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Beam Control in Synthetic Aperture Systems 

Hu Zhiping, Zhou Hongyang and Le Shixiao 

(Southwest Computing Center, University of Electronic Science and 
Technology of China) 

Abstract:  In this paper, we discuss concepts of beam 
control in optical synthetic aperture systems in vacuo. 
The physical models for phase control of wavefront in 
transmitters are given.  Computations were made for the 
models and the results are in agreement with the 
analysis.  The results are also shown in three- 
dimensional figures.  The effects of piston and tilt 
errors on the performance of the synthetic aperture 
systems are discussed and the computations are also 
given. 
Key Words:  synthetic aperture system, diffraction, 
beam control, beam combination, beam propagation, 
piston error, tilt error. 

1. Introduction 

To avoid nonlinear effects generated during intensive laser 

atmospheric propagation, it is necessary to reduce power density 

per laser unit area.  A direct approach to doing this is to 

enlarge the optical system transmitting aperture scale, which, 

however, is restricted by a number of factors including optical 

material, optical quality, processing, manufacturing, etc. [1]. 

Moreover, a large-scale transmitting aperture system may not help 

realize rapid beam pointing and tracking [1].  The synthetic 

aperture system is an equivalently enlarged optically 

transmitting aperture system that has attracted attention in 

recent years as a method of avoiding nonlinear effects [2].  The 

synthetic aperture system is composed of a series of subaperture 

systems, which can independently transmit and transfer beams.  It 



can acquire an extremely high power density through phase control 

over individual subaperture systems transmitting a beam wavefront 

to realize noncoherent and coherent synthesis of individual beams 

at the target. Since every subaperture system is easy to control 

and manipulate, the synthetic aperture system appears helpful in 

realizing rapid beam pointing and tracking. 

2. Phase Control Physical Models and Computer Simulation 

Demonstration 

Generally, when propagating in vacuo, a beam can be described 

with Fresnel diffraction equation as follows: 

t"*-exp[ 4T U:-y;)] 
U(x,y) = &',(*,,»•, )exp[4r i'^-^'r)] 

j/.z 

■ exp[ -2 7i; (-4-r x, ~ ~^z ^i )]d-ridv'i 
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(1) (.x, y, z)FWa{x],y[ )exp[ ^ {x] +>•?)] J^ 

where     A l.x. v. --)-**- ■ txp[jk <^+r )/2z]/;;.r ; f, }:      ±8 the Fourier 

transform; k is number of waves; U0(
xirYi)   and U(x,y), 

respectively, are the transmitting optical field distribution and 

the receiving optical field distribution.  Eq. (1) serves as the 

foundation for computer simulation. 

Beams generated by a laser device system are usually 

Gaussian beams, while beams transmitted by a laser device which 

operates on basement diaphragm can be expressed as: 

t'„lr, ) = ^—  Gaus l — )q [r..   —- )P \r  } 
b b ■     ,.R        ■    ■ (2) 

where   r? = -vI+.'?; Gaus (r,/6)=exp (-nl]/b-)-   q (r,, \/;.R) = exp {jnr\//.R): 

b is the beam radius; R is beam wavefront curvature radius and A 

is a complex constant.  For convenience in analysis, we will 

stipulate thereafter that:  /4=i;/>. (r.)    is the transmission 

system optical-pupil function, d is the optical pupil diameter, 



then 

and so on 

Beam phase control is intended to realize beam pointing, 

transfer, noncoherent and coherent synthesis changing the phase 

distribution of subaperture systems transmitting beam wavefront 
phase distribution. 

1) Beam Pointing 

(1) Vertical Pointing.  Vertical pointing signifies converging 

transmitted beams at a particular point on the transmitting 

optical pupil axial line.  It can be proved [5] that if the 

transmitting optical field wavefront is multiplied by a phase 
factor 

1     ill. 
rp uv v,) = ? (/-,, — ), -j = — - -j- 

and satisfies b/d=0.791, with "*" as the complex conjugacy sign, 

then transmitting optical field will turn into 

L\ (x,. v, ) = l\ (x,, y, ) • TP U,. v, ) ^ 4 j 

Here the  U*(x\,y\) transmitted optical field converges at 

distance z on the axial line.  TP(x2, y:) is referred to as 

vertical pointing factor. 

(2) Horizontal pointing (transfer).  Horizontal pointing refers 



to horizontal translation of the beam convergent point.  The 

Fourier transform is translational in nature [6] 

F{f (.v,, r, )exp[2 j- (£„*. -r^y, )] } = F[f (jc„ y, )] 

If the transmitted wavefront is multiplied by a phase factor 

TA  u-, • v, , x, . j, , A-0 . v0) = exp{ 2 nj [ -^Z5L *, + .iZ2i_ ,. i} 

then the transmitting optical field will become 

I'l(x,, v, ) = l\ (x,, v, ) TA (x, , v, , xt , _v, , x(l . v0) ( 5 ) 

Here the beam intensity at the point (x0, y0) has been translated 

to the point (x1# y^ . Therefore, TA (X] . V] f ^ t ;. f ^ ? vj is 

called the horizontal pointing factor. 
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Fig. 1. Beam vertical pointing  Fig. 2  Beam horizontal pointing 
iA, = i, = 0 I • (.v =.v.= - 10m ) 

A simulation demonstration of typical parameters: A=lum, 

z=1000km, and d=lm was conducted on a "Milky Way" computer with a 

rapid Fourier-transform algorithm (integrating point and sampling 

point were both selected as 26=64).  Figs. 1 and 2 show computer- 

plotted three-dimensional configurations of optical field 

intensities transmitted by a single-aperture system.  Fig. 2 

displays horizontal translation of the pointing point in Fig. 1 

(x^y^-lOm) .  The numbers in Fig. 2 suggest the peak intensity 

values (relative values).  It can be seen that the peak intensity 



values remain the same before and after horizontal pointing (the 

slight difference in the third decimal point is caused by 

algorithmic errors), which indicates that theoretical analysis 
conforms to calculations. 

2) Beam Synthesis 

Coherent and noncoherent beam power synthesis can be 

achieved at the target through phase control of individual 

subaperture systems transmitting the optical field wavefront.  As 

shown in Fig. 3, the system consists of 16  subapertures, and the 

related parameters are also indicated in the figure. 
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Fig. 3  Example of synthetic aperture system 

(1) Noncoherent synthesis.  All subaperture systems transmitting 

optical field intensity peaks are aimed and converged at the same 

point by using the foregoing beam pointing and transfer methods. 

Under this scenario, the peak intensity of the entire system is 

simply a stack of peak light intensities transmitted by 

individual subaperture systems.  Fig. 4 indicates how the branch 

aperture system transmitted optical fields converge on their 

respective axial lines.   Fig. 5 shows that individual 

subaperture systems transmitting optical fields have been aimed 

and converged on the same point, and beam power noncoherent 

synthesis was realized.    Obviously, the peak intensity in Fig. 

5 is 16 times that of individual subaperture systems as shown in 
Fig. 1. 
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Fig. 4. Noncoherent 
beam propagation 
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Fig. 5. Noncoherent 
beam synthesis 

(2) Coherent synthesis.  By changing the subaperture systems 

transmitting the optical field wavefront phases, all their 

optical fields are aimed and converged at the same point to 

achieve a coherent optical field stack instead of simple light 

intensity stack.  To realize coherent beam synthesis, it should 

be ensured that individual beams have the same phase or phase 

difference equal to 2rc-integer fold at their common pointing 

point.  Suppose subaperture central coordinates are xs(i,j), 

Ys(i/j)/ (i/j=l,2,3,4), subaperture systems transmitting the 

wavefronts U0ij(x1,y1) are multiplied by the vertical and 

horizontal pointing factors and then by the phase control factor 

TC=[x, (i,j),y(i,j)]=exp{(Ttj/Yz)r*;(/,j)+y;(i,j)}} [7] 
i.e. 

£/;,; (x, , y, ) = £/„, (*, , y, ) • 77>[.v, , y, , x,(i,j)  . y, U ,j)] ■ 

TA[X[ , y, , xt (i J) , y, (i J) ,  x, , y,] ■ TC [x, (/,;') , y, (ij) (6 

then the individual beams will converge at the common pointing 

point (xt, yt, z), and have the same phase or have a phase 

difference equal to 2rt integer fold, thus realizing coherent beam 

synthesis of individual beams.  The proof is given as follows. 



Here, r<*-. U, • y>) = — Gaus ( -^- )q (rn . _JL .)/».(/•„,) , 

rr., = [*,-*,('•;)]:+ [.»■,-v,(/.y)]:. 

7-/»!*, .v,. jr.ci.y). .M«.y)]=?•(/•„,. -4- ).  — =1 + J_ 

• TA[Xl,yt,Xi(i,j), ys(ij),   x„ y] = exp{2 nj[  *<-*;<''-'> v + J",-■»■,(/.7)  ., 
/. r v. r    • 'J ' 

The transmitted optical field of the entire system is 

■ -1 j -1 

It is known from Eq. (1) that the receiving optical field is 

U (x ,y)=A  (A , v , z )F \Y I U;u (x, , v, ) exp[ il (*^ vj)] l~ 

Substituting Eq. (6) for the foregoing equation, we obtain 

^    1 U(x,y)=A (x,y,z)F TV J- Gaus (-^ ) * (r _i_ )jP ,_ 

.,■(,„' )exp[2^( ^-^.O-.y) A. , + iV^ii^i ,. 

•exp[4f (x}Uj)+y](i,j))]txp[iL W+y*)]}^ 

= A (*'^> '{I I Gaus (iiL ) />, (ruj) exp c-^ } exp (_J7:A^ ) 

'eXp{T7 [<^,-^ 0-.7))a+0-,-J-, (/.;) )3]} exp [2^(4- *,+ -L-v )] i"^ 

4    4      1 
- A (x , v , r) F   £ Y Gaus ( ii- ) />; (r, j eXp [2*; ( -i- x. - T~   "aUS *T"^   ' r' lr'-' exP!^./ (~T^- X- -li- v. )1 

where ,   ^    j l when b±j=b, 
7       R~ 

+ T • 

C/ (*. v) = /i (x. v. r) F| V v i-  Gaus f lü- ) P  (r    it"71" 

= A (.v . v . r ) x 16 x F \ ■]-  Gaus ( -^   > P  < r  ) 1   '"' 
(.  * * '     \-Z^ 

<16 ■ /l (A. v,r) fi-J-Gaus (-^-) />, (r, ) ,  (A = A.,v=r 



Thus, th- peak light intensity of the receiving optical field it 

I U. . r..) =|£/ U, , v,)|== 16'- x| A  U . y , z) F \± Gaus ( JL 
b 

)P>^K:    a 

It is known, therefore, that beams achieve coherent 

synthesis at the point (xt,yt,z), and the peak light intensity is 

162 times that of the optical field transmitted by the single 

subaperture system at that point. 

Figure 6 shows the receiving optical field intensity 

distribution before the optical field wavefront transmitted by 

the subaperture system has been multiplied by the phase control 

factor     TC[xji,j) . •,,(/./)}     .  Owing to destructive 

interference, however, coherent beam synthesis has not been 

realized at the common pointing point, while the intensity peak 

values have been shifted to surrounding side bands.  On the 

contrary, Fig. 7 shows the receiving optical field intensity 

distribution after the optical field wavefront transmitted by the 

subaperture system has been multiplied by phase control factor 
TC[x(i.j).  v,   (/./)] .  Owing to supplementary 

interference, individual beams have achieved coherent beam 

synthesis at the common pointing point (xt,yt,z).  At the same 

time, intensities on the side bands have greatly reduced, while 

the peak intensity at the common pointing point (xt,yt,z) has 

greatly increased.  The numbers in the figure suggest that the 

peak intensity is approximately 256 times that of single aperture 

system (not exactly 256 times because of algorithmic errors). 
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Fig. 6.  Beam synthesis Fig. 7. Coherent beam 
(xt=yt=0) synthesis (xt=yt=0) 

3. Effect of Subaperture Piston and Tilt Errors 

The foregoing description is the ideal situation, without 

considering the effect of subaperture system phase modulation 

errors on synthesized peak intensity at the target spot. 

Therefore, we need to discuss the effect of piston and tilt 

errors caused by phase modulation. 

Suppose the synthetic aperture system has a total area S, 

composed of N subapertures, and each subaperture system has an 

area S/N=TID2/4, with D as its diameter.  For convenience in 

analysis, the far-field conditions (Fraunhofer's diffraction) 

have been taken into account.  Let us assume that the beams 

transmitted by the subaperture systems converge at distance z, 

then the far-field optical field distribution is 

U (x,y) = 

i k 
e>k: ■   exp[ -^ (x'+y1)}    r r 

J AZ 
U9ixx,y, 

X V 
• exp { - 2 nj ( —,— x   4- -f— y , ) }d x d y. 

I k e'k: ■   exp [ 4pr U: + y2)]    v 
 :-=■=    V 

J >. - „tl 
U.Jx, •>•,) 

exp { -2 nj ( -4— *, + -H- v, )} d x ,d,v. 
i-7 A. : 



Suppose ^0.^', >-'.) = (p/5)'/:exP{^[^ + *.U,-^)+c„0',-jJJ] }, 

where P is the total transmission power, (Xsn/Ysn) is the 

subaperture central coordinate, the Uon(x1/y1) phase term is the 

residual-error term, caused by subaperture system phase 

modulation, an is the piston error, bn, cn are tilt errors.  Again 

let us suppose an, bn and cn are independent Gaussian random 

variables that can satisfy the condition <an>=<bn>=0, 

<0 =c<>- (bl) = (c2„) = cr'f     , where <> is the ensemble average. 

The average light intensity distribution at the focal plane is 

</U..v)>=(/7S/:r:H£ d x, d v d*.dv,exp[-2jr./(-i- *,+ J— V])] 

•<exp [jkb„(x , -x 2)] ><exp [jkc.ij', -y2)) > 

+ I d.v.dj dx,d vjexp[-2^'(-i- x,+ i-j,)] 
/ : 

•<exp (/*fl.)Xexp (-jkam)Xcxp[jkbm U ,-*„)]> 

•  <txp[-jkbK ^-.-x,»))Xtxp\jk c,(y ,-)■„,)]> 

■  <exv[-jkcmij>z-y,m.)]> 

(p/sr-z^iY. ^x.dy. dxidy3expl-.2nj.(-i—.-xi+ J— v   )j 
i. .:   ■ /-z-       '   A: 

exp{-/:Vr[(x,-A-:)
:+0^-v;)2]/2}+£   [\dx,Ay, 

* c 
d*,d.v=exp \-2nj ( — x , + -±- y ,)] • exp (-*V; ) 

• exp { -k'al [(x,-x ,„) = ■-+ o- , -3-„ P +* (x , - x jm )' + 0'. - v ,m ); ]/2 } 

10 



by coordinate conversion, we obtain 

</ (x,y))=(P/S;;-:')<4SB pdpexp (-k:o + D2p2/2) ■  [cos"'(p)' 

-pN/l -n-  ]J0(kDrp/z)+4rrzxp (-k2 d 

y exp [ - _ rj I —  -v -  '    . • 
/. - /. - v)] 

,n/: 

r,dr, exp {-k2c\r\/2 ) x J 0(k rr ,/z )] 2 

where r2=x2+y2,   j0 is  the  zero-valent Bessel  function.     Obviously 

</ (())>= (P/S;.:::)14SD: 
pdpexp {-k:alr2:2) [cos '   { p ) 

./>/: 
P\'l-p2  ]+4jr:exp l-k'-cl) (K'--K) A,exp (-A-Vfr;,/2)d/-,]-} 

finally 

</(0 )y = (P/S;.2:2) {[&/{Nk2a2D2)] [1-exp (-k2 a2-D:/4) 

■ {10 (fc :
ff \D V4 ) + /, (Jfc Vf 0 V4)] ] -K64/ (.V :A: Vi D4) ] 

• (S2-N) exp C — /c =-tj = ) [1-exp ( -k -ff- D2, 8 )] ;; 

where I0 and ^ are, respectively, the zero-valent and monovalent 
updated Bessel functions [8]. 

11 



Let P0-a0/A,PT=aTD/A, and divide <I(0)> by its diffraction limit 

value: P/SA2z2, we obtain the Strior ratio 

/,/=(2//V^P=){1_exp(_7r:/3:) 

•[/0U
:/>-;)+-/,U:/>r: )j ; 

+ 4[0V-l)/(JV7^)]exp(_47r:jP:) (8) 

•[1-exp (_n.2/>^/2)] : 

Obviously, Irel represents the effect of the subaperture system 

phase modulation error (P0, Pr) on the synthesized peak intensity 

on the focal plane, generally Irel<l.  Fig. 8 shows the variation 

curve of Irel with Pr to different P0 values in the case of N=16, 

which was obtained with numerical computations on Eq. (8). 

Fig. 8 indicates that the larger the P0 and Pr (the larger 

the phase modulation piston and tilt errors), the greater the 

decrease that the synthesized peak intensity can be subjected to. 

Fig. 8 Variation of Irel with Pr 

12 



4. Conclusions 

In this paper, we discussed the concept of optically- 

synthetic aperture system beam wavefront phase control in vacuo, 

and we carried out a corresponding numerical simulation on a 

"Milky Way" computer with rapid Fourier transform.  Finally, we 

also made an initial analysis and calculation of the effect of 

subaperture system phase modulation errors.  These studies, 

however, may be quite tentative, without taking actual 

atmospheric effects into consideration.  Therefore, further 

studies are scheduled to be undertaken on beam wavefront phase 

control under the effect of various linear and nonlinear factors 
in the atmosphere. 
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Wavefront Reconstruction from Wavefront Slope 

Wang Kaiyun 

(Chinese Academy Of Engineering Physics) 

Abstract:  Based on the model of Southwell et al., we 
introduce two kinds of zonal wavefront reconstruction 
models in which subapertures are arranged in a geometry 
of equilateral triangle.  The least-squares solution, 
the minimum norm solution, and the matrix iterative 
solution are given.  The model analysis is carried out 
on the circular aperture, which is often used by many 
researchers.  Error propagation properties for the two 
models are evaluated and compared with Southwell's 
model. 
Key Words wavefront reconstruction, zonal method, 
model method, successive over-relaxation method 

1. Introduction 

Adaptive optics systems have widespread application 

prospects in improving beam quality and imaging quality.  In 

principle, this system serves to make advance compensation for 

wavefront errors, which includes wavefront detection, wavefront 

reconstruction processing and wavefront deformable mirror 

simulation. 

This paper is devoted to an evaluation of wavefront phases 

with a set of discrete phase slope information, i.e. wavefront 

reconstruction.  In such case, evaluation is made either of phase 

values in local zones or of aperture function coefficients, 

depending on the needs.  Similarly, there are two evaluation 

methods: zonal method and model method. 

Southwell [1] proposed three major factors in comparing 

14 



various reconstruction models, namely: (1) compatibility: whether 

or not a particular model fits the slope measurement mode given 

by a detector; (2) numerical complexity: whether or not there is 

a problem with convergence, computer storage capacity, and 

computation velocity and (3) error propagation: what effect slope 

measurement noise may have on phase evaluation. 

Based on these three principles, this paper gives an 

analysis and computations for reconstruction models. 

The retarders of deformable mirrors that are used to correct 

wavefront distortion can be arranged in different ways.  As far 

as the wavefront reconstruction model method is concerned, 

detector subapertures can be arranged in the same way as, or in a 

different way from the retarders, while the zonal method reguires 

both in the same arrangement.  This paper limits its attention to 

two subaperture arrangements involved in the zonal method: the 

sguare arrangement and the equilateral triangle arrangement. 

For the square subaperture arrangement, Southwell [1], 

Hudkin [2] and Fried [3] advanced their respective reconstruction 

models.  On this basis, two additional reconstruction models are 

introduced in this paper involving the equilateral triangle 

arrangement.  Just as in the Fried [2] and Southwell [1] models, 

here the x- and y- direction slope measurement rates are 

coincident (to suit the Hartmann sensor).  One of the new models 

introduced is even superior to Southwell's in terms of error 

propagation properties, partly because sampling of the 

equilateral triangle subaperture arrangement is even more uniform 

than that with the square arrangement. 

2. Wavefront Reconstruction Models 

Fig. 1 shows two detector subaperture arrangements in a 

circular aperture with each subaperture capable of measuring the 



x- and y-direction slopes in that particular zone at the same 

time.  Both arrangements are applicable to the Hartmann sensor. 

When the center of a given subaperture lies inside the 

aperture, the aperture is considered to enclose that subaperture. 

Of course, such consideration may not conform to reality.  if 

subapertures are all required to be arranged inside an aperture, 

such requirement can be easily achieved by appropriately reducing 
their diameters. 

Three wavefront reconstruction equations can then be derived 
for the two arrangements as shown in Fig. 1. 

.VI jl 

Fig. 1. Detector 
Horizontal lines 
while plumb line 
circular points 
evaluated, (a) s 
Southwell [1]; ( 
arrangement with 
and u-direction 

subaperture arrangements. 
mark the x-direction slope, 

s mark the y-direction slope; 
are the phase points to be 
quare arrangement proposed by 
b) equilateral triangle 
points located by x- 

ordinal numbers. 

1) Southwell Equation—Model I 

As seen in Fig. 2,   slope measurement data and phases to be 

evaluated are all located on subaperture centers.  Owing to the 

small value of h, the following linear relations can be taken as 
established in any subzone 

Jtf 



T ^-., + s;.,) = -j- (<D1+1>-<J> )  _L ,p   ,., i ,. 

where $ is phase, S is slope. 

According to this model, slopes inside zones keep changing 

and therefore, the phases to be evaluated will change by 

parabolically. 

2) Model II 

In Fig. 1(B), equations similar to Eq. (1) can be easily 

derived in the x- and u-directions from model I. Referring to 

Fig. 3, we obtain 

O     . *  
T     -f -*- 

* .. <!>,+ ,.,,, 

♦ -*- 
h \   i 
1   ' + 

1> . 

-f- -*- \; 
jr 

Fig- 2. Fig. 3. 

Here, we have changed only the subaperture arrangement, while the 

x- and y-direction slopes are still the measurement targets of 

subapertures.  The slope in the u-direction can be solved through 

the following relations: 

:    : (3) 

3) Model III 

In the equilateral triangle arrangement of subapertures, 

their distribution is symmetric to the x-, u- and y-axes as shown 

in (B) of Fig. 1.  Considering all these axes, the following 

relation can be derived from Fig. 4: 

n 



y(5?+.J.1 + 5?,)=|-((DI.1.y.1-01. 

where the slope in the v direction is 

(4) 

r-ls--^-* (5) 

■v- ••■ +-*■ 
\ I / 

Fig. 4 

3. Minimum Mathematical Power Solution 

All coupled equations similar to (1), (2) and (4) can be 

listed respectively in the entire aperture, which can be 

expressed with the following matrix: 

D£=AO 
(6) 

where S is a vector that includes all slope information (in the 

x- and y-directions), while ÖT is the vector which includes all 

phases to be evaluated.  Suppose the number of subapertures 

located on aperture diameter is N, then the number of A elements 

is directly proportional to N4, the number of D elements is two 

times that of A, and both A and D are extremely sparse matrixes. 

i? 



By multiplying both sides of (6) by A+ (transposed matrix of 

A) on the left, we obtain 

(ArA)<D=A-DJ (7x 

This is a linear coupled equation.  Generally, by multiplying 

both its sides by the (A+ A) reverse matrix on the left, the 

standard minimum mathematical power solution can be obtained.  In 

fact, however, standard minimum mathematical power solution can 

not be obtained since (A+ A) is an ill-conditioned matrix, i.e. 

its order is not complete, which does not mean that we cannot 

acquire a meaningful wavefront from Eq. (7), but it means that we 

cannot use the standard complementary technique. 

1) Standard Minimum Mathematical Power Solution 

Since (A+ A) is an ill-conditioned matrix, we need to 

transform the matrix A structure.  The method used is to take a 

phase on a certain point of the wavefront as zero, and thereby, 

one column has been removed from matrix A.  Then, the remaining 

matrix A,, has a complete order and admits the use of the of 

standard minimum mathematical power solution: 

(8) 
O=[A;AP]-'A;D5 

2) Minimum Mathematical Power Minimum Norm Solution 

Although (A+ A) is an ill-conditioned matrix, augmented 

matrix Ag can replace A so as to make its order complete, by 

which the minimum mathematical power minimum norm solution can be 

obtained. 

By removing the average phase from the wavefront phases to 

make the phase mean value equal to zero, the augmented matrix can 



be introduced 

*■■&!        °.-[£] 

where As is a line or matrix with element value equal to 1, Ds is 

a line or matrix with element value equal to 0.  Subsequently, 

(A+ Ag) is no longer ill-conditioned, therefore 

O=[A; AJ-'A/D,£=[A; A,] 'A*D£ (9) 

If the wavefront reconstruction computations are made with 

(8) and (9), computer storage capacity is required to be at least 

2xN*, where N is the number of subapertures on the aperture 

diameter.  And when N exceeds a certain limit, it will be 

difficult for the computer to meet the internal storage 

requirement set by the matrix solution.  Under this scenario, the 

matrix iterative method can be used to solve Eqs. (8) and (9). 

4. Matrix Iterative Solution 

Iterative equations are generally solved by listing the 

nonzero matrix elements in Eq. (7).  For convenience in editing 

programs, let us try a different method to solve the iterative 
equations. 

+ i.i+\ 

+   +■■+., 

+ u- 

Fig. 5.  Principal map in setting up 
the iterative equations of model I 

In the first place, the iterative equations of model I are 
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setup.  By studying Fig. 5, we obtain the following four 

equations: 

<!>,.,.,-«>,, = — (Slu+S> (a) s 

O^-cD^.-y^ + ^.J  (b) 
(10) 

In the foregoing equations, let 

-(a) + (b)-(c) + (d), 
we obtain 

-sf^ + s;.,. cv, = 3„+3,. 

«,,1>,.,- (*,-,., + *,-,,■ + <!>,„., +<!),,.,)= 4 (G;,.,-(?;„_,+C^_,-<?*_,,.)   (i!) 

where weighted coefficient 

a.-.,-= *,.,.; number of neighboring phase points (2, 3, 4) 
(12) 

If the four neighboring phase points around *i(j are all present, 

S can be used to replace G.  When a.particular neighboring point 

phase of Qiti    is actually missing, « and S at that point can be 

taken as zero. 

In Eq. (11), let 

<P =   (<1\_ -c _(I),.,- -^ 

'u-, -6 

Equation (11) can be simplified as 
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<D. = 4> -ß '7. 
(13) 

the above equation is the basis for the iterative algorithm.  To 

speed up computations, the successive over-relaxation method 

(hereinafter SOR) with faster convergence was used in this paper, 

whose iterative equation can be expressed as 

(14) 
® " = <D1'.7,-i-[<ni

,.""^)8I./a,,-<D1
,.7'](ü 

where m is the iteration times, in'"" is phase value at (i,j) 

obtained through m iterations, <t>]"' is the mean value needed 

for the m+l-th iteration.  Attenuation factor w is 

<oz 
1 -sin[rw/(-V- 1 )] (15) 

;./ + ■!     / + I. / + I 

' -: •'  '. /  / +1. / 

i / 

Fig. 6  Principle map of setting up 
iterative equations of model III 

Since model II very much resembles model I, the model II 

iterative equation conforming to Eq. (14) in form can be acquired 

by replacing the y-axis by the u-axis in model I, during which 

the attenuation factor is 

1.0 = 
1 -rsin[;t/(3. 7;V; 

(16 
where coefficients 3 and 7 in front of N are empirical values 

obtained through a large number of computations. 
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The iterative solution of model III should take into 

consideration not only the x- and u-axes, but also v-axis as seen 

in Fig. 6.  If Eq. (14) is used to express the model III 

iterative solution, then the implications of individual terms are 

^-,= ((i),-l, + <t),-l,-a>,,.,-<D:,_l-cD,.U;.l-rcpi_i/_i)/ai/      (17) 

x-., = <D,-., number of neighboring phase points (2,3,4,5,6) (18) 

(19 

The empirical equation of w is 

(Ü = 

I-rsin{w/[1.325(,V-l )]} (20) 

5. Error Analysis 

There are two error sources in carrying out wavefront 

reconstruction: one is algorithmic precision, and the other is 
measurement errors. 

Algorithm precision signifies whether or not the minimum 

mathematical power process can precisely reconstruct the 

wavefront phases of random shapes, which virtually relies on the 

number of sample points on the wavefront shapes.  Given the same 

number of radial subapertures, total subaperture number in models 

II and III is larger than that in model I in most cases, which 

will be favorable for increasing slope data sampling density and 

further, for increasing algorithmic precision. 
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On the other hand, wavefront errors caused by measurement 

errors depend on error propagation, which is expressed by noise 

coefficient C.  C can be solved from the reconstruction equations. 

Let the slope and phase errors be respectively, a  and 8, i.e. 

S=S0±a (2l) 
O =(Po3: e 

(22) 
According to Southwell's equation, we obtain 

<e:>     1 
— > > B:. 

(23) 
C= A£^_ =__J__vY/?-" 

where <e2> is the mean square phase error, <a2>  is the mean 

square slope error, R is aperture radius, matrix B is 

B=(A;A,)-
,
A*D (24) 

An analysis will be given below of the error propagation 

performance of individual models in terms of Eq. (23). 

First, compare the noise coefficients of the circular and 

square apertures.   Since the total number of subapertures and 

number of radial subapertures N in a circular aperture do not 

affect mathematical relations, the total number of subapertures 

was taken as abscissa.  Fig. 7 shows the computations over model 

I with the minimum mathematical power minimum norm method, in 

which the circular aperture displays a rather low noise 

coefficient and it obviously appears more advantageous for 

wavefront reconstruction than the square aperture under the same 
number of subapertures. 
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Fig. 7  Noise coefficient of model I 
CA is square aperture while CB is 
circular aperture; abscissa is total 
subaperture number; ordinate is noise 
coefficient (just as in Figs. 8 and 9) 

Secondly, the compare error propagation performance of the 

foregoing three reconstruction models on the circular aperture as 

shown in Fig. 8.  In this case, related data were also obtained 

with the minimum mathematical power minimum norm method, but due 

to the limitation of computer storage capacity (internal 

storage), the total subaperture number could not extend to zones 

above 421.  Because of algorithmic defects, noise coefficient of 

model II turned out to be higher than that in the other two 

models.  Model III exhibited a more uniform data sampling layout 

than model I, and the x-, y- and u-axes considered in its 

algorithm showed perfect symmetry, which led to the lowest noise 

coefficient and the best error propagation properties. 

0.55 

C.40 

O 

C.?5 

N x9C 

Fig. 8 Noise Coefficient Comparison between 
Individual Reconstruction Models. CA, CB and 
C respectively represent models I, II and III 

as 



Fig. 9 Effect of Different Solutions on 
Noise Coefficient (Model III). CA and CB 
are two standard minimum mathematical 
power solutions while C is minimum 
mathematical power minimum norm solution 

Lastly, let us investigate the two minimum mathematical 

power solutions.  Fig. 9 shows that CA and CB are the noise 

coefficients of the two minimum mathematical power solutions, the 

zero phase of CA is located on the subaperture distribution angle 

while that of CB is selected at the aperture center, and C is the 

noise coefficient of the minimum mathematical power minimum norm 

solution, which is, in fact, a minimum mathematical power 

solution with phase mean value equal to zero.  The minimum 

mathematical power minimum norm solution shows the lowest noise 

coefficient, and the difference between CA and CB is more than 

two times than between CB and C.  During computations by using 

the iterative method, a certain phase has to be subtracted from 

all computed values with each iteration.  This phase value is, in 

the case of CA, CB and C, respectively, a mean value of the phase 

on the subaperture distribution angle, the phase in the aperture 

center, and all phases on the aperture that appears more complex 

in computations.  Therefore, to meet both computation precision 

and computation speed, it is desirable to use the iterative 

method with zero phase selected at the aperture center. 

6. Comparison between Matrix Solution and Iterative Solution 

X* 



Them matrix solution differs from the iterative solution 

(SOR method)not only as to algorithm, but as to the computation 

load and storage space needed as well.  Eqs. (9) and (14) 

indicate that the two indices in the former are both directly 

proportion to N4, while the storage space required in the latter 

is directly proportional to N2, and its computation load is 

associated with not only N, but also with the number of 

iterations.  Table 1 shows that the number of iterations is 

approximately directly proportional to N, and total computational 

load for one iteration is directly proportional to N2, and 

consequently, the total computational load for the iterative 

method should be directly proportional to N3.  Table 1 also shows 

that when N is small, the computation time required by the 

iterative solution is longer than the serial computation time 

needed for the matrix solution, but when N surpasses 9, the 

relation becomes the opposite.  However, in the case of parallel 

computations, the matrix solution can increase the computational 

speed by two orders (which is determined by computer 

parallelism), for which the SOR iteration method is by no means a 
match. 
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Table 1  Comparison between Iteration Solution and Matrix 
Solution in Terms of Computational Load 

The reconstruction model is Southwell's [1], with its wavefront 
mode as W=2.3717 (x2-y2)/a2+6xy/a2), where a is half the 
side length of the aperture.  In the table, N is number of radial 
subapertures; M is the number of iterations; Ti  is the computer 
time for the iterative solution; Ts is the serial computer time 
for matrix solution; Tp is the parallel computer time for the 
matrix solution.  The iterative precision is 0.001, a=l. 

.V M T, I         TS 1          T, 1    T,/Ts rS/T» 
4 0.0019 i    0.00034 0.00030 5.44 1.13 

4 8 0.0058 0.00228 0.00035 1      2.55 6.53 
6 15 0.0175 0.01058 0.00041 1.65 25.55 
8 22 0.0398 0.03412 0.00060 1.17 57.04 

10 28 0.0741 0.08074 0.00102 0.92 79 23 r 34 0.1251 0.17150 0.00212 0.73 80.80 
14 40 0.1951 0.31036 0.00308 0.63        ! 100 90 
16 45 0.2811 0.54034 0.00469 0.52        | 115.27 
18 51 0.4000 0.84696 0.00769 0.47        | 110.13 
20 56        j 0.5353 1.28544 0.01228 0.42 104.65 
30 81 1.6980 i 
50       | 125        | 
 -+■ 

7.1758 
'                      i 

100 2!^        i 49.4981 .' 

7. Conclusions 

The three reconstruction models proposed in this paper show 

no great difference in error propagation properties, among which, 

model III proves to have the best performance for its excellent 

uniformity of data sampling as well as for its algorithm that 

takes more factors into account. 

The circular aperture is more advantageous than the square 

aperture in improving reconstruction precision probably because 

the former is better than the latter as to symmetry of 

subaperture arrangement. 
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Different solutions of the matrix equations produce a rather 

strong effect on the noise coefficient.  The minimum mathematical 

power minimum norm solution turns out to have the highest 

precision; next comes the standard minimum mathematical power 

solution with zero phase point selected at the aperture center, 

while the standard minimum mathematical power solution with zero 

phase point selected on subaperture distribution angle is the 

poorest. 

The parallel computational method can greatly increase the 

computational speed when used for the matrix solution in the case 

of a small number of subapertures.  Yet when the subaperture 

number is large, an ordinary computer can by no means meet the 

storage load (internal storage) required under the matrix 

solution and in that case, the matrix iteration method must be 

used.  To satisfy both computational precision and computational 

load, the zero-phase point might as well be selected at the 

aperture center for each iteration during iterative computations. 
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Preliminary Experiments of Laser Beam Transmission with Adaptive 
Optics Compensating Atmospheric Turbulence 

Jiang Wenhan, Yan Peiying, Dai Zichang and Li Bingcheng 

(Institute of Optics & Electronics, Chinese Academy of Sciences 

Abstract:   In this paper, the initial experimental 
results of laser beam transmission with the adaptive 
optics technique for compensating atmospheric 
turbulence is reported.  With adaptive optics 
correction, the peak intensity at target plane is about 
3.5 times of the peak intensity without correction. 

Key Words:  laser beam transmission, adaptive optics, 
atmospheric turbulence 

When a laser beam propagates through the atmosphere, it 

tends to produce wavefront errors due to atmospheric turbulence. 

As a result, its divergence angle becomes much larger than the 

diffraction limit and its average irradiance becomes much lower 

than the value within the diffraction limit.  Generally, when a 

coherent laser beam with wavelength A, emitted from a 

transmission telescope with a diameter D, passes through the 

atmosphere with coherent length Yo and arrives at a target with a 

distance L, its flare area is A, which, within the diffraction 
limit, is 

Aideal =(AL/D)
2 (1) 

and can increase to 
A=().L/D)-[l + {D/r0y-] (2) 

where the unit of Aideal and A is m
2, while other parametric units 

are all m.  Correspondingly, the irradiance at the target will 

decrease to l/[l+(D/r0)
2] times the value within the diffraction 
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limit.  In this case, an adaptive optics system, by performing 

real-time correction of wavefront errors created by atmospheric 

turbulence, can make the flare at the target approach the 
diffraction limit. 

Our recent preliminary experiment on laser transmission with 

an adaptive optics system [1] for atmospheric turbulence 

compensation demonstrated that the trial application of adaptive 

optics to a laser transmission system was successful. 

Our experimental system is shown in Fig. 1.  The system was 

mounted on top of a building, while a beacon light-source and a 

receiving target surface were installed on top of another 

building.  The beacon light-source was a continuous 2.5mW He-Ne 

laser device.  The horizontal distance between the beacon light- 

source and the experimental system was 340m, the horizontal 

height was approximately 15m, and atmospheric coherent length 

between them Yo varied from 5 to 10cm.  In the adaptive-optics 

system, a transverse shear interferometer was used as the 

wavefront detector to detect wavefront errors coming from the 

beacon light-source, which, after electrical processing, were 

deformed with a 21-unit deformable reflector (wavefront 

corrector) to compensate for the beacon beam wavefront errors 

(the system band was approximately 300Hz wide, i.e. 

enough to perform real-time compensation for atmospheric 

turbulence within 300Hz).  When the transmitted laser beam passed 

through the deformable reflector and deflected from the optical 

path, it produced a wavefront conjugated with the erroneous 

wavefront caused by atmospheric turbulence.  The erroneous 

wavefront, on passing through the atmosphere and reaching the 

target surface, was restored to the ideal wavefront and achieved 

compensation for the atmospheric turbulence (the target surface 

was placed at approximately 2m behind the beacon light-source, 
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where two beams were approximately 1cm apart,  located, within 

equal halo angle).  Light spots on target surface 

were photographed with a CCD camera; energy distribution on 

target surface was analyzed and displayed with a computer and a 
TV image data collection system. 

The experimental results are shown in Figs. 2 and 3.  Fig. 2 

displays the uncorrected target surface energy distribution, 

while Fig. 3 shows the target surface energy distribution after 

correction.  It can be seen that target surface flares appear 

blurred prior to correction, consisting of numerous light spots, 

while after correction, the diffraction limit Ali flares appear 

distinct on the target surface.  In terms of the three- 

dimensional energy distribution on the target surface, the 

corrected peak energy (light intensity) increases to 

approximately 3.5 times the value prior to correction, i.e. the 

energy (light intensity) distribution is close to the diffraction 
limit. 

This research project is planned to continue. 
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Fig. 1. Experimental.system 

Key: 1. Transmitted laser beam; 
2. Beacon laser beam; 3. Deformable 
reflector; 4. High voltage 
amplification; 5. Amplified correction 
circuit; 6. Wavefront reconstruction; 
7. Beam expander; 8. Transmitting 
laser device; 9. Shear interferometer; 
10. Phase detection; 11. Optical path 
for checking turbulence correction 
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(a) ft (b ) -Ak'itv.1 

Fig. 2   Energy Distribution on target surface 
before correction 

(a) Image points; (b) Three-dimensional distribution 
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Fig. 3. Energy distribution on target suriace alter 
correction 
(a) Image points; (b) Three-dimensional distribution 
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