling decisions of a given set of resources or a given
set of temporally related movements. A set of more specialized schedule revi-
sion methods is also available, providing alternative resolution capabilities in
situations of constraint conflicts. All methods share a common search infras-
tructure, which includes both (1) machinery for incrementally propagating the
consequences of scheduling decisions and detecting constraint conflicts, and
(2) search space elaboration primitives that support dynamic "batching" and
"splitting" of move requirements in situations where the resource capacity con-
straints of alternative transportation assets dictate. The choice of which set of
scheduling decisions to focus on next and which method to apply, at any point
during the scheduling or rescheduling process, is based on heuristics that relate

17

characteristics of current solution structure to the optimization and resolution
strengths of alternative methods.

Several of DITOPS' scheduling methods are implemented by specializing or in-
stantiating an abstract search class. Among the available specializations of this
class is a class that implements a beam search algorithm. The beam search class
provides a customizable, heuristic search procedure which allows easy config-
uration of search state expansion and search direction. Search state expansion
is done using a set of programmer-defined search operators, whereas the search
direction is customizable using a programmer-defined evaluation function.

The DITOPS control architecture is a specialization of an abstract class based on
the blackboard control mechanism. This mechanism organizes and coordinates
the actions of several heterogeneous problem-solvers or methods (also called
knowledge sources). The control mechanism itself is a specialized knowledge-
source called Top Level Manager which encapsulates all the functionality to deal
with the control of the system's problem-solving behavior. The knowledge
sources define the strategic alternatives available to the system to solve some
specific problem. For each particular instantiation of the control architecture,
domain specific problem solvers will be added and the control cycle behav-
ior will be customized accordingly. For example, in the medical evacuation
domain, the architecture presumes the existence of a set of domain specific
knowledge sources that can be used to generate, analyze, and revise patient
allocations and mission itineraries.

The Top Level Manager operates on events and tasks. Events are internal and
external stimuli to the system: any action the user performs through the user
interface is considered an external event or external disruption; external events
are mapped onto the solution state generating internal events. The events
characterize the current state of the schedule identifying the relevant control
information. Control heuristics are used to aggregate, sort and process these
events. The problem-solving proceeds via the formulation of tasks as responses
to specific events. The tasks generated as a result of processing the events
are then prioritized and processed by the knowledge sources. These tasks
can perform analysis, generation or revision of the schedule. The Top Level
Manager keeps a list of pending tasks. This list constitutes the current plan
for solving the scheduling problem. Depending on the type of the task, the
Top Level Manager selects the most appropriate knowledge source to process.
Changes in the state of the schedule resulting from the execution of other
knowledge-sources is also communicated to the Top Level Manager via posting
of events.

The higher levels of the hierarchy of objects manipulated by the Top Level Man-
ager are defined as:

18

event opportunity
conflict
hypothesis-modification

task top-level-task
analysis-task
scheduling-task

knowledge-source top-level-manager
analyzer
scheduler

The instantiation of the DITOPS problem-solving architecture for the medi-
cal evacuation domain is composed of five knowledge sources: the Top Level
Manager - responsible for the control cycle; the Model Update that translates ex-
ternal disruptions into internal events; the Analyzer that identifies and collects
information about the conflicts in order to suggest the most adequate problem
solving behavior; the Route Planner which fixes inconsistent mission routes;
and the Patient Scheduler which allocates patients to available missions and
guarantees that all patients have complete and consistent itineraries.

The knowledge sources are invoked based on the conflicts introduced as a result
of disruptive events. The basic control cycle works as follows:

1. In response to changes in the real world, the user introduces disruptions
into the system through a graphical user interface. See chapter 5 for more
details about external disruptions.

2. Disruptions are classified by type and objects that are affected. The Model
Update knowledge source is then triggered or called to update the internal
representation of the solution. During the model update phase, internal
events are generated. Some events denote conflicts or inconsistencies and
will require some correction to be performed; others are just a signal that
something has changed.

3. Events are then prioritized according to type and severity.

4. After the prioritization of events, the most urgent events are selected and
an analysis task is formulated.

5. The analysis task is processed by the Analysis knowledge source. This
knowledge source will identify if the events represent conflicts that need
some corrective action and what is the most appropriate problem solver
to perform the correction.

6. A problem-solving task is formulated based on the results of the analysis.

19

7. An appropriate knowledge source is invoked to execute the newly formu-
lated task.

8. If conflicts remain (or more were introduced), loop to 3.

In the next sections we will present the general behavior of the two problem
solvers. The rationale for the analysis knowledge source and the details of how
each disruption is treated are presented in chapter 5.

4.1 Route Planner Knowledge Source

The purpose of the Route Planner knowledge source is to fix missions which
have been rendered inconsistent as a result of introducing changes (as a response
to disruptive events). Inconsistencies can be temporal (successor leg departs
before predecessor leg has arrived) or geographical (successor leg departs from
a different airfield where the predecessor leg ended).

The set of missions initially available is considered to be known beforehand.
The route planner will not be used in the generative mode: it does not generate
missions to satisfy the patients requirement; it only fixes existing missions if the
analyzer identifies that the disruptions introduced inconsistencies affecting the
current set of missions. When scheduling patients, -the system assumes that all
missions in the system are temporally and geographically consistent.

The general behavior of the route planner is to remove conflicting legs from
a mission and add new ones. According to the type of conflict, two different
strategies are implemented:

If there is a gap in the sequence of legs, that is, if there is a pair of airfields
in the itinerary of the mission that is not connected by any leg, the system
will generate a new leg filling the gap and will add this leg to the mission.
If the new leg introduces temporal constraint violations, that is, the new
added leg finishes before the next leg in the sequence, the remaining legs
will be shifted by the required amount. The patients involved in the
conflict and identified during the analysis process are allocated to the
new leg. This strategy is used, for example, when an intermediate airfield
of a mission is closed. In this particular case, the closed airfield will be
bypassed and all patients allocated in the arriving leg that got cancelled
will be sent to the new destination.

If there are no gaps in the sequence of airfields served by a mission but the
last destination is not available, the last leg of the mission will be removed

20

and a new leg having as destination an airfield as close as possible to the
old destination will be introduced. All patients of the cancelled leg are
transferred to the new created leg. This strategy is useful, for example,
when the final airfield destination of a mission is closed when the aircraft
is already en route to the closed airfield.

A third strategy that could be easily implemented is adding new legs to existing
missions. This strategy would be useful in the case of resource breakdown
requiring emergency landing or to pick up patients in locations not served by
any missions. In this case, the user would have to specify insertion points in
the mission itinerary for the new legs and respective destinations.

This knowledge source does not deals with patient's conflict. It will perform
the default behavior of allocating the affected patients in the added legs. The
occurrence of new conflicts will be verified and signaled. The analyzer will be
responsible for identifying whether previous conflicts are still valid after the
mission has been fixed.

4.2 Patient Scheduler Knowledge Source

The purpose of the Patient Scheduler knowledge source is to find feasible routes
for patients and to schedule them, producing patient itineraries. The Patient
Scheduler allocates patients to existing missions, ASFs, and MTFs by searching
for feasible routes in the airport/mission-leg network (described earlier).

This knowledge source uses a specialization of DITOPS' beam search algorithm
to perform a geographical search of feasible routes and potential destinations.
At any particular airport, the search tree is expanded to those airports which
are targeted by a temporally feasible mission leg. Each destination is checked
for the existence of the required medical facility and a check is also made that
to verify if the destination is not already part of the patient's itinerary, to avoid
"loops." If the patient's itinerary exceeds a certain number of hours, a rest-over-
night using an ASF is added to the itinerary. When an airfield with the required
medical facility is reached, a medical treatment operation using the MTF facility
is added to the patient's itinerary. The search can be parametrized by defining
the beam width, the maximum accepted number of legs in a patient's itinerary,
and the maximum number of hours an itinerary may have. If a search tree
violates some of these limits or if there are no missions that can satisfy the
patient's requirement the search will fail and return no itinerary for a patient.
In this case, a one leg mission taking the patient from his origin to a destination
with the required medical specialty will be added. If the patient requires a
medical specialty that cannot be satisfied by any of the available hospitals, the

21

patient will not be allocated and an error message will be issued.

The search is guided by a heuristic evaluation function that uses a weighted
combination of several different user-defined preferences. In the examples we
created, we were using preferences that minimize:

Travel time: number of hours from the ready date to the arrival at the hospital.

Number of legs: total number of connections and rest overnight.

Arrival time: the time the patient arrives to the medical facility.

Departure time: the time of the first flight since the patient is ready.

The relative importance of these evaluation function components is configurable
by the user and can be changed dynamically according to the evolving situation.

The search algorithm can be described as:

1. Initialization: Set ORIGIN, START-TIME and MEDICAL-SPECIALTY to
the origin, ready-date and medical specialty required by the patient re-
spectively. Add ORIGIN to ITINERARY.

2. IF ORIGIN has hospital with MEDICAL-SPECIALTY, reserve hospital
and return ITINERARY. By reserve hospital we mean create a medical-
treatment operation that reserves the hospital for the patient.

3. ELSE IF flying-time > MAX-FLYING-TIME or number-of-legs > MAX-
NUMBER-OF-LEGS return EMPTY. MAX-FLYING-TIME is the maximum
total flying time allowed and MAX-NUMBER-OF-LEGS is the maximum
number of legs allowed in a patient's itinerary.

4. ELSE IF flying-time > MAX-HOURS-BEFORE-RON, reserve ASF and add
rest-over-night operation to ITINERARY. MAX-HOURS-BEFORE-RON is
the maximum time a patient can fly before she/he needs to rest for a
certain period of time in an ASF facility.

5. ELSE set LEGS to the set of all legs leaving ORIGIN such that leg-start-time
> START-TIME and the leg destination is not part of ITINERARY.

(a) IF LEGS is not empty

i. Set ORIGIN to the leg destination
ii. Set START-TIME to the leg end-time.

iii. Add ORIGIN to ITINERARY

iv. GOTO step 2

22

(b) ELSE return EMPTY

6. If search returned EMPTY do:

(a) Create a new one leg mission going from patient origin to the closer
airfield that has an MTF with the required medical specialty.

(b) Set ORIGIN to the destination of the added mission.

(c) Add ORIGIN to ITINERARY

(d) GOTO step 2

The algorithm described above will take any origin and any medical specialty
and will always find a feasible itinerary provided there is at least one MTF with
the required medical specialty. As a consequence of this, the same algorithm
can be used in the generative and reactive case.

In the reactive case, we assume there is an inconsistency in the patient's itinerary.
This inconsistency can be overlapping legs, a missing MTF, or gaps in the
sequence of destinations. The analysis method verifies the patient's itinerary
and identifies the consistent part of it if there is any. The Patient Scheduler
removes the inconsistent part, maybe the complete itinerary, and generates a
new consistent itinerary from the last reachable destination.

The automatic addition of missions is a feature that is not always desired since
the system assumes that resources are available and that missions can be created
at any time. To overcome this problem, after the system finishes scheduling,
it is possible to inspect and cancel all automatically added missions. When
canceling added missions, all the patients allocated on that missions will be
completely unscheduled. The user can then add new missions and try to al-
locate the now unscheduled patients. The system also provides the feature
of unscheduling patients one at a time, unscheduling all late patients, or un-
scheduling all patients.

23

24

Chapter 5

Reactive Capabilities

This chapter will describe the different types of "disruptions" or disruptive events
the reactive planner is capable of handling. By disruption we mean any action
performed by the external user that will change the internal state of the system
and will, eventually require some reactive or corrective behavior. We assume
that all disruptions are introduced through the graphical user interface. For
example, to introduce new patients in the system, the user has to load a file
with the patient descriptions; these descriptions will be translated into internal
objects. The creation of these objects tells the system that some disruption has
occurred. In response to the disruption, the patient router will be triggered or
executed to schedule the patients. In this sense, all the system behavior can be
considered reactive, the generative behavior being only a special case.

The basic reactive mode of operation can be divided into three clearly defined
steps:

Introduction of a disruptive external event. The user, through the Graph-
ical Interface, communicates to the system that changes have occurred
in the real world. The types of disruption accepted are: new patients,
mission delay, mission cancelled, patient goes sour, aircraft breakdown,
and airport closed.

Once the disruption is introduced, the system updates the internal state
of the current solution. This involves the translation of the external event
into changes in the schedule representation. For each type of disruption,
some unconditional changes will be introduced. These unconditional
changes represent the modeling assumptions on how the state of the sys-
tem evolves in response to specific disruptions. The process of changing
the state of the solution may cause conflicts or inconsistencies that are
signaled by the system. Conflicts are signaled as a consequence of one
or more constraint violations and are classified according to the type and

25

severity of the violation. Even if no constraint has been violated, the sys-
tem will still signal that an external disruption has occurred since some
action can eventually be performed to improve the solution.

* In response to internal events being signaled, the problem-solving control
architecture is invoked. The problem-solving mechanism cycles through
a series of knowledge intensive actions on the set of pending events.
These actions aims at identifying and performing the best possible correc-
tion and include event aggregation, event selection, event analysis, and
conflict solution. The analysis process will acquire all the available in-
formation about the conflict and, based on its knowledge about available
problem solving methods, suggest some corrective actions. Notice that
no modification on the state of the solution is introduced in the analysis
phase.

The problem-solving methods are then selected based on a combination
of user preferences and analysis results. These methods, also called
knowledge-sources are the ones that will actually change the solution
in order to resolve the conflicts.

5.1 Disruptive Events

This section will present more details about the previously mentioned three
steps for each type of disruption. Currently the system is capable of handling
six basic types of disruptive events: new demands, patient goes "sour", de-
lay mission, cancel mission, aircraft breakdown, and airfield closed. For each
type of disruption, there is a set of assumptions that corresponds to the un-
derlying model on which the system is based. These assumptions are used to
implement a set of primitives actions used by the model update phase of the
solution. The external disruptions map into a set of primitive update actions:
delay mission-leg and cancel mission-leg. During the execution of these update
actions, conflicts are identified and signaled. After the conflict analysis, conflict-
solution primitives are executed until the system is in a consistent state. The
conflict solution primitives are schedule patient, unschedule patient, and add
mission-leg. The action of the conflict-solution primitives can also introduce
new conflicts that will be identified and solved in a similar way. The problem
solving cycle will stop when the solution is in a state in which all missions and
scheduled patients have valid and no-conflicting routes: there are no gaps and
no time overlaps in the routes and patients have the required support facilities
added to their itinerary. Figure 5.1 summarizes the relation between external
disruptions, model-update primitives, and problem-solving primitives.

The detailed behavior for each type of disruption is presented in the following

26

Cancel mission

Airpot Clsed i Cacel Leg

Schedule Patient
Aircraft Breakdown

Delay mission Delay LegAdLe

New Patient

Patient Sour -Unschedule Patient

External Disruptions Model Update Problem Solving

Figure 5.1: Disruption Summary

paragraphs (screen dumps depicting various disruptions and their resolution
are included as an appendix):

New Patients Introduced
New patients are added to the system by loading a file containing all the
patient information. After the file has been loaded, the fact that there
are unscheduled requests in the system will trigger the problem-solving
control cycle. The system will try to allocate patients using the set of
existing missions. Each scheduled patient will have an itinerary composed
of mission-legs, that correspond to the allocation on airplanes, and medical
treatments, that correspond to allocations in ASFs and MTFs. The general
allocation behavior is: if there are feasible missions, patients are allocated
on these; if not, and the new patients are "urgent", routine patients are
"bumped" off their existing itineraries/flights to make room; if no other
solution is possible, new (one-leg) missions are created. Existing missions
are not modified. The new missions introduced by the system will take the
patient from its origin to a destination with the required medical facility.
If the user does not want the added missions, they can all be cancelled
or cancelled on a case by case basis. The itineraries of the "bumped"
patients are dealt with on a case by case basis. Rest-over-night on ASFs
are introduced in the patient itinerary after the patient has flown a certain
number of hours.

Figure A.1 shows the system just after new patients have been loaded. All
missions are empty and patients are unscheduled.

27

Origin Dest.1 Deot.2

ti t2 t3

Origin Dest.1 Dest.2

2.'0

ti t2 t3

Patient Goes Sour

Origin Deet.1 Deat.2

3. (; -0
ti t2 t3

Figure 5.2: Patient Goes Sour During Intermediate Leg

Origin Deet.1 Dest.2

ti, t2 t3

Origin Deat.1 DeOt.2

2.

ti t2 t3

Patient Go.. Sour

Origin Deet.1 Dest.2

tl t2 t3

Figure 5.3: Patient Goes Sour During Final Leg

Figure A.2 shows the system after patients have been scheduled. The pa-
tients use the aircraft capacity and the system indicates that some patients
are late by using different colors to represent late patients.

Patient Goes "Sour" During Flight
The patient is removed from the plane (and from the system) at the next
stop. We assume that the time the patient goes sour is specified. If the
patient goes sour in the last leg of its itinerary, nothing will happen - the
patient will go to the medical facility as a regular patient. No conflict is
generated and no reaction is performed by the system when a patient goes
sour. Figure 5.2 shows what happens when a patient goes sour during an
intermediate leg and figure 5.3 shows what happens when it is the finale
leg.

Figure A.3 shows the graphical display for a patient's itinerary before

28

Origin D..t.1 D..t.2

* 1.0 •
tZ t2 U

Origin Dst.1 Do1t.2

2.0 * ---

ti t. t3

- Dd1Y 8t-t T'i

D * Delay DU•?t1o

origin D..t .1

it2 D..r. Don.t2

t2 .oDt3.

Figure 5.4: Mission Delay

she/he goes sour. Figure A.4 shows the itinerary of the same patient after
she/he goes sour. Notice that the part of the itinerary after the start time
of the event is removed from her/his route.

Mission Delayed
We assume we know in advance the start time and expected duration of
the delay. This type of event is translated into a set of delayed mission
legs. The unconditional behavior of delaying a mission is that all legs
starting after the beginning of the delay will have their start times shifted
beyond the end of the delay. The legs that have a start time before the be-
ginning of the delay are not changed. Mission delay will only introduce
conflicts on the patient itineraries. Depending on the size of the delay,
some patients will probably lose their connections. The system identifies
all patients that would lose connecting flights and generates for each pa-
tient a new itinerary starting from the airfield she/he lost the connection.
No complete rescheduling of patients will occur unless requested by the
user. Figure 5.4 shows the general behavior for delaying a mission.

Figure A.5 shows a mission before the delay and A.6 shows the same
mission after the delay. Notice how the mission-legs are right shifted and
all patients are kept in the legs.

* Mission Canceled
We assume we know in advance the cancellation start time. The uncon-
ditional behavior is that all remaining legs of the mission are canceled.
A mission leg that starts before but ends after the cancellation time, is

29

Case 1. Leg Not In Process

Origin Delt. I Dest.2

tI t2 U3

origin D.St.1 De t.2

t2 t3

to * Cancellation Time

Origin Det. 1 DeNt.2

3. * 0 0
t1 t2 t3

Figure 5.5: Cancel Mission - Leg not in process

Case 2. Leg in Process

Origin Not .1 Delt. 2

II
ti t2 t3

Origin Dent.1 DNot.2

2.0 ti K 12 13

to * Cencellation Tino

Origin Not..1 DNt..2

3.

t1 t2 t3

Det. 3

ti

Figure 5.6: Cancel Mission - Leg in process

30

Origin Dest. 1 De.t. 2

tl t2 t3

Origin Dest.1 Dest.2

ti t2 t3

Airfield Closed

Origin Dept.1 Dest.2

3 C , X
ti t2 t3

Airfield Closed

Origin Dest.1 Dest. 2

ti t2 t3

Airfield Syga...d

Figure 5.7: Intermediate Airfield Closed

also cancelled. The cancellation will always generate an event to tell the
system that a mission has an inconsistent itinerary. If no patients have
been scheduled in the legs cancelled, no other conflict is generated and
no problem-solving is needed besides the legs cancellation. If there are
patients scheduled, the itinerary of each patient allocated to the legs can-
celled will have a gap or will be incomplete. In this case, the system will
also signal the inconsistency on patient's itineraries. If the mission is can-
celled with a leg already in process, as for example when the destination
airfield is closed, the analysis process will identify the need of correcting
the leg in-process and a problem-solving method will be triggered to fix
the mission leg. The default strategy in this case is to reroute the leg to an
airfield closer to the previous destination. The correction of the mission
leg takes precedence over the correction of patient's itinerary. After the
mission has been fixed, the conflicts concerning patients will be analyzed
and the itineraries will be fixed. Figure 5.5 shows schematically the can-
celling of a mission when the leg is not in process and figure 5.6 shows
the cancelling of a mission with the leg already in process.
Figure A.7 shows the mission before cancellation and figure A8 shows the
mission after cancellation. All legs after the start time of the cancellation
are removed from the mission and patients are rescheduled later.

Airfield Closed
All affected mission legs are either delayed or canceled, the missions
are repaired, and patient itineraries are repaired on a case by case basis.

31

Origin D..t.1 B-t, 2

ti t2 t3origin D..t. I D..t. 3

t1t2 t 3

Airfield Cload

).irfi.1d C1O...d

L.g NOT Ln p-oc...

origin De.t. 1 Dest. 2

ti t2 V

Figure 5.8: Final Destination Airfield Closed - Leg not in process

Several special cases exist for mission repair: (1) If the affected airfield
is an intermediate stop on a mission, the legs flying into and out of this
airfield are unconditionally canceled. A conflict will be generated and
the analysis process will identify that there is a gap in the itinerary of the
mission. A problem solving method will be executed to fix the mission.
The default behavior in this case is to add one new leg to fill the gap. In
this way, the closed airfield will be bypassed. The patients scheduled on
the removed mission legs will be allocated in the new added leg. After
the mission has been fixed, the patients itinerary will be fixed. Figure 5.7
shows the closing of an intermediate airfield.

Figure A.9 shows a mission leg that uses an intermediate airfield. After
the closing of the airfield and fixing the mission, figure A.10 shows that
.the mission now bypasses the closed airfield.

(2) If the closed airfield is the final destination of a mission, the last leg
is unconditionally cancelled; if the leg is already in progress, the analysis
process will identify the problem and a problem solver will be called to
fix the mission. The default behavior in this case will be to add a new leg
having as destination an airfield closer to the closed airfield. All patients
in the cancelled leg will be allocated in the new leg. After the mission is
fixed, patients itineraries will be analyzed and fixed if necessary. Figures
5.8 and 5.9 show the closing of an airfield that is the final destination:
in the first case, the mission-leg is not in process so no mission fixing is
required. Patients' itinerary will need corrections. In the second case, the
last leg is already in process: the leg is cancelled, a new leg is added, all
patients are in the new leg.

(3) If the closed airfield is the first one on a mission, the entire mission
is delayed until the airfield opens again. This is the same behavior as

32

Origin Dest.1 Degt.2

tl t2 t3

Origin Dest.1 Dest.2

ti t2 t3

Airfield Clotted

• Origin vlst.1 Do.t.2

tli t2 t3

Airfield CloSed

Leg IN VROCESS

origin D..t.1 DLst.2

tl t2 LI

Lost. 3

Figure 5.9: Final Destination Airfield Closed - Leg in Process

origin Eext. 1 Dq•. 2

t. t2 L3

Airfield Closed

Origin Lot.1 0ý.5.2

3I . D t2 . V U . D

Figure 5.10: Mission Origin Airfield Closed

33

origin ý-l . D..t .2

I..
ti t2 t3

Origin D..t.1 D.2

R .ur... 0 ... kd

Origin lt.
3.t.

tl t2

D..t. I D..t.2

1[D2*+D t3*+D

Dj

Figure 5.11: Aircraft Breakdown with Mission in Process

delaying. Figure 5.10 shows the mission delay when the origin airfield is
closed.

The default behavior implemented in each particular case can be change
by specifying different strategies. For example, we could establish that
we want a new stop instead of bypassing a closing intermediate airfield
or that we want the aircraft to return to its last departure airfield when
the final destination gets closed with the mission in progress.

* Aircraft Breakdown Introduced
This is similar to mission delay. If the problem occur during the execution
of a leg, the aircraft lands at the correct destination of the in-process
leg, after which all legs are delayed (again we assume the existence of a
duration estimate for the problem). Patient itineraries are repaired on a
case by case basis. An alternative behavior will be to add a new stop to
the mission. The aircraft problem is presented in figure 5.11.

Figure A.11 and A.12 presents the mission before and after the aircraft
problem.

After the introduction of disruptive events and their translation to the inter-
nal problem representation a set of conflicts exists (e.g. patients missing their
connection because of a delayed flight etc.). The problem-solving architecture
is called to repair the schedule (i.e., to resolve these conflicts). The problem-
solving architecture is also responsible for ensuring that all missions are tem-
porally and causally consistent (for example, a leg cannot depart before the
previous leg has arrived, and can only depart from the airfield where the previ-
ous leg ended). Mission fixing takes precedence over patient's itinerary fixing

34

because the patient scheduler assumes that all mission in the system are con-

sistent. As was mentioned before, the solution state update after a disruption

and the subsequent problem solving techniques used are based on our assump-

tions of the model. It is easy to change the default behavior to comply to more

accurate user requirements or more refined models.

All disruptions introduced are signaled, even if they do not introduce any

changes in the solution. The system keeps track of all disruption events and

changes caused by them. Reports summarizing the disruptions and affected

objects can be generated at any time.

35

36

I i imild iilii ~ 36

Chapter 6

Conclusions

The goal of this project was to demonstrate the applicability of the DITOPS
scheduler to the problem of reactive re-planning in the medical evacuation do-
main. We believe that this goal has dearly been achieved. In a relatively short
period of time, a quite sophisticated planner was designed and built. The plan-
ner incorporates important domain constraints and assumptions (e.g., multi-leg
patient itineraries, finite transport capacity, finite in-transit (ASF) and destina-
tion (MSF) medical treatment capacity), is capable of revising medical evacu-
ation plans in response to a substantial set of disruptive events, and appears
directly scalable to full-scale evacuation problems and scenarios. The planner
provides strong evidence of the utility of the modeling and scheduling compo-
nentry provided within DITOPS, and a compelling example of the efficacy of
approaching application development as a differential process of component
configuration and customization. This approach, in our view, is pre-requisite to
cost-effective development of complex planning and scheduling applications.

Evaluating the plans created by the DITOPS medical evacuation planner is not
an easy task. The system generates and maintains feasible plans (modulo the
system's current constraint models). However, due to the unavailability of both
realistic input data and comparative results from other medical evacuation plan-
ning systems, it has not yet been possible to systematically evaluate the system's
problem solving performance, or to determine how well the planner would do
solving actual medical evacuation problems (the problems it has solved are
only our understanding of what the real world is like). The next logical step in
this research would be to conduct some sort of analysis of current system capa-
bilities. One starting point could be comparison to current TRAC2ES planning
and replanning modules on benchmark problems such as the "Lilliput" sce-
nario (this problem has been solved by the current prototype). Evaluation and
feedback from the medical evacuation planners would also seem essential at
this point. To facilitate such user involvement and evaluation, the current pro-

37

totype provides a graphical interactive framework for flexibly experimenting
with various disruptive events and examining the results of reactive responses.

One obvious direction for further development of the current medical evacua-
tion planner would be to expand the range of constraints that are accommodated
and enforced within the system's domain model. Our initial effort has concen-
trated attention on an identified subset of "important" domain constraints. To be
practically applicable, a re-planning capability would necessarily need to take
into account additional aspects of the domain. Given our current understand-
ing of the medical evacuation re-planning problem, we can identify several
domain details and constraints that are ignored in the current prototype:

"* Difference between cargo and medical missions. Distinguishing between
these two would not be difficult to add.

" Range of aircraft missions. DITOPS models aircraft range but the range
values are not used in this implementation; taking range into account
when adding new missions/legs would be straightforward.

" Maximum flying altitude and other specific request for patients (like med-
ical equipment and other requirements).

" Litter seats vs. ambulatory seats: all seats are considered to be the same.
To implement this, DITOPS provides a mechanism for partitioning capacity
of resources; in this case two partitions would be used.

"* Different aircraft configurations have not been modeled.

"* Patients' airfield preferences are not enforced (personal preferences like
planning for the destination to be close to his/her home town etc.).

"* Ground transportation is not provided.

"* Missions are not modified to pick up urgent patients.

"* Crew requirements are not modeled - the maximum flight time should be
enforced by somebody else. We do not enforce any constraint on given
missions besides spatial and temporal constraints.

"* Compatibility aspects relating airfields and aircraft are not considered.
DITOPS has a mechanism called compatibility constraints which could be
used to model this.

"* Secondary resources (like fuel and food) are not modeled.

Another direction of future development would be the introduction of more so-
phisticated planning and scheduling strategies. The current medical evacuation

38

planner makes little use of underlying architectural capabilities for condition-
alizing and integrating the use of different solution repair methods, but rather
associates a particular repair method with each type of disruption or conflict.
Consider, for example, the introduction of a mission delay, which in turn causes
conflicts with respect to connecting flights in several patient itineraries. Cur-
rently, the *planner resolves such conflicts by reassigning each affected patient
to a new (feasible) connecting flight. However, there are tradeoffs that could be
considered here. If a conflict involving a connecting flight is quite small (e.g., the
flight is scheduled to leave just minutes too soon), then a much more reasonable
reaction might be to simply delay the connecting flight. In general, there are
opportunities for improved reactive planning behavior through increased anal-
ysis of the constraints involved in recognized conflicts and more selective use of
constituent repair methods. Likewise, there are also straightforward extensions
to the current set of methods which could provide a basis for more effective
localized reaction in some circumstances. A version of the patient scheduler
which allows selective "bumping" of currently scheduled patients (e.g., to al-
low the rescheduling of an urgent patient to displace a non-urgent patient if
necessary) would be one obvious extension that is easily implemented.

39

40

Appendix A

Screen Dumps

This appendix contains screen dumps depicting the various disruptive situa-

tions described in chapter 5.

41

12:0,s Iva 120 a1 12:0 514 I2t0 01 2:0 51 12:0 5,7 I2t0 5A1019 12;1 210 112: 1 /l 12 01

V ~ 020 054122 0 12:0 524 12:0 014 1220 0510 121201) 1:0 0103210 420 210 5

025 ."1 :5-140-157

32:01:4 2:2015 2:0019 22 11 154 l~d inE:v024 150 m4

5440* Inos I

FgrA.:NwPte ts inthe System -1

5a M4 W M5$10 2!1354 5M215 1 0-141 5M12: Sn 21

nmwt., :1 :~mEw.Le :410--ADO-

N- PATIENT PAT1I EN I

Tooy D. 5/I 01027-as
401191154.4>j $1i~imiiCt130-zir

Figure~n A.2 NewPatens Shedle

L42

* fr P A

tatm ee lomwe Aej Aem emPANs. aN'4 i

.. $0s Iial

Sm" low MRtNt6X1,
bI" " t1113

Figure A.3: Patient before going sour

so1*690: 404Wi'

Figure~4160 A.4:m Waottafergin su

4%mq ... 43

its9 I w I
~~~~~~~~01 The 21 ........ __ _ _ __ _ _ __ _

pwwat

fom44414



140 IwoF

swumINARIff I

awn., :MAIIO S?

-to

2!-Iý a. 1.1 JBaWtll .

Figure A7.7: Mission Before Cancellation

a 0.1.1pwin Owla

sma :Mtqq
No-" lb. mIIW
INA " ; vb.

:04019010

mum"~~
~ ~ 1 el tue ~W000=a

Todwiz"

;:,
loom

Figure A.8: Mission After Cancellation

45



I 66UNNO aI#W t 4100 e

7~

Figure A.9: Mission before closing an intermediate airfield

a t t A t Is II-*i MWI&INo .0GOt,14th

W I* Wo i~~~~~as 1: pI$0IsaIlS41 Ili'iY7,, r r-,--rr--ri-r-r-
C19"SC , JI,

jj~t

. . . ..4. -

Figure A.10: Mission after closing an intermediate airfield



I " W"l~ .

~~~~.Pi~~~~~~~~~hJfolw sow^"bOet e 808s ____________ ~as

Iw e '8'4to

010,4 ~ * . -to$

Figure A.11: Mission before aircraft breakdown

£0£8m,.*geIts We Moe mUPI It~ e *1t' 6 9,11

beI" will*gD~is

Figure A.12: Mission after aircraft breakdown

47

48

Bibliography

[I] Lassila, 0., "PORK Object System Programmers' Guide", Report CMU-
RI-TR-9.5-12, the Robotics Institute, Carnegie Mellon University, Pitts-
burgh (PA), 1995.

12) Schmnucker, Kurt. J, "Object-Oriented Programming for the Macintosh",
Hayden Publishing Company, Hasbrock Heights (NJ), 1986.

[3] Stephen F. Smith and Ora Lassila, "Configurab!e Systems for Reactive Pro-
duction Managemnent", Knowledge-Based Reactive Scheduling, IFIP Trans-
actions B-13, North-Holland, Amsterdam (The Netherlands), 1994.

[4] Stephen F. Smith and Ora Lassila, "Toward the Development of Flexible
Mixed -Initiative Scheduling Tools". Proceedings of the ARPA/Ronie LAbs
Planning Workshop '94, Tucson (AZ,), February, 1994.

[5] Smith, S.F.,"OPIS: A Methodology and Architecture for Reactive Scmhedul-
Ing", in Intelligent Scheduling, (eds. M. Fox and M. Zweben), Morgan
Kaufmann Publishers, -1993.

(6] Stee~le, Guy L., Jr., "Common Lisp.- the Language", Digital Press, Bedford
(MA), 1990.

[7) Wirfs-Brock, Rebecca, Brian Wilkerson and Lauren Wiener, "Designing
Object-Oriented Software", Prentice Hall, Englewood Cliffs (Nj), 1990.

49

