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1. Introduction 

Most descriptions of wave propagation through turbulence are based on a 
nonintermittent description of the turbulence. Intermittency refers to the 
tendency of turbulence to occur in bursts of activity, surrounded by relatively 
quiet regions. The effect of intermittency on wave propagation is to create 
regions in space and time where there is particularly strong scattering and 
spreading of the propagating wave. In this manner, intermittency can strongly 
affect probabilities of detection of enemy assets (by acoustic and optic 
methods), the performance of targeting systems, and radio communications. 

Figures 1 and 2 illustrate the conceptual difference between the nonintermittent 
and intermittent descriptions of scattering. The figures show scattering of 
helicopter noise, with the receiver hidden from the helicopter by an intervening 
hill. In the nonintermittent description, the eddies responsible for the scattering 
are smoothly distributed throughout space. In the more realistic intermittent 
description, the eddies occur in bunches. If a high concentration of eddies is 
located within the scattering volume (as determined by the source/receiver 
geometry, beam patterns, and topography), scattering will be enhanced. On the 
other hand, a low concentration of eddies results in reduced scattering. As the 
turbulent field evolves, regions of high and low eddy concentration move in 
and out of the scattering volume. 

A preliminary study by Wilson, Wyngaard, and Havelock (1995) of acoustic 
scattering into a ground-based shadow zone showed that intermittency can 
increase the fourth moment of the scattered intensity (a measure of the 
frequency of occurrence of high-scattered-intensity events) 100 fold. Why, if 
intermittency has such a profound affect on scattering statistics, has it largely 
been neglected until now? There are several reasons: 

• Scattering by intermittent turbulence is a difficult cross-disciplinary 
problem, involving forefront research in turbulence and wave scattering. Most 
of the outstanding, original work in scattering by turbulence was completed 
two to three decades ago, by scientists who studied turbulence theory before 
the role of intermittency became widely recognized. 
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Figure 1. Scattering by nonintermittent turbulence. A helicopter 
generates noise that is scattered by eddies and received by a 
microphone on the other side of a hill. The eddies are smoothly 
distributed through space. 

0c? ^ 

Figure 2. Scattering by intermittent turbulence. The eddies occur in bunches. 
If a high concentration of eddies occurs at the intersection of the source and 
receiver beams, scattering is enhanced. 



• The theory of intermittent turbulence was developed largely by Soviet 
scientists such as Kolmogorov (1962), Obukhov (1962), and Gurvich and 
Yaglom (1967), and their work has been slow to percolate into the mainstream 

English literature. 

• Intermittency becomes most important when the scattering volume has 
dimensions comparable to or smaller than the largest scales of the turbulent 
flow. This is not the case for many radio wave scattering problems considered 
in the past; however, it is quite frequently the case in atmospheric acoustics, 
which has not been so deeply studied. It is now becoming a more significant 
issue in radar design and data interpretation, as the resolution of these systems 

improves. 

This report considers the effect of turbulent intermittency on acoustic wave 
scattering. The case considered is a particularly simple, but practically 
important, one: that of a source hidden from a receiver by virtue of an acoustic 
shadow. Shadow has the same meaning here as in the optical case: no direct 
beam traveling from the source to the receiver. Acoustic shadows are normally 
formed as a result of topography, such as hills, or as a result of upward 
refraction of sound waves. Upward refraction results when sound propagates 
upwind or the temperature decreases with height. It recently has been well 
established that most of the sound energy reaching a receiver in an acoustic 
shadow is scattered there by turbulence (Gilbert, Raspet, and Di 1990). 

This report begins in section 2, with a brief, qualitative description of turbulent 
intermittency and its effect on scattering statistics. (Refer to Wilson and 
Thomson (1995) for a more rigorous and theoretical discussion.) Section 3, 
considers the effect of intermittency on source detection probabilities, the main 
topic of this report. Lastly, section 4 discusses the methods for estimating the 
parameters required by the intermittency theory. 



2. Effect of Intermittency on Scattering Statistics 

The intensity of the signal at a receiver fluctuates randomly as a result of 
scattering by turbulence, regardless of the presence of significant intermittency. 
In nonintermittent scattering, the scattered acoustic pressure has simple, normal 
statistics.* This implies that the scattered intensity (proportional to the pressure 
magnitude squared) has an exponential probability distribution function (pdf) 
(Tatarskii 1971): 

P(/) = y-exp 
0 

f      \ 
l_ 

I 
\       o J 

(1) 

where 
I =     the intensity at the receiver 

lo = (I) =     the ensemble mean. 

The mean scattered intensity is proportional to the sum of the structure- 
function parameters for temperature, C\, and for velocity, C2

V :t 

I={I)=p(aTCl+avC>) (2) 

where 
n       =        the source power 

The a's depend on the source wavelength and scattering angle (Ostashev 1994). 

In nonintermittent treatments, the structure-function parameters are defined as 
ensemble-mean quantities. Intermittency enters into the problem when the 
structure-function parameters vary in space and time.   The time and space 

* Normal pressure statistics occur when the scattering is saturated. In that case the standard deviation of the 
received intensity fluctuations, divided by the mean intensity, is unity, and does not change significantly as one 
moves further away from the source. The pressure signal is generally saturated whenever the receiver is in an 
acoustic shadow, and the dominant contribution to the signal is turbulent scattering. 

f The structure function parameter for temperature is defined by the equation 

((r(r)-r(O))   ) =cy ,2    2/3 

where the separation r must be small compared to the integral length scale of the turbulence. A similar equation is 

used to define C*, with the added stipulation that the spatial separation is in the same direction as the velocity 

component. 



variability is how we quantify such loosely defined quantities as the "eddy 
concentration" discussed in connection with figures 1 and 2. From the 
intermittent standpoint, equation (2) is rewritten 

7   = (l\c2,C2) = n(aTC2+ayC
2). (3) 

In the above, locally varying quantities are distinguished from their ensemble 
means using tildes. The meaning of the vertical bar is that the variable on the 
left is conditionally sampled with respect to the variables on the right. Each 
time specific values (C^C2.) occur, we record /. The ensemble mean of these 
conditionally sampled values of / is designated 70, the local mean intensity. 
Like the local structure function parameters, the local mean intensity varies in 
space and time. Because the exponential probability law holds for fixed values 
of the structure function parameters, it follows immediately from equation (1) 

that 

2^ 1 J>(7|/0) = i>(7|q5,C<)=~-exp 
h 

(4) 

However, we would also like to know the unconditioned pdf for the intensity, 
P(I). This follows from the statistical identity 

P(I)=]p(I\Ia)P(Ia)dIa. (5) 
0 

To proceed, we need to know P(l0), which, by equation (3), requires models 

for p{52) and p{c2). 

Kolmogorov (1962) originally suggested that the local structure function 
parameters followed a log-normal distribution. In recent years, certain 
shortcomings in the log-normal model have become evident, and alternatives 
have been proposed (Romano 1995). The log-normal model will be used in 
this report; however, for simplicity, the newer models are fairly complex, not 
as well tested, and affect mainly statistics of very high order. 
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Having decided on the log-normal model for the structure function parameters, 
there is still a further complication in determining P(70). Specifically, it is not 
generally the case that the sum of two log-normal variables is log-normal* 
Wilson (1995) considered the pdf of 70 in detail, however, and found that for 
reasonable values of aT or ay, it was log-normal to a very acceptable degree of 
approximation. We therefore assume P(70) is also log-normal: 

PUo)=    rr-  y   exP 
0 

where 

o2 = the variance of log70. 

~ \\2 
log?,-(log 70)) 

2 

2cr 
(6) 

The parameter a characterizes the strength of the intermittency. It can be 

shown that log(/) = (log70) + cr2/2 for the log-normal distribution (Wilson, 

Wyngaard, and Havelock 1995). If (I) = const, this relationship allows us to 

compute the value for (log70\ needed in equation (6) as a function of a. 

One drawback of the log-normal distribution is that it is not possible to perform 
the integration in equation (5) analytically. Fortunately, it is not particularly 
difficult to perform a numerical integration in this case. Equation (5) was 
analytically converted to an integration over u = log70, and a simple, 1000-step 

trapezoidal integration from u = (logI0)-6cr to u = (log70) + 6cr was applied. 

Figure 3 shows P(I) calculated in this manner for various values of the 
parameter a. The main effect of intermittency is to enhance the probability of 
occurrence of very large values of the scattered intensity. To make the effect 
of intermittency more graphically evident, the ordinate on figure 3 was plotted 
in logarithmic coordinates. In the logarithmic coordinates, the nonintermittent 
pdf equation (1) appears as a straight line. 

Unlike normal random variables, the sum of two jointly log-normal random variables is not itself log nomal. 

11 
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Figure 3. Nonintermittent (solid line) and intermittent (dashed lines) 
probability density functions of the received intensity. The parameter 
a is a measure of the amount of intermittency. Intensity is normalized 
so its ensemble mean value (I) - 2. 

The calculations for figure 3 were performed so the mean intensity at the 
receiver (I) was the same, regardless of the intermittency parameter a. We 
would really like to compare pdf for constant source power P, and constant 
ensemble mean structure-function parameters C\ and C2

V. To see the 
relationship between the two approaches, first consider the ensemble average 
of equation (3): 

7o) = n(a3 c^ + ajq (7) 

By substituting equation (4) into equation (5), and integrating IP(I) over /, it 

can be shown that (I) = (70).   Furthermore, by definition (C?) = C\\ likewise 

for C2
V. Equation (2), which can be derived by taking the ensemble mean of 

equation (3), still holds, regardless of whether intermittency is present. If the 
quantities on the right-hand side of equation (2) (the source power and the 
mean structure-function parameters) are taken as constants, the left-hand side 

12 



(the mean received intensity) must also be constant. Hence, it follows that 
holding the mean intensity at the receiver constant, while varying the 
intermittency parameter a, is equivalent to holding the source power and mean 
structure-function parameters constant, while varying a. 

Figure 4 shows pdfs for the received intensity recorded in an acoustic shadow 
zone (Wilson, Wyngaard, and Havelock 1995). The results for two separate 
measurement periods are shown: WI, a low intermittency case; and SI, a high 
intermittency case. The values of crused to generate the theoretical predictions 
were 0.10 and 0.56, respectively. Both datasets show a clear departure from 
the straight line characteristic of the nonintermittent pdf. 

10 15 20 25 30 
normalized intensity, I 

35 40 

Figure 4. Experimentally determined pdfs for scattered intensity (solid 
line) and theoretical fits (dashed lines). The straight, solid line is the 
nonintermittent prediction. Intensity is normalized so its ensemble mean 
value (I) = 2. 

Section 4 discusses how the parameter cr varies in response to the scattering 
geometry and meteorological conditions. Intermittency was probably more 
significant in the SI case because it was recorded later in the morning than WI, 
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when the atmospheric boundary layer was thicker and larger eddies were 
present. The large eddies drive the intermittency. 
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3. Source Detection Probabilities 

In this section, the effect of turbulent intermittency on detection of scattered 
signals in a noisy environment is discussed. The first case considered is a 
constant noise background. Although rather unrealistic, the constant noise 
background case serves to illustrate the basic procedure of computing detection 
probabilities and the role of intermittency. The second case considered is noise 
having a Nakagami (1960)/Rice (1945) distribution, which can be used for a 
variety of noise scenarios by varying its parameters. The computation for the 
Nakagami/Rice distribution is considerably more complicated, but probably 
more realistic for battlefield conditions. 

One important simplifying assumption in the following calculations is that the 
source will be detected when its intensity (loudness) in some frequency band 
exceeds the noise in that same band. This neglects gains that can be achieved 
in system design and signal processing (e.g. beam forming, matched filtering). 
Furthermore, this may also restrict the calculations to narrow-band detection 
schemes. The probabilities for detection of broad-band signals would be the 
same only if the scattering strength for all of the frequency components 
increases and decreases simultaneously. In other words, there must be 
coherency across the band of frequencies used in the detection scheme; 
otherwise, the calculation of detection probabilities depends heavily on the 
signal processing algorithm and the cross-frequency coherence. Presently, the 
characteristics and quantification of cross-frequency coherence for scattering 
by atmospheric turbulence are rather poorly understood and will be an 
important topic for future research. 

Given the simplifying assumptions, the general problem can be formulated as 
follows. Let P(IJN) be the'joint pdf for the scattered intensity, /, and the noise 
intensity background, IN. The detection probability is 

P{I>IN)=]]p{IJ„)H(I-IN)dIdIN (8) 
0   0 

where 
H(I-IN) = the Heaviside function (1 if / > IN, and zero otherwise). 

Assuming the scattering and noise are independent processes, 
P(I,IN) = P(I)P(IN). The integral then can be rewritten as 

15 



P(I>IM)=\P(I>IN\I)P{I)dI (9) 
0 

in which the probability of the scattered intensity exceeding the noise intensity, 
conditioned to a fixed value of the scattered intensity, is 

p(i>is\r)=\p{iN)diN. (io) 
0 

3.1    Constant Noise Background 

Suppose the intensity of the noise level at the receiver, in the same frequency 
band as the source, is constant and equal to (lN). For this case, 

P(IN)=S(lN-{lN)). The integral in equation (10) then evaluates to 1 if 

I>{IN); otherwise, it is zero. The probability of detecting the source, given by 

equation (9), is as follows: 

P(I>IN)=\P(P)dI. (11) 
M 

This integration can be performed easily for the nonintermittent case.   Using 
the exponential pdf for /, equation (1), the result is P{I> IN) = exp(-{//V) /10). 

For the intermittent case, substitute for P{I) using equation (5), switch the 

order of integration between / and 70, and perform the integration over / 

explicitly. Equation (12) becomes the following integral over 70: 

M P(/>/„)=fexp-^ 
n \        -»r 

P(L)dI0 . (12) 
J 

For the log-normal distribution equation (6), the integration must be done 
numerically. Figure 5 shows the results of the integration for a few different 
values of cr. The abscissa on the plot is the mean signal-to-noise ratio (SNR), 

16 
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Figure 5. Nonintermittent (solid line) and intermittent (dashed lines) 
probabilities of detection as a function of the mean SNR, for the 
constant noise model. Intensity is normalized so its ensemble mean 
value is 2. 

Figure 5 demonstrates the profound effect intermittency has on probabilities of 
detection, particularly at low SNRs. For an SNR = 0.1, the probability of 
detection at high values of intermittency (a = 1) is more than 100 times greater 
than the probability with no intermittency. Even at moderate values of 
intermittency (a = 0.5), the detection probability is enhanced more than 20 
fold. 

The detection probabilities shown in figure 5 apply to a single, statistically 
independent sample. Perhaps a better idea of the significance of the 
intermittency effect can be obtained if the number of statistically independent 
samples M required to achieve a specified detection probability PD is 
considered. It can be shown that 

PD=\-[l-P(I>IN)]M (13) 
and therefore 
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M = log(l-^) 
log[l-P(/ >IN)] 

(14) 

Figure 6 shows the minimum values of M required to obtain a probability of 
detection of PD = 0.9. The figure demonstrates, for example, that 
approximately five times as many samples need to be collected at a mean 
SNR= 0.1 if there is no intermittency, as compared to when there is strong 
intermittency- (a = 1). When the SNR is more favorable, the situation actually 
reverses. Approximately 60 percent more samples are needed when a = 1 as 
compared to a = 0. 
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mean SNR 

Figure 6. Number of statistically independent samples required to 
achieve a 90 percent probability of detection, as a function of the mean 
SNR. 

In practice, data are normally collected over a time interval rather than as 
isolated, statistically independent samples. M can be converted to a time 
collection interval T using the following formula: 

T= Mr (15) 
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where 
r        =        the integral time scale associated with the fluctuations in 
intensity. 

We may estimate the time scale for scattering by inertial subrange turbulence 
using the following formula (Wilson, Wyngaard, and Havelock 1995): 

r = (16) 

where 
X       =        the acoustic wavelength 
s        =        the dissipation rate of turbulent kinetic energy 

(discussed in the section 3.2). 

For a frequency of 500 Hz, A «2/3 m. Taking s = \0~3 m7s3 as a 
representative value, r = 5 s. The curves in figure 6 show that approximately 
1750 s are required for a 90 percent detection probability in the nonintermittent 
case with SNR = 0.1, whereas only 350 s would be required in the highly 
intermittent case. 

3.2    Variable Noise Background 

The constant noise model considered in section 3.1 is unrealistic for most 
battlefield environments. In actuality, there will be time-varying noise at the 
receiver caused by assets, friendly or foe, and by turbulent pressure 
fluctuations. Hence, in this subsection, the effect of noise variance on the 
detection calculations is considered. 

The Nakagami (1960)/Rice (1945) distribution, which corresponds to a fixed 
mean amplitude for the noise with normally distributed in-phase and quadrature 
components, is the variable noise model used. The Nakagami/Rice distribution 
yields the pdf for the noise intensity 

,v 

V     2cr2
N   j 

h 
K   aN   J 

/>(/„) = -^-Texp|—^-i-|/0  
JLTJ- 07) 

2CTN 
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where 

°\ 
M 

the variance parameter for the noise 
the mean amplitude parameter squared 
the 0-order modified Bessel function of the first 
kind. 

Figure 7 shows example curves for the Nakagami/Rice intensity pdf. When 
Ml a\ is small, the pdf is essentially an exponential distribution, which should 
work well in cases where random, loud noise events are superimposed on a 
relatively quiet background. The large MI cr2

N case corresponds to noise 
events superimposed on a relatively loud background. (The word "relatively" 
must be stressed here: the balance between the noise events and the 
background, not their actual levels, is the only important factor for determining 
the scaled pdf.) 
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Figure   7.      Variable   noise   model   based   on   the   Nakagami/Rice 
distribution. The curves represent different values of the ratio MI a2

N. 

Unlike the constant noise case, the integrations over I and IN cannot be 
accomplished analytically. We are left with a triple integral that cannot be 
analytically simplified because we must also integrate over I0 to calculate the 
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detection probability. It would be computationally prohibitive to solve the 
triple integral numerically. Alternatively, the problem can be solved using a 
Monte Carlo method to generate a series of random numbers for I0, I, and IN 

which follow the appropriate distributions (log-normal, exponential, and 
Nakagami/Rice, respectively). Then one counts the fraction of cases where 
I>IN. I wrote a short (approximately 25 lines) script in Matlab® to 
accomplish this task. 

The detection probability for Ml <J\ =0.5 is plotted as a function of mean 
SNR, (I)/{IN), in figure 8. The slight "wiggle" in the curves is an artifact of 
the Monte Carlo technique. The wiggles can be diminished by averaging a 
larger number of random samples. In this small Mla\ case, varying the 
intermittency strength parameter a2 has extremely little effect on detection 
probabilities. In contrast, when M/cr2

N=5, the case shown in figure 9, 
intermittency has a pronounced effect. The results for large Ml a2

N, in fact, 
converge on the constant noise background case shown in figure 5. 
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Figure 8. Nonintermittent (solid line) and intermittent (dashed lines) 
probabilities of detection as a function of the mean SNR, for the 
variable noise model with Ml a\ = 0.5. 
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10 
mean SNR 

Figure 9. Nonintermittent (solid line) and intermittent (dashed lines) 
probabilities of detection as a function of the mean SNR, for the 
variable noise model with Ml G\ = 5. 

Hence, the following conclusion: Intermittency becomes less significant when 
the variance in the noise exceeds the scattered signal variance resulting from 
intermittency effect. This can be understood intuitively. In environments in 
which the noise is highly variable, the detection of a source depends mostly on 
whether there is a competing noise event, rather than on the existence of 
intermittent episodes of enhanced scattering. 
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4. Parameter Estimation 

In this section, estimation of the parameters required by the intermittency 
theory is considered. Parameters for noise distributions are omitted from the 
discussion though. The noise parameters are neglected not because they are 
thought unimportant, but rather because they are beyond the scope of this 
report. 

As discussed earlier, the log-normal distribution has the property 

<72=2(log(/)-(log70)). (18) 

Wilson (1995) showed that when intermittency in both the temperature and 
velocity fields is present, 

(log70)*logfa; +a')+      a'T< (19) 
Vr ^    2(a'T+av) 

where 
a\ = the variance in log C] 
<y\ = the variance in log C2. 

a'T =aTC2
Texp(-cr2

T/2) (20) 

and likewise for a'v. 

Estimates for the log-variances of the structure-function parameters are 
a-2T a (7 / 9)(j] and <J\ * (4 / 9)a], where a] is the log-variance of the log rate 
of dissipation of turbulent kinetic energy (TKE), given by Kolmogorov (1962) 

as 
<r2,*//log(*/r) . (21) 

where 
H s 0.2 (Anseimet et al. 1984) 
I = the integral length scale (outer scale) of the turbulent field 
r = the characteristic dimension of the scattering volume. 

The integral length scale is defined as 
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v(0)v(0)) 
J(v(r)v(0))<fr (22) 

2 
T ' 

where 
v = the turbulent fluctuation in the wind speed. 

Hence, four parameters are needed to estimate probabilities of detection:   C 
Cy,  t, and r.    We now discuss the physical meaning and methods for 
estimating each of the quantities. 

4.1    Structure-Function Parameters 

The behavior of the ensemble-mean structure-function parameters has been 
well studied and analyzed in recent years. The structure-function parameters 
can be calculated from 

and 
C2

T=leee~m (23) 

C*=2e2" (24) 

where 
s        =        the dissipation rate of TKE 
sg      = the destruction rate of temperature variance. 

Estimation of the dissipation and destruction rates is easily accomplished if we 
understand some basic concepts of atmospheric turbulence production. The 
production comes from two types of instability: wind shear and buoyancy. 
Shear is most significant at high wind speeds. Shear production of TKE equals 
ul I KZ where u. is the friction velocity, K » 0.4 is von Karman's constant, and 
z is the height. The friction velocity can be estimated from the wind velocity 
gradient: 

~     dU n*\ u. =KZ—. (25) 
dz 

Buoyancy becomes a significant source of turbulence when there is solar 
heating of the ground, which makes the air near the ground warmer and less 
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dense than the overlying air.    Buoyant production equals  w^ I z. , where 

w* =isQsz.ITS)'" is the convective velocity scale, g is gravitational 

acceleration, Qs is the surface heat flux, z, is the height of the boundary-layer 
capping inversion, and Ts is the surface temperature (Stull 1988). 

The relative significance of shear and buoyant production depends on the 
height. In fact, if we take the ratio of buoyant to shear production, we have 

(26) 
ul I KZ Z 

wi/z,     -L 

where the quantity L = ulTjKgQx is called the Obukhov length. Buoyancy 
production dominates when z»-L. Shear production dominates when 
z«-L. 

In the case where shear production dominates, by assuming that local 
production balances local dissipation (usually a good assumption), the TKE 
dissipation rate is simply 

S = U]IKZ. (27) 

When shear production dominates, parameterization of sp is unimportant 
because temperature fluctuations play an insignificant role in acoustic wave 
scattering. 

Suppose conditions are freely convective (solar heating, as opposed to wind 
shear, is the primary source of the turbulence). The dissipation rate is 

s = wllzi. (28) 

Under freely convective conditions, the destruction rate of temperature is given 
by (Stull 1988, Eq.9.6.4r) 

z 
sd = 0.43 

w,d,     - 
(29) 

where 0, = Qs I w, is the convective temperature scale. 

Estimation and measurement of atmospheric boundary layer parameters such as 
z-„Qs,u., and w. is one of the fundamental problems of micrometeorology. 
Refer to (Stull 1988) for a discussion of relevant issues. When measurements 
of these parameters are unavailable, Qs and u. can be determined reliably 
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using a surface-energy balance model (e.g., Rachele, Tunick, and Hansen 
1995). The inversion height can be calculated using a boundary-layer 
evolution model such as Blackadar's (1978). 

4.2    Integral Length Scale 

Estimation of integral length scales is quite challenging, because of the 
anisotropy and inhomogeneity characteristic of atmospheric turbulence. A 
further complication arises when the velocity and temperature fields have their 
own length scales. 

One of the most comprehensive, experimental studies of integral length scales 
in the atmospheric convective boundary layer was done by Lenschow and 
Stankov (1986). Using data from aircraft, Lenschow and Stankov found for the 
horizontal velocity fluctuations 

£ = 030z . (30) 

Equation (30) should work reasonably well in most situations of interest 
because it is, primarily, horizontal velocity fluctuations that drive the acoustic 
index of refraction during the daytime (Wilson and Thomson 1995). 

Wilson and Thomson (1995) have proposed a more complicated model for 
integral length scales incorporating anisotropy, height-dependence, and the 
combined effects of velocity and temperature on the index of refraction. The 
model makes use of the same scaling parameters discussed in connection with 
structure-function parameter estimations. Although the equations are not given 
here, some example predictions are provided in figure 10. For these 
predictions, the friction velocity was set to 0.3 m/s, characteristic of moderate 
winds. The inversion height was 1000 m, a value representative of sunny days 
at most locations in temperate climates. Near the ground, the length scale is 
observed to be relatively independent of height. There is a strong dependence 
on surface heat flux. At greater heights (z > 100 m), the length scale is 
approximately independent of heat flux and has only a weak height 
dependence. At these heights, the Wilson and Thomson model is in reasonable 
agreement with equation (30). 
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Figure 10. Integral length scale (m) as a function of height and surface 
heat flux, using the model of Wilson and Thomson (1994). 

Broadly speaking, we expect i to range from 10 to 1000 m, depending on the 
meteorological conditions. Smaller values are characteristic of near ground, 
high wind shear conditions, whereas larger values occur in highly convective, 
deep boundary layers. 

4.3    Scattering Volume Dimensions 

The characteristic length scale of the scattering volume depends on the beam 
patterns of the source and receiver, the local topography, and meteorological 
conditions. Presumably, if the spatial dimensions (Ax, Ay, Ar) of the scattering 
volume are known, the single characteristic dimension needed by equation (21) 
could be determined from 

r = (Ax Ay Az) 
1/3 

(31) 

There is little information on scattering volume dimensions for acoustic 
configurations of practical interest. Researchers only recently have begun to 
realize the significant role played by this parameter in scattering problems. 
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Among the few resources available on this topic are recent papers by Stinson, 
Havelock, and Daigle (1994) and Auvermann (1995). 

Auvermann considered propagation over a 320-m path at a 500-Hz frequency. 
Scattering was modeled using the turbule ensemble model. Refraction effects 
were not explicitly considered in the calculation. Auvermann defined the 
scattering volume as the region from which 99.8 percent of the received signal 
originates. The dimensions of the scattering volume were found to decrease 
substantially as the size of the scattering eddies increased. Auvermann's 

calculations are summarized in table 1. 

Table 1. Characteristic length r of the scattering 
volume, as a function of eddy size, at a 500-Hz 
frequency (Auvermann 1995) 

Characteristic 
Eddy size length 

(m) (m) 
0.438 13.218 
0.876 8.171 
1.752 5.148 
3.504 3.262 
7.008 2.071 

10.07 1.633 

Stinson, Havelock, and Daigle (1994) used a Green's function parabolic 
equation (GF-PE) code to simulate the creation of a refractive shadow zone in 
the atmosphere. Random, Gaussian perturbations to the index-of-refraction 
field, having a 4-m characteristic length, were introduced to model turbulent 
scattering. Like Auvermann, Stinson used a 500-Hz frequency, but the 896-m 
propagation path was longer than Auvermann's. The extent of the scattering 
volume was depicted only graphically by Stinson, Havelock, and Daigle 
(1994); no explicit calculations of dimensions similar to Auvermann's were 
made. Stinson, Havelock, and Daigle's figure 9 suggests that their characteris- 
tic length r for the scattering is between 30 and 60 m. From table 1, it appears 
that Auvermann's model yields r » 3 m for the 4-m eddy size. The reason for 
this discrepancy is not entirely clear. Possible explanations are the neglect of 
refraction in Auvermann's model, the difference in the lengths of the 
propagation paths, or our nonrigorous estimate of the scattering volumes 
derived from the figure in Stinson, Havelock, and Daigle (1994). 
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Lacking further information, we should expect the characteristic dimension of 
the scattering volume to vary from about 1 to 100 m in most problems of 
interest. The primary determinants of this parameter should be the 
source/receiver configuration, acoustic frequency, and mean refractive profiles. 
With r in this range and t in the range given at the end of the previous 
subsection, we have from equation (21) 

0<cr2
s<2. (32) 

More field measurements are needed to verify the range of values for the 
intermittency variance parameter. 
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5. Summary 

The significant impact of turbulent intermittency on acoustic scattering 
statistics was demonstrated using experimental data and theoretical models. 
The main effect of intermittency is to increase the probability of occurrence of 
large values of the scattered intensity, which can be quite important in 
detection problems. In particular, the intermittency effect is important in 
environments with a fairly constant noise background. 

Although theoretical models for the intermittency effect are reasonably simple, 
the parameters required by these models are still rather difficult to estimate. 
Our knowledge of turbulent length scales in the atmosphere is limited; we have 
even more difficulty providing representative values for the dimensions of 
acoustic scattering volumes. There is no reason why future research should not 
make substantial progress in addressing the issues. 
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Acronyms and Abbreviations 

pdf probability distribution function 

SNR signal-to-noise ratio 

TKE turbulent kinetic energy 
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