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PREFACE 

This volume contains selections from among the presentations at 
the Thirteenth International Workshop on Maximum Entropy and 
Bayesian Methods- MAXENT93 for short- held at the University of 
California, Santa Barbara (UCSB), August 1-5, 1993. This annual 
workshop is devoted to the theory and practice of Bayesian probability 
and the use of the maximum entropy principle in assigning prior 
probabilities. Like its predecessors, MAXENT93 attracted researchers 
and scholars representing a wide diversity of disciplines and 
applications. These included physicists, geophysicists, astronomers, 
statisticians, engineers, and economists, among others. Indeed 
Bayesian methods increasingly compel the interest of any who would 
apply scientific inference. The impressive successes, so evident in the 
proceedings of the past workshops, when adherence to Bayesian 
principles replaces popular ad hoc approaches in problems of 
inference, continue. Many are reported in this volume. It is perhaps 
indicative of the growing acceptance of Bayesian methods that the 
most prominent controversy at the thirteenth workshop was not a 
Bayesian- frequentist confrontation but rather a disagreement over the 
suitability of using an approximation in the Bayesian formalism. 

Acknowledgments and thanks are due the several organizations and 
many individuals who made the workshop possible. The United States 
Navy Office of Naval Research (ONR) continued its support of the 
workshop through its grant N00014-93-1-0583, which was further 
supplemented by the United States Army Research Office (ARO). 
Kluwer Academic Publishers provided startup funding in the early 
stages of workshop planning. Special thanks are due Dr. Rabinder 
Madan of ONR, Dr. William Sander of ARO, and Dr. David Larner of 
Kluwer for their support. Thanks are also due the University of 
California, Santa Barbara, which provided its attractive facilities. 
Support of the UCSB College of Engineering and of the Departments of 
Physics and of Statistics and Applied Probability is acknowledged with 
gratitude. I am particularly indebted to my former colleagues in the 
Department of Electrical and Computer Engineering, Drs. Hua Lee and 
Glen Wade, for their invaluable assistance as co-organizers and co- 
hosts. 

As has been the practice at recent workshops, MAXENT93 began 
with a series of tutorials on Bayesian methods and their applications. 

ix 



PREFACE 

Thanks are due to Drs. C, Ray Smith, Anthony Garrett, Ali Mohammad- 
Djafari, Tom Loredo, Larry Bretthorst, and John Skilling for their 
efforts in presenting the tutorials and especially to Dr. Bretthorst for 
detailing his tutorial for presentation as the lead article in this volume. 

Finally, I wish to thank the reviewers for their efforts and the many 
authors for their contributions and their patience with the protracted 
editorial process. Although many authors supplied camera ready copy, 
it was necessary, in the interest of consistency of presentation, to re- 
typeset many contributions. I apologize for any typographical errors or 
omissions which may have resulted from this process. The help of 
Drs. Larry Bretthorst and Gary Erickson and of Ms. Mary Sheetz in the 
re-typesetting is gratefully acknowledged. 

Reston, VA, USA Glenn Heidbreder 
November 1995 



AN INTRODUCTION TO MODEL SELECTION 
USING PROBABILITY THEORY AS LOGIC 

G. Larry Bretthorst 
Washington University 
Department of Chemistry 
1 Brookings Drive 
St. Louis, Missouri 63130 

ABSTRACT. Probability theory as logic is founded on three simple desiderata: that degrees of 
belief should be represented by real numbers, that one should reason consistently, and that the theory 
should reduce to Aristotelian logic when the truth values of the hypotheses are known. Because 
this theory represents a probability as a state of knowledge, not a state of nature, hypotheses such 
as "The frequency of oscillation of a sinusoidal signal had value w when the data were taken," or 
"Model x is a better description of the data than model y" make perfect sense. Problems of the 
first type are generally thought of as parameter estimation problems, while problems of the second 
type are thought of as model selection problems. However, in probability theory there is no essential 
distinction between these two types of problems. They are both solved by application of the sum 
and product rules of probability theory. Model selection problems are conceptually more difficult, 
because the models may have different functional forms. Consequently, conceptual difficulties enter 
the problem that are not present in parameter estimation. This paper is a tutorial on model 
selection. The conceptual problems that arise in model selection will be illustrated in such a way 
as to automatically avoid any difficulties. A simple example is worked in detail. This example, 
(radar target identification) illustrates all of the points of principle that must be faced in more 
complex model selection problems, including how to handle nuisance parameters, uninformative 
prior probabilities, and incomplete sets of models. 

Introduction 

A basic problem in science and engineering is to determine when a model is adequate to 
explain a set of observations. Is the model complete? Is a new parameter needed? If the 
model is changed, how? Given several alternatives, which is best? All are examples of the 
types of questions that scientists and engineers face daily. A principle or theory is needed 
that allows one to choose rationally. Ockham's razor [1] is the principle typically used. 
Essentially. Ockham's razor says that objects should not be multiplied needlessly. This 
is typically paraphrased: "When two models fit the observations equally well, prefer the 
simpler model." This principle has proven itself time and time again as a valuable tool of 
science. From the standpoint of probability theory, the reason that Ockham's razor works 
is that simpler models are usually more probable. That simpler models are usually more 
probable was first argued by Jeffreys [2] and later explicitly demonstrated by Jaynes [3], 
Gull [4], and Bretthorst [5-8]. However, probability theory tempers Ockham's razor and 
will allow more complex models to be accepted when they fit the data significantly better 
or when they contain parameters that have higher initial probability. 

This paper is a tutorial on model selection. In it the procedures and principles needed to 
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2 G. L. BRETTHORST 

apply probability theory as extended logic to problems of model selection will be discussed 
in detail. Primarily these procedures and principles will be illustrated using an example 
taken from radar target identification. In this example we will illustrate the assignment of 
probabilities, the use of uninformative prior probabilities, and how to handle hypotheses 
that are mutually exclusive, but not exhaustive. While we attempt to explain all of the 
steps in this calculation in detail, some familiarity with higher mathematics and Bayesian 
probability theory is assumed. For an introduction to probability theory see the works of 
Tribus [9], Zellner [10], and Jaynes [11]; for a derivation of the rules of probability theory 
see Jaynes [11,12], and for an introduction to parameter estimation using probability theory 
see Bretthorst [13]. In this tutorial the sum and product rules of probability theory will be 
given and no attempt will be made to derive them. However, as indicated in the abstract, 
if one wishes to represent degrees of belief as real numbers, reason consistently, and have 
probability theory reduce to Aristotelian logic when the truth of the hypotheses are known, 
then the sum and product rules are the unique rules for conducting inference. For an 
extensive discussion of these points and much more, see Jaynes [11]. 

1    The Rules of Probability Theory 

There are two basic rules for manipulating probabilities, the product rule and the sum 
rule; all other rules may be derived from thest^Jf A, B, and C stand for three arbitrary 
hypotheses, then the product rule states 

P(AB\C) = P(A\C)P(B\AC), (1) 

where P(AB\C) is the joint probability that "A and B are true given that C is true," 
P{A\C) is the probability that UA is true given C is true," and P(B\AC) is the probability 
that "B is true given that both A and C are true." The notation "|C)" means conditional 
on the truth of hypothesis C. In probability theory all probabilities are conditional. The 
notation P(A) is not used to stand for the probability for a hypothesis, because it does not 
make sense until the evidence on which it is based is given. Anyone using such notation 
either does not understand that all knowledge is conditional, i.e., contextual, or is being 
extremely careless with notation. In either case, one should be careful when interpreting 
such material. For more on this point see Jeffreys [2] and Jaynes [11]. 

In Aristotelian logic, the hypothesis ".A and B" is the same as "B and A" so the 
numerical value assigned to the probabilities for these hypotheses must be the same. The 
order may be rearranged in the product rule, Eq. (1), to obtain: 

P{BA\C) = P(B\C)P(A\BC), (2) 

which may be combined with Eq. (1) to obtain a seemingly trivial result 

P(A\Rn   - P(A\C)P(B\AC) P(A\BC) j^ . (3) 

This is Bayes' theorem. It is named after Rev. Thomas Bayes, an 18th century mathemati- 
cian who derived a special case of this theorem. Bayes' calculations [14] were published 
in 1763, two years after his death. Exactly what Bayes intended to do with the calcula- 
tion, if anything, still remains a mystery today. However, this theorem, as generalized by 
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Laplace [15], is the basic starting point for inference problems using probability theory as 

logic. 
The second rule of probability theory, the sum rule, relates to the probability for "A 

or £." The operation "or" is indicated by a + inside a probability symbol. The sum rule 
states that given three hypotheses A, B, and C, the probability for "A or B given C" is 

P{A + B\C) = P{A\C) + P{B\C) - P(AB\C). (4) 

If the hypotheses A and B are mutually exclusive, that is the probability P( AB\C) is zero, 
the sum rule becomes: 

P(A + B\C) = P(A\C) + P(B\C). (5) 

The sum rule is especially useful because it allows one to investigate an interesting hypoth- 
esis while removing an uninteresting or nuisance hypothesis from consideration. 

To illustrate how to use the sum rule to eliminate nuisance hypotheses, suppose D 
stands for the data, w the hypothesis "the frequency of a sinusoidal oscillation was w," 
and B the hypothesis "the amplitude of the sinusoid was f?." Now suppose one wishes to 
compute the probability for the frequency given the data, P(u\D), but the amplitude B is 
present and must be dealt with. The way to proceed is to compute the joint probability for 
the frequency and the amplitude given the data, and then use the sum rule to eliminate the 
amplitude from consideration. Suppose, for argument's sake, the amplitude B could take 
on only one of two mutually exclusive values B G {Bi,B2}. If one computes the probability 
for the frequency and (Bi or B2) given the data one has 

P(u\D) = P(w[Bi + B2)\D) = P(UJB1\D) + P(uB2\D). (6) 

This probability distribution summarizes all of the information in the data relevant to the 
estimation of the frequency u. The probability P{u\D) is called the marginal probability 
for the frequency u> given the data D. 

The marginal probability P(u\D) does not depend on the amplitudes at all. To see this, 
the product rule is applied to the right-hand side of Eq. (6) to obtain 

P(u\D) = P(B1\D)P(u\BlD) + P{B2\D)P{u\B2D) (7) 

but 
P(B1\D) + P(B2\D) = l (8) 

because the hypotheses are exhaustive. So the probability for the frequency w is a weighted 
average of the probability for the frequency given that one knows the various amplitudes. 
The weights are just the probability that each of the amplitudes is the correct one. Of 
course, the amplitude could take on more than two values; for example if B G {#i, • • •, Bm}, 
then the marginal probability distribution becomes 

m 

P(u\D) = £ P^BjlD), (9) 
j=i 

provided the amplitudes are mutually exclusive and exhaustive.   In many problems, the 
hypotheses B could take on a continuum of values, but as long as only one value of B is 
realized when the data were taken the sum rule becomes 

P{u\D) = JdBP(uB\D). (10) 
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Note that the B inside the probability symbols refers to the hypothesis; while the B appear- 
ing outside of the probability symbols is a number or index. A notation could be developed 
to stress this distinction, but in most cases the meaning is apparent from the context. 

The sum and integral appearing in Eqs. (9,10) are over a set of mutually exclusive 
and exhaustive hypotheses. If the hypotheses are not mutually exclusive, one simply uses 
Eq. (4). However, if the hypotheses are not exhaustive, the sum rule cannot be used to elimi- 
nate nuisance hypotheses. To illustrate this, suppose the hypotheses, B G {P, ■ • •, Bm}, are 
mutually exclusive, but not exhaustive. The hypotheses B could represent various expla- 
nations of some experiment, but it is always possible that there is something else operating 
in the experiment that the hypotheses B do not account for. Let us designate this as 

SE = "Something Else not yet thought of." 

The set of hypotheses {P, SE} is now complete, so the sum rule may be applied. Computing 
the probability for the hypothesis Pt- conditional on some data D and the information 7, 
where / stands for the knowledge that amplitudes B are not exhaustive, one obtains 

mm=minmm (11) 

and for SE 

W) = 3^™ (12) 

The denominator is the same in both these equation and is given by 

m 

P(D\I)   =   Y,P(DBi\I) + P(DSE\I) 

t1 (13) 
=   ^2P(Bi\I)P(D\BiI) + P(SE|/)P(/J|SEJ). 

But this is indeterminate because SE has not been specified, and therefore the likelihood, 
P(P|SE/), is indeterminate even if the prior probability P(SE|J), is known. However, 
the relative probabilities P(Bi\DI)/P(Bj\DI) are well defined because the indeterminacy 
cancels out. So there are two choices: either ignore SE and thereby assume the hypotheses 
B are complete or specify SE, thereby completing the set of hypotheses. One of the main 
purposes of this tutorial is to illustrate this last alternative and to show how to apply it in 
real problems. 

2    Assigning Probabilities 

The product rule and the sum rule are used to indicate relationships between probabilities. 
These rules are not sufficient to conduct inference because, ultimately, the "numerical val- 
ues" of the probabilities must be known. Thus the rules for manipulating probabilities must 
be supplemented by rules for assigning numerical values to probabilities. The historical lack 
of these supplementary rules is one of the major reasons why probability theory, as formu- 
lated by Laplace, was rejected in the late part of the 19th century. To assign any probability 
there is ultimately only one way, logical analysis, i.e., non-self-contradictory analysis of the 
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available information. The difficulty is to incorporate only the information one actually 
possesses without making gratuitous assumptions about things one does not know. A num- 
ber of procedures have been developed that accomplish this task: Logical analysis may be 
applied directly to the sum and product rules to yield probabilities (Jaynes [11]). Logical 
analysis may be used to exploit the group invariances of a problem (Jaynes [16]). Logical 
analysis may be used to ensure consistency when uninteresting or nuisance parameter are 
marginalized from probability distributions (Jaynes [21]). And last, logical analysis may be 
applied in the form of the principle of maximum entropy to yield probabilities (Zellner [10], 
Jaynes [16,19], and Shore and Johnson [17,18]). Of these techniques the principle of max- 

-imum entropy is probably the most powerful, and in this tutorial it will be used to assign 

all probabilities. 
In this tutorial there are three different types of information that must be incorporated 

into probability assignments: parameter ranges, knowledge of the mean and standard de- 
viation of a probability distribution for several quantities, and some properties of the noise 
or errors in the data. Their assignment differs only in the types of information available. 
In the first case, the principle of maximum entropy leads to a bounded uniform prior prob- 
ability. In the second and third cases, it leads to a Gaussian probability distribution. To 
understand the principle of maximum entropy and how these probability assignments come 
about, suppose one must assign a probability distribution for the tth value of a parameter 
given the "testable information" I. This probability is denoted P(i\I) (1 < i < m). In- 
formation I is testable when, for any proposed probability assignment P(i\I), there exists 
a procedure by which it can be unambiguously determined whether I agrees with P(i\I). 
The Shannon entropy, defined as 

m 

JTs-X^'l-OkgW)' (14) 

is a measure of the amount of ignorance (uncertainty) in this probability distribution [22]. 
Shannon's entropy is based on a qualitative requirement, the entropy should be mono- 
tonically increasing for increasing ignorance, plus the requirement that the measure be 
consistent. The principle of maximum entropy then states that if one has some testable 
information 7, one can assign the probability distribution, P{i\I), that contains only the 
information I by maximizing H subject to the information (constraints) represented by 
I. Because H measures the amount of ignorance in the probability distribution, assign- 
ing a probability distribution that has maximum entropy yields a distribution that is least 
informative (maximally ignorant) while remaining consistent with the information I: the 
probability distribution, P(i\I), contains only the information I, and does not contain any 
additional information not already implicit in I [17,18]. 

To demonstrate its use, suppose that one must assign P(i\I) and nothing is known 
except that the set of hypotheses is mutually exclusive and exhaustive. Applying the sum 
rule one obtains m 

£i>(t|J)=l. (15) 
t'=i 

This equation may be written 

J^P(i\I)-l = 0 (16) 
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and because this equation sums to zero, any multiple of it may be added to the entropy of 
P(i\I) without changing its value: 

H = -J2P(i\I)logP(i\I) + ß 
t'=i 

l-E/W) 
i=i 

(17) 

The constant ß is called a Lagrange multiplier. But the probabilities P{i\I) and the La- 
grange multiplier ß are not known; they must be assigned. To assign them, H is constrained 
to be a maximum with respect to variations in all the unknown quantities. This maximum 
is located by differentiating H with respect to both P{k\I) and /?, and then setting the 
derivatives equal to zero. Here there are m unknown probabilities and one unknown La- 
grange multiplier. But when the derivatives are taken, there will bem+1 equations; thus 
all of the unknowns may be determined. Taking the derivative with respect to P(k\I), one 
obtains 

log P(k\I) + 1 + 0 = 0, (18) 

and taking the derivative with respect to ß returns the constraint equation 

m 

l-£P(*|/) = 0. (19) 
!=1 

Solving this system of equations, one finds 

P(i\I)=—       and       ß = logm-l. (20) 
m 

When nothing is known except the specification of the hypotheses, the principle of maximum 
entropy reduces to Laplace's principle of indifference [15]. But the principle of maximum 
entropy is much more general because it allows one to incorporate any type of testable 
information. 

As noted earlier, in the inference problem addressed in this paper, there are three differ- 
ent types of information to be incorporated into probability assignments. The specification 
of parameter ranges occurs when the prior probabilities for various location parameters 
appearing in the calculation must be assigned. (A location parameter is a parameter that 
appears linearly in the model equation.) For these location parameters, the principle of 
maximum entropy leads to the assignment of a bounded uniform prior probability. How- 
ever, care must be taken because most of these parameters are continuous and the rules 
and procedures given in this tutorial are strictly valid only for finite, discrete probability 
distributions. The concept of a probability for a hypothesis containing a continuous pa- 
rameter, a probability density function, only makes sense when thought of as a limit. If 
the preceding calculations are repeated and the number of hypotheses are allowed to grow 
infinitely, one will automatically arrive at a valid result as long as all probabilities remain 
finite and normalized. Additionally, the direct introduction of an infinity into any mathe- 
matical calculation is ill-advised under any conditions. Such an introduction presupposes 
the limit already accomplished and this procedure will cause problems whenever any ques- 
tion is asked that depends on how the limit was taken. For more on the types of problems 
this can cause see Jaynes [21], and for a much more extensive discussion of this point see 
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Jaynes [11]. As it turns out, continuous parameters are not usually a problem, provided one 
always uses normalized probabilities. In this tutorial, continuous parameters will be used, 
but their prior probabilities will be normalized and the prior ranges will never be allowed 
to go to infinity without taking a limit. 

The second type of information that must be incorporated into a probability assignment 
is knowledge of the mean and standard deviation of a probability distribution. It is a 
straightforward exercise to show that, in this case, the principle of maximum entropy leads 
to a Gaussian distribution. 

The third type of information that must be incorporated into a probability assignment 
is information about the true errors or noise in the data. The probability that must be 
assigned is denoted P{D\LI), the probability for the data given that the signal is L, where 
the data, D, is a joint hypothesis of the form, D = {d\ ...dn}, dj are the individual data 
items, and N is the number of data values. If the true signal is known to be L{TJ) at 
position Tj, then 

dj - L(TJ) = nj (21) 

assuming that the noise is additive, and nj is the true noise value. Thus the probability for 
the data can be assigned if one can assign a probability for the noise. 

To assign a probability for the noise the question one must ask is, what properties of the 
noise are to be used in the calculations'! For example, should the results of the calculations 
depend on correlations? If so, which of the many different types of correlations should the 
results depend on? There are second order correlations of the form 

where s is a measure of the correlation distance, as well as third, fourth, and higher order 
correlations. In addition to correlations, should the results depend on the moments of the 
noise? If so, on which moments should they depend? There are many different types of 
moments. There are power law moments of the form 

"i = ££>;> (23) 
as well as moments of arbitrary functions, and a host of others. 

The probability that must be assigned is the probability that one should obtain the 
data D, but from Eq. (21) this is just the probability for noise P{e\ •■•e^\I'), where ej 
stands for a hypothesis of the form "the true value of the noise at position rj was ej, when 
the data were taken." The quantity ej is an index that ranges over all valid values of the 
noise; while the probability for the noise, P{e\ •••e^v|/'), assigns a reasonable degree of 
belief to a particular set of noise values. For the probability for the noise to be consistent 
with correlations it must have the property that 

1     N" f 
ps = {ejej+s} = ■jy—- Y, j da---deN eJei+sP(e1 • • -eN\I') (24) 
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and for it to be consistent with the power law moments it must have the additional property 
that 

1    N   r 
as = (e*) = - £ I der • • ■ deN e)P{ei ■■■eN\I') (25) 

where the notation () denote mean averages over the probability density function. 
In Eq. (22) and Eq. (23), the symbols p's and a's were used to denote means or averages 

over the sample noise. These averages are the sample correlation coefficients and moments 
and they represent states of nature. In Eq. (24) and Eq. (25), the symbols ps and as are 
used to denote mean averages over the probability for the noise, and they represent states of 
knowledge. To use information in a maximum entropy calculation, that information must 
be testable, i.e., the moments and correlation coefficients must be known. 

Assuming that none of these quantities are known, how can the principle of maximum 
entropy be used? Its use requires testable information, and unless at least some of the 
p's and a's are known, it would appear that we have no testable information. However, 
this description of the problem is not what probability theory asks us to do. Probability 
theory asks us to assign P{e\ ■ ■ -e^|/'), where I' represents the information on which this 
probability is based. Suppose for the sake of argument that that information is a mean, v, 
and standard deviation, <r, then what probability theory asks us to assign is P{e^ • ■ -e^va). 
This expression should be read as the joint probability for all the errors given that the mean 
of the errors is v and the standard deviation of the errors is a. According to probability 
theory, in the process of assigning the probability for the errors, we are to assume that 
both v and a are known or given values. This is a very different state of knowledge from 
knowing that the mean and standard deviation of the sampling distribution are v and a. 
If we happen to actually know these values, then there is less work to do when applying 
the rules of probability theory. However, if their values are unknown, we still seek the 
least informative probability density function that is consistent with a fixed or given mean 
and standard deviation. The rules of probability theory are then used to eliminate these 
unknown nuisance hypotheses from the final probability density functions. 

But which of these constraints should be used? The answer was implied earlier by the 
way the question was originally posed: what properties of the errors are to be used in the 
calculations? The class of maximum entropy probability distributions is the class of all 
probability density functions for which sufficient statistics exist. A sufficient statistic is 
a function of the data that summarizes all of the information in the data relevant to the 
problem being solved. These sufficient statistics are the sample moments that correspond to 
the constraints that were used in the maximum entropy calculation. For example, suppose 
we used the first three correlation coefficients, pi, pi, and pz-, as defined by Eq. (24) in a 
maximum entropy calculation, then the parameter estimates will depend only on the first 
three correlation coefficients of the data and our uncertainty in those estimates will depend 
on />!, pi-, and p$ if they are known, and on the first three correlation coefficients of the true 
noise values if pi, P2, and pz are not known. All other properties of the errors have been 
made irrelevant by the use of maximum entropy. So the real question becomes, what does 
one know about the errors before seeing the data? If there is information that suggests the 
errors may be correlated, then by all means a correlation constraint should be included. 
Additionally, if one has information that suggests the higher moments of the noise can 
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deviate significantly from what one would expect from a Gaussian distribution, then again 
a constraint on the higher moments should be included. But if one has no information about 
higher moments and correlations, then one is always better off to leave those constraints 
out of the maximum entropy calculation, because the resulting probability density function 
will have higher entropy. Higher entropy distributions are by definition less informative 
and therefore make more conservative estimates of the parameters. Consequently, these 
higher entropy probability density functions are applicable under a much wider variety of 
circumstances, and typically they are simpler and easier to use than distributions having 
lower entropy. 

In assigning the probability density function for the noise, it will be assumed'that our 
parameter estimates are to depend only on the mean and variance of the true errors in the 
data. The appropriate constraints necessary are on the first and second moments of the 
probability density function. The constraint on the first moment is given by 

v=^YJjd^---deN ejP(e1 ■ ■ ■ eN\I') (26) 

and by 

a3 + i^ = j1£lJde1---deNe2
jP(e1--eN\I') (27) 

for the second moment, where v and a2 are the fixed or given values of the mean and 
variance. Note the second moment of the probability distribution, Eq. (27), is written as 
<72 + i/2, to make the resulting probability density function come out in standard notation. 

We seek the probability density function that has highest entropy for a fixed or given 
value of a2 and v. To find this distribution Eq. (26) and Eq. (27) are rewritten so they sum 
to zero: 

1   N   r u-jT,J de1---deNejP(el---eN\I') = 0, (28) 

and 

a2 + i^-jYlJde1---deNe2
jP(e1---eN\I') = 0. (29) 

Additionally, the probability for finding the true noise values somewhere in the valid range 
of values is one: 

l-Jde1---deNP(e1---eN\I') = 0. (30) 

Because Eq. (28) through Eq. (30), sum to zero, they may each be multiplied by a constant 
and added to the entropy of this probability density function without changing its value, 
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one obtains 

H   =   -Jde1---deNP(e1---eN\I,)\ogP{e1---eN\I') 

+   ß^l-Jde1---deNP(e1---eN\I') 

\ N   r 
+   S   v-jj^2   del---deNejP(e1---eN\I') 

N  r 
+   A   o-2 + 1/

2-±Y,   de1---deNe2
jP(e1---eN\I') 

(31) 

where ß, 6, and A are Lagrange multipliers. To obtain the maximum entropy distribution, 
this expression is maximized with respect to variations in ß, 6, A, and P(e[ ■ ■■e'N\I'). After 
a little algebra, one obtains 

P(e1---eN\i/a) = (2TTCT
2
) 2\-$- E. 

2 exp 
N 

£ 2a2 

where 

A = 
N 

2a2' 
6 = - 

Nv 
and    ß = 

JV 
log(27T<r2) + -2 1 

(32) 

(33) 

and /' has been replaced by the fixed or given values of the moments. 
There are several interesting points to note about this probability density function. 

First, this is a Gaussian distribution. However, the fact that the prior probability for the 
errors has been assigned to be a Gaussian makes no statement about the true sampling 
distribution of the errors; rather it says only that for a fixed value of the mean and variance 
the probability density function for the errors should be maximally uninformative and that 
maximally uninformative distribution happens to be a Gaussian. Second, this probability 
assignment apparently does not contain correlations. The reason for this is that a constraint 
on correlations must lower the entropy. By definition a probability assignment with lower 
entropy is more informative, and so must make more precise estimates of the parameters. 
Instead of saying this probability density function does not contain correlations, it would be 
more correct to say that this probability density function makes allowances for every possible 
correlation that could be present and so is less informative than correlated distributions. 
Third, if one computes the expected mean value of the moments, one finds 

(es) = exp^--r ,2s ds 

exp^-2^r ^exp (*>0) (34) 

which reduces to 
(e°) = l,        (e1) = i/,     and    (e2) = a2 + v2 (35) 

for s = 0, s = 1, and s = 2, just the constraints used to assign the probability density 
function. Fourth, for a fixed value of the mean and variance this prior probability has highest 
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entropy. Consequently, when parameters are marginalized from probability distributions or 
when any operation is performed on them that preserves mean and variance while discarding 
other information, those probability densities necessarily will m^e closer and closer to this 
Gaussian distribution regardless of the initial probability assignment. The Central Limit 
Theorem is one special case of this phenomenon - see Jaynes [11]. 

Earlier it was asserted that maximum entropy distributions are the only distributions 
that have sufficient statistics and that these sufficient statistics are the only properties of 
the data, and therefore the errors, that are used in estimating parameters. We would like 
to demonstrate this property explicitly for the Gaussian distribution [11]. Suppose the true 
value of a location parameter is v§ and one has a measurement such that 

dj = v0 + rij. (36) 

The hypothesis about which inferences are to be made is of the form "the true value of the 
mean is v given the data, JD." Assigning a Gaussian as the prior probability for the errors, 
the likelihood function is then given by 

P(D\uaI) = (27ra2)-f exp I -^ ffa - uf 1 . (37) 

The posterior probability for v may be written as 

P{v\DoI) * (2TVC
2
)-2 exp {~^(P - v? + «2)| (38) 

where a uniform prior probability was assigned for v. The mean data value, d, is given by 

1   N 

d=jjy£di=zl'o + n (39) 
i=i 

where n is the mean value of the true errors. And s2 is given by 

_ 1    N d    N      V      _ 
*2 = «P-(rf)2 = -7D«$-    £2>i      =n*-(nf (40) 

3=1 \       3=1      I 

where (n)2 is the mean square of the true noise vales. From which one obtains 

(d ± ajy/N      a known 
,  (41) 

d ± s/y/N — 3   a unknown 

as the estimate for v. The actual error, A, is given by 

A = d - i/0 = n (42) 

which depends only on the mean of the true noise values; while our accuracy estimate 
depends only on a if the standard deviation of the noise is known, and only on the mean 
and mean-square of the true noise values when the standard deviation of the noise is not 
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known. Thus the underlying sampling distribution of the noise has completely canceled out 
and the only property of the errors that survives is the actual mean and mean-square of the 
true noise values. All other properties of the errors have been made irrelevant. Exactly the 
same parameter estimates will result if the underlying sampling distribution of the noise is 
changed, provided the mean and mean-square of the new sampling distribution is the same, 
just the properties needed to represent what is actually known about the noise, the mean 
and mean-square, and to render what is not known about it irrelevant. 

3    Example - Radar Target Identification 

In Section 1 the sum and product rules of probability theory were given. In Section 2 the 
principle of maximum entropy was used to demonstrate how to assign probabilities that 
are maximally uninformative while remaining consistent with the given prior information. 
In this section a nontrivial model selection problem is given. Each step in the calculation 
is explained in detail. The example is complex enough to illustrate all of the points of 
principle that must be faced in more complicated model selection problems, yet sufficiently 
simple that anyone with a background in calculus should be able to follow the mathematics. 

Probability theory tells one what to believe about a hypothesis C given all of the 
available information E\---En. This is done by computing the posterior probability for 
hypothesis C conditional on all of the evidence E\---En. This posterior probability is 
represented symbolically by 

PidE^'-En). (43) 

It is computed from the rules of probability theory by repeated application of the sum and 
product rules and by assigning the probabilities so indicated. This is a general rule and 
there are no exceptions to it: ad hoc devices have no place in probability theory. Given the 
statement of a problem, the rules of probability theory take over and will lead every person 
to the same unique solution, provided each person has exactly the same information. 

To someone unfamiliar with probability theory, how this is done is not obvious; nor is it 
obvious what must be done to obtain a problem that is sufficiently well defined to permit 
the application of probability theory as logic. Consequently, in what follows all of the steps 
in computing P{C\E\ ■ ■ ■ En) will be described in detail. To compute the probability for 
any hypothesis C given some evidence E\ ---En, there are five basic steps, which are not 
necessarily independent: 

1. Define The Problem: State in nonambiguous terms exactly what hypothesis you wish to 
make inferences about. 

2. State The Model: Relate the hypothesis of interest to the available evidence E\- ■ ■ En. 

3. Apply Probability Theory: The probability for hypothesis C conditional on all the avail- 
able evidence E\- • -En is computed from Bayes theorem. The sum rule is then applied 
to eliminate nuisance hypotheses. The product rule is then repeatedly applied to factor 
joint probabilities to obtain terms which cannot be further simplified. 

4. Assign The Probabilities: Using the appropriate procedures, translate the available evi- 
dence into numerical values for the indicated probabilities. 
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5. Evaluate The Integrals and Sums: Evaluate the integrals and sums indicated by proba- 
bility theory. If the indicated calculations cannot be done analytically then implement 
the necessary computer codes to evaluate them numerically. 

Each of these steps will be systematically illustrated in solving a simplified radar target 
identification problem. In the last section a numerical simulation is discussed. 

3.1    DEFINE THE PROBLEM 

Probability theory solves specific problems in inference. It does this by summarizing ones 
state of knowledge about a hypothesis as a probability distribution. Thus, to solve an infer- 
ence problem, one must first state the hypothesis of interest. Here the identification of radar 
targets will be used to illustrate how to solve model selection problems using probability. 
However, the subject of this paper is model selection, not radar target identification. For 
those interested in a more detailed discussion of the fundamentals of radar target identifi- 
cation using probability theory see Jaynes [23]. The hypothesis about which inferences are 
to be made is of the form "Target number k is being observed by the radar." The index k 
will represent a particular type of aircraft, or as the radar target identification community 
refers to them, a particular type of target. The first 1-2 of these hypotheses represent real 
aircraft (the known aircraft) and the last two are "The aircraft is NOT a known target," 
and "No target is in the data, this is a false alarm." The index k really specifies a series 
of different hypotheses of the form "Hypothesis k is the best description of this state of 
knowledge." The probability for the fcth hypotheses is written P(k\DI), where D is the 
data and I stands for all of the assumptions and prior information that go into making this 
a well defined problem. In this problem, as in all realistic problems, this list will be fairly 
long. 

The &th hypothesis is the quantity about which inferences are to be made. The collection 
of all of these hypotheses is called a library, L = {L\,..., Li}, where I is the total number 
of the hypothesis to be tested. The library is separated into three types of hypotheses: 
the "known," the "unknown," and the "no-target" hypotheses. Hypotheses one through 
(£ — 2) are the known aircraft. These might include the F15, and 747 and a host of others. 
When making inferences about the known hypotheses, the hypotheses are all of the form 
"The aircraft being observed is an F15" or "747," etc. In radar target identification, there 
are so many different types of aircraft, and the number of them changes so rapidly, that 
one can never be sure of having a hypothesis for all existing aircraft. That is to say, the 
set of known targets is not exhaustive. As was demonstrated earlier, the sum rule may be 
used to eliminate uninteresting or nuisance hypotheses, but only if the set of hypotheses is 
exhaustive. Here the hypotheses are mutually exclusive, but not exhaustive. Thus the sum 
rule cannot not be used unless the set of hypotheses is completed. The set of hypotheses 
may be made complete either by assuming the set of hypotheses is complete and there 
by forcing probability to choose from the given set of targets or by defining a model that 
completes the set. In the radar target identification problem, there is a requirement to be 
able to identify a hypothesis of the form "the target is NOT one of the known targets." 
This hypothesis will be number (I - 1) in the library. The third class of hypotheses is 
the "no-target" hypothesis, i.e., no target is present in the data. This hypothesis will be 
designated as number t. 
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The hypotheses about which inferences are to be made have now been defined. The 
needed probability distribution is given symbolically as P(k\DI). However, the definitions 
of these hypotheses (k, D, and /) are still vague and could describe a host of different 
problems. To continue with the analysis of this problem, these hypotheses must be made 
more specific. The process of identifying the relationships between these hypotheses is a 
process of model building and it is to this task we now turn. 

3.2    STATE THE MODEL 

Probabilities are conditional on evidence. Stating the model is the process of relating the 
hypotheses to that evidence. All types of evidence could be available. In this problem 
the evidence will consist of data, information about the orientation angle and range to the 
target, and information about parameter ranges. All of this evidence enters the calculations 
in exactly the same way, and it doesn't make any difference whether the evidence is data, 
parameter ranges, or strong prior information. It is all used to assign probabilities con- 
ditional on that evidence. To understand the evidence, one must first understand a little 
about the radar. 

The radar is a fictional two-dimensional radar. Schematically, the radar is located at 
the origin of a polar coordinate system. These coordinates will be referred to as the radar 
coordinates; they are shown in Fig. 1. The radar captures three different types of data: 
range, Doppler velocity, and signature data. Only the signature data will be available to 
the target identification routines. Information from the range and Doppler velocity data 
will be available in the form of parameter estimates. Additionally, in the real radar target 
identification problem, information about the velocity, altitude, and acceleration could be 
used to help identify targets, because this information would effectively eliminate many 
different types of aircraft. However, in this tutorial, our attention will be restricted to the 
signature data and the range and Doppler velocity data will be used only to the degree 
necessary to locate the target in the signature data. 

The range data is the vector position of the target as measured in the radar coordinates. 
Each measurement consists of three numbers: the vector range to target, Ro, 0, and the 
time of the measurement. The radar gathers these range measurements periodically, about 
one measurement every second or so. 

The Doppler velocity data is a scalar and represents the speed of the target as projected 
along the range vector. That is to say, it represents how fast the target is approaching the 
radar; it is not the target's velocity vector. These measurements are acquired at the same 
time as the range measurement. 

The information needed by the identification calculation is the true range, Rc and 
orientation angle, u, of the target. These are shown schematically in Fig. 2. The radar esti- 
mates these quantities from the measured range and Doppler velocity data. These inferred 
or measured values will be denoted as RQ and fi respectively. Inferring these quantities is 
an extensive calculation using probability theory. The details of these calculations are pre- 
sented in Bretthorst [24]. The results of these inferences are available to the identification 
routines in the form of a (mean ± standard deviation) estimate of these quantities. These 
estimates are interpreted as probabilities in the form of 

P(u\JQ) = (2^^)-lexp|-^£| (44) 
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x w- 
Fig. 1. The radar takes three different types of data: range, Doppler velocity, and signature data. 
The range data is the vector distance to the center of the target. The Doppler velocity data is the 
projection of the vector velocity onto the range vector, i.e., it is how fast the target is approaching 
the radar. Last, the signature data is the envelope of the reflected radar signal, as the signal crosses 

the target. 
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where a\ is the uncertainty in this estimate, and IQ is the information on which this prob- 
ability is based. Equation (44) is the probability for a set of hypotheses. The hypotheses 
are of the form: "The true orientation angle of the target is u." Similarly for the range to 
the target one has 

P{RC\IR) = (27r4)-lexp|-[iZo
2-^

]2| (45) 

where a% is the uncertainty in the estimated range, and IR stands for the evidence on which 
the range estimate is based. 

The radar gathers a third type of data, the signature data D = {d^ ■ ■ ■, dN}: where N 
is the number of data values in a signature data set. If the radar were operating in the 
optical limit, the signature data would be the intensity of the reflected radar signal as the 
transmitted wave crosses the target. Data typical of this type of radar are shown in Fig. 3. 
The amplitudes of the peaks shown in Fig. 3 are a very sensitive function of the target 
orientation, while the locations of the peaks in the data represent the line of site distance 
to a scatterer (a surface orthogonal to the radar). Note that the radar is an envelope 
detector, so the signature data, as implied by Fig. 3, are positive. However, the radar does 
not operate in the optical limit, so the scattering center model is only an approximation. 
For high range resolution radars, this approximation appears adequate to represent isolated 
scatterers. It is not yet known if it is adequate to represent more complex interactions, like 
those between the radar and the engine cavities or propellers. 

The signature data may be modeled as 

dj = Lk(rj) + rij (46) 

where dj represents the data sampled at range rh Lk(rj) is the target signature evaluated 
at position rj, and n, is the noise in this measurement. The distances, r,-, correspond to 
distances across a target and these will be referenced to the center of the target. 

The functional form of the signal is different for each of the three types of models. If the 
target is one of the known aircraft (1 < k < I - 2), then a scattering center model allows 
one to relate the target to the data: 

Nk 

dj = B0 + J2 BiG(Ski cosOw - u) - TJ + Rc) + nj       (1 < k < £ - 2) (47) 
/=i 

where k is the true target index, B0 represents a dc offset in the data, Bt is the unknown 
amplitude of the Zth scatterer, Nk is the number of scatterers, G is the peak shape function 
and is a fundamental characteristic of the radar, (Ski, 4>ki) is the polar location of the 
scatterer in the target coordinates (polar coordinates on the target with the x axis orientated 
along the main axis of the aircraft), and (Rc,u) are the true range and orientation angle of 
the target. The location of the scatterers (Ski,4>kl) and the number of scatterers, Nk, are 
known quantities and define what is meant by a known target. The constant term may be 
incorporated into the sum by rewriting the model as 

Nk 

d3 = J2 B1G(SM C°s(<t>kl - W) - Tj + Rc) + Uj (48) 
/=0 
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Fig. 2. The observation angle is the difference between the angular location of a scatterer, <f>, and 
the orientation angle of the target, u. These angles are measured in the local target coordinates. 
The target is orientated along its velocity vector so the observation angle is calculated from the 

range and velocity vectors of the target. 
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Fig. 3. The signature data represents the intensity of the received signal as the radar signal crossed 
the target. Locations on the target orthogonal to the radar reflect a large signal, while other locations 
scatter the radar signal oft" into space. The peak shape is a characteristic of the radar, while the 
intensity of the return is a complicated function of range, orientation, and the electromagnetic 
properties of the target surface. 
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with the understanding that the signal function G is a constant, for / = 0. 
The simplest of the three types of models is the no-target model (k = t). In this model 

there are no scatterers, only noise. But the noise is positive, the radar is an envelope 
detector, so the signature data will contain a constant, corresponding to the dc component 
of the rectified noise. This model may be written as 

dj = Bo + rtj. (49) 

In addition to the known and no-target hypotheses, the radar must also identify the 
unknown target. Any type of model that has the ability to expand the data on a complete 
set is a suitable model for the unknown. However, when expanding the data on a complete 
set, it is always advisable to choose a basis which captures the essence of the signal. The 
signal from an unknown aircraft contains an unknown number of scatterers of known peak 
shape, so an appropriate model would be 

dj = Y, BiG(S[e-iV - TJ) + uj (50) 
1=0 

where Nv is the unknown number of scatterers and the other symbols retain their meaning. 
From a single data set, there is no information about the angular location of the scatterers, 
and so no need to include the rotation (the cosine) or to reference the scatterers to the 
center of the target. Consequently, Rc, <f>, and u do not appear in Eq. (50). 

The problem now has enough structure to begin the process of applying the rules of 
probability theory. However, the models are still incomplete in the sense that all of the 
information available has not yet been supplied. To give just one example, there are a 
number of amplitude parameters in these models. These amplitudes represent the intensity 
of the reflected signal. A great deal is known about the possible range of values for these 
amplitudes. Eventually, probability theory will ask us to supply this information. But 
supplying it will be delayed until the form in which this information is needed is known. 

In one sense delaying this hides some of the beauty of probability theory as logic, because 
it will appear as if the prior information is being handled differently from the data. In fact 
this is not the case. For notational convenience, what will be done is that information 
other than data will be represented as I in all probability symbols. When manipulating 
probabilities, / must be thought of exactly as if it were any other hypothesis. When prior 
probabilities are assigned these will typically depend only on I. At that time it must be 
asked exactly what information is available about the hypothesis and then that information 
must be used in assigning the probability. If all of the information had been made explicit 
at the beginning of the calculations this last step would not be necessary because each 
probability would automatically indicate the evidence on which it is to depend. So by 
delaying the process of identifying the prior information the notation has been simplified, 
but at the expense of making prior information seem somehow different from data; which 
it is not. 

3.3    APPLY PROBABILITY THEORY 

The problem is to determine which of the hypotheses k is most probable in view of the data 
and all of one's prior information. This posterior probability is denoted by P(k\DI). To 
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calculate this posterior probability, one applies Bayes' theorem, Eq. (3), to obtain: 

mD!)-.m^m. (5I) 

To compute the posterior probability for the target Ar one must assign three terms. The 
first term, P(k\I), is the probability for the target given only the information /. This term 
is referred to as a prior probability, or simply as a "prior" and represents what was known 
about the presence of this target before obtaining the data D. The second term, P(D\kI), 
is the probability for the data given that the true hypothesis is k. This term is referred to 
as the marginal likelihood of the data for reasons that will become apparent shortly. The 
third term, P(D\I), is the global likelihood for the data, and is a normalization constant. 

The prior probability, P(k\I), is sufficiently simplified that it could be assigned. De- 
pending on the location of the radar, there could be either a great deal or very little prior 
information available. For example, if the radar were located at a civilian airport the types 
of aircraft one would expect to observe would be very different from what one would expect 
to observe on an aircraft carrier. Additionally, it is always possible that the radar has just 
been installed and there is no historical information on which to base a prior. This latter 
assumption will be used in this tutorial and the principle of maximum entropy will lead us 
to assign a uniform prior probability to this term. 

The global likelihood for the data, P(D\I), is a normalization constant. The way to 
calculate it is to calculate the joint probability for the data and the model, P(Dk\I), and 
then apply the sum rule to eliminate k from consideration: 

P(D\I) = YtP{Dk\J). (52) 
k=i 

This can be factored using the product rule, Eq. (1), to obtain: 

P(D\I) = Y,P{k\I)P{D\kI). (53) 
k=\ 

Note, that, as asserted earlier, this term is a sum over all values appearing in the numerator, 
so it is just the constant needed to ensure the total probability is one. The global likelihood 
may now be substituted back into the posterior probability for the fcth hypothesis, Eq. (51), 
to obtain 

P{k\DI)=   /WWW (54) 

Y;P(T,\I)P[D\r,I) 
7} = 1 

where the summation index was changed to avoid confusion. 
To simplify some of the notation in what follows, the normalization constant will be 

dropped, and the equal sign will be replaced a proportionality sign. At the end of the 
calculations the normalization constant will be computed. With this change, the posterior 
probability for the models becomes 

P(k\DI) oc P(k\I)P{D\kI). (55) 
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The only remaining term that must be addressed is the marginal likelihood for the data 
P(D\kI). The model hypothesis explicitly appears in this term. There are three differ- 
ent types of models each having different parameterizations; consequently there are three 
distinct applications of the rules of probability theory needed to simplify this term. The 
no-target model is by far the simplest of the three and it will be dealt with first. 

Apply Probability Theory Given The No-Target Model 

The marginal likelihood is computed from the joint likelihood of the data and the nuisance 
hypotheses or parameters. The sum rule is then used to remove the dependence on the 
nuisance parameters. For the no-target hypothesis there is only a single nuisance parameter, 
B0, so the marginal likelihood is given by 

P(D\U)= I' dB0P(DB0\lI) (56) 

where the integral is over all possible values of the constant Bo, and k has been replaced by i 
to indicate that it is the marginal likelihood of the no-target model that is being computed. 
It should now be apparent why P(D\kI) is called a marginal likelihood. It is a likelihood 
because it is the probability for the data given the model. It is a marginal probability 
because, to compute it, one must marginalize over all nuisance parameters appearing in the 
model. 

To continue with the calculation, the product rule, Eq. (1), is applied to the right-hand 
side of the marginal likelihood, Eq. (56), to obtain: 

P(D\U) = J dBoP{Bo\I)P{D\B0H) (57) 

where it has been assumed that the constant dc offset (which is a characteristic of the noise) 
does not depend on which target is present, and P(D\B0II) is the direct probability for the 
data given the hypothesis, or the likelihood function. Substituting the marginal likelihood 
into the posterior probability, Eq. (55), one obtains 

P(l\DI) oc P(£\I) f dB0P{Bo\I)P{D\Boei). (58) 

Given the assumptions made, these probabilities may not be further simplified; the only 
recourse is to assign them numerical values and perform the indicated integral. These 
probabilities will be assigned in Section 3.4 and the integrals evaluated in 3.5. 

Apply Probability Theory Given The Known Target Model 

There are three types of models, so three applications of the rules of probability theory 
are needed to simplify the marginal likelihoods. The previous subsection dealt with the 
marginal likelihood for the no-target model; here the marginal likelihood for the known 
target hypothesis will be simplified. As was indicated previously, the marginal likelihood 
of the data is computed from the joint likelihood of the data and the nuisance parameters. 
For the known targets these parameters are the amplitudes, B, the true position Rc, and 
orientation angle of the target u. The position of the scatterer (Ski,4>ki) and the number 
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of scatterers, JV*., are known. The marginal likelihood for the data given the known target 
hypothesis is given by 

P(D\kI) =  I dBdudRcP{DBuRc\kI)       (1 < k < £ - 2) (59) 

where the range on the integrals will be discussed later. Applying the product rule, to the 
right-hand side of the marginal likelihood one obtains 

P(D\kI) =  [ dBdudRcP(BujRc\kI)P(D\BuRckI)       (1 < k < I - 2) (60) 

where P{BuRc\kI) is the joint prior probability for the nuisance parameters given the 
known target hypothesis and the prior information I, and P{D\BuRckI) is the likelihood 
of the data given the model parameters. 

In the previous example there was only a single nuisance hypothesis or parameter, the dc 
offset, so after factoring the joint-likelihood the calculation was essentially finished. In this 
example there are many additional hypotheses which requires many additional applications 
of the product rule. The process is begun by applying the product rule to the joint prior 
probability for the parameters: 

P(BuRc\kI) = P{Rc\kI)P{Bu\RckI) (61) 

where P(Rc\kI) is the prior probability for the range to the target, and P{B^\RckI) is the 
joint prior probability for the amplitudes and the orientation angle given the true target k, 
and the range Rc. In both these probabilities, the identity of the target is given. However, 
knowing the target identity may or may not help one in assigning either of these terms. 
When assigning the prior probability for the range to target. P(Rc\kI), knowing the target 
index, k, would enable one to limit the range of valid values, because the length of the target 
k would be known. But compared to the six inch range resolution of the radar, knowing 
the total length of the target is essentially irrelevant. Consequently, it will be assumed that 
knowing the target identity does hot increase our state of knowledge about the range to 
target and the reference to hypothesis k will be dropped from P(Rc\kI) giving P(RC\I). 

In the case of the joint prior probability for the amplitudes and the orientation angle, 
P(Bu\RckI), knowing which target is present does not increase our state of knowledge 
about either the amplitudes or the orientation angle, because the intensity of a scatterer is 
determined by constructive and destructive interference of the radar waves in the reflected 
signal. Because the size of the target is large relative to the wavelength of the transmitted 
signal, large changes in the amplitudes occur for small changes in the orientation angle. But 
the orientation angles are known only to about one or two degrees. Consequently, knowing 
the true hypothesis k does not improve our state of knowledge about the amplitudes. 
And because our state of knowledge about the amplitudes does not improve, there is no 
additional information about the orientation angle of the target. So whether or not the 
true target is known does not change our state of knowledge about the amplitudes or the 
orientation angle. As a result the reference to true hypothesis k may be dropped from the 
right-hand side of the prior, giving 

P(BuRc\kI) = P(RC\I)P(BLJ\RJ). (62) 
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The previous discussion is one of deciding the logical independence of two or more 
hypotheses. It occurs in every problem in probability theory. Sometimes probabilities are 
logically independent and sometimes they are not; each case must be decided based on 
what one knows. When hypotheses are logically independent, the independent hypotheses 
may be dropped from the right-hand side of the appropriate probability. However, if the 
hypotheses are logically dependent, then one must follow the rules of probability theory to 
obtain valid results. 

To illustrate that nonsense may be obtained if logical dependence is ignored, we give 
one of E. T. Jaynes' favorite examples: suppose someone polled every person in England 
about the height of the queen-mother. Then the probability for her height, H, given the 
responses d\,...,dn and the prior information / would be written: 

P(#|di. ..</„/) = P{H\I)P{di. ..dn\HI). (63) 

Assuming logical independence, one obtains 

P{H\dx...dnI) = P{H\I)P{d,\HI)P{d2\HI).. .P(dn\HI) (64) 

If N fa 106 then the square root of N effect would imply that her height may be estimated 
to roughly a part in a thousand, clearly an absurd result. The reason is because the 
measurements are correlated. From the product rule one obtains 

P{H\dy.. .dnI) = P(H\J)P(d1\HI)P(Hd2. ..dn\dj). (65) 

So only the first data item may be assigned an independent probability. All the others 
must be assigned assuming the first data item known. But each person's opinion is based 
on news reports, papers, books, and by discussing her height with other people who all 
have access to basically the same information. All of the opinions are correlated: the data 
are not independent. In other words, ten million uninformed opinions are not as good as 
one expert opinion, a fact many politicians and pollsters have forgotten. 

To determine whether one hypotheses is logically independent of another the only rel- 
evant question is to ask, would knowing the first hypothesis help to determine the other? 
If the answer to this is yes, the hypotheses are not logically independent and the rules of 
probability theory must be followed exactly to obtain a valid result. In this tutorial, logical 
independence will be assumed in many cases. In each case it will be pointed out when and 
why it is being used. However, in any given problem logical independence may or may 
not hold. Each case must be determined on its own merits and failure to resolve the issue 
correctly can lead to nonsense; not because probability theory is wrong, but because from 
a false hypothesis all conclusions follow, a simple fact of logic. 

If logical independence is assumed, Eq. (62) may be factored to obtain 

P(BuRc\kI) = P(Rc\I)P(cv\I)P(B0\I)P(B,\I) ■ ■ -P{BNk\I). (66) 

Logical independence follows here for all the same reasons given earlier: the scatterers 
change intensity so rapidly, and in so unpredictable a manner, that knowledge of any one 
amplitude will not aid one in predicting the amplitudes of the others.   Substituting the 
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factored prior back into the posterior probability for the known targets, Eq. (55), one 
obtains 

P{k\DI)   oc   P{k\I) IdBdudRcP{Rc\I)P(u\I) 
J (67) 

x    P(B0\I)P{B1\I)---P(BNk\I)P(D\BcjRckI)       (l<k<l-2) 

as the posterior probability for the known targets. None of the indicated probabilities 
may be further simplified. The next step in the calculation is to assign these probabilities 
numerical values and then perform the indicated integrals. These last two steps will be 
delayed until after the marginal likelihood for the unknown target has been simplified. 

Apply Probability Theory Given The Unknown Target Model 

Simplifying the marginal likelihood for the unknown target hypothesis is similar to what was 
done previously. The marginal likelihood given the unknown model is computed from the 
joint probability for the data and the nuisance parameters. For the unknown hypothesis the 
nuisance parameters are the amplitudes, B, the locations of the scatterers, S = {Si ■ ■ • SNU}, 

and the number of scatterers, Nv. Applying the sum rule, the marginal likelihood is given 
by 

P{D\[l-l\I)= YJ   I dBdSP{DBSNv\[l-l]I) (68) 
jv„=cr 

where the target index k was replaced by [£ — 1] to indicated that this is the posterior 
probability for the unknown hypothesis. The upper limit on this sum will be discussed when 
the prior probability for the number of scatterers is discussed. Also note that scatterer No 
is the dc offset. Applying the product rule one obtains 

P(D\[£-1]I)= J2   [dBdSP(BSNy\[£-l]I)P(D\BSN,,[l-i)I) (69) 

where P(BSNv\[t- \}I) is the joint prior probability for the parameters, and P(D\BSNU[£— 
1]I) is the likelihood of the data given those parameters. Using the logical independence 
assumption and substituting into the posterior probability for the unknown, one obtains 

P(£-1\DI)   oc   P(£-1\I)J2   [dBdSP(B0\I)P(B1RcI)---P(BNl/\RJ) 
N„=oJ (70) 

x    P(N„\I)P(Si\I)---P(SNJI)P(D\BSN1/[£-l}I). 

The discussion on logical independence for the amplitudes given earlier applies equally 
well to the location of the scatterers. Because, the amplitudes cannot be predicted from 
first principles, knowing the amplitudes does not help in determining the location of the 
scatterers and conversely. The point has now been reached where these probabilities may 
not be further simplified. The next step in the calculation is to assign these probabilities 
numerical values and it is to this problem that we now turn. 
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3.4    ASSIGN THE PROBABILITIES 

The posterior probability for the hypothesis of interest has one of three different functional 
forms depending on the particular hypothesis, Eqs. (58,67,70). These three equations con- 
tain seven prior probabilities and three likelihood functions. The prior probabilities specify 
what was known about the various hypotheses before obtaining the data; while the like- 
lihood functions tell us what was learned about the hypotheses from the data. These 
probabilities must be assigned to reflect the information actually available. Earlier, the 
principle of maximum entropy was used to assign three different probabilities: one when 
only the number of hypotheses, or range of values, was known. This lead to a uniform prob- 
ability distribution. The other two cases assumed the first two moments of a probability 
distribution to be known and led to a Gaussian probability distribution. All three of these 
calculations will now be used to assign the indicated probabilities. 

Assigning The Prior Probabilities 

Of the seven prior probabilities that must be assigned, three of them have already been 
touched on. First, the prior probability for the targets, P(k\I), represents what was known 
about the target before obtaining the data. In the numerical simulations that follow, the 
enumeration of possible targets is all that is assumed known, using this information the 
principle of maximum entropy will assign a uniform prior probability. Because this prior 
appears in every target's posterior probability exactly one time, the prior range will cancel 
when the posterior probability is normalized. The other two prior probabilities discussed 
were those for the location and the orientation angle of the target, Eqs. (44,45). The 
remaining four priors that must be assigned are: JP(J3O|-0, P{BI\I), P{NV\I), and P(Sj\I). 
The first step in accomplishing this task is to state the information on which a given prior 
is to be based. In these four cases, the prior information will consist of the valid range of 
these parameters. This will result in assigning a uniform prior probability. However, care 
must be taken in assigning these priors because the three types of models have differing 
numbers and types of parameters and prior ranges are what sets the scale of comparison 
between the three types of models. 

The prior probability for the constant dc offset, P(BQ\I) is the simplest to address and 
will be taken first. The dc offset, like the prior probability for the target, occurs in every 
model exactly one time. Any constants that appear in each posterior probability the same 
number of times will cancel when the posterior probability is normalized. If a uniform 
prior probability is assigned, the prior range for Bo will cancel. But note that it is the 
prior range that cancels, the integral over Bo must still be over the valid ranges for this 
parameter. To specify this prior, the range of valid values must be given. In this calculation 
an approximation will be used that will simplify the results somewhat while introducing 
only a small error in the calculation. The approximation is that the integration ranges are 
wide compared to the expected value of the parameter. Consequently, when the integral 
over the dc offset is evaluated, the limits on the integral may be extended from minus to 
plus infinity. This amounts to ignoring a term contributed by an error function. But the 
error function goes to one so rapidly for large arguments that, for all practical purposes, 
the approximation is exact. Because the prior ranges cancel, it will not be specified other 
than saying it is uniform with wide bounds. 
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The next prior probability to be assigned is P(Bi\I), the prior probability for an ampli- 
tude. What is known about the amplitudes? The amplitudes are bounded. The bounds are 
known based on the transmitted signal power, the distance to the target, the reflectivity of 
the target surface, the surface area of the scatterer, and the efficiency of the receiver. The 
amplitude must satisfy 

0 < Bt < Bmax (71) 

where Bmax is the maximum signal intensity that one could obtain for any target.  Using 
the principle of maximum entropy results in assigning a uniform prior probability given by 

1       If 0 < Bi < Bn 
P(Bi\I) = I   5-« . (72) 

[     0       otherwise 

To assign the prior probability for the unknown number of scatterers, P(NU\I), one must 
again state what is known. In this case, the unknown number of scatterers in a particular 
data set could range from one (this prior only occurs in models that have at least one 
scatterer) up to a maximum. But what is the maximum value? There are JV data values, 
and if there were N scatterers, the data could be fit exactly by placing a scatterer at each 
data value and adjusting its amplitude. Because, no additional information is available 
about the number of scatterers, N may be taken as an upper bound. Using the principle 
of maximum entropy, one obtains 

1   Tfl<Nk<N 
P(Nk\I)=\   N (73) 

0     otherwise 

as the prior probability for the unknown number of scatterers. 
Last, to assign the prior probability for the location of the scatterers, P(Si\I), one must 

again state what is actually known about their locations. The location of the target is known 
to within about 6 inches. The range window (the distance represented by the signature 
data) is centered on the middle of the target. So the scatterers must be somewhere within 
the data. If only this is known, then the principle of maximum entropy will again assign a 
uniform prior probability for the location of the scatterers: 

f ^   If 1 < St < N 
P(Si\I)=l   N (74) 

[   0     otherwise 

where the range dimensions were taken to be unit steps. 
All of the prior probabilities have now been assigned. These priors were uniform priors 

in the cases where only the valid range of values were known, and they were Gaussians when 
the prior information consisted of a (mean ± standard deviation) estimate of a parameter 
value. The only remaining probabilities that must be assigned are the three likelihoods, 
and, as it will turn out, these probabilities are also prior probabilities. 
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Assigning The Likelihoods 

In the radar target identification problem there are three likelihoods: the likelihood of 
the data given the no-target hypothesis, P(D\£B0J); the likelihood of the data given the 
known target hypothesis, P(D\BuRckI); and the likelihood of the data given the unknown 
target hypothesis P(D\BSNk[£ - l]I). To assign them, first note that the data D are not 
a single hypothesis, rather they represent a joint hypothesis: D = {d1,.. • ,dyy}. Applying 
the product rule and representing all of the given quantities as /', the likelihoods may be 
factored to obtain 

P(d,... dN\I') = P(dj \I')P(d2 ... dN\d,I'). (75) 

Probability theory tells one to assign the probability for the first data item given the 
parameters, and then assign the probability for the other data items assuming one knows 
the first data value. Probability theory automatically guards against the example mentioned 
earlier where assuming logical independence leads to nonsense. However, the designers of 
the radar take great care to insure that the errors in the data are independent. Given this 
is the case, the likelihoods may be factored to obtain 

p(d1...dN\r) = p(d1\i')-..p(dN\i'). (76) 

The probability for the data is just the product of the probabilities for obtaining data items 
separately. Each of our model equations is of the form 

nj = dj - Lk{rj) (77) 

where Lk(rj) is the fcth library model evaluated at position rj. The probability for obtaining 
the data is just the probability that one should obtain a particular set of errors given that 
one knows the true signal Lk(rj). 

Earlier it was shown that the results obtained using a Gaussian noise prior probability 
depend only on the first and second moments of the true noise values in the data. So if a 
Gaussian distribution is used for the prior probability for the noise, the results obtained will 
not depend on the underlying sampling distribution of the errors. But note that assigning 
a Gaussian noise prior probability in no way says the noise is Gaussian; rather, it says only 
that our estimates and the uncertainty in those estimates should depend only on the first 
and second moments of the noise. Notice that the Gaussian probability, Eq. (32), assumes 
the noise standard deviation is known, so o must be added to the likelihoods in such a way 
as to indicate that it is known; this gives 

P{D\oI>) = (2,^)-f exp l-Y,[dj~Lirj)]2 

2a2 (78) 

as the likelihood function. Using this equation as a prototype, the likelihood for the data 
given the known target hypothesis is given by 

P(D\BLjRcakI)={2Tra2)-2 

1 

'2^2 
I       1   A Ä 1 (79) 

x exp 1 "9^2 zJd; - 22B>G(su cos(^< - w) - rj + Rc)}2 \ 
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where (1 < k < £ - 2) and. /' as been replaced by all of the given parameters. Similarly, 
the likelihood for the data given the unknown target hypothesis is given by 

{■,     N Nv ] 

-^2 Eft " E B'G(S' ~ r;)]2  •      (so) 

Last, the likelihood for the data given the no-target hypothesis is given by 

P{D\£B0aI) = (2n<j2)-T exp j -^ Eft " Bo? \ • (81) 

With the assignment of these likelihoods, all of the probabilities have now been assigned. 
The next task is to perform the indicated integrals and sums. 

3.5 EVALUATE THE INTEGRALS AND SUMS 

All that remains to formally complete the problem is to apply the sum rule by evaluating 
the indicated integrals and sums. There are three types of hypotheses, so evaluating these 
integrals and sums must proceed in three steps. In these calculations only the multivari- 
ate Gaussian integrals may be evaluated in closed form. The remaining integrals must 
be evaluated numerically. Evaluating the multivariate Gaussian integrals for each of the 
three types of hypotheses is essentially identical. Consequently, the procedures needed will 
be demonstrated for the known targets and then the results will simply be given for the 
unknown and no-target hypotheses. 

Evaluating The Integrals For The Known Targets 

The posterior probability for the known target hypothesis is given by Eq. (67). The prior 
probability for the target hypothesis, P(k\I), was assigned a uniform prior and because this 
term appears in all of the posterior probabilities its prior range cancels when these distribu- 
tions are normalized. The prior probabilities for the range to the target, P(RC\I), and the 
orientation angle of the target, P(u\I) are given by Eqs. (44,45). The prior probability for 
the dc offset was assigned a wide uniform prior and because this term also appears in every 
posterior probability exactly one time its prior range also cancels. The prior probabilities 
for the amplitudes, P(Bi\I). are all given by Eq. (72). Last the likelihood function is given 
by Eq. (79). Gathering up these terms, the posterior probability for the known targets 
hypothesis is given by 

P(k\DI)oc j dBdudR: 

[Ro — Rc]   1 
x(27Tcr|j)   2 exp 

2a\ 

x(2™2)-!exPj-^^ (!<*<*-2) (82) 
'n 

1 Nk 

V Bmax J 
{     1    N Nk 1 

x(27T<72)-f exp <^ ~^Eft - E^5*' cos(fe - u) - rj + Rc)}2 \ 
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where each of the terms has been intentionally separated so they may be more readily 
identified. Additionally, the notation should have been modified to indicate that a^, CTQ, CT, 

RQ, U) and Bmax are known quantities. However, to compress the notation, these quantities 
have been incorporated into the general background information /. 

There are Nk + 3 integrals that must be evaluated. Of these only the Nk + 1 ampli- 
tude integrals may be evaluated in closed form. These integrals are multivariate Gaussian 
integrals and any integral of this form may be evaluated in closed form. Designating the 
amplitude integrals as PB(-#C,W), the integrals that must be evaluated are given by 

PB(RC,U) = I dBexpl—^2 

Nk Nk Nk 

d-d- 2j2BiT, + Y,T,BiBv9iv 
1=0 l=0r)=0 

(83) 

where 

and 

N 

d-d = J2dj, 
J=I 

N 

Ti = J2 djG(Ski cos(<f>ki - a>) - Tj + Rc), 

(84) 

(85) 

N 

91V = Yl G(Skl COS(^' - W) - Tj + Rc)G(Skr, COs{<f)krl -U})- Tj + Rc). (86) 
i=i 

There are a number of different ways to evaluate these integrals; one of the easiest to 
understand is to introduce a change of variables that makes the giv matrix diagonal, then 
all integrals uncouple and each may be done separately. The new variables, {AQ ■ ■ • A?jk}, 
are defined as 

Nh Nk A e , 
A^VXt^B^    and    B, = £ ^ (87) 

T,=O »;=o v Än 

where A,, is the 77th eigenvalue of the giv matrix and eni is the Zth component of its 77th 
eigenvector. The eigenvalues and eigenvectors have the property that 

Nk 

yi gi7,een = A*e« 
r)=0 

(88) 

from which the PB(RC,U) integral may be rewritten as 

PB(RCIU) = j dAX0
2 ...AN*exp<-^j 

Nk Nk 

d-d- 2^Aihi + y^Af 
1=0 1=0 

(89) 

where 
N 

(90) 
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and 
1       k 

Hi(rj) - -7= Y] eivG(Skr, cos(<f>ki - u>) - rj + Rc). 

The model functions Hi(rj) are called orthonormal because they have the property 

(91) 

jrH,(rj)Htl{rj) = 6lri (92) 
j=i 

where 6in is the Kronecker delta function. 
This change of variables reduces the PB(RC,U) integral to a series of independent Gaus- 

sian integrals. The integration limits are from zero to an upper bound. These limits are 
assumed so wide that the amount of probability contributed to the integral near the upper 
and lower bound is so small that the limits may be extended to plus and minus infinity and 
this extension will make only a negligible change in the results of the integral. Using this 
approximation one obtains 

PB(Rc^) = (2na2)^\-i---\-NlexV![-
d'd-J'h} ,        (1 < k < t- 2)       (93) 

where h • h is given by 
Nk 

h-h = YJ^
2

l. (94) 
;=o 

The quantity h ■ h plays the role of a sufficient statistic and summarizes all of the information 
in the data relevant to estimating the position and orientation angle of the target. Note 
that the sufficient statistic is a function of both Rc and u even though this dependency 
has not been explicitly shown. Substituting PB(RC,U) into the posterior probability for the 
known targets one obtains 

P(k\DI)   <x 
N-Nk-l ., 

,2\ 5*     /      1      \Nk {2-KO1) 2^  /    1 

B,.__ 

2      rr>     , ,12 
[Bo-R^_[a-J£.\        ,!<*</-» (95) 

•••VexP - 

2o\ 2al 

f   d-d-h-h\ 
I 2^2       /• 

(l<k<t-2) 

The remaining two integrals must be evaluated numerically. In the numerical simulations, 
these integrals are approximated in a particularly simple way. Each integral is taken to 
be approximately the width of the integrand times its height. In this particular case this 
approximation is good enough because the data are extremely spiky. This results in an 
extraordinarily sharply peaked probability distribution. The widths are analogous to a 
prior penalty, and almost any values used for them will work (provided they are reasonable). 
Here reasonable means the widths must be within one or two orders of magnitude of the 
true values. Parameter estimates using probability theory as logic typically scale like one 
over root N, so the widths are easily set to the right order of magnitude. 
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Evaluating The Integrals For The Unknown Target 

The process of evaluating the integrals for the unknown target hypothesis is essentially 
identical to what was done for the known target hypotheses. Consequently, only the results 
of these integrals are given. The posterior probability for the unknown target is given by 

P(C-1\DI)   oc     £ [dBdS(N)-1 (N)-N-> (-±-)  " 

ox   N-N„-i ,-i        -i        f   d-d — h-h] 
x    (2ira2)       2     A0

2---A^expj —^ j-, 

where the definitions of these quantities are analogous to those given in the preceding 
calculation. For example the sufficient statistic h • h is defined 

Nv 

h-h = j2ti (97) 
7=0 

with 
Nu I        '"u 

vXl v=o 
(98) 

and the eigenvalues and eigenvectors that appear in this calculation are formed from the 
interaction matrix associated with the unknown model function: 

N 

glv = Y, G(Skl - r^GiSkr, - r,-). (99) 
i=i 

For the known targets there was one sufficient statistic for each model, while here there 
is one for each value of the summation index N„. In principle, this is a long and tedious 
calculation. However, because of the spiked nature of the model function it is possible 
to implement this calculation using relatively simple approximations. In the numerical 
example two approximations were used: the sum was approximated by it largest term; while 
the integral was approximated by its height times its width. How these approximations 
worked in practice is the subject of the next Section. 

Evaluating The Integrals For The No-target Model 

The no-target model is particularly simple because the model contains only a single nuisance 
parameter. The posterior probability for the no-target model is given by 

where d is given by 

2=lj>i- (loi) 
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With the completion of this integral the problem is formally completed. There are a number 
of integrals that must be evaluated numerically. In the case of the unknown, the entire 
calculation is so complicated that there is virtually no hope of implementing the exact 
calculation, and approximations must be used. However, unless one knows what one should 
aim for, it is hard to know how to make approximations, and this is one of the places where 
probability theory helps most. By telling one what to aim for, the problem is reduced to 
approximating the posterior probability to the best of one's ability. While making numerical 
approximations is difficult, it is less difficult than trying to guess the answer by intuition. 

4    Numerical Methods 

To demonstrate model selection, how to handle incomplete sets of hypotheses (the unknown 
hypothesis), and the feasibility of radar target identification, the identification calculations 
presented in this tutorial have been implemented in a numerical simulation. In this simu- 
lation there are three major routines: a data generation routine, an identification routine, 
and an output routine. In general terms the simulation is a loop. Each time through the 
loop a data set is generated, passed to the identification routines and the results of the 
simulation are written to an output file. 

In this simulation there were 20 different hypotheses or targets; 18 known targets, one 
unknown, and one no-target hypothesis. The known target models were generated by a 
separate program and then used throughout the simulation. To do this the program used 
a random numbers generator to determine the angle and position of each scatter. The 
angular location of a scatter, fai, was chosen to be between 0 and 2ir, while radial location 
of a scatter, Ski, was chosen to be between —400 < Rc < 400. There are 1024 data values, 
so the scatterers were chosen so that they always fit within the range window of the radar. 

The data generation routine chooses one of the 20 targets at random. When it chooses 
the unknown target, the unknown is generated in a manner analogous to the known hy- 
potheses. A uniform random number generator was used to randomly position between 3 
and 10 scatterers within a range window of -400 < Rc < 400. Similarly, when the no-target 
model was chosen no scatterers were generated - only noise was placed in the simulated 
data. The amplitudes of the scatterers were set randomly. However, their amplitudes were 
scaled so that the mean amplitude to root-mean-square noise standard deviation was 20. 
The twenty target library is shown in Fig. 4 for one setting of the amplitudes, orientation 
angles, and positions of the targets. 

In this simulation the real target identification problem was mimicked as closely as 
possible. To do this the data were generated and processed in a way that mimicked the 
effects encountered on a real radar. On a real radar, the radar will establish a track on a 
target, and only after the track has been established will the identification be attempted. 
In the process of tracking the target the radar will infer the vector position and orientation 
angle of the target. This information is available to the identification routines in the 
form of prior probabilities. Additionally, the amplitudes of the scatterers are extremely 
sensitive functions of the orientation angle of the target, changing by more than an order 
of magnitude for a change of only 0.1 degrees. For all practical purposes, this means the 
amplitude of a scatterer is completely unpredictable from one look to the next. To illustrate 
these effects, the same library targets (with a new unknown, and no-target model) were 
generated a second time. These targets are displayed in Fig. 5. While the positions of the 



INTRODUCTION TO MODEL SELECTION 33 

Fig. 4. The library used in the simulation consisted of 20 different targets. The first 18 of these 
are the known targets, corresponding to various types of aircraft. The amplitudes, location, and 
orientation angle of each known target is chosen randomly. Target 19 is the unknown. The locations, 
amplitudes, and number of scatterers for the this target are chosen randomly. Target 20 is the no- 

target model and contains no scatterers. 
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Fig. 5. The amplitudes of each scatterer vary rapidly as a function of the orientation angle of the 
target. Here is the same 20 targets as they might look at slightly different orientations angle. Try 
comparing these targets to those shown in Fig. 4 to see if you can tell that they are the same. 
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scatterers in Fig. 4 and Fig. 5 nearly overlap, the amplitudes are completely different. This 
effect is so striking that the author has difficulty telling that these are the same targets. 
The probability assigned to the true target is shown to three decimal places in the upper 
left hand corner of these figures. Note that in both Fig. 4 and Fig. 5 the correct target was 
identified to a probability of one to three decimal places in every case. 

The simulation was run on 1000 simulated data sets, taking about 3 seconds for each 
simulation on an SGI Indigo. The first 20 simulated data sets are shown in Fig. 6. The full 
output from the simulation is shown in Table 1. This output consists of both a summary 
and detailed outputs. The summary output tells one the simulation number, i.e., 1, 2, 3 
etc., the true target number, its probability, and the signal-to-noise ratio.  The detailed 
output contains the unnormalized base 10 logarithm of the probability for each target. In 
the 1000 simulations the correct target was identified 999 times; there was only a single mis- 
identification. When the mis-identification was investigated, it was found that the generated 
target had most of its scatterers buried in the noise while two of them had exceptionally high 
signal-to-noise ratio. Under these conditions the unknown target is a better representation 
of the data than the true model. Thus the unknown target was understandably identified. 

Table 1 illustrates very strongly why the unknown target hypothesis works. To under- 
stand it, look at the first simulation. The true target is number 5. The base 10 logarithm 
of its probability is 1991.3. Now look at the log probabilities for the other targets for this 
first simulation. The target with the second highest probability was the unknown, having 
a log probability of 1983.7, roughly seven orders of magnitude down from the true target. 
The target with the third highest probability is target 17, it has a log probability of 1456.0, 
more than 400 orders of magnitude down. Next, look at a second simulation, say simulation 
number 8. The true target is number 20, the no-target model, it's log probability is 145.49. 
The second highest log probability is again the unknown coming in at 139.83. Now examine 
all of the simulations in the table except simulation number 3. The unknown hypothesis is 
the second highest probability in every case! To understand this, note that the unknown 
target essentially fits all of the systematic detail in the data; its likelihood function is es- 
sentially identical to the likelihood of the true target (assuming the true target hypotheses 
is in the library) .   But the unknown has many more parameters.  In probability theory 
as logic these extra parameters carry a penalty in the form of the prior probabilities. The 
priors range for both the location and number of scatterers was 1/JV. If there were 3 scat- 
terers on the target the unknown would have a prior penalty of 1/N4. The number of data 
values, N, was 1024 so the prior penalizes the unknown by a factor of approximately 1012. 
This penalty is so large, that unless the true target is not present, the prior eliminates the 
unknown target from consideration. Now examine simulation number 3. The true target is 
the unknown. There is no known target present to prevent the unknown target from being 
identified. 

5     Summary And Conclusions 

To use probability theory as logic, one must relate the hypothesis of interest to the avail- 
able evidence. This process is one of model building. While building the model one must 
state exactly what the hypotheses are and how they are related to the available evidence. 
In the case of radar target identification, this process has forced the radar target identifi- 
cation community to state exactly what is meant by the known, unknown and no-target 
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Fig. 6. This is the data generated in the first 20 simulations. The number in the upper right hand 
corner is the number of the true target. The number in the left hand corner is the probability 
assigned to this target. Note that the identification was perfect on these 20 targets. 
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Table 1: When Is The Unknown Target Identified? 

1 True Target: 5,  Its probability is:1.00;  S/N=20.0} 
I 342.21 2    823.30             3    819.98 4    828.76 5 1991.3 
6    820.01 7    338.35             8    341.15 9    824.52 10 340.43 

11    337.96 12    338.88           13    1194.3 14    353.80 15 339.31 
16    336.93 17    1456.0          18    338.85 19    1983.7 20 346.57 

2 True Target: 3,  Its probability is:1.00;  S/N=20.0} 
I 1758.0 2    1981.4   "        3    5028.1 4    1982.5 5 2026.9 
6    1983.0 7    655.49            8    627.86 9    2000.7 10 615.61 

11    889.01 12    1753.9           13    615.23 14    1754.5 15 1990.0 
16    2308.5 17    2031.3           18    3189.9 19    5015.5 20 615.86 

> 
3 True Target: Unknown(19), Its probability is:1.00; S/N=20.0} 

I 1475.6 2 1631.9     3 1780.4 4 752.65 5 1475.5 
6 751.85 7 1443.1     8 749.91 9 1331.7 10 1340.6 

11  1605.3 12 1298.8    13  1197.2 14 1881.0 15 752.00 
16 1244.8 17 1039.6    18 900.19 19 4168.9 20 750.25 

4 True Target: 6, its probability is:1.00; S/N=20.0 
I 289.23 2 284.32     3 310.25 4 315.44 5 314.46 
6 1805.6 7 285.79     8 463.71 9 312.38 10 287.84 

II 285.03 12 286.36    13 1584.2 14 465.75 15 312.17 
16 285.62 17 309.19    18 286.62 19  1799.6 20 295.45 

5 True Target: 14, its probability is:1.00; S/N=20.0 
1 615.56 2 596.31     3 599.18 4 391.18 5 967.78 

6 390.95 7 387.89     8 390.63 9 965.99 10 1158.6 
II 1141.0 12 822.83    13 1155.8 14 2287.1 15 389.47 
16 600.15 17 391.23    18 389.08 19 2277.0 20 395.64 

6 True Target: 13, its probability is:1.00; S/N=20.0 
1 331.36 2 662.09     3 327.42 4 331.51 5 436.72 

6 1627.0 7 329.55     8 331.98 9 329.65 10 667.83 

II 327.76 12 663.45    13 2141.4 14 372.26 15 665.66 

16 327.18 17 2010.7    18 328.61 19 2133.4 20 337.16 

7 True Target: 12, its probability is:1.00; S/H=20.0 
1 633.44 2 630.05     3 633.77 4 2359.5 5 539.65 
6 538.65 7 807.69     8 539.81 9 628.92 10 539.12 

II 2632.3 12 4219.2    13 540.15 14 644.69 15 539.97 
16 902.78 17 540.12    18 2448.6 19 4203.8 20 542.83 
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8 True Target: No Target(20), its probability is:1.00; S/N=20.0 
1  138.97     2 132.39 3 133.21 4 139.01 5 137.88 

6 139.23     7 134.28 8 138.86 9 136.85 10 138.45 
11  133.77 12 134.32 13 137.98 14 136.93 15 135.92 
16 133.91 17 138.39 18 134.35 19 139.83 20 145.49 

9 True Target: No Target(20), its probability is:0.99999; S/N=20.0 
1 138.26 2 131.78 3 132.10 4 137.90 5 137.16 

6 137.82 7 133.13 8 137.71 9 136.05 10 136.61 
11 132.07 12 133.46 13 136.55 14 135.67 15 134.67 

16 131.81 17 137.37 18 132.92 19 138.88 20 144.26 

10 True Target: No Target(20), its probability is:0.99999; S/N=20.0 
1  126.72 2 120.33 3 122.27 4 126.99 5 126.08 
6 127.59 7 122.20 8 126.86 9 124.99 10 126.00 

11  121.17 12 122.16 13 126.27 14  124.92 15 123.54 
16 122.42 17 125.93 18 122.54 19 127.77 20 133.32 

11 True Target: 9, its probability is:1.00; S/N=20.0 
1  1358.1 2 1409.0 3 734.61 4 436.37 5 1355.3 
6 436.20 7 383.71 8 688.60 9 2703.1 10 394.53 

11  1349.7 12 1348.7 13 385.26 14 677.26 15 383.00 

16 677.75 17 397.55 18 682.65 19 2693.2 20 389.72 

12 True Target: 4, its probability is:1.00; S/N=20.0 
1  272.47     2 756.10     3 761.39 4  1321.6 
6 767.68     7 267.81     8 272.65 9 764.52 

11 626.02    12 782.11    13 271.55 14 270.32    15 762.95 

16 625.45    17 757.66    18 627.50 19 1315.6    20 277.74 

5 765.64 

10 270.85 

13 True Target: 18, its probability is:1.00; S/N=20.0 

1  1153.0 2 1156.6     3 613.99 4 769.26 5 561.42 
6 530.28 7 801.18     8  1766.5 9  1103.9 10 1261.6 

11  1240.7 12 1462.8    13 530.03 14 1828.7 15 528.62 
16 1188.0 17 1257.4    18 3248.9 19 3235.4 20 531.07 

14 True Target: 6, its probability is:1.00; S/N=20.0 
1  267.83 2 261.75     3 592.98 4 589.68 5 593.95 
6 1789.7 7 265.15     8 268.20 9 595.83 10 268.10 

11  262.97 12 263.90    13 1441.5 14 266.55 15 594.71 
16 262.69 17 1774.2    18 265.63 19 1783.7 20 273.84 
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15 True Target: 17, its probability is:1.00; S/N=20.0 
1 331.89 2 327.58     3 427.78 4 332.51 5 1118.6 
6 430.92 7 329.53     8 799.51 9 801.72 10 799.39 

11 328.05 12 328.45    13 1130.8 14 674.66 15 430.44 
16 429.09 17 1730.6    18 853.47 19 1722.6 20 337.69 

16 True Target: 7, its probability is:1.00; S/N=20.0 

1 557.89 2 1289.4 3 1138.5 4 560.31 5 559.63 

6 558.83 7 3525.4 8 598.40 9 560.97 10 758.86 
11 1816.4 12 1134.8 13 557.64 14 557.65 15 1191.6 
16 1952.9 17 557.83 18 1466.7 19 3511.5 20 561.05 

17 True Target: 14, its probability is:1.00; S/N=20.0 

1 813.47 2 657.30 3 656.92 4 420.90 5 463^77 

6 420.31 7 1186.4 8 420.59 9 420.18 10 967.40 
11 1187.8 12 1350.8 13 962.76 14 2240.8 15 419.36 

16 658.86 17 420.70 18 418.35 19 2231.2 20 425.04 

18 True Target: 11, its probability is:1.00; S/N=20.0 

1 639.06 2 675.18 3 641.23 4 2718.8 5 1425.5 
6 641.82 7 666.94 8 641.69 9 642.31 10 671.72 

11 5732.9 12 4731.0 13 1432.4 14 1430.0 15 663.53 
16 2759.3 17 669.44 18 2620.3 19 5704.7 20 642.51 

19 True Target: No Target(20), its probability is:1.00; S/N=20.0 

1 130.83 2 123.28 3 124.80 4 130.47 5 129.77 
6 130.43 7 125.82 8 130.41 9 127.92 10 129.65 

11 125.02 12 125.97 13 129.78 14 128.61 15 127.31 
16 125.08 17 129.73 18 125.74 19 131.19 20 136.93 

20 True Target: 4, its probability is:0.99997; S/N=20.0 

1 272.19 2 585.49 3 588.66 4 1329.5 5 588.29 
6 594.21 7 267.63 8 272.56 9 590.34 10 271.73 

11 775.71 12 993.07 13 270.58 14 270.30 15 589.80 

16 267.73 17 587.64 18 268.50 19 1325.0 20 277.63 

Table 1 illustrates how the unknown target is identified. This is the detailed output from the first 20 
simulations. The first line of each entry identifies the true target and its probability. Lines 2 thru 5 
for each entry are the base 10 logarithm of the probability for each target. Target 19 is the unknown 
target. To see how, when and why the unknown is correctly identified, browse through this table 
and compare the log probability for the unknown to that of the true target. The log probability for 
the unknown is always less than the true target. However, it is always greater than any of the other 
targets. So the unknown is identified whenever the true target is not in the list of library targets. 
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hypotheses. In probability theory as logic there is no such thing as nonparametric statistics. 
Typically when this term is used, it is used to mean that the number of hypotheses grows 
very large. That is to say, the models are so general they can fit virtually any data. But 
this is not nonparametric statistics, indeed it is exactly the opposite: there are many more 
parameters than data. However, there are a few people who use the term to mean literally 
there are no models. Typically, the statistics advocated by these people cannot be derived 
from a correct application of the rules of probability theory and, at best, their results are 
intuitive and ad hoc. 

Probability theory computes the probabilities for hypotheses. It computes the probabil- 
ity for parameters only in the sense that the parameter indexes a well defined hypothesis. 
Similarly, it test models only in the sense that models are statements of hypotheses. Thus 
there is no essential difference between model selection and parameter estimation. The dif- 
ferences are conceptual, not theoretical. These conceptual differences manifest themselves 
primarily in the prior probabilities. In parameter estimation it is often convenient and 
harmless to use improper priors (an improper prior is a function that is used as a prior 
probability that is not normalizable). It is convenient because improper priors often sim- 
plify the mathematics considerably, and harmless because the infinities so introduced cancel 
when the probabilities are normalized. Strictly speaking improper priors are not probabil- 
ities at all; rather they are the limit of a sequence of proper priors in the limit of infinite 
uncertainty in a hypothesis. As a limit, it must always be approached from well-defined 
finite mathematics to ensure one obtains a well behaved result. Use of an improper prior 
directly can and will result in disaster in model selection problems because the infinities 
don't generally cancel. For more on this point see Jaynes [11]. In parameter estimation, 
when using a uniform prior, the prior ranges cancel when the distribution is normalized. 
However, in model selection these prior ranges may or may not cancel. In the numerical 
simulation described in this tutorial, the prior range for the constant dc offset and which 
target was present canceled. The remaining prior ranges did not cancel, and so affect the 
results. These prior ranges essentially set the scale against which different models with dif- 
fering parameterizations are compared. So it is vitally important that one think carefully 
about these quantities and set them based on the information one actually has. 

The probability for a hypothesis C is computed conditional on the evidence Ej- • ■ En. 
This probability is given by P(C\E\ ■ ■ ■ En). Every person who consistently follows the rules 
of probability theory will be lead to assign exactly the same probabilities conditional on 
that evidence. These probabilities are all of the form of prior probabilities. The distinction 
between data, strong prior information, weak prior information, and no prior information 
(which strictly speaking cannot exist in real problems) is purely artificial. Evidence is 
evidence and it is all used to assign prior probabilities! The principle of maximum entropy 
was used here to assign these priors because it assigns priors that are consistent with that 
evidence while remaining maximally uninformative. That is to say, the probabilities do not 
depend on things one does not know. This is particularly important when assigning the 
prior probability for the noise because it allows one to assign probabilities that depend only 
on what one actually knows about the true errors in the data and it renders the underlying 
sampling distribution of the noise completely irrelevant. 

The calculations indicated by probability theory are often much too complicated to 
implement exactly.   However, knowing what should be done enables one to reduce the 
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problem from one of guessing the answer to one of numerical approximation. This is a 
tremendous simplification that often leads to simple numerical algorithms which, although 
not exact, capture the essence of the probability theory calculation and enable one to solve 
problems that would otherwise prove impossible. 
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HYPERPARAMETERS: OPTIMIZE, OR INTEGRATE OUT? 

David J.C. MacKay 
Cavendish Laboratory, 
Cambridge, CB3 OHE. United Kingdom. 
mackayQmrao.cam.ac.uk 

ABSTRACT. I examine two approximate methods for computational implementation of Bayesian 
hierarchical models, that is, models which include unknown hyperparameters such as regularization 
constants. In the 'evidence framework' the model parameters are integrated over, and the resulting 
evidence is maximized over the hyperparameters. The optimized hyperparameters are used to define 
a Gaussian approximation to the posterior distribution. In the alternative 'MAP' method, the true 
posterior probability is found by integrating over the hyperparameters. The true posterior is then 
maximized over the model parameters, and a Gaussian approximation is made. The similarities of 
the two approaches, and their relative merits, are discussed, and comparisons are made with the 
ideal hierarchical Bayesian solution. 

In moderately ill-posed problems, integration over hyperparameters yields a probability distri- 
bution with a skew peak which causes significant biases to arise in the MAP method. In contrast, 
the evidence framework is shown to introduce negligible predictive error, under straightforward 
conditions. 

General lessons are drawn concerning the distinctive properties of inference in many dimensions. 

"Integrating over a nuisance parameter is very much like estimating the parameter 
from the data, and then using that estimate in our equations." G.L. Bretthorst 

"This integration would be counter-productive as far as practical manipulation is 
concerned." S.F. Gull 

1     Outline 

In ill-posed problems, a Bayesian model H commonly takes the form: 

P(D,w,a,/3|W) = P(D\w,ß,H)P(w\a,H)P(a,ß\n), (1) 

where D is the data, w is the parameter vector, ß defines a noise variance al = l/ß, and a 
is a regularization constant. In a regression problem, for example, D might be a set of data 
points, {x, t}, and the vector w might parameterize a function /(x; w). The model Ji states 
that for some w, the dependent variables {t} are given by adding noise to {/(x; w)}; the 
likelihood function P(D\-w,ß,H) describes the assumed noise process, parameterized by a 
noise level l/ß; the prior P(w|a,H) embodies assumptions about the spatial correlations 
and smoothness that the true function is expected to have, parameterized by a regularization 
constant a. The variables a and ß are known as hyperparameters. Problems for which 
models can be written in the form (1) include linear interpolation with a fixed basis set 
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(Gull 1988; MacKay 1992a), non-linear regression with a neural network (MacKay 1992b). 
non-linear classification (MacKay 1992c), and image deconvolution (Gull 1989). 

In the simplest case (linear models, Gaussian noise), the first factor in (1), the likelihood, 
can be written in terms of a quadratic function of w, £D(W): 

P(D\w,ß,H)=j±g-exp(-ßEDW). (2) 

What makes the problem 'ill-posed' is that the hessian WED is ill-conditioned — some 
of its eigenvalues are very small, so that the maximum likelihood parameters depend unde- 
sirably on the noise in the data. The model is 'regularized' by the second factor in (1), the 
prior, which in the simplest case is a spherical Gaussian: 

P(w|a,W) = ^-.-r exp(-QiwTw). (3) 

The regularization constant a defines the variance o\ = \/a of the prior for the components 
W{ of w. 

Much interest has centred on the question of how the constants a and ß — or the 
ratio a/ß — should be set, and Gull (1989) has derived an appealing Bayesian prescription 
for these constants (see also MacKay (1992a) for a review). This 'evidence framework' 
integrates over the parameters w to give the 'evidence' P(D\a,ß,Ti). The evidence is then 
maximized over the regularization constant a and noise level ß. A Gaussian approximation 
is then made with the hyperparameters fixed to their optimized values. This relates closely 
to the 'generalized maximum likelihood' method in statistics (Wahba 1975). This method 
can be applied to non-linear models by making appropriate local linearizations, and has been 
used successfully in image reconstruction (Gull 1989; Weir 1991) and in neural networks 
(MacKay 1992b; Thodberg 1993; MacKay 1994). 

Recently an alternative procedure for computing inferences under the same Bayesian 
model has been suggested by Buntine and Weigend (1991), Strauss et al. (1993) and Wolpert 
(1993). In this approach, one integrates over the regularization constant a first to obtain 
the 'true prior', and over the noise level ß to obtain the 'true likelihood'; then maximizes 
the 'true posterior' over the parameters w. A Gaussian approximation is then made around 
this true probability density maximum. I will call this the 'MAP' method (for maximum a 
posteriori); this use of the term 'MAP' may not coincide precisely with its general usage. 

The purpose of this paper is to examine the choice between these two Gaussian approx- 
imations, both of which might be used to approximate predictive inference. It is assumed 
that it is predictive distributions that are of interest, rather than point estimates. Estima- 
tion will only appear as a computational stepping stone in the process of approximating a 
predictive distribution. I concentrate on the simplest case of the linear model with Gaussian 
noise, but the insights obtained are expected to apply to more general non-linear models and 
to models with multiple hyperparameters. When a non-linear model has multiple local op- 
tima, one can approximate the posterior by a sum of Gaussians, one fitted at each optimum. 
There is then an analogous choice between either (a) optimizing a separately at each local 
optimum in w, and using a Gaussian approximation conditioned on a (MacKay 1992b); 
or (b) fitting Gaussians to local maxima of the true posterior with the hyperparameter a 
integrated out. 
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2    The Alternative Methods 

Given the Bayesian model defined in (1), we might be interested in the following inferences. 
Problem A: Infer the parameters, i.e., obtain a compact representation of P(w\D,H) and 
the marginal distributions P(wi\D,H). 
Problem B: Infer the relative model plausibility, which reqxiires the 'evidence' P(D\H). 
Problem C: Make predictions, i.e. obtain some representation of P(D2\D,7i), where D^, 
in the simplest case, is a single new datum. 

Let us assume for simplicity that the noise level ß is known precisely, so that only the 
regularization constant a is respectively optimized or integrated over. Comments about a 
can apply equally well to ß. 

THE IDEAL APPROACH 

Ideally, if we were able to do all the necessary integrals, we would just generate the probabil- 
ity distributions P(w\D, H), P(D\H), and P(D2\D,1i) by direct integration over everything 
that we are not concerned with.  The pioneering work of Box and Tiao (1973) used this 
approach to develop Bayesian robust statistics. 

For real problems of interest, however, such exact integration methods are seldom avail- 
able. A partial solution can still be obtained by using Monte Carlo methods to simulate 
the full probability distribution (see Neal (1993b) for an excellent review). Thus one can 
obtain (problem A) a set of samples {w} which represent the posterior P(v/\D,H), and 
(problem C) a set of samples {D2} which represent the predictive distribution P(D2\D, H). 
Unfortunately, the evaluation of the evidence P{D\H) with Monte Carlo methods (problem 
B) is a difficult undertaking. Recent developments (Neal 1993a; Skilling 1993) now make it 
possible to use gradient and curvature information so as to sample high dimensional spaces 
more effectively, even for highly non-Gaussian distributions. Let us come down from these 
clouds however, and turn attention to the two deterministic approximations under study. 

THE EVIDENCE FRAMEWORK 

The evidence framework divides our inferences into distinct 'levels of inference': 
Level 1: Infer the parameters w for a given value of a: 

P(w\D,a,H) = PJDWH) • (4) 

Level 2: Infer a: 

P(a|D'W)- pjDfH) " () 

Level 3: Compare models: 
P(H\D) oc P(D\H)P(K). (6) 

There is a pattern in these three applications of Bayes' rule: at each of higher levels 2 and 
3, the data-dependent factor (e.g. in level 2, P(D\a,7i)) is the normalizing constant (the 
'evidence') from the preceding level of inference. 

The inference problems listed at the beginning of this section are solved approximately 
using the following procedure. 
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• The level 1 inference is approximated by making a quadratic expansion, around a maxi- 
mum of P(w\D,a,H), of log P(D\w,a,H)P(w\a,H); this expansion defines a Gaussian 
approximation to the posterior. The evidence P(D\a,7i) is estimated by evaluating the 
appropriate determinant. For linear models the Gaussian approximation is exact. 

• By maximizing the evidence P(D\a,H) at level 2, we find the most probable value of the 
regularization constant, aMP, and error bars on it, c"ioga|D. (Because a is a positive scale 
variable, it is natural to represent its uncertainty on a log scale.) 

• The value of aMP is substituted at level 1. This defines a probability distribu- 
tion F(w|D,aMP,W) which is intended as a 'good approximation' to the posterior 
P(w\D,H). The solution offered for problem A is a Gaussian distribution around the 
maximum of this distribution, wMP|aMp, with covariance matrix S defined by S_1 = 
-W\ogP(w\D,aMP,H). Marginals for the components of w are easily obtained from 
this distribution. 

• The evidence for model H (problem B) is estimated using: 

P(D\H) * P{D\aUP.. H)P{\oga^\H) V^*iosa[D. (7) 

• Problem C: The predictive distribution P(D2\D,H) is approximated by using the poste- 
rior distribution with a = aMP: 

P(D2\D,am,H) = Jdkvr P(D2|w,H)P(w|i>,aMP,H). (8) 

For a locally linear model with Gaussian noise, both the distributions inside the integral 
are Gaussian, and this integral is straightforward to perform. 

As reviewed in MacKay (1992a), the most probable value of a satisfies a simple and intuitive 
implicit equation, 

-L=a-i (9) 
<*MP 7 

where to,- are the components of the vector wMP|aMp and 7 is the number of well-determined 
parameters, which can be expressed in terms of the eigenvalues Aa of the matrix /3VV££>(w): 

k      A 
7 = Jb - aTraceS = ^       "    . (10) 

This quantity is a number between 0 and k. Recalling that a can be interpreted as the 
variance CT£ of the distribution from which the parameters w» come, we see that equation 
(9) corresponds to an intuitive prescription for a variance estimator. The idea is that we are 
estimating the variance of the distribution of to,- from only 7 well-determined parameters, 
the other (£-7) having been set roughly to zero by the regularizer and therefore not 
contributing to the sum in the numerator. 

In principle, there may be multiple optima in a, but this is not the typical case for 
a model well matched to the data. Under general conditions, the error bars on log a are 
CTloga|D - \fijl (MacKay 1992a) (see section 5). Thus log a is well-determined by the data 
if 7> 1. 

The central computation can be summarised thus: 
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Evidence approximation: find the self-consistent solution {wMP|„Mp,aMP} such that 
wMp|aMp maximizes P(w\D,aMP,H) and aMP satisfies equation (9). 

Justification for the Evidence ApproximationThe central approximation in this scheme can 
be stated as follows: when we integrate out a parameter, the effect for most purposes is 
to estimate the parameter from the data, and then constrain the parameter to that value 
(Box and Tiao 1973; Bretthorst 1988). When we predict an observable D?, the predictive 
distribution is dominated by the value a = aMP. In symbols, 

P(D2\D,n) = J P(D2\D,a,H)P{\oga\D,H)d\oga~P(D2\D,aw,n). 

This approximation is accurate as long as P(D-2\D,a,'H) is insensitive to changes in log a 
on a scale of o"iog0(m, so that the distribution P(\oga\D,H) is effectively a delta function. 
This is a well-established idea. 

A similar equivalence of two probability distributions arises in statistical thermodynam- 
ics. The 'canonical ensemble' over all states r of a system, 

P(r) = exp(-/?£r)/Z, (11) 

describes equilibrium with a heat bath at temperature 1//3. Although the energy of the 
system is not fixed, the probability distribution of the energy is usually sharply peaked 
about the mean energy E. The corresponding 'microcanonical ensemble' describes the 
system when it is isolated and has fixed energy: 

P(r)„f I/"   Ere[E±6E/2] 
n > ~\0        otherwise ' {    ' 

Under these two distributions, a particular microstate r may have numerical probabili- 
ties that are completely different. For example, the most probable microstate under the 
canonical ensemble is always the ground state, for any temperature 1/ß > 0; whereas its 
probability under the microcanonical ensemble is zero. But it is well known (Reif 1965) 
that for most macroscopic purposes, if the system has a large number of degrees of free- 
dom, the two distributions are indistinguishable, because most of the probability mass of 
the canonical ensemble is concentrated in the states in a small interval around E. 

The same reasoning justifies the evidence approximation for ill-posed problems, with 
particular values of w corresponding to microstates. If the number of well-determined 
parameters is large, then a, like the energy above, is well-determined. This does not imply 
that the two densities P(w\D,H) and P(w\D,aUP,7i) are numerically close in value, but we 
have no interest in the probability of the high dimensional vector w. For practical purposes, 
we only care about distributions of low-dimensional quantities (e.g., an individual parameter 
W{ or a new datum); what matters, and what is asserted here, is that when we project 
the distributions down in order to predict low-dimensional quantities, the approximating 
distribution P(w\D,aMP,H) puts most of its probability mass in the right place. A more 
precise discussion of this approximation is given in section 5. 
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THE MAP METHOD 

The alternative procedure is first to integrate out a to obtain the true prior: 

P(w\H)= [da P{w\a,H)P{a\H). (13) 

We can then write down the true posterior directly (except for its normalizing constant): 

P(vr\D,H)ot.P(D\w,H)P{vr\H). (14) 

This posterior can be maximized to find the MAP parameters, wMP. How does this relate 
to the desired inferences listed at the head of this section? Not all authors describe how 
they intend the true posterior to be used in practical problems (e.g., Wolpert (1993)); here 
I describe a method based on the suggestions of Buntine and Weigend (1991). 

Problem A: The posterior distribution P(w\D,H) is approximated by a Gaussian dis- 
tribution, fitted around the most probable parameters, wMP; to find the Hessian of the 
posterior, one needs the Hessian of the prior, derived below. A simple evaluation of the 
factors on the right hand side of (14) is not a satisfactory solution of problem A, since 
(a) the normalizing constant is missing; (b) even if the r.h.s. of (14) were normalized, the 
ability to evaluate the local value of this density would be of little use as a summary of 
the distribution in the high-dimensional space; how, for example, is one to obtain marginal 
distributions over w,- from (14)? 

Problem B: An estimate of the evidence is obtained from the determinant of the covari- 
ance matrix of this Gaussian distribution. 

Problem C: The parameters wMP with error bars are used to generate predictions as in 
(8). 

A simple example will illustrate that this approach actually gives results qualitatively 
very similar to the evidence framework. If we apply the improper prior PimP(loga) = const 
and evaluate the true prior, we obtain:1 

PbapMH) = / dloga ex (15) 
Ja=0        AW(<*) (£; wi) ' 

The derivative of the true log prior with respect to w is —(&/ YA wj)w. This 'weight decay' 
term can be directly viewed in terms of an 'effective a\ 

_.£.• w. 2 

f    \~       u     ■ (16) Qeff(w) k 

Any maximum of the true posterior P(w\D,H) is therefore also a maximum of the condi- 
tional posterior P(vr\D, a,H), with a set to aeff. The similarity of equation (16) to equation 
(9) of the evidence framework is clear. We can therefore describe the MAP method thus: 

MAP method (improper prior):  find the self-consistent solution {wMP,aeff} such 
that wMP maximizes P(-w\D,ae^H) and aeflr satisfies equation (16). 

This procedure is suggested in (MacKay 1992b) as a 'quick and dirty' approximation to the 
evidence framework. 

If a uniform prior over a from 0 to co is used (instead of a prior over log a) then the resulting exponent 
changes from k/2 to (k/2 + 1). 
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THE EFFECTIVE a AND THE CURVATURE OF A GENERAL PRIOR 

We have just established that, when the improper prior (15) is used, the MAP solution 
lies on the 'alpha trajectory' — the graph of wMP|a — for a particular value of a = aeff- 
This result still holds when a proper prior over a is used to define the true prior >' 13). The 
effective a(w), found by differentiation of log P(w|ft), is: 

aeff(w)=  / daaP(a\w,H). (17) 

In general there may be multiple local probability maxima, all of which lie on The alpha 
trajectory. In summary, optima wMP found by the MAP method can be described thus: 

MAP method (proper prior): find the self-consistent solution {wMP,aeff} such that 
wMP maximizes P(w|D,aeff,W) and aeff satisfies equation (17). 

The curvature of the true prior is needed for evaluation of the error bars on w in the 
MAP method. By direct differentiation of the true prior (13), we find: 

- VV log P(w\H) = cteffl - <^(w)wwT, (18) 

where aeff(w) is defined in (16), and the effective variance of a is: 

<j2(w) = o?(w) - aeff(w)2 =  /"daa2P(a|w,ft)- ( [ da a P(a\w ,H)\   ■ (19) 

This is an intuitive result: if a were fixed to aeff, then the curvature would just be the 
first term in (18), aeffl- The fact that a is uncertain depletes the curvature in the radial 
direction w = w/|w|. 

3    Pros and Cons 
The algorithms for finding the evidence framework's wMP|aMp and the MAP method's wMP 

have been seen to be very similar. Is there any real distinction to be drawn between these 
two aproaches? 

The MAP method has the advantage that it involves no approximations until after we 
have found the MAP parameters wMP; in contrast, the evidence framework approximates 
an integral over a. 

In the MAP method the integrals over a and ß need only be performed once and can 
then be used repeatedly for different data sets; in the evidence framework, each new data 
set has to receive individual attention, with a sequence of (Gaussian) integrations being 
performed each time a and ß are optimized. 

So why not always integrate out hyperparameters whenever possible? Let us answer 
this question by magnifying the systematic differences between the two approaches. With 
sufficient magnification it will become evident to the intuition that the approximation of 
the evidence framework is superior to the MAP approximation. The distinction between 
wMP and wMPu is similar to that between the two estimators of standard deviation on 
a calculator, aN and aN-\i the former being the (biased) maximum likelihood estimator, 
whereas the latter is unbiased. The true posterior distribution has a skew peak, so that the 
MAP parameters are not representative of the whole posterior distribution. This is best 
illustrated by an example. 
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THE WIDGET EXAMPLE 

A collection of widgets i = l..k have a property called 'wibble', to,-, which we measure, 
widget by widget, in noisy experiments with a known noise level av = 1.0. Our model for 
these quantities is that they come from a Gaussian prior P(to,-|a, W), where a= 1/a* js not 

known. Our prior for this variance is flat over log a«, from aw = 0.1 to ow = 10. 

Scenario 1. Suppose four widgets have been measured and give the following data: 
{dud2,d3,d4} = {3.2. -3.2, 2.8, -2.8}. The task is (problem A) to infer the wibbles of 
these four widgets, i.e. to produce a representative w with error bars. On the back of an 
envelope, or in a computer algebra system, we find the following answers using equations 
(9) and (16/17): 

Evidence framework: QMP = 0.124, WMP|QMP = {2.8, -2.8,2.5, -2.5}, each with error 
bars ±0.9. 

MAP method: aeff = 0.145, wMP = {2.8, -2.8,2.4, -2.4}, each with error bars ±0.9. 
These answers are insensitive to the details of the prior over aw. 

So far so good: wMP|aMp is slightly less regularized than wMP, but there is not much 
disagreement when all the parameters are well-determined. 

Scenario 2. Suppose in addition to the four measurements above we are now informed 
that there are an additional four unmeasured widgets in a box next door. Thus we now have 
both well-determined and ill-determined parameters, as in an ill-posed problem. Intuitively, 
we would like our inferences about the well-measured widgets to be negligibly affected by 
this vacuous information about the unmeasured widgets, just as the true Bayesian predictive 
distributions are unaffected. But clearly with k = 8, the difference between k and 7 in 
equations (9) and (16) is going to become significant. The value of aeff will be substantially 
greater than that of oMP. 

In the evidence framework the value of 7 is exactly the same, since each of the ill- 
determined parameters has A = 0 and adds nothing to the sum in (10). So the value of aMP 

and the predictive distributions are unchanged. 
In contrast, the MAP parameter vector wMP is squashed close to zero. The precise 

value of wMP is sensitive to the prior over a. Solving equation (17) in a computer algebra 
system, we find: aeff = 79.2, wMP = {0.040, -0.040,0.035,-0.035,0,0,0,0}, with marginal 
error bars on all eight parameters <jw\D = 0.11. 

Thus the MAP Gaussian approximation is terribly biased towards zero. The final dis- 
aster of this approach is that the error bars on the parameters are also correspondingly 
small. 

This is not a contrived example. It contains the basic feature of ill-posed problems: that 
there are both well-determined and poorly-determined parameters. To aid comprehension, 
the two sets of parameters are separated. This example can be transformed into a typical 
ill-posed problem simply by rotating the basis to mix the parameters together. In neural 
networks, a pair of scenarios identical to those discussed above can arise if there are a large 
number of poorly determined parameters which have been set to zero by the regularizer, 
and we consider 'pruning' these parameters. In scenario 1, the network is pruned, removing 
the ill-determined parameters. In scenario 2, the parameters are retained, and assume their 
most probable value, zero. In each case, what is the optimal setting of the weight decay 
rate a (assuming the traditional regularizer wTw/2)? We would expect the answer to be 
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unchanged. Yet the MAP method effectively sets a to a much larger value in the second 
scenario. 

The MAP method may locate the true posterior maximum, but it fails to capture most 
of the true probability mass. 

4    Inference in Many Dimensions 

In many dimensions, therefore, new intuitions are needed. 

Nearly all of the volume of a A;-dimensional hypersphere is in a thin shell near its surface. 
For example, in 1000 dimensions, 90% of a hypersphere of radius 1.0 is within a depth of 
0.0023 of its surface. A central core of the hypersphere, with radius 0.5, contains less than 
l/10300of the volume. 

This has an important effect on high-dimensional probability distributions. Consider a 
Gaussian distribution P(w) = (l/\/2lr<Tw)*exp(-^"u;?/2<T^). Nearly all of the probabil- 
ity mass of a Gaussian is in a thin shell of radius r = y/kaw and of thickness a rj^/k. For 
example, in 1000 dimensions, 90% of the mass of a Gaussian with aw = 1 is in a shell of 
radius 31.6 and thickness 2.8. However, the probability density at the origin is ekl2 ~ 10217 

times bigger than the density at this shell where most of the probability mass is. 

Consider two Gaussian densities in 1000 dimensions which differ in ow by 1%, and which 
contain equal total probability mass. In each case 90% of the mass is located in a shell 
which differs in radius by only 1% between the two distributions. The maximum probability 
density, however, is greater at the centre of the Gaussian with smaller aw, by a factor of 
~ exp(O.Olfc) ~ 20,000. 

In summary, probability density maxima often have very little associated probability 
mass, even though the value of the probability density there may be immense, because they 
have so little associated volume. If a distribution is composed of a mixture of Gaussians 
with different aw, the probability density maxima are strongly dominated by smaller values 
of crw. This is why the MAP method finds a silly solution in the widget example. 

Thus the locations of probability density maxima in many dimensions are generally 
misleading and irrelevant. Probability densities should only be maximized if there is good 
reason to believe that the location of the maximum conveys useful information about the 
whole distribution, e.g., if the distribution is approximately Gaussian. 

CONDITION SATISFIED BY TYPICAL SAMPLES 

The conditions (9) and (16), satisfied by the optima (aMP,wMP|aMP) and (aeff, wMP) respec- 
tively, are complemented by an additional result concerning typical samples from posterior 
distributions conditioned on a. The maximum wMP|a of a Gaussian distribution is not 
typical of the posterior: the maximum has an atypically small value of wTw, because, 
as discussed above, nearly all of the mass of a Gaussian is in a shell at some distance 
surrounding the maximum. 

Consider samples w from the Gaussian posterior distribution with a fixed to aMP, 
P(-w\D, QMP,7i). The average value of wTw = £),- wf for these samples satisfies: 

aMP = 7=—57 • (20) 
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Proof: The deviation Aw = w - wMP|QMp is Gaussian distributed with AwAwT = S. So 
"MP<£,- w"i)\D,o,Mr = aMp(wMP|QMp + Aw)T(wMP|aMp + Aw) = öMPwJp|(iM|) + aMPTraceE = 
k, using equations (9) and (10). 

Thus a typical sample from the evidence approximation prefers just the same value of 
a as does the evidence. 

5     Conditions for the Evidence Approximation 

We have observed that the MAP method can lead to absurdly biased answers if there 
are many ill-determined parameters. In contrast, I now discuss conditions under which the 
evidence approximation works. I discuss the case of linear models with Gaussian probability 
distributions. This includes the case of image reconstruction problems that have separable 
Gaussian distributions in the Fourier domain. 

What do we care about when we approximate a complex probability distribution by 
a simple one? My definition of a good approximation is a practical one, concerned with 
(A) estimating parameters; (B) estimating the evidence accurately; and (C) getting the 
predictive mass in the right place. Estimation of individual parameters (A) is a special case 
of prediction (C), so in the following I will address only (C) and (B). 

For convenience let us work in the eigenvector basis where the prior (given a) and the 
likelihood are both diagonal Gaussian functions. The curvature of the log likelihood is 
represented by eigenvalues {Aa}. For a typical ill-posed problem these eigenvalues cover 
several orders of magnitude in value. Without loss of generality let us assume k data 
measurements {da}, such that da = \/)Zwa-\-v, where the noise standard deviation is av = 1. 
We define the probability distribution of everything by the product of the distributions: 

P(D\w,H) = (2»)-*/'exp j-I ■£ (,/£«,„ - dcf] . 

In the case of a deconvolution problem the eigenvectors are the Fourier set and the point 
spread function in Fourier space is given by \An- 

The discussion proceeds in two steps. First, the posterior distribution over a must have 
a single sharp peak at aMP. No general guarantee can be given for this to be the case, but 
various pointers are given. Second, given a sharp Gaussian posterior over log a, it is proved 
that the evidence approximation introduces negligible error. 

CONCENTRATION OF P (log a\D,H) IN A SINGLE MAXIMUM 

Condition 1 In the posterior distribution over log a, all the probability mass should be 
contained in a single sharp maximum. 

For this to hold, several sub-conditions are needed. If there is any doubt whether these 
conditions are sufficient, it is straightforward to iterate all the way down the a trajectory, 
explicitly evaluating P (log a\D,H). 

The prior over a must be such that the posterior has negligible mass at log a —► ±oo. 
In cases where the signal to noise ratio of the data is very low, there may be a significant 



HYPERPARAMETERS: OPTIMIZE, OR INTEGRATE OUT? 53 

tail in the evidence for large a. There may even be no maximum in the evidence, in which 
case the evidence framework gives singular behaviour, with a going to infinity. But often 
the tails of the evidence are small, and contain negligible mass if our prior over logo has 
cutoffs at some amin and amax (surrounding aMP). For each data analysis problem, one may 
evaluate the critical amax above which the posterior is measurably affected by the large a 
tail of the evidence (Gull 1989). Often, as Gull points out, this critical value of amax has 
bizarre magnitude. 

Even if aflat prior between appropriate am;n and amax is used, it is possible in principle 
for the posterior P(\oga\D,li.) to be multi-modal. However this is not expected when the 
model space is well matched to the data. Examples of multi-modality only arise if the 
data are grossly at variance with the likelihood and the prior. For example, if some large 
eigenvalue measurements give smaD da(/), and some measurements with small eigenvalue 
give large da,s), then the posterior over a can have two peaks, one at large a which nicely 
explains da^, but must attribute da^ to unusually large amounts of noise, and one at small 
a which nicely explains da^, but must attribute d^ to wa^ being unexpectedly close to 
zero. I now suggest a way of formalizing this concept into a quantitative test. 

If we accept the model, then we believe that there is a true value of a = aT, and that 
given aT, the data measurements da are the sum of two independent Gaussian variables 
y/Tawa and va, so that P(da\aT,H) = Normal(0,cr;j|ar), where cr^ = % + 1. The 

expectation of d\ is (d^) = £*- + 1. We therefore expect that there is an aT such that the 
quantities {d\la\,Q } are independently distributed like x2 with one degree of freedom. 

Definition 1 A data set {da} is grossly at variance with the model for a given value of a, 
if any of the quantities ja = d2

a/{*£ + 1) is not in the interval [e"T, 1 + r]; where r is the 
significance level of this test. 

It is conjectured that if we find a value of a — aUP which locally maximizes the evidence, 
and with which the data are not grossly at variance, then there are no other maxima over 
a. 

Conversely, if the data are grossly at variance with a local maximum QMP, then there 
may be multiple maxima in a, and the evidence approximation may be inaccurate. In these 
circumstances one might also suspect that the entire model is inadequate in some way. 

Assuming that F(log a\D, H) has a single maximum over log a, how sharp is it expected 
to be? I now establish conditions under which the P(logo:|.D,7i) is locally Gaussian and 
sharp. 

Definition 2  The symbol ne is defined by: 

a (äTH^F (21) 

This is a measure of the number of eigenvalues Xa within approximately e-fold of aMP. 

In the following, I will assume that nt <C 7, but this condition is not essential for the 
evidence approximation to be valid.  If ne < 7, and the data are not grossly at variance 
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with aMP, then we find on Taylor-expanding }ogP(a\D,7i) about O = QMP, that the second 
derivative is large, and that the third derivative is relatively small: 

d\og P(D\a,n) 
dloga 

d2\ogP{D\a,H) 
<9(log a)2 

d3)ogP(D\a,H) 
d(log a)3 

°MP 

»MP 

«MP 

=    2(7_aWM«Mp)   =   ° 

r^i _      2 _7 
aWMP|aMP     - 2 

2 _        7 
"aWMP|aMP    -    -2' 

The first derivative is exact, assuming that the eigenvalues Aa are independent of a, which 
is true in the case of a Gaussian prior on w (Bryan 1990). The second and third derivatives 
are approximate, with terms proportional to ne being omitted. The third derivative is 
relatively small (even though it is equal to the second derivative), since in the expansion 
P(l) = exp(-f Z2 + |/3 + ...), the second term gives a negligible perturbation for / ~ c-1/2 

if d < c3/2. In this case, since d = c = 7>l, the perturbation introduced by the higher 
order terms is 0(7-1/2). Thus the posterior distribution over log a has a maximum that is 
both locally Gaussian and sharp if 7 > 1 and ne < 7. The expression for the evidence (7) 
follows. 

ERROR OF LOW-DIMENSIONAL PREDICTIVE DISTRIBUTIONS 

I will now assume that the posterior distribution P(\oga\D,7i) is Gaussian with standard 
deviation aloga|D = l/y/Kj, with KJ > 1, and K = 0(1). 

Theorem 1 Consider a scalar which depends linearly on w, y = g ■ w. The evidence 
approximation's predictive distribution for y is close to the exact predictive distribution, for 
nearly all projections g. In the case g = w, the error (measured by a cross-entropy) is of 
order y/ne/K-y. For all g perpendicular to this direction, the error is of order \J\JK~J. 

A similar result is expected still to hold when the dimensionality of y is greater than 
one, provided that it is much less than y/j. 
Proof: At 'level 1', we infer w for a fixed value of a: 

P(w\D,a,n) ex exp \-\ £>„ + a) La - j^M • (22) 

The most probable w given this value of a is: w"P|a = V%da/(\a + a). The posterior 
distribution is Gaussian about this most probable w. We introduce a typical w, that is, a 
sample from the posterior for a particular value of a: 

<YP|a = j% + T=, (23) 

where ra is a sample from Normal(0,l). 
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Now, assuming that log« has a Gaussian posterior distribution with standard deviation 
1/\/«7J 

a typical Q, i.e., a sample from this posterior, is given to leading order by 

where s is a sample from Normal(0,l). We now substitute this aTYP into (23) and obtain 
a typical w from the true posterior distribution, which depends on k+l random variables 
{ra},s. We expand each component of this vector wTYP in powers of I/7: 

y/Kda s2        a2 
„TYP    =       vg^_    !_    '    _^L_ + ^_        «MP +...    + 

^0 = E^aP|öMP,     ^0 = E—~ 

\/Aa + aMp V       2V^T^ + aMP      8K7(Aa + aMP)
2 ""y 

We now examine the mean and variance of t/TYP = Y,a9aw!iyP- Setting (r2) = (s2) — 1 
and dropping terms of higher order than I/7, we find that whereas the evidence approxi- 
mation gives a Gaussian predictive distribution for y which has mean and variance: 

Aa + aMp 

the true predictive distribution is, to order I/7, Gaussian with mean and variance: 

1 2 
n.   =u.X_rfl        MP|qMp QMP 

1        °+«7\VVB   " (Aa + aMP)J   +4-Aa + aMP(Aa + aMP)
2]- 

How wrong can the evidence approximation be? Since both distributions are Gaussian, it is 
simple to evaluate various distances between them. The cross entropy between p0 =Normal(/z0, c

2,) 
and pi = Normal^,of) is 

We consider the two dominant terms separately. 

«272 VV   °   a (Aa + aMPH / ^^' (26) 

where ha = ga/VK + «MP-   The worst case is given by the direction g such that ha = 
Wa   °MF (xa+a    W2" ^is worst case gives an upper bound to the contribution to the cross 
entropy: 

(^-^o)2    <       1    v<p|°Mp2<p 

<    TlE<l>|aMp2 =  4" «  ! (28) K-^7^ ^—' K27 
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So the change in fj, never has a significant effect. 
The variance term can be split into two terms: 

where, as above, ha — ga/VK + aMP 

For the first term, the worst case : 
direction g = aMPwMP|aMP. Substituting in this direction, we find: 

For the first term, the worst case is the direction ha = w™    MP -Ma¥p       i.e., the radial 

First term   <    J-V w^plaMp2—^_ (29) 
Kl  a A0 + aMP 

<    ^rZ<P]aup2 = - = 0(1) (30) 

We can improve this bound by substituting for w™P*aMP in terms of da and making use of 
the definition of ne. Only ne of the terms in the sum in equation (29) are significant. Thus 

First term <—. (31) 

So this term can give a significant effect, but only in one direction; for any direction or- 
thogonal (in h) to this radial direction, this term is zero. 

Finally, we examine the second term: 

So this term never has a significant effect. 

ConclusionThe evidence approximation affects the mean and variance of properties y of w, 
but only to within 0(~j~ll2) of the property's standard deviation; this error is insignificant, 
for large 7. The sole exception is the direction g = wMP|aMp, along which the variance is 
erroneously small, with a cross-entropy error of order 0(ne/-y). 

A CORRECTION TERM 

This result motivates a straightforward term which could be added to the inverse Hessian 
of the evidence approximation, to correct the predictive variance in this direction. The 
predictive variance for a general y = gTw could be estimated by 

°l = gT (S + ^iogQ|Dw'MP|aw^p|Q
T) g, (33) 

where w^p|Q = dwMP|0/d(loga) = aSwMP|a, and <r^Q|D = 2.   With this correction, 
the predictive distribution for any direction would be in error only by order 0(1/7).   If 
the noise variance a^ = ß~l is also uncertain, then the factor afo a,D is incremented by 

2 2 
CTlog/J|D - 7V^- 
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Truf   posteri 
MAP   approximati 

Evidence   approximati 

Figure 1: Approximating complicated distributions with a Gaussian 
This is a schematic illustration of the properties of a multi-dimensional distribution. A typical 
posterior distribution for an ill-posed problem has a skew peak. A Gaussian fitted at the MAP 
parameters is a bad approximation to the distribution: it is in the wrong place, and its error bars 
are far too small. Additional features of the true posterior distribution not illustrated here are that 
it typically has spikes of high probability density at the origin w = 0 and at the maximum likelihood 
parameters w = wML. The evidence approximation gives a Gaussian distribution which captures 
most of the probability mass of the true posterior. 

6    Discussion 

The MAP method, though exact, is capable of giving MAP parameters which are un- 
representative of the true posterior. In high dimensional spaces, maxima are misleading. 
MAP estimates play no fundamental role in Bayesian inference, and they can change arbi- 
trarily with arbitrary re-parameterizations. The problem with MAP estimates is that they 
maximize the probability density, without taking account of the complementary volume 
information. Figure 1 attempts, in one dimension, to convey this difference between the 
two Gaussian approximations. 

When there are many ill-determined parameters, the MAP method's integration over a 
yields a wMP which is over-regularized.2 

There are two general take-home messages. 
(1) When one has a choice of which variables to integrate over and which to maximize 

over, one should integrate over as many variables as possible, in order to capture the 
relevant volume information. There are typically far fewer regularization constants and 
other hyperparameters than there are 'level 1' parameters. 

(2) If practical Bayesian methods involve approximations such as fitting a Gaussian to a 
posterior distribution, then one should think twice before integrating out hyperparameters 
(Gull 1988). The probability density which results from such an integration typically has 
a skew peak; a Gaussian fitted at the peak may not approximate the distribution well. In 

integration over the noise level \/ß to give the true likelihood leads to a bias in the other direction. 
These two biases may cancel: the evidence framework's wMP|aMp.ÖXJI> coincides with wMp if the number of 
well-determined parameters happens to obey the condition y/k ■■ 

"MP.0MF 
N/(N + Jfc). 
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contrast, optimization of the hyperparameters can give a Gaussian approximation which, 
for predictive purposes, puts most of the probability mass in the right place. 

The evidence approximation, which sets hyperparameters so as to maximize the evi- 
dence, is not intended to produce an accurate numerical approximation to the true poste- 
rior distribution over w; and it does not. But what matters is whether low-dimensional 
properties of w (i.e., predictions) are seriously mis-calculated as a result of the evidence 
approximation. 

The main conditions for the evidence approximation are that the data should not be 
grossly at variance with the likelihood and the prior, and that the number of well-determined 
parameters 7 should be large. How large depends on the problem, but often a value as small 
as 7 ~ 3 is sufficient, because this means that a is determined to within a factor of e (recall 

^logalD — N/2/T); predictive distributions are often insensitive to changes of a of this 
magnitude. Thus the approximation is usually good if we have enough data to determine 
a few parameters. 

If satisfactory conditions do not hold for the evidence approximation (e.g., if 7 is too 
smaD), then it should be emphasized that this would not then motivate integrating out a 
first. The MAP approximation is systematically inferior to the evidence approximation. 
It would probably be most convenient numerically to retain a as an explicit variable, and 
integrate it out last (Bryan 1990). 

A final point in favour of the evidence framework is that it can be naturally extended (at 
least approximately) to more elaborate priors such as mixture models; it would be difficult 
to integrate over the mixture hyperparameters in order to evaluate the 'true prior' in these 
cases. 
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ABSTRACT. The "evidence" procedure for setting hyperparameters is essentially the same as the 
techniques of ML-II and generalized maximum likelihood. Unlike those older techniques however, the 
evidence procedure has been justified (and used) as an approximation to the hierarchical Bayesian 
calculation. We use several examples to explore the validity of this justification. Then we derive 
upper and (often large) lower bounds on the difference between the evidence procedure's answer 
and the hierarchical Bayesian answer, for many different quantities. We prescribe a simple, easy 
to compute, test that can check the validity of the approximation after the fact. We also touch on 
subjects like the close relationship between the evidence procedure and maximum likelihood, and 
the self-consistency of deriving priors by "first-principles" arguments that don't set the values of 
hy p erp arameters. 

"... any inference must be based on strict adherence to the laws of probability theory, because any 
deviation automatically leads to inconsistency." - S. Gull, in [5] 

"(Some have) estimated alpha from the data and then proceeded as if alpha is known. It is better 
to use the standard methods of Bayesian statistics and integrate out alpha." - B. D. Ripley, in [13] 

1.    Introduction 

In many statistics problems one has one or more "hyperparameters" (sometimes called 
"nuisance parameters") which occur in the distributions of interest but may not be of 
direct interest themselves. Examples are a choice of model, a noise level, a regularization 
constant in a regression problem, and "a" in maxent image reconstruction. 

How to deal with a hyperparameter? A full Bayesian approach is to marginalize out the 
hyperparameter. (This is "hierarchical Bayes" - see [1, 3].) A non-Bayesian approach might 
set the hyperparameter to a single value, and use that value throughout the subsequent 
analysis. For example, one might choose the hyperparameter via maximum likelihood - 
choose the hyperparameter 7 such that the conditional probability P(D | 7) (or alterna- 
tively P(7 I D)) is maximized, where D is one's data. Recently it has been claimed that 
this kind of non-Bayesian approach is a good approximation to the full Bayesian approach 
whenever P(-y | D) is peaked as a function of 7 [9, 11]. In the context of this claim, setting 
7 to the value maximizing P(i \ D) is known as "the evidence procedure"-[9, 11, 12, 14]. 
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Even though the evidence procedure has become popular amongst some Bayesians, 
the validity of its claim to approximate the Bayesian approach has never been thoroughly 
discussed. Consequently the accuracy of the procedure as such an approximation is rarely 
checked or reported. Perhaps even more remarkably, for some apphcations the full Bayesian 
answer is easier to calculate and apply [16, 20, 3]. Yet many researchers jump straight to the 
approximation of the evidence procedure, without checking if the exact answer is tractable, 
or if not, if perhaps some approximation other than the evidence procedure is preferable. 

In the first part of this paper we state the evidence procedure, giving both an intuitive 
argument that it is a good approximation and an intuitive argument that it is not. We then 
explore the validity of the procedure in a simple Gaussians example. In this example the 
procedure fails miserably for certain objects of interest, but works for others. We end with a 
formal discussion giving lower and upper bounds on the approximation error incurred with 
the evidence procedure. The bounds concern error in evaluating the posterior at a point, in 
evaluating the full posterior (both supremum norm and Ln norm error), in estimating the 
predictive distribution, and in estimating expectation values. This discussion demonstrates 
explicitly that the informal justifications for the evidence procedure found in the literature 
are inadequate. It also has implications for the self-consistency of any "first-principles" 
argument for a prior that does not fix all hyperparameters in that prior. 

A recurring theme throughout the paper is that for many quantities of interest, the evi- 
dence procedure becomes more accurate as the object of interest becomes more dominated 
by the likelihood distribution. In other words, for those quantities the procedure is most 
accurate when the prior is irrelevant, so that there is no need for Bayesian analysis. 

We emphasize that here we only analyze how well the evidence procedure approxi- 
mates the full Bayesian answer. We are not concerned with whether the procedure meets 
non-Bayesian desiderata. (E.g., desiderata like requiring that one's answer doesn't change 
when additional irrelevant information is introduced, or like the desiderata in Section 6.5 
of [11] that actually argue for the use of maximum likelihood in all contexts, not just 
those related to hyperparameters.) Nor do we make any claims concerning how one should 
use the posterior (e.g., take its mean vs. take its mode), an issue properly addressed 
by decision theory. Moreover, we make no claims about how well the procedure works 
in practice. (A procedure's being non-Bayesian does not mean it works poorly in prac- 
tice.) Studies empirically comparing the evidence procedure to other methods for setting 
hyperparameters have given mixed results [?]he procedure in a simple Gaussians exademo- 
ment,fortier,ripley,sibisi,strauss,thompsonl,thompson2,wahba,me93. However in evidence's 
defense we note that MacKay has recently won a prediction competition [12] by using the 
evidence procedure, albeit in conjunction with some new techniques like stacking [2] and 
the use of different regularization hyperparameters for different parts of the space. 

2.    What is the evidence procedure? 

To illustrate the evidence procedure, consider the case where the hyperparameter param- 
eterizes the prior distribution over the hypothesis space of vectors /. (To distinguish it 
from the generic hyperparameter 7, this kind of hyperparameter is indicated by a.) Some 
examples are the MaxEnt and Gaussian distributions: P(f \ a)  = exp(aS(f))/Zs(a), and 

P(f I a)  oc aN/2 e~a>f I , respectively. 
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Write the posterior distribution as 

P(f\D)  =  j^jP{a,f,D)da. (1) 

Multiply and divide the integrand in (1) by P(a \ D): 

P(f\D) cc J%&lB-P(a\D)da « J P(f \ a,D) P(a\ D) da. (2) 

When P(a | D) is sharply peaked about aev it's natural to treat it as a delta function 
about aev and collapse the last integral in (2). The idea of collapsing Bayesian integrals 
this way is old, going back at least as far as [6]. It forms the conventional justification for 
the view that the evidence procedure is an approximation to the full Bayesian approach; 
the evidence procedure says that 

P(f | D) « P(f | aev,D) oc  P(f | aev) P(D | /). (3) 

Under many circumstances (e.g., relatively flat P(a)) this kind of reasoning also appears 
to support the idea of setting P(f | D) to P(f \ D, argmaxaP(D | a)), so long as P(D | a) 
is a peaked function of a. (In fact, this kind of reasoning appears to support setting a to 
the maximum of almost any distribution over a and D that is a peaked function of a.) So 
there is ambiguity in what peak we should set a to, i.e., in how to define aev (ambiguity 
that is reflected in the literature). Accordingly, when it's helpful for illustrative purposes, 
we will consider P(D \ a) rather than P(a \ D) and will take the term "evidence" to mean 
P{D | a) rather than (our default meaning) P(a \ D). 

Stripped of the context of equation (3), the idea of setting the hyper parameter to the 
value aev is essentially identical to the techniques of ML-II and generalized maximum 
likelihood [4, 1, 19]. The primary difference between the evidence procedure and those 
older techniques is that those older techniques do not attempt to justify themselves with 
the approximation in equation (3), but rather view setting a = aev as a priori reasonable. 

As it turns out, there are reasons to doubt the validity of equation (3). One such 
reason is that in general the change of variables a = rj(a') results in the evidence procedure 
returning P(f \ a,D) for an a different from aev. That is, the Jacobian of the variable 
transformation can change the distribution's mode while still leaving it peaked. In general 
there will be functions 77 for which P(a' | D) is highly peaked about an a' which does 
not equal ?7_1(aev). For such an 77 the evidence procedure used with the hyperparameter 
variable a' returns a posterior distribution for / given by P(f \ a'ev, D) where a'ev ^ aev. 
[22] So the answer of the evidence procedure can change under a variable transformation of 
the hyperparameter, whereas the true posterior can not (cf. equation (1)). This suggests 
that the reasoning embodied in equations (1) through (3) must be flawed. More is needed 
than simply having a distribution over a and D that is a sharply peaked function of a. 

Another reason to doubt the accuracy of the approximation in (3) arises from considering 
the evidence procedure from a graphical perspective. The contour plots in figure 1 show two 
hypothetical P(a, f \ JD)'S, for one-dimensional /. The projections of these distributions 
onto the a and / axes are P(a \ D) and P(f | D), respectively. In both plots P(a \ D) 
is peaked, about a = aev. The evidence procedure's posterior distribution is given by the 
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Figure 1: Contour sketches of hypothetical P(a,f | D)'s along with their projections onto 
the a and f axes. The bottom plots are (proportional to) slices of the distributions through 
a = aev. The left sketch is a success of the evidence procedure, and the right a failure. The 
right sketch is similar to what one would get for the Gaussian scenario discussed below. 

slice of the original distribution through a = aev. In the left plot that slice resembles the 
true posterior projection. But in the right plot it does not. Again we see that P(a | D)'s 
being peaked cannot be the sole criterion for the validity of the evidence approximation. 

These problems are partially due to the fact that P(a | D) appeared in the integrand 
in (2) only after we multiplied and divided by it. So no matter how peaked the numerator 
P(a | D), it is exactly canceled by the denominator P(a | D). This suggests that the 
function P(f | a, D) appearing in equation (2) is just as rapidly varying a function of a äs 
P(a | D), in which case collapsing the integral at aev is unjustified. 

Note though that if the a-peak of P(a, f, D) is close to aev, there might be a fortuitous 
cancellation of peaks that renders P(f | a,D) a slowly varying function of a. (See equation 
(2).) While it is usually difficult to check whether precise cancellation occurs, at a minimum 
the peaks must overlap substantially for such cancellation to be possible. (This is proven 
formally in Section 5.) When there is such overlap it's possible that the evidence procedure 
closely approximates the Bayesian answer. Ironically, whereas the intuition behind equation 
(3) suggests that the procedure works better for more highly peaked P(a | D), the need 
for that narrow peak to overlap with the peak of P(a,f,D) suggests that the opposite is 
true. (Theorem 4 below proves that that "opposite" is indeed true; the evidence procedure 
fails for almost all / in the regime of sufficiently peaked P(a \ D).) 

The previous observation offers a simple test that can be applied to one's result to check 
the evidence procedure. If the a-peak of P(f,a,D) does not overlap with the a-peak of 
the evidence then collapsing the integral in equation 2 to the sharp peak of the evidence is 
unjustified. To illustrate this we consider Gull's famous Susie reconstruction [9]. Figure 2 
plots P(a | D) and P(f,a,D) as functions of a for the / (i.e., the image) at the peak of 
the evidence procedure's posterior in Gull's Susie reconstruction. The two peaks clearly do 
not cancel, which means the argument leading to the evidence procedure does not hold. 
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Figure 2: A comparison of P(a \ D) and P(a, /, D) as functions of a shows they do not 
overlap. The data is taken from Gull's Susie reconstruction: f here is the MAP of the 
evidence procedure posterior f presented in Gull's article (see text). 

It turns out that even when peaks cancel and P(a | D) is highly peaked, we still can't 
conclude that equation (3) is necessarily a good approximation. This is because P(f \ a, D) 
need not be normalized over a, so the contribution to the integral from the (often very long) 
tails of the integrand in equation (2) can be as sizable as the contribution from around aev. 

As a final example of the subtleties involved in equation (3) note that with enough 
hyperparameters the evidence procedure can produce a posterior that is highly peaked 
about the maximum likelihood /. (Nothing in the intuition behind equation (3) presumes 
a is low-dimensional. Indeed, some researchers have used the evidence procedure with high- 
dimensional a.) This follows from the equality P(D | a) = JdfP{D \ f)P(f \ a). This 
equality shows that for a sufficiently high-dimensional a (i.e., sufficiently flexible P(f | a)), 
to find the a maximizing P{D \ a) one simply finds the a for which P(f \ a) is highly 
peaked about the maximum likelihood / (i.e., about the mode of P(D | /)). Consequently, 
for that a, P(f \ D,a) is also highly peaked about the maximum likelihood /. 

3.    The Gaussian distributions case 
In this section we will focus on a particular example in which both the likelihood and the 
conditional prior distribution are Gaussians. For simplicity the likelihood does not involve 
convolutions. The prior is centered on the origin and the likelihood is centered at a point 
I) all of whose components have equal magnitude d. (These restrictions entail no loss of 
generality due to the translational and rotational invariance of Gaussians). Accordingly, 
with N the dimension of /, the likelihood and (conditional) prior are given by 

P(D | /)  oc ßN'2 e~ß\f- D\\ and P(f | a)  oc  aN'2 e~a\r f (4) 

To agree with common usage, we will take the prior over a to equal 1/a from am;n to 
amax and zero elsewhere. We will be interested in the common case where amin is very close 
to zero. Since our analysis won't depend on the exact value of amin (the primary effect of 
that value is to set the overall normalization), here we will set it equal to 0. Also, for this 
section, we will treat aev as though it equaled argmaxaP(.D | a). It is straightforward to 
redo the analysis under different restrictions. 

Evaluating JdaP(f,a) gives P(f) in terms of the incomplete gamma function: 

P{f) oc  -V  r ((iV/2), amax|/ |2) 

1/ 
whenamax|/r>  N/2. 

(5) 
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Note that for / away from the origin, the prior faUs off as a reciprocal power of distance 
from the origin; even though P(f \ a) is Gaussian P(f) is not. (See Theorem 1 below for a 
proof of the generality of this phenomenon.) Since the true posterior is proportional to the 
product of the prior with the likelihood, it too is non-Gaussian. However the evidence pro- 
cedure's posterior is Gaussian, so the two posteriors must differ. To calculate the difference 
we must find the evidence procedure's posterior, and to do that we must first evaluate 

P(D\a) = JdfP(f,D\a) ex 
N 

aß        <*& J2 
-e   a+0 

a + ß 

We can solve for the peak of this distribution, ae 

ß 
OLev    — 

2ßd2 - 1' 

(6) 

(7) 

So the evidence procedure's posterior is a Gaussian centered between the peaks of the 
prior and likelihood (i.e., between / = 0 and f = d): 

P(f\D,aev)  oc  (aevßf/2 e-W ~ D\2~^\f I2  oc e-V+"«)\f ~ idrA. (8) 

Note that d is the distance along any coordinate separating the peaks of the prior and 
the likelihood. Therefore 2ßd2 is the separation between the peaks measured in units of 
the likelihood's width. But equation (7) only has a meaningful solution if 2ßd2 > 1; unless 
the peaks are separated by more than the width of likelihood, there isn't a peak in the 
evidence. In this sense the evidence procedure is not even well-defined unless the data 
are unexpected. (We use the term "unexpected" a bit loosely here; more formally - and 
laboriously - one could analyze how "unexpected" the data are by considering the width 
of the prior predictive distribution rather than the width of the likelihood.) Moreover, 
as the separation increases beyond two widths, so that 2ßd2 > 2, the value aev becomes 
smaller than ß. Yet as aev shrinks below ß the evidence procedure's approximation to the 
posterior approaches the likelihood distribution. So as we pass the condition allowing the 
evidence procedure to be well-defined, the data become more unexpected, and the evidence 
procedure produces a posterior which increasingly approximates the likelihood. 

We can apply the test from Section 2. The a-width of P(f, a, D) can be estimated from 
its curvature at the peak as Aajoint ~ ^gp? where ajoint is the peak position Appyling 

the test at the peak value of / from the evidence procedure's posterior we discover, sur- 
prisingly, that the peaks, ajoint and aev, only he within the half width, Aa{°int, of'each 
other when aev < ^jjL. That is, in general, the a-peaks of the joint probability distribution 
and the evidence procedure won't overlap as required for the evidence procedure's approx- 
imation to be justified. Moreover, when they do overlap, the posterior is solidly in the 
likelihood dominated regime (for large JV). Section 5 discusses the overlap criteria formally. 

These and related effects are illustrated in figure 3. Since the evidence approximated 
posterior is a symmetric Gaussian it is fully characterized by any single one-dimensional 
slice through its peak. This is not the case with the true posterior unfortunately, since that 
posterior is not symmetric about its peak. Nonetheless, we can learn a lot about the true 
posterior by looking at a slice through it going from the origin out along the D direction in 
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Figure 3: Solid line: True posterior, P(f | D); Dot-Dash; Evidence procedure's posterior 
P(f | aev,D); Dashed: Likelihood P(D | /). Going from figure (a) through (c), there is 
increasing distance (i.e., increasing 2ßD2) between the peaks of the prior and the likelihood. 
For 2ßd2 < l,aev is undefined. Figure (d) increases the dimension from N = 1 to N = 10; 
the mismatch between the distributions becomes worse. (amax = 100, d = 2 ) 

f space. Figure 3 shows this slice and the corresponding slice of the evidence procedure's 
posterior for various separations, i.e., various values of 2ßd2. The likelihood is also shown. 
The plots for other slice directions exhibit similar behavior. 

These plots show that the evidence and true posteriors have different symmetries, peak 
positions and widths. Moreover the true posterior can have two peaks whereas the evidence 
procedure's posterior only has one, and the true posterior tends to have (sometimes much) 
more of its probability "mass" near the origin. Also note that the neither the peak position 
nor peak widths of the two distributions approach one another until the distributions start to 
converge on the likelihood - at which point the true posterior is about as well approximated 
by the likelihood as it is by the evidence procedure's posterior. 

For large enough amax and am,-„ close to 0, as N increases the peaks of the true posterior 
and of the evidence procedure's posterior don't move, nor does the position of the peak 
of the evidence move. But all those distributions—and in particular the plots in figure 
3—become sharper (cf. equations (4, 5, and 8), and compare figures 3b and 3d). (Due to 
this sharpening of peaks the plots for high N values aren't very informative; this is why the 
plots are for low N values even though the evidence isn't very peaked for low N values.) So 
as N increase, the evidence becomes more peaked. But at the same time the discrepancy 
between the true posterior and the evidence procedure's posterior gets worse, not better. 

Given all this, it seems fair to say that the evidence procedure's posterior is a poor rep- 
resentation of the true posterior—except for in the case when the prior doesn't matter (i.e., 
when things are likelihood dominated). Nonetheless, in some circumstances, the evidence 
procedure's posterior could provide a good approximation for calculating low-dimensional 
expectation values. This will occur if erroneous behavior in the tails of the distribution 
"compensates" for erroneous behavior in the central regions. (See Section 4 below.) 

Finally, we point out that it is a simple matter to calculate the true prior (and therefore 
the posterior) not only when the conditioned prior is Gaussian, but also when it is entropic 



68 D. H. WOLPERT AND C. E. M. STRAUSS 

(see equation (5) and [16]). Moreover, for both scenarios one can often directly approximate 
the exact posterior with a convenient form. Equation (5) presents an example of this 
for the Gaussian prior case, and for the entropic prior such a direct approximation is 
P(f) ~ l/S(f)Nl2, where S is the entropy (see [16]). Nonetheless, one can not rule out 
the possibility that there might be cases where the evidence procedure's functional form 
for the posterior is more convenient than "direct approximations" for the posterior. On the 
other hand of course, unlike the exact calculation's form for the posterior, generating the 
evidence procedure's form entails recalculating aev for each new data set. 

4.    Using evidence for things other than the posterior 

Interestingly enough, all this doesn't mean that the evidence procedure is useless. This 
is because even though it gets the posterior wrong, when certain conditions are met the 
evidence procedure's approximation for low-dimensional expectation values can be excellent. 

As an example, consider the posterior expected value of a function g(f): {g) = 
Jdafdf g(f) P(f,a \ D). Suppose that g is a simple function of a single coordinate fj, 
and that P(f, D \ a) factors as T[h

w
=1P(fk,Dk \ a) (as it does in our Gaussians example). 

Then by equation (2), 

<«7> = /*"" da fdfgifi/^.^Pia \ D). 

Cancelling terms between the numerator P(f,a | D) and the denominator P(a \ D) = 
f dfP(f,a | D) (recall the assumption that P(f,D \ a) factors), we see that 

f        daP(a | D)R{a) (9) 
»min 

Where R^ s //ff(^y = S4fig(fi)P(fi I D3,a). 
Equations (9) and (2) have the same form, except that in equation (9) the ratio occurring 

in the integrand (R(a)) only involves one-dimensional quantities. As a result, often equation 
(9) does not give us the same difficulty that equation (2) did; since in equation (9) the 
denominator of the ratio is a one-dimensional integral, it is often not strongly peaked, so to 
have the ratio be smooth on the scale of the peak of the evidence does not require that the 
numerator of that ratio be strongly peaked, as it did in equation (2). So as long as: amax 

is not too large (so that the tails don't contribute much); R(a) is not a rapidly varying 
function (a condition often met for simple expectation values like the mean); and P(o> \ D) 
is a highly peaked function of a (cf. equation (6)); then calculating the expected g by 
collapsing the integral over a down to the peak of P(a | D) might be justified. 

R(a) and P(a \ D) for the Gaussians case are sketched in figure 4 for g(f) - f (so 
{g) is the posterior average /). To highlight the important aspects of the plot, P(ct) is 
flat between 0 and amax rather than Jeffreys. These plots show that slowly-varying R(a) 
and peaked P(a | D) are not uncommon, provided one has appropriate choices of amax 

and the like. (Note that this is not the behavior of all the plots however.) So in some 
circumstances the evidence procedure can accurately estimate low-dimensional expectation 
values even if it poorly approximates the (high-dimensional) posterior distribution. To help 
understand this in light of the preceding discussion, note that P(a | D) is usually only 
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Figure 4: R(a) makes a smooth transition from the prior-dominated to the likelihood- 
dominated regime. It is weighted by P(a | D) in the integral giving (g). The long tails 
of P(a | D) can outweigh the peak of P(a \ D) in the integral, particularly when that peak 
lies beyond the crossover point from the likelihood-dominated regime. 

highly peaked on the likelihood-dominated side of the midpoint in R(a). And of course in 
the likelihood-dominated regime we are free to introduce some error into the prior. 

Of course, all of this depends on the tails in figure 4 being relatively unimportant, which 
usually holds only if amax is not too large. For example, in the Gaussians case, for large 
enough amax the tails of P(a \ D) will provide more weight in the integral over a than 
the peak does. (Note the logarithmic scale of the a/ß-axis that "compresses" the tails.) In 
such a situation, we are not justified in "collapsing the integral down to the peak", and the 
evidence's procedure's approximation for the expectation value is poor. 

Unfortunately though, there is a lot of confusion about how to choose amax. In partic- 
ular, while a large amax does indeed result in a less informative P(a), it results in a more 
informative P{f). This is because the larger amax is, the narrower P(f) becomes. (Similar 
"conjugate" behavior in a different context has been discussed by Jaynes [10].) This is 
a special example of the following more general rule: if one knows the physical meaning 
of a hyperparameter, then one can set the prior over it directly, without concern for how 
that prior affects P{f). However if the hyperparameter has no physical meaning, and if 
one sets the prior over it without taking into account how that prior affects P(/), then 
one is introducing (usually fictitious) prior "knowledge" concerning the ultimate object of 
interest, /. This problem is particularly pronounced if P(f \ a) is somewhat ad hoc, like 
in the case of neural nets, where / is an input-output mapping, and P(a) only sets P(f) 
indirectly, by means of an intermediate distribution over "weight vectors" [21]. 

There are many other quantities of interest in addition to the posterior and its low- 
dimensional marginalizations. Two such quantities are the posterior over a single coor- 
dinate (i.e., P{fi | D)) and the predictive distribution for new data given old data (i.e., 
P(new data set = D' | £>)). Since the posterior over a single coordinate is a low-dimensional 
marginalization of the full posterior, we expect the evidence procedure to estimate it accu- 
rately when it estimates other low-dimensional marginalizations well. On the other hand, 
the predictive distribution is a high-dimensional object, and therefore we expect the evi- 
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dence procedure to estimate it as poorly as it does the full posterior. 

Yet another quantity of interest is the mode of the posterior, the "MAP" /. Since the 
MAP / is not a low-dimensional marginalization of the posterior, one would not expect the 
evidence procedure to approximate it well unless things are likelihood dominated. This is 
the case with Gaussians for example - see figure 3. 

Despite this though, applications of the evidence procedure frequently concentrate on 
the /-mode of P(f | aev,D). This isn't as unreasonable as it might seem if P(f \ aev, D) 
is symmetric and unimodal, since for such a distribution the mode equals the mean.' So 
when the evidence procedure's posterior is symmetric and unimodal, finding the mode of 
that posterior provides an accurate estimate of the true posterior's mean (if it so happens 
that the mean of the evidence procedure's posterior is a good approximation of the true 
posterior's mean - cf. equation (9)). We speculate that this is the origin of the cryptic 
claim that the evidence procedure estimates "where most of the mass is" correctly. 

So in these symmetric and unimodal circumstances it is indeed sensible to concentrate 
on the mode of the evidence procedure's posterior. However when the evidence procedure's 
posterior is either asymmetric or multimodal, the peak of the procedure's posterior does 
not equal its mean. For such cases the mode of the procedure's posterior has no special 
significance, and there is no reason to concentrate on that mode. In particular, this problem 
affects use of the evidence procedure with the entropic prior, and with (highly multi-modal) 
neural nets. Ironically, these are two situations in which it happens to be particularly 
common for researchers to concentrate on modes of the evidence procedure's posterior. 

As a final example of a quantity of interest, note that in many applications one is more 
concerned with unusual events than with likely events. (For example, a battleship's captain 
might not be interested in a "typical" reconstruction of a radar-image, but rather in the 
probability that that image was created by an approaching periscope.) In such a case we 
are interested in the behavior in the tails of the probability distribution. However in general 
there is no reason to believe that the evidence procedure the ratio of the true posterior to 
the evidence procedure's posterior goes to infinity in the tails of / (cf. equations (5, 8)). 
In the final analysis, whether or not a particular use of the evidence procedure is sound 
depends on what one wants to know (which in turn is determined by one's loss function). 

5.    Formal bounds on evidence's error 

This section presents a formal analysis of upper and lower bounds on the error incurred 
by using the evidence procedure. (Some of these results correct deficiencies in the results 
reported in [20].) In most of this analysis we will not restrict attention to hyperparameters 
which occur in the conditional prior, so we denote hyperparameters by 7 rather than a. 
Also, although most of this analysis goes through essentially unchanged when 7 is multi- 
dimensional, for simplicity only the one-dimensional 7 case is presented here. 

This section is organized as follows. First it is proven that P(f) can not be of the form 
P(f I 7 = K) for some constant K (i.e., marginalizing out a hyperparameter can never be 
equivalent to setting it to some particular value). It is argued that this means that "first- 
principles" arguments for a prior which don't set the value of the hyperparameter are not 
self-consistent. It also means that the evidence procedure will always have some error. 

Next the reasoning of Section 2 is formalized to derive an upper bound on the error of 
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the evidence procedure. Like many of the other results presented in this section, this upper 
bound applies to a wide variety of possible uses of the evidence procedure. 

Then it is shown that the separation between the 7-peaks of P(/,7 | D) and P(7 | D) 
must be small or the evidence procedure's error will be large (cf. the discussion of "fortuitous 
cancellation of peaks" near the end of Section 2). This is done by both showing that the 
upper bound on the error increases with that separation, and then by deriving a lower 
bound on the error which increases with that separation. So by measuring the separation 
one can test the evidence procedure. In addition, the lower bound can be used to show that 
when P(7 | D) is highly peaked—exactly the situation which traditionally was thought to 
justify the evidence procedure—the evidence procedure can give an accurate estimate of 
the entire posterior P(/ \ D) only if that posterior is likelihood-dominated. Finally, we 
discuss how well the evidence procedure performs when one uses error measures like the 
Ln difference between the correct posterior and the evidence procedure's guess for that 
posterior. 

5.1.    The evidence procedure never gets the posterior right 

We start with a proof that for a broad class of P(/ | 7)'s, there is no non-pathological 
scenario for which the evidence procedure's approximation to P(f) is correct: 

Theorem 1: Assume that for those 7 for which it does not equal zero, P(/ | 7) oc e~lU^ 
for some function [/(.). Then the only way that one can have P(f) oc e~KÜW for some 
constant K is if P(7) = 0 for all 7 ^ K. 

Proof: Our proposed equality is e~KÜ = J d^T(-/) x e~^u, where the integration limits 
are implicitly restricted to the region where P(f | 7) ^ 0, and where T(f) = P(j) x 
Jdfe-KU^/Jdfe-''u^. (Note that for both P(f) and P(f | 7) to be properly defined, 
both integrals in the definition ofT{.) must be greater than zero and finite.) We must find 
a K and T{i) such that this equality holds for all realizable values of U. Let u be such a 
realizable value of U. Take the derivative with respect to U of both sides of the proposed 
equality t times, and evaluate for U = u. The result is K* = J df^f x R(f) for any integer 
t > 0, where £(7) = T(7) x e<K~^. Therefore J d1{7 - K)

2
 X R(J)) = 0. Since both P(7) 

and (7 - K)
2
 are nowhere negative, this means that for all 7 for which (7 - K)

2
 ^ 0, R(i) 

must equal zero. Therefore P(l) must equal zero for all 7 ^ K. QED. 

Theorem 1 has two important consequences. First, consider any "first principles" ar- 
gument which says that the prior over / is proportional to K(f)e~~<uW> for some U(.) and 
K(.) but does not fix 7. Our ignorance concerning 7 implies a non-delta function distri- 
bution P(7). By Theorem 1, such a distribution ensures that P(f) is not proportional to 
K(f)e~KÜW> for some K. So in a certain sense, such a "first-principles" argument for a prior 
is not self-consistent. In particular, the first principles arguments which have been offered 
in favor of the so-called "entropic prior" but which do not fix 7 (e.g., (Skilling 1989)) suffer 
from this problem. As another example, with U(f) = -log[V(f)\, Theorem 1 implies that 
a Dirichlet prior with an unspecified exponent (i.e., a non-delta function P(7)) is not a 
Dirichlet prior. (A similar point is made in [10].) 

Second, if the likelihood is nowhere-zero, Theorem 1 says that there is a non-zero lower 
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bound on the error of using evidence to set the posterior. The only question is how low the 
bound is. To address this make the definition P(f | D) = P(D | /)[PE(/) + Er(f)] /P(D), 
where "PE(/)" means the evidence procedure's approximation to P(f). So if P(D) ~ 
PE{D), the error in the evidence procedure's estimate for the posterior equals P{D \ f) x 
Er(f)/P(D). Therefore we can have arbitrarily large Er(f) for a particular / and not 
introduce sizable error into the posterior of that /, but only if the likelihood is small for 
that /. As D varies, the set of those / whose likelihood is not small varies. And as such a 
set of / varies, the 7 (if there is one) such that for those / P(f | 7) is a good approximation 
to P(f) varies. When it works, the 7(D) returned by the evidence procedure reflects this 
changing of 7 with D. 

5.2.    Upper bounds on evidence's error 

In general though, one needn't use the evidence procedure to estimate a posterior, but 
might instead use it for other purposes (see Section 4). To circumvent the issue of how 
the posterior gets used, we will examine the evidence procedure's error as an estimator of 
an expectation value fdf'A(f') x P(f \ D), where /' is a dummy / variable, and A(.) 
is determined by the use we have in mind for the posterior. For example, A(f') = f if 
we're interested in the posterior average /. If we're interested in the posterior directly, then 
A(f') = A(f, /') = 8(f - /'), and expected A is a function of / as well as /'. As a final 
example, if we're interested in the predictive distribution, then A(f') = P(new data set = 
D' I /'), and A is a function of D' as well as /'. 

To analyze such expectation values, let expressions of the form uEf(A ... stuff)" mean 
Jdf'A(f') x P(f ... stuff), where "stuff' can involve /', conditional bars, or whatever; Ej 
expectation values are over / alone. So for example Ef(A \ D) = J df'A(f') x P(f \ D), and 
Ef(A,j I D) = fdf'A(f') x P(/',7 I D). (This is slightly non-standard use of the "£(.)" 
notation.) Also, take expressions like llP(-/* + S,...)" to be shorthand for "P(7 = 7* + 6,...)". 

The intuition for when the evidence procedure works for expectation values is analogous 
to the intuition for posteriors; the posteriors intuition is based on equation (2), and the 
expectation values intuition is based on the very similar equation 

Ef{A I D) = jdlESp^]\^ni I D) a Jd^EfiA | 7,I>)P(7 I D).        (10) 

Just like equation (3), equation (10) suggests (!) that if P(-y | D) is sharply peaked 
about 7* and Ej(A | j,D) is slowly varying, then Ej{A \ D) ~ Ej(A \ 7*,£>). 

We now present several theorems which formalize this intuitive reasoning. These theo- 
rems give upper and lower bounds on the error induced by using the evidence procedure. In 
these theorems we never need to specify A(.). In addition, we don't need to assume anything 
special about the probability distributions, e.g., that they're linear Gaussian models. 

We will consider three properties: 
1) How sharp the 7-peak of P(-f | D) is. 
2) How much Ej(A | 7,2?) = Ef(A,-/ \ D)/P(j | D) varies around that peak of P(-y \ D). 

(This provides the scale for measuring the peakedness of P(f | D).) 
3) How £/(A,7 I D) behaves for 7 significantly far from that peak of P(i \ D). 

(This - not peakedness of P(7 \ D) - determines if we are justified in ignoring the tails 
in our integrals.) 
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Formally, first choose a 7* and a 6 > 0. In practice these will usually serve as the 
peak position and peak width of P(f | D) respectively, and we will loosely refer to them as 
such. (Note though that we make no such stipulations in their definitions, and the theorems 
presented below don't rely on their serving those functions.) 

Our first two definitions characterize the "peakedness" of P(j | D); the smaller A and/or 
p, the more "peaked" the distribution. 

A=max[  fy7.|£)',   P(Y\D)'^ 
We will say "condition (i) holds" if A is small. It is usually assumed that A < 1. 

p = l-#_+
5

fi<i7P(7|£); 
We will say "condition (i') holds" if p is small. 
Our next definition characterizes how slowly varying Ef(A | 7,-D) is across the peak; 

the smaller r, the more slowly varying Ef(A [ 7,X>) is across [7* - 6,7* + 6]. 
T = max \Ef(A \i,D)- Ef(A | 7*,D)| across 7 G [7* - 5,7* + «]; 

We will say "condition (ii) holds" if r is small. 
Our next two definitions characterize how much tails over 7 matter; the smaller e and/or 

B, the less those tails matter. 
e= \Ej(A\D)-ff^d1Ef(A,1\D)\; 

€ is the contribution to Ef(A | D) arising from Ej(A,i \ D) lying outside [7*-<5,7* + <5]. 
We will say "condition (iii) holds" if e is small. 

B = max \Ef(A | 7, D)\ across 7 £ [7* - 6,7* + 6]; 
B measures how big Ej(A | 7,D) can get when 7 is outside of [7* - £,7* + 6]; 
We will say "condition (iv) holds" if B is not too large. 
"Evidence's error" is the magnitude of the difference between the full Bayesian answer 

and the evidence procedure's answer: \Ej(A \ D) - Ef(A | -j*,D)\. We will say that 
"evidence works" if evidence's error is small. 

We can now formalize the intuition for when evidence works by writing down an upper 
bound on evidence's error: 

Theorem 2: Evidence's error < e + r(l - />) + Ej{A | 7*, D) X \p\. 

Proof: \Ef{A | D) - tf^ dj{Ef(A \i,D)x P(7 I D)]\ = e, by definition of c. By 

the definition ofr, | J^'+f di[E}(A \ 7, D)P(11 D)] - Ef(A \ 7*, D) ff$ d1P(1 \ D)\ < 

rq:tS
5d1P<a I D). Combining, \Ef(A \ D) - Ef(A \ 1\D)^^S

sd1P(1 \ D)\ < € + 

T$$^P(i I JD). ThereforeEf(A | 7*,D)-Ef(A \ D) < e+r(l-p) + Ef(A \ i\D)xp. 
QED. 

One can find some sufficiency conditions for evidence to work in the literature. These 
are specific to certain kinds of distributions, and are derived by evaluating the evidence 
procedure's answer and the exact answer and seeing if the two differ. Of course, if you can 
evaluate the exact answer, there's no need for an approximation like the evidence procedure 
in the first place. In contrast, Theorem 2 provides us with some sets of sufficiency conditions 
which don't rely on evaluating the exact answer. 
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For example, if conditions (i'), (ii) and (iii) hold, and Ef(A | 7*, D) is not too large, then 
Theorem 2 tells us that evidence's error is small. (We have no guarantees that it's easy to 
evaluate whether those conditions hold, of course.) Intuitively, condition (iii) is what lets us 
restrict attention to the region immediately surrounding the peak of P(y \ D). Condition 
(ii) then tells us that Ef(A \ j,D) doesn't vary across that region, and can therefore be 
evaluated at 7 = 7* and pulled out of the integral. The overall error introduced by the 
value of that remaining integral is reflected in the Ef(A | 7*, D) x |p| term. 

Note that this remaining error can be minimized either by having a sharp peak (p small) 
or by having ES(A | 7*, D) - the guess of the evidence procedure - be close to zero. So we 
don't need to have condition (i') hold (i.e., have P(f \ D) peaked) for evidence to work. 
(There are a number of other situations in which the evidence procedure can be justified 
even though P(i \ D) is not peaked; see [22].) On the other hand, in Section 1 we saw that 
peaked P(~/ | D) does not guarantee the accuracy of the evidence procedure. Summarizing, 
the evidence procedure sometimes works even when P(f \ D) isn't peaked, and there are 
also circumstances for which it doesn't work despite P(j | Z))'s being peaked. 

All of this notwithstanding, when evidence works in practice usually condition (iii) is 
met by having p small, with Ef(A | j,D) staying reasonably bounded for 7 outside of 
[7* - £,7* + 6]. Formally, e < B x p, so that conditions (i') and (iv) give condition (iii). In 
such scenarios, peakedness of P(j \ D) does go hand in hand with evidence working. 

5.3.    Lower bounds on evidence's error 

We now turn to the issue of lower bounds on the error of the evidence procedure. Intuitively, 
one might think that since 7* is the "dominant contributing 7", the evidence procedure 
should work for peaked P(-y \D)m general. The problem is that one can just as easily argue 
that the "dominant contributing 7" for what we are interested in (namely Ef(A \ D)) is 
given by argmax^£/(A,7 I D), not argmax^P^ | D). After all, Ef(A \ D) is the 7-integral 
of Ef(A,f I D), not of P{j \ D). This suggests that for evidence to work, 7* must (nearly) 
maximize Ej(A, 7 | D). 

Indeed, recall that the intuitive justification of the evidence procedure outlined in equa- 
tion (10) required that the peaks of Ef(A,j | D) and P(-y | D) nearly coincide, lest r be 
too large. This reasoning is formalized in the following theorem, which provides a lower 
bound on r based on the peak separation, and which uses the A measure of peakedness. 

Theorem 3: If Ef(A,-f,D) does not have a 7-peak somewhere within 6 of 7*, then 
r > Ef(A\r,D)(l-\)/\. 

Proof:ßy hypothesis Ej(A,-y*,D) has no local maximum in (7* - 6,*y* + 6). Therefore 
we can't have both Ef(A, 7* - 6, D) and Ef(A, 7* + 6, D) less than Ef(A, 7*, D) . Without 
loss of generality, assume Ef(A,-y*,D) < Ef(A,f* + S,D). Now examine the ratio of 
expectation values Ef(A \ 7* + S,D)/Ef(A | j*,D), which we can write as the product of 
ratios [P(j* I D)/P(r + S \ D)} x [Ef(A,r + S,D)/Ef(A,r,D)]. By our assumption, 
the second term in square brackets > 1. However by definition ofX, the first term in square 
brackets > 1/A. Therefore Ej(A \ j* + 6,D) > Ef(A \ j*,D)/X , and the difference 
Ef(A I 7* + S,D) - Ef(A I 7*,£>) > Ef(A | 7*,D) x (A"1 - 1). Using the definition ofr, 
this means that Ef(A \ 7*,-D) X (A-1 - 1) < r. QED. 
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In terms of equation (1), large r means that around 7 = 7*, Ef(A\ j, D) is not slowly 
varying on the scale of the width of the peak of P(*/ | D). RecaD though that if r is large, 
then the intuition behind the evidence procedure—that P(7 | D) "picks out" Ef(A | 7,-D) 
evaluated at 7 = 7*—is faulty. Formally, if r is large Theorem 2 gives a weak upper bound. 
And by Theorem 3 r is always large if we have a wide separation between our peaks. 

In fact, we can use distance between the peaks to give a lower bound on evidence's 
error, to go with the upper bound of Theorem 2. To do this, define T as the magnitude of 
the distance between 7* and that 7-maximum of E;(A,i, D) which lies closest to 7*. 

Theorem 4: If Ef(A,~/ \ D) is non-negative for all 7, it follows that evidence's er- 
ror > Ef(A I f*,D) X [rP(7* I D) - 1]. Equivalent^, it follows that evidence's error 
> Es{A\D)x[l - (l/TP(r\D))}. 

Proof: Since evidence's error is non-negative, if T = 0, the theorem trivially holds. If 
T > 0, 7* isn't a maximum of Ej(A, 7, D). Accordingly, Ef(A, 7, D) must either grow as 7 
increases past 7* or as it decreases below 7*. ("Grow" here is taken to mean "stays level or 
rises".) Without loss of generality assume it grows as 7 increases past 7*. Then the soonest 
it could stop growing is at 7 = 7* + T.  Therefore ff+T d^Ef(A, 7, D) >  TEf(A, 7*, D), 

which implies that f^.+ diEf(A,-y \ D) > TEj(A,f* | D). Recall our hypothesis that 
Ej(A,j I D) is non-negative, which implies that Ej(A \ D) = JdjE^A,^ \ D) > 

$+Td1Ef{A,1 I D); Ef(A | D) > TEf(A,r I D). So Ef(A | D) - Ef(A | 7M») > 
Ej(A I 7*,Z>) X [rP(7* I D) - I), which proves the first bound. Now define A as the 
evidence's error and use the fact that Ej(A \ 7*, D) > Ef(A \ D) — A to convert our lower 
bound on Ef(A | D) to Ef(A | D) > TP(>y* \ D) x [Ef{A | D) - A]. .Rearranging gives 
the second bound. QED. 

Theorem 4 shows why having the 7-peaks far apart is bad for the evidence procedure. 
However, Theorem 4 does not mean that a small separation between the peaks implies that 
evidence works. Note that it is even possible for the magnitude of evidence's error to be 
small when the peaks are well separated; the overall multaplicative factor might be tiny. 
However, even then, the peak separation must be small if one wants the proportional error 
of the evidence procedure to be small. 

Note that our two peaks are the maximizers over 7 of two very similar integrals: 
/ df'A(f')P(f, 7, D) and / df P(f, 7, D). Accordingly, often if one can evaluate the peak of 
the evidence, one can also evaluate the peak of Ef(A, 7, D), and therefore one can evaluate 
T. So if one can use the evidence procedure, usually one can test its validity. 

Example: Consider the case where the hyperparameter, ß, sets the noise level in an N- 
dimensional Gaussian likelihood (see section 3). The joint probability distribution is given 
by P(f,ß,D) oc P(f)P(ß)ß^e~ßcvx2, where x2 = \f - D\2 is the usual squared error term. 
Solving for the ß-peak we obtain a relation which holds at the peak: 2ß\2 = N+2ßaio^ß'. 

For the usual case, where P(ß) is either flat or the Jeffries prior, the last term in the 
relation is small, either 0 or 2, respectively. Now assume that N is fairly large and that 
P(ßev I D) and P(f\ßev,D) are as well.   Theorem 4 then tells us that the only /'s for 
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which the evidence procedure's approximation might be valid are those corresponding to 
2ßevX2 ~ N- For instance, if one reconstructs an image using the evidence procedure to 
set the noise level and then finds that 2ßevx

2 for the image of interest is not ~ N then the 
reconstruction is unjustified. A corollary to this is that it makes sense to skip the evidence 
procedure entirely and use the ß-peak of P(f,ß,D) instead of the peak of the evidence; 
after all, if they aren 't close, then the evidence procedure is unjustified anyhow. 

Naturally, this test also applies to the case where one has used, the evidence procedure 
to set a, a hyperparameter in a Gaussian conditional prior (c.f. Section 3). The analogous 
relation that must be satisfied is, 2aevx

2 « N, where one now takes x2 = \f - f\2, the 
squared error between f and the peak of the conditional prior, f. An example (drawn from 
the literature) of the evidence procedure failing to meet this criteria is shown in figure 2. 

In some cases in fact, it's easier to evaluate the peak of Ef(A,~f,D) than it is to evaluate 
the evidence peak (e.g., for the entropic prior - see [16]). In such circumstances, if one has 
reason to believe that the evidence procedure is valid (so that T must be small), it is easier 
to evaluate aev by finding the mode of Ej(A, 7, D) than by finding the mode of P(7 | D). 

The need for the peaks to coincide can set strong restrictions on the use of the evidence 
procedure. For example, take A(f') = 6(f - /'), so that expectation values of A are 
probabilities of /. Assume P(j | D) is quite peaked. Say we want to use the evidence 
procedure to estimate Ef(A \ D) = P(f | D) for some particular /, /. Then Theorem 4 
tells us that for evidence to work, if P(f | D) is non-negligible (or equivalently the evidence 
procedure's prediction P(f | 7*,/)) is non-negligible), then T must be quite small for /, 
i.e., the peak of P(f,j,D) = P(D \ f,~f)P(f | 7)^(7) must he close to 7* (as measured 
on the scale of 1/P(f* | D)). Setting the peaks exactly equal gives us an equation for / in 
terms of D (7* being a function of D). In general this equation will have a highly restricted 
solution for /, F(D) (i.e., F{D) is a low-dimensional manifold in /-space). For example, in 
the case of the entropic prior, F(D) is a set of / all sharing the same entropy (that entropy 
value being set by D). In our Gaussians case, F(D) is a set of points all sharing the same 
|/|2 (where again the precise value is set by D - see Theorem 4 of [20]). 

So for sufficiently peaked evidence, unless those / with non-negligible posterior all lie 
in a highly restricted region (F(D)), the evidence procedure is guaranteed to have sizable 
error for some /. Therefore for sufficiently peaked evidence, if the evidence procedure is to 
correctly estimate the full posterior, that posterior must be highly peaked (i.e., its support 
must be confined to a highly restricted region). This in turn usually implies that we're in a 
likelihood dominated regime - in which case there's little reason to apply Bayesian analysis. 

These effects can be envisioned with the help of figure 3. Recall that as N rises, the only 
effect is that all (!) distributions (over both a and /) become more peaked; the shapes of 
the distributions and in particular the positions of their peaks do not change. This means 
that the curves in figure 3 get more peaked—but otherwise do not change—as the evidence 
gets more peaked (cf. parts b and d of figure 3). Accordingly, as the evidence gets more 
peaked, the set of / which both have non-zero posterior and which have their posterior 
well approximated by the evidence procedure becomes tightly restricted. Indeed, that set 
is empty in part d of figure 3. In fact, of the three /3's in figure 3, it is only for the ß of 
part c that the "tightly restricted set of /" doesn't quickly vanish with rising N. Yet it is 
precisely that value of ß in part c that is the largest of those depicted in the figure. This 
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illustrates the fact that when the evidence procedure correctly estimates the full posterior 
we have high ß, and that this effect becomes more pronounced as the evidence becomes 
more peaked (i.e., as N rises).  Rephrasing, things must be likelihood-dominated for the 
evidence procedure to work, especially when the evidence is peaked. 

5.4.    Other kinds of error 
Finally, it is worth briefly discussing those scenarios where one isn't directly concerned with 
"evidence's error" as defined heretofore. Most such scenarios have A(.) be a function of 
/ as well as /', so our expectation values are functions of /. (Recall that this is the case 
when posterior expected A(.) is equivalent to the posterior probability of /, for example.). 
To avoid confusion, in addressing these scenarios we will write expressions like Ef(Af | 
D) = J df'Af(f)P(f | D); since A(.) is a function of two arguments, the subscript on the 
"J5" is modified to indicate exactly which argument is being marginalized, and a subscript 
is introduced onto the A(.) to indicate the remaining free variable. 

For this kind of A(.) one might wish to measure the accuracy of the evidence procedure 
over all /, rather than just at one particular /. One way to do this is to evaluate a 
functional of the two functions Ef>(Aj | D) and Ey(Af \ l*,D). So for example we might 
be interested in the least upper bound (over all /) of \Ef>(Af \ D) - Ef>(Aj | 7*, D)\. Since 
Theorem 2 holds for any individual /, this least upper bound is bounded above by the 
quantity max/( e(/) + T(/)(1 - p) + Ey(Aj | i*,D) \p\) (e and r have dependence on / 
through their dependence on A(.)). This gives the largest possible gap (across /) between 
the evidence approximation to the posterior and the correct posterior. 

Arguments similar to this least upper bound (lub) one can be used to directly bound 
Jdf\Ef(Af I D) - Ef(Af I i*,D)\. More generally, we can use a bound (however ar- 
rived at) on lub/( \Ef>{As \ D) - Ef>(Aj | 7*,-0)1 ) to get bounds on the Ln difference 
between Ej>(Af | D) and Ey{Aj \ T,D) for any n. To illustrate this, consider the 
case where A(f,f) - 6(f - /'), so that the expectation value we're examining is the 
posterior distribution of /. Define "Ln{x(f) - y(f))" to mean the Ln difference between 
x(f) and y(f). Let p be an upper bound on lub/( \P(f \ D) - P(f | 7*,I>)| ). Then 
Ln[P(f I D) - P(f I 7M>)] < M X [2lp]l'n [22]. 
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ABSTRACT. This paper is an attempt to reconcile Bayesian and non-Bayesian approaches to 
statistical inference, by casting both in terms of a broader formalism. In particular, this paper is an 
attempt to show that when one extends conventional Bayesian analysis to distinguish the truth from 
one's guess for the truth, one gains a broader perspective which allows the inclusion of non-Bayesian 
formalisms. This perspective shows how it is possible for non-Bayesian techniques to perform well, 
despite their handicaps. It also highlights some difficulties with the "degree of belief interpretation 
of probability. 

1.    Introduction 

Why should one want to reconcile Bayesian and non-Bayesian analysis? Why be bothered 
with non-Bayesian techniques? Bayesian analysis forces one to makes one's assumptions 
explicit; it ensures self-consistency; it provides a single unified approach to all inference 
problems; if one is very sure of the prior (e.g., as an extreme, you constructed the data- 
generating mechanism yourself) it is essentially impossible to beat; and in some ways most 
important of all (sociologically speaking), Bayesian analysis is in some senses more elegant 
than non-Bayesian analysis. 

For these very reasons I have used Bayesian techniques in the past and will do so again 
in the future. As compelling as these reasons are though, none of them constitute a proof 
that Bayesian techniques perform better than non-Bayesian techniques in the real world. 
Indeed, there are many examples — some constructed by self-professed Bayesians — which 
cast doubt on such a guarantee. For example, as is discussed separately at this conference 
[1], although the "evidence" procedure sometimes works well in practice [2, 3], and although 
it is championed by fervent Bayesians, careful scrutiny reveals that it is a non-Bayesian 
technique. In particular, in [3], in a section entitled "Why Bayes can't systematically 
reject the truth", MacKay presents a theoretical argument for the evidence procedure's 
setting hyperparameters by maximum likelihood. However this argument can be extended 
to "justify" setting any parameter by maximum likelihood, not just a hyperparameter. It is 
hard to imagine a more non-Bayesian line of reasoning. As another example, despite being 
a self-professed fervent Bayesian, MacKay recently won a prediction competition using an 
extension of the non-Bayesian technique of cross-validation [4]. 

Another reason not to dismiss non-Bayesian techniques arises from the problem of set- 
ting the probability distribution P(truth= i, data= d).1 If—as is often the case in the real 
world—we already know the likelihood P(d | t), in what ways can we fix the remaining 
degrees of freedom in the joint distribution while ensuring consistency with the laws of 
probability theory? One way to do this is to provide the prior distribution P(t)—this is the 
basis for conventional Bayesian analysis.  But there are other ways as well.  For example, 

79 

G. R. Heidbreder (ed.), Maximum Entropy and Bayesian Methods, 79-86. 
© 1996 Kluwer Academic Publishers. Printed in the Netherlands. 



80 D. H. WOLPERT 

consider the case where there is a data set d = d! such that P(d' \ t) does not exactly equal 
zero for any t. If we now provide the values of P(t | d') for all possible t, we will have 
fixed the entire joint distribution, for all possible data sets. (This follows from the equality 

P(ti,dj) = ^^^fft^jp^^/p^i^)-) In particular, by setting P(t | d'), we will have 

fixed P(t | d) for any d ^ d''. 

With this alternative scheme we would be assured of self-consistency, our assump- 
tions would be explicit, etc.; this scheme possesses all the formal strengths of conventional 
Bayesian analysis. However rather than use pseudo-intuitive arguments to set P(t), as in 
the conventional prior-based Bayesian approach, with this alternative scheme we.use such 
arguments to set P(t \ d) for one particular d. For example, one could set P(t | d) for one 
particular d using "pseudo-intuitive" cross-validation type arguments. One might even be 
able to use "desiderata" to set P(t | d) for one specific d, rather than to set P(t). There is 
no reason prior knowledge has to concern a prior probability; one can have prior knowledge 
that is expressed directly as a posterior. For example, my "prior knowledge" might consist 
of knowing that cross-validation works well for a certain class of problems. 

In fact many practicing statisticians do implicitly exploit "prior knowledge" directly 
concerning the posterior. However they do so in conjunction with a approximation; they 
have their prior knowledge set all of P(t | d) at once, and therefore they (usually) violate 
strict consistency with the laws of probability. For historical reasons, such approximations 
are usually called "non-Bayesian". However they are closely analogous to using a con- 
ventional (i.e., prior-based) Bayesian analysis which involves calculational approximations, 
and which therefore also violates strict consistency with the laws of probability. So the 
question arises of how accurate the approximations in a Bayesian technique must be to 
"beat" a particular non-Bayesian technique. (From here on the term "Bayesian" will mean 
conventional, prior-based Bayesian.) To address this and related issues we need to use a 
new formalism. 

2.    A Formalism for Reconciling Bayes and Non-Bayes 

In most inference problems there are four quantities of interest: the data d, the truth t 
(which might be a probability distribution), one's "guess for the truth" g, and a real world 
"cost" or "loss" or "utility" accompanying a particular use of one's inference technique. 
(For many scenarios cost only depends on t and g, and g is formally called a "decision".) 
Accordingly, the inference process is governed by P(t,g,d,c). 

Now conventional Bayesian analysis doesn't distinguish t from g—it does not analyze 
joint distributions over those two variables. Therefore one must be careful in relating 
P(t,g,d,c) to the distributions used in Bayesian analysis. In particular, note that the 
"posterior" of Bayesian analysis is P(t \ d), not P(g | d). This follows from how a Bayesian 
uses Bayes' theorem to set the "posterior" in terms of the likelihood. Since the likelihood 
is P(d | truth = t), not P{d | guess = g), the "posterior" must be P(t \ d). 

P{g | d) is a different kind of object which has no analogue in Bayesian analysis. It is 
the probability of making a guess g given data d. In other words, it is one's algorithm for 
performing statistical inference. A priori, it need have nothing to do with Bayesian tech- 
niques, and need not even be expressible in "Bayesian" terms. (For example, the evidence 
procedure's P(g | d) can not be expressed this way, since there is always necessarily some 
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difference between it and full hierarchical Bayesian analysis—see [1].) As such, P(g | d) is 
the object which allows one to expand the discussion to consider non-Bayesian techniques. 

One nice feature of this "extended" Bayesian framework is that in it, the difference 
between conventional Bayesian analysis and (most forms of) non-Bayesian analysis is no 
longer some quasi-philosophical preference for different statistical dogmas. Instead that 
difference reduces to simply what conditional distribution the two formalisms choose to 
evaluate. Bayesian analysis is concerning with finding the P(g \ d) that optimizes P(c \ d), 
and sampling theory statistics with evaluating P(c \ t,m) (m being the data set size). It 
is only with the extended Bayesian framework that one can consider both at once, and 
thereby investigate the subtle connections between the two [7]. 

The implicit view in this extended framework is that inference is a 2-person game 
pitting you, the statistician, against the data-generating mechanism, aka the universe. Your 
opponent draws truths t at random, according to P(i), and then randomly produces a data 
set from t, according to P(d | t). This d is shown to you. Based on d, you guess a g 
according to P(g \ d). We then use some cost function to determine how well g matches 
t. Note that if you know P(t) and P(d \ t), then you can use that information to perform 
optimally. But if you don't know P(t) exactly (!) and therefore have to guess it—as in the 
real world—you have no such assurance. 

In fact, extended Bayesian analysis can be used to prove the following (see [5, 6])): 

Theorem 1: P{c \ d) = T,g,tp(9 I «0 P{t \ d) Mc4(g,t), for some matrix M parame- 
terized by c and d. 

(A similar result holds if g and t are not countable.) 
In many situations M is symmetric, in which case theorem (1) means that P(c \ d) is 

given by an inner product between the posterior and one's inference algorithm. In other 
words, how well your algorithm performs is determined by how "aligned" it is with the 
true posterior. In particular, theorem (1) allows that a Bayesian's P(g \ d) might not 
be predicated on the actual P(t | d), and therefore might perform poorly—perhaps even 
worse than a non-Bayesian P(g \ d). Such mismatch between the Bayesian's P(g \ d) and 
P(t | d) can occur even if the Bayesian somehow knows P(t) and P(d \t),\i the Bayesian's 
P(g | d) uses those distributions in conjunction with calculational approximations. So 
in general there are two issues confronting both the Bayesian and the non-Bayesian: i) 
how accurately P(g | d)—based as it is on assumptions and approximations—aligns with 
P{t | d), and ii) how probability of cost varies with changes in that accuracy. 

In fact, if the inference problem is to build a classifier, so that both g and t are map- 
pings from features vectors to classification labels, and if one's cost is determined by how 
well g matches t for feature vectors outside of the data set, one has the following theorem [6]: 

Theorem 2: Let E(-) indicate an expectation value, and m the size of the "training 
set" d. For any two inference algorithms Pi{g \ d) and P2(g \ d), independent of the noise, 

i) if there exists a t such that E(c \ t,m) is lower for Px(g \ d), then there exists a 
different t such that E(c \ t,m) is lower.for P2(g \ d); 

ii) if there exists a t and a d such that E(c \ i, d) is lower for Pa(p | d), then there exists 
a different t and d such that E(c \ t, d) is lower for P2{g \ d); 
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iii) if there exists a P(t) and a d such that E(c \ d) is lower for P^g | d), then there 
exists a different P(t) such that E(c | d) is lower for P2(g | d); 

iv) if there exists a P(t) such that E(c | m) is lower for P^g | d), then there exists a 
different P(t) such that E(c \ m) is lower for P2(g \ d). 

All of this holds whether or not the inference algorithms in question are constructed 
in a Bayesian manner. Moreover these (and associated) results don't just say that a non- 
Bayesian algorithm might beat a Bayesian in one particular trial, by luck. Rather a non- 
Bayesian algorithm might win on average. In fact, not only does theorem (2) not rely 
on pathological trials; it also doesn't rely on pathological processes generating the trials. 
For example 2(iv) can be recast as "averaged over all P(t), E(c \ m) is the same for all 
learning algorithms". So for any two inference algorithms, there are "just as many" P(i)'s 
(loosely speaking) for which algorithm one has a lower expected cost as there are for which 
algorithm two's expected cost is lower. Unless you somehow know P(t) rather than just 
guess it, your being a Bayesian provides no guarantees. 

From this perspective, the Bayesian approach is the approach of choice only if there 
is no alternative (non-Bayesian) approach which is sufficiently compelling in comparison. 
(The comparison being between how compelling is a P(g | d) based on a guess for P(t) vs. 
a P(g | d) based on other considerations.) Those (not at all uncommon) scenarios in which 
the Bayesian approach works well compared to non-Bayesian techniques do not reflect some 
inherent "a priori superiority" of Bayesian techniques. Rather they reflect the fact that 
at least some aspects of the non-Bayesian techniques considered in those scenarios are not 
sufficiently powerful in comparison to the corresponding Bayesian techniques. Indeed, the 
utility of using "sufficiently powerful" non-Bayesian approaches when possible is explicitly 
acknowledged in several variations of Bayesian analysis, like empirical Bayes and ML-II [9]. 

A particularly important implication of this is that there is nothing inherently bad 
about using a non-Bayesian algorithm to choose between Bayesian and/or non-Bayesian 
techniques. For example, if we have little information concerning P(t) (and especially in 
the limiting case of no knowledge—a case sometimes dealt with via an "uninformative 
prior"), then it makes sense to be suspicious of any guess for P(t) (even a guess that P(t) 
is "uninformative"). Therefore it is reasonable to be suspicious of any P(g \ d) constructed 
under that guess. In such a scenario, one need not be shy about using something like cross- 
validation to choose amongst the techniques, or even about using stacked generalization to 
combine them [8]. 

All this provides suggestions of what some non-Bayesian formalisms are "getting at". 
For example, if one knows P(t) exactly, then Bayesian techniques incorporating that knowl- 
edge into P{g | d) always win, on average (assuming we also know the likelihood). However 
imagine we have limited information concerning P(t). In this case we will inevitably be off 
a bit in the guess which we make for P(t) and then incorporate into our P(g | d). According 
to theorem (1), this means we will perform sub-optimally. So there is a correlation between 
how much we know about P{t) and how assured we are that a Bayesian technique using our 
guess for P(i) is superior to a particular non-Bayesian technique. This can be viewed as 
introducing a distinction between an assumption for a probability and one's "confidence" in 
that assumption.2 It's conceivable that this is what advocates of Dempster-Schaffer theory, 
fuzzy logic, and the like are getting at with notions like "plausibility vs. probability". 
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Another example of what non-Bayesian formalisms might be "getting at" arises if we 
take P(t,g,c,d) to mean P(t,g,c,d | prior information /), so we must define the space of 
possible I. We could say that I fixes the precise statistical problem p that we are considering. 
As an example, that problem may be predicting the change in the value of the Dow Jones 
average across some precise date, given the current values of all physical variables within 
the light cone of the space-time coordinate {Wall Street, the date in question}, and all of 
that information is in 7. 

However if we ignore quantum mechanical issues for the moment, then physics tells us 
that for such a "precise problem" the outcome is fixed rather than random, regardless of 
whether that outcome's already occurred or not. Now as usually defined probability distri- 
butions must equal 1 for true events and 0 for false events. (Note that such definitions pay 
no attention whatsoever to whether we happen to know what's true and false). Accord- 
ingly, for a "precise problem" probability distributions are delta functions, and statistics 
becomes vacuous. (This difficulty is similar to the common complaint of non-Bayesians 
that Bayesians treat parameters as random variables even though they aren't.) 

However, tautologically, we're only interested in that information we have concerning 
the precise problem p that affects how we would guess for p. Accordingly, one could require 
that I is only that information we have concerning the problem p such that the g and/or d 
dependence of P(g \ d, I) would differ if that information were left out of I. (To agree with 
common usage, I'm taking d to not be part of the "prior information".) Such a choice of 
the prior information I fixes P(g \ d) but not necessarily vice-versa. 

Now in practice the extra bits fixing the "precise problem" don't affect how we guess. 
(E.g., this is true for the bits concerning the vast majority of the physical variables within 
the light cone of the space-time coordinate {Wall Street, the date in question}). Accord- 
ingly, those bits aren't in I. This means that P(t | I) is not a delta function, and we don't 
have the vacuous-statistics problem. (I doesn't even include whether we will actually make 
a guess, since that information doesn't affect P(g \ d).) 

Under this restriction on J, the posterior "P(t | d, /)" is a distribution defined for the 
set of all possible problems with the same guess-affecting information as p. It is not defined 
solely for the precise problem p. So this restriction suggests a set of multiple problems, 
just as a frequentist might. In fact, this kind of multiple problem P(t \ d,I) is exactly the 
starting point for the conventional frequentist view of statistical physics. 

On the other hand, if due to his/her beliefs the guess of statistician A depends on the 
value of variable Q, whereas that of statistician B does not, they have different J's. (From 
the frequentist perspective, they are concerned with different sets of problems, in only one 
of which is the value of Q held constant.) So although it suggests frequentism, the concern 
of some Bayesians for "beliefs" is also reflected in this definition of "prior information" I. 

3.    The "degree of belief interpretation of probability 

Some researchers interpret "probability" as synonymous with a subjective "degree of be- 
lief (the precise meaning of this expression — to the degree there is one — isn't relevant 
for current purposes). Bayesians have often used this interpretation to argue for the su- 
periority of their techniques. The reasoning is that under this interpretation, P(t) is your 
belief in proposition t, i.e., you automatically know P(t) exactly. Therefore — under this 
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interpretation — if you also know the likelihood you know P(t \ d), and you can use this 
to set P(g | d) in such a way that you have minimal expected cost (up to calculational 
approximations). (Sometimes the vague caveat is added to this argument that one's beliefs 
must be "rational".) 

This seems to imply that Bayesian and non-Bayesian analysis are not reconcilable, that 
Bayesian approaches to statistics are definitionally superior to non-Bayesian ones. However 
the degree of belief (dob) interpretation justifies non-Bayesian techniques just as readily 
as Bayesian ones: interpret a non-Bayesian's P(t \ d) as his/her "degree of belief in t 
given d, so (s)he "automatically knows P(t \ d) exactly", and can use that knowledge to 
guess with "minimal expected cost", again up to various approximations. In this, the dob 
interpretation does not play favorites between Bayesian and non-Bayesian approaches. 

However there is another more major flaw in this supposed irreconcilability implication: 
there are foundational problems with the dob interpretation of probability itself. This flaw 
is the subject of the rest of this section. Fortunately, we don't have to adopt any particular 
alternative (invariably contentious) interpretation of probability to address it. 

The first such foundational problem is that the analysis of the previous section is exactly 
correct if you're playing a real two-person game. So if in the honored tradition of probability 
theory one is investigating gambling, then the analysis of the previous section and all of its 
implications are tautologically correct. In particular, in gambling your "degree of belief 
involves P(g) and a priori need have nothing to do with P(t), which is instead determined 
by the other player (the house). Even if you arrive at your beliefs through sophisticated, 
almost "indisputable" group/information - theoretic arguments, if it turns out that your 
priors disagree with those of the house, well, then you lose. Your beliefs might be a good 
approximation to P(t), if arrived at rationally and based on extensive prior knowledge 
(presumably this is the case in those scenarios where Bayesian analysis works well). But 
that doesn't mean the two quantities are definitionally equal. It doesn't somehow mean 
that you rather than your opponent fix the probability that your opponent is bluffing.3 

So the question arises of whether there is a fundamental distinction, with concrete 
ramifications, between gambling and all real world statistical problems. If there isn't—and 
it's hard to imagine how there could be—then Thm.'s 1 and 2 imply that there are no 
guarantees of optimality for the dob Bayesian. 

More generally, a "truth" t and a guess g are different objects. Therefore their distribu- 
tions need not be related a priori. (This is reflected in the theorems of the previous section.) 
Accordingly, a formal statement connecting P(t \ d) and P(g | d) corresponds to an extra 
assumption concerning P(t,g,c,d), an assumption not demanded by the mathematics. In 
particular, the dob interpretation is such an extra unjustified assumption. 

Another difficulty with the dob interpretation is that if we had sufficient knowledge of 
the laws of physics (in particular, of the boundary conditions of the universe) and of the 
(resultant) laws of human psychology, and if we were sufficiently competent to perform the 
appropriate quantum mechanical calculations, then we might say that we could calculate 
P(t) exactly. In other words, one possible interpretation is that P(t) is the "real" P(t), 
determined by the laws of quantum mechanics applied to the universe as a whole. A priori, 
such a P(t) need have nothing to do with one's (pre-calculation) degrees of belief. 

Indeed, anyone can imagine that quantum mechanics is correct, even if they don't 
believe that to be the case.  So we can self-consistently imagine that the universe evolves 
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in accord with equations governing "absolute, objective" probabilities, since those are the 
building blocks of quantum mechanics. This simple fact that we can self-consistently (!) 
imagine quantum mechanics shows that there is no formal problem with quantum mechan- 
ics' implicit notion of absolute, objective probabilities, which exist independently of any 
particular person's degree of belief. So there is nothing mathematically necessary about 
the dob interpretation of probability. 

In this regard, note that nothing in Cox's axioms forces a particular interpretation of 
probability. Those axioms only say that any (reasonable) calculus of uncertainty must obey 
the laws of probability theory. They do not tell us how to assign the probability values in 
the first place. One could interpret probability as degree of belief. In such a case, Bayesian 
analysis becomes a set of rules for telling you what structure your beliefs must have to be 
self-consistent. But the math does not force us to that interpretation. 

All of this agrees with Bayesianism as practiced; the actions of a practicing dob Bayesian 
are indistinguishable from those of someone who thinks P(t) is independent of P(g \ d), 
and therefore is not "automatically known" but rather has to be discovered. It's just that 
for a dob Bayesian, the to-be-discovered P(t) is rather disingenuously considered to be the 
distribution which "best reflects prior knowledge". To the dob Bayesian, as our under- 
standing of statistics improves, as we get a better understanding of what "uninformative" 
means, etc., we get a more accurate idea of that P(t). To an outsider, the dob Bayesian is 
simply changing his/her guess for P(t). 

As an example, some of the more prominent attendees at this conference have spent 
much of their careers looking for arguments to establish what priors to use for certain 
scenarios. Moreover, they've changed their views on this several times. Each time they act 
as though they were assuming an "incorrect" P(t) before, despite the fact that that old 
assumption for P(t) properly reflected their old degrees-of-belief. And each time they tend 
to look askance at any laggards still using the old guess for P(t), despite the fact that said 
laggards are directly following along with their beliefs. This behavior is consistent with the 
idea that degree-of-belief Bayesians do not, deep down, view probabilities as just degrees 
of personal belief, but rather view them as possessing some degree of objective reality. 

Indeed, for a century Bayesianism was in disrepute, and the current consensus is that 
is was in disrepute because it was used with "bad choices of priors". Just translate "bad 
choice of" to "incorrect assumption for", and you have the theorems of the previous section, 
with their implication that Bayesianism can be sub-optimal. 

Alternatively, note that transferring from an "incorrect" P(t) to a better one is really 
nothing more than the process accompanying the (in)famous "opportunity to learn" which 
one encounters when one's Bayesian analysis leads to poor results. Or to put it another 
way, having P(t \ d) poorly reflected in P(g \ d) is an opportunity to learn. If you assume 
these distributions are always "automatically" connected, you're assuming you never have 
an opportunity to learn. (As an aside, note that a mismatch in the distributions is an 
"opportunity to learn" whether or not P(g | d) is based on Bayesian analysis—Bayesians 
have no monopoly on the use of the concept "opportunity to learn" as a cover for poor 
performance of their statistical algorithms.) 

Finally, note that there might well be a way to embed the reasonableness/desiderata 
arguments often used by dob Bayesians to set priors inside a complete mathematical frame- 
work (e.g., there might be a framework which maps any (!) J to a unique prior distribution). 
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If we had such a framework, then one might claim that such reasonableness arguments are 
a well-principled way to assign probabilities. Without that framework in hand though, we 
have no assurance that any particular reasonableness argument assigns the same values to 
probabilities as that framework would. In particular we have no assurance that there isn't 
some lurking reasonableness argument which contradicts our current arguments. In short, 
at present "degrees of belief set by desiderata arguments do not constitute mathematics. 
They constitute philosophy. 

End notes 
1. For the purposes of this paper there is no reason to specify whether the notation 

"P(.)" refers to a probability, a probability density function, or some other similar object. 
2. I'm speaking loosely here, and have not defined "confidence" formally. In particular, 

I have not defined confidence in a probability with probability of a probability. 
3. Note that assigning a "degree of belief to a proposition and making an assumption 

for the probability of that proposition (as one might do in gambling against the house) 
are very similar things. Both are subjective declarations concerning how reasonable the 
researcher thinks the proposition is. This might be why people have confused them so 
easily. There is an important distinction between the two concepts however: in declaring 
one's degree of belief in a proposition one is tautologically correct, whereas there is no such 
notion of tautological correctness to making an assumption. It is the claim of this paper 
that P(t) is something one can assume as opposed to something one can simply declare. 
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ABSTRACT. The geometric concept of the Lie derivative is introduced as the natural way of 
quantifying the intrinsic robustness of a hypothesis space. Prior and posterior probability measures 
are interpreted as differential forms defined invariantly on the hypothesis space. Rates of change 
with respect to local deformations of the model are computed by means of Lie derivatives of tensors 
defined on the model (like the information metric, prior, posterior, etc.). In this way a field theory of 
inference is obtained. The class of deformations preserving the state of total ignorance is introduced 
and characterized by a partial differential equation. For location models this equation is the familiar 
V ■£ = 0. A simple condition for the robustness of prior (or posterior) distributions is found: There 
is robustness when the deformation is along level surfaces of the prior (or posterior) density. These 
results are then applied to the class of entropic priors. It is shown that the hyper parameter 
controls the sensitivity with respect to local deformations. It is also shown that entropic priors are 
only sensitive to deformations that change the intrinsic form of the model around the initial guess. 

1.    Introduction 

The robustness, of a statistical procedure, is commonly defined as the stability with respect 
to small changes in the assumptions. This notion has immediate intuitive appeal and it has 
even been equated to the Holy Grail of Statistics (see [5]). 

There is general agreement about the desirability of a consistent theory of statistical 
robustness (Bayesian and non-Bayesian) and the large number of articles and books dedi- 
cated to the subject testify it. The technical definition of robustness is still controversial, 
however. For a serious criticism to the definitions of Hampel [3, p. 1980] and Huber [4, p. 
10] see [6, p. 17]. 

In this paper, the geometric concept of the Lie derivative is introduced as a technical 
tool for quantifying robustness. The great arsenal of modern geometry tools provide a 
flexible, rigorous, and powerful framework for developing statistical inference in general 
and Bayesian robustness in particular. 

The geometrization of statistics is possible in part due to the fact that statistical models 
have a natural manifold structure. Fisher information endows the models with a Rieman- 
nian metric and the Kullback number (entropy) generates this and many other natural 
geodesic metrics on the model (see [1] and [7]). 

The main idea is to exploit the rich geometric structure available in the hypothesis 
space for the quantification of robustness. Once differential geometry is permitted to be the 
operational framework, a number of consequences for robustness are straight forward and 
inevitable. This paper concentrates on the quantification of the robustness of probability 
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distributions defined on the model. The same technique can be used for quantifying the 
stability of any tensorial quantity defined on the space. 

In this approach, there are important differences with traditional methods. First, ev- 
erything is intrinsic to the model. There is no need for postulating super models, nonpara- 
metric neighborhoods, or anything outside the given hypothesis space. The model is an 
enclosed universe that is assumed to include all the relevant probability measures for the 
observed data. The possibility of encoding deformations of the model without reference to 
an outside, is a remarkable achievement of modern geometry. Second, n does not have to go 
to infinity for the methods to make sense. In fact they even make sense in the absence of all 
data. We can quantify the sensitivity of a prior distribution with respect to deformations 
of the model independently of the observations. 

The paper is divided into four sections. In Section 1 we introduce the notation and 
provide a summary of the main definitions and results from geometry that will be needed 
later. In Section 2 we introduce probability distributions over the parameter space as 
differential forms defined on the model and their Lie derivatives are computed by using the 
methods of Section 1. We also compute explicitly the sensitivity of the class of entropic 
priors with respect to deformations of the model. Finally, in Section 3, we workout the 
example of inference in the one dimensional Gaussian model with entropic priors. We 
conclude in Section 4 with some comments on the possible future developments of these 
methods. 

2.    Local Deformations, Lie Derivatives of Tensors and Volume Elements 

We collect here some classical results from the geometry of vector fields on manifolds. The 
material in this section can be found in most books on modern geometry. We follow the 
presentation and notation of [2, chap. 23]. 

Regular (finite dimensional) parametric statistical models will be denoted by V = {P$ : 
0 6 0}. They are Riemannian manifolds. The parameterization 0 C Uk plays the role of a 
coordinate system. The tangent space at P G V is modeled by the linear space generated 
by the partial derivatives (w.r. to 9) of the log-likelihoods. In this way the tangent space 
at P is a subspace of L2(P) and it inherits the inner product from it. It turns out that the 
Riemannian metric on the tangent space at Pg, gij(&), coincides with the Fisher information 
matrix at 6, see [1] and [7] for detailed definitions. 

A vector field £ on the manifold V is a mapping that assigns to each PePa tangent 
vector at P. For a pictorial representation think of the model as a k-dimensional (curved) 
surface and the vector field as the velocity field of a fluid moving on the surface. If the 
field £ is smooth (as a map between manifolds) the theory of ordinary differential equations 
warranties the existence and uniqueness of the following associated autonomous system of 
differential equations: 

^ = e(e\t),...,ek(tj), t = i,...,* 

(i) 

&l\t=t0   =   6o 

where 61 and £* denote the components of P$ and £ in the coordinate system 0 and 6Q is 
the initial condition. The solution to this system is known as the integral curve of £ passing 
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through Pe0 . We denote it by Ft(0o) = 6(t). For a given t the map, Ft : 60 >-* 0(f), defined in 
a neighborhood of the point 60, represents the new position after time t of a particle of fluid 
which is initially at 6Q. The theory of ordinary differential equations assures that for t small 
enough the maps Ft are diffeomorphisms (i.e. one to one and with continuous differential 
both ways). More precisely they form a local one parameter group of diffeomorphisms with 
group operation Ft o Fs = Ft+S, inverse jPt

-1 = F-t and identity F0. Each transformation 
Ft defines (at least locally) a change of coordinates from 60 to 0(t) i.e. a local re-labeling 
of the elements of V. In this way if T is a quantity defined in terms of the labels 0(t) (but 
providing intrinsic information about the points P € V) it will have an expression (FtT) 
in terms of the labels 0O, satisfying the rules of transformation for tensors. We have the 

following: 

Definition 1   The Lie derivative of a tensor T along a vector field £ is the tensor L{T 

given by 

*M (2) 
Ji=0 

Again, in visual terms the Lie derivative of T along £ gives the rate of change of T as it 
is seen when moving with the fluid. Or equivalently, standing at 60 we see the components 
of T change due to the (time dependent) deformation of the space given by Ft and the Lie 
derivative is just the rate of change (with respect to time) of what we see. By applying 
the rules of transformations for tensors and using the smoothness of the F<'s (by Taylor's 
theorem Ft(6o) — #0 + ^(^0) + o(i)), we can find the components of the Lie derivative of 

the tensor T)1'"*?. They are given by: 
3l—lq 

nll...«p .    . dT-    ■"        ■■    Bfk dfk 

^^ji-jq      ~     ?        QQs       ^ Xkj2-3q Qßh   ~t~ "'~r    3l-3q-lk QQjq 

rplJ2—ip^^ 1 j,i2—ip-iiv£ P /o\ 
131-19 eel    '"    ji-ji    de1' y ' 

where here, as in the rest of the paper, the standard implicit summation over repeated 
indices is assumed. As special cases of this formula we have: 

I). Scalar field. T = f 

II). Vector field. T = rf 

w = t-vf = e% (4) 

W = fo<X = ?$-*$; (s) 
where [£, 77] denotes the commutator between the vector fields. 

Covector field. T = Tj = -^ 

(MTh = e§ + n§ 
=   d^D^L^if)) (6) 

i.e. Lie derivatives commute with differentials. 
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IV). Bilinear form. T = g{j 

hau = V-Q£ + gkj-Qp + gik-QQ- = u{j (7) 

This is known as the strain tensor. 

V). Volume element. 

T = T-    •     — 

=    ^\g\d6^ A...Ad9l« 

=    ±\/\g\ dd1 A ... A d0k  if no two indices are equal. (8) 

Where eZl...{,. is the Levi-Civita tensor defined as +1,-1,0 depending on the indices 
forming an even, odd or no permutation of the first k integers. We denote by \g\ the 
absolute value of the determinant of the metric tensor gij(6). 

The volume element plays a central role in Bayesian inference. Geometrically, it gives 
the surface area of a small patch on the k-dimensional surface. For this reason is the 
analogous of the Lebesgue (uniform) measure on flat space. It behaves like a totally anti 
symmetric (skew-symmetric) tensor under coordinate transformations preserving a given 
orientation of the space. Volume elements can then be interpreted as differential forms 
of order k and as total ignorance priors in statistics. After some simplifications formula 
(3) gives, 

% (^f\g~\ de1 A... A dek^j = l-gim (Ligirn)J\g~\dOl A ... A d0k (9) 

Where gim denotes the inverse of the (Fisher information) matrix, #tm. Expressions 
involving g are always functions of 6 but this will be kept implicit to simplify the notation. 
Notice that the effect of taking the Lie derivative of the volume element is to multiply it 
by one half the trace of the strain tensor defined in (7). 

VI). Leibniz' rule. If T and R are arbitrary tensors and T ® R denotes the tensor product 
between them, then, 

Li{T®R) = (LzT)®R + T®(LiR) (10) 

3.    Robustness of Probability Distributions Denned on the Parameter Space 

Probability measures defined on 0 (e.g. priors and posteriors) can be seen as providing 
alternative ways of measuring the surface area of patches on the manifold. The parameter- 
ization 0 is only a convenient artifact to be able to write the formulas explicitly without 
having to perform the integration directly over the functional space of probability measures. 
But the parameterization is arbitrary and therefore it must be immaterial. The formulas 
should show this invariance under reparameterization up front. 

From this point of view, it is necessary to leave tradition and move from the usual 
interpretation of probability densities as functions with transformation rules governed by 
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the so called change of variables theorem to scalar fields with no transformation rules what- 
soever. Traditionally, density functions are integrated with integrals of the second kind 
which are just multiple integrals to be handled independently of any metric which may be 
defined on the space. But if we move to densities as scalar fields, then they have to be 
integrated with integrals of the first kind with respect to the volume element in the desired 
parameterization. A probability measure on 0 will then be written as a differential form, 

x(0)y/\g\ de1 A ... A d9k (11) 

where ir(6) is a scalar field. Notice that TT(6) is just the Radon-Nikodym derivative of the 
probability measure defined by 11 with respect to the volume element measure. In other 
words the density (as a scalar field) is given relative to total ignorance. Notice also that 
(11) is wonderfully invariant. If what was called 6 we now call 6' all we need to do to (11) 
is to prime the 0's and we get the formula in the new coordinate system. 

1    2 
An example may help to fix the ideas. For example, ^e~2r is the probability density 

scalar field of the standard bivariate Gaussian on the Euclidean plane parameterized with 
1/2 2 \ 

polar coordinates r, 6. The same density in cartesian coordinates is just ^-e~^\x + V ). 
i.e. the point on the Euclidean plane with the two labels (x, y) and [r, 6] has exactly the 
same density relative to (euclidean) ignorance since r2 = x2 + y2. 

Noteworthy, this almost trivial change in point of view, helps to clarify an old puzzle 
of inference: How come that complete ignorance about a value x € [0,1] is not complete 
ignorance-about y = x2 € [0,1]?. In other words, the change of variable theorem transforms 
the uniform density of x into the non uniform density \y~xl2 for y. This is regarded as 
paradoxical, for, it is claimed, indifference about the number x should produce indifference 
about the number y = x2. When considering densities as scalar fields there is no puzzle. 
The puzzle -arises from the insistence, of the change of variables theorem, to keep the 
underlying measure to be the same (Lebesgue measure on [0,1] in this case) for x and for y. 
But, x and y = x2 are just two different numerical labels for events (perhaps measurements 
of the same thing but in two systems of units) so whatever it was labeled |, say, with x 

Js relabeled as \ by y. Therefore, the labels x - 0.5 and y = 0.25 must have the same 
chance of occurrence. In fact, they do. But the change of variables theorem hides it by 
"shifting the Jacobian from the volume element, where it belongs, to the density, where it 
does not belong. Our formula (11), assigns constant density to the numbers in [0,1] in all 
coordinate systems, linear or non linear transformations of x. 

Formula (11) is composed as the product of two invariants. The scalar field density 
and the volume element. Remember that the volume element is invariant under all repa- 
rameterizations preserving orientation. When changing coordinate systems, the two parts 
remain the same. 

3.1.    The Robustness of Total Ignorance 

The rate of change of the total ignorance prior along a deformation of the model given by 
a vector field f is given by (9). Replacing (7) into (9) and simplifying, we can write 

(J\g~\ de1 A ... A dO^j = (±gijVgij + v) • £ (y/\0\ dß1 A ... A d*fc) (12) 
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Thus, a local deformation of the hypothesis space, does not change the state of total igno- 
rance if it is along a vector field £ solving the partial differential equation: 

50°'V^ + v)-£ = O (13) 

Therefore, if the metric tensor is independent of 9 (e.g. for location models), equation 13 
reduces to the familiar: 

V-£ = 0 (14) 

Equation (14), and the more general equation, (13), encode the idea of conservation of 
ignorance. Deformations of the model that satisfy them, are precisely those that do not 
create nor destroy information. 

3.2.    Robustness of Priors and Posteriors 

To compute the Lie derivative of an arbitrary distribution over the parameter space we 
apply Leibniz' rule (10), to the differential form (11), 

LJryJ\iJ\M1/\...Adßk'\    =   irLi(^\d91A...Ad9k^ + (^/\g~\d91A...Ad9k^L^ 

=    f^gimLigim + Li\og^ir^/\g~\d91A...Ad9k (15) 

where we have used the fact that tensor multiplication by a scalar field is just regular 
multiplication and equations (5), and (9). Thus, robustness is obtained when ir,£ and the 
metric &m are connected through the partial differential equation: 

Li\o^ = -^gimLigim (16) 

This is again an equation expressing conservation of information. There is in variance along f 
when the gradient of the log-likelihood (of the prior or posterior ir) projected onto £ exactly 
eliminates the sources of information created by the deformation. But, if the deformation 
f does not artificially create information, i.e. if it preserves the state of complete ignorance 
then, by (9) and (4), the general equation (16) simplifies to, 

£-VTT = 0 (17) 

This is not surprising. Since the gradient, VTT, is always orthogonal to the level surfaces 
{9 : 7r(0) = c} we can rewrite (17) as, 

Theorem 1 Let £ be an ignorance preserving vector field. Then, a probability distribution 
on 0 with scalar field density T, is robust with respect to deformations along £ iff IT puts 
constant probability mass on the integral curves o/£. 

In other words, prior (or posterior) probabilities do not change, only when the defor- 
mations remain inside the level surfaces of the density. 



BAYESIAN ROBUSTNESS: A NEW LOOK FROM GEOMETRY 93 

3.3.    Robustness of Entropie Priors 

The name and the derivation of entropic priors for the manifold of discrete distributions 
are due to Skilling (see [11]). The generalization to arbitrary regular parametric models 
appears in the same volume in [7], see also [9], [8], [10]. 

Entropic priors are defined by their scalar field density. In the coordinate system of the 
0's they are given by 

W0) = le-<*Hfi : ö°) (18) 
c 

where, 1(0 : 0Q) is the Kullback number between the distributions labeled by 8 and a 
given initial value 0O. The parameter a > 0 has to be large enough, so that the constant of 
integration, c, is finite. Equation (18) has an easy interpretation: The chance of 6 decreases 
exponentially fast with the Kullback distance from do and the parameter a controls the 
sensitivity to changes in the distance. Since the density is given as a scalar field, this 
interpretation holds in all coordinate systems i.e. for all parameterizations of the model. 

To compute the sensitivity of entropic priors, with respect to deformations of the model, 
we need only to replace (18) into (15). If we denote by II the entropic prior probability 
measure, we have: 

^ = \gimLsgim-at-VI(e:öo) (19) 

where the left hand side denotes the Radon-Nikodym derivative of the (signed) measure 
Z^n with respect to II. If £ preserves ignorance, the first term of the sum in (19) is zero 
and 

-a£ ■ V/(0 : 60). (20) 
dL{B. 

Equation (20) contains a lot of information about the nature of entropic priors. Firstly, 
notice that the parameter a controls the size of the derivative. In other words, the smaller 
a is, the more robust the inferences are. Jeffreys priors appear as tautological winners: 
Ignorance priors are robust with respect to deformations preserving ignorance. Besides this 
tautological robustness, obtained when a = 0, we have robustness when £ is orthogonal to 
VI. In other words, when the integral curves of £ are located on the surface of entropy 
spheres centered at 80 i.e. {6 :1(6 : 80) = const.}. This justifies the following: 

Definition 2 A vector field defined on the statistical model is said to be information pre- 
serving at #o if H does not change ignorance and has integral curves contained in the level 
surfaces of 1(8 : do)- 

This definition makes true the following: 

Theorem 2 Entropic priors are robust with respect to deformations preserving information 
at the initial guess, 8Q 

It is well known that the Kullback number generates the Riemannian metric (see [7] or 
[9]). In fact, a simple Taylor expansion of the Kullback number produces: 
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£-V/(0:0o)    =    (t,6-eo)B + o(\0-Oo\) 

= ev>gij(9) + o{\e-e0\) (2i) 

where v = 9 — 9Q is in fact a tangent vector at 9 when 9o approaches 6. From here, we 
obtain the following 

Theorem 3 Entropie priors are robust with respect to local isometries at 9$ 

By local isometries at 9$ we mean deformations that close to 9Q do not change the metric. 
These deformations just send points in spherical orbits around 9Q. The previous theorem 
shows that entropic priors, as opposed to other classes of priors, are very compatible with 
the intrinsic Riemannian geometry of the hypothesis space. Entropic priors are sensitive 
only to deformations that change the intrinsic form of the model around 6$. 

4.    Example: The Gaussians 

The main purpose of this section is to illustrate some of the formulas introduced in this 
paper with a concrete example. An in depth analysis of the robustness of Gaussians, 
however, is beyond the scope of the present article. 

The gaussian distributions form a two dimensional Riemannian space. The metric tensor 
(Fisher information matrix) in the coordinate system 9 = (81^92) = (^,cr) is diagonal with 
9u = l/<r2, 922 = 2/a2. Thus, 

giiVgij = a*(o,=l) + £(o,=±) (22) 
a3 J      2  V    a3 

The vector fields £ = (£1,£2) that preserve ignorance are given, from (13) and (22), by 

£ + f-V = 0 (23) dpi      do-      a 

This can be easily shown to have the general solution: 

where h is an arbitrary differentiable function of a, and ifi is an arbitrary differentiate 
function of \i and o, with continuous second order partial derivatives. 

4.1.    Entropic Prior on the Gaussians 

Consider the entropic prior model on the manifold of Gaussians with initial guess 9Q — (0,1) 
i.e. the standard normal distribution. Straight forward computations show (18) to be, 

1        _<d _fii 
ir(/z, <r) = ——-oae   2a e   2a (25) 

c{a) 

Equation (25) is the scalar field density relative to the volume element: 

a-2 d/x A do (26) 
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The symbolic manipulator MAPLE shows that, for a > 1 

c(a) = 2W2-1)^a-*/2r Q(a - 1)) (27) 

The integral of (25) with respect to (26) diverges for a < 1. I believe this to be the 
reason of why Jeffreys, and many others after him, thinks that the volume element (26) (i.e. 
a = 0) is too uninformative. The prior distribution obtained at the first divergent value of 
c, when a = 1, produces posterior inferences remarkably similar to the popular conjugate 
prior for this case. Even for two observations. This suggests to extend the definition of 
uninformative prior to include all the entropic priors with divergent c. The boundary value 
of a (in this case a = 1) can be used to approximate the frequentist methods. 

The level curves of (25), are closed curves on the upper half plane (/i, a) with equations, 

£- + £--alogc = k (28) 
2a     2a 

where k depends on a. Computer experiments show these curves to be similar to ellipses 
centered about (0,1 - e(a)) with e tending to zero as a increases. Therefore, there is 
robustness when the velocity vectors (24) are tangent to the level curves, (28). This happens 
when 

Preliminary analysis indicates that equation (29) imposes a heavy restriction on the defor- 
mations for which there is robustness. The group of isometries of the Gaussians, together 
with theorem 3, could be used to find the desired deformations around #o = (0,1). It 
is possible to show, that the group of direct isometries of the Gaussians, is that of the 
Lobachevskian plane. This group, is known to be isomorphic to the orthochronous con- 
nected component of the identity of the Lorentz group for three dimensional space-time 
(i.e. a space with metric: x2 + y2 - i2, see [9]). 

5.    Conclusions 

In retrospect, this paper should be considered a first attempt to demonstrate that it makes 
sense to use Lie derivatives for quantifying Bayesian robustness. No doubt, the geometriza- 
tion of inference provides a powerful language for asking questions about statistical proce- 
dures. As usual, geometry brings the paraphernalia of visual imagery that embodies the 
objects of study and allows to see the theorems. Looking ahead, to the (immediate) future, 
we can anticipate that many of the successful applications of modern geometry to physics 
might be reproduced, for the theory of Inference. Stokes theorem will begin to play a cen- 
tral role in Bayesian robustness, for the very simple reason that the Lie derivatives of priors 
and posteriors are again differential forms ready to be integrated over patches. There is 
also room for connections and gauges, square roots of Laplacians, Lie algebras and index 
theorems. We need to find the people with the guts to do it. 
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ABSTRACT. The local sensitivity of a posterior quantity p(P) to the choice of the prior P is 
considered. When the prior P\ is indexed by parameter A, a natural measure is the total derivative 
of p(P\) w.r.t. A. Total derivative, however, is direction specific. To measure the local sensitivity 
of p(P\) to specification of A, one may either use the norm (maximum over all directions) of the 
total derivative or alternatively, the average sensitivity which evaluates the average of this total 
derivative over all directions. Simple expressions are given for the maximum and average sensitivity 
which make their evaluations very easy. Discussion and several examples illustrate implications of 
these ideas. 

1.    Introduction 

Bayesian paradigm requires one to specify two parametric models; the sampling density 
f(X\6) and the prior P(9). However, in practice, knowledge about these models are never 
accurate, and such specifications are only approximations or guesses at best. Hence, sen- 
sitivity of the final action to deviations of these various inputs from their idealized models 
is of much concern. As Tukey (1960) writes, "A tacit hope in ignoring deviations from 
ideal models was that they would not matter; that statistical procedures which are opti- 
mal under the strict model would still be approximately optimal under the approximate 
model. Unfortunately, it turned out that this hope was often drastically wrong; even mild 
deviations often have much larger effects than were anticipated by most statisticians". 

Robustness studies, in both Classical and Bayesian statistics, can broadly be divided 
into two subgroups; global sensitivity analysis and local or infinitesimal approach. The 
former examines the effect of misspecification, when the true model may or may not be 
close to the idealized one. In the Bayesian context, global sensitivity to misspecification 
of the prior has been expounded by many, see Berger (1993), Wasserman (1992), Basu 
and DasGupta (1992), Rivier et al. (1990), and the references therein. In contrast, local 
sensitivity studies explore the effect of infinitesimal perturbations from the idealized model. 
Recent advances in this area include Rodriguez (1994), Ruggeri and Wasserman (1993), and 
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Skilling (1990). Our efforts in this article will be directed towards studying local sensitivity 
of Bayesian analysis to the choice of the prior. 

Formally, we observe data X from the sampling density f(x\6). The observed likelihood 
function f(X\9) will be denoted by 1(9) (with conditioning X understood), and P(-) will 
denote the prior distribution on 6.  Let m(P) = f£(9)dP(9) denote the marginal w.r.t. 

© 
prior P. Given the likelihood £(■) and the prior P(-), the posterior probability distribution, 
defined as P{A\X) = -^ /1(0) dP(9) for any set A, will be denoted by P(-\X) (with 

dependence on 1(9) understood). Similarly, ir(-) and n(-\X) will respectively denote the 
prior and the posterior densities (whenever appropriate). We will use p(P) or pp to denote 
a posterior quantity (such as the posterior mean) corresponding to the prior P. 

As we mentioned before, prior specification is typically imprecise. Thus, in reality, we 
have a multiplicity of P as possible choices of the prior, from which we choose a single P0 

as our idealized prior. We will use V to denote the class of all plausible priors. Sometimes, 
the prior class V is indexed by a parameter. For example, we may decide to use P = 
N(fi,T2), but are not sure about any specific values of p, and r2, thus leading to the class 
{N(p,r2) : (H,T

2
)
T
 € (-00,00) ® (0,oo)}. Such parametric classes will be denoted by 

^A = {Px '■ A € A}. We will often assume that the indexing set A C &k. In other 
situations, when any particular parametric form for the prior is not apparent, one uses a 
nonparametric class, such as an e-contamination class Ve. An e-contamination class arises 
when one is 100(l-e)% certain about the idealized P0 as the choice of the prior, and 100£% 
uncertain (0 < e < 1), thus resulting in the class Ve = {P : P = (1 - e)P0 + sQ} where Q 
is any arbitrary prior distribution. 

When we have a class V of plausible priors, and an idealized prior P0, the first question 
that comes to mind is : "if the true prior Q in V is close to the idealized P0, is it guaranteed 
that p(Q) will be close to p(PQ) ?" In a limiting sense, this amounts to continuity of p(P) 
(as a function of P) at P = P0, and in the terminology of classical robustness literature, 
this corresponds to Hampel's (1971) definition of qualitative robustness. Note that we are 
posing the question in terms of p(P), however, an exactly similar question can be posed in 
terms of the posterior distribution P(-\X). If qualitative robustness is achieved, a second 
natural question to ask would be : "is the change in p(P) bounded by the change in P ?". 
To formalize this question, suppose d(-,-) is a metric on the space of priors, and v(-,-) is 
a metric on the space of the posterior quantities p(P). Then, we can pose our question as 
follows: "does 3 an a> 0 such that v(p(P),p(P0)) < M [d(P(-),P0(-)]

a for some M > 0?". 
Mathematically, this is a Lipschitz condition of order a. Basu, Jammalamadaka and 
Liu (1993) termed this second notion as stability, and studied the qualitative robustness and 
stability of p(P) and P(-\X). 

Qualitative robustness and stability are very necessary but rather weak characterizations 
of robustness. A local sensitivity study should also explore the rate of change of p(P) as P 
deviates infinitesimally from the idealized P0. If the prior class V - PA is parametric and 
A C 3fJ, this is easy. For P0 = P\0 and p(Px) = p(X), one simply computes the derivative 
P'W ~ 7\PW 

at A = Ao- K p'(^o) is small, it suggests that p(X) is not sensitive to mild 
perturbations of P\ around A = A0. The situation gets complicated when A C $*. We 
consider a more complex setup when p is also multidimensional, i.e., p = [px,. ..,pn]T. A 
proper concept of derivative in such multivariate situations is the total derivative. In section 
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2.1., we establish sufficient conditions for total differentiability of a posterior quantity p(A). 
However, total derivative is direction specific, its value depends on the direction of deviation 
A from the idealized value Ao- We thus evaluate the norm of the total derivative, or its 
maximum value over all directions. Theorem 2 supplies an easy formula for evaluation 
of this norm. An alternative viewpoint would suggest computing the average of the total 
derivative over all directions. This leads us to average sensitivity. Section 2.3. discusses 
this issue and again supplies simple expressions for ease of computation. Several univariate 
and multivariate applications are explored in section 3.. Finally, section 4. briefly discusses 
the issue of quantification of local sensitivity over nonparametric prior classes. 

Use of derivatives to quantify the sensitivity of a posterior quantity is not new. Diaco- 
nis and Freedman (1986), and Ruggeri and Wasserman (1993) evaluated norm of Frechet 
derivatives over the class of all signed measures and/or its appropriate nonparametric sub- 
classes. Rodriguez (1994) used the concept of Lie derivative to quantify the intrinsic ro- 
bustness of a hypothesis space. To our knowledge, such explorations over parametric classes 
have not been explicitly considered before. 

2.    Parametric prior classes 

2.1.    Total derivative 

Mathematical and numerical convenience often attracts one to use a prior of a special 
parametric form (this is more true in multivariate situations). For example, in a linear 
model setup : Y ~ N(X @, a11) with a2 > I mown, it is common to use a A(#, T) prior 
for §. Even if such a formulation is justified, specification of the prior hyperparameters poses 
a secondary problem, which is often handled through Empirical Bayes and/or Hierarchical 
Bayes methods, or the hyperparameters are specified as inputs by the user. Again, these 
inputs are never exactly accurate, so that local sensitivity to a particular choice of the 
hyperparameters is of concern. 

Let A = [Ai,.. -, Ajt]T denote a generic element of A, and let V\ = {P\ : A € A} be 
the class of all plausible parametric priors from which we choose P^ as an idealized prior. 
We will assume that A is an open subset in Uk so that for each Ao € A, 3 a neighborhood 
Ao of Ao such that Ao € Ao C A. Let p(P\) = p(A) be the posterior quantity of interest. 
p(A) may be univariate (a single posterior quantity), or multivariate (a vector of such 
quantities); in general, we will assume that p is ra-dimensional and A is ^-dimensional, i.e., 
p = [pi,.. .,pn]T : A C 3J* M 3?n. Often, we will focus on ratio-linear posterior quantities, 
i.e., p(A) = [pi(A),...,/>n(A)]T = [^j!hi(e)£(9)dPx(e)^=v Such quantities will be 

denoted by p  (A). 
Our concern is the local sensitivity of the posterior quantity p(A) to the particular 

choice of the parameter A = A0. The weaker local sensitivity properties of p(A), namely, 
qualitative robustness and stability, are explored in Basu, Jammalamadaka and Liu (1993). 
Here, we focus on measuring the rate of change of p( A) to small perturbations in A, in other 

words, the derivative of p( A) w.r.t. AatA = A0. Let VP(A*) = [[Spih.^ ]j=i]"=i denote the 
matrix of partial derivatives of p w.r.t. A at A = A». However, the appropriate derivative 
in multivariate calculus is not the partial derivative, but rather, the total derivative Tp^. 
The function p : A C &fc >->■ &n is called (totally) differentiable at A» € A if 3 a linear 
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\\p{\,+V)-p(\,)-Tp-l    (V)\\n 
function TpXm : $k » Un such that   —       ^  A* -► 0   as \\v\\k -f 0 

(\\v\\k = Jv\ + ... + v\ denotes the standard Euclidean norm on the ^-dimensional space 

9£fc). Note that each A, g A gives rise to a distinct linear transformation Tpy^ . 
The existence of the total derivative Tp^ , however, is easier to prove through the 

existence and continuity of the partial derivatives 's\. . A well known result in differential 
calculus states that the total derivative Tp exists over a neighborhood iVo of Ao and is 
continuous on the space £(jflk,$ln) of linear transformations from Kfc •->• 3£n iff the partial 
derivatives j^- exist and are continuous on N0 VI < i < n, 1 < j < k (Rudin (1976), p 
219). We use this result to investigate differentiability of the ratio-linear posterior quantity 
p' (A) in Theorem 1. It is easier to state the result in terms of densities, thus we will 
assume that each P^ € V\ has a density ft\(0) = x(0,X). 

Theorem 1 Let N0 be a neighborhood of A € A. Assume \i(0)\ < Mo, and for all 
1 < i < n, \hi(9)t(9)\ < Mi  V0 e 0. We further assume the following : 

(i) For each 1 < j < k, the partial derivative ^-T(6,X) exists V (6, A) € 0 ® No, and is 
continuous as a function of X for every 6 £ 0. 

(ii) For every 1 < j < k, 3 a function gj(6) on 0 such that  (a) gj(0) > 0  V# 6 0, 
(b) J9j(6dfi(e) < Lj < oo, and (c)   \&r*(9,X)\<gj(9)  V (9, A) € 0 ® N0. 

e J 

TTien i/ie total derivative TpQ of the posterior quantity p  (A) exists for X £ No and Tp 
is continuous on £(&fe,9f?n). 

Proof :    Let JV,-(A) = / A,-(0)*(0) jr(d0, A), thus p,-(A) = ^Ä, 1 < t < n. The conditions 

of the theorem ensure that for 1 < i < n, 1 < j < k, and VA 6 iV0, the partial deriva- 
tive JJ-JV,-(A) exists and = fhi(6)l{6) JJ-TT(ö, A) by the Dominated Convergence theorem. 

Continuity of £y(A) = j^-it{0, A) and another application of D.C.T. prove that j|-JV,-(A) is 

continuous in A G JV0. Similarly, jf-M^A)' and hence jf-pf1 (A) exist and are continuous 
in A for every 1 < i < n, 1 < j < k. The proof of the theorem follows ■ 

2.2.    Maximum sensitivity 

Our interest lies in measuring the rate of change of p(A) as A deviates from Ao- In particular, 
since we are not sure about any specific direction of deviation, we would like to find the 
maximum rate of change of p(X) over all directions. However, note that the total derivative 
Tp^ is a linear function of v € S^, i.e., even if we fix a direction v, Tp^ (c-v) = c-Tp^ (v) 
for any c >  0.   Hence,       sup     \\Tp\ (v)\\n is clearly infinite.    What we need is the 

all"« ^ 0 ° 
concept of the norm of a linear functional, defined by \\Tp^ || = sup Tfjjir-||Tp^ {v)\\n = 

sup   i \\Tp\ (v)\\n.     Here c > 0 can be chosen arbitrarily small to make sure that 
ll«IU=c ° 
p(Ao + v) is well defined for all {v : ||"»||jt = c} (see definition of Tp^ ). Also, note that 
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if A and p are univariate, i.e., k = n = 1, then p^- ||1>A0(
U

)III = I d\ I- Thus' 
rJrp ||Tp^ (r)||n has an intuitive interpretation as the rate of change of p(A) at A0 in the 
direction of A0 + v, and we are trying to find the maximum rate over all such directions v. 

Direct evaluations of the total derivative Tp^ and its norm, however, are hard. The 

next theorem expresses ||7>;J| as a function of the partial derivatives ^f|~, which are 
much easier to calculate. 

Theorem 2 Let A, p(A), and VPW be as defined before. Assume p(-) : A H-> ft" is 
totally differentiable at an interior point A0 of A. Then ||Tp;J|2 = maximum eigenvalue 

of the k x k nonnegative definite matrix VP(^o)T VP(^o)- 

Proof:     It is well known that the total derivative Tpy^ is a linear combination of the 
partial derivatives, i.e., Tp^{v) = Vp(\))* (Rudin (1976), pp. 215). Hence, ||TpAo||

2 = 
sup   ^r^vT\jp(\o)TTjp{\o)v = maximum eigenvalue of VP(*o)T VP(*o) (see, for 

VTVrjtO 
instance, Rao, C.R. (1973), p 62) ■ 

Corollary 1 Suppose we consider a single posterior quantity, i.e., p(-) : AC S   >-*• $. 

Then  HTpjJI = j£ [^-p(Ao)]2. 
y i=i 

Proof :    Immediate from Theorem 2 ■ 

2.3.   Average sensitivity 
It should be mentioned that the norm of the total derivative, or the maximum sensitivity, is a 
very conservative estimate in the sense that it tries to guard against large changes in p(A) by 
computing the fastest rate of change over all possible directions. Another less conservative 
concept would be to average the rate of change over all directions. Mathematically, this 
amounts to evaluating       /       \\Tp\ {v)\\n dv. But since this integral is hard to compute, 

{||«ll*=i} ° 
we square the integrand and evaluate       /       \\Tp\ {v)\\l dv instead. The choice of "1" 

{l|w||fc=i} 
as the radius of the hypersphere is completely arbitrary here; any other radius leads to an 
equivalent definition (through the linear structure of Tp^(v)). 

Definition 1 Assume p(-) : A C &fc >-* ft™ is totally differentiable at an interior point A0 

of A. Then the average sensitivity of the posterior quantity p(A) = p(P\) w.r.t. the choice 
of the prior parameter A = A0 is defined to be  Tp\   = ^       /       ||TPA0(

t')lln dv- Here 

{\\V\\k=r} 

r > 0 is arbitrary (the definition is independent of the choice of r). 

The next theorem shows how to evaluate Tp^ for a totally differentiable posterior quantity 
p(A). 

Theorem 3      Assume the setup of Theorem 2 with A C &*.  Then  Tp^o = ^ X 

{sum of eigenvalues of thekxk matrix VP(-V))
T
 VP(*o)}> where wk = surface area of the 

r        tiii ^ *yir f 
hypersphere {v : ||v||* = 1} = j^y. 
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Proof.:    Since TpXo(v) = Vp(\0)v,  ||TpAo(r)||
2 = vT Av with A(kxk) = 

VP(*o)T VP(^o)- Let ßi, ■ ■ -,ßk be the eigenvalues of A, i.e., A = PT DP where D{kxk) = 
diag{/?i,...,/3fc} and P is an orthogonal matrix.   Let u - (ui,...,Uk)T = Pv.   Then 

TpY0  =        f     (vTAv)dv=   J2{ßi       f      ufdu}.   Clearly, S =       /      u2 du is 
{ll*IU=i} ,=1      {INU=i} {||ti||*=i} 

independent of V, and  A; 5 =       /      { £ u?}du = wfc. This completes the proof of the 
{||tt||*=i} i=i 

theorem ■ 

Corollary 2      Suppose p(X) is univariate, i.e, />(•) : A C 3?* H-> &.  TAen 

2=1 

Proof :    Follows trivially from Theorem 3 ■ 
Remark :   It is clear that for n = 1, these two concepts of maximum and average sensitivity 
are equivalent (see Corollaries 1 and 2) D 

3.    Examples 

We look at several applications of Theorem 2 and Theorem 3 in this section. The first 
three examples evaluate the maximum sensitivity of posterior quantities, while Example 4 
examines average sensitivity. 
Example 1 : Suppose we observe X from N(6,a2), where a2 > 0 is known, and decide to 
use a N(p, r2) prior for 9. Thus, Px = N(p, r2) with A = (/i, r2)T £ ft® (0, oo). Our inter- 

est is the Bayes estimate of 8 under squared-error loss, i.e., p(fi, r) = Ex(6 \ X) = T2*f "t ^ 
To evaluate local sensitivity of p(p,r) w.r.t. a particular choice of the prior location param- 

SßP  -   T2 + <T2 
eter \i and scale parameter T, we evaluate the total derivative of p. Clearly, 4-p "2 

and frP = 'ffiffi, thus, by CoroUary 1, \\TpM\\ = fa ^1 + *p^f ■ Notice 

that the local sensitivity index ||1>(^T)|| decreases as \X - p\ decreases and/or as r in- 
creases (subject tor > a). Thus, for this particular example, our evaluation of ||T/>(M>T)|| 
mathematically justifies the popular belief that if the center of the prior matches with that 
of the likelihood and/or if the prior has a flat tail, then (generally) posterior robustness 
(w.r.t. the prior) is achieved D 

Example 2 : Let X be observed from N(0,l), and the user or a finite elicitation pro- 
cess specifies the prior median and quartiles of 6 at 0 and ± 1 respectively. Several 
distributions satisfy these requirements (see Basu and DasGupta (1992)). For compar- 
ison, we only consider the sharp tailed irn(p.,T2) = jV(/z,r2) with p. = 0, r = 1.48, 
and the flat tailed 7rc(/i,r2) = Cauchy(^,r2) with /x = 0,r = 1. However, the spec- 
ifications of median = 0 and quartiles = ± 1 often can not be taken as exactly accu- 
rate. We thus consider the local sensitivity of the specification p — 0,r = 1.48 in 
the class of all N(p, r2) priors, and compare it with the sensitivity of the specification 
p, = 0,r = 1 in the class of all Cauchy(/x,r2) priors. Let pn(p,T2) and pc(p,r2) de- 
note the posterior means w.r.t. 7rn(//,r2) and xc(/z,r2) respectively. The local sensitiv- 
ity in the Normal class, i.e., ||Tp^=0r=1 4g)||, can be easily found from the calculations 
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done in Example 1. Let pc(fi,T2) = ^jg^J, where N
C
(»,T

2
) = /^(0)TT

C
(%, r2) <f0, 

Dc(fi,r2) = j£(d)Tc(0\n,T2)de, and 1(6) is'the appropriate likelihood. Nc{fi,T2) is diffi- 
cult to compute analytically. However, it is easy to check that the condition for interchange 
of derivative and integral is satisfied, i.e., /- NC

(H,T
2
) - f 0£(6)[-£--Kc(6\[i,T2)]d6. Sim- 

ilar result holds for £c(/i,r2). Now, ^pc(fi,r2) = ^^! {Dc(n,r2) £ N%fx,r2) - 

N
C

(/J., T2) j^ Z?c(//, T2)}, and each term in the above expression involves a simple numerical 

integration. Same is true for f^ pc(p,,T2). Thus, ||Tp^_0T_jJ| can be obtained with little 
numerical work. 

Table 1: ||7>|| for #(0,2.19) and Cauchy(0,1) priors 
X 0.5        1.0        1.5       2.0       2.5       3.0       3.5       4.0 

\\TP
n\\ 

\\Tpc\\ 
0.346    0.428    0.537    0.661    0.792    0.927    1.065    1.205 
0.481    0.497    0.512    0.511    0.476    0.402    0.309    0.225 

Table 1 shows the values of \\Tp^ß=lT=148^\\ and ||I>(M=0)T=1)|| for different values of 
X. As can be seen, the value of ||Tpn|| increases with X, and is large for X > 2.5, whereas 
||Tpc|| fluctuates very little. Thus, misspecification of the prior parameters results in much 
less sensitivity for the heavy tailed Cauchy prior than for the sharp tailed Normal prior 
(especially when the the center of the prior and the likelihood do not match), which again 
agrees with prevalent beliefs   D 

Example 3 : Consider a standard linear model setup : Y ~ Nm (X@, E). Here, Y is 
an observed vector, XmXk is a known design matrix, E is a known positive definite matrix, 
and @kxl is an unknown parameter vector. Under the Bayesian paradigm, we assume a 
Nk (#, T) prior for §. It is well known that in this setup, the posterior mean for § is 
§* = [T~l + XTJ:-1X}-1[T-1

li + XTE-1Xb], where b = [XTE"1 X]"1 XTE"1 Y is 
the generalized least square estimate (or rule) of §. For notational simplicity, we denote 
XT E_1 X by A from now on. However, specification of the prior parameters (i and T is 
again of concern.   First, we assume T is exactly known, and find the local sensitivity of 

§* w.r.t.   misspecifications of y.   Clearly, [^-]*x* = [r-1 + A]'1^1, thus ||T0*||2 = 

maximum eigenvalue of [r-1 + A]-1 T~l r_1[r~1 + A]'1. Surprisingly, this local sensitivity 
\\T§* || does not depend on # or on the observed value of Y. 

We next assume that [j, is correctly specified and examine the sensitivity of §* to mis- 
specifications of T. In particular, we presume that T has a equicorrelated structure, i.e., 
T = cr{(l - r)I+ r\ 1T}, thus specification of T requires specifying the variance term a and 
the correlation term r (The following calculations can also be done for a general positive def- 
inite T, but with increased complexity). For ease in calculations, we write T = r{I-\-p 1 1r}, 

thus r = cr(l - r), p = ^, and F_1 = \[I - jf^ 1 1 T]. Calculation of -^- and -f-, how- 
ever, requires use of matrix derivatives. In particular, we need : (i) if V and W (both matri- 
ces) are functions of a matrix Umxn, then ^gn. _ (jjV) (W®In) + (V®Im) (%-), and («) 

if V is invertible, then ^^ = -(F_1 ®Im) (%) (F-1 ®/„). Here, ® denotes a Kronecker 
product and, for VpXq, UmXn, {%]mpxnq = V®-gj where -£j is a matrix of derivative oper- 
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ators [j^-]mxn (see MacRae (1974), Polasek (1985) for more on matrix derivatives). Using 

these formulae, we find ^r = i[r-1+A]-1r-1{[r-1+>l]-1[r-1/i + >l S]-tf} a*d %-= 
{1 + lp)iT [T-1-+A]-111T {[T^+A]-1 [r-V + Ab]- #}. Going back to our original param- 

eters, we have Vg*(a,r) = [J^yW = [$rfkx2[%$)ixi = [^,^] (^ 1/(1_;»). 

Moreover, ||T/?? J|2 = maximum eigenvalue of [v^*]T [V§*]- Notice that the matrix on 
the r.h.s is only 2 X 2, so that the maximum eigenvalue can be found easily. 

For example, suppose we consider a simple linear regression model : Y{ = ßo + ß\ X{ + 
£;, i = 1,.. .,m, where £,-'s are i.i.d. N(0,1) and |a;,-| < 1. Using an optimal design strategy, 
we take 10 observations at a:,- = 1 and 10 at X{ = —1. Thus, m = 20, k — 2, S = I, and 
XT X = 201. In this setup, ||T/0 = 1 + 20g

1
(1_ir|). Notice, we did not require to specify 

either Y or ji to evaluate ||r/?* ||. Moreover, ||T/3?,|| decreases, i.e., g* becomes less sensi- 

tive to specification of JJ, as the variance term a increases and/or as the correlation r gets 
close to 0. Evaluation of ||T/??   J|, however, requires us to know JJ,, and Y, or equivalently, 

the least square estimate b. We specify y = (0,0)T, and evaluate \\T@1 J| in Table 2 for 

three different values of 6, namely, b — (l,l)r,(1,3)T, and (3,3)T. From Table 2, we see 
that §* becomes less sensitive to specifications of (<r, r) as a increases and/or r gets close to 
0. However, positive and negative r values have different effects. Also, [3* is less sensitive 
to (a, r) for b = (1,1)T (which is close to the prior specification jW = (0,0)T) than for other 
values of b   D 

Example 4 (Example 3 continued) :      As before, consider a linear model setup :   Y ~ 

Table 2:   \\T@1   J|  for different values of b, a and r 

a = 1 a = 2 
r -.75 -.5 0 .5 .75 -.75 -.5 0 .5 .75 

b = (l,l)r .22 .13 .09 .27 .30 .08 .04 .04 .14 .15 
b = (1,3)T .44 .26 .18 .58 .99 .16 .09 .08 .30 .56 
b = (3,3)r .66 .38 .27 .81 .90 .25 .13 .11 .41 .46 

Nm {X§, E) with §kxl ~ Nk (#, T). When T is known and we focus on the average sen- 

sitivity of §* (the posterior mean of /?) to specification of #, we have :  T§*   =  ^ x 

{sum of eigenvalues of pT"1 + A]"1 T"1 r-1^1 + A}'1 }, where A = XTY1~
1X. If # is 

correctly specified, and we want to evaluate the average sensitivity of §* w.r.t. a and r 
(where T = a{{\ - r)I + r 1 1T}), then T@*,T, = irx {sum of eigenvalues of 

[VtT(<r,r)]T[V(T(<T,r)] } (see Example 3). 
In particular, if we consider the specific example : m = 20, k = 2, £ = /, and XT X = 

20 I, then T@^ = ?rx{[1 +20^(1+ r)P + [1 + 20tT
1

(1_r)p}. Notice, T§* increases as a decreases. 

It also increases as \r\ increases. For y = (0,0)T, we also evaluated T@f ,, and plotted it 
against r for different values of b (the least square estimate of @) and a (plot not shown). 
These plots showed that the average sensitivity decreases with increase of a. However, 
the effect of r was somewhat surprising,     T§*,    ,   (for fixed b and a) did not attain its 
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minimum at r = 0 as was expected  □ 

4.    Nonparametric classes 
An important issue in prior elicitation is that a parametric functional form of the prior is 
generally hard to determine. Recent attention in robust Bayesian analysis is thus more fo- 
cused towards nonparametric prior classes. Our technique of computing the total derivative 
to quantify the sensitivity of p(P) fails here, since the relevant domain of p(P) is no longer a 
Euclidean space, but a general polish space M of all probability measures on 0. Thus, the 
notion of functional derivatives, in particular, Frechet derivatives enters the picture. Diaco- 
nis and Freedman (1986), and Ruggeri and Wasserman (1990) quantified the local sensitivity 
of a posterior quantity />(P) by computing the norm of its Frechet derivative over the class 
of all signed measures or its appropriate subclasses. Srinivasan and Truszczynska (1990) 
used Frechet derivatives to approximate ranges of posterior quantities. 

Frechet derivatives are defined on normed linear spaces, or more generally, on topological 
vector spaces. However, the posterior quantity p(P) is defined on M which is convex, but 
not linear. Thus p has to be artificially extended to the linear space of all signed measures 
A before the notion of Frechet differentiability could be applied to p. 

A different line of attack was proposed by Huber (1981) and others who generalized the 
definition of Frechet derivatives to encompass the case when p is defined only on M. We 
find this approach more natural from a statistical viewpoint. This generalized definition, 
however, comes with a price since we can not use strong theorems which are available for 
Frechet derivatives on vector spaces. In our current ongoing work, we have established 
(Huber's) Frechet differentiability of ratio-linear posterior quantities. We have also argued 
that since M is only convex, a direct maximization of the Frechet derivative is more intuitive 
rather than treating M as a subspace of the linear space A and computing the norm of 
the Frechet derivative over M. We are in the process of developing methods for computing 
this maximum over different subclasses of M. 

Acknowledgement :    The authors thank Benny Cheng for suggesting an improvement 
in the proof of Theorem 3. 
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TREE-STRUCTURED CLUSTERING VIA THE MINIMUM CROSS 
ENTROPY PRINCIPLE 

David Miller and Kenneth Rose 
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ABSTRACT. We propose a new interdisciplinary approach to the tree-structured clustering prob- 
lem, wherein structural constraints are imposed in order to reduce the classification search complex- 
ity of the resulting statistical classifier. Most known methods are greedy and optimize nodes of the 
tree one at a time to minimize a local cost. By constrast, we develop a joint optimization method, 
derived based on information-theoretic principles and closely related to known methods in statistical 
physics. The approach is inspired by the deterministic annealing method for unstructured cluster- 
ing, which was based on maximum entropy inference. The new approach is based on the principle 
of minimum cross entropy, using informative priors to approximate the unstructured clustering so- 
lution while imposing the structural constraint. As in the original deterministic annealing method, 
the number of distinct representatives (and hence the tree) grows in a non-heuristic fashion by a 
sequence of phase transitions which occur so as to optimize the effective free energy cost. Examples 
demonstrate considerable improvement over known methods. 

1    Introduction 

The problem of clustering involves the partitioning of data into groups or clusters in order 
to maximize the homogeneity within each group, and to also maximize the discrimination 
between groups. For a review of the clustering problem, see [1] and [2]. The impact of the 
basic problem extends over a variety of disciplines, with important applications in pattern 
recognition, data compression, statistics, image analysis, as well as other fields. In pattern 
recognition, clustering is often posed directly as the problem of choosing a partition of the 
training set so as to minimize a cost function. The minimum cost partition is then used as 
a classifier for the feature space. The most widely used clustering objective is the sum of 
squared distances 

where Cj is the jth cluster with representative (mean) x/j and x an element of the training 
set. The standard approaches to optimizing this cost function are the Isodata algorithm [3] 
and its sequential relative, the K-means algorithm [4]. Related approaches have also been 
derived for fuzzy clustering [5, 6]. Since most important cost functions are non-convex, 
clustering is a hard optimization problem and conventional descent methods (like Isodata) 
produce solutions that are highly dependent on the initialization. 

While minimizing D is the primary clustering objective, an important concern, espe- 
cially for problems involving numerous natural clusters and high dimensional spaces, is 
the classification complexity of the resulting classifier.   In the pattern recognition field, 
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classification complexity is an important concern which has led to methods for designing 
reduced-complexity trees for purposes of classification and regression, see e.g. [7, 8]. In the 
data compression community, the pervasiveness of the complexity problem is also evident 
from research devoted to designing structured quantizers, see e.g. [9, 10]. Unlike the un- 
structured problem, in the case of tree-structured clustering there are no known methods 
guaranteeing convergence to even a locally optimal solution. The standard approaches are 
greedy procedures which build a tree one node at a time by minimizing a local, heuristic 
cost. Even for relatively simple clustering problems these methods may fail. Thus, there is 
strong motivation to develop improved structured clustering methods and this is the focus of 
our paper. Our method is inspired by-the deterministic anneabng method (DA) [11, 12] for 
the unstructured clustering problem. Therefore, before addressing the structured problem 
we will review DA. 

2    Deterministic Annealing 

An important class of algorithms for solving hard optimization problems was inspired by 
annealing processes in chemistry and physics. The stochastic, simulated annealing algo- 
rithm has been applied to a variety of challenging problems with much success, though at 
high computational cost. In order to reduce the computational burden, deterministic ap- 
proximations to simulated annealing have been suggested within several different contexts 
[13, 14, 15]. In [12], a deterministic annealing approach to clustering (DA) was derived 
within information theory, but with analogy to statistical physics. The method is inde- 
pendent of initialization and generates a sequence of solutions corresponding to distinct 
temperature scales. By direct analogy to the chemical process, an effective free energy is 
minimized, starting from high temperature for which the energy cost is convex. As the 
temperature is lowered, the solution is tracked to avoid local minima inherent in the cost 
function. In the limit of low temperature, the energy function converges to the desired non- 
convex cost and the solution forms a "hard partitioning" of the data space. The method has 
been demonstrated to obtain significant improvement over conventional clustering meth- 
ods, both within pattern recognition [16] and the data compression field [11]. Recently, 
the method has been given a more fundamental interpretation within rate-distortion the- 
ory, and an algorithm based on DA has been suggested as a practical alternative to the 
Blahut algorithm for rate-distortion function computation [17]. Moreover, the DA approach 
has also been generalized to attack a larger class of optimization problems by adding con- 
straints on the cluster representatives [18]. Here, we briefly review the basic method and 
its derivation. 

Even if one is interested in a "hard" (i.e. non-fuzzy) clustering solution, still it may 
be useful within the context of an optimization method to consider points associated in 
probability with clusters. In deterministic annealing, no underlying assumptions are made 
about the data distribution. In order to obtain a set of association probabilities relating 
representatives and data points given no prior knowledge, our best recourse is to invoke the 
principle of maximum entropy. In [19], Jaynes gives a strong argument that, in some sense, 
the maximum entropy distribution is most probable - i.e., it is the distribution which ex- 
plains the data set and the system constraints in an overwhelmingly greater number of ways 
than any other distribution. If we can assume the representatives' set Y = {yj} is given, 
then we seek the set of association probabilities P[x G Cj] satisfying some average cluster- 
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ing distortion constraint. Here, x G Cj means that data point x belongs to representative 
jf. Applying the principle of maximum entropy, for each data point we optimize 

max{-^P[x£ Cj]logP[x G Cj]} (2) 
3 

subject to 
<Dx>=YtP[x£Ci]d{x,yi). (3) 

3 

In (3), d(-,-) is a specified distance measure. The optimization problem specified by (2) 
and (3) assumes that the association probabilities for distinct data points are independent. 
The solution is the Gibbs distribution 

e-0d(x,yj) 

'[*e^ = s7*ra" (4) 

k 

where the denominator is a partition function from statistical physics. The Lagrange multi- 
plier ß which determines < Dx > can be interpreted as an inverse temperature, controlling 
the degree of fuzziness of the probability distribution, i.e., the amount of influence distant 
data points have on the representatives. At ß = 0, all codevectors are equally associ- 
ated with the data set, while for large /?, the P[x G Cj] become "hard" 0-1 associations, 
specifying a nearest neighbor partition. 

While we have obtained association probabilities given a fixed set of representatives, 
the more interesting problem involves optimization of both the representatives' set and 
associations. Therefore, we will consider the system composed of the representatives' set 
Y = {yj}, the data set X = {x,}, and the specification of a "hard" partition V = {vij}. 
The {vij} are defined by 

v.. = f 1   XxiZCj 
13     I  0   otherwise. 

The clustering distortion associated with this partitioning is 

D(Y.y) = Y2Y,viAxi,y:)- (5) 
*       3 

The pair (Y, V) determines a particular instance of a solution and the probability of this 
instance is represented by the joint distribution P\Y, V]. We seek the maximum entropy dis- 
tribution over all deterministic "hard" clustering solutions subject to an expected distortion 
constraint, i.e. 

max{-]TP[Y,V]log/>[y,V]} (6) 
Y,V 

subject to 
<D>=Y,P[Y,V]D(Y,V). (7) 

Y,V 

Applying the method of Lagrange multipliers, we again obtain a Gibbs distribution 

e-ßD(Y,v) 

Y' V 
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Maximizing P[Y,V] is equivalent to minimizing the argument ßD(Y,V) with respect to 
Y and V. For cardinalities \Y\ and \X\ reasonably large, this minimization is clearly not 
practical. Alternatively, since \Y\ is almost always much smaller than |A'|, it may be 
a practical objective to find the most probable set of representatives by considering the 
corresponding marginal P[Y], found by summing over the set V: 

m - ^Pj. (9) 
Y> 

The numerator is the partition function associated with a particular Y, 

Z(Y) = J^e-WW) = my*^. (10) 
V x    j 

and the denominator is the partition function comprising all solution instances. Equation 
(9) can be re-written as the Gibbs distribution 

e-ßF(Y) 
PW=j2e-ßF{YV (") 

Y> 

by defining 

F(Y) = -^logZ(Y) = -^logJ2^ßd{x'yi)- (12) 
X j 

Therefore, maximizing P[Y] is equivalent to minimizing the energy ßF(Y). This F(Y) is 
the free energy in the physical analogy, minimized at isothermal equilibrium. The set Y 
which minimizes the free energy satisfies the centroid rule 

E^seC,-]—<*(*,%) = 0, (13) 

where P[x € Cj] was defined earlier in (4). Note that (13) really specifies a set of scalar 
equations, one for each component direction, since y, is a vector. At ß = 0, the associations 
P[x £ Cj] are the same for all data points and all representatives, and there is a unique 
global minimum solution with all representatives lying at the global centroid of the data set. 
Effectively, at ß = 0, there is one natural cluster - i.e., one distinct cluster representative. As 
ß increases, the emphasis on minimizing distortion increases, prompting phase transitions 
and cluster splits. For the sum of squared distances measure, it is shown in [12] that the 
first phase transition is initiated at ß satisfying 

det[I-2ßeRX3!] = 0, (14) 

where Rxx is the covariance matrix of the data set. Thus, the critical temperature is 
determined by the variance along the largest principal axis of the distribution. Subsequent 
phase transitions are initiated in a similar way, dependent on the covariance matrix of the 
data "owned" by the natural cluster undergoing the split. The amount of cluster splitting is 
only bmited by the number of representatives assumed by the system as the temperature is 
decreased to zero. At zero temperature, the free energy is the "hard" clustering distortion 
and the algorithm becomes equivalent to known descent methods. 
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3    A Structured Clustering Formulation 

A tree- structured solution can be represented symbolically by a tree diagram, shown for 
a simple binary tree of depth two in Figure 1. The test vectors {sj} at the non-leaf nodes 

"oo    ->bi ->io Yn 

Figure 1: A tree diagram for a binary tree of depth two. 

in the tree are used to specify the hierarchical partitioning of the data space and the {yjk} 
at the leaf nodes are the cluster representatives. Here, the index j refers to a node in the 
first layer and index it refers to a sibling at the leaf layer. In this example, the non-leaf 
nodes determine a nearest neighbor partition via the equation d(x,s0) = d(x,Si), cutting 
the input space in half based on the dissimilarity ("distance") measure d(-,-)- The leaf 

layer, based on the preceding, higher level's decision boundary, further partitions the input 
space into four regions whose cluster representatives are the vectors {yjk}- 

To make the tree-structured clustering problem mathematically precise, the problem can 
be posed as the optimization of the hierarchy {SJ} and the representatives at the leaf layer 
{yjk} to minimize a well-defined cost objective such as D in (1). One greedy approach for 
tree-structured clustering popular in both the data compression and pattern recognition 
literature is the splitting method, e.g. [20, 10]. While a number of variants of splitting 
exist, the basic approach involves the successive application of a clustering algorithm such 
as basic Isodata to hierarchically partitioned data subsets. In [21], a simple example was 
used to illustrate the potential shortcomings of splitting and a crude heuristic method was 
proposed for improving tree-structured solutions. The basic idea was to re-optimize the 
hierarchy to better agree with nearest neighbor (i.e., minimum risk) ownership at the leaf 
layer. Here, we will derive a more general approach inspired by the deterministic annealing 
algorithm for unstructured clustering. The structured clustering approach is developed 
in two parts, analogous to the two optimization steps in basic Isodata (i.e., the nearest 
neighbor and centroid rules). We first consider optimization of the leaf layer given a fixed 
hierarchy and then consider optimization of the hierarchy given fixed leaves. The structure 
(e.g., balanced) and size of the tree (i.e., number of leaves) are fixed in this derivation. 

3.1    OPTIMIZATION OF THE LEAF LAYER 

For the unstructured problem, no prior knowledge existed other than that embodied in 
the clustering distortion constraint.   Accordingly, we invoked the principle of maximum 
entropy. By contrast,'in the structured case there is a significant constraint imposed on the 
solution which does not appear to readily conform to the maximum entropy framework. 
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The principle of minimum cross entropy, though, is a generalization of the Maxent principle 
to include priors. In [22], it it shown that the principle of minimum cross entropy is 
the consistent principle of inference given new information. Here, we apply the principle 
to tree-structured clustering. Accordingly, we seek to express the structural constraint 
as an informative prior probability distribution which influences the leaf codevector/data 
association probabilities. Define this prior as the probability of association PH[X G SJ] 

where Sj is the set of all points classified to node j in the layer of the tree directly above 
(i.e., the parent layer of) the leaves. Analogous to the unstructured DA formulation, we 
seek the probabilities of association PL[x G Cjk] between leaf representatives yjk and the 
data samples. By minimum cross entropy inference, we pose the problem 

minEE^[^Cifc]log-§i^l 

subject to 

mxeSA/K) (15) 

< Dx >=EE^ € Sj}d(x,y]k). (16) 
j    A.- 

Here, the prior at the parent node is assumed equally split between all K of its descendants 
at the leaves (justifiable by the principle of maximum entropy). The solution is the so-called 
"tilted" distribution, i.e. 

_    PH[x G Sj]e-W*») 
fL[x e t,k] - E PH[X g Si]e_ßd{Xtyim) ■ (17) 

Im 

As in the unstructured case, the Lagrange multiplier ß determines the average level of 
clustering distortion < Dx >. It also has its usual interpretation as an inverse "tempera- 
ture" influencing the degree of fuzziness of the distribution. For {PH[X G SJ]} uniform and 
ß = 0, the association probabilities are uniform over all partition regions Cjk- At the other 
extreme, if {PH[X G Sj]} specifies a "hard" classifier with a tree structure then, as ß —>• oo, 
{-PL[-]} specifies a tree-structured partition associated with a "hard" clustering solution. 
Moreover, for PH[-] uniform, the associations revert to the unstructured DA associations 
of (4), as we expect. We note in passing that the distribution PL[x G Cjk] can also be 
given a Bayesian interpretation as the posterior p[C'jfc|a:], where {PH[-]} is the prior and 
e-ßd(x,yjk) js proportional to the density p[x\Cjk]. The partition function associated with a 
single datum is the denominator of (17). Assuming datum independence, the total partition 
function is then the product 

z' = IK = n£^[* e 5,]5>-M*'«»> (18) 
X X I 771 

Correspondingly, the free energy is 

F' = --UogZ' = ~Y,\og"£PH{x G SA'Ee-W**"»). (19) 

Note that if {PH[-]} specifies a "hard" tree-structured partition, then for ß -* oo the free 
energy is equivalent to the tree-structured clustering distortion. Thus, as in the unstruc- 
tured method, optimization of the representatives is realized by an annealing approach, 
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minimizing F' starting from high temperature (small ß) and tracking the solution while 
gradually lowering the temperature.  The condition for optimizing the free energy at any 
temperature is 

i)F' 
JT~ = 0, Vj,fc, (20) 
oyjk 

or the centroid rule 

J2 Pd* 6 Cjk]-—d(x, yjk) = 0, Vj, Ar. (21) 
x °y^k 

For the squared distances measure, we may write 

ZxPL[xeCjk] 

yjk~  Eft,[«€Cifc]' 
X 

which must be iterated until a fixed point is reached. 

(22) 

3.2 OPTIMIZATION OF THE HIERARCHY 

While the centroid rule is a descent step in the clustering distortion D in both the unstruc- 
tured and structured clustering cases, there is no direct analogue of the nearest neighbor 
paritioning rule for structured clustering. In fact, the optimal tree-structured partitioning 
given fixed leaves is obtained by solving a challenging risk minimization problem, see e.g. 
[1], involving joint optimization over the tree. Rather than view the problem in this way, 
the conventional approaches such as the method in [10] optimize nodes of the hierarchy 
one at a time and to minimize local, heuristic cost functions which often poorly reflect 
the minimum risk objective. While directly finding an optimal partition is a formidable 
goal, there is a practical paradigm which is closely related and which leads to significant 
improvement over the conventional greedy methods. 

We will consider the simple case of a two layer binary tree and note that the derivation 
is extended to more general tree structures in [23]. For the optimization over the leaves, 
the prior knowledge was in the form of a prior distribution over the fixed hierarchy. Now, 
likewise, we interpret fixing the leaf layer to mean specification of an ideal prior distribution 
over the leaves, Pj[x G Cjk]- The goal of the hierarchy is to produce correct (i.e., minimum 
risk) classification to the leaf layer. Within the probabilistic framework, the hierarchy 
should be chosen so as to produce a distribution which approximates the ideal prior over 
the leaves as closely as possible within the imposed, structural constraints. We need to 
choose a form for the hierarchical probabilities which embodies the structural constraint 
and we need to specify the ideal prior. For the simple two layer binary tree, if squared 
distance is used in the first layer, then the "hard" structured non-leaf partition is simply a 
hyperplane. Thus, we seek a parametrization of PH[X £ Sj] consistent with a hyperplane 
decision boundary as the probabilities become "hard". A reasonable choice, justified by the 
principle of maximum entropy, is the Gibbs distribution 

e-ld(x,sj) 
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which for 7 — oo determines a hyperplane partition. Here, s] denotes the sibling node of*,-. 
The parameters Sj,sej, and 7 should be chosen in order to agree as closely as possible with 
Pj[x E Cjk]. Now, we must specify the prior. Some inspiration is gained by noting that 
given fixed leaf representatives, the optimal partition is just the nearest neighbor partition 
induced by the leaf representatives. Within our probabilistic annealing framework, given 
the "temperature" /?, the corresponding optimal (unstructured) prior distribution is the 
maximum entropy distribution over the leaves, i.e. 

e-ßd(x,yjk) 
p*x e W = Ee-ß**my (24) 

Summing over leaf siblings, the prior over the parent layer is 

Pi[*eSj] = 1£pJ[xecik]. (25) 
k 

To minimize the distance between distributions we again appeal to the principle of minimum 
cross entropy and pose the problem 

minJMs})^^^Pl[xeSj}log^Jl^l. (26) 

Taking the gradient with respect to a test vector we obtain 

V,.J = J^(x - Sj){Pj[x £ 5,-](l - PH[x £ Sj]) - (1 - />/[* G Sj])Pn[x G Sj]}.       (27) 
X 

This simple rule suggests that moving a test vector in the negative gradient direction implies 
"pulling" the test vector toward all points that "should be" in Sj (i.e., those points with large 
P][-}) but which "are not" currently in Sj (i.e., those points with small PH[-]). Similarly, the 
test vector is -'pushed away" from all points that "should not be" in Sj but which currently 
"are" in Sj. The optimization over the scale parameter 7 tries to match the degree of 

fuzziness in the hierarchical probabilities with that of the prior probabilities. Note that in 
the limit as both sets of probabilities become "hard", the gradient realizes a batch version 
of the Perceptron weight update rule. Although the Perceptron does not converge for 
non-separable classes, a convergent method results so long as the probabilities retain some 
diminishing degree of fuzziness. Thus, we note that the invocation of a principle of inference 
from information theory designed to incorporate prior knowledge leads to a probabilistic 
generalization of a well-known supervised learning rule. Accordingly, we.can view the prior 
distribution ?/[•] as a "supervising" distribution. 

When generalized to trees of any depth and node branching factor, a similar, intuitive 
interpretation results for optimization of the structured hierarchy. In the general case, 
any non-leaf test vector is moved towards all points its descendants at the leaves "own"' 
in a nearest neighbor sense (via the Pj[-}) but which it currently does not "own" via its 
structured decision boundary. Likewise, the test vector is moved away from all points that 
its descendants at the leaves do not "own" but which it currently "owns" with its structured 
boundary. 

We can now summarize our annealing approach for tree-structured clustering. It is 
listed in pseudo-code in Table I. 
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Initialize the test vectors and leaf vectors to the global centroid of the data set. 
Initialize ß and the scale parameters to small values, 
do { 

do { 
Minimize the free energy F'(Y) of (19) to obtain new leaves. 
Minimize the cross entropy of (26) to obtain a new hierarchy. 

} while not converged 
Increase ß. 

} while ß < ßmax 

Table 1: A summary of the basic tree-structured DA method. 

3.3    PHASE TRANSITIONS AND TREE GROWTH 

A limitation of the method discussed heretofore is the assumption that the structure of the 
clustering solution is fixed. Even if (as we have assumed thus far) the representatives' set 
is of fixed size, the best tree-structured clustering solution of given size and given maximal 
depth will have an a priori unknown structure - in particular, it is unlikely to be a balanced 
tree. Optimal unbalanced trees may approach the performance of unstructured clustering, 
and often with a negligible increase in classification search. The standard methods for 
tree growing use the splitting algorithm in conjunction with heuristic decision rules which 
determine the order of node splitting, see e.g. [24]. These trees are then typically pruned 
in an optimal fashion by the method in [25, 7] to achieve the best cost/complexity tradeoff 
given the initial tree. While these methods do obtain performance gains over balanced tree 
design, their greedy nature is a potential source of sub-optimality. Thus, we are motivated 
to seek an extension of our basic approach for designing unbalanced trees of a prior unknown 
structure. 

Let us briefly consider the phase transitions in the process. It was shown in [12] for 
the basic unstructured DA method that the number of representatives grows by a sequence 
of phase transitions in the process, with the first transition along the principal data axis. 
The critical temperature for this transition, assuming the squared distance measure, is 
ßc = JJ^— where \max is the associated maximum eigenvalue. It is easily seen (by noting 
that the PH[-] are initially uniform and hence F' = F before the first phase transition) that 
this condition for the first phase transition is the same for the tree-structured clustering 
case. Moreover, a general condition for all growing phase transitions can also be derived; 
see [23, 17]. For the tree-structured case, this condition can be written as 

(2/?ä£ - I)yjk = 0, (28) 

where Rxz is the sample covariance matrix for codevector yjk based on the distribution 
Pl\x € Cjk]. This is just an eigenvalue equation with solution first occurring for 

ßcrit = ^—. (29) 

Thus, our condition for all phase transitions in the process is a probabilistic generalization 
of the rule for the first phase transition. We note that in [26], a heuristic for splitting along 
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the principle axis was suggested but only in the usual context of greedy growing where the 
splits determine both leaf and non-leaf nodes. By contrast, our condition is only for the 
leaf representatives. Our method for growing unbalanced trees determines structure directly 
based on the phase transitions in the process. So long as the size of the tree is not limited 
a priori, the natural tree structure (i.e., the natural number of distinct branches) emerges 
at each ß. Another possibility is to start from a zero layer tree with one representative and 
grow new intermediate nodes and leaves as needed, based on satisfaction of the condition 
for phase transitions. 

It is important to note here that unlike the conventional methods, tree growth in our 
method is not obtained in a greedy fashion. Rather, splits occur as a direct consequence of 
optimizing the free energy F' at critical ß and may be interpreted as phase transitions in 
the annealing process. Thus, we suggest that an optimal or a near optimal tree-structured 
clustering solution of fixed number of leaves and given maximal depth is obtained directly 
from tree growing via our method, without considering subsequent pruning. 

4    Results 

Here we present a few examples of our method, demonstrating the performance in com- 
parison with the conventional splitting algorithm [10], and demonstrating the tree growth 
via phase transitions. The data for Figure 2 is generated by randomly sampling from a 
normal mixture distribution with eight components. An X in the figures denotes an actual 
mixture center and an 0 denotes a cluster representative. The cost D is the sum of squared 
distances. Figure 2a shows the performance of the splitting algorithm, which cuts through 
one natural cluster with its highest level decision boundary and fails to distinguish three 
natural clusters towards the left of the figure. In the splitting method, the non-leaf test 
vectors are suboptimally chosen to minimize their distortion on the data set, rather than 
being chosen to minimize the risk associated with classification of data to the leaf layer. 
Our structured DA solution is shown in Figure 2b and obtains considerable improvement, 
distinguishing all natural clusters and incurring a much smaller sum of squared distances 
cost. 

In Figure 3 we show an "evolution" of solutions corresponding to tree growing in our 
method. The curved partitions are equiprobable contours, denoting membership probability 
above a threshold p within a given cluster. In Figure 3a and 3g, p = 0.5 (i.e, the "hard" 
partition is shown) while p = 0.33 in all other figures to demonstrate the probabilistic 
associations obtained by our method. The number of distinct cluster representatives grows 
in Figure 3 by a sequence of phase transitions, which occur in a non-heuristic fashion so as to 
directly optimize the free energy cost and determine the structure of the tree. The method 
can be used to search for the optimal "hard" tree-structured solution of given size by fixing 
the number of representatives and lowering the temperature toward zero. Alternatively the 
hierarchy of probabiUstic solutions at intermediate temperatures is potentially useful for 
exploratory data analysis and for exploring issues of clustering validity. 

We note that a more comprehensive description of the method and results can be found 
in [23]. There, we found that our method consistently outperformed conventional tree- 
structured clustering methods. Moreover, despite its structural handicap, our method also 
outperformed conventional unstructured clustering methods such as basic Isodata as well. 
For complex data distributions, there are numerous local minima to trap conventional 
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Figure 2: An example involving a mixture of eight normal distributions, a) The splitting 
solution with D=0.73. b) The tree-structured DA solution with D=0.50. 
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Figure 3: A hierarchy of tree-structured solutions generated by unbalanced tree g growing. 
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descent-based methods and even the best of numerous solutions based on random initial- 
ization within the data may be suboptimal relative to our method. 

5     Conclusions 

In this paper ,we have extended the deterministic annealing approach to address the problem 
of structurally constrained clustering. Whereas the original approach was developed using 
the principle of maximum entropy, the new method is based on minimum cross entropy 
inference, which is a convenient "language" for expressing the joint objectives of enforcing 
a tree-structured solution and approximating the optimal (unstructured) solution. Our 
method improves upon the conventional tree-structured methods in several important re- 
spects. We consider a joint optimization over the hierarchy to minimize a cost objective 
closely related to risk minimization. Moreover, we "imbed" the problem within a probabilis- 
tic annealing framework to avoid local optima of the cost. One outgrowth of our method is a 
probabilistic generalization of the Perceptron algorithm and its connection with minimum 
cross entropy inference. Our basic approach is shown to obtain significant improvement 
over the conventional splitting method. We then discussed a more general unbalanced tree 
growing method, for which tree growth is non-heuristic and occurs via phase transitions 
in the annealing process which occur so as to directly optimize the effective free energy 
cost. This method was proposed to search for the optimal tree-structured solution of given 
cluster size and maximal depth. 
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ABSTRACT. In this paper we propose a new Bayesian estimation method to solve linear inverse 
problems in signal and image restoration and reconstruction problems which has the property to 
be scale invariant. In general, Bayesian estimators are nonlinear functions of the observed data. 
The only exception is the Gaussian case. When dealing with linear inverse problems the linearity 
is sometimes a too strong property, while scale invariance often remains a desirable property. As 
everybody knows one of the main difficulties with using the Bayesian approach in real applications 
is the assignment of the direct (prior) probability laws before applying the Bayes' rule. We discuss 
here how to choose prior laws to obtain scale invariant Bayesian estimators. In this paper we 
discuss and propose a family of generalized exponential probability distributions functions for the 
direct probabilities (the prior p(x) and the likelihood p(y\x)), for which the posterior p(x\y), and, 
consequently, the main posterior estimators are scale invariant. Among many properties, generalized 
exponentials can be considered as the maximum entropy probability distributions subject to the 
knowledge of a finite set of expectation values of some known functions. 

1.    Introduction 

We address a class of linear inverse problems arising in signal and image reconstruction and 
restoration problems which is to solve integral equations of the form: 

9ij = I /(*•') M»-')dr> + *>ij,    i,j = 1, • • •, M, (1) 
J u 

where r' £ R2, f(r') is the object (image reconstruction problems) or the original image 
(image restoration problems), gij are the measured data (the projections in image recon- 
struction or the degraded image in image restoration problems), &,-,• are the measurement 
noise samples and h{j(r') are known functions which depend only on the measurement sys- 
tem. To show the generality of this relation, we give in the following some applications we 
are interested in: 

• Image restoration: 

9(zi,yj) = JJ   f(x',y')h(xt - x',yj - y')dx'dy' + b{xt, Vj) 
i=l,---,N 

where g(x{,yj) are the observed degraded image pixels and h(x,y) is the point spread 
function (PSF) of the measurement system. 

121 

G. R. Heidbreder (ed.), Maximum Entropy and Bayesian Methods, 121-134. 
© 1996 Kluwer Academic Publishers. Printed in the Netherlands. 



122 A. MOHAMMAD-DJAFARI AND J. IDIER 

• X-ray computed tomography (CT): 

9(r» 4>j) = ff f(x, y)6(ri ~ x cos fa - y sin &) da; dy + b(n, <j>j)    , *. =_ *'"''N   , 

where g(ri, <j>j) are the projections along the axis r,- = a; cos^- - y sin <fc, having the angle 
<f>j, and which can be considered as the samples of the Radon transform (RT) of the 
object function f(x,y). 

• Fourier Synthesis in radio astronomy, in SAR imaging and in diffracted wave tomographic 
imaging systems: 

g(uj, Vj) = Jl f(x, y) exp [-J(UJX + Vjy)] dx dy + b(uj,Vj),    j = 1, • • •, M, 

where Uj = (UJ,VJ) is a radial direction and g(uj,Vj) are the samples of the complex 
valued visibility function of the sky in radio astronomy or the Fourier transform of the 
measured signal in SAR imaging. 

Other examples can be found in [6, 7, 5, 8, 9]. 
In all these applications we have to solve the following ill-posed problem: how to esti- 

mate the function f(x,y) from some finite set of measured data which may also be noisy, 
because there is no experimental measurement device, even the most elaborate, which could 
be entirely free from uncertainty, the simplest example being the finite precision of the mea- 
surements. 

The numerical solution of these equations needs a discretization procedure which can 
be done by a quadrature method. The linear system of equations resulting from the dis- 
cretization of an ill-posed problem is, in general, very ill-conditioned if not singular. So the 
problem is to find a unique and stable solution for this linear system. The general methods 
which permit us to find a unique and stable solution to an ill-posed problem by introducing 
an a priori information on the solution are called regularization . The a priori information 
can be either in a deterministic form (positivity) or in a stochastic form (some constraints 
on the probability density functions). 

When discretized, these problems can be described by the following: 

"Estimate a vector of the parameters iGR" (pixel intensities in an image for example) 
given a vector of measurements y 6 Rm (representing, for example, either degraded 
image pixel values in restoration problems or the projections values in reconstruction 
problems) and a linear transformation A relating them by: 

y = Ax + 6, (2) 

where b represents the discretization errors and the measurement noise which is sup- 
posed to be zero-mean and additive." 

In this paper we propose to use the Bayesian approach to find a regularized solution to 
this problem. Note that the Bayesian theory only gives us a framework for the formulation 
of the inverse problem, not a solution of it. The main difficulty is, in general, before the 
application of the Bayes' formula, i.e.; how to formulate appropriately the problem and 
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how to assign the direct probabilities. Keeping this fact in mind, we propose the following 
organization to this paper: In section 2. we give a brief description of the Bayesian approach 
with detailed calculations of the solution in the special case of Gaussian laws. In section 3. 
we discuss the -scale invariance property and propose a family of prior probability density 
functions (pdf) which insure this property for the solution. Finally, in section 4., we present 
some special cases and give detailed calculations for the solution. 

2.    General Bayesian approach 

A general Bayesian approach involves the following steps: 

• Assign a prior probability law p(x) to the unknown parameter to express our incomplete 
a priori information (prior beliefs) about these parameters; 

• Assign a direct probability law pyx to the measured data to express the lack of total 
precision and the inevitable existence of the measurement noise; 

• Use the Bayes' rule to calculate the posterior law p(x\y) of the unknown parameters; 

• Define a decision rule to give values x to these parameters. 

To illustrate the whole procedure, let us to consider an example; the Gaussian case. If 
we suppose that what we know about the unknown input x is its mean E{a;} = xQ and 
its covariance matrix E{(x - x0)(x - x0Y} = Rx = o\P, and what we know about the 
measurement noise 6 is also its covariance matrix E{66'} = Rb = a^I, then we can use 
the maximum entropy principle to assign: 

(3) 

(4) 

p(x\y)ccp(y\x)p(x), (5) 

and use, for example, the maximum a posteriori (MAP) estimation rule to give a solution 
to the problem, i..e.; 

£ = argmax{p(a;|y)}, (6) 

Other estimators are possible. In fact, all we want to know is started in the posterior law. 
In general, one can construct a Bayesian estimator by defining a cost (or utility) function 
C(x,x) and by minimizing its mean value 

x = arg mm {EX\Y {C{Z, a:)}} = arg mm j j C{z,x)p(x\y)dx\ . 

The two classical estimators: 

p(x) oc exp --(x-xofRx  1(x-x0) > 

and 

p(y\x) oc exp --(y-AxfR^iy-Ax) 

Now we can use the Bayes' rule to fi rid: 
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• Posterior mean (PM):     x = Ex\y {*} = I xp{x\y) dx, 

is obtained when denning C(x, x) = (x - x)\x - x), and 

• Maximum a posteriori (MAP):     x = argmax{p(a;|y)}, 

is obtained when defining C(x, x) = 1 - S(x - x). 

Now, let us go a little further inside the calculations. Replacing (3), and (4) in (5), we 
calculate the posterior law: 

,   with J(x) = {y- Ax)\y - Ax) + X(x - xo)*P-1(» ~ »o), p{x\y) oc exp -M3{x) 

where A = a2/al. The posterior is then also a Gaussian. We can now use any decision rule 
to obtain a solution.  For example the maximum a posteriori (MAP) solution is obtained 

by: 
x = argmax{p(cc|y)} = argimn {J(x)} . (7) 

Note that in this special Gaussian case both estimators, i.e.; the posterior mean (PM) and 
the MAP estimators are the same: 

x = VX\Y {*} = argmax{p(a;|y)} (8) 

and the minimization of the criterion J(x), which can also be written in the form 

J(x) = \\y- Ax\\2 + X\\x -x0\\2p, (9) 

can be considered as a regularization procedure to the inverse problem (2). Indeed, the 
Bayesian approach yields a new interpretation of the regularization parameter in terms of 
the signal to noise ratio, i.e.; A = rf/a2.. 

J(x) is a quadratic function of x. The solution x is then a linear function of the 
data y. This is due to the fact that the problem is linear and all the probability laws are 
Gaussian. In general, the Bayesian estimators are not linear functions of the observations 
y. However, we may not need that the solution be a linear function of the data y, but the 
scale invariance is the minimum property which is often needed. 

3.     Scale invariant Bayesian estimators 
What we are proposing in this paper is to study under what conditions we can obtain 
estimators which are scale invariant. Note that linearity is the combination of 

1     ~'  =$■ t/i + y2'-+ 2i + x2, 
y2 I—» X2 

and 
scale invariance:      yx >~* x\ => VA; > 0, kyx H+ kx\. 

In a linear inverse problem what is often necessary is that the solution be scale invariant. 
As we have seen in the last section, when all the probability laws are Gaussian, the Bayesian 
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estimators are linear functions of the data, so that the methods based on this assumption do 
not have to take care of the scale of the measured data. The Gaussian assumption is very 
restrictive. On the other hand, more general priors yield Bayesian estimators which are 
nonlinear functions of data, so the results of the inversion method depend on the absolute 
values of the measured data. In other words, two users of the method using two different 
scale factors would not get the same results, even rescaled: 

y —► *i —►  Estimation  —► xx 

X2     I   SEi 
k,.  r hi 

y —> h —> Estimation —► x<i 

A general nonlinear (scale variant) estimation method 

What we want to specify in this paper is a family of probability laws for which these 
estimators are scale invariant. Then the user of the inversion method can process the data 
without worrying about rescaling them to an arbitrary level and two users of the method 
at two different scales will obtain the proportional results: 

y —► 

y —' 

x1 
- kx 

h —>■ Estimation  —> xx 

X2, 
ko.   - 

k2 —►  Estimation  —> x2 

A scale invariant estimation method 

To do this let us note 

• 0, all the unknown parameters defining our measuring system (noise variance a2 and the 
prior law parameters for example), 

• Pi(^i\yi'i 0i) 3-nd pk{xk\yk; 9k), the two expressions of the posterior law for scale 1 and 
for scale k with 

xk = kx1,    yk = ky1. 

Then, what we need is the following: 

30fc = I(9i,k)\\/k> O^aji.j/!,    Pk{xk\yk\9k) = —pi{xx\yx\0i), (10) 

which means that the functional form of the posterior law remains unchanged when the 
measurement's scale is changed. Only we have to modify the parameters 9k — f{9\,k) 
which is only a function of 9X and the scale factor k. 

However, not all estimators based on this posterior will be scale invariant. The cost 
function must also have some property to obtain a scale invariant estimator. So, the main 
result of this paper can be stated in the following theorem: 

Theorem:   If 30* = f(Ouk)\Vk> 0,Vx1,y1, 

1 
pk(xk\yk;9k) = j^Pi(a*i|yi;0i), 
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then any Bayesian estimator with a cost function C(x, x) satisfying: 

C(xk,Xk) = Gfc + bkC(x1,xi), 

is a scale invariant estimator, i.e.; 

«*(y*;0*) = **i(i/i;0i). 

Proof:   In fact, it is easy to see the following: 

Xk(yk; Ok)   = arg mm | / C(zk, xk)pk(xk\yk; 0k) dxk > 

= k a.rgmm If [bkCiz^Xi) + ak]j- piixxly^e^k"1 dxx 

= kaxgmmlbkJ Cizi^ifaixite^O^dxi + ak\ 

= k arg min |y C(zx, a?i )pi (si \Vl; 0a) dxx 1 

= kxi{y^0{) 

Note the great significance of this result. Even if the estimator x(y; 6) is a nonlinear 
function of the observations y it stays scale invariant. 

Now, the task is to search for a large family of probability laws p(x) and p(y\x) in a 
manner that the posterior law p(x\y) remains scale invariant. We propose to do this search 
in the generalized exponential family for two reasons: 

• First the generalized exponential probability density functions form a very rich class, and 

• Second, they can be considered as the maximum entropy prior laws subject to a finite 
number of constraints (linear or nonlinear). 

Note also that if p(x) and p(y\x) are scale invariant then the posterior p(x\y) is also 
scale invariant and there is a symmetry for p(x) and p(y\x) so that it is only necessary 
to find the scale invariance conditions for one of them. In the following, without loss of 
generality, we consider the case where p(y\x) is Gaussian, 

p(y\x;a2)ocex-p[-x2(x,y;a2)\,    with X
2(x,y;a2) ^ ^[y - Hxfly - Hx],     (11) 

and find the conditions for p(x) to be scale invariant. We choose the generalized exponential 
pdf s for p(x), i.e.; 

p(x; A) a exp Y,>>i<t>i{x) 
i=i 

(12) 

and find the conditions on the functions <f>i(x) for which p{x) is scale invariant. 
Note that these laws can be considered as the maximum entropy prior laws if our prior 

knowledge is as follows: 

• What we know about x is: 

E{(f>i(x)} = di,    i'=l, •••,!•, 



A SCALE INVARIANT BAYESIAN METHOD 127 

• and what we know about the noise b is: 

JE{6} = 0, 
\ E{bb1} = Rb = a2I, 

where Äj, is the covariance matrix of b. 

Now, using the equations (11) and (12) and noting that 6 = (a2, Al5 • •-,Ar), that A = 
(Aj, • ••, Ar), and that <f>{x) = (^(x),- ••,(f>T(x)), we have 

p(x\y; 6) oc exp [~x2(x, y; a2) - X'^x)} , (13) 

and the scale invariance condition becomes: 

Vfc > o,Vasi,»!,   xl{xk,yk;°-k) + x\<p{xk) - xl^yx^l) + *\<Kxi) +cte- 

But with the Gaussian choice for the noise pdf we have 

v* > o,\/xuVl, Xk(*k,vk;°k) = ^2II»*--»**!!2 = 2kW k*1|yi~HxiI|2 = xi(*i,yi;ffi), 

and so the condition becomes 

VA > 0, Vx,    Xi^{xk) = A^(a?i) + c*e, (14) 

or equivalently, 

PJt(*fc;Afc) = — ^(scijAi)     with     Afc = /(Ai,fc). 

Thus, in the case of a centered Gaussian pdf for the noise, to have a scale invariant posterior 
law it is sufficient to have a scale invariant prior law. 

Now, assuming interchangeable (independent) pixels, i.e., 

p(x; A) = exp 

or equivalently, 

*o + ]T)Ai<fc(a:) 
i=i 

N 

Ibte;*)' (15) 

N 

&(*) = £&(*;)> (i6) 

we have to find the conditions on the scalar functions <f>i(x) of scalar variables x which 
satisfy the equation (14) or equivalently 

r T 

Vfc>0,Vz,    5>,-(*)&(*s) = £A.-(l)&(s) + rte. (17) 

We have shown (see appendix) that, the functions <f>i(x) which satisfy these conditions are 
all either the powers of x or the powers of In z or a multiplication of them. The general 
expressions for these functions are: 

M    /Nm-1 \ No M 

#*) = E      £  cmn(lnx)n \xam + ^2 con(lnx)n,    with M < r and  Y,Nm = r, (18) 
m=\   \ n=0 / n=0 m=0 
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where M and Nm are integer numbers, and cmn, c0n and am are real numbers. For a 
geometrical interpretation and more details see the appendix. The following examples 
show some special and interesting cases. 

One parameter laws: Consider the case of r = 1. In this case we have 

p(x;A) ocexp[-A</>(x)]. (19) 

Applying the general rule with 

r_ !__ / M = 0,No= 1, -^coo + coilnz 
\ M = 1, iV0 = 0, tfi = 1,   —► coo + c10z

Ql 

we find that the only functions who satisfy these conditions are: 

j#aOJ = jx",lnx} (20) 

where a is a real number. There are two interesting special cases: 

• <t>(x) = xa, resulting in    p(x) oc exp [-\xa], a > 0, A > 0, which is a generalized Gaus- 
sian pdf, and 

• <j>{x) = In x, resulting in    p(x) oc exp [-A In x], which is a special case of the Beta pdf. 

Note that the famous entropic prior law   p(x) a exp [-Ax In x] of Gull and Skilling [11, 4] 
does not verify the scale invariance property. But, if we add one more parameter, 

p(x) oc exp [-Ax In x + fix], 

it will then satisfy this condition as we can see in the next section. 

Two parameters laws: This is the case where r = 2 and we have 

p(x;A)cxexp[-Ac61(x)-^2(x)]. (21) 

Applying the general rule: 

' M = 2, iV0 = 0, Ni = 1, N2 = 1, —► coo + c10xai + c20x
a* 

r = 2 ^ 1   Af = 1, A^o = 0, iVj = 2, —> coo + cwxai + cuxa> In x 
|   M = 1,^0=1,^ = 1, — c00 + c10xai +c0ilnx 

M = 0,No = 2, —>c0o + coilnx + co2ln2x, 

we see that in this case the only functions (0i,<fo) which satisfy these conditions are 

|(0i(a:),&(:e))J =    Uxa\xa*),(xai,xannx),(xa\lnx),{lnx,ln2x)\ (22) 

where a\ and a2 are two real numbers. Special cases are obtained when we choose 
<f>2(x) = x. The only possible functions for <j>\{x) are then 

{a;01, In a;, a; In a;}, (23) 

and we have the following interesting cases: 
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• 0i(a:) = x2, resulting in     p(x) oc exp [~\x2 - fix] oc exp [-A (a: + ^)2] , which is a 

Gaussian pdf N f m = =£L, a2 = j^J, 

• fa(x) = lna;, resulting in    p(x) oc exp [-Am a; - //«] = aTA exp [-/xx], which is the 
Gamma pdf, and finally, 

• 4>\{x) = «lna;, resulting in    p(a;) oc exp \-\x In a; - fix]. which is known as the entropic 
pdf. 

Three parameters laws: This is the case where r = 3. Once more applying the general 
rule we find 

r = 3 

'   M = 3,^0 = 0,^ = 1,^2 = 1,^3=1, 

M = 2,JVo = 0,JVi = l,J\r2 = 2, 
M = 2,^0=1,^ = 1,^=1, 
M = l,iV0 = 0,iVi = 3, 
M = 1,^0=1,^1 = 2, 
M = 1,^ = 2,^ = 1, 
M = 0, N0 = 3, 

coo + cwxai + c20x
a2 + c3oZa3 

coo + Ci0a:Ql + c20x
a2 + cnxa* lna; 

coo + coi In x + c10x
ai + c20x

a2 

coo + ci0a;ai + cnxai In x + c12x
ai In2 x 

coo + coi In x + c10a;ai + cnxai In x 
coo + coi In x + co2 In2 x + ci0xai 

coo + coi In x + c02 In2 x + e03 In3 x 

which means 

U<l>i(2),<h(x)M*))} = {    (xa\xa2,xQ>), (xai,xa*Mx), (xai,xannx,xann2x), 

(xai,xc,1\nx,hLx),(xai,xa*,xc,2bix), (a;"1, In a;, In2 a;), 

(In x,In2 x, In3 a;) L 

(24) 
where «i, c*2 and 03 are three real numbers. 

4.    Proposed method 
The general procedure of the inversion method we propose can be summarized as follows: 

• Choose a set of functions 4>i(x) from the possible ones described in the last section and 
assign the prior p(x). In many imaging applications we proposed and used successfully 
the following one with two parameters: 

N N 

p(x;X) oc exp[-AlJff(x) - X2S(x)},    with H(x) = £&(XJ), and S(x) = ^Mxj), 
j=i i=i 

where <f>j(x) and (f>2(x) were chosen from the possible ones in (22) or (23). 

• When what we know about the noise b is only its covariance matrix E {bb*} = Rb = a21, 
then using the maximum entropy principle we have: 

p(y\x) oc exp -^Qi*) ,    with Q(x) = {y- AxfR^iy - Ax) 

We may note that p{y\x) is also a scale invariant probability law. 
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• Using the Bayes' rule and MAP estimator the solution is determined by 

x = argmax{p(x\y)} = argrmn {J(x)} ,    with J(x) = Q(x) + Aljff(a;) + A25(a;). 

Note here also that, for the cases where one of the functions <f>\(x) or 4>2(x) is a logarithmic 
function of x, we have to constrain its range to the positive real axis, and we have to 
solve the following optimization problem 

* = arg££o W*\v)} = arS™^ iJ(x)} ■ 

This optimization is achieved by a modified conjugate gradients method. 

• The choice of the functions <j>i(x) and the determination of the parameters (Ai, A2) in the 
first step is still an open problem. 

In imaging applications we propose to make this choice using our prior knowledge on 
the nature of the quantity of interest (physics of the application). For example, if the 
object a; is a real quantity equally distributed on the positive and the negative reals, a 
Gaussian prior, i.e.; {4>x{x) = x,<f>2(x) = x2) is convenient. But, if the object a; is a 
positive quantity or if we know that it represents small extent, bright and sharp objects 
on a nearly black background (images in radio astronomy, for example), we may choose 
{<f>i(x) = z,<f>2(x) = lna;), or (^(x) = x,4>2(x) = xlnx) which are the priors with longer 
tails than the Gaussian or truncated Gaussian one. 

When the choice of the functions (fa(x),<j>2{x)) is made, we still have to determine 
the hyperparameters (A1;A2). For this two main approaches have been proposed. The 
first is based on the generalized maximum likelihood (GML) which tries to estimate 
simultaneously the parameters x and the hyperparameters 9 = (Ax, A2) by 

(a, 0) = arg max {p(x, y; 0)} = arg max {p(y\x)p(x; 6)} , (25) 
(<c.0) (x,8) 

and the second is based on the märginalization (MML), in which the hyperparameters 0 
are estimated first by 

0 = argmax [p(y;9) = J p(x,y;0)dx\ = argmax If p(y\x) p(x; 0) dx\ ,       (26) 

and then used for the estimation of x in 

x = aigmax{p(as|y;§)} = argmax{p(2/|x)p(a;|Ö)} . (27) 

What is important here is that both methods preserve the scale invariant property. For 
practical applications we have recently proposed and used a method based on the gen- 
eralized maximum likelihood [8, 9] which has been successfully used in many signal and 
image reconstruction and restoration problems as we mentioned in the introduction [10]. 
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5.    Conclusions 

Except for the Gaussian case where all the Bayesian estimators are linear functions of the 
observed data, in general, the Bayesian estimators are nonlinear functions of the data. 
When dealing with linear inverse problems linearity is sometimes a too strong property, 
while scale invariance often remains a desirable property. In this paper we discussed and 
proposed a family of generalized exponential probability distributions for the direct prob- 
abilities (the prior p(x) and the likelihood p(y\x)), for which the posterior p(x\y), and, 
consequently, the main posterior estimators are scale invariant. Among many properties, 
generalized exponential can be considered as the maximum entropy probability distributions 
subject to the knowledge of a finite set of expectation values of some known functions. 

A    Appendix: General case 

We want to find the solutions of the following equation: 

r r 

Vfc>0,Vx,    X)M*)^(**) = EA«-(l)^(*) + )8(*)- (A.1) 
i=l i=l 

Making the following changes of variables and notations 

\/k = k, kx = x, Xi(k) = A,(fc),   and  ßi(k) = ßi(k), 

equation (A.l) becomes 

J2 Hm(x) = J2 *,• w,-(H) + ß('k) 

For convenience sake, we will drop the tilde ", and note A,-(l) = A;, so that we can write 

5>,-(*)&(a0 = J2 ^i{kx) + ß(k). 
»=i t=i 

Noting 
r r 

S(x) — ^ Xi<j>i(x),    and    S(kx) = y^ \j4>j(kx) 
i=l t=l 

we have 

J2 Xi{k)4>i(x) = S(kx) + ß(k). (A.2) 
i=l 

Taking the first r — 1 derivatives of this equation with respect to k, we obtain 

X>;(fc)&(*)     =xs'(kx) + ß\k) 

y K{k)4>i{x)     = x2 s'\kx)+ß"(k) 
U (A-3) 

£ ASr-1)(*)&(*)   = x^S^ikx) + ß^-^ik). 
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Combining equations (A.2) and (A.3) in matrix form we have 

/   MAO 
X[(k) 
X'{(k) 

Ur_i)(*) 

K(k) 
( S(kx) + ß(k) 

xS'(kx) + ß'(k) 
x2S"(kx) + ß"(k) (A.4) 

\(rX\k)l     \4>r{x)l \xr-1S(r-1\kx) + ß(r-1)(k)) 

If this matrix equation can be inverted, it follows that any function 4>i(x) is a linear 
combination of S(kx) + ß(k) and its (r - 1) derivatives with respect to k: 

<ßi(x) = j>(*) [xWsWikx) + ß^ik) 
»=0 

(A.5) 

If this is not the case, there exists an interval for k, for which some of the functions Xi(k) 
are linear combinations of the others [2]. In this case let us show that we will go back to 
the situation of the problem of lower order r. Let us assume that the last column of the 
matrix is a linear combination of the others, i.e., 

7—1 

M*) = E^M*)- 
i=i 

Putting this in the equation (A.l) will give 

7—1 

53 \i{k)<t>i(kx) + 
j=i 

7—1 

E^M*) 
i=\ 

7—1 

<j>r(kx) = J2 W)4>i(x) + ß(k) + 
t=l 

7—1 

E7.-M1) 
L»=l 

<t>r(x), 

and noting ^(x) = <&(z) + -yi<j>r(x) and tpi(kx) = <f>i(kx) + fi<f>r(kx), we obtain 

7—1 

J2 \{k)i>i{kx) = £ Xi(l)^(x) + ß(k), 
t=i i=l 

which is an equation in the same form as (A.l), but of lower order. 
Now taking derivatives of both parts of the equation (A.5) with respect to k and noting 

kx = u we obtain 

22a,iu'Sl(u) = a (A.6) 
i=0 

This is the general expression of a rth order Euler-Cauchy differential equation [1, 2] which 
is classically solved through the change of variable u = ex. One can find the general 
expression of its solution in the following form: 

M    /Nm-1 No M 
SW = E      E  cmn(lnx)n   xam + £co„(lna:)n    with M = 0, ■• -r,   and    £ Nm = r, 

77i=l  \ n=0 n=0 771 = 0 

(A.7) 
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where M and Nm are integer numbers, and cmn, c0n and am are real numbers. In fact the 
most general solution also incorporates terms of the form 

^(ln *)" (an cos(ln *) + ßn sin(ln x)) 

derived from complex am and cmn.   But we will not consider these terms because the 
resulting pdfs have oscillatory behavior around zero. 

One can give a geometric interpretation of the solutions given in (A.7). For any given 
order r make a (r + 1) X (r + 1) table in the form 

lnr* 
: 

In** 
In* 

1 X 

1 X011 xa2 xar 

and let r mass points fall down into the columns. To each filled box is assigned a function 
4>i(x) by multiplying the corresponding powers of * and In * on the same line and the same 
column. To illustrate this, we give in the following the first three cases: 

Case r = 1: 

lnz b 
1 X a 

1 x°i 

4>{x) 

hxx 

Case r = 2: 

ln'x d 
lna; bd c 

1 X abc a 
1 xai xa2 

4>iix) Mx) 
a xai xa* 
b xai lnx 
c XQl a:0*1 In a; 
d lna; In2 a; 

Case r = 3: 

lnJa; 9 
In** fg c 
In* bdfg dc e 

1 X abcdef abe a 
1 *Qi X012 xa3 

4>i{x) <j)2{x) <t>z(x) 
a *Q1 x012 xai 

b xai xa2 In* 
c xai xai In * xai In2 * 
d xai *Ql In * In* 
e xai xa2 x012 In * 

f xai In* In2* 

9 In* In2* In3* 
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MAXIMUM ENTROPY SIGNAL TRANSMISSION 

Enders A. Robinson 
Henry Krumb School of Mines 
Columbia University 
New York, NY 10027 USA 

ABSTRACT. There are two means at our disposal to understand the behavior of physical sys- 
tems: observation and experimentation. Observation becomes increasingly difficult as an object 
becomes more remote or obscure. Experimentation is impossible for objects that cannot be manip- 
ulated or directly contacted. In such cases it is necessary to use numerical simulation, drawing upon 
perceived virtual systems expressed through models. Two main approaches to deal with remote or 
obscure objects come under the headings of the "inverse source problem" and the "inverse medium 
problem." In the typical inverse source problem, the source of energy is remote, the medium trans- 
mits the source signal to an accessible receiver, and information about the source is required. An 
example of an inverse source problem is classical earthquake seismology where received seismic data 
are used to determine locations of remote earthquakes. Another example is passive sonar where 
engine noise from a hidden submarine is used to locate its position. In the typical inverse medium 
problem the source of energy (usually man-made) is local, the signal penetrates an inaccessible 
medium that reflects energy back to accessible points, and information about the internal structure 
of the medium is required. Examples are reflection seismology, radar, and active sonar. The usual 
approach to either type of inverse problem is first to devise a theoretical model that admits a solu- 
tion from the available data. Implementation then involves using the theoretical model to find the 
required solution, often through an iterative improvement method. One of the most basic models 
is a system with parallel plane layers (the so-called layer-cake model of geophysics). An important 
characteristic of the layer-cake model is that it yields a transmitted signal that has maximum en- 
tropy. Because of this property, a signal from a distant source can be deconvolved to remove the 
unwanted reverberations that occurred during transmission. Thus it is possible to obtain a good 
representation of the unknown source signal, and so the inverse source problem for the layer-cake 
model has an effective computer solution. The layer-cake model also has the characteristic that it 
yields a reflected signal with both feedforward and feedback components, where the feedback com- 
ponent has maximum entropy. In practical terms, this maximum entropy property means that the 
received reflected signal preserves the information about the structure of the medium. As a result, 
the received reflected signal can be deconvolved to give a picture of the internal structure of the 
medium, and so the inverse medium problem for the layer-cake model also has a computer solution. 

1.    Introduction. 

In 1842, Augusta Ada, Countess of Lovelace, is reputed to have exclaimed: "We must say 
most aptly, that the analytic engine weaves algebraic patterns just as the Jacquard loom 
weaves flowers and leaves." The analytic engine, of course, was a very early version of the 
computer. A science that depends upon computers, not only in routine calculations but also 
in the most advanced scientific investigations, is geophysics. Data processing in geophysics 
began in 1952 when the first seismic data analysis was done on the MIT Whirlwind digital 
computer. Geophysics is data-intensive. In increasing its observational powers, geophysics 
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has developed mathematical and digital methods that have found applications in many 
other fields. In turn, geophysics has freely drawn upon concepts and techniques developed 
in other scientific disciplines: physics, mathematics, electrical engineering, and mechanical 
engineering. One of the most fruitful areas has been digital signal processing and spectral 
analysis [3] [5] and especially the field of maximum entropy and Bayesian analysis [4]. 

Today computers provide a seismic visualization environment that lets the geophysicist 
interactively explore actual as well as simulated data. In a larger sense, the Earth itself 
can be considered as a great computing machine, the ultimate computing machine for 
geophysical studies. As a seismic wave propagates through the subsurface, the internal 
structure of the Earth determines the actual path of the wave, essentially by means of 
the mechanism embodied in Huygens' principle. This determination of the physical path 
within the Earth's layers amounts to real-time physical (analog) computation at each stage 
of propagation. Digital computer programs try to mimic this physical process so that the 
wave path can be simulated within the computer. At the present time, the digital computer 
is separate from the Earth. In time, geophysicists will make the critical linkage. Future 
seismic experiments will connect digital computers to the Earth in an essential way so that 
they work together as a unit. In such an ideal situation, the physical process and the 
simulated model of wave propagation will blend together and become one integrated whole. 

A major problem in geophysics is the determination of the internal structure of the 
Earth. For example, in the study of plate tectonics, the mechanisms producing the internal 
movements of the Earth lie deep within the crust, mantle, and core of the Earth, out of 
direct reach of human observers. Except for the limited amount of the shallow subsurface 
that can be reached by shafts and drill holes, the interior of the Earth lies out of reach and 
cannot be directly contacted. The only means to study the interior of the Earth is through 
the use of wave motion and other geophysical phenomena. We are fortunate in that we have 
available the naturally occurring seismic waves that are generated by earthquakes. Seismic 
waves travel outward from the origin of an earthquake, and travel to all depths within the 
Earth. Some of the waves penetrate to deep within the Earth and then travel onward to 
reach the surface again at distant points. Seismometers at these points record the waves as 
seismograms. These recorded waves contain vital information about the crust, mantle, and 
core of the Earth. The waves can be described as messengers that convey the information 
that can be used to form images of geological features deep within the Earth. For good 
image quality, a large number of receivers (seismometers) must be used. 

As we have seen, earthquake seismology is essentially a transmission problem, with the 
waves traveling to receivers often located at great distances from the earthquake's source. 
In contrast, reflection seismology as used in petroleum exploration has both sources and 
receivers at approximately the same locations on the Earth's surface. In seismic exploration, 
a man-made source at or near the surface sends seismic waves down into the ground. The 
waves are reflected at various subsurface rock interfaces and make their way back to the 
surface where they are recorded. From the received data the geophysicist wants to determine 
the structure of the subsurface medium. From this knowledge one can infer the presence of 
possible oil bearing reservoirs. Reflection seismic data represent the single largest class of 
scientific data collected in digital form. The processing of these data produces subsurface 
images of unprecedented geological detail. In some cases, the seismic data is integrated 
with well-logging data, which consist of continuously collected information from devices 
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lowered into drill holes. When circumstances warrant, such data are processed to yield 
a description of the type of rock and its porosity, and the presence or absence of oil. In 
addition to petroleum exploration, seismic reflection methods are presently being used on 
a larger scale to study the internal structure of the continents. 

Both in earthquake seismology and in petroleum exploration seismology, great advances 
have been made in instrumentation. Emphasis now is on imaging, the presentation of 
the data in a form that is visually accurate and instructive. This new perspective is the 
main scientific frontier that is being developed today. Computers provide a visualization 
environment that lets the scientist interactively explore propagation patterns. The ultimate 
objective is to make a critical linkage between the computers and the transmission medium. 
In this way the data processing schemes can be driven by the fine structure of the medium 
itself. Image processing and mapping are then used to create detailed three-dimensional 
pictures depicting the interior structure. Small-scale heterogeneities within the Earth are 
revealed with remarkable resolution. 

2.    Inverse Source Problem and Inverse Medium Problem. 

Figure 1 [left] depicts the inverse source problem with the following characteristics: the 
source of energy is remote; the medium transmits and distorts the source signal; the re- 
ceived data is the transmitted signal corrupted by noise and reverberations produced by 
the medium; the desired information is the source itself. Figure 1 [right] depicts the in- 
verse medium problem with the following characteristics: the source of energy is local, 
usually man-made; the medium reflects and distorts the source signal; the received data is 
the reflected signal corrupted by noise and reverberations; the desired information is the 
medium. 

Transmitted signal 

Medium 

T 
Source 

Medium 

FT 
Source     Reflected signal 

Figure 1: [Left]: In the inverse source problem, it is required to find the (unknown) source 
from the (known) received transmitted signal. [Right]: In the inverse medium problem, it is 
required to find the (unknown) medium from the (known) received reflected signal. 

Astronomy provides examples of both kinds of inverse problems. Let us look at two 
examples, light from a star and light from the moon. Starlight represents received data that 
tell us mostly about the distant source (the star), and little about the medium (interstellar 
space). Spectral analysis of starlight represents a solution to an inverse source problem. 
Moonlight represents received data that tell us mostly about the medium (in this case, 
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the moon, which is the dominant reflector) and less about the source (the sun). Analysis 
of moonlight represents the solution of an inverse medium problem, one made famous by 
Galileo, who wrote in 1610: "It is a very beautiful thing, and most gratifying to the sight, 
to behold the body of the moon, distant from us by almost sixty earthly radii, as if it were 
no farther away than two such measures." 

In each case light goes through a heterogeneous medium. The star generates its own 
light. As the light travels to the Earth, the path admits reverberations in the interstellar 
medium. Each time there is a backward reflection there must be an offsetting forward 
reflection in order for the light to eventually reach the Earth. As a result, any star-to-Earth 
transmission path necessarily has an even number of bounces. The Moon reflects light that 
originates at the Sun. As a result, any Sun-to-Moon-to-Earth reflection path always has 
an odd number of bounces, made up of the even number due to transmission and the extra 
bounce upon reflection from the Moon. In Figure 2, two of the many possible multiple 
raypaths are depicted. One of the depicted paths is a Star-to-Earth first-order multiple 
path (that is, a transmission path with two bounces). The other depicted path is a Sun- 
to-Moon-to-Earth first-order multiple path (that is, a reflection path with three bounces). 
In general, transmission paths have an even number of bounces, and reflection paths have 
an odd number. As a result, transmission paths represent pure feedback systems, whereas 
reflection paths represent systems with both feedforward and feedback components. 

Moon 

Figure 2:   The raypath from the star depicts a first-order multiple path for transmission. 
The raypath from the Sun depicts a first-order multiple path reflected from the Moon. 

The classic problem of reflection seismology concerns the determination of the properties 
of the interior of the Earth from recorded waves that have been reflected from the subsurface 
layers. As a first step in the mathematical analysis, the problem is usually simplified by 
assuming that the crust of the Earth is made up of a sequence of horizontal parallel plane 
layers, each of which is homogeneous, isotropic, and nonabsorptive. This is the classic layer- 
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cake model of reflection seismology. Using this model, we can characterize the medium 
(from source to receiver) by a series of Fresnel reflection coefficients, each associated with a 
reflecting subsurface interface. A reflection coefficient is a ratio: the ratio of the amplitude 
of the reflected wave to that of the incident wave. As a result, a reflection coefficient must 
have magnitude less than or equal to one. Suppose that the Fresnel reflection coefficient 
of the first interface is 0.8 and that of the second interface is 0.4. See Figure 3. (In our 
mathematical analysis, normal incidence is assumed, but the figures are drawn with offset 
for visual clarity.) 

c = 0.8 

Co = 0.4 

Figure 3:  Two interfaces and their Fresnel reflection coefficients: 0.8 (top interface) and 
0-4 (bottom interface). 

A downgoing unit incident wave strikes the system. What is the combined reflectivity of 
the two interfaces together? Clearly it is not the sum of 0.8 and 0.4, which is 1.2, a number 
greater than one in magnitude. A reflectivity greater than one in magnitude indicates 
that reflected energy is greater than the incident energy, an impossible situation. We 
must therefore look for an explanation of what occurs. The answer is that a reverberation 
wavetrain is generated by a feedback mechanism in the layer between the two interfaces 
[2]. The reflected response from the two interfaces is the upgoing reverberation wavetrain 
escaping from the top interface; this response is given by the series 0.8, 0.144, -0.046, 
0.015,..., which is depicted in Figure 4. The transmitted response from the two interfaces 
is the downgoing reverberation wavetrain escaping from the bottom interface. In (infinite) 
time, all the energy escapes from the layer, some going up and the rest going down. Thus 
the total energy from the downgoing incident wave is divided into the energy contained in 
each of these two escaping wavetrains, namely the reflected response and the transmitted 
response. As a result, the ratio of the energy of the reflected response to the energy of 
the incident wave is necessarily less than one. The key idea is that the addition theorem 
for reflection coefficients combines the two Fresnel reflection coefficients, each of which 
is less than one in magnitude, to yield a third quantity, a reflected response given by a 
reverberation wavetrain 0.8, 0.144, -0.046, 0.015,..., with energy ratio less than one. 
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r = 0.8 

0.046    r = 0.015 
4, 

Figure 4: Reflected response, given by the series 0.8, 0.144, -0.046, 0.015, ..., resulting 
from internal reflections from the two interfaces with Fresnel reflection coefficients 0.8 (top 
interface) and 0.4 (bottom interface). 

3.    Maximum Entropy. 

Figure 5 depicts the pure feedback system that generates the transmitted wave in the layer- 
cake model. Because the received transmitted signal is generated by a pure feedback system, 
it must be of the autoregressive type. According to the results of Burg [1], a signal of the 
autoregressive type has maximum entropy. As a result, the received transmitted signal has 
maximum entropy, from which it follows that it can be deconvolved to yield the unknown 
source signal. Thus, for the layer-cake model, the inverse source problem has a computer 
solution [7]. 

Source 

Even powers 
of reflection 
coefficients 

Receiver 

Figure 5: The pure feedback system describing the transmission problem shown in Figure 1 
[left]. 

Figure 6 depicts the feedforward-feedback system that generates the reflected wave in 
the layer-cake model. Because the feedback component is of the autoregressive type, it 
follows from Burg [1] that the feedback component has maximum entropy. As a result, the 
reflected signal preserves the information about the individual Fresnel reflection coefficients, 
and hence the received reflected signal can be deconvolved to yield the layered structure of 
the medium.  Dynamic deconvolution [5] involves mathematically peeling off the layers of 



MAXIMUM ENTROPY SIGNAL TRANSMISSION 141 

the sedimentary column. We start with the recorded reflection seismogram at the surface. 
At any given interface we must remove the effect of the reflection coefficient from the 
reflected wave motion in that layer so as to obtain the reflected wave motion in the next 
deeper layer. In this way, layer by layer, the medium can be reconstructed. Thus, for the 
layer-cake model, the inverse medium problem also has a computer solution. 

Odd powers 
of reflection 
coefficients 

Source 

Receiver 

Even powers 
of reflection 
coefficients 

Figure 6: The feed forward-feedback system of the reflection problem shown in Figure 1 
[right]. 

Nature often provides media that are weakly inhomogeneous, at least locally. For 
such media, the reflection coefficients of the interfaces or scatterers are small and ran- 
dom. Weakly inhomogeneous media provide good transmission characteristics for a remote 
source and good reflection characteristics for a local source. For such cases minimal com- 
puter processing such as deconvolution is required. If the mathematics of nature had been 
otherwise, that is, if smallness and randomness provided poor transmission characteristics 
for a remote source and poor reflection characteristics for a local source, we would live in a 
world of obscurity. 

Consider the transmission problem in the case when the medium is weakly inhomoge- 
neous (that is, the reflection coefficients are small and random). For this case, the feedback 
loop reduces approximately to zero. Hence the pure feedback system of Figure 5 reduces 
(approximately) to a distortionless transmission system (that is, a system with no feedback 
loop) as shown in Figure 7. 

Source Receiver 

Figure 7: Distortionless transmission system from source to receiver (feedback loop absent). 

Let us now consider the reflection problem in the case when the medium is weakly 
inhomogeneous. As above, the feedback loop reduces (approximately) to zero. Furthermore, 
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the higher order terms in the feedforward loop reduce (approximately) to zero, so the 
feedforward loop essentially contains only the first-order terms. The first order terms, 
in fact, are the series of the reflection coefficients of the subsurface layers. Hence the 
feedforward-feedback system of Figure 6 reduces to the pure feedforward system shown 
in Figure 8. This series of reflection coefficients appears at the output in the form of 
the received reflected wave. As a result, the received wave mimics the structure of the 
underground layers, and thus this system produces (within the given approximations) a 
faithful depiction of the medium at the output. 

Series of 
Reflection 
coefficients 

Source -6T- Receiver 

Figure 8: Pure feedforward system with no feedback loops. 

The above result can be verified every time we look around us. The air is a weakly 
inhomogeneous medium. As a result, we see a remarkably clear representation of our 
surroundings. In effect, we see only the important primary reflections despite the fact 
that the many reflecting objects present produce a myriad of multiple reflections. When 
we analyze all of the raypaths involved, we immediately realize that the actual raypaths 
are extremely complex involving many high-order multiple paths. However many of the 
objects, although numerous, are unimportant in that their reflection coefficients are small 
and random. According to the mathematics, these small and random reflection coefficients 
effectively cancel themselves out and we are left with a clear image of the important objects. 
That is, we clearly see those objects that have large (in magnitude) reflection coefficients. 
In this way, we perceive the world about us. Shakespeare expressed this idea when he 
wrote: 

For the eye sees not itself 
But by reflection, by some other things. 

A wavetrain transmitted in the Earth consists of the downgoing direct wave and the 
myriad of downgoing multiple waves that follow the direct wave in time. Figure 9 is a 
schematic depiction of a medium showing downgoing waves only. In physical space, all 
the wavepaths represent energy traveling vertically into the Earth. The figure represents 
a space-time diagram. Time is measured to the right on the horizontal axis, and vertical 
depth into the Earth is measured downward on the vertical axis. 

Time and depth units are chosen so as to. make the velocity equal to one, so a wave travels 
a unit of depth in a unit of time.  As a result, in the space-time diagrams, the raypaths 
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appear as 45 degree lines (negative 45 degree lines for downgoing waves and positive 45 
degree lines for upgoing waves). The position of the source is always in the upper left-hand 
corner (time 0 and depth 0). Referring to Figure 9, we see the raypath of the direct (or 
primary) wave as the negative 45 degree line on the left, and the reverberations (multiple 
waves) as the parallel lines that occur to the right of the direct raypath. 

Source Time 

Figure 9:  Transmitted wave motion in a weakly inhomogeneous medium. 

Source Time 

Figure 10:  Transmitted wave motion in a weakly inhomogeneous medium. 



144 
ENDERS A. ROBINSON 

Figure 10 is the corresponding schematic representation of the same medium showing 
upgoing waves only. These upgoing waves are the waves reflected from the various reflecting 
horizons as weU as their multiples. The upgoing waves appear in this space-time domain as 
positive 45 degree lines. The last reflecting horizon is assumed to be at the bottom of the 
figure, giving rise to the so-called last true reflection indicated by the 45 degree line with 
the label "Last upgoing reflected wave." All rays to the right of this last true reflection are 
purely multiples. 

Figure 11: Reflected wave motion in a weakly inhomogeneous medi urn. 

Figure 12: Reflected wave motion in a weakly inhomogeneous medium. 
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Figures 11, 12, 13, and 14 show actual examples. Figure 11 depicts the transmitted 
wavetrain in a weakly inhomogeneous medium (that is, one with small and random reflection 
coefficients). The raypath of the direct (or primary) wave is the strong 45 degree line on 
the left, and the reverberations are the parallel lines to the right of the direct raypath. 

The amplitudes of the reverberations are much less than those of the direct wave, so 
that the direct wave carries most of the transmitted energy. Figure 12 depicts the same 
situation, but now in the case of reflected waves. The reflected waves faithfully portray the 

Figure 13:  Transmitted wave motion in a medium that is not weakly inhomogeneous. 

Figure 14: Reflected wave motion in a medium that is not weakly inhomogeneous. 
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internal structure of the medium, and the region of pure multiples is noticeably weak. These 
two figures depict the orderliness of wave motion in a weakly inhomogeneous medium. 

Let us now consider a different medium, one that is not weakly inhomogeneous (in this 
case, one with large and random reflection coefficients). In order to make this situation 
comparable to the situation depicted in Figures 11 and 12, we use a medium with the same 
internal structure; that is we use the same reflection coefficients but amplify them by a factor 
of 15 to make them larger in magnitude. Figure 13 depicts the transmitted wavetrain, and 
Figure 14 the reflected wave train. Both figures show the chaotic behavior that masks the 
true nature of the medium. Such cases can be decoded by computer processing, but, in 
more extreme instances, even computer processing may not be adequate to produce order 
out of chaos. 

4.    Conclusion. 

In a heterogeneous medium, most waves do not follow the direct route but bounce back 
and forth at internal inhomogeneities on their way to the receiver. The wavetrains made up 
of these bounces appear in the received signal in the form of reverberations. The general 
principle is that transmission paths have an even number of bounces, whereas reflection 
paths have an odd number. In the case of the layer-cake model, transmission paths represent 
pure feedback systems, whereas reflection paths represent feedforward-feedback systems. 
As a result, a received transmitted signal can be decoded (by signal processing) to yield a 
depiction of the source. Generally a transmission process allows us to perceive a distant 
source but obscures the structure of the medium. For example, we can see a star because it 
is a source of fight. Except for the solar system, all of the mass so far seen in the universe 
are sources of light or other electromagnetic energy. The remaining mass of the universe, 
about 90 percent of the whole, has not yet been seen. If this unseen mass contains no 
sources of energy, and if the reflections from neighboring stars or galaxies are not above 
noise level, this mass will never be seen. 

In contrast, a reflected signal from a local source is produced by a feedforward-feedback 
system. The received reflected signal can be readily decoded (by signal processing) to 
produce a depiction of the medium. That is, a reflection process allows us easily to see the 
structure of the medium, but hides the nature of the source. For example, we can clearly 
see the Moon and other objects in the solar system because of reflection of the Sun's fight, 
but moonlight give us little knowledge about the nature of the sun (the source). Often we 
encounter media that are weakly inhomogeneous, at least within certain ranges. The Fresnel 
reflection coefficients of the interfaces or scatterers of such media are small and random, and 
thus these media provide good transmission characteristics for a remote source and good 
reflection characteristics for a local source. In such cases, minimal computer processing is 
required. 
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ABSTRACT. Maximum Quantum Entropy (MQE), recently introduced by Richard Silver and 
also known as Quantum Statistical Inference (QSI), is a method of estimating smooth, non-quantum- 
mechanical ("classical") densities, given information about those densities. It is formally analogous 
to Maximum Entropy (ME), the difference being that the Shannon entropy is replaced by the 
quantum entropy. We present a concise description of MQE from a mathematical perspective, not 
relying on physical analogy. We introduce density matrices and the quantum entropy, compare 
MQE with ME, discuss the nature of constraints in MQE and show how these constraints influence 
the density estimate. We conclude with a discussion of the status of MQE as a maximum entropy 
method. 

1.    Introduction 

Maximum entropy methods have been found to be useful not only in statistical physics, but 
also in many statistical applications which have nothing to do with physics [19, 6]. This 
is presumably because they encapsulate principles of probabilistic reasoning which do not 
depend on physics [8, 13, 21]. Such methods have also been applied to quantum statistical 
mechanics, where the entropy to be maximized is not the usual Shannon entropy, but 
instead the so-called "quantum entropy" [10, 2]. This generalization is normally thought to 
be a requirement of the application: the quantum entropy is just the Shannon entropy of 
the subjective part of the uncertainty in the physical situation; it automatically ignores the 
inherent quantum-mechanical uncertainty. Recently, however, Richard Silver has suggested 
that the quantum entropy, like the Shannon entropy, might be useful outside the context 
of physics, as part of the apparatus of statistical analysis [16, 17, 14]. 

Intuitively, the reason this might be helpful is as follows. Suppose that we have a 
continuous probability density /, which we know to possess some local smoothness, and 
we wish to define its entropy. If we discretize it coarsely into components /;, we might 
expect that these components are independent, in which case a reasonable expression for 

the entropy might be the Shannon entropy [18] Ss{f) = -E/ilo§/«- At some finer level 

of description, however, nearby /; are correlated, so this is not the correct expression for 
the entropy. The quantum entropy does take into account the correlations between nearby 
points, because it enables one to constrain, in effect, the derivatives of the function. This 
leads to estimates which are locally smooth. The nature of this smoothing is determined 
by the choice of smoothing operator L, and the width by a hyperparameter ß. 

The purpose of this paper is to give a concise introduction to Maximum Quantum 
Entropy (MQE) from a primarily mathematical perspective.   This affords a significantly 
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new perspective from previous work, which relied on physical analogy, and clarifies the 
logical foundations of the method. After introducing density matrices in §2, we introduce 
MQE by comparing it with the formally similar Maximum Entropy (ME) method (§3). In 
§4, we discuss the nature of the MQE constraints, and in §5 and §6, we show how these 
constraints affect the estimate. After briefly discussing the use of the relative quantum 
entropy in §7, we examine the status of MQE as a maximum entropy method in §8. 

2. Density matrices 

The quantum entropy is defined in terms of a symmetric, positive matrix D, the density 
matrix. The density function is given by the diagonal elements of D: fx = Dxx. We do not 
insist that / be normalized to one. For purposes of exposition and implementation, and 
to avoid mathematical complications, it is sometimes easier to deal with a discretization: 
fi = Da. This is a good approximation if the discretization scale is small compared to 
the scale of the smallest features, cf. [12]. Obviously, there is an infinite number of density 
matrices corresponding to each /, since the off-diagonal elements remain unspecified. We 
will see that the off-diagonal elements provide local smoothing between neighboring values 
of/. The matrix D, and thus the off-diagonal elements, are determined through a maximum 
quantum entropy variational principle. 

3. Maximum Quantum Entropy 

MQE is most easily understood by comparing it to the better-known maximum entropy 
method (ME) [7, 9]. 

In ME, we calculate / by maximizing the Shannon entropy, Ss(f) = E/i ~ 1 - 
E/ilog/i, subject to constraints Am(f) = am [9]. (Here Ss(f) has been generalized 
to non-normalized /.) By the method of Lagrange multipliers, this is equivalent to maxi- 
mizing Ss(f) - J2^mAm(f). Assuming the Am are linear, the solution to this problem is 
fi = exp(- Em \mAmi), where Am(f) = E^mi/i, and where the Xm are to be determined 
by the constraints. For comparison with MQE, we write / as the diagonal elements of a 
density matrix D. Let T{ be the matrix with a 1 in the ith diagonal position and zeros 
everywhere else: (^)jJfe = SjiSik. Define Am = £,- AmiT{. Then /,- = Dü = Tt(D^i), where 

£> = exp(-^Am.4m). (1) 
m 

D is just a diagonal matrix with elements Da = exp(- ETO XmAmi). 
In MQE, we calculate D by maximizing the quantum entropy 

S{D) = TvD-l-Tx{D\ogD), (2) 

subject to the constraints Tr(DAm) = am and Tr(£>L) = b where L is some smoothing 
operator. Note that Tv{DAm) = Am(f). This maximization problem is thus the same as 
ME, except that we use the quantum entropy instead of the Shannon entropy, and we add 
a constraint on Tr(Z>L), the "expectation" of L. The solution to this problem is 

D = exp(- J2 XmAm - ßL), (3) 
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where the ATO and ß are determined by the constraints. This expression for D is exactly 
the same as ME, except that there is now a non-diagonal smoothing operator L in the 
exponential. L correlates the diagonal elements of D. If L;J —> 0 as \i - j\ increases, these 
correlations will be local. Ylm ^m.Am and ßL do not commute, so sophisticated mathemat- 
ical methods are required to analyze the dependence of D and / on the constraints. These 
methods are taken from quantum statistical mechanics. 

We have assumed that the Am and ß are unique, given am and b. This follows from 
the concavity of the entropy in the constrained parameters. Define the relevant entropy 
S(a) by S(ai,.. .,an) = S(D), where D maximizes the entropy under the constraints 
Ti{OmD) = am (Om is Am or L.) S(D) is concave [23]; S(a) inherits this concavity[3]. If 
we define the Legendre transform of 5 as T(A) = S(a) — A • a, where A; = dS(a)/da.i, there 
is thus at most one A for any o. Therefore, S(a) is well-defined. Conversely, any A maps 
into exactly one a. Therefore, there is a bijective correspondence between A and the set 
a = Tr(.D(A)ö); this is sometimes called duality. This implies that if / and b are known, 
D is uniquely defined; we write S(f,b) for S(D). Eq. (3) defines a manifold of density 
matrices. This can be parameterized by (/,&); a set of constraints (a) parameterizes a 
submanifold. 

4. Constraints 

In MQE, our constraints are linear in D; these can be divided into two types. The first 
depends only on the diagonal elements of D, which is to say, on /. Such constraints are 
used to constrain certain values of /, or to embody a priori information that we might have 
about /. Examples are /_,-, £ /;, £ fixf, E0<x,<& /«> or Ej KÜ ~ 0/j» to constrain /,, the 
normalization of /, its nth moment, a confidence interval, or a convolution around /,-. 

The second type of constraint involves off-diagonal elements of D as well. This is 
only really used in our smoothness constraint, Tr(DL) = b. Initially, it seems peculiar 
to constrain Tr(jDL) rather than the value of L on / itself. If we tried to represent this 
constraint directly in terms of /, however, we would wind up constraining something like 
^2ij fiLij fj, which is not linear in /, and would thus not be amenable to the maximum- 
entropy formalism. Use of the density matrix thus enables us to incorporate smoothness 
constraints into the Maximum Entropy formalism, and this constitutes the central novelty 
of MQE. 

5. Properties of the density matrix 

As noted, the density matrix is in a form which arises frequently in physics; therefore 
techniques from physics can be exploited to calculate its properties. We write 

D = ex.p(-U(X)-ßL), (4) 

where U(X) — J2 XmAm. We go to a continuous basis in this section. This expression for D 
has the following properties as a function of ß. First, as ß —*■ 0, f(x) —► exp(—J7(A)(a;)) and 
we recover ME. For intermediate values of /?, we diagonalize the operator ßH = U + ßL. 
Let <j)n be the eigenfunctions of H, and let en be the eigenvalues. Then 

/(*) = £e-^|<M*)|2- (5) 
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Finally, as ß —► oo, only the lowest eigenvector contributes, and we get (for normalized 
/) /(a;) = |0o(z)|2- Note that the A will change to maintain the constraints; as ß —»■ oo, 
A —► oo also. This is somewhat different from the usual approach in physics, in which the 
"potential" U would be fixed and subsumed into the "Hamiltonian" H, where it would also 
get multiplied by ß; also, we are not assuming that L is second-order. 

D(x,x') can be very usefully represented as the solution to a partial differential equa- 
tion [5]. In fact, it is D(x,x'; 1), where D(x,x';t) is the solution of the equation 

6tD = (-ßL - U(X))D, (6) 

with initial condition D(x,x'; 0) = S(x - x'). Suppose U = 0. If L is quadratic, this is just 
the kernel of the heat equation: a Gaussian of width \fßi about x'. If L is of nth order, L 
is a function of x/ß1/™. 

6. The dependence of / on the constraints 

Suppose we add a constraint SXTT(DJ). This will add some matrix (SX)J to the exponential 
in our density matrix. If D = exp(A) and D' = exp(A + B), then to first order in B [4, 11], 

SD= f dte^-^ABetA. (7) 
Jo 

If J is Txi, the constraint on f(x'), then J(y — z) = S(y - x')8{x' — z), and we get 

Sf(x) = -SXx> f dtD(x,x';l-t)D(x',x;t), (8) 
Jo 

where 6XX is the associated Lagrange multiplier and where we have written D(x,x) as 
f(x). This formula describes the effect on f(x) of changing f(x') (by changing its Lagrange 
multiplier). Note that the effect is local: if x is too far from x', both terms in the integrand 
will tend to zero. 

Define G~l{xi,Xj) = -Sf(xi)/6X(xj); then 

f'(x) = f{x) - J2^iG-\x,Xj) + 0(6X2). (9) 

Define G to be minus the second derivative of the entropy with respect to /,• and fj-, G_1 is 
clearly its inverse. As a second derivative, G is symmetric and since the entropy is concave, 
G is positive. Therefore, G~l is also a positive symmetric matrix. Intuitively, G_1, which 
might be called the MQE linear response function, measures how much /; changes when fj 
is changed (by changing A;). The shape of /' (and G'1) as a function of the order 2m of L 
and the dimension d is studied in a companion paper [22]. The result is that /' will have / 
continuous derivatives if 2m > d + I. 

7. Relative Quantum Entropy 

The relative quantum entropy is a generalization of the relative Shannon entropy, and is 
defined in terms of the density matrices D and D° as follows [3]: 

S(D;D°) = -TiD + TiD° + Tt(D(logD - logi?0)). (10) 
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This can also be written in terms of the constrained variables. We write Eq. (3) as 
D = exp(- £ XiOi); then log D = - £ AA- Therefore S{a; a0) = -S{a) + T(A°) + X° ■ a. 
Then BS/doi = -(A; - A?), and the second derivative is -dXi/daj = -Gy, which is neg- 
ative by concavity. Considered as a function of a, S(a;a°) is zero when a = a0, positive 
elsewhere, and convex. Both the relative quantum entropy and the relative Shannon en- 
tropy (Kullback-Liebler divergence) are information divergences in a precise technical sense. 
(Define as in [1, p.84], with S(a) and T(A) the conjugate potentials.) If we want to have a 
single parameter characterizing the smoothness, we can define /£ '(/; /°) = S(f,b; f°,b°), 
where b is fixed by the requirement that dS/db = 0; this amounts to fixing ß at the value 
corresponding to (/°,6°), rather than fixing b°, and is usually easier for technical reasons. 

The exponential of the relative quantum entropy can be used as a prior for Bayesian 
inference [16, 17, 14]. Specifically, one assumes a prior probability of the form 

pW\f- f) « exp(-al$\f; /°)), (11) 

where a and ß are hyperparameters to be determined. One then generally takes as one's 
estimate the mode of the posterior distribution. This is identical to Quantified Maximum 
Entropy [20], except that it uses the quantum entropy instead of the Shannon entropy. 

Generally, this technique negotiates a tradeoff, parameterized by a, between minimizing 
the likelihood and minimizing the relative quantum entropy. In the limit in which the 
likelihood enforces the constraints rigidly, we recover the technique discussed in §3. These 
techniques are logically distinct, but to avoid a proliferation of terminology, we extend the 
use of the term MQE to cover the more general method; this is also known as Quantum 
Statistical Inference (QSI) [16]. Although the method of choosing the Lagrange multipliers 
is generalized, the form of the density matrix is the same, so §4-§7 still apply. 

The exact form of the posterior distribution will depend on the likelihood, which will 
depend in turn on the type of problem being considered. The two primary applications 
which have been worked out are non-parametric regression problems, including inverse 
problems [14], and density function estimation (DFE) [15]. IQ is convex, and the second 
derivative of the log-likelihood is negative in both of these cases, so the posterior probability 
has a unique maximum, which may be found numerically. 

8.    Maximum Quantum Entropy for non-quantum data 

To the writer's knowledge, MQE is the first instance in which the quantum entropy has 
been proposed as a part of the statistical apparatus, as opposed to being a part of the 
description of the object under study (i.e., a quantum-mechanical system). Can one justify 
the maximization of the quantum entropy of a non-quantum density in terms of the usual 
arguments for maximizing the entropy? 

For clarity, I will use the term MaxEnt to refer to the logical framework in which the 
maximization of the entropy has been justified [8], ME to refer to the application of MaxEnt 
to images using the entropy - £ /; log /; [18], and MQE to refer to the procedure described 
in this paper. 

Normally, in MaxEnt, we start with some set of fixed, mutually exclusive and exhaustive 
events. The entropy is defined as the Shannon entropy of the probabilities of these events. 
Given constraints on these probabilities, MaxEnt estimates these probabilities as those 
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which maximize the entropy subject to the constraints. In the absence of constraints we 
recover equal probabilities, in accordance with Laplace's Principle of Indifference 

In the Brandeis dice problem [8], for example, the events are that face i will turn up 
when the die is rolled; the constraint might be that the average value of a toss is some 
number say 4. . In ME where the entropy is denned as -EW, the event is that 
some unit of in ensity will show up in the ith pixel; we might have constraints on some 
linear functional of /, as in §3. 

MQE does not appear to satisfy the assumptions of the MaxEnt framework, when 
applied to classical densities. If we wish to write the quantum entropy in the form of 
a Shannon entropy, -S>.-logti,.-, we must diagonals the density matrix, which can be 
done by diagonahzing the operator £ XjAj + ßL. In this basis, the eigenstates are {*} the 
diagonal elemen s of the density matrix are „,,, the entropy is simply the Shannon eniropy 

IreW  T        !Stimate/°r th€ funCti°n is £ «.-MOI2- I« the framework of MaxEnt, 
therefore  the events are that a unit of intensity !*(*),* will contribute to the estimate 
/(*), and the posterior probability of this event is «... Other justifications for MQE may be 
proposed but this appears to be the unique way of fitting it into the MaxEnt framework 
as described above. ' 

fixJ W h°Tr'that the "eVentS" are ndther fiX6d n°r mUtuaU^ exclusive- ^ey are not fixed because they are eigenstates of an operator which depends on the A,   In effect if we 
try to define the entropy to square with the MaxEnt formalism, the very definition 'of the 
entropy changes as we change the A,, Furthermore, the events are not mutually excise 
bcau e the, * overlap. In general, / can be composed of the * in many different ways 

JeLisr^out one these uniqueiy'but * is not ciear h°w to ^ «* * 
For these reasons  I believe that MQE is not, strictly speaking, a maximum entropy 

echnique, when applied outside of quantum mechanics.  (This discussion does not aPply 
to the use of quantum entropy in quantum mechanics, which involves important additional 

ME^o^ bey°n\tl;tSCOp; °ltWs ™~-> At the same time, the more convention! 
ME approach m which the individual pixels are considered independent, cannot, strictly 
speakmg, be justified m terms of MaxEnt either, when the density is known to be smooth 
This a merely a reflection of the profound difficulty in relating real-world problems to 
abstract principles of reasoning. ^ to 

MQE smooths the density estimate because the smoothing operator in the exponent 
mixes adjacent values of the density. It may be a very useful approach to the esrimation 
of density functions, and it gives rise to some very beautiful mathematics. It provides an 
intriguing and very novel statistical model. It should be investigated further and compared 
to existing techniques in non-trivial real-world applications. 

ST,™? 'would like to thank Ha"y "-■ D*-id w°'^ «■ -o-^ Kicnard Silver for useful conversations. 
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SMOOTHING IN MAXIMUM QUANTUM ENTROPY 

Timothy C. Wallstrom 
Theoretical Division, MS-B213   . 
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Los Alamos, New Mexico 87545 

ABSTRACT. The method of Maximum Quantum Entropy (MQE) has been described in a 
companion paper. Here we give criteria for the smoothness properties of the MQE estimate, as a 
function of the smoothing operator and the dimension. With point constraints, the MQE estimate 
will have continuous derivatives of order / in d dimensions if and only if the elliptic smoothing 
operator is of order 2m, where 2m > 1 + d. It is thus impossible to constrain individual points unless 
2m > d, and the derivative will have discontinuities unless 2m > d + 1. 

The method of Maximum Quantum Entropy (MQE) has been described in a companion 
paper [3]. We recall that our density estimate is of the form 

f(x) = J2e-ß"\4>i(*)W (1) 

where (f>i(x) and e, are the eigenfunctions and eigenvalues, respectively, of the operator H, 
defined by 

ßH = ßL + U{\). (2) 

L is a differential operator, and U is a multiplication operator. 
We wish to determine the smoothness properties of / as a function of U, L, and the 

dimension d. Our result is that if L is an elliptic operator of order 2m, and if U constrains 
the density at a finite number of points so that it is the sum of delta functions, then in d 
dimensions / will be of class Cl if and only if / < 2m - d. (We say that / is of class Cl if 
all partial derivatives of order I or less exist and are continuous.) 

What does this result mean for MQE? If 2m < d we obtain singularities at the points 
which are constrained; this is catastrophic because the whole point of introducing the 
constraint is to adjust / to some finite value. This implies, in particular, that we must use 
higher-order smoothers to implement MQE in 2 or more dimensions. If 2m < d + 1, our 
estimate is continuous but its derivative is not. This is the case for a second-order smoother 
in one-dimension; the visual consequence is kinks in the estimate. These frequently detract 
considerably from the visual appeal; see [2]. This implies that we are usually better off 
using a higher-order smoother even in one dimension. Finally, if 2m > d + 1, we get an 
estimate which is continuous and has a continuous derivative. 

We develop this result heuristically; a rigorous discussion will appear elsewhere [4]. In 
a continuous basis, our constraints on the density are of the form 

Am=     dxAmix)^ (3) 
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where {Tx)yz — 6(y — x)6(x — z) (these are now Dirac delta functions); therefore, 

' U{\)^{x) = YJ^mAm{x)^{x). (4) 

Eq. (1) expresses /(a?) as an infinite sum of solutions to the eigenvalue equation 

(ßL + U(X))i> = Erfr. (5) 

U is the sum of the individual Am's. If Am(x) constrains the value of / at xt-, it will be 
a Dirac delta function: Am(x) = 6(x — X{). We will specialize to this case in this paper, 
although other cases arise in applications. 

We simplify the problem by a series of observations: (1) The smoothness of / is the 
same as that of the individual eigenfunctions tp. (2) The smoothness of each ^ is the same 
as that of <f>, where <f> solves the inhomogeneous equation with one delta function: 

(/3L - E)<f> = nS{x) (6) 

(3) We can replace ßL by (-A)m, if L is elliptic of order 2m with analytic coefficients, 
without affecting the smoothness of 4>. All of these assertions, though plausible, require an 
argument; see [4] for details. 

We are thus reduced to an examination of the fundamental solution (or Green's function) 
of the equation 

((-A)m-E)4> = 0. (7) 

If d > 2m (d = 2m), this is well-known to go as l/rd~2m (logr). Otherwise, the answer 
can be obtained by a Fourier transform: 

,,  , If   ddkeik-x 

^x) = ^yJW^E; (8) 

this expression can also be used to calculate derivatives. (We take the principal value over 
the singularity.) It is not too difficult to show that all derivatives of order / < 2m — d are 
continuous, but that D\<j> diverges at x — 0 if / > 2m — d. (If/ is even this is straightforward. 
If I is odd, calculate -D'^(e) - D\4>{-€) and replace ke by k'; asymptotically the integral 
scales as e2m-d-!. If / is odd and I = 2m - d, then D\<j> is merely discontinous at x = 0. Di 
means the derivative is taken in the direction a;,-.) Therefore <j> £ Cl and / € Cl if and only 
if I < 1m - d. 

Remarks: (1) Alternatively, we can invoke results of John [1] which state, in the spher- 
ically symmetric case, that if 2m > d, the singular part of the kernel goes asymptotically 
as r2m~d (d odd), or (log r)r2m~d (d even) for small r. (For nonsymmetric kernels there 
is an analytic prefactor.) Recalling that d/dx = (r/x)(d/dr), we easily recover the above 
results. (2) For non-integral m, we can define pseudo-differential operators by means of the 
Fourier transform: 

(-A)m + E:f»{\k\2m + E)f. (9) 

The continuity results (and the above argument) hold in this case also. (3) If U is of a 
more general form, the inhomogeneous equation can of course be solved with the help of 
the Green's functions, and if / is approximately constant where U is non-zero, this will 
provide a useful approximation to the homogeneous equation (5). 
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In Fig. (1), we plot GQ
1
(X), the linear approximation to Sf/6X, computed numerically 

for d = 1 and TO = 1/2, 1 and 2. Our analysis implies that the corresponding / should be 
discontinous, continuous but with no continuous derivatives, and continuous with continu- 
ous first and second derivatives, respectively. Because of the linear approximation, G^ix) 
for TO = 2 dips very slightly below the axis. Sf/6X is strictly positive. 

45   - 

30 

15 

-0.06      -0.03 0.03 0.06 

Figure 1: GQ
1
 for TO = .5, 1, and 2.  We assume / is defined on [0,1]. The scale of the 

y-axis is determined by the condition that /J G^ix - 0.5)dx = 1. 
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ABSTRACT. A new Bayesian method for non-parametric density estimation is proposed, based 
on a mathematical analogy to quantum statistical physics. The mathematical procedure is related 
to maximum entropy methods for inverse problems and image reconstruction. The information 
divergence enforces global smoothing toward default models, convexity, positivity, extensivity and 
normalization. The novel feature is the replacement of classical entropy by quantum entropy, so 
that local smoothing is enforced by constraints on differential operators. The linear response of the 
estimate is proportional to the covariance. The hyperparameters are estimated by type-II maximum 
likelihood (evidence). The method is demonstrated on textbook data sets. 

1.    Introduction. 
Non-parametric density estimation has been studied extensively by statisticians. If a set of 
Ns observations, {x,}, is identically and independently drawn from a probability density 
function f{x), the problem is to estimate / when no parametric form is known. A variety 
of non-Bayesian methods, such as histograms and kernel density estimators, have been 
developed and applied to density estimation [for reviews, see Silverman, 1986; Izenman, 
1991]. There has been comparatively little work on maximum penalized likelihood methods 
[see, e.g., Good and Gaskins, 1980], despite their potential advantages such as a Bayesian 
interpretation, the ability to combine explicit prior knowledge with the data, the ability 
to combine data from different sources, etc. The situation in density estimation contrasts 
sharply with that of inverse problems and image reconstruction where maximum penalized 
likelihood methods are dominant [see, e.g., Titterington, 1985; Demoment, 1989]. 

In a maximum penalized likelihood (MPL) framework, the density estimate is deter- 
mined from the maximum of 

Q(f) = -£ln(f(xt))-al(f;f0,ß) (1) 
i=l 

as a functional of /. The first term in (1) is the log-likelihood function and the second 
term is the penalty function (alternative terms are regularization functional, or information 
divergence). Here f0 is a default model in the absence of data, /(/; f0, ß) is zero when / = f0 

and monotonically increases as / diverges from f0, a is a global smoothing hyperparameter 
(or statistical regularization parameter), and ß is a local smoothing hyperparameter. 

We propose a Maximum Quantum Entropy (MQE) method for density estimation, which 
corresponds to a choice for the penalty function, IQ. The mathematical structures we use 
originated in quantum statistical mechanics; hence, an alternative name is Quantum Statis- 
tical Inference - QSI [Silver, 1993]. MQE is a variation upon the maximum entropy (ME) 
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methods [Skilling and Gull, 1989] that have been applied extensively to inverse problems 
and image reconstruction. The penalty functions used in ME are various modifications of 
the Shannon entropy of information theory, which in fact originated in the 19th century 
development of classical statistical physics. The penalty function for MQE is the more 
general concept of relative quantum entropy, which was developed [von Neumann, 1927] for 
applications to quantum statistical physics. 

Both ME and MQE enforce desirable properties of density estimators such as global 
smoothing toward a default model, positivity, normalization, extensivity, and convex opti- 
mization. But, in addition, MQE enforces local smoothing by constraining the expectation 
values of differential operators. The maximum local smoothing limit of MQE is traditional 
penalized likelihood [Good and Gaskins, 1980] which does not enforce extensivity. The 
zero local smoothing limit of MQE is classic ME. MQE was applied previously to inverse 
problems [Silver, 1993], where it was shown to improve upon ME wherever local smoothing 
is important. MQE may be compared to an alternative proposal [Skilling and Gull, 1989; 
Robinson, 1991] to smooth ME using 'intrinsic correlation functions' and 'hidden images', 
which does not incorporate local smoothing in the penalty function. 

The purpose of the present paper is adapt MQE to density estimation. The theory 
will be developed within a Bayesian framework referring to [Silver and Martz, 1993] for 
mathematical details. The method is illustrated using textbook data sets [Scott, 1993]. 

2.    MQE Density Functions. 

In MQE, the density function, the constraints and the entropy are all expressed in terms 
of a new concept in statistics, the density matrix. D(x, x') is an oo x oo matrix which is 
real symmetric and positive semidefinite. The density function / is equal to the diagonal 
elements of D, 

f{x) = D(x,x)   . (2) 

D will be determined uniquely by the combination of constraints on / and a maximum 
entropy principle. Without loss of generality, we assume 0 < x < 1 and impose appropriate 
boundary conditions. 

The density matrix, D, can be diagonalized by a unitary transformation, 

oo 

D(x,x')=Y,Mx)wnM*')   • (3) 
71=0 

The V>n are orthonormal and complete forming a Hilbert space. The weights satisfy wn > 0. 
Hence, 

00 

/(*) = X>„V£(s) > 0   , (4) 
71=0 

and 
oo 

X>n = l   • (5) 
71=0 

(For practical calculations, we will show below that the tpn may be obtained as eigenfunc- 
tions of a linear differential operator, and the wn are related to the eigenvalues.) 



DENSITY ESTIMATION BY MAXIMUM QUANTUM ENTROPY 163 

Linear Lagrange constraints on / may be written in terms of D. Data constraints are 

f1U(x)f(x)dx = E(V) = Tr{VB}   , (6) 
Jo 

where {U)x,x' = U(x)8(x - x'). For example, if the constraints consist of a set of 25(0,-) = 
JQ Oi(x)f{x)dx, then U(x) = J2i*i0i(x) for Lagrange multipliers A;. The normalization 
constraint on / is 

E(l) = Tr{D} = 1   . (7) 

The key constraint is local smoothing, which is defined by the choice of an Hermitian 
differential operator L whose expectation value is the local smoothing constraint, 

oo .! 

E(L) = Tr{LD} = £ wn /   1>n{x)L1>n{*)** 
n=0        J° 

(8) 

We have used quadratic, L2 = -d
2/dx2, and quartic, L4 = dA/dx4, differential operators. 

(We note that there are many other possible choices including z-dependent forms.) This 
explicit constraint applied to D is an implicit local smoothing constraint on /. In ME / will 
have the same singularity structure as U, whereas in MQE / will have smoother singularities 
than U depending on the choice of L. The singularity structure of U is determined by the 
nature of the data analysis problem. For example, for inverse problems U consists of a 
sum of Lagrange multipliers times point spread functions which are most often already 
locally smooth. However, we shall see that for density estimation U consists of a sum of 
6-functions. Then, ME produces an / with ^-function singularities, a MQE constraint on 
L2 requires / to be continuous, and a MQE constraint on L4 requires / to have continuous 
first derivatives. For a more comprehensive discussion see [Wallstrom, 1993]. 

These constraints are still not sufficient to uniquely specify D, so now we invoke a 
maximum entropy principle. The quantum entropy of a density matrix is 

oo 

S0 = -Tr{Dln(D)} = -£[«;„ ln(u;n)]    . (9) 
71=0 

SQ is invariant to unitary transformations of the Hubert space. It is not a relative entropy, 
so that in the absence of constraints all eigenfunctions are equally likely. One can prove 
that SQ is a concave function of D [Wehrl, 1978]. The maximum entropy principle is to 
maximize SQ subject to the constraints of the problem. Using the method of Lagrange 
multipliers, maximize 

Q{T>) = SQ-ßE(L)-E{V) + (p + l)E(l)   , (10) 

where the Lagrange multipliers are chosen so that the constraints are satisfied. The local 
smoothing constraint on E(L) has Lagrange multiplier ß, the data constraint has Lagrange 
multiplier U, and the normalization constraint has Lagrange multiplier /x + 1. 

The maximum of (10) is found at 

D = exp(-H + /zl)    , (11) 
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where 
H = /3L + U   . (12) 

This constitutes an exponential family of density matrices parameterized by U, ß, and 
fi. Within this family, there is a one-to-one correspondence between a choice of density 
function, /, and a corresponding density matrix, D. 

Diagonalizing D, we find that the Vn in (3) are eigenfunctions of H, i.e. 

H^„(x) = £ni>n(x)    . (13) 

The weights are 
wn = exp(-en + /z)    . (14) 

For example, for L2 (12) reads 

_ßd^) + uix)Mx) = £nMx)   ? (15) 

which is analogous to the time-independent Schrödinger equation. Such eigenvalue equa- 
tions may alternatively be derived from variational principles as developed in Sturm- 
Liouville theory. 

The local smoothness of / is adjusted by tuning ß. For reasonable choices of L (such 
as the quadratic and quartic), the en increase monotonically with n and with ß. The 
number of nodes in tpn(x) also increase monotonically with n, so that small n corresponds 
to smoother t(>l(x). For ß = 0 (ME) there is no local smoothing. As ß is increased fewer 
eigenfunctions contribute to (4) resulting in smoother /. 

The normalization of / is maintained by choosing 

/* = -!"   L e~£n       • (16) 

We are now ready to identify the penalty function, IQ, in (1). The penalty function is 
a relative quantum entropy, 

Jc3 = Tr{Dln(D)-Dln(D0)}   , (17) 

where D0 is the density matrix corresponding to the default model f0. This may be regarded 
as a straightforward generalization of the Kuliback-Liebler entropy used in ME methods 
from density functions to density matrices. In the limit of no local smoothing, ß -► 0, 
MQE reduces to ME. Alternatively, let Q0(D) be the entropy variational functional similar 
to (10) whose maximum is at DD. Then 

IQ = QoCDo) - Q0(D)   . (18) 

It follows that IQ > 0. We summarize the mathematical properties satisfied by IQ which 
are critical to its relevance to statistics. 

The concavity property of SQ means that G defined by 

S2SQ = -^ J G{x,x')6f{x)6f(x')dxdx' (19) 
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is positive semidefinite (no negative eigenvalues). The consequence is that one can prove 
duality properties between IQ and its Legendre transform, 

CQ(U;U0,ß) = IQ(f;f0,ß) + jf(x)U(x)dx   , (20) 

which is a cumulant generating functional. First order variations may be shown to be 

SCQ =  ff(x)SU{x)dx        6IQ = J[-U(x) + U0(x)]Sf(x)dx   . (21) 

Second order variations are 

S2IQ = - f G{x,x')8f(x)6f(x')dxdx'    62
CQ = -\ IG-1{x,x')SU(x)SU(x')dxdx'   . 

2 (22) 
Notice the dual symmetry between / and U in these relations, which is analogous to the 
dual symmetry between observables and Lagrange multipliers in traditional ME methods. 

Legendre transform dual mathematical structures in statistics of this form may be given 
a differential geometry interpretation [Amari, 1985]. From (17) lQ(f0;fo,ß) = 0, and from 
(21) dlQ(f;f0,ß)/df = 0 at / = f0. Hence, IQ is an information divergence, and G is a 
Riemann metric in the manifold of /. 

The concavity property ensures a dual (one-to-one) relation between conjugate variables, 
/ and U, 

Sf(x) = - f G-l(x,x')SU(x')dx'   . (23) 

Because of this relation, G_1 may be termed a linear response function. For typical choices 
of local smoothing operator, L, (including the quadratic and quartic) one can demonstrate 
that G~l{x,x') peaks at x-x' = 0 and falls off faster than a power law as | x-x' | increases, 
a property we term locality. The characteristic width of G~x{x, x') is termed the correlation 
length, 7. For L2, 7 oc (/?)1/2. For L4, 7 a (/?)1/4. For example, let G~l be the linear 
response function for no data constraints and a flat default model, i.e. U — 0. Then for 
L2, one can prove G~1{x,x') oc (1 - erf(\ x - x' \ h))h- Figure 1 illustrates the behavior 
of G"1 for quadratic and quartic local smoothing. Note that for quadratic smoothing G_1 

is strictly positive, whereas for higher order smoothing G"1 can have negative components 
at large | x - x' |. The non-linearity of MQE guarantees that / > 0 regardless of the choice 
of local smoothing. 

Readers familiar with density estimation may be tempted to identify G_1 with the 
kernel in a kernel density estimation procedure. Readers familiar with ME may be tempted 
to identify G-1 with the intrinsic correlation function used in the [Skilling and Gull, 1989] 
proposal to correct ME for local smoothing using hidden ME images. However, there 
are significant differences. For example, in both these methods no structure in / can be 
narrower than the width of the kernel or intrinsic correlation functions, whereas in MQE 
the non-linearity permits structure in / which is much narrower than the width of G_1. 

ME (ß = 0) satisfies local extensivity, which means that the penalty function is an 
additive function of the f(x) at each point. However, we often have prior knowledge or 
evidence in the data that / is locally smooth, which violates the local extensivity property. 
MQE relaxes this condition to non-local extensivity, defined as follows. Let 6PQ be a change 
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Figure 1: Linear Response Functions - Gj1 for local smoothing constraints of the form 
LN = dN/dxN, no data constraints, and a flat default model, i.e. U = 0. ß is the Lagrange 
multiplier for the local smoothing constraint on the density matrix. Results are shown for 
quadratic (dashed) and quartic (solid) local smoothing. 

in IQ corresponding to a change 6f* in /. Let the of* have compact and disjoint supports 
separated by much more than 7. Then non-local extensivity means SIQ ~ £« MQ for 
sf - Hi^P- This may be shown by combining the locality properties of G-1 with (22). 
In comparison the MPL method of [Good and Gaskins, 1980] does not obey any form of 
extensivity, because it is equivalent to 7 —► 00. 

These convexity and non-local extensivity properties of IQ satisfy important desiderata 
for both image reconstruction and density estimation. In the latter case non-local exten- 
sivity is compromised only by the added constraint on the normalization of /. Many other 
mathematical properties of IQ have been established in physics contexts [for reviews, see 
Wehrl, 1978; Balian, 1991]. 

3.    Application to Density Estimation. 

We apply these properties of IQ to the MPL problem defined by (1). From (21), the first 
order variation of Q(f) requires that the MPL estimate satisfies 

6(x — x{) 

~1W~ + a(U(x)-Uo(x)) = 0 (24) 

From (22) the second order variation (Hessian matrix) is positive semi-definite, so that 
solution of (24) is a problem for convex non-linear optimization methods [Skilling, 1993]. 

A variety of interpretations of MPL methods exist including ways to estimate hyperpa- 
rameters and quantify error estimates for any choice of penalty function [Thompson, 1991]. 
We specialize to the Bayesian interpretation of MQE. Bayes theorem is 

P[f\{xihfo,a,ß]xP[{Xiyj0,a,ß] 

The likelihood function is 

P[{*i}\f\xP[f;fo,<*,ß] 

N, 

%-}i/]=n/w 

(25) 

(26) 
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The prior probability for / is taken to be 

P[f;f0,a,ß]<xexp{-aIQ(f;f0,ß)}    . (27) 

Then P[f \ {xi};f0,a,ß] is the posterior probability for /, and P[{z,};/0,a,/3] is the 
marginal likelihood, or evidence. We take the best estimate, /, from the maximum of 
the posterior probability which is equivalent to maximizing (1). Thus, the MPL estimate 
is equivalent to a Maximum A Posteriori (MAP) estimate in the Bayesian interpretation. 

The hyperparameters a and ß are estimated from the maximum of the evidence. This 
method is termed type-II maximum likelihood (ML-II) in the statistics literature [Good, 
1983; Berger, 1985], and the evidence procedure in the ME literature. The marginal likeli- 
hood is obtained by integrating Bayes theorem (25) over /. A metric must be used in this 
integration over / in order to enforce invariance to coordinate transformations. The ap- 
propriate choice is the Jeffrey's prior v

/det(aG), which is equivalent to a Riemann volume 
factor for the /-manifold in differential geometry. We evaluate the integral in a Gaussian 
approximation to the expansion of Q(f) in ln(///) about Q{f). The resulting marginal 
likelihood is 

P[{xi};f0,a,ß]<x l xexPQ(/)   , (28) 

where the Ns x Ns matrix M is 

Mn = 
G 1(xj,Xj) 

The first term on the r.h.s. of (28) favors the simpler / of large a and ß, so that it may be 
termed an Ockham factor. The second term, expQ(/), favors the more complicated / of 
small a and ß, and it is termed the data factor. The balance between the Ockham factor 
and data factor determines the optimal hyperparameters, a and ß. We find empirically 
that the ML-II optimization of hyperparameters is convex for all data sets studied so far. 

The covariance of the MAP estimate can be calculated using the same Gaussian ap- 
proximations employed in the calculation of the marginal likelihood. The result is 

We interpret 

J f(x) 

as the number of degrees of freedom in /. One can prove Nj > 0. In the absence of data, 
the prior N$ = T^G"1} is proportional to I/7. This provides a simple interpretation of 
the local smoothing hyperparameter ß, because it determines the correlation length scale 7 
which is inversely proportional to JV|. ME (/? = 0) corresponds to an infinite Nd, which is 
why ME has infinite error bars on individual points of the MAP estimate, /. MQE (ß ^ 0) 
has a finite Nd and finite error bars on individual points. 
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Convergence of density estimation can be monitored using Nd, because the effect of the 
data is to reduce it toward zero. Let ft be the true density function. As Ns becomes large 
one may use the property 

E (JZOixM = Ns J0(x)ft(x)dx   , (31) 

to approximate the integral in (30). The result is 

Ns 
f(*i) *«£g^(M(al + Mr%    - (32) 

In analogy with developments in ME [Skilling and Gull, 1989], we define 

iVs = rr{M(al + M)-1}   , (33) 

as the number of good measurements. Manifestly, Ns > Ng > 0. Then, to the extent that 
/ has converged to ft, (32) and (33) imply that Nd -> aNg/Ns < a. 

One can also derive a fundamental relation between the linear response of the MQE 
MAP estimate to perturbations and the covariance matrix, 

6f{x) = -aJcov[f(x),f(x')]6Up(x')dx'   . (34) 

Here 6UP is an infinitesimal perturbation in U which may be due to changes in the default 
model, changes in the data, changes in other constraints, etc. For example, an infinitesimal 
change in the default model corresponds to SUp(x) = - f G0(x, x')6f0(x')dx'. Putting 
(34) in words, the covariance matrix also describes the sensitivity of the MAP estimate to 
changes in prior knowledge or data. Large errors on the MAP estimate correspond to high 
sensitivity to input information, and small errors correspond to low sensitivity. 

4.    Examples. 

We apply MQE to three textbook examples of density estimation problems: the duration 
of eruptions of the Old Faithful Geyser; the amount of annual snowfall in Buffalo; and the 
Lawrence Radiation Lab (LRL) particle physics data. For each data set, we urge readers to 
examine the corresponding sections of [Scott, 1993] to compare the performance of MQE 
with other approaches to density estimation. 

To obtain the numerical results presented in this paper, we used Newton-Raphson for 
the non-linear optimization and matrix diagonalization of a discrete approximation to MQE 
to calculate / from knowledge of U. The number of pixels (bins) used is indicated directly 
on the figures for each data set. In other words, the raw data were histogrammed prior to 
applying MQE. We chose pixels widths which were much narrower than any structure in /, 
so the discretization should not significantly affect the estimate. All the MQE calculations 
used a flat default model, /„, normalized to unit integral over the range of x. The values 
for the hyperparameters, a and ß, are quoted for data scaled to the range 0 < x < 1. 
The term, optimal estimate, means that the hyperparameters were chosen to maximize the 
marginal likelihood. 
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a=3.02 ß  =.09 Quartic 107 samples 100 pixels log(ML)=-55.6 

2.0 3.0 4.0 5.0 
Duration (minutes) 

Figure 2: Old Faithful Eruptions - 107 measurements of the duration of geyser eruptions 
are displayed as a histogram with 100 bins. The solid line is the optimal MQE estimate ob- 
tained with quartic local smoothing, L4. The dashed lines indicate ± one standard deviation 
errors on the MQE point estimate. 

107 samples 100 pixels 

3.0 4.0 
Duration (minutes) 

6.0 

Figure 3: Old Faithful Eruptions - Comparison of optimal MQE estimates for quadratic 
(solid) and quartic (dashed) local smoothing. The marginal likelihoods (ML) and correlation 
lengths are nearly identical. The quadratic estimate is unsatisfactory because it shows bumps 
at the positions of the data. The bumps are smaller than the error bars in Fig. 2 and not 
statistically significant. Nevertheless, the higher order smoothing of the quartic estimate is 
preferred. 
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Figure 4: Old Faithful Eruptions - Comparison of optimal MQE (dashed) with quartic 
smoothing and maximum entropy (solid) which has no local smoothing. Dots are the data 
histogram. The ratio of marginal likelihoods (ML) favoring MQE over ME is 110. 

Figures 2-4 show results for the duration of eruptions of the Old Faithful Geyser. The 
raw data from 107 eruptions are displayed as a histogram using 100 bins. Note that this 
histogram is not an optimal histogram estimate of /, which would use a much smaller 
number of bins. Rather, this histogram is simply a convenient way to display the raw data. 
In Fig. 2 the solid line is the optimal MQE estimate obtained for a = 3.02 and /31/4 = 0.09 
with quartic local smoothing. The dashed curve shows ± one standard deviation point 
estimates of errors on the MQE estimate, which are calculated from (29) according to 
<r(x) = \/Cov[f{x),f(x)}. These provide only a partial representation of the full covariance 
matrix for the MQE estimate. The reader can be the judge of whether the optimal MQE 
estimate and errors are credible. 

Figure 3 shows the effect of a different choice for the local smoothing constraint. The 
optimal MQE estimate obtained with quartic smoothing (dashed) is compared to the op- 
timal MQE estimate obtained with quadratic smoothing (solid). The quadratic estimate 
appears to have bumps at the positions of the data, where the quartic estimate appears to be 
smooth. Therefore, the quadratic estimate is much less credible than the quartic, because 
the true density function should not depend on how the data were measured. However, one 
may argue that the apparent differences between quadratic and quartic are not significant. 
The MQE error bars are larger than the bumps. The derivative of the quartic estimate 
would also show bumps at the positions of the data. And the correlation lengths, 7, for 
the two estimates are nearly identical. (Let 7 be defined as the half-width-half-maximum 
of G_1. Then from Fig. 1 and the values of ß in Fig. 3 we find 72 = .105 and 74 = .099.) 
Indeed, there does not appear to be any Bayesian preference for the type of local smoothing, 
and the marginal likelihoods for the quadratic and quartic estimates are nearly identical. 
Nevertheless, we prefer, and we will use, quartic local smoothing f@Ajphe rest of the figures 
in this paper. In Bayesian language, a strong hyperprior favors higher order smoothing. 
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Figure 4 compares the optimal MQE estimate (dashed) with the optimal ME estimate 
(solid) which has no local smoothing. The ME estimate consists of spikes at the positions 
of the data, and it is not credible. In this case there is a strong Bayesian preference; the 
marginal likelihood of the optimal MQE estimate is 110 times larger than the marginal 
likelihood of the ME estimate. This observation poses a question: Why does ME often 
work extremely well for inverse problems? As discussed earlier, the smoothness of / is 
determined by a combination of the smoothness of U and the local smoothing. The f/'s for 
inverse problems consist of a sum of Lagrange multipliers multiplying point spread functions 
(or kernels), whereas the J7's for density estimation are sums of ^-functions. Typical point 
spread functions are already locally smooth, so that additional local smoothing is much 
less important. However, MQE would still be preferred over ME for most inverse problems 
because it provides point estimates of errors on /. 

The data in Figure 5 are measurements of the annual snowfall in Buffalo over a period of 
63 years. The data are displayed as a histogram with 100 bins. The optimal MQE estimate 
(solid) consists of a single bump. This data set has been studied using almost all available 
density estimation methods, and the results are displayed in [Scott, 1993]. Almost all 
methods, with the exception of a cross validation kernel method, produce density estimates 
showing three bumps. Figure 6 shows a non-optimal MQE estimate (dashed) with three 
bumps obtained by tuning the local smoothing hyperparameter down from large ß1?4 to 
ß1'4 = 0.1. The parameter a is still adjusted to maximize the marginal likelihood. However, 
the optimal MQE estimate with one bump is 23 times more likely (judged by the ratio of 
marginal likelihoods) than the non-optimal MQE estimate with three bumps. And the error 
estimates are as large as the bumps, so they have no statistical significance. 

cc=.335 p  =0.4 Quartic 63 samples 100 pixels 

0.000 
50.0 

Inches/Year 
100.0 150.0 

Figure 5: Buffalo Snowfall - 63 measurements of the annual snowfall in Buffalo are 
displayed as a histogram with 100 bins. The solid line is the optimal MQE estimate obtained 
with quartic local smoothing. Dashed lines are the ± one standard deviation error bars on 
the MQE estimate. 
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Figure 6: Buffalo Snowfall - The solid line with a single bump is the optimal MQE 
estimate obtained at large ß. The dashed line with three bumps is a non-optimal MQE 
estimate obtained by reducing ß1/4 to 0.1. The single bump estimate is 23 times more likely 
than the three bump estimate. 

The Buffalo snowfall is the only one of our three examples where optimal MQE agrees 
with the penalized likelihood method of Good and Gaskins using quartic smoothing. The 
equivalence means that Eq. (4) is dominated by the lowest en eigenfunction. The only 
operative constraint is local smoothing and the quantum entropy is almost zero. This 
corresponds to a marginal likelihood which has a flat maximum for 0.4 < ß < oo. For 
our other data sets, we find that this Good and Gaskins limit of MQE is not optimal and 
produces oversmoothed estimates. And for simulated / with a lot of sharp structure, the 
entropy constraint is dominant and local smoothing is unimportant. 

Finally, Figs. 7 and 8 show MQE results (solid) for the LRL particle physics data. The 
data consist of 25752 counts histogrammed into 172 10 MeV wide bins. The gray area in 
Fig. 8 indicates the ± one standard deviation point errors on the MQE estimates. There 
are many counts in each bin, so the likelihood function can be approximately related to a 
X2 statistic. We find for the optimal MQE estimate that x2 = 146.4 and that Ng = 43.3, 
where Ng is the number of good measurements given by (31). This is in rough agreement 
with the relation, x2 + Ng ~ Nbins, expected from an analysis of the ML-II procedure for 
inverse problems [Silver and Martz, 1993]. Note also that the quantum entropy, SQ = 1.78, 
indicates that approximately six eigenfunctions are dominating the MQE estimate in (4). 

We regard these maximum quantum entropy (or quantum statistical inference) results 
for density estimation as very encouraging. The introduction of quantum entropy dra- 
matically expands the potential applications for maximum entropy methods. Considerable 
further testing and development will be needed to realize the full potential of quantum 
methods for statistics, inverse problems, and image reconstruction. 
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Figure 7: LRL Particle Physics Data - Data consist of 25752 counts histogrammed into 
172 10 MeV wide bins. The solid line is the optimal MQE estimate. 
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Figure 8: LRL Particle Physics Data - Detail of Figure 7. The boundaries of the gray 
area are the ± one standard deviation errors on the MQE estimate. 
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ABSTRACT. The sum and product rules are consequences of associating a single number with a 
conditioned proposition: the Boolean algebra of the propositions induces an algebra for the numbers, 
which with a few additional assumptions gives the sum and product rules. We call the associated 
number probability, and can interpret it as representing strength of belief that the proposition be 
true. The extra assumptions are empirical and cannot be derived from logical argument alone; 
consequently, probabilistic logic has a semi-empirical basis, and is not a pure consequence of consis- 
tency requirements. In addition to the capacity for belief we also have the capacity for desire: but 
numerical measure of the strength of desire that a conditioned proposition be true does not obey 
the same laws, because the additional assumptions which led for probability to the sum and product 
rules do not hold for desirability. The equations, whose solution gives a calculus of desirabilities, are 
derived. The notion of desirability clarifies the relative status of probabilistic inference and decision 
theory, in which probability and desirability are combined when the desirability that a proposition^ 
be true is conditioned on an action of our choosing. Desirability is then known - among other names 
- as loss function; however, it remains a valid concept when there is no choice of action. It is a 
valuable clarifying notion. 

1.    Propositions and Numbers Associated With Them. 

Define a proposition as something which we perceive as either TRUE or FALSE. This is 
the bottom line, since if we try instead to think of something as taking either of two values 
(0 or 1, say, or Heads or Tails), it is still TRUE or FALSE that the variable takes one 
value and not the other; consequently, associated with the proposition is a truth variable 
whose value is either TRUE or FALSE (though we might not be certain which). Even if 
we are foolhardy enough to generalise the notion of a proposition to something we perceive 
as TRUE or FALSE or SOMETHING ELSF, whatever that may be, then we still see it 
as uniquely TRUE or FALSE that the generalised proposition is TRUE, or FALSE, or 
SOMETHING ELSE. To go any deeper we must investigate the nature of truth, which 
is not the aim here. Now, the strength of belief that a proposition is TRUE, conditional 
on the truth of other propositions, is what Bayesians mean by its probability. (Objectors 
to the Bayesian view should replace the word 'probability' throughout by 'belief-strength'; 
nothing else will change.) Since we can conceive of one strength of belief being greater than 
another, and since we require these to be transitive, an ordering exists: probabilities can 
be placed along a line, and brought into correspondence with real numbers ordered along 
that line. Probabilities are representable by real numbers. 

The same argument, and real-number representation, applies to desirabilities - the 
strengths with which we want propositions to be true, conditioned on the truth of other 
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propositions. In particular, if we are about to make one of several possible actions, the 
conditioning information might include the action we take. This is the first step in a decision 
theory, of which action to take; the concept of desirability makes clear the historically 
confused relationship between inference and decision theory. 

Setting aside the interpretations which we, as beings capable of belief or desire, give to 
these numbers, the idea is to associate real numbers with conditioned propositions. The 
truth values of the propositions obey Boolean algebra, known to Aristotle and the ancient 
Greeks, and familiar today in the design of logic circuitry. This algebra of the propositions 
induces an algebra for the numbers associated with the propositions. In a robot whose 
circuitry is designed to simulate human action in uncertain conditions, these numbers will 
have some physical representation, such as voltage, and that voltage is a number. The first 
worker to explore the connection between the Boolean calculus of propositions, and the 
corresponding calculus of the numbers, was R.T. Cox, in 1946 [1]. We shall investigate this 
connection in detail here. 

Cox has also advocated a calculus of questions [2], to which the truth of the propositions 
are the answers; the questions have a quantitative, numerical bearing on each other. This 
is not helpful, because we are interested in inference from given information, not given 
questions. 

We divert briefly to discuss non-Boolean calculi of propositions. Much has recently 
been written, for example, on 'quantum logic', which focusses on 'both ... and' rather than 
'either ... or'. Logic is a mode by which human beings perform reasoning and, in the absence 
of evidence that any particular logic is hard-wired into the brain (which operationally is 
just a neural net), it is perhaps culturally assigned. I have no idea what it means to say 
that something is both TRUE and FALSE - that I am in both Cambridge and Oxford 
at the same instant, or that an electron is both spin-up and spin-down (these statements 
are neither more nor less unreasonable, since logic does not distinguish size) - but it is 
possible that the statements would convey meaning to, say, a Martian. Of course, how 
someone brought up in a quantum culture communicates with someone brought up in an 
Aristotelian one remains a problem; hence 'quantum logic' will never be a satisfying solution 
to quantum paradoxes in our Aristotelian culture. Aristotelian cultures are perhaps better 
placed to study systematically the correlations, or patterns, occurring in the natural world 
('science'). It seems, though, that logic is a practical subject: to see which logic is in use on 
any planet, we have to observe its logicians. This is in fact perfectly natural, since logic is 
concerned not with nature, but with the language we use to describe it: with epistemology, 
not ontology. 

In analysing the differing logics, we perforce use our own logic, a process I call intro- 
spection. It might be that Aristotelian logic, uniquely, is singled out through introspection. 
The earlier comment about TRUE, FALSE and SOMETHING ELSE is a start on analysing 
this. If so, Aristotelian logic is compulsory, and has nothing to do with culture. 

Ending this speculative diversion, we return to Boolean logic, and examine the corre- 
sponding numerical calculus. For a proposition X, the truth variable, which takes values 
either TRUE (T) or FALSE (F), will be denoted vx- We begin by associating a single 
number with the truth of a proposition, conditioned on the truth of another; for proposi- 
tion X, conditioned on the truth of proposition Z, denote this number n[vx = T\vz = T]. 
The conditioning solidus is to be read as ''supposing that'*, not "given that".   We now 



BELIEF AND DESIRE 177 

employ the conventional shorthand of writing 'X' to mean vx = T; it follows that X means 
VY=T, or, since X is the negative of proposition X, that vx = F. Accordingly, our num- 
ber is written as nX\z\ ft should be borne in mind that its dependence on X is parametric, 
through vx- For joint propositions, expressed through the logical product, we take it that 
nXy\z is expressible in terms of the four further numbers nx\z, ™Y\z, ^X\YZ and nY\xz' 

nXY\z = F(nx\YZ> nY\z, ny\xz-> nx\z)- C1) 

The commutativity and associativity properties of the truth values of propositions now 
induce constraints on the function T. Commutativity (XY = YX, in shorthand) implies 

that nXY\z = nYX\Zi so tnat> fr°m (*)> 

F(q,r,s,t) = T{s,t,q,r). (2) 

Associativity, the condition that A(BC) = {AB)C = ABC, implies that if we decompose 
the number corresponding to the triple product ABC in differing ways, using (1), the 
results must coincide. (Products of greater than three propositions are then automatically 
associative.) In decomposing nABC\D, define numbers for the twelve single conditioned 
propositions as 

(3) 

One decomposition is 

nABC\D = F(nAB\CD,nC\DinC\ABD,nAB\D), (4) 

which, on further decomposing the double products on the RHS, gives 

nABC\D = HH<*,l*,ß>v),X,1,HW,P,T)). (5) 

An alternative decomposition is 

nABC\D     =    F{nA\BCDinBC\D,nBC\ADinA\D) (6) 
-   T(a,F(v,x,W),nßM,PM. (7) 

By equating the RHS's of (5) and (7) we obtain a functional equation for F, involving 
the twelve variables (3). These variables are not independent of each other: the equation 
must be solved jointly with the functional equations obtained by permuting A, B and C 
in this analysis, and with the functional equations of commutativity, nAB\D = nBA\D (and 
two permutations), and nAB\CD = nBA\CD (and two permutations). There are no further 
simultaneous equations, although any generality in the solution for T must conform to 
certain special-case constraints; for example, if D tells us that C is true (the implication 
D _» c), which in truth values is VCD = «D, then CD can be replaced by D throughout, 
and nc\D... 1S *he number corresponding to TRUTH of C. 

a =     nA\BCD T =    nA\D 

ß =     nB\ACD e =    "B|D 

7 =    nC\ABD X =    nC\D 

A =   nA\BD V =    nA\CD 

/* =    nB\CD p =    nB\AD 
V =    nC\AD £ =    nC\BD 
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The analysis of Cox [1] (which is in a specific context) tells us that a solution for T is 

Hl,r,8,t) = *-\*(q)*(r)), (8) 

provided that $ and its inverse $"a are unique functions of their arguments, so that the 
corresponding mapping is 1:1. (Uniqueness is often wrongly held to mean that $ is strictly 
monotonic; in fact, specific branches of non-monotonic functions suffice.) Direct verification 
readily indicates that (8) is a solution when n and $ are multi-component entities, provided 
that the mapping remains 1:1. By analogy with (8), we recognise that further solutions are 

^■(?,r,Ä,<) = *-1 (*(?)*(«)) (9) 

and 

F(q,r,s,t)=$-1($(r)$(t)). (10) 

The commutativity condition (2) gives a new equation relating q, r, s and * when the 
solution (8) is substituted into it. Solutions (9) and (10) are invariant under the symmetry 
(2). 

We now exploit the commutativity relation (2) to write one of the four arguments of T 
in terms of the others. We can eliminate either of the 'correlated' pair nx[YZ, nY,xz, to 
give, for example, 

KXY\Z = F*(nx\YZ, nY\z, nX\Z), (11) 

or either of the 'uncorrelated' pair nx]z, nY\Z, to give, for example 

*XY\Z = ?**{nX\YZ, nY\Z, nY\xz). (12) 

Although this procedure breaks the X ^Y symmetry, there are now only three arguments 
on the RHS's of (11) and (12). However, the functional equations for T* or T" are no 
simpler than for T. 

2.    The Calculus of Probability. 

Now let us be specific and interpret the number n as representing strength of belief; hence- 
forth we denote it p. Let proposition Z include the implication "X is TRUE if Y is TRUE", 
or Y -> X; written in truth values, this is vXY = vY. Then vx = T\vYZ = T, and px,YZ 

represents the strength of belief one has in the truth of something that is certainly TRUE. 
This is clearly a unique number, independent of aU details of proposition X, and we denote 
it PT- The decomposition (11) becomes 

PY\Z = F*(PT,Py\z,Px\z)- (13) 

Since nothing is stated about Y - only about X\Y - relation (13) must hold for arbitrary 
PY\Z, so that the RHS of (13) is independent of its third argument, and 

F*(pT,r,s) = r. (14) 

This relation constrains the function T*. There is no simplification or constraint upon 
taking Z to contain the converse implication UY is TRUE if X is TRUE". By taking Z to 
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xy 

Figure 1: Interdependences Among Logical Propositions. 

tell us that Y is TRUE, it follows that VXY = vx, and that vyz = vz, so that (11) reduces 
to 

7r*(q,PT,q) = q- (15) 

Upon taking Z to tell us that X is TRUE, a special case of (14) is all that results. We 
cannot take Z to tell us that Y is FALSE, since this would contradict the conditioning 
statement that vyz = T in the first argument of T* in (11). By taking Z to tell us that X 
is FALSE, (11) reduces to 

f*(PF,r,pF) = pF, (16) 

where pF is the number assigned to FALSEHOOD, which like pr is unique. No further 
constraints on the function T* can be generated from special cases. 

We now make an assumption: that T*(q, r, s) is fully independent of its third argument, 
whether or not the first argument takes the special value pj. This means that 

PXY\Z = F\PX\YZIPY\Z)- (17) 

The ultimate justification for this step is practical: simplicity is preferable, and the logic 
system arising from (17), programmed into a robot, proves sufficient to emulate human 
logical reasoning. There is in addition a persuasive, albeit not conclusive, theoretical argu- 
ment, which is illustrated using the tree diagram of Figure 1. In order that XY be TRUE, 
given Z, it is first necessary that Y be TRUE, given Z; consequently the probability p(Y\Z) 
is required. This gets us halfway along the top path of Figure 1. In order to proceed to 
XY, we require now that X be TRUE, given Y (and Z), so that p{X\YZ) is needed. If, 
however, Y is FALSE, then XY is FALSE whatever the status of X, so that p(X\Z) is not 
needed. Figure 1 also indicates why we did not include negations, such as p(X\YZ), in the 
RHS of (1). 

Purported proofs of (17) by logic alone have been given by Tribus [3], and by Smith and 
Erickson [4] (from which Figure 1 is drawn).  However, Tribus calls T* by the names F? 
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and FQ, and on examination simply gives no reason to discount either. Smith and Erickson 
call it F5 (or Fw) and present two arguments: the first is that the constraint (14) causes 
the third argument of T* to drop out whatever the value of the first argument, which is 
trivial to disconfirm by counter-example; the second is based on an assumption that the p's 
of two arbitrary conditioned propositions are equal, which is unjustified. 

Nothing is made simpler by choosing to work with T** (from (12)) instead of T*. Smith 
and Erickson [4] call this function F& and give a (similar) flawed argument for dropping 
the third argument; Tribus [3] calls it Fs and objects that it becomes ill-defined in special 
circumstances which, in fact, condition one of its arguments upon both truth and falsehood 
of the same proposition at once. This is enough to give any algorithm indigestion: that the 
error is immediately exposed is a valuable warning flag, not a vice. 

It is easy to show that, if PXY\Z 
1S assumed to depend on only two of PX\YZI PY\ZI PX\Z-> 

then (17) is the only choice which makes any sense: for example, dependence on only pY\z 
and Px\z fails to allow for correlations between Y and X, so that any interpretation of the 
numbers in which we employ correlations - such as probability - cannot be described. This 
argument is not a special case like (14), but is, again, practical. 

Our assumption that PXY\Z depends only on PX\YZ and PY\Z (or equally on the 'other' 
pair pY\xz and px\z) is where Cox [1] came in. The assumption causes the function Jrt to 
decouple from T: by equating (5) and (7) and suppressing the last two arguments of T', we 
have 

^t(^t(a,/x),x) = ^t(a,^t(M,X)) (18) 

where a, /x and x can be varied independently. This equation, known appropriately in the 
lore of functional equations as the associativity equation, has a long history [5]. Its general 
solution was quoted at (8): 

?*(q,r) = *-1($(q)*(r)), (19) 

where $ and its inverse, $_1, are unique but otherwise arbitrary functions. The solution 
is exchangeable with respect to q and r. The easiest derivation of (19) proceeds by some 
elegant sleight of hand involving differentiation with respect to the arguments of ?\ and 
is given by Cox [1] and Tribus [3]. Direct substitution immediately verifies, however, that 
either side of (18) is equal to $-1($(a)$(/i)$(x)); since this procedure does not involve 
differentiation, (19) is a solution - though not necessarily the general solution - irrespec- 
tive of differentiability. (A tentative solution can always be made rigorous by successful 
verification!) That (19) is fully general is proved by Aczel [5], who constructs it as the 
general solution using a standard iteration technique from the theory of functional equa- 
tions; a tutorial exposition of this analysis, eschewing the crabbed language of modern pure 
mathematics, is given by Smith and Erickson [4]. 

In summary, we write our solution of (17) in the form 

$(PXY\Z) = $(PX\YZ)HPY\Z)- (20) 

By deleting the third argument of T* in the special results (14) and (15), we have the 
further condition 

T\pT,r) = *-1(*(w)*(r)) = r, (21) 

from which it follows, operating with $, that ($(j>r) - l)$(r) = 0 for all r, so that 

*(w) = 1. (22) 
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Likewise, (16) tells us that 
*-\*(PF)*(T)) = PF, (23) 

and by operating on both sides with $ we have $(pi?)($(r) - 1) = 0, so that 

*(PF) = 0. (24) 

Since our results involve p and $ only in the combination $(p...) we can, without any 
change of content, absorb the arbitrary function $ into the number p. For example, suppose 
that $(r) = ^r; then (20) becomes 100pxY\z = PX\YZPY\Z, and we have pr = 100, 
PF = 0. Here, p represents probability on a scale from 0 to 100, as in percentages; but the 
content of the theory is clearly the same as on a scale from 0 to 1. Henceforth we denote 
*(p...) by P, so that (20), (22) and (24) become 

PxY\Z = Px\YZPY\Z, (25) 

PT = 1,        PF = 0. (26) 

What has happened is that the arbitrariness in the representation of strength of belief - if p 
represents it, so does any function of p - has been reduced: we work with that representation 
which satisfies (25) and (26). Arbitrariness has not been completely removed, however, for 
(25) and (26) are invariant under p -»■ pe, and this lesser ambiguity persists further in the 
analysis. 

We recognise (25) as the product rule, and (26) as the standard values for probabilities 
of propositions known to be TRUE or FALSE; these values arise from the analysis, and 
are not merely conventions. Bayes' theorem follows on interchanging X and Y in (25) and 
equating the results: 

Pxpz = £V|*z (27) 
?X\Z rY\Z 

This is in fact the relation corresponding to (2) above. It states that if TRUTH of Y makes 
more probable the TRUTH of X, then the converse holds. Bayes' theorem corresponds to 
a great deal of intuitive reasoning [3]. 

We now make a further assumption: that the probability corresponding to TRUTH of 
a proposition can be extracted if we know the probability corresponding to TRUTH of its 
negation. This is clearly a desirable feature of our probability theory: 

Px\z = G(PJ]Z). (28) 

Since double negation returns a proposition to itself, the double application of G is the unit 
operator: write X = Win (28) and make the temporary change in notation PX\z —> P(X), 

so that P(W) = G(P(W)) = G(P(W)) = G(G{P(W))), or G(G(r)) = r, or G(r) = G"1 (r): 
G is its own inverse. This condition is satisfied by any single-valued function G(x) which 
is unchanged on reflection in the line y = x. We also require, from (26), that G(l) = 0, 
G(0) = 1. 

Further conditions on the function G follow from the requirement that the lojical sum 
of propositions, which is related to negation through the logical relation A + B = AB, 
be commutative and associative.   First, commutativity: we use (28), and (25) and (27), 
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to express Px+Y\z in terms of PX\Z, PY\Z and PXy\z-> and demand that the result be 
exchangeable in X and Y. Using our revised notation, we have 

P(X + Y)   = P{XY) (29) 

= G(P(XY))  (30) 

= G(P(Y)P(X\Y))     _ (31) 

= G(G(P(Y))G(P(X\Y)))_ (32) 

.   G(G(W)e(fö^pl)) (33, 
=   G(G(P(.))G(mffip)) (34) 

Upon defining a; = P{X), y = P{Y), m = P{XY), and exchanging X and Y and equating 
the result to (35), we have the functional equation 

G,^)=GWG(§!), 
where z, y and m are all independent. To solve this we put m = 0 (recall that G(0) = 1), 
giving the equation 

Define further x' = G(x), y' = G(y), so that, on combining (37) with self-reciprocity of G, 
we have 

Cox [1] and subsequently Tribus [3] derived equation (38) in less direct ways. They then 
showed that the solution which satisfies G(l) = 0, G(0) = 1 (and self-reciprocity, which 
follows upon putting one of x' and y' to unity in (38)) is 

G(r) = (l-ref/( (39) 

where £ is arbitrary Aczel [5] again derives (39) without assuming differentiability. It is 
readily verified that this solution satisfies the full functional equation (36) (we would be in 
deep trouble if it didn't), so that (28) becomes 

P(X)e + P(X)'= 1 (40) 

and (35) simplifies to 

P(X + Y)< = P(X)e + P(Yf - P(XY)e. (41) 

We take £ = 1 and so define uniquely the representation of strength of belief, or probability, 
with which we work. Written in full, (40) and (41) become 

px\z + Px\Z = l, (42) 
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px+Y\z + PXY\Z = px\z + PY\Z- (43) 

Equation (42) is the well-known sum rule of probability. The result (43), which reduces to 
(42) if Y — X, automatically ensures associativity of the logical sum, since 

PA+{B+C)\D     = PA\D + PB+C\D - PA(B+C)\D (44) 

= PA\D + PB\D + PC\D ~ PBC\D ~ PAB+AC\D (45) 

= PA\D + PB\D + PC\D - PBC\D ~ PAB\D ~ PAC\D + PABAC\D (46) 

= PA\D + PB\D + PC\D ~ PBC\D ~ PAB\D ~ PAC\D + PABC\Di (47) 

which is exchangeable with respect to A, B and C. The step from (46) to (47) follows from 
the logical relation VAA = VA ■ 

It is often useful, in Bayes' theorem (27), to use the sum rule to rewrite Py\z-, on the 
RHS, as 

PY\Z    =    PY\z(PX\YZ + PX\Yz) (48) 

=    PXY\Z + PXY\Z (49) 

=    PY\XZPX\Z + PY\XZPX\Z- (50) 

Propositions of the type "the tree is between height h and h + rf/i" enable quantitative and 
continuous parameters to be handled. 

We have now derived the product and sum rules of probability. Our derivation has been 
based on the identification of a probability with the TRUTH of a conditioned proposition: 
the Boolean algebra of the propositions then induces an algebra for the probabilities, and 
this gives the product and sum rules. However, some further assumptions based on experi- 
ence, not logic, had to be made: that PXY\Z 

need depend only on two of Px\Z: VY\Z-> Px\YZ 
and PY\XZ- Also, it was taken that the probabilities corresponding to TRUE and FALSE 
propositions were independent of the nature of the proposition; and that the probability of 
a proposition can be expressed uniquely in terms of the probability of its negation. All well 
and good; but now let us turn our attention from probability to desirability. 

3.    Desirability, and Decision Theory. 

In fact, desirability does not obey Bayes' theorem. To see this, we compare experimen- 
tally Bayes' theorem for desirabilities with practical, human reasoning. Let X denote the 
proposition "I win a large sweepstake", let Y denote "I have debts to Mr. Jones", and let 
Z denote "Mr. Jones is a gangster". Does desirability d obey 

dx\YZ _ dY\xz 9 ,    , 
1 ~ 1  • (51) aX\Z aY\Z 

Clearly desirability can be positive or negative; the negative of desirability is undesirability. 
Now, it is positively desirable to win a sweepstake; and very much more so when one has 
debts to a gangster: the LHS of (51) (considerably) exceeds unity. On the RHS, dY\xz 
is weakly negative; it is not pleasant to have debts, but not serious if they can easily be 
paid off. By contrast, dY\z is strongly negative. So the RHS is positive but (considerably) 
less than unity, and not equal to the LHS. Evidently some of the assumptions specific to 
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probability, made in the passage to Bayes' theorem (27), fail for desirability:  there is an 
asymmetry in the relation between X and Y. 

Asymmetry is a warning that desirability is very different from probability. If dXy\z 
is taken to obey the counterpart of (1) and be expressible as a function of dX\yZ-, dy\z> 
dy\XZ and dX\z then, although commutativity still enables us to eliminate one of these, 
we cannot make the further assumption - leading to the product rule and Bayes' theorem 
- that dependence is on dx\yz and dY\z alone. To make progress we must tackle the full 
set of equations for T, referred to after (7). This is an important task for the future. 

Further differences between desirability and probability emerge. It is not the case that 
the desirability of a proposition known to be TRUE (or FALSE) is independent of what 
the proposition is, as happens for probability (P = 1 or 0). Therefore the solutions of 
the functional equations must be qualitatively more subtle. They must always be invariant 
under the arbitrary transform d -* $(cQ, however, since if d is a numerical representation of 
strength of desire then so is $(d). To make progress it is best to be aware of these problems, 
but to confront them only as they arise in seeking solutions of the functional equations for 
T. 

Also, there is no reason why d^,z should be deducible from dx\z-, or the converse. 
Clearly the sum rule itself is violated by desirabilities: intuitively it is highly desirable to 
win a raffle, but only weakly undesirable not to. For desirabilities we can expect only to 
write dx+Y\z, like dXy\z, in terms of dx\z, dy\z, dX\YZ and dY\xz- Associativity then 
constrains this dependence; the corresponding functional equation demands study. 

So far we have assumed that probability and desirability are mutually decoupled. Prac- 
tice tells us that probability is indeed decoupled from desirability: it is universally held as 
an error to let what you want to believe influence what you should believe. Wishful think- 
ing, although as old as the human race, is pathological. But is desirability decoupled from 
probability? Perhaps the reason why it is highly desirable, but only weakly undesirable, 
to win a raffle is because it is highly improbable that you win, but highly probable that 
you don't; as fewer people enter the raffle and your probabilities change, it seems more 
undesirable to lose. The issue is not clear. 

When we have a choice of actions, the desirability that a particular proposition be TRUE 
often depends on the action we take. For example, choosing to bet on Heads, on a single 
throw of a coin, makes it more desirable to us that Heads comes up. There accordingly exists 
a calculus of which choice to make: a theory of decision. We take it as axiomatic that our 
purpose is to maximise the expected payoff, in money or desirability. Clearly probability is 
involved somewhere, since if we glean secret information that the coin is biased, we bet on 
the face to which we assign higher probability. The English language includes some single 
words which express this combination of probability and (negative) desirability: risk, for 
example. By considering the assignment of probability, desirability and risk to a conditioned 
proposition, it becomes clear that coupling of desirability to probability is permitted by the 
equations of commutativity and associativity which arise when two numbers are attached to 
each conditioned proposition. We expect to find solutions with one number - the probability 
- decoupled; but symmetry with respect to the two numbers will be broken. 

Using betting to illustrate decision theory has both virtues and vices. The virtue is that 
it is easy to comprehend that more money is more desirable: the relation, although not 
necessarily linear, is readily understood to be monotonic. The vice is that one places one's 
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bets with a bookmaker, who chooses what odds to quote; this extra choice detracts from 
the decision-theoretic problem faced by the punter, because it is game-theoretical. Here, 
though, we are looking only at the punter's interests when faced with quoted odds. (Further 
game-theoretical factors apply when taking account of handicapping. Be warned also that 
the word 'odds' is ambiguous: the bookmaker assigns his own probabilities and his own 
odds O = P/(l - P); but the 'odds' he quotes are different from these and do not satisfy 
the corresponding normalisation condition, in order to give him the expectation of profit 
from equally informed punters and those worse informed. A less fundamental derivation of 
the sum and product rules has been based on this [6].) A comprehensive - and valuable 
- formalism exists for distributing a stake over several horses, given your probabilities and 
the odds quoted at you; here, though, we concentrate on the ideas, rephrasing them using 
the clarifying concept of desirability. Desirability can also be called utility or, when there 
is a choice of actions, the loss function. (In search theory, for example, there is a choice 
of paths, whose desirabilities might be proportional to their lengths.) Like probability, 
desirability goes by many disguises, and the names depend on whether the inventor is 
more optimistic or more pessimistic, and more 'objectivist' or 'subjectivist', in outlook. 
The name desirability, like probability, correctly conveys the idea of a number, assigned 
objectively and interpreted by human consciousness. This is the key to its usefulness as a 
tutorial concept. 

Denote by Bh and Bt the propositions "I bet on Heads" (or Tails), and by Rh and Rt 

the propositions "the result is Heads" (or Tails). Then, given our further information /, 
we construct the four desirabilities d{Rh\BhI), d(Rh\BtI), d{Rt\BhI), d(Rt\BtI), and our 
probabilities P(Rh\I), P(Rt\I), and set up the expected desirability betting on Heads, 

< dh >= d(Rh\BhI)P(Rh\I) + d(Rt\BhI)P(Rt\I), (52) 

and on Tails, 
< dt >= d{Rh\BtI)P{Rh\I) + d(Rt\BtI)P(Rt\I). (53) 

We decide to bet on Heads or Tails according to whichever of these is the larger. 
Parameter estimation is an important example of decision theory. The end result of any 

probabilistic calculation of a parameter is always a probability distribution or density, and 
if we propose to choose a single 'best value' we must specify what we mean by 'best': best 
for what? By best we mean most desirable, and desirabilities are assigned according to the 
task at hand. We choose the value of the parameter, corresponding in (52), (53) to Bh or 
Bt, according to a calculation of this type; as a simple example, the most probable value 
- the mode - corresponds to a <5-function desirability peaked at the greatest probability. 
(This is also what is involved in comparative hypothesis testing.) Finally, whether or not 
a result is 'significant' is a decision, which must involve desirabilities and the information 
from which they are assigned; the question is otherwise incomplete. 

Conceptually, that is all there is to the decision process. However, we have skated over 
the matter of how to assign desirability in the first place, having examined only the inter- 
relation of logically related propositions. Assignment of desirability is utterly an unsolved 
problem; while probability is assigned through a symmetry principle called Maximum En- 
tropy [3,7], no corresponding principle is known for desirability. The usefulness of the 
concept of desirability rests largely on the fact that it transcends decision theory, remain- 
ing useful even when one has no choice of action since there is still a legitimate amount 
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to want something. This in turn clears up the confused relationship between Bayesian 
probabilistic inference, on the one hand, and decision theory on the other. Following the 
influential book of Wald [8], published in 1950, probabilistic inference came to be seen by 
many as a part of decision theory. Others, particularly in the modern 'Maximum Entropy 
- Bayesian' fraternity, see decision theory as a trivial tack-on to probability theory. By 
facilitating dialogue, the concept of desirability indicates that the truth lies in between: 
decision theory is additional to probability, but non-trivially: indeed, its internal logic is so 
much more complicated than probability that it is still hidden. 

4.    Conclusions. 

We have seen that inductive, probabilistic, logic is not a purely theoretical construct, but 
depends at some points in its construction on observational comparison with human rea- 
soning. The notion, parallel to probability, of desirability that a proposition be TRUE, has 
been introduced; the structure of the calculus for desirabilities is more complicated than for 
probabilities, and solution of the full functional equations for T is a key task for the future. 
When desirability is conditioned on actions over which we have choice, it corresponds to 
the loss function of decision theory; decision-making proceeds, as usual, by combining this 
function with the probabilities. The idea of desirability clears up confusion over the relative 
standing of probabilistic inference and decision theory. 
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ABSTRACT. The principle of maximum entropy [MaxEnt] is a powerful information-theoretic 
tool for solving inverse problems. MaxEnt solutions are the most honest answers to ill-posed inverse 
problems in that they have the least amount of structure not inferred by the data. The practical 
estimation of maximum entropy distributions is a difficult numerical problem due to the non-linearity 
of the entropy functional and the large number of parameters to be estimated in most problems. 
A further complication is that continuous optimization schemes do not necessarily give the correct 
MaxEnt estimate when the underlying distribution is discrete. We show how a genetic algorithm 
may be constructed within a framework of Bayesian inference and used to efficient I v search the 
high dimensional parameter distribution space and locate MaxEnt distributions. We illustrate the 
approach by presenting a genetic algorithm to solve Jaynes' dice problem : if we toss a die many 
times and count the average number of dots that show, what were the frequencies with which the 
different faces appeared? 

1     The principle of maximum entropy 

E.T. Jaynes was the first person to fully realize the power of maximizing entropy subject to 
data constraints [MaxEnt] as a means of solving ill-posed inverse problems. The method is 
now a well established technique of data analysis and finds wide-spread application. Loredo 
(1990) provides an overview of recent MaxEnt applications. There are many wavs to iustifv 
MaxEnt : ' 

• Shore and Johnson (1980) provide an axiomatic derivation for maximizing entropy from 
four principles of consistent inference as the only consistent criterion for choosing one 
solution to an ill-posed inverse problem, from many possibilities. 

• Tikochinsky et al (1984) argue that entropy is the only appropriate selection algorithm 
for combining data from reproducible experiments. 

• Shannon (1949) showed that entropy is the only consistent information measure for a 
discrete probability distribution and demonstrated how our knowledge of available infor- 
mation may be combined using mixing entropies and then used to solve the problem at 
hand. 

• Kullback (1959) proposed an entropic method of statistical inference which parallels 
Jaynes' application of MaxEnt to solving problems in statistical mechanics. 
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• The Bayesian way to tackle inverse problems is to express the posterior parameter dis- 
tribution as the product of a parameter prior and data likelihood distribution. Many 
authors have proposed entropic priors from first (physical) principles for applications 
ranging from image reconstruction and image restoration [Skilling and Gull (1984)], to 
geophysics [Rietsch (1977)] and economics [Zellner and Highfield (1988)]. The Bayesian 
formulation produces a distribution of solutions and a particular one (e.g. the most 
likely) may be obtained by maximizing the posterior distribution. This is equivalent to 
MaxEnt if an entropic prior is chosen. 

• Jaynes (1989) himself provides a convincing justification by means of his entropy concen- 
tration theorem : 

If a random experiment has M possible outcomes and we perform the experiment N times, 
the frequencies of occurrence of each outcome {/,-} have entropy — Y^fi l°g /«'■ ^ we 

have m data dj constraining the {/,-} in the form of linearly independent constraints 

y] dji fi = dj   1 < j < m < M 
i 

then F% of outcomes will have entropy outside the interval [Hmax - Vff, Hmax] where 
VH = XM-m-i W- ^e interpretation of this theorem is that, for large N, most feasible 
distributions {/,-} will have an entropy close to Hmax. 

2    Jaynes' dice problem 

A good illustration of the entropy concentration theorem and the MaxEnt method is Jaynes' 
Brandeis dice problem [Jaynes (1989)] which may also be regarded as a pathological inverse 
problem of estimating six parameters from two pieces of data : 

If we toss a die N times and observe that the average number of spots up was 4.5, what 
were the frequencies {n,} with which the six different faces appeared? This statement gives 
us two expectation constraints on {n:} namely Yi n,- = N and Yi i n{ = 4.5 N as well as 
the physical readability constraints that 0 < »t- < N Vi and that ii{ be an integer. 

There are many sets of {?i,} which fit these constraints, in particular 

26 88 134 185 246 321 
34 85 130 178 244 329 
54 79 114 166 240 347 
29 94 128 177 241 331 
39 88 123 172 240 338 

all do. Each distribution of outcomes of tossing the die N times may be made in 

AH 
W 

n\\ • • -n6\ 

ways. As N —* oo, using Stirling's approximation for !, we see that °^N —>■ —/' log / 
where / is a 6-element frequency vector with entries /,■ = jfr. Thus if we repeated the whole 
experiment many times, the distribution with maximum entropy would appear most often. 
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This is surely a reason for choosing that distribution with maximum entropy from the set 
of admissible distributions as the most reasonable answer to our ill-posed inverse problem. 
One way of finding the MaxEnt distribution is to 

Maximize   — f log / 

subject to Af = d 

where 
111111 
12   3   4   5   6 

/ = (fi, ••■,/$)' and d = (1,4.5)'. Introducing two Lagrange multipliers A = {X-[,X-2)' we 
have to maximize 

f'\ogf + X'(Af-d) 

which has solution 
/ = e~A' x 

where A may be found by solving the nonlinear system of (two) equations 

Ae~A'x = d 

Linear systems are usually easier to solve than non-linear ones, so we could start by lin- 
earizing (1). Newton's method provides us with a method of doing this : choose a trial 
Ao and expand (1) in Taylor's series around Ao ignoring quadratic and higher order terms. 
The resulting linear system 

Ae-A'Xn _ (A?i+i _ XnyA fAe-A'xny = d 

may then be solved iteratively. Jaynes presents the MaxEnt solution 

/ = (0.0543,0.0788,0.1142,0.1654,0.2398,0.3475) 

with entropy Hmax = 1.61358. 
The above formulation may be used to solve the general linear ill-posed inverse problem. 

There are some drawbacks with our implementation, however. In the dice experiment 
proposed by Jaynes, the die was tossed N = 1000 times and the above solution is not 
realizable in that we would have had to observe 54.3 occurrences of the side with a single 
spot. In fact, we may estimate the frequencies /,■ to as much accuracy as we like - clearly a 
ridiculous ability given that N is finite! Of course it is our knowledge of /,• given all available 
data that we may state with as much precision as we like, although in many applications, 
the optimal discrete realization which gives rise to the {/,•} may be important. In fact, 
there is no guarantee that the MaxEnt distribution for a discrete problem is even close 
to the MaxEnt distribution for the equivalent continuous problem! For the dice tossed 
one thousand times, truncating the continuous solution produces an infeasible distribution 
(54,79,114,165,240,348). The correct answer [calculated by the program listed in the 
Appendix] is (54,79,114,166,240,347). 
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A second problem lies in the numerical estimation of X. Newton's method is a local 
procedure and we have no guarantee of achieving a global optimum - in fact in the above 
implementation, we wil] climb the closest hill to our starting point A0. 

The presense of noise in the data is also a reality which should not be ignored for most 
"real-world" inverse problems. What we really want is the MaxEnt parameter distribution 
which generates "mock" data consistent with the "real" data. A Bayesian genetic algorithm 
for estimating MaxEnt distributions may help in all three areas. 

3    A genetic algorithm 

Genetic algorithms [GAs] are stochastic optimization algorithms which attempt to maxi- 
mize a fitness (objective) function by finding an optimal model (parameter distribution) 
or set of models. The essence of a GA is that model space is explored by establishing a 
population of models and allowing fit models to exchange information between themselves 
[reproduction]. We shall discuss the workings of a GA in a Bayesian framework which is a 
general approach to solving inference problems and illustrate their use in solving MaxEnt 
problems by considering Jaynes' dice problem : 

A model corresponds to a particular realization of observed face frequencies ^, ■ ■ •, n6 

of the die. We shall code each model as a binary string of 6 X k bits where k is the number 
of bits necessary to represent N, the number of times the die was tossed. We decided to 
only generate feasible models since the unconstrained model space has N6 members and 
even the subspace containing all distributions {n,} with £,• n,- = _V has 

models. A Fortran routine to generate feasible models is listed in the Appendix and was 
used to generate an initial population of one hundred models. 

Models are selected for reproduction according to their fitness. We used the posterior 
parameter distribution as the fitness function. Bayes theorem states that 

In view of Jaynes' entropy concentration theorem, the entropic prior 

p{f) ex exp(-/' log /) 

is appropriate. The same prior is arrived at by adopting the criterion that a prior should be 
as uninformative as possible. With no prior information, Bernoulli's principle of insufficient 
reason would assign a uniform prior likelihood pi = i to the expected frequencies. We know 
that / cannot be uniform but an uninformative prior for / could be achieved by minimizing 
the distance between / and p. Kullback (1959) showed that the appropriate metric between 
two distributions which are frequencies of reproducible trials is the minimum information 
discrimination statistic or cross entropy 

£/< log £ 
^       Pi 
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which is equivalent to an entropic prior for uniform {pi}- 
The data likelihood distribution is unity for our initial model population since they all fit 

the data exactly although their offspring may stray from feasibility and must be punished, 
as is the case in natural populations! To achieve this we made an ad hoc decision to use 
the 7i-norm euclidean distance with associated likelihood distribution 

p(d\f) a exp(-| £i fi ~ 4.5|n) exp(-| £/, - 1|") 

This generalized Gaussian distribution weights both data constraints the same. The nor- 
malization constants have been ignored for the above two distributions as they will be 
incorporated into the constant p(d). 

The model population fitness function was chosen to be the logarithm of the posterior 
parameter distribution, i.e. 

-/' log / - I £; /•• - 4.5|" - | £/« - l|n 

i i 

n may be interpreted as a weighting factor for the data likelihood p(d\f) against the prior 
p(f). The data d define a point in m—dimensional data space. Each model / generates 
another point in data space with a likelihood p(d\f). The relative importance of this point 
as compared to its a priori likelihood p(f) depends on n. For most real (noisy) data the 
feasible region consists of an m—dimensional cloud containing d. The radius of this cloud 
may be modulated by n. In the Jaynes' dice problem, if we choose a less robust metric (i.e. 
n large) the requirement that J2fi- 1 an^ 72* fi = 4.5 exactly is relaxed and we explore 
a larger model space, looking for MaxEnt distributions. 

The GA evolves as follows : two models are selected by drawing random samples from 
p(f\d). A cross-over point is selected at random and the two parent models exchange right- 
most bit strings. The two least fittest models are removed from the population and the 
process continues. Mutation, i.e. the flipping of a randomly chosen bit from a randomly 
chosen model occurs with a probability of 0.01 and prevents stagnation of the model pop- 
ulation around a local maximum of the fitness function. The mutation process is akin to a 
random walk through model space. Figure 1 shows how the. overall performance [maximum 
mode] fitness] of the GA degrades as the process of generating new models becomes less 
evolutionary and more random. 

The above GA has a simple form and performs remarkably well. We assumed the die 
was tossed one thousand times (N = 1000) and the GA was allowed to run for one hun- 
dred thousand generations. Results for two different data likelihood functions (generalized 
Gaussians with n=l and n=2, respectively) are presented in tables 1 and 2. As the data 
constraint is relaxed (table 2), higher entropy models are located. 

4    Conclusions 

GAs have several advantages over deterministic procedures for the estimation of MaxEnt 
distributions : 

• GAs are global optimization procedures which efficiently search high dimensional param- 
eter space for optimal distributions. 
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GA Evolution 
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P(mutation)=0.1 
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Figure 1: Model evolution vs. a random walk 

4.5 
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Generation entropy E; ni E,-*»i n-i n-2 "3 7l4 »5 n6 
1305 
25931 
35291 

1.6010 

1.6135 
1.6155 

1001 

1001 
1001 

4503 
4492 

4495 

57 

58 
55 

72 

87 
90 

85 
106 
106 

196 

166 
166 

283 
226 
226 

308 

358 
358 

Table 1: Fit models for n = 1 

Generation entropy E; ni Et ini »i n-2 "3 7i4 «5 n& 

91 1.6129 1004 4464 68 120 85 129 227 375 
164 1.6147 1008 4488 76 82 85 201 195 369 

27028 1.6159 1006 4507 66 88 101 142 260 349 
89584 1.6304 1009 4488 64 88 101 172 247 337 

Table 2: Fit models for n = 2 
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• The computer code to implement a GA is simple.   Computer storage is modest and 
numerical instability is not an issue. 

• The presense of noise in the data may be easily incorporated using a Bayesian formulation 
of the fitness function in terms of a data likelihood and parameter prior distribution. 

MaxEnt is a powerful technique for data analysis which may be used to produce honest 
answers to ill-posed inverse problems utilizing all available prior information and data while 
remaining uncommited about structure in the solution about which nothing is known. 
The Bayesian formulation is a convenient way of designing the fitness function and model 
selection criteria for a genetic algorithm. 
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Appendix 

subroutine pick(ml, m2, n) 

c Fortran routine to generate consistent samples n 
c subject to the constraints 

c n(l) + n(2) + n(3) + n(4) + n(5) + n(6) = ml 

c n(l) + 2*n(2) + 3*n(3) + 4*n(4) + 5*n(5) + 6*n(6) = m2 
c 

integer n(6), seed 
data seed/3171/ 

1 kl = ml 

k2 = m2 
do i=l,4 

n(i) = int(RAN(seed)*kl) + 1 
kl = kl - n(i) 

k2 = k2 - i*n(i) 

if (kl .It. 0 .or. k2. It. 0) goto 1 
enddo 

n(5) = 6*kl - k2 

n(6) = k2 - 5*kl 

if (n(5) .It. 0 .or. n(6) .It. 0) goto 1 
return 
end 
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parameter (nthrow = 1000, nspot = 4500, emax 

integer n(6) 
1.6) 

c 
c 

c 
c 

Fortran program to exhaustively search for the MaxEnt 

solution to Jaynes' Brandeis dice problem 

do 4 1 = 0,] nthrow 

n(l) = il 

k2 = nthrow ■ - i L 
12 = nspot - il 
do 3 i2 = 0, k2 

n(2) 12 
k3 = k2 - i2 
13 = 12 - 2*i2 
if (13 .It. 0) goto 4 

do 2 i3 = 0, k3 
n(3) = 

k4 = k3 
14 = 13 

if (14 
do i4 = 

i3 

- i3 
- 3*i3 
.It. 0) goto 3 
0, k4 

n(4) = i4 
k5 = k4 - i4 

15 = 14 - 4*i4 
if (15 .It. 0) goto 2 
n(5) = 6*k5 - 15 

if (n(5) .It. 0) goto 2 
n(6) = 15 - 5*k5 
if (n(6) .It. 0) goto 2 

ent =0.0 
do 1 i=l, 6 

x = n(i)/1000.0 
if (x .le. 0.0) goto 1 
ent = ent - x*alog(x) 

continue 
if (ent .gt. emax) then 

emax = ent 

write(6,*)ent, n 
endif 

enddo 
2 

3 
4 

continue 

continue 
continue 

stop 
end 
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ABSTRACT. A package, BayesCalc, is presented that extends the standard possibilities of 
Mathematica. The implemented extensions allow the automatic, symbolic calculation of many op- 
erations needed in the daily application of Bayesian theory. The main feature of the package is the 
symbolic calculation of posterior probabilities. 

Some examples are given to illustrate the proposed package. 

1.    Introduction 
Mathematica 1 is a program for doing symbolic mathematical manipulations by computer. 
These manipulations are performed according to some built-in mathematical rules. Mathe- 
matica allows the user to extend these rules. Here the package BayesCalc is presented. This 
package implements most of the rules needed for the application of Bayesian probability 
theory. 

Because Bayesian probability theory uses only a restricted number of rules, it forms an 
excellent subject for implementation in Mathematica. Furthermore the application of the 
rules of Bayesian probability theory is straightforward. This elegant property further limits 
the complexity of the implementation. 

The main purpose of the presented package BayesCalc is the automatic calculation of 
posterior probabilities. These posterior probabilities are calculated from a number of prob- 
abilistic relations (prior probabilities, sampling distributions, ...) and parameter ranges. 
These probabilistic relations and parameters embody the relevant information / for a par- 
ticular problem. The principal concern of the user is the correct specification of this infor- 
mation. 

In the next section a summary of the most important rules of Bayesian probability 
is given.   Section 3 presents the main features offered by the implemented Mathematica 

* supported by a grant from IWONL, Brussels, Belgium 
1  research associate with the NFWO, Brussels, Belgium 

1 Mathematica is a trademark of Wolfram Research Inc. For details, see [l]. 
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package BayesCalc. No implementation details are discussed in this paper. The technical 
features are considered in [2], which is available from the authors. In section 4 the package 
is illustrated with some examples. 

Notation: 
Mathematica input and output is written in typeset font. The Mathematica user interface is 
simulated by preceding the input lines by «In[n] ;=", and output statements by uOut[nJ=", 
where n is the Mathematica line number. If n=l, no previous inputs to the Mathematica 
package are required. 

2.    Basic rules of Bayesian probability theory 

Bayesian probability theory is based on the application of only two rules [3, 4, 5]: the sum 
rule, 

bp{A + B\I) = bp(A\I) + bp{B\I) - bp(AB\I), (1) 

and the product rule, 

bp{AB\I) = bp(A\I) bp{B\AI) = bp(B\I) bp{A\BI). (2) 

Here A and B are two hypotheses and I embodies the available information. Hypotheses 
A and B may also represent sets of hypotheses. Examples of hypotheses are "parameter 
x has value 10", "it will rain tomorrow", ... The information I includes prior probability 
laws, logic dependencies,... 

Here hypotheses (single or sets) are represented by capital letters (A, B). Parameters 
will be represented by small letters (x,y). 

The basic principle of Bayesian probability theory is to calculate the probability of 
all the unknown hypotheses A conditional on all the supposed known hypotheses B, i.e., 
bp{A\BI). The resulting probabilistic relation bp(A\BI) can constitute a starting point for 
parameter estimation, decision theory, hypothesis testing, etc. 

Another important tool in Bayesian probability theory is the marginalization procedure. 
This marginalization procedure is applied when the probability bp(A\BI) is needed indepen- 
dently of an unknown parameter n, called nuisance parameter. The appropriate procedure 
consists in calculating the joint probability bp(An\BI) of the unknown hypotheses A and 
the nuisance parameter n. The nuisance parameter n is then eliminated (marginalized) by 
integrating the joint probability over the total range of the parameter n, i.e., 

' bp(A n\B I) dn, (3) 
"■min ^    ' 

where nmin and nmax define the range over which the parameter n can vary. 

3.    General features of the BayesCalc package 

The general notation used by the package BayesCalc for a conditional probability is 
bp[{A}, {B}] which stands for bp(A \ B I). Note that the curly brackets "{}" deter- 
mine which hypotheses are on the right or the left of the' conditional sign. If a hypothesis 
consists of a set of hypotheses, the distinct hypotheses are separated by commas. 
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Before any posterior probabilities can be calculated, we need the specification of the 
proper information I. Consider first the specification of probabilistic relations. The general 
procedure to specify probabilistic relations has the syntax: 

def inebp[{A}, {B}, userFunc[A, B]] (4) 

In conventional notation this means: bp(A\BI) = userFunc(A, B). For instance 

definebp[{x},{/i,<r},gauss[x,^,CT]] (5) 

specifies that the measurement x has a Gauss probability distribution with mean \i and 
variance a2, (gauss is a function defined in BayesCalc, but the explicit formula would do 
equally well.) Unconditional probabilistic relations are defined by: 

def inebp[{A}, userFunc(A)] (6) 

Note that if a probabilistic relation exists between two hypotheses A and B, these hy- 
potheses are logically dependent. The package BayesCalc uses this property to determine 
the logical dependencies between hypotheses. It assumes that two hypotheses are inde- 
pendent unless a probabilistic relation of the form (4) links them. Dependencies may be 
declared explicitly by2: 

dependent[{A},{B}] (7) 

The second part of the prior information consists of the definition of the ranges of the 
parameters. The input 

defineRange[a, {b,c}] (8) 

specifies that the parameter a can have values between b and c. 
Once the proper information / concerning the particular problem is specified, the re- 

quested probability relation can be calculated by 

compute[bp[{A},{B}]]. (9) 

The previous form is immediately transformed with the product rule by the package to 

b7RBTIbp[{A'B}1 (10) 

The denominator of this expression is a normalization constant and will in general not 
be expandable in a product of user specified probabilistic relations. As a consequence, 
the denominator will usually be returned unchanged. The nominator will be expanded by 
recursive use of the product rule. This expansion will ultimately result in a product of user 
defined probabilistic relations. 

If the package was unable to find an explicit expression for the joint probability, equation 
(10) is returned. The recursive expansion procedure is explained in [2]. 

2 All hypotheses can be made dependent on each other by default with allDependent []. Independency 
of hypotheses should then explicitly be declared by: independent [{A}, {B}] 
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In numerous applications, the result returned by compute will be sufficient to solve the 
problem at hand. However, sometimes the normalized version of this expression is desired. 
The procedure to obtain the normalized version is: 

noTma3.ize[probFunc[A, B], {A}] (11) 

where probFunc[A,BJ is a general probabilistic relation and {A} is the set of parameters for 
which the normalization is performed3. 

An implementation of the sum rule is also provided by the logical "or" operation. Thus 

Infl] := compute[bp[{or[a,b]}]] (12) 

yields 

Out[lJ = bp[{a}] + bp[{b}] - bp[{a,b}] (13) 

Whenever a logical "or" is detected by the package, the sum rule will first be applied before 
any product rule expansion is attempted. 

A full list of the available functions and the corresponding conventional meaning is given 
in table 1. 

Of course, once the required probabilistic relation is obtained from the package 
BayesCalc, all the built-in Mathematica routines are available for further manipulations. 
For instance one can obtain plots, perform differentiations,... 

4.    Examples 

The routines of BayesCalc are illustrated by two examples taken from an introductory text 
written by Loredo (section 6 of [6]). 

The first problem is the estimation of the Poisson rate b when a number of counts nb 
were observed during a measurement time T. The experiment can be performed to estimate 
the background activity rate b of the sky. In this example, nb is the number of events 
measured from an "empty" part of the sky. The user defines this information by 

Infl] := 
Needs["BayesCalc'"] 
definebp[{b},l/b] (14) 
definebp[{b}, {nb},poisson[nb,Tb]] 
def ineRange[b, {0, Infinity}] 

The posterior probability for the rate is obtained by 

In[2] := compute[bp[{b},{nb}]] (15) 

Outfi] =      ..    ,.  1, =—r Tnb b1*-1 (16) 1 J      bp[{nb}] nb! Exp[T b] v    ; 

3However, the Mathematica integration routines may fail to find the integrals needed for normalization. 
Therefore, some frequently occurring integrals were precomputed and stored in BayesCalc. This also speeds 
up most calculations. 
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Mathematica rule Conventional meaning 

Information specification 
reset [] clears all previous user specified 

probabilistic settings 
allDependent[] make all hypotheses dependent 

on each other 
dependent[{A}, {B}] explicitly make hypotheses A 

dependent on hypotheses B 
independent[{A},{B}] explicitly make hypotheses A 

independent on hypotheses B 
definebp[{A},  {B}, probFunc[A,Bj] bp{A | BI) = probFunc{A, B) 
definebp[{A}, probFunc[Aj] bp(A | /) = probFunc(A) 
defineRange[a,{b,c}] a £ [6, c] 

Probability relations 

gauss[x ,mu,sigma] 

poisson[x,rate] 
uniform[a] 
Jeffreys[a] 

Utilities 

"\     2   siqma?   ' ■>j2irSigma*       *K     2   si9™ 
exp(-rate) ratex -^ 
uniform prior for parameter a 
Jeffreys prior for parameter a 

compute[bp [{A},{B}]] 
normCompute[bp[{A},{B}] ] 

normalize [probFunc[A,B], {C} ] 

marginalizeC probFunc[A,B],{C} 

mean [_probFunc[A], c] 
stdev lprobFunc[A], c] 
moment [probFunc[A],n, c] 

Logical "or" and logical "and" 

] 

calculate probability bp(A \ BI) 
calculate normalized 
posterior probability bp(A | BI) 
normalize probFunc[A,B] 
for hypotheses C 
marginalize probFunc[A,B] 
for hypotheses C 
calculate mean 
calculate standard deviation 
calculate rc-th order moment 

bp[{or[a,b]}] 
bp[{or[a,and [b,c]]}] 
bp[{a,b}] 

bp(a + b | I) 
bp(a +bc\I) 
bp(ab | I) 

Table 1: Overview of routines provided by BayesCalc 
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The normalized version is obtained by 4: 

InfSj :=normalize[%,b] (17) 

The result of this operation is 

»pnb -unb—1 

"*'     ~ Exp[T b] Gamma[nb] (18) 

which equals formula (41) of [6]. 
The next example is an extension of the previous one. A supplementary measure- 

ment is made from a radiation source in the sky with unknown rate s. The number of 
counts observed is n and the measurement time is t. The requested posterior probability 
is  bp(s b | n nb T). Again we define the available information: 

In[l]:= 
reset[] 
def inebp[{n}, {s,b},poisson[n, (s + b)t]] 
definebp[{s},{b},l/(s + b)] (19) 
def ineRange[b, {0, Infinity}] 
definebp[{nb},{b},poisson[nb,Tb]] 
definebp[{b},l/b] 

Simply typing 

In[2] := compute[bp[{s,b}, {n,nb}]] (20) 

will immediately give a result equivalent to equation (45) of [6]: 

rs     r„i        b(-1+nb) E~T b-(»+s)t (b + s)-1+n tn Tnb 

°Ut[2} = bP[{n,nb}]n!nb!  (21) 

The function reset [] clears all user specified probabilistic relations. It is recommended 
to start each new problem with a call of the reset [] function. 

Other examples are given in the BayesCalc package. These examples include the use 
of sum rules, gauss probability relations,... 

5. Obtaining the BayesCalc package 

The package is freely available from the authors. Any constructive criticisms, suggestions 
for improvements can be addressed to the authors and will be highly appreciated. 

6. Conclusions 

The presented BayesCalc package allows the automatic calculation of probabilities in the 
presence of the properly specified prior information. The posterior probabilities are obtained 
by successive applications of the product rule. 

Additional tools are available for the marginalization procedure, evaluation of expected 
values and many other frequently needed operations. 

4"%" is a Mathematica short hand for the last output. 
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A MULTICRITERION EVALUATION OF THE MEMSYS5 
PROGRAM FOR PET 
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ABSTRACT. 
In Positron Emission Tomography (PET) images have to be reconstructed from noisy projection 

data. The noise on the PET data can be modeled by a Poisson distribution. 
In this paper, the performance of MemSysö, a maximum entropy based general purpose recon- 

struction algorithm, on such data is tested. A number of different criteria were applied to evaluate 
the algorithm: quadratic distance to reference images, edge detection capacity, flatness recovery, 
etc. 

1.    Introduction 

Positron Emission Tomography (PET) is a tomographic method to display metabolic activ- 
ity in a slice through a patient's body. The particular construction of the PET scanner and 
the use of a radioactive tracer entail the modeling of the data by a Poisson distribution. 

In PET the most popular reconstruction technique is the Filtered Backprojection (FB) 
algorithm. This reconstruction algorithm is based on a Fourier Transform technique and it 
is extremely fast. However, since the FB algorithm does not account for the noise present 
in the data, the reconstructions suffer from severe noise artifacts. 

To deal with the noise, statistical reconstruction techniques are investigated. The most 
widely used statistical reconstruction technique is the Maximum Likelihood - Expectation 
Maximization (ML-EM) algorithm. The ML-EM algorithm searches for the image that 
maximizes the likelihood of the data. Hence, no prior information about the images is used. 
This ML-EM algorithm is iterative and it succeeds in suppressing the noise. However, when 
the algorithm is iterated too long, the reconstructed image starts to degrade [1]. 

One possibility to avoid the image degradation is the introduction of some prior informa- 
tion. As a general purpose prior the entropy type priors are commonly used. An elaborate 
program that uses an entropic prior is the MemSys5 program developed by Skilling and Gull 
[2, 3]. MemSys5 is an iterative algorithm that is based on a conjugate gradient algorithm 
[4]. 

In this paper the performance of the MemSys5 algorithm is evaluated. A number of dif- 
ferent performance criteria are treated. Some of these performance criteria are: quadratic 
distance of reconstructed image to reference image, edge detection capacity, flatness recov- 
ery. This wide range of criteria is evaluated because the reconstructed image will presum- 
ably serve a number of very distinct purposes. Indeed, the same reconstructed image may 
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in a medical environment serve many different tasks: the visual detection of anomalies, 
the automatic detection of edges by computer programs, the time evolution of the tracer 
concentration in a particular organ of the patient, etc. 

2.    Evaluation criteria 

A number of different approaches to evaluate images are available. First, general distance 
measures such as the quadratic difference between the reconstructed image and the refer- 
ence image (or scaled quadratic difference) can be used. The antagonist of these simple 
measurement criteria is the evaluation of the task performance by the human observer [5]. 
This is a very laborious evaluation method and numerical observers are investigated to 
replace the human observer criterion [6]. Here we will not investigate the human observer 
performance nor the related numerical observer performance. We choose to evaluate the 
general distance functions and some computer task specific numerical evaluators. Of course 
these procedures can only be applied when the reference image is available. Therefore the 
tests are performed on simulated data. These data are obtained by applying a projection 
routine to a known reference image. 

The general distance measures are the quadratic distance dist and the scaled quadratic 
distance sc-dist 

^ = 4D//re/)-//fc))2 (i) 
»=0 

scdist = 1 g [-~(fik) ~ ftef)?) ,   ftCf) * 0, (2) 

where f>re and f\ respectively represent the i-th pixel intensity of the reference image 
and the image estimate at the fc-th iteration. The number of pixels in the image is N. 

The first specific task considered, is the ability of the reconstructed image to reproduce 
edges. To evaluate the performance of the edge detection, the following procedure is em- 
ployed. An edge detector is applied that returns an image with pixel value 1 for border 
pixels and pixel value 0 for the other pixels. This binary image will be called the border 
image. The edge detector consists of the application of a Prewitt gradient operator [7]. The 
result of this operation is a gradient image. Afterwards pixels in the gradient image with 
a value that is at least 10% of the maximum gradient pixel value are selected as border 
pixels. The same edge detector is applied to the reference image and the current image 
estimation fM. 

The border image obtained from the image estimation is then compared to the border 
image of the reference image. The first criterion border J counts the number of edge pixels 
of the reference image that are missed in the reconstructed image. The second criterion 
border JI counts the number of falsely presumed edge pixels in the reconstructed image. 
Both numbers are scaled by the number of edge pixels in the border image of the reference 
image. This results in the criteria 

i N 

border J = -±  Y" b{ref)(l - tfk)) (3) 
trite hnrJer* ^   «        V *    > W true-borders 4- „ 

«=0 
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borderJI =   J__ £(i _ &f'»)&(*> (4) 
true-borders r-L 

where true-borders is the number of border pixels of the reference image, i.e.: 

N 
true-borders = ^ b\re '. (5) 

t'=o 

Where b\ref^ and bf^ are the pixel values of the border images of respectively the reference 
image and the estimated image. 

The next two criteria are concerned with specific regions of the image. Such regions 
are commonly used in medical practice to delineate structures of interest. They are called 
Regions Of Interest (ROI). The first criterion, ROI.l, is related to the visual appearance 
of the reconstructed image. In general a noisy data set will result in a rather noisy looking 
reconstructed image. To evaluate the occurrence of these irregularities a ROI is selected with 
a uniform activity distribution. For this ROI the standard deviation is calculated. Hence, 
ROI.l will be zero for the reference image. For the image estimations the magnitude of 
ROI-1 is an indication of the noise degradation of the ROI. 

This error criterion is defined by: 

EieROifi    \ l RO1
       ieRoi 

(6) 

where /W is the mean pixel intensity value of the ROI of the image estimation. NROI is 
the number of pixels in the ROI. 

The next criterion checks the quadratic difference between the estimated ROI mean and 
the ROI mean of the reference image, i.e.: 

*>« =       *       (£ /f - £ ft'")' ■ m 
UZieRoifi     )   \ieROi izROi        / 

3.    Experiments and discussion 
The software phantom is based on structure intensities obtained in real brain scans. The 

phantom is rendered in fig. 1. It is digitized on a 64 X 64 grid. From this image, projection 
data is created with 64 angular and 64 lateral positions. Then Poisson noise is added to 
the projection data. To alter the importance of the noise effect, three different intensity 
levels are used. The three different mean intensities are: intensity 1: 198, intensity 2: 395, 
intensity 3: 790. 

For the three intensities the different error criteria are shown as a function of the iter- 
ation number. The stopping criterion of the MemSys5 program corresponds to the classic 
maximum entropy solution [3]. However, the iteration procedure of MemSys5 is stopped 
when the number of good degrees of freedom could not be found to acceptable accuracy 
(error code 6). 

A smoothing of the image can be performed by the Intrinsic Correlation Function (ICF) 
[2]. In this paper the ICF is not used. The effect of the ICF on the reconstructed image 
will form the subject of further investigations. 
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Figure 1: Reference image. 

Fig. 2 shows the general distance measures dist and scdist. We observe that in both 
plots a minimum occurs for all the intensity levels. The minima on corresponding curves 
are also located at approximately the same iteration number on both plots. For instance, 
the dist and scdist curves for intensity 3 both attain their minimum at iteration 8. Fur- 
thermore the minimum of the scaled distance curve decreases when dealing with higher 
intensities. This is due to the better signal to noise ratio when the mean intensity level 
increases. Moreover, the iteration at which the minimum occurs shifts to later iterations 
with increasing intensities. This can also be observed for the ML-EM algorithm [1]. 

In the ML-EM algorithm these effects (minimum in the general measure curves, decrease 
of value of minimum when signal to noise ratio improves,...) are attributed to the noise. 
The reconstructed image is believed to overfit the data. Since these effects also occur for the 
reconstructions with the MemSysö program, the same cause can be stated. The MemSysö 
program apparently overfits the data. 

Fig. 3 shows the two border detection criteria: border J and border JI. For all intensity 
levels the bor der J criterion becomes very low (< 5%), indicating that almost all borders 
of the reference image are retrieved by the image estimation. However when looking at 
the bor der JI plot, it is observed that up to 40% of supplementary edge pixels are found. 
Especially, the number of extra border pixels in the first iterations is extremely large. 

The region dependent criteria are shown in fig. 4. The delineation of the region is 
depicted on fig. 1. It is clear that the mean intensity of the region is very well retrieved 
(£0 J_2). Also interesting to note is that the standard deviation (ROIJ.) steadily increases 
as the iterations proceed. This indicates that the noisy appearance continuously increases 
with the iteration number. Despite this visual deterioration the mean intensity is still 
recovered with high accuracy. 

We also observe that the different criteria agree on the optimal iteration number. E.g., 
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Figure 2: General measures as a function of iteration number: (a) dist (b) scdist 
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Figure 3: Border criteria as a function of iteration number: (a) border J[ (b) border JI 



210 P. DESMEDT, et al. 

0.12 

0.02 

0.1 |-r 

8       10      12      14 
iteration number 

(a) 

0.04 

i 1 1 T r- 
Intonsityl -*— 
Intensity 2 -H— 
Intensity 3 -»— 

10     12      14 
iteration number 

(b) 

Figure 4: ROI specific criteria as a function of iteration number: (a) ROI.l (b) ROI.2 

it can be checked that for intensity 2 the optimal iteration number is around 12. This 
agreement of optimal iteration number was already observed when discussing fig. 2. But 
this iteration number also approximately corresponds to a stabilization of the different 
border detection performances (fig. 3). However the occurrence of an optimum iteration 
number is not so obvious for the border detection criteria. Also the mean activity seems to 
be retrieved to sufficient accuracy by iteration 12 (fig. 4 (b)). However fig. 4 (a) illustrates 
that the noisy appearance is by that iteration already increasing at a considerable pace. 

4.     Conclusions 

Different performance criteria were evaluated for the reconstructed images. These images 
were obtained by MemSysö reconstruction of Poisson projection data. 

Most performance criteria yield a similar optimal number of iterations for the different 
intensity levels. However the noisy appearance increases if the optimal iteration is exceeded 
The MemSys5 program seems to iterate too long and thus appears to pass over the opti- 
mal solution.  Apparently an overfitting of the data occurs, despite the use of the classic 
maximum entropy. 

It remains to investigate if the incorporation of the ICF function can overcome this 
problem. 
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ABSTRACT. The application of a maximum entropy reconstruction method to PET images 
requires a long computation time. To overcome this problem multiprocessor machines could be 
used. In this paper we present a parallelization method for the Green expectation maximization 
method. 

1.    Introduction 

Positron Emission Tomography (PET) is an imaging technique to visualize the distribution 
of radio-nuelides in an object. It is generally used as a medical diagnostic procedure to 
evaluate metabolic activity in the human body. Low levels of positron emitting radioactive 
material are introduced in the organ to be studied. Then, a PET scanner is used to measure 
the counts of positron-electron annihilation events. 

In general two classes of algorithms are used to reconstruct the images from the data 
recorded by the PET scanner. The first group consists of analytic algorithms, e.g. filtered 
backprojection algorithms. Other algorithms are based on iterative techniques, e.g. ML- 
EM (maximum likelihood expectation maximization) and maximum entropy reconstruction 
methods. 

Due to the size of the problem, the execution of all algorithms requires a lot of computing 
resources. Various efforts have been made to cope with these difficulties. These efforts 
have led to modern PET scanners with fast implementations of the filtered backprojection 
algorithm. For this image reconstruction method the image is available only few moments 
after the patient has left the scanner. 

But the execution of the iterative methods is still very time consuming. However, the 
iterative algorithms have a number of advantages over other faster algorithms. One of the 
key benefits is the reduction of the statistical noise artifact. 

To overcome the problem of the long computation time multiprocessor machines or gen- 
eral purpose supercomputers could be used. It has been shown [4] that an implementation 
of the maximum likelihood reconstruction method on a general purpose supercomputer is 
indeed very fast, but unfortunately a supercomputer is not affordable for everyone. The 
lower cost/performance ratio of most multiprocessors makes them much more interesting for 

*  supported by a grant from IWONL, Brussels, Belgium 
1   research associate with the NFWO, Brussels, Belgium 

213 

G. R. Heidbreder (ed.), Maximum Entropy and Bayesian Methods, 213-219. 
© 1996 Kluwer Academic Publishers. Printed in the Netherlands. 



214 K. BASTIAENS, et al. 

Figure 1: A simplified model of a PET scanner 

most applications. Based on the same argument we can exclude the development of a ded- 
icated multiprocessor. Instead, we are interested in commercially available multiprocessor 
systems. 

2.    The reconstruction algorithm 

When a positron in the radionuclide recombines with an electron, a pair of photons is 
generated. These photons travel in opposite directions on a straight line. The PET scanner 
counts the number of detected photon pairs. A pair of scanner detectors on a potential 
path of two photons is called a tube. Not all possible tubes are considered for measurements 
of coincidences. Only those tubes that connect a detector with a number of tj detectors 
around the opposite detector are considered. Figure 1 shows a simplified model of a PET 
scanner. 

We will use the following definitions: the image is composed of V voxels, the number 
of photon pairs emitted from the voxel with index i is denoted as A;, the image is denoted 
as a vector A. The number of detected photon pairs are denoted as d,- (i € {1,...,T}), with 
T the number of tubes. The scanner data is represented as a point d in a T-dimensional 
space. ipjti is proportional to the probability that a photon pair emitted from voxel i is 
detected by tube j. The matrix ip (dimension T x V) is called the transfer matrix. 

The solution of the image reconstruction problem is to find the image A that is most 
probable when the data d is observed, i.e. the image for which p(X | d) is maximized. Based 
on the Bayes theorem this probability can be rewritten as: 

p(X | d/) = P(X \ i>(d j XI) 
p(d | /)       • 

The solution proposed by the ML-EM algorithm is to find the image for which p(d | A) is 
maximized, i.e. the probability p(X) is considered independent of A. However, after a number 
of iterations increasing noise can considerably deteriorate the image. The introduction of 
prior information can solve this problem. We will use the entropy prior proposed in [3]: 

p(X | I) ~ exp [ctP(A)] = exp -a 2^ ^im ^i 
i=i 
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and the modification of the EM (expectation maximization) iteration scheme proposed 
in [2]: 

A and d are column matrices and ly is a column matrix with all elements equal to 1; the 
division and '.' (multiplication) operation represent element wise operations. In the case 
of the Liang entropy prior the following is valid [3]: 

-W(A) = l+ln(A). 

The reconstruction starts from an initial guess of the image and the iteration scheme is 
applied a number of times. 

The operation ifrX, which is the computation of the projections of the image on the 
detectors for different angles, requires 0(VxT) operations. The same number of operations 
is required for ipTd, the computation of the backprojection of the data on the image. It is 
clear that an on the fly computation of the elements of the transfer matrix is not preferable. 
However in general the tremendous size of the matrix ip makes it impossible to store it. 

Different effects have their contributions to the value of the elements of ip. These effects 
are e.g. the geometrical shape of the scanner, the attenuation, the efficiency of the detectors, 
the positron range, etc. We can rewrite the matrix ip as a composition of three matrices: 
V> = CAG. The elements of the matrix G (TxV) depend on the geometry of the scanner. 
Actually, this is the projection matrix. The matrix A(TxT) models the attenuation. The 
matrix C (T X T) models, among other things, the finite size of the detectors which has a 
broadening effect on the tubes. The contributions of the other effects are neglected. We 
can now rewrite the iteration scheme as: 

\fc+i _  lZ rnT sTHTt      d       \\ \k 
~ G^A^C^lT + a(lv + ln(A^))-^ A C lCAGA*jj-A " 

The matrix A is diagonal, therefore the actual storage requirement for A is the same 
as for the scanner data. The multiplication with C can be modeled as a convolution with a 
rather small convolution kernel. Only this convolution kernel must be stored. Although the 
attenuation correction and the convolution are not carried out as matrix multiplications 
they will be treated as such in the mathematical exposition. 

This subdivision of tp does not reduce the storage requirements, but when an additional 
assumption is made the storage requirements of G can be reduced significantly. If the 
detector size and the voxel size are nearly equal, the projection of a voxel on a detector 
bank over a certain angle can only cover parts of at most two detectors. In that case it 
is sufficient to store for each voxel-angle pair the detector numbers and the fraction of the 
projection that covers the detector. 

The storage requirements of G can be reduced further by a factor 8 when the recon- 
structed area is restricted to the largest circle that fits into the image [1]. Of course this is 
only applicable when the assumption is made that the object under study is always situated 
in the corresponding area. With this assumption there exist for each voxel-tube pair an- 
other 7 voxel-tube pairs that have the same value for the geometrical factor (the same value 
of Gjti). Figure 2 shows that a voxel-tube pair rotated over a number of times 90° around 
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Figure 2: An illustration of the storage reduction 

the center of the image has the same geometrical value. A rotation of a voxel-tube pair is 
the voxel-tube pair found by both rotating the voxel and the tube. Further, a voxel-tube 
pair derived by mirroring the voxel and the tube with respect to the line x = y also has the 
same value. 

3.    Parallelization of the reconstruction method 

The maximum entropy reconstruction algorithm is an excellent candidate for a data parallel 
execution. Data parallelism means that the data space can be partitioned in such a way 
that the same algorithm can be applied on the different sets of the data. When dealing with 
data parallelism, the challenge is to partition the data in such a way that the distribution 
of the workload over the different processors is optimized and that the communication and 
the synchronization overhead is kept minimal. 

A first data partitioning scheme is easily derived from the iteration scheme. The com- 
putation of the value of a certain voxel is independent of the computation of values of the 
other voxels. Thus, the image can be partitioned in a number of independently computable 
sets of voxels. It is preferable to choose sets of equal size to give each processor the same 
workload. The computation of the values of a certain set still requires the complete scanner 
data set, the projection matrix and the whole image computed in the previous iteration 
step. This way of partitioning is called the partitioning by voxel scheme. 

It is less obvious, but it is also possible to partition the scanner data in a number of 
equal sets. With each part of the data set the image is computed and as a final step these 
individual computed images are added together. This scheme is called the partitioning by 
tube scheme. 

The disadvantage of these partitioning schemes is that they require more operations 
than a sequential execution. E.g. the value d/(CAGAfc) is computed at different times 
in the partitioning by voxel scheme. This can be justified for distributed multiprocessors 
when the communication cost of this value is higher than the computation cost. 

For a shared memory multiprocessor a much more efficient partitioning scheme is pro- 
posed which is a mixture of both schemes: a partitioning by voxel and by tube scheme. 
The iteration scheme can be decomposed in three steps: (1) 7 = G-rATCTlj' + lv, (2) 
6 = ATCr.(d/(CAGA*)), (3) Xk+l = (1/(7 + aln(A*))).(Gr$).A*. 

The first step must be computed only once because the value of a is the same for every 
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Gr d •> 

Figure 3: Illustration of the partitioning: (a) by voxel (b) by tube 

iteration step. The other two steps must be computed every iteration. In the second step 
every operation gives a result of dimension T, in the third step of dimension V. So for 
the second step the partitioning by tube scheme can be applied and for the third step the 
partitioning by voxel scheme. The first step can further be decomposed in £ = ATCTlr 
and 7 = GT£ + aly. The computation of 7 can be partitioned by tubes, while the second 
substep can be partitioned by voxels. 

In the second step the computation of 8 is distributed over the different processors. 
Therefore d, A, C and G are partitioned in sets of rows. In figure 3 the partitioning of the 
(back)projection operation is given as an illustration. Suppose we want to create x different 
tasks, then each task has to process T/x tubes. In the third step 8 is now taken as a whole, 
but 7, Xk and Gr are now partitioned by rows. Each task has now to process V/x voxels. 

The tasks of step three can only start as soon as all the tasks of the second step are 
finished, because the value of 6 is needed. To accomplish this the necessary synchronization 
must be introduced. The iteration step is finished when all tasks of the third step are 
finished. So here again synchronization must be introduced. In spite of the use of shared 
data there is no extra synchronization needed to prevent uncontrolled access, because shared 
data is only read. Each task will only write in its assigned partition of the image. 

For reasons of clarity elementary matrix operations were used in the explanation of the 
parallelization method. Due to the previously presented storage reduction the (back)projec- 
tion operations are no longer elementary matrix multiplications. 

4.    Results 

The major goal of the parallelization of sequential algorithms is to minimize the processing 
time. For a given multiprocessor system one can use the absolute execution time to compare 
different parallelization schemes. But the absolute execution time does not indicate how 
efficient the available computing power is utilized. Furthermore, the way the used compiler 
generates its code and the particular features of the architectures have an effect on the 
absolute execution time. 

The speedup (sequential execution time / parallel execution time) is a normalized metric 
for performance comparisons among the same or different multiprocessor systems. The 
speedup indicates how much faster a parallel program is executed on a multiprocessor 
compared to sequential processing. We will also present some of the absolute execution 
times. Absolute execution times provide an idea of the time between the recording of the 
data and the availability of the reconstructed images. 

The target platform that we are using is a SUN 630MP model 140 running under Solaris 
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Figure 4: The data recorded by the scanner, and the reconstructed image (a = 1) after 40 
iteration steps 

# of proc.    64 x 64    256 x 256     # of proc.    64 x 64    256 x 256 
2        1.969 1.988 1        16.18 1034 

 4       3.782 3.927 4       4.279 263.3 

Table 1: Comparison of the speedups and the absolute execution times (in s) for 10 iterations 

2.2. It is a shared memory multiprocessor with 4 processors and a performance of 28.5 Mips, 
4.2 MFlops per processor. 

The measured runs consisted of 10 iteration steps. Only the time in the iteration steps 
was taken into account; the initialization times were not incorporated. The initialization 
time is very small in comparison with the execution time of 10 iteration steps. In practical 
situations many more iteration steps are made. 

Before the timing measurements are given, an example of a reconstructed image is given. 
The image consists of 256 by 256 voxels; the scanner data has the same dimensions. It is a 
phantom which is a model for the human head. Figure 4 shows the data recorded by the 
scanner and the (in parallel) reconstructed image. 

Table 1 gives a summary of the measurements. The timing measurements were carried 
out on the presented 256 by 256 image as well as on a 64 by 64 image. The number of 
chosen data partitions was 4, equal to the number of processors. Figure 5 shows clearly 
that a nearly linear speedup is achieved. 

The performance could be further improved if we can make the assumption that the 
object under study is always situated in the largest circle that fits into the image. In that 
case only 80% of the pixels must be processed. 

5.     Conclusion 

We have presented a method for parallelizing a maximum entropy reconstruction method. 
A data partitioning scheme is presented for optimal performance on a shared memory 
multiprocessor system. The measurements show a (nearly) linear speedup for the different 
implementations. 
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Figure 5: Nearly linear speedup is achieved 
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ABSTRACT. The 1993 energy prediction competition involved the prediction of aseries of building 
energy loads from a series of environmental input variables. Non-linear regression using 'neural 
networks' is a popular technique for such modeling tasks. Since it is not obvious how large a time- 
window of inputs is appropriate, or what preprocessing of inputs is best, this can be viewed as a 
regression problem in which there are many possible input variables, some of which may actually 
be irrelevant to the prediction of the output variable. Because a finite data set will show random 
correlations between the irrelevant inputs and the output, any conventional neural network (even 
with regularisation or 'weight decay') will not set the coefficients for these junk inputs to zero. Thus 
the irrelevant variables will hurt the model's performance. 

The Automatic Relevance Determination (ARD) model puts a prior over the regression parame- 
ters which embodies the concept of relevance. This is done in a simple and 'soft' way by introducing 
multiple regularisation constants, one associated with each input. Using Bayesian methods, the reg- 
ularisation constants for junk inputs are automatically inferred to be large, preventing those inputs 
from causing significant overfitting. 

An entry using the ARD model won the competition by a significant margin. 

1     Overview of Bayesian modeling methods 

A practical Bayesian framework for adaptive data modeling has been described in (MacKay 
1992). In this framework, the overall aim is to develop probabilistic models that are well 
matched to the data, and make optimal predictions with those models. Neural network 
learning, for example, is interpreted as an inference of the most probable parameters for 
a model, given the training data. The search in model space (i.e., the space of architec- 
tures, noise models, preprocessings, regularizes and regularisation constants) can then also 
be treated as an inference problem, where we infer the relative probability of alternative 
models, given the data. Bayesian model comparison naturally embodies Occam's razor, 
the principle that states a preference for simple models. 

Bayesian optimization of model control parameters has four important advantages. (1) 
No validation set is needed; so all the training data can be devoted to both model fitting 
and model comparison. (2) Regularisation constants can be optimized on-line, i.e. simul- 
taneously with the optimization of ordinary model parameters. (3) The Bayesian objective 
function is not noisy, as a cross-validation measure is. (4) Because the gradient of the 
evidence with respect to the control parameters can be evaluated, it is possible to optimism 
a large number of control parameters simultaneously. 

Bayesian inference for neural nets can be implemented numerically by a deterministic 
method involving Gaussian approximations, the. 'evidence' framework (MacKay 1992), or 
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by Monte Carlo methods (Neal 1993). The former framework is used here. 

NEURAL NETWORKS FOR REGRESSION 

A supervised neural network is a non-linear parameterized mapping from an input x to an 
output y = y(x; w). Here, the parameters of the net are denoted by w. Such networks can 
be 'trained' to perform regression, binary classification, or multi-class classification tasks. 

In the case of a regression problem, the mapping for a 'two-layer network' may have the 
form: 

A* = /(1) (Z-S^ + «f); *■ = /(2) (l>i?*i + <f>) (i) 

where, for example, f^\a) = tanh(a), and f(2\a) = a. The 'weights' w and 'biases' 9 
together make up the parameter vector w. The non-linearity of fW at the 'hidden layer' 
gives the neural network greater computational flexibility than a standard linear regression. 
Such a network is trained to fit a data set D = {x(m),t(m)} by minimizing an error function, 
e.g., 

^(w) = ^EE(i!TO)-^(x("l);w))2. (2) 
771        i 

This function is minimized using some optimization method that makes use of the gradient 
of ED, which can be evaluated using 'backpropagation' (the chain rule) (Rumelhart et al. 
1986). Often, regularisation or 'weight decay' is included, modifying the objective function 
to: 

Af (w) = ßED + aEw (3) 

where Ew = \ YLi wi- The additional term decreases the tendency of a model to 'overfit' 
the details of the training data. 

NEURAL NETWORK LEARNING AS INFERENCE 

The above neural network learning process can be given the following probabilistic inter- 
pretation. The error function is interpreted as the log likelihood for a noise model, and the 
regularizer is interpreted as a prior probability distribution over the parameters: 

P(D\w, ß, H) = —^y exp(-/3£D);  P(w|a, H) = ^-- exV(-aEw). (4) 

The minimization of M(w) then corresponds to the inference of the parameters w, given 
the data: 

PMD,a,ß,7i)- P(DMH) = J^eXp{-M{w))- (5) 

This interpretation adds little new at this stage. But new ideas emerge when we proceed 
to higher levels of inference. 
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SETTING REGULARISATION CONSTANTS Q AND ß 

The control parameters a and ß determine the flexibility of the model. Bayesian probability 
theory can tell us how to set these parameters. All we need to do is write down the inference 
we wish to make, namely the probability of a and ß given the data, and then use Bayes' 
theorem: 

P(a,ß\D,H)- j^^  (6) 

The data-dependent term, P(D\a,ß,7i), is the normalizing constant from our previous 
inference (5); we call this term the 'evidence' for a and ß. This pattern of inference con- 
tinues if we wish to compare our model H with other models, using different architectures, 
regularizers or noise models. Alternative models are ranked by evaluating P{D\H), the 
normalizing constant of inference (6). 

Assuming we have only weak prior knowledge about the noise level and the smoothness 
of the interpolant, the evidence framework optimizes the constants a and ß by finding the 
maximum of the evidence. If we can approximate the posterior probability distribution by 
a Gaussian, 

P(w|D,a,/3,W) ~ jr exp (-M(wMP) + |(w - wMP)
TA(w - wMP)) , (7) 

then the maximum of the evidence has elegant properties which allow it to be located on- 
line. I summarize here the method for the case of a single regularisation constant a. As 
shown in (MacKay 1992), the maximum evidence a satisfies the following self-consistent 
equation: 

l/a = 5>r2/7 (8) 
i 

where wMP is the parameter vector which minimizes the objective function M = -iEo+aEw 
and 7 is the 'number of well-determined parameters', given by 7 = k — aTrace(A_1), where k 
is the total number of parameters, and A = - VVlog P(w|D, H). The matrix A-1 measures 
the size of the error bars on the parameters w. Thus 7 —*■ k when the parameters are all 
well-determined; otherwise, 0 < 7 < k. Noting that 1/a corresponds to the variance a\ of 
the assumed distribution for {tu,-}, equation (8) specifies an intuitive condition for matching 
the prior to the data, o\, = (tu2), where the average is over the 7 effective parameters; the 
other k — 7 effective parameters having been set to zero by the prior. 

Equation (8) can be used as a re-estimation formula for a. The computational overhead 
for these Bayesian calculations is not severe: one only needs evaluate properties of the error 
bar matrix, A-1. In my work I have evaluated this matrix explicitly; this does not take a 
significant time if the number of parameters is small (a few hundred). For large problems 
these calculations can be performed more efficiently (Skilling 1993). 

AUTOMATIC RELEVANCE DETERMINATION 

The automatic relevance determination (ARD) model (MacKay and Neal 1994) is a Bayesian 
model which can be implemented with the methods described in (MacKay 1992). 

Consider a regression problem in which there are many input variables, some of which 
are actually irrelevant to the prediction of the output variable. Because a finite data set will 
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show random correlations between the irrelevant inputs and the output, any conventional 
neural network (even with regularisation) will not set the coefficients for these junk inputs 
to zero. Thus the irrelevant variables will hurt the model's performance, particularly when 
the variables are many and the data are few. 

What is needed is a model whose prior over the regression parameters embodies the 
concept of relevance, so that the model is effectively able to infer which variables are relevant 
and switch the others off. A simple and 'soft' way of doing this is to introduce multiple 
regularisation constants, one 'a' associated with each input, controlling the weights from 
that input to the hidden units. Two additional regularisation constants are used to control 
the biases of the hidden units, and the weights going to the outputs. Thus in the ARD 
model, the parameters are divided into classes c, with independent scales ac. Assuming a 
Gaussian prior for each class, we can define EW(C) = Eiec^/2^ so the prior is: 

^(MIKhWARD) = Y^T exp(- ^acEW{c)), (9) 

The evidence framework can be used to optimism all the regularisation constants simulta- 
neously by finding their most probable value, i.e., the maximum over {ac} of the evidence, 
P(D\{ac),HA.RO)-

1
 We expect the regularisation constants for junk inputs to be inferred 

to be large, preventing those inputs from causing significant overfitting. 
In general, caution should be exercised when simultaneously maximizing the evidence 

over a large number of hyperparameters; probability maximization in many dimensions can 
give results that are unrepresentative of the whole probability distribution. In this applica- 
tion, the relevances of the input variables are expected to be approximately independent, 
so that the joint maximum over {ac} is expected to be representative. 

2    Prediction competition: part A 

The American Society of Heating, Refrigeration and Air Conditioning Engineers organized 
a prediction competition which was active from December 1992 to April 1993. Both parts 
of the competition involved creating an empirical model based on training data (as distinct 
from a physical model), and making predictions for a test set. Part A involved three target 
variables, and the test set came from a different time period from the training set, so 
that extrapolation was involved. Part B had one target variable, and was an interpolation 
problem. 

THE TASK 

The training set consisted of hourly measurements from September 1 1989 to December 31 
1989 of four input variables (temperature, humidity, solar flux and wind), and three target 
variables (electricity, cooling water and heating water) — 2926 data points for each target. 
The testing set consisted of the input variables for the next 54 days — 1282 data points. 
The organizers requested predictions for the test set; no error bars on these predictions 
were requested. The performance measures for predictions were the Coefficient of Variation 
('CV, a sum squared error measure normalized by the data mean), and the mean bias 
('MBE', the average residual normalized by the data mean). 

'The quantity equivalent to 7 is 7c = kc - Trace^A-1), where the trace is over the parameters in cla 
c, and kc is the number of parameters in class c. 

error 
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Variable Al  (WBE) 

90% RMS Residual = 14.6 

Pre::cticns   
Data  

Residuals   

Omitted training data s 
RMS   Res-idual   =   64.7 
90%   RMS   Residual: 

First   hfllf   =   70.6 
Second   half   =   3 6.0 

Figure 1: Target Al — Electricity 

The three target variables are displayed in their entirety, along with my models' final 
predictions and residuals, in figures 1-3. 

METHOD 

A laTge number of neural nets were trained using the ARD model, for each of the prediction 
problems. The data seemed to include some substantial glitches. Because I had not yet 
developed an automatic Bayesian noise model that anticipates outliers (though this certainly 
could be done (Box and Tiao 1973)), I omitted by hand those data points which gave large 
residuals relative to the first models that were trained. These omitted periods are indicated 
on some of the graphs in this paper. 25% of the data was selected at random as training 
data, the remainder being left out to speed the optimizations, and for use as a validation 
set. All the networks had a single hidden layer of tanh units, and a single linear output 
(figure 4). It was found that models with between 4 and 8 hidden units were appropriate 
for these problems. 

A large number of inputs were included: different temporal preprocessings of the en- 
vironmental inputs, and different representations of time and holidays. All these inputs 
were controlled by the ARD model. ARD proved a useful guide for decisions concerning 
preprocessing of the data, in particular, how much time history to include. Moving averages 
of the environmental variables were created using filters with a variety of exponential time 
constants. This was thought to be a more appropriate representation than time delays, 
because (a) filters suppress noise in the input variables, allowing one to use fewer filtered 
inputs with long time constant; (b) with exponentiaUy filtered inputs it is easy to create 
(what I believe to be) a natural model, giving equal status to filters having timescales 1, 2, 
4, 8, 16, etc.. 
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Figure 2: Target A2 — Cooling water 
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Figure 3: Target A3 — Heating water 
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Figure 4: A typical network used for problem A 
The filters produced moving averages of the four environmental inputs on three time-scales: 2.5, 
24 and 72 hours. The temperature variable was also given a 144 hour filter. Time was represented 
using the cos of the year angle, a holiday indicator, and the cos and sin of: the week angle, the day 
angle, and twice the day angle. All hidden and output units also had a connection to a bias unit 
(not shown). 

The on-line optimization of regularisation constants was successful. For problem A, 28 
such control constants were simultaneously optimized in every model. The optimization of 
a single model and its control constants took about one day on a Sun 4 workstation, using 
code which could probably be made substantially more efficient. About twenty models 
were optimized for each problem, using different initial conditions and different numbers of 
hidden units. Most models did not show 'overtraining' as the optimization proceeded, so 
'early stopping' was not generally used. The numerical evaluation of the 'evidence' for the 
models proved problematic, so validation errors were used to rank the models for prediction. 
For each task, a committee of models was assembled, and their predictions were averaged 
together (see figure 5); this procedure was intended to mimic the Bayesian predictions 
P{*\D) = f P(t\D,H)P(H\D)dH. The size of the committee was chosen so as to minimize 
the validation error of the mean predictions. This method of selecting committee size has 
also been described under the name 'stacked generalization' (Breiman 1992). In all cases, 
a committee was found that performed significantly better on the validation set than any 
individual model. 

The predictions and residuals are shown in figures 1-3. There are local trends in the 
testing data which the models were unable to predict. Such trends were presumably 'over- 
fitted' in the training set. Clearly a model incorporating local correlations among residuals 
is called for. Such a model would not perform much better by the competition criteria, but 
its on-line predictive performance would be greatly enhanced. 

In the competition rules, it was suggested that scatter plots of the model predictions 
versus temperature should be made. The scatter plot for problem A3 is particularly inter- 
esting. Target A3 showed a strong correlation with temperature in the training set (dots in 
figure 6b). When I examined my models' predictions for the testing set, I was surprised to 
find that, for target A3, a significantly offset correlation was predicted ('-f's in figure 6a). 
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Target A2. Predictions of the nine selected models 

Prediction   
Data   

Figure 5: Target A2 — detail from test period 
This figure shows detail from figure 2 and illustrates the use of a 'committee' of nine equally weighted 
models to make predictions. The diversity of the different models' predictions emphasizes the 
importance of elucidating the uncertainty in one's predictions. The x-axis is the time in hours from 
the start of the testing period. The prediction (lower graph) is the mean of the functions produced 
by the nine models (upper graph). 
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Figure 6: Predictions for target A3 (HW) versus temperature 
a) Model predictions. This graph shows that my model predicted a substantially different correlation 
between target A3 and temperature (+) from that shown in the training set (•)- b) Data. This 
predicted offset was correct. Units: hot water /106Btu versus temperature / F. 

This change in correlation turned out to be correct ('+'s in figure 6b). This indicates that 
these non-linear models controlled with Bayesian methods discovered non-trivial underlying 
structure in the data. Most other entrants' predictions for target A3 showed a large bias; 
presumably none of their models extracted the same structure from the data. 

In the models used for problem A3, I have examined the values of the parameters 
{<*c,7c}, which give at least a qualitative indication of the inferred 'relevance' of the inputs. 
For prediction of the hot water consumption, the time of year and the current temperature 
were the most relevant variables. Also highly relevant were the holiday indicator, the time 
of day, the current solar and wind speed, and the moving average of the temperature over 
the last 144 hours. The current humidity was not relevant, but the moving average of the 
humidity over 72 hours was. The solar was relevant on a timescale of 24 hours. None of 
the 2.5 hour filtered inputs seemed especially relevant. 

HOW MUCH DID ARD HELP? 

An indication of the utility of the ARD prior was obtained by taking the final weights of the 
networks in the optimal committees as a starting point, and training them further using 
the standard model's regularizer (i.e., just three regularisation constants). The dotted 
lines in figure 7 show the validation error of these networks before and after adaptation. 
As a control, the solid lines show what happened to the validation error when the same 
networks were used as a starting point for continued optimization under the ARD model. 
The validation error is a noisy performance measure, but the trend is clear: the standard 
models suffer between 5% and 30% increase in error because of overfitting by the parameters 
of the less relevant inputs; the ARD models, on the other hand, do not overfit with continued 
training. The validation errors for the ARD model in some cases change with continued 
training, because my restarting procedure set the at- to default values, which displaced the 
model parameters into a new optimum. 

On the competition test data, the performance difference between these two sets of 
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Figure 7: Change in validation error when the ARD prior is suspended 
The solid lines without stars show the performance of ARD models. The dotted lines with stars show 
the models with ARD suspended. In most cases, these standard ('ARD off') models get significantly 

models is not so pronounced, because the residuals are dominated by other effects. Maybe 
the greatest contribution of the ARD method to this problem was that it guided the choice 
of input variables to include large time-delays. 

After the competition, it was revealed that the building in this study was a large uni- 
versity engineering center in Texas. Some of the glitches in the data were caused by the 
bursting of cold water pipes during a frost — a rare event apparently not anticipated by 
Texan architects! 

The holiday period for staff ended on January 1st, but the student population did 
not return to the building for a couple of weeks. This may account for the significant 
bias error in the predictions of electricity usage (figure 1). Another factor which changed 
between the training period and the test period is that the Computer Science department 
moved to another building. This too will have caused a reduction in electricity usage. The 
reduction in electricity consumption may also account for some fraction of the biases in the 
cold and/or hot water supplies: one might expect less cooling water to be used, or more 
heating water, to make up the missing energy. The observed average electrical power deficit 
(according to my model) of 50kW corresponds to an expected decrease in CW or increase 
in HW consumption of 0.17 xl06Btu (assuming that the CW and HW figures measure 
the actual energy delivered to the building). This is only about a fifth of the overall shift 
in correlation between HW and temperature shown in figure 6b. In fact, relative to my 
models, both CW and HW showed an increase of about 0.2 xl06Btu. 

3    Prediction competition: part B 

The data for part B consisted of 3344 measurements of four input variables at hourly 
intervals during daylight hours over about 300 days. Quasi-random chunks of this data set 
had been extracted to serve as a test set of 900. The other 2444 examples were accompanied, 
by a single target variable.   The physical source of the data were measurements of solar 
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Problem Al RMS Mean CV MBE RMS90% Mean90% RCV 
ARD 64.7 50.3 10.3 8.1 54.1 42.2 11.1 
ARD off 71.2 56.2 11.4 9.0 59.3 47.3 12.2 
Entrant 6 11.8 10.5 
Median 16.9 -10.4 
Problem A2 RMS Mean CV MBE RMS90% Mean90% RCV 
ARD .642 -.314 13.0 -6.4 .415 -.296 11.2 
ARD off .668 -.367 13.5 -7.4 .451 -.349 12.2 
Entrant 6 13.0 -5.9 
Median 14.8 -7.6 
Problem A3 RMS Mean CV MBE RMS90% Mean90% RCV 
ARD .532 -.204 15.2 -5.8 .384 -.167 9.15 
ARD off .495 -.121 14.2 -3.5 .339 -.094 8.08 
Entrant 6 30.6 -27.3 
Median 31.0 -27.0 

Problem B 
ARD 
Entrant 6 
Median 

RMS    Mean    CV     MBE 
11.2      1.1 3.20 

2.75 
6.19 

0.32 
0.17 
0.17 

RMS 90% Mean90%    RCV 
6.55 0.67 .710 

Key: 
My models: 

ARD 

ARD off 

Other entries: 
Entrant 6 

Median 

The predictions entered in the competition using the ARD 
model. 
Predictions obtained using derived models with the standard 
regularizer. 

The entry which came 2nd by the competition's average CV 
score. 
Median (by magnitude) of scores of all entries in competition. 

Raw Performance measures: 
RMS      Root        mean        square 

residual. 
Mean residual. 
Coefficient 
of variation (percentage). 
The   competition   perfor- 
mance measure. 
Mean Bias Error (percentage). 

Mean 
CV 

MBE 

Robust Performance measures: 
RMS90%      Root        mean        square 

of the smallest 90% of the 
residuals. 
Mean of those residuals. 
RMS90%/( 90% data range). 

Mean90% 
RCV 

Normalizing constants:       Problem 
Al 
A2 
A3 
B 

Mean of test data    90% data range 
624.77 
4.933 
3.495 
350.8 

486.79 
3.7 
4.2 
923 

Table 1: Performances of different methods on test sets 
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flux from five outdoor devices. Four of the devices had a fixed attitude. The fifth, whose 
output was to be predicted, was driven by motors so that it pointed at the sun. The aim 
is to enable four cheap fixed devices to substitute for one expensive moving one. Clearly, 
information such as the day of the week and past history of the input variables was not 
expected to be relevant. However, I did not realize this, and I spent some time exploring 
different temporal preprocessings of the input. Satisfyingly, all time-delayed inputs, and 
the time of the week, were correctly found to be irrelevant by the ARD model, and I 
pruned these inputs from the final models used for making predictions — without physical 
comprehension of the problem. 

The inputs- used in the final models were the four sensor measurements, and a five 
dimensional continuous encoding of the time of day and the time of year. For training, 
one third of the training set was selected at random, and the remaining two thirds were 
reserved as a validation set. This random selection of the training set was later regretted, 
because it leaves randomly distributed holes where there are no training data. This caused 
my models' predictions to become unnecessarily poor on a small fraction of the testing 
data. As in part A, a committee of networks was formed. Each network had between 5 and 
10 hidden units. 

RESULTS 

Problem B was a much easier prediction problem. This is partly due to the fact that it 
was an interpolation problem, with test data extracted in small chunks from the training 
set. Typical residuals were less than 1% of the data range, and contrasts between different 
methods were not great. Most of the sum-squared error of my models' predictions is due 
to a few outliers. 

4    Discussion 

The ARD prior was a success because it made it possible to include a large number of 
inputs without fear of overfitting. 

Further work could be well spent on improving the noise model, which assumes the 
residuals are Gaussian and uncorrelated from frame to frame. A better predictive model 
for the residuals shown in figures 1-3 might represent the data as the sum of the neural 
net prediction and an unpredictable, but auto-correlated, additional disturbance. Also, a 
robust Bayesian noise model is needed which captures the concept of outliers. 

In conclusion, the winning entry in this competition was created using the following 
data modeling philosophy: use huge flexible models, including all possibilities that you can 
imagine might be appropriate; control the flexibility of these models using sophisticated 
priors: and use Bayes as a helmsman to guide the search in this model space. 
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ABSTRACT. Identifying and classifying action potential shapes in extracellular neural waveforms 
has long been the subject of research, and although several algorithms for this purpose have been 
successfully applied, their use has been limited by some outstanding problems. The first is how 
to determine shapes of the action potentials in the waveform and, second, how to decide how 
many shapes are distinct. A harder problem is that action potentials frequently overlap making 
difficult both the determination of the shapes and the classification of the spikes. In this report, a 
solution to each of these problems is obtained by applying Bayesian probability theory. By defining 
a probabilistic model of the waveform, the probability of both the form and number of spike shapes 
can be quantified. In addition, this framework is used to obtain an efficient algorithm for the 
decomposition of arbitrarily complex overlap sequences. This algorithm can extract many times 
more information than previous methods and facilitates the extracellular investigation of neuronal 
classes and of interactions within neuronal circuits. 

1     Introduction 

Waveforms of extracellular neural recordings often contain action potentials (APs) from 
several different neurons. Each voltage spike in the waveform shown in figure 1 is the 
result of APs from one or more neurons. An individual AP typically has a fast positive 
component and a fast negative component and may have additional slower components 
depending on the type of neuron and where the electrode is positioned with respect to the 
cell. Determining what cell fired when is a difficult, ill-posed problem and is compounded 
by the fact that cells frequently spike simultaneously which results in large variations in 
the observed shapes. 

Identifying and classifying the APs in a waveform, which is commonly referred to as 
"spike sorting", has three major difficulties. The first is determining the AP shapes, the 
second is deciding the number of distinct shapes, and the third is decomposing overlapping 
spikes into their component parts. In general, these cannot be solved independently since 
the solution of one will affect the solution of the others. Algorithms for identifying and 
classifying APs (see Schmidt, 1984 for a review) fall into two main categories: feature 
clustering and template matching. 

Feature clustering involves describing features of APs, such as the peak value, spike 
width, slope, etc., and using a clustering algorithm to determine distinct classes in the 
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2 msecs 

The extracellular waveform shows several different action potentials generated by an unknown num- 
ber of neurons. Note the frequent presence of overlapping APs which can, in the case of the right 
most group, completely obscure individual spikes. The waveform was recorded with a glass-coated 
platinum iridium electrode in zebra finch nucleus MAN (courtesy of Allison Doupe, Caltech). 

set of features. Using a small set of features, although computationally efficient, is often 
sufficient only to discriminate the cells with the largest APs. Increasing the number of 
features in the clustering often yields better discrimination, but there still remains the 
problem of how to choose the features, and it is difficult with such techniques to handle 
overlapping spikes. 

In template matching algorithms, typical action potential shapes are determined, either 
by an automatic process or by the user. The waveform is then scanned and each event 
classified according to how well it fits each template. Template matching algorithms are 
better suited for classifying overlaps since some underlying APs can be correctly classified if 
the template is subtracted from the waveform each time a fit is found. The main difficulty 
in template matching algorithms is in choosing the templates and in decomposing complex 
overlap sequences. 

The approach demonstrated in this paper is to model the waveform directly, obtaining a 
probabilistic description of each action potential and, in turn, of the whole waveform. This 
method allows us to compute the class conditional probabilities of each AP which quantifies 
the certainty with which an AP is assigned to a given class. In addition, it will be possible 
to quantify the certainty of both the form and number of spike shapes. Finally, we can 
use this description to decompose overlapping APs efficiently and to assign probabilities to 
alternative spike model sequences. 
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2    Modeling Action Potentials 

First we consider the problem of fitting a model to events from a single cell. Let us assume 
that the data from the event we observe (at time zero) is a result of a fixed underlying spike 
function, s(t), plus noise: 

di = s(U) + Vi. (1) 

A computationally convenient form for s(t) is a continuous piece-wise linear function: 

s(t) = yj + ^{t - XJ), Xj<t< xj+l, (2) 

where h = iJ+1 -Xj,j = 1.. -Ä, and Vj = yj+i -yj. We will treat R and the XJ'S as known. 
The noise, 7/, is modeled as a Gaussian process with zero mean and standard deviation a,. 

2.1    THE POSTERIOR FOR THE MODEL PARAMETERS 

From the Bayesian perspective, the task is to infer the posterior distribution of the pa- 
rameters, v = {*>!,.. .,vR}, given the data from the observed events, £>, and our prior 
assumptions of the spike model, M. Applying Bayes' rule we have 

P(v\D,av,aw,M)=- ^^-—-^ . (3) 

P(D\v,arn M) is the probability of the data for the model given in (2) and is assumed to 
be Gaussian: 

P{D\v,av,M) = exp -^B*-*(*.■))' 
2an-  , 

(4) 

where Zr,{<?v) = 1/(27TCT^)
7
/
2
. The time of the ith data point, d,-, is taken to be relative to 

the corresponding event, i.e.U = t\n' - r(n). By convention, r^ is the time of the inferred 
AP peak. The data range over the predetermined extent of the action potential.1 

P(v\aw,M) specifies prior assumptions of the structure of s(t). Ideally, we want a 
distribution over v from which typical samples result only in shapes that are plausible APs. 
Conversely, this space should not be so restrictive that legitimate AP shapes are excluded. 
We adopt a simple approach and use a prior of the form 

P(s(t)\aw,M) oc exp [- /du5<m)(tt)2/<JX (5) 

where the superscript (m) denotes differentiation, m = 1 corresponds to linear splines, 
in = 3 corresponds to cubic splines, etc. The smoothness of s(t) is controlled through the 
parameter aw with small values of aw penalizing large fluctuations. A prior simply favoring 
smoothness ensures minimal restrictions on the kinds of functions we can interpolate, but 
it doesn't buy us anything either. If we had a more informative prior, we would require 
less data to reach the same conclusions about the form of s(t). Any reasonable prior shoiild 
have little effect on the shape of the final spike function if there are abundant data. Even 
though the prior may have uttle effect on the shape, it still plays an important role in model 
comparison which will be discussed in section 4. 

'For the examples shown here, this range is from 1 msec before the spike peak to 4msec after the peak. 
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The components of the posterior distribution for v are now defined. There still remains, 
however, the problem of determining <JV and crw. An exact Bayesian analysis requires that 
we eliminate the dependence of the posterior on a,, and aw by integrating them out: 

P(v\D,M) = JdavdawP(v\D,o;„crw,M)P(aw,a,]\M). (6) 

In this paper, we use the approximation P(v\D,M) « P(v\D,a™F,a™p,M). The most 
probable values of v, aw, and av were obtained using the methods of MacKay (1992). Note 
that at this point, we could use probability theory to compare alternative spike models, 
in essence to determine the most probable spike model given the data. For example, we 
might choose cubic splines instead of piece-wise linear functions or choose priors that better 
represented our knowledge about spike shapes. The piece-wise linear spike models discussed 
here can be made to fit any fixed shape, since they can contain arbitrarily many segments. 
With 75 segments, the spike models have been descriptively sufficient for the all the data 
we have observed. Figure la shows the result of fitting one spike model to data consisting 
of 40 APs. 

2.2    CHECKING THE ASSUMPTIONS 

Before proceeding to the more complicated cases of multiple spike models and overlapping 
spikes, we must check our assumptions on real data. Equation (1) assumes that the noise 
process is invariant throughout the duration of the AP, but in principle this need not be the 
case. For example, the noise might show larger variation at the extremes. The spike model 
residuals, 77,- = <2; - s(ti), shown in figure la, give no indication of an amplitude-dependent 
noise process. 

A second assumption we have made is that the noise is Gaussian. Figure lb shows a 
Gaussian distribution with the inferred width an overlaid on a normalized histogram of the 
residuals from figure la. The most significant deviation is in the tails of the distribution 
which reflects the presence of overlapping spikes. In this case, the overlaps are evenly 
distributed over the range of the fitted event so they have little effect on the model's form 
in the limit of large amounts of data. The model would be poorly inferred, however, if the 
overlaps were not uniformly distributed over the interval, for example if one cell tended to 
fire within a few milliseconds of another. This is a common problem in practice and will 
be addressed in section 5. 

An assumption which has not been tested is whether the residuals are independent. 
Figures lc and Id show that the noise in these data is slightly correlated. This has little 
effect on the fit of the models but does affect the accuracy of the probabilities discussed in 
the later sections. A convenient way of reducing the correlation is to sample close to the 
Nyquist rate to avoid correlation introduced by the amplifier filters. 

3    Multiple Spike Shapes 

When an event contains multiple APs, determining the component spike shapes is more 
difficult because the classes are not known a priori. We cannot infer the parameters for 
one spike model if we don't know what data is representative of its class. Furthermore, if 
two spike models are similar, it is possible that an observed event could have come from 
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Figure 1: (a) Spike model fit to data consisting of 40 APs. The solid line is a 75 segment piece-wise 
linear model. Each AP is aligned with respect to the inferred spike peak. Each dot is one sample 
point. The residual error for each sample, TJ; = d, - s{U), is offset by -200/xV and plotted below. 
The fiat residuals indicate that the data is well-fit by the model, (b) Normalized histogram of the 
residuals from a. The curve is the Gaussian inferred with the methods discussed in the text. The 
outliers result from overlapping APs which can be seen in the data in a. (c and d) Lagged scatter 
plot of a sample of the residuals in a. (c) 7;,- vs ?;i+1. (d) 77,- vs 7;i+2. These graphs indicate that there 
is some correlation between ;?; and r).-+1 (C), but little between 7?; and 7/i+2 (d). This is expected for 
these data because the sampling rate (20kHz) was higher than the Nyquist rate (14kHz). 
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either class with equal probability. The uncertainty of which class an event belongs to can 
be incorporated with a mixture distribution (Duda and Hart, 1973). 

The probability of a particular event, Dn, given all spike models, AfI:K, is 

K 

F(Dn|v1:K,7r,^,M1:K) = ^2irkP(Dn\vk,ai,tMk), (7) 
k=1 

where irk is the a priori probability that a spike will be an instance of Mk (£ irk = 1). The 
joint probability for DI:N = {Dj .. .DN} is simply the product 

N 

£ = P(D1:N|v1:K,7r,a„,M1:K) = JJ P(Dn\v1:K,Tr,av,Mi:K). (8) 
71=1 

The posterior for multiple spike models is then 

JP(D„|^,OV„,MI!K) "   v ' 

We use P(v1:K\trv>,M1:K) = Ü* ^(v*!^*, Mfc) and take P(TT|M1:K) to be flat over [0, if 
subject to the constraint J^k xk = 1. 

Note that we have implicitly assumed that the spike occurrence times are Poisson in 
nature with mean firing rates proportional to irk. This assumes as little as possible about the 
temporal structure of the spikes. A more powerful description, e.^.modeling the distribution 
of the inter-spike interval, would be obtained by incorporating this information into (8). 

3.1    MAXIMIZING THE POSTERIOR 

We proceed as before to find the maxima of the posterior which will give us the most 
probable values for the whole set of spike models. The conditions satisfied at the maxima 
of L given in (8) are obtained by differentiating log C with respect to vfc and equating the 
result to zero, 

^  =  E^(^|Dn,Vfc,^^g[dntl--Jfc(«,.-rw;vO]gjfc^)   =0, (10) 

where rn is the occurrence time of D„. Thus we obtain a soft clustering procedure in which 
the error for each event, Dn, is weighted by the probability that it is an instance of Mk: 

PWDn,vfc,ir^)=     'fcPg^^^ (11) 
Y,k*kP{T>n\vk,av,Mk) 

K    > 

Although (10) can be solved exactly, it is still expensive to compute, because it uses all of 
the data. We adopt the approach of estimating each v* by fitting each model to a reduced 
event list allowing the possibility of an event being in the lists of multiple models. These 
lists are obtained by sampUng events from the whole data set and including an event in a 
model's reduced event list with probability proportional to P(Mk\Bn,vk,7r,crv). We apply 
the techniques used in the previous section to determine the values for <rw, and in turn the 
most probable values of v,.K. 
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Differentiating (8) and finding the condition satisfied at the maximum, we obtain the 
re-estimation formula 

For each model, av can be estimated using the methods of the previous section. The mixture 
model estimate for a,, is obtained by a weighted average of the individual estimates using 
weight 7rjt. 

3.2 SELECTING EVENTS FROM THE DATA 

For these demonstrations, any peak in the waveform that deviated from DC level by more 
than 4 times the estimated RMS noise level was labeled as an event, Dn. Once an event 
is located, it is important to obtain accurate estimates of the occurrence time (with each 
spike model) by maximizing (4) over rn. For the largest models, deviations from the optimal 
value as little as one-tenth the sampling period will introduce misfit errors greater than a,t. 
The rn's must be re-estimated as the spike models change for optimal results. An efficient 
way to perform this optimization is to use the k-d trees discussed in section 5. 

3.3    INITIAL CONDITIONS 

Since the re-estimation formulas derived here will find local maxima, it is critical to use 
good initial conditions for the spike models. Poor fits will result if there are too few spike 
models representing what are in fact several distinct APs. Conversely, if there are more 
spike models than distinct APs, not only will there be excess computational overhead, but 
there is no guarantee that each AP will be represented, since some spike functions may 
converge to represent the same AP class. Ideally, we want all potential spike shapes to be 
represented in the initial spike function set, s1:K(t). One approach toward obtaining an even 
representation of the AP shapes is to initialize each spike function to single events so that 
maxt s(t) — mint s(t) is evenly distributed with a separation proportional to the estimated 
waveform RMS noise. This approach works well for present purposes, because the height 
of an AP captures much of the variability among classes. By erring on the side of starting 
with too many spike models, we can obtain a good initial representation of the AP shapes. 
There is still a need to decide if two different models should be combined and if one class 
should be split into two. How to choose the number of spike models objectively will be 
demonstrated in the next section. 

4    Determining the Number of Spike Models 

If we were to choose a set of spike models which best fit the data, we would wind up 
with a model for each event in the waveform. We might think of heuristics which would 
tell us when two spike models are distinct and when they are not, but ad hoc criteria 
are notoriously dependent on particular circumstances, and it is difficult to state precisely 
what information the rules take into account. A solution to this dilemma is provided by 
probability theory (Jeffreys, 1939; Jaynes, 1979; Gull, 1988). 

To determine the 77iost probable number of spike models, we need to derive the proba- 

bility of a set of spike models, denoted by {Sj = M1:K}, conditioned only on the data and 
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information known a priori, which we denote by H. From Bayes' role, we obtain 

3\   i.N,    ; P(D1:N|#) [Li) 

The only data dependent term is P(D1:N|.S\. #) which is called the evidence for Sj. If 
we assume all the hypotheses Sl:J under consideration are equally probable, P(D1:tt\Sj,H) 
ranks alternative spike sets, since it is proportional to P(Sj\Dl:tl,H). With equal priors, 
the ratio P(D|S,-, H)/P(D\Sj, H) is equal to the Bayes factor in favor of hypothesis 5,- over 
hypothesis Sj which is the standard way to compare hypotheses in the Bayesian literature. 

The evidence for Sj is obtained by integrating out the nuisance parameters in (9): 

P(D1:N\Sj) = Jdvi:Kd7rd<z,(Urw P(D1:N|v1:K, -, av, Sj) P(v1:K\aw, Sj) P(*\Sj) P(an, <7W\S,). 

(14) 
This integral is analytically intractable, but it is often well-approximated with a Gaussian 
integral which for a function /(w) is given by 

Jdwf(w) « /(w)(27r)3'/2|_wiog/(w)|-1/2, (15) 

where d is dimension of w, w is a (local) maximum of /(w), |A| denotes the determinant 
of A, and the derivatives are evaluated at w. With this we obtain the evidence for spike 
set Sj, 

P(D1:N\Sj,H)   =    P(Bi:t,\^1:K^,av,S3)P(vUK\aw,Sj)P(7t\Sj)P(aw,av\Sj) 

■(27r)rf/2|-VVlogP(D1:N|vl!K,w,05,„yi)|-
1'2Alogai<;Alogai,.(16) 

where Alogc>w = Uk VWk, Aloga,, = ^2/(NI-y), and d= KR+K + l. lk is the 
number of good degrees of freedom for Mk (MacKay, 1992) which can be thought of as the 
number of parameters that are well-determined by the data. 7 = J2klk- P(crw,<r71\S) is 
assumed to be separable and flat over logo^ and log«*,. Since the labeling of the models is 
arbitrary, an additional factor of 1/Kl must be included to estimate the posterior volume 
accurately. The Hessian -VVlog/>(Dl!N|v1:K,7r,c!,,5,-) (with respect to v1:K and TT) was 
evaluated both analytically and using a diagonal approximation. Both methods produced 
similar results, and the latter, being much faster to compute, was used for these demon- 
strations. Notice that the approximation for the evidence decomposes into the best-fit 
likelihood for the best fit parameters times the other terms which collectively constitute 
a complexity penalty called the Ockham factor (MacKay, 1992). Since this factor is the 
ratio of the posterior accessible volume in parameter space to the prior accessible volume, 
it is smaller for more complicated models. Overly broad priors will introduce a bias toward 
simpler models. Unless the best-fit likelihood for complex models is sufficiently larger than 
the likelihood for simple ones, the simple models will be more probable. 

A convenient way of collapsing the spike set is to compare spike models pairwise. Two 
models in the spike set are selected along with a sampled set of events fit by each model. 
We then evaluate /»(DIS,) and P(D\S2). 5, is the hypothesis that the data is modeled by 
a single spike shape, S2 says there are two spike shapes. Included in the list of spike models 
should be a "null" model which is simply a flat line at DC. This hypothesis says that there 
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S2: {Model 1, Model 2} Si: {Model 1 + 2} 
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Figure 2: The most probable number of distinct spike models is determined by evaluating the 
evidence for alternative hypotheses for a given set of data. Simple hypotheses are generated by 
selecting similar shapes in a spike set. S2 is the hypothesis that there are two distinct spike models; 
the fits of two such models to a sampled set of data are shown in a and b. 5'i is the hypothesis 
that there is only one spike model; the fit of this model is shown in c. In this case, even though 
the total misfit is less for S2, the simpler hypothesis, S\, is more probable by exp(lll) to 1. In 
the second row, S2 (d and e) is more probable than ,S'i (f) by exp(343) to 1. Note the increase in 
residual error in the model shown in f. The difference between model 3 and model 4 is shown in 
figure 8 (where they are labeled Ml and M2 respectively). The large probability ratios reported 
here result mainly from the non-Gaussian outliers in the noise. A more realistic noise model, such 
as heavy-tailed Gaussian, would result in more accurate probability ratios. 
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are no events and that the data is a result of only the noise. Examples of this comparison 
are illustrated in figure 2. If P(D\Si) > P(D|52), we replace both models in S-2 by the 
one in S\. The procedure terminates when no more pairs can be combined to increase the 
evidence. 

5     Decomposing Overlapping Events 

The method of inferring the spike models we have discussed thus far is valid if the event 
occurrence times can be accurately determined and if the noise is Gaussian and stationary. 
Often these conditions cannot be met without identifying and decomposing overlapping 
events. Even if the spike models are good, overlap decomposition is necessary to detect and 
classify individual events with accuracy. 

For a given sequence of overlapping APs, there are potentially many spike model se- 
quences that could account for the same data. An example is shown in figure 3. We can 
calculate the probability of each alternative, but there are an enormous number of sequences 
to consider, not only all possible models for each event but also all possible event times. 
A brute-force approach to this problem is to perform an exhaustive search of the space of 
overlapping spike functions and event times to find the sequence with maximum probability. 
This approach was used by Atiya (1992) in the case of two overlapping spikes with the times 
optimized to one sample period. Unfortunately, for many realistic situations this method 
is computationally too demanding even for off-line analysis. For overlap decomposition to 
be practical, we need an efficient way to fit and rank a large number of model potential 
spike sequences. In addition, we would like to state precisely what hypothesis subspace 
is searched, so we can say what model combinations cannot account for a given region of 
overlapping events. 

We can obtain a more efficient decomposition algorithm by employing two techniques. 
The first is to consider only AP sequences that occur with non-negligible probability. This 
allows us to obtain a large, but manageable hypothesis space in which to search. The 
second is to make the search itself efficient using appropriate data structures and dynamic 
programming. 

5.1    RESTRICTING THE OVERLAP HYPOTHESIS SPACE 

The main difficulty with overlapping APs is that there is no simple way to determine 
the event times. For many overlaps, such as the one in figure 4a, the event times can 
be determined directly, because the APs are separated enough so that the models can 
be fit independently. As the degree of overlap increases, as in figures 4b and c, accurate 
classification of one event depends on accurate classification of the surrounding events. 
In this case, the overlapping models must be fit simultaneously. Moreover, since small 
misalignments of the model with respect to the event can introduce significant residual 
error, each model in the overlap sequence must be precisely aligned. 

The continuum of possible event times is the major factor contributing to the multitude 
of potential overlap models. We can reduce this space significantly if we consider to what 
precision the r„'s must be optimized.  For a given spike model, $k(t), the maximum error 
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Figure 3: Over-fitting also occurs in the case of decomposing overlapping events. Shown are 3 
of many well-fitting solutions for a single region of data. Thick lines are drawn between the data 
samples. The thin lines are the spike functions (These examples were taken from the first iteration 
of the algorithm, so the spike functions are noisy estimates of the underlying AP shapes). The 
best-fitting solution in this case is not the most probable; the solution with 4 spike functions shown 
in a is more than 8 times more probable than either b (5 spike functions) or c (6 spike functions) 
even though these fit the data better. Simply using the best-fitting overlap solution results in a 
dramatic increase in classification error especially in the number of false positives for the smaller 
models. Finding the most probable overlap solution minimizes the classification error. 

Figure 4: As the peaks of two action potentials get closer together, it becomes more difficult to 
classify either one with accuracy. It is necessary in this case (b and c) to fit multiple models 
simultaneously. 
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resulting from a misalignment of 4 is given by2 

( = 6k max 
t 

ds(t) 
dt (17) 

From this we obtain the precision necessary to ensure that the error introduced by the 
model alone is less than ( and only need to choose among a discrete set of points.3 

Even with this reduction, the number of possible sequences is still exponential in the 
number of overlapping models. This space can be reduced by considering only sequences 
that are likely to occur. For example, if there are 5 units with a Poisson firing rate of 20Hz, 
the probability of observing two events within half a millisecond is about 0.0012. Elimi- 
nating sequence models with more than 2 peaks within 0.5ms of each other will introduce 
about 0.1% error. In this manner, the desired trade-off between classification accuracy and 
computational cost can be determined. In practice, however, spikes often do not fire in a 
Poisson manner but fire in bursts. The firing rate model in this case should be adapted 
accordingly so that the expected number of missed events is estimated accurately. 

5.2 SEARCHING THE OVERLAP HYPOTHESIS SPACE 

Let us first outline the decomposition algorithm. To fit general model sequences, we use 
the methodology of dynamic programming. The event data is fit in sections from left to 
right. At every stage, a list is maintained of all plausible sequences4 from the restricted 
hypothesis space determined by the methods described above. The length of data fit is 
extended by computing for each sequence on the list all plausible models that result by 
fitting the residual structure in the next region. The probabilities for all sequences are 
then recomputed, discarding any sequences below the probability threshold. The search 
terminates when no further overlaps are encountered in the most probable sequence model. 

We now discuss each step in more detail. The primary operation in the algorithm is 
that of determining the most probable sequence models for a region of data. For efficiency, 
we precompute all possible waveform segments and store the set in a k-d tree (Bently 1975) 
with which a fixed-radius nearest neighbor search can be performed in time logarithmic 
in the number of models (Friedman et al., 1977; Ramasubramanian and Paliwal, 1992). 
0(Nlog N) time is required to construct the tree, but once it is set up, each nearest- 
neighbor search is very fast. The set of overlap functions for a region from a to b around 
the spike peak is defined by 

L 
Afci:L,n(<) = Y.skj(f - "**>),     kj = l,...,K,     *,<...< kL, (18) 

i=i 
a < t — n8kj < b,   n integer, 

where L is the maximum number of overlapping spike function segments in the peak region 
[a, 6], and Skj is the r-resolution for sk(t) defined in (17). The size of the peak region is 
somewhat arbitrary; the larger the region, the larger the number of waveform segments 

We ignore the discontinuities in the derivative of the piece-wise linear model. 
3 For these demonstrations we use t = 0.5a, which results in 6A:'S ranging from 0.05 to 0.3 sampling 

periods. 

By plausible sequences we mean sequences with probability greater than a specified threshold. 
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that must be considered, but the smaller the number of plausible overlap sequences found. 
In practice, the size of the peak region is largely limited by the memory required for the 
k-d tree. For these demonstrations, we take L = 2 (up to two overlapping spike functions 
segments) with a peak region of 0.25ms and include a "noise" model A0 which has constant 
value equal to the DC voltage level. The number of waveform segments in the set can be 
reduced by eliminating overlapping spike functions for which the peak would have been 
(with high probability) detected at a sample position other than that of the data. Even 
with this reduction, an 11-model spike set results in about 50,000 waveform segments. 

Once the best-fitting waveform segments for the first peak region are obtained, each 
segment is extended until the next peak in the residuals for that segment. This peak is 
then fit using the k-d tree which generates additional overlap sequences. As long as the 
introduction of new waveform segments does not alter our conclusions about the ordering 
sequence list, for example by fitting structure in a preceding region, we ensure either that 
one of the overlap sequences is true or that the sequences we are considering cannot account 
for the data. 

After each sequence from the original list has been extended, the probability of each 
sequence model, c,, is recomputed. The exact relation is given by 

P(Dlc,-,T,-,S)P(Ci,T,-lS) 
F(D|S) 

where D is the subset of data common to all sequences, and S = {v1:K,7r, crv,Mi:K}. The 
form of the probability density function, P(D|c,-,r;), is the same as (4). Equation (19) 
can be approximated with a Gaussian integral by treating each peak region as a separable 
component, 

VI   in -V   P^\ci,ri,S)(2^^njd-l/2P(ci\S)P(ri\S) 

where C is the total number of spike functions in the sequence, and dj is the determinant of 
Hessian of the T'S for the jth peak region. The values needed to compute the Hessians can 
be obtained directly from the k-d tree. Note that integrating over r,- performs the function 
of Ockham's Razor by penalizing sequences with many spike models. Omitting this would 
reduce the solution to one of maximum likelihood which chooses the sequence that best fits 
the data. For example, the solutions shown in figure 3b and 3c both fit the data better 
than in 3a, but by (20), 3a is more than 8 times more probable than the others. 

P(c,, T,|S) describes the a priori probability of the sequence of models in c^ with as- 
sociated occurrence times T,-. For this discussion, we assume J°(c;|S) to be Poisson with 
rate proportional to (irk) and P(T,|S) to be proportional to 1/(71"*). Useful alternatives for 
/

>
(C,-,T,-|S) include models which take into account a refractory period or describe different 

types of spiking patterns. 
Once the probabilities for the sequence models have been computed, the improbable 

models are discarded. The decomposition algorithm iterates until no overlapping structure 
is found in the most probable model. The search can fail if an outlier is encountered or if 
the true sequence is outside the hypothesis space. Otherwise, upon termination the search 
results in a list of all plausible sequence models of the given data along with their associated 
probabilities. Example decompositions are shown in figure 5. 
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Figure 5: Example overlap solutions. Thick lines are drawn between the data samples. The thin 
lines are the spike models. The overlap sequence in a has 3 spike functions, b contains 4 spike 
functions, and c contains 5 spike functions. 

6    Performance on Real Data 

The algorithm was first tested on real data, a section of which was shown in figure 1. The 
whole waveform consisted of 40secs of data, filtered from 300 to 7000Hz and sampled at 
20kHz. Three iterations of the algorithm were performed with overlap decomposition after 
the second (with L = 1) and third (with L = 2) iterations. Spike models which occurred 
less than 10 times were discarded for efficiency, and the remaining events were reclassified. 
The inferred spike models are shown in figure 6. The residuals indicate that these spike 
models account for almost aU events in the 40sec waveform. Out of about 1500 total events, 
only 6 were not fit to within 5a„. By eye, these events looked very noisy and had no obvious 
composition in terms of the spike models. One possibility is that they resulted from animal 
movement. Such events were not present in the synthesized data set described in section 7 
where all the events were fit with the inferred spike models. 

By eye, all the models look distinct except perhaps for M2 and M3. One way to see 
the difference between these two models is to fit the data from model 3 with model 2 as 
shown in figure 7. With a single electrode it is difficult to determine whether or not these 
two shapes result from different neurons, but they are clearly two types of events. One 
possibility is that these are different states of the same neuron; another is that the shape 
in model 3 results from a tight coupling between two neurons. Recording with multiple 
electrodes from a local region of tissue would help resolve issues like this. 

In spite of all the math, the algorithm is fast. Inferring the spike set with overlap 
decomposition takes a few minutes on a Sun Microsystems Sparc IPX. Classification of the 
40 second test waveform with overlap decomposition (using L = 1) takes about 10 seconds. 

7    Performance on Test Data 

The accuracy of the algorithm was tested by generating an artificial data set composed of 
the six inferred shapes shown in figure 6. The event times were Poisson distributed with 
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Figure 6: The solid lines are the inferred spike models. The data overlying each model is a sample 
of at most 40 events. The residual errors are plotted below each model. 
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Figure 7: One way to see the difference between the spike models Mi and M2 is to fit the data 
from M2 (points) with Mx (solid line). The residual errors are plotted below. All the data from 
both spike models is plotted. If the noise level is constant throughout the duration of the AP, the 
large deviation in the residuals indicates that there are two distinct classes. 

frequency equal the inferred firing rate of the real data set. Gaussian noise was then added 
with standard deviation equal to an. The algorithm was run under the same conditions as 
above. 

The algorithm chose 14 initial spike models which were subsequently collapsed to 6 
using the methods discussed in the previous section. Note that in this case, the number of 
inferred models matches the number of true models, but this need not be the case if some 
true models are too similar to be resolved, or if there is insufficient data to identify two 
distinct classes. The six model spike set was preferred over the most probable five-model 
spike set by exp(34) : 1 and over the most probable seven-model spike set by exp(19) : 1. 
A summary of the accuracy of the spike shapes is shown in table 1. 

Table 1: Results of the spike model inference algorithm on the synthesized data set. 

Model 1 2 3 4 5 6 
^max/öj; 0.44 0.36 1.07 0.78 0.84 0.40 

maxi sk{t)/<rv 17.9 11.1 10.6 7.4 4.4 5.0 

Both the form and number of spike models were determined by the algorithm. The inferred number 
of spike models matched the true number (6 models). The middle row is the maximum absolute 
difference between the true spike model and the inferred model normalized by an. The last row is 
the normalized peak of the inferred spike models which is an indication of how far each type of AP 
is above the noise level. 
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Table 2: Classification results for the non-overlapping events of the synthesized data set. 

True 
Models 

Inferred Models Missed 
Events 

Total 
Events 1 2 3 4 5 6 

1 17 0 0 0 0 0 0 17 
2 0 25 1 0 0 0 0 26 
3 0 0 15 0 0 0 0 15 
4 0 0 0 116 0 0 1 117 
5 0 0 0 0 56 0 17 73 
6 0 0 0 0 0 393 254 647 

Table 3: Classification results for the overlapping events of the synthesized data set. 

True 
Models 

Inferred Models Missed 
Events 

Total 
Events 1 2 3 4 5 6 

1 22 0 0 0 0 0 0 22 
2 0 36 1 0 0 0 0 37 
3 0 0 20 0 0 0 0 20 
4 0 1 0 116 0 1 3 121 
5 0 0 0 1 61 1 19 .?2 
6 0 0 0 3 2 243 160 40S 

Tables 2 and 3: Each matrix component indicates the number of times true model i was classified 
as inferred model j. Events were missed if the true spikes were not detected in an overlap sequence 
or if all sample values for the spike fell below the event detection threshold (4c-). There was 1 false 
positive for M5 and 7 for M6. See text for additional comments. 

The results of inferring and classifying the synthesized data set are shown for the non- 
overlapping spikes in table 2 and for the overlapping spikes in table 3. An event was 
considered an overlap if the extent5 overlapped the extent of another event. Perfect perfor- 
mance would have all zeros in the off-diagonal entries and no undetected events. An event 
can be missed if it is not detected in an overlap sequence or if all its sample values fall 
below the threshold for event detection (4an). The tables indicate that for the largest four 
spikes, the performance is nearly perfect, even including the overlapping cases. 

Performance is worst in the smallest two spike models where there are a large number of 
missed events. For these models, there are typically only two or three samples that would 
be expected to exceed the noise level. As the threshold for event detection is lowered, there 
is a tradeoff between the number of real spikes missed and the number of false positives, 
since random fluctuations in the noise can easily produce small spike - like shapes which get 
misclassified as one of the small spike models. The number of below threshold missed events 

The extent of a event is defined as the minimum and maximum values in time at which the best-fitting 
spike function differs from DC by more than 0.5er,,. 
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can be minimized (with additional computational expense) by computing the probabilities 
at every sample point instead of only those that cross threshold. It is worth noting that 
this situation often does not pose a problem in practice, since observed spikes just above 
the noise level frequently correspond to many different neurons. 

8    Discussion 

Formulating the task as the inference.of a probabilistic model made clear what was necessary 
to obtain accurate spike models. Optimizing the rn's is crucial for both inference and 
classification, but this step is commonly ignored by algorithms which cluster the sample 
points or derive spike shapes from principal components. The soft clustering procedure 
makes it possible to determine the spike shapes with accuracy even when they are highly 
overlapping. Unless the spike shapes are well-separated, hard clustering procedures such as 
k-means will lead to inaccurate estimates of the spike shapes. 

Probability theory also provided an objective means of determining the number of spike 
models which is an essential reason for the success of this algorithm. With the incorrect 
number of spike models overlap decomposition becomes especially difficult. If there are too 
few spike models, the overlap data cannot be fit. If there are too many, decomposition 
becomes a very expensive computation. The evidence has proved to be a sensitive indicator 
of when two classes are distinct, as was shown in figure 7. Previous approaches have relied 
on ad hoc criteria or the user to make this decision, but such approaches cannot be relied 
upon to work under varying circumstances since their inherent assumptions are not explicit. 
An advantage of probability theory is that the assumptions are explicit, and given those 
assumptions, the answer provided by the evidence is optimal. 

One might wonder if the user, having much more information than has been incorporated 
into the model, can make better decisions than the evidence about what constitutes distinct 
spike models. Probability theory provides a calculus for stating precisely what can be 
inferred from the data given the model. When the conclusions reached through probability 
theory do not fit our expectations, it is due to a failure of the model or a failure of the 
approximations (if approximations are made). From the performance on the synthesized 
data, however, the approximations appear to be reasonable. Thus when the conclusions 
reached through the evidence are at variance with the user's, information is at hand about 
possible shortcomings of the current model. In this manner, new models can be constructed, 
and moreover, they can be compared objectively using the evidence. 

Probability theory is also essential for accurate overlap decomposition. It is not sufficient 
just to fit data with compositions of spike models. That leads to the same over-fitting 
problem encountered in determining the number of spike models and in determining the 
spike shapes. The Ockham penalty introduced by integrating out the r's was key to finding 
the most probable fits and consequently for achieving accurate classification. Previous 
approaches have been able to handle only a limited class of overlaps, mainly due to the 
difficulty in making the fit efficient. The algorithm we have described can fit an overlap 
sequence of virtually arbitrary complexity in milliseconds. 

In practice, the algorithm we have described allows us to extract much more information 
from an experiment than with previous methods. Moreover, this information is qualitatively 
different from a simple list of spike times. Having reliable estimates of the action potential 
shapes makes it possible to study the properties of these classes, since distinct neuronal 
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types can have distinct neuronal spikes (Connors and Gutnick 1990). With stereotrodes 
this advantage would be amplified, since it is then possible to estimate somatic size which is 
another distinguishing characteristic of cell type. Finally, accurate overlap decomposition 
makes it possible to investigate interactions among local neurons which were previously 
very difficult to observe. 
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ESTIMATORS FOR THE CAUCHY DISTRIBUTION 

K. M. Hanson and D. R. Wolf 
Los Alamos National Laboratory, MS P940 
Los Alamos, New Mexico   87545   USA 
email: kmh@lanl.gov and wolf@lanl.gov 

ABSTRACT. We discuss the properties of various estimators of the central position of the 
Cauchy distribution. The performance of these estimators is evaluated for a set of simulated exper- 
iments. Estimators based on the maximum and mean of the posterior probability density function 
are empirically found to be well behaved when more than two measurements are available. On 
the contrary, because of the infinite variance of the Cauchy distribution, the average of the mea- 
sured positions is an extremely poor estimator of the central position. However, the median of the 
measured positions is well behaved. The rms errors for the various estimators are compared to 
the Fisher-Cramer-Rao lower bound. We find that the square root of the variance of the posterior 
density function is predictive of the rms error in the mean posterior estimator. 

1. Introduction 

We explore the properties of various estimators of the central position of the Cauchy dis- 
tribution, which is notorious for the divergent nature of its first and higher moments. The 
results of using different kinds of estimators are evaluated by simulating a series of experi- 
ments using a Monte Carlo procedure. Investigation of the Cauchy distribution is profitable 
because its peculiar properties illustrate some interesting aspects of parameter estimation 
based on Bayesian analysis. It provides us with an example of how to properly deal with 
data outliers. Some aspects of this paper have been presented in [1]. 

2. The Cauchy Distribution 

2.1.    The problem 

Suppose that a radioactive source, located at the position (x0, yo), emits gamma rays. A 
position-sensitive linear detector, colinear with the x axis and extending to infinity in both 
directions, measures the position Xi that the zth gamma ray hits the detector. The data 
consist of the values x;, i = 1, ...,N, which we designate by the vector x. The problem is to 
estimate the location of the source x0, assuming that y0 is known. This problem is Gull's 
lighthouse example [2] cast in another setting. 

Assume that the gamma rays are confined to the x-y plane and are emitted uniformly in 
the angle 6 at which they leave the source. From the relation tan(0) = -yo/(xi-x0), which 
holds for -7T < 6 < 0, the probability density function of a measurement 2; is obtained by 
using the Jacobian determinant to transform the density function dependence from 8 to x; 

p{XilX0^)=,[yl + (x0-^)   ■ (1) 

255 
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We call p{xi\xo,y0) the likelihood. It is a properly normalized Cauchy distribution, which 
is notorious for having an undefined mean and an infinite variance. The width of this 
distribution may be characterized by its full width at half maximum (FWHM), which is 
2jto- 

In a Bayesian analysis the posterior probability density function for the xQ position of 
the source summarizes the state of knowledge concerning x0 by providing the probability 
density of every possible value of x0. The posterior of x0, given the data x and the position 
parameter y0, is given by Bayes's law 

p(zo|x, y0) oc p(x|x0, Jto) K^olyo) = p(x|a;o, jfo) p(x0)  , (2) 

where we have assumed that the prior on x0 is independent of y0. Proportionality constants 
are always determined by normalization - the requirement that the probability that some 
event occurs is unity. If we suppose we have no prior information about the x0 location of 
the source, then for the prior p(x0) we should use a constant over whatever sized region 
is required. Such a prior is noncommittal about the location of the source. Assume that 
the photons are emitted independently. Each measured xt- follows the likelihood, Eq. (1), 
and the assumption of independence simply means that p(x|z0, y0) is the product of the 
single measurement likelihoods p(a?j|ar0, Jto)- Using Bayes law, Eq. (2), and the uniform prior 
assumption, the full posterior probability is 

N N   r 

K*o|x, jto) ex p(x\x0, jfo) = 11 P(xi\xo, Vo) oc n y° 
ÜUo2 + (so-:c.-)2J    • (3) 

Again, all proportionality constants are determined by normalization. Here this is the 
requirement that the integral of p(x0\x, y0) over x0 is unity. From here on, we will often 
drop explicit mention of y0 and write the posterior as p(a;0|x). 

In the above derivation the posterior probability is proportional to the likelihood because 
the prior is assumed to be a constant. The likelihood expresses the probability of obtaining 
the specific set of measurements, given a particular x0. We emphasize that Bayes's law is 
necessary to gain information about x0 from the likelihood [2]. 

If it were known that the source position was limited to a specific region, an appropriate 
prior would consist of a function that is a positive constant inside the region and zero 
outside. This prior would have the effect of eliminating the tails of the posterior probability 
in (2) outside the legitimate region. This prior would alleviate any problem that might exist 
with the normalization of the prior. 

2.2.    Monte Carlo simulation 

To numerically test how well various estimators of x0 perform, we need to generate mea- 
surements that simulate a series of experiments. The cumulative probably (also called the 
distribution function), the probability of a measurement a:,- < u, is given by 

P(Xi <«)=/"  p(x\x0, y0) dx=- tan"1 (?LZ?2.) + I . (4) 
J-oo 7T V     2/0     /       2 v   ' 

To generate measurements from the Cauchy distribution, one uses a pseudorandom number 
generator that provides a number r2 in the interval (0,1) and then maps the result into the 
Xi value using the inverse of (4), x{ = x0 + y0 tan[7r(ri - £)]. 
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Figure 1: The posterior probability density function for the xo position of the radioactive 
source assuming that the correct y0 is known. Each of these plots is shown for one sim- 
ulated experiment; the measured xt- are displayed on the horizontal axis. The number of 
measurements is noted in the upper-right corner of each plot. 

Note that when u-x0 > yo, P{xi > u) = 1-P(zt- < u) « y0/ir(u - x0). The probability 
of getting an X{ value that is greater than 1000 times the FWHM of the distribution (2yQ) is 
roughly 1/1000. Thus the Cauchy distribution offers a superb example of a data distribution 
with outliers. 

The posterior probability given by Eq. (3) is plotted in Fig. 2.2. for specific measure- 
ments generated using the Monte Carlo technique described above. The plot for two mea- 
surements is bimodal, making it ambiguous to use the maximum posterior probability (see 
Sect. 3.2) to estimate x0- As the number of measurements increases, the width of the pos- 
terior density function decreases, indicating less uncertainty in the knowledge of x0. The 
broad tail of the Cauchy likelihood is increasingly suppressed as the number of measure- 
ments increases because the posterior probability involves a product of likelihoods of the 
individual measurements. 

3. Estimation of Location 

3.1. Mean and median of the measurements 

The average of the a;,- measurements (or samples) is often used to estimate the central 
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position of their distribution: 

1   N 
xO(sampmean) = T7 J^, X' • (5) 

i=l 

The variance of the average of N samples taken randomly and independently from an 
arbitrary density function is easily shown to be N'1 times the variance of the original 
density function, provided such variance exists. Curiously, the density function for the 
average of N samples from the Cauchy distribution is identical to that for one sample. 
Because the variance of the Cauchy density function is infinite, so will be the variance of 
the average of any finite number of samples. However, for a Gaussian density function, this 
estimator would be the sufficient statistic for the central position and would be optimal in 
many ways. 

An alternative estimator of the center of a sampled distribution is the sample median 
£o(sampmed)> which is supposed to be robust against outliers [3, pp. 232]. For odd N, the 
median is defined as the £(/V + l)th sample in the list of magnitude-ordered measurements; 
for even N, it is defined as the average of the (iV/2)th and the (JV/2 + l)th samples from 
such a list. 

3.2.    Bayesian estimators 

The Bayesian viewpoint is that the posterior probability density function for x0 summa- 
rizes our state of knowledge of x0 in probabilistic terms. Various types of estimators can 
be formed from the posterior. The choice of estimator can be based on how the cost of 
making an error in the estimated quantity depends on the size of the error [1]. The most 
commonly used estimator in Bayesian analysis is the x0 value at the maximum of the pos- 
terior probability, which we designate by f 0(MAP), because it is usually called the maximum 
a posteriori estimator. The MAP estimator minimizes a cost function that is zero for no 
error and a positive constant for any finite error. 

The estimate £Q that minimizes the expected mean-square error, i.e. 
J(x0 - XQ)

2p(xo\x) dx0, is the mean of the posterior density function: 

£o(post mean) =   / X0p(x0\x) dx0 . (6) 

Defining an integral that is proportional to the kth. moment of the posterior given in 
Eq. (3) 

the mean (or first moment1) of the posterior is 

_ Ji(x) a;0(post mean) *- j ,■.    ■ (8) 

The integrand in Eq. (7) has simple2 poles at xf = X{ ± iy0. By interpreting the integral 
as one along the real axis in the complex plane and closing the contour at oo in the upper 

2The kth moment of the posterior is 7t(x)/7o(x). 
The procedure described here must be trivially modified when z, = x, for i ^ j. However, we need not 

consider such coincident measurements because they represent a set of zero probability. 
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half plane (which contributes nothing provided the integrand falls off faster than x 1), the 
desired result is found using the Cauchy residue theorem 

/. w = h'tt n (It-xfx*t-x-). o £*<**-1 <•> 

= £(**•) +^ 
»=i 

n i 

(a;,--a:J-)2 + 4yg 
1- 

2iy0 

Xi Xi 
0<k<2N-l,     (10) 

where the second expression is obtained by simply rearranging the product. 
Note that by its definition (7), h is real for all allowed k. In particular for k = 1, 

the factor (xf)k = X{ + iyo in Eq. (10) contributes to two summations, one summation 
with factor a:,- and the other summation with factor iyo- The summation with factor iyo 
is identically tyolo- Because Jo is real, tyolo is imaginary. Thus the itfo-factor summation 
must be exactly cancelled by the imaginary part of the x^-factor summation and we may 
write 

/i(x) = & 
(xi-Xj)2 + 4y$ 

1- 
2ty0 

\xi       xj) 
0<k<2N-l.      (11) 

Therefore, the posterior mean estimator (8) has the form of a weighted average of the xi, 
^o(postmean) = Yl wixii where the sum of the weights is unity. Although this expression looks 
like a simple variation on the sample average (5), the weights possess a very complicated 
behaviour. The net effect of the first factor in the product in (11) leads to a diminished 
contribution from an outlier. But it is very difficult to conceptually grasp the effect of the 
second factor owing to its complex nature. 

Figure 3.2. shows the behavior of the various estimators when a new measurement is 
combined with five existing measurements. As the value of the new measurement moves 
away from the other measurements, its net effect on io(post mean) g°es to zero- Thus the 
estimator minimizes the contribution of any measurement that lies far from a cluster of other 
measurements, which seems to be an ideal treatment of outliers. Because the posterior is 
independent of the order of the measurements, the same behaviour is expected for any 
measurement. The posterior maximum estimator behaves similarly to the posterior mean. 
A new measurement affects the sample mean in a linear fashion because it is just a linear 
combination of all measurements. The outlier sample can drastically affect the sample 
mean. The sample median behaves quite differently. The change in the median remains 
constant as long as the (N + l)th sample lies outside the central-most two or three samples, 
depending on whether N is even or odd, respectively. The estimators based on the posterior 
are the only ones for which the effect of a single disparate measurement decreases as its 
descrepancy from the others increases. 

The variance of the posterior density function of XQ for a particular data vector x is 

/2(x) 
var{p(x0\x)} = I [x0 - x0^ostmeaxi)]

2p(x0\x) dx0 = j-r^ 
Ji(x)' 

)      Uo(x)J 
,N >2 (12) 

An interesting property of the posterior probability is that its shape depends on x and is 
hence usually different for different experiments. See Sect. 4 for its relationship to rms error 

IOr £o(post mean) • 
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X VALUE OF NEW MEASUREMENT 
80       10.0 

Figure 2: The change in the estimated position of the Cauchy distribution caused by adding 
a new measurement x6 to five existing measurements as a function of the value of the new 
measurement. The results are shown for several kinds of estimators. 

3.3.    Fisher-Cramer-Rao lower bound and Fisher information 

The Fisher-Cramer-Rao bound3 places a lower bound on the variance of any unbiased 
estimator x(x), var(x) > I^1, where 1N is the Fisher information 

_  fa2log[p(ao|x)] w dxl p{x0\x) dx (13) 

and where N, the number of measurements, is the dimension of x. Because the posterior 
(3) factors, we have 1N = NXU where Xx is the single-sample Fisher information given by 

7T y_oo 
(*-*o)2      dx _ J_ 

[Vl + (x - x0)aP 22/0
2 (14) 

In the last step the integral is evaluated by applying the Cauchy residue theorem (as in 
Sect. 3.2). Thus the Fisher-Cramer-Rao lower bound on the variance of any unbiased 
estimator of xo is 

var(x) > [NX,]-1 = M  . (15) 

It is important to note that this lower bound is valid only for unbiased estimators, i.e. 
when averaged over all possible data, it yields the correct result / i0(x) p(x\x0) dx = x0. We 
have confirmed through subsidiary calculations that both the sample mean and posterior 
mean are unbiased for N > 3 and that their variances exist for N > 4. 

Fisher stated this lower bound many years before Cramer and Rao [4, p. 66]. 
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Table 1: Summary of the performance of several estimators of the central position of a 
Cauchy distribution observed in 105 trials for a fixed number of samples per trial N. The 
estimators used are the mean and the median of the samples, and the maximum and mean of 
the posterior probability density function. The last two columns give the Fisher-Cramer-Rao 
lower bound on the rms error and the rms width of the posterior probability. 

N 
rms error in estimated position 

rms post samp mean samp median post max post mean FCR 
1 2.85 x lO10 2.85 x lO10 2.85 x 1010 2.85 x 1010 1.414 oo 
2 1.43 x 1010 1.43 x 1010 — 1.43 x 1010 1.000 1.43 x 1010 

3 9.52 x 109 2.828 2.825 2.768 0.816 2.616 
5 5.71 x 109 1.103 1.070 0.958 0.632 0.963 
10 2.86 x 109 0.578 0.538 0.522 0.447 0.523 
20 1.43 x 109 0.373 0.341 0.339 0.316 0.339 
40 7.14 x 108 0.256 0.236 0.232 0.224 0.232 

4.    Simulation Results 

The performance of the above estimators for Xo is tested by simulating 105. experiments, 
each involving a fixed number of measurements N, which are independently drawn from 
a Cauchy distribution as indicated in Sect. 2.2. The parameters are held fixed at x0 = 1 
and 2/o = l throughout. The results are summarized in Table 1. In these numerical 
experiments, except for the sample mean, the bias is always observed to be consistent with 
zero to within its statistical uncertainty, i.e. on the order of the [rms error of the estimator] 
/VT, where T is the number of trials, or experiments. We observe that the average value 

of the measurements performs terribly! This poor performance was anticipated, owing to 
the infinite variance of the Cauchy distribution. The only reason that the rms error in 
^o(samp mean) is n°t infinite, as mentioned, is that only a finite number of trials are included. 
The largest Xi in the particular sequence of pseudorandom numbers used to generate the 
4 x 106 measurements for the N = 40 test is 9.03 X 1012. Because of the symmetry of the 
likelihood (1) for one and two measurements, all the estimators are identical for N - 1 and 
2. The posterior mean and maximum perform much better than the sample average for 
three or more measurements. 

The estimators based on the sample median and the maximum of the posterior prob- 
ability density function perform only slightly worse than the one based on the posterior 
mean. Just as they demonstrate the weakness of the sample mean estimator, these results 
underscore the value of the sample median as a simple estimator that is robust against out- 
liers. Empirically, rms(£0(sampmed)) > rTOs(£0(postmax)) > rms( £0(post mean)), where rms 
indicates the rms error from Table 1. 

The Fisher-Cramer-Rao lower bound on the rms error is seen to be a valid lower bound 
for the estimators summarized in the table, which only begin to approach the lower bound 
for N > 20. 

It is natural to ask whether the posterior is predictive of the uncertainty in an estimator. 
The rms width of the posterior for our Cauchy problem rms{p(xo\y:)} may be calculated by 
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taking the square root of the variance in x0, calculated using Eq. (12). The results for the 
simulated experiments, shown in the last column of the table, indicate that this calculation 
does predict the rms error in the z0(Post mean) estimator. 

We note that the shape of the posterior depends on the measured data, as inferred from 
Fig. 2.2.. This behavior is different for a Gaussian likelihood with uniform prior, for which 
the width and shape of the posterior for a fixed number of data samples does not depend 
on the actual data values. We find in 105 trials for N = 5 that when the trials are selected 
on basis of rms{p(x0\x)}, the rms error in the estimator z0(Postmax) for those trials closely 
reproduces the chosen rms{p(x0\x)}. This result indicates that the posterior probability 
density function derived for each experiment provides information about the certainty of 
inferences made on the basis of that experiment. It is intriguing to consider how such 
information might be used to make decisions about whether more data should be taken to 
achieve a desired accuracy of interpretation. 

5.    Discussion 

The prior used in the Bayesian analysis was the uniform prior. Because the uniform prior 
on the real number line is not normalizable, this analysis must be viewed as a limit over 
normalized priors [5]. In practice, the prior should reflect the state of prior knowledge. 

The Bayesian analysis also assumed that the measurement interval was the complete 
x axis. When the measurement interval is finite, and assuming that a fixed number of 
measurements are made, the posterior has asymptotically nonzero constant tails. The 
reason for this is that the probability of the measurements is then simply the product 
of the probabilities p(xi\x0ly0) of Eq. (1), with each normalized to unity over the finite 
measurement inteval. For large x0 the normalization constant is effectively the width of the 
measurement interval times the value of the Cauchy distribution tail in that interval (Eq. (2) 
may be used to establish the precise relationship). Thus, the normalization constant has 
the same large x0 behavior as the Cauchy distribution that it normalizes, and this gives 
rise to the asymptotically nonzero constant tail. 

For a source of fixed intensity the assumption of fixing the number of measurements 
corresponds to varying the time interval that the measurements are taken within, measuring 
until the specified number of photons is gathered. A more reasonable assumption is that the 
time interval that measurements are taken within is fixed. When this is done the intensity 
of the source must be taken into account, which translates into a different likelihood for the 
measurements. In particular, the number of measurements follows a Poisson distribution, 
so that the likelihood for N measurements discussed in the last paragraph is modified by 
the factor P(N\x0,y0) = e~xXN/N\ where A = X(x0,y0) is the source intensity times the 
total probability that a measurement will occur in the measurement interval. 
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ABSTRACT. Estimating the amplitudes and decay rate constants of exponentially decaying signals 
is an important problem in science. Understanding how the uncertainty in the parameter estimates 
depends on the experimental parameters is important as an aid in understanding how to improve 
the reliability of the parameter estimates. In this paper, probability theory has been applied to 
this problem with the intent of understanding the relevant experimental parameters. In the case 
of a single exponential, the uncertainty in the estimated decay rate depends directly on the three 
halves power of the true decay rate constant, inversely on the signal-to-noise ratio, and inversely on 
the square root of the number of data values. The uncertainty in the amplitude estimate depends 
directly on the square root of the true decay rate constant, directly on the noise level, and inversely 
on the square root of the number of data values. The case of two exponentials has also been analyzed 
with similar results. However, here the presence of the second signal introduces interference effects 
which make the estimate more uncertain. 

1     Introduction 

Exponentially decaying signals occur in many branches of science and engineering. In 
chemistry the concentrations of the reactants in first order reactions decay exponentially. 
The same is true in physics for the radioactive nuclear decay and in Nuclear Magnetic 
Resonance (NMR) for the magnetization of an excited nucleus. Exponentials are also 
used to model both storage and release of drugs and other exogenous substances, like 
metabolic tracers, from compartments within the body. In all of these examples, the value 
of the amplitudes and decay rate constants, contain the information about the dynamics 
of interest. Various methods have been used to estimate these parameters. Some of these 
include curve stripping (measuring the slope of the line in a semi-log plot), nonlinear least 
squares, Prony's method, linear prediction, and Bayesian probability theory. Of these 
methods, Bayesian probability theory offers a unique opportunity to understand how the 
parameter estimates depend on experimental parameters because it provides an estimate 
of the uncertainty in the parameter estimates.   The techniques and procedures used in 
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this paper have been applied previously to exponentially decaying sinusoidal models [1], to 
chirped sinusoids [2], and to Gaussian point spread functions [3]. When the results of the 
Bayesian analysis have been compared to more traditional techniques, it has been observed 
that the traditional methods depend on the experimental parameters in much the same way 
as the parameter estimates from probability theory [4] and [5]. Consequently, the results 
derived from probability theory should also be indicative of the behaviour of the estimate 
from more traditional techniques. 

This paper addresses questions of the form "How does the uncertainty in the decay rate 
constant depend on the sampling time, the number of data points, the signal-to-noise ratio 
and the true decay rate constant of the signal?" In sections 2 and 3 the uncertainty in the 
parameter estimates for the decay rate constant and amplitude are determined for the single 
exponential model. Similarly, in sections 4 and 5 the uncertainty in the parameter estimates 
are determined for the two (or bi-) exponential model. A different calculation is needed 
to determine the uncertainty in the parameter estimates for each parameter, though each 
of these calculations follows the same general outline. First, a data set D = {di,.. .,d^} 
is postulated. This data has been sampled from a time series y(t) at discrete times i,- 
(1 < i < N). The time series y{t) is assumed to be the sum of two terms, a signal plus 
noise: 

di = y(U) = /(*,-) + a    (l<i<N), (1) 

where e; represents the noise at time *,-. The signal f(t) is of the form 

m m 

/(<«■) = E Witt-) = £ Bj exp {-ajti} (2) 
3=1 3=1 

where Bj is the amplitude of the jth signal, ay is the decay rate constant, and m is the 
number of exponentials. The cases of m=l and m=2 will be considered in this paper. In 
the second step of the calculation, the posterior probability density for the parameter of 
interest (the decay rate constant or amplitude) is computed. Next, a functional form of 
the data is postulated, and finally the parameter estimates are derived in the (mean ± 
standard deviation) form: These estimates explicitly demonstrate the dependence on the 
experimental parameters and what must be done to make more precise estimates. 

2     Estimating Decay Rate Constant: One Exponential Case 

The first calculation involves determining how the uncertainty in the estimated decay rate 
constant depends on the experimental parameters. From Eq. (2), the model equation for 
the single exponential, m = 1, is 

di = fl, exp-i-aiU} + et-    (1 < i < N). (3) 

The posterior probability has been derived previously [6] and the results will simply be 
given here. Using bounded uniform priors, for both the amplitude and decay rate constant, 
the posterior probability density for the decay rate constant is given by 

P(ai|a,Z),/)aexpji^L^j, (4) 



ESTIMATING PARAMETERS IN MULTIEXPONENTIAL SIGNALS 267 

where a number of irrelevant constants have been dropped and "•" means sum over discrete 
times: 

N N 

d-G = J2 diG(U) = E * exP {-«I*«"}. (5) 

and 
N N , 

G-G = J^Gl = 5>p(-2a,t,-) « —. (6) 
t=i t=i 

The approximation in this equation assumes that 2a\N is large compared to one; i.e., the 
signal decays away over the total sampling time, and that the sum may be approximated 
by an integral. To motivate the integral approximation, suppose the dimensionless decay 
rate constant is 0.01, that uniform sampling is used, and the time series is sampled for 
three e-folding times to obtain 300 data values; then the exact sum gives 50.3764, while the 
approximation gives 50.0. The approximation introduces an error of 0.75%. 

The next step in the calculation is to postulate a functional form for the data. If the 
true values of the amplitude and decay rate constant are B\ and a\ respectively, then the 
data are given by 

'd(t,-) = Biexp{-<5ii,-} + e,-    (\ < i < N) (7) 

and 
TV 

d ■ G = yy, exp {-ait,} 
t=i 

N N 

= Y^Bi exp {-(a! + ai)U} + ^e,exp{-a^} (8) 

Bi 
ai + «i' 

where the projection of the model onto the noise was assumed small compared to the 
projection of the model onto the signal (effectively the high signal-to-noise case). For the 
postulated data, the posterior probability density for the decay rate constant becomes 

^K^^ocexpj^lLj. (9) 

The maximum of the posterior probability occurs at aj = äj; the true value of the param- 
eter. Taylor expanding the exponent about this maximum gives 

(0l-&!)*£?• 
16<r2<r? 

PMa^Oocexp^  \e 2V3   *     , (10) 

from which one obtains 
(0,)e,t = äi±>/8|-(ä1)

3/2 (11) 
B\ 

as the (mean ± standard deviation) estimate of the decay rate constant. 
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First note that dimensionless units have been used. The conversion to dimensional units 
is given by 

^=^Ä1 (12) 
where a\ is the corresponding dimensional decay rate constant and At is the sampling 
time. Converting the (mean ± standard deviation) estimate to dimensional quantities one 
obtains 

(«i^^i^^tt)3'2. (13) 

A number of conclusions can be drawn from this expression: 

1. The estimated decay rate constant is equal to the true decay rate constant i.e., as the 
noise goes to zero, the parameter estimate goes smoothly to the true parameter value. 

2. Increasing the signal-to-noise ratio (cr/Bi) reduces the uncertainty in the estimated decay 
rate constant. 

3. For a fixed acquisition time, increasing the sampling time decreases precision of the 
estimate: sampling fewer data values over the region where the signal is large decreases 
the precision of the estimate. 

4. Conversely, increasing the number of data points (decreasing the sampling time) improves 
the precision of the estimate for the decay rate constant. 

5. The more rapidly a signal decays the worse the precision of the estimate. Rapidly decay- 
ing signals effectively reduce the number of relevant data. 

To make the decay rate estimate more precise one can either improve the signal-to-noise 
ratio, or gather more data values over the region where the signal is large. However, these 
comments apply only to the decay rate constant. They do not necessarily apply to the 
amplitude of the signal. To determine if they apply, the same type of calculation must be 
repeated for the amplitude of the signal, a task to which we now turn our attention. 

3    Estimating Amplitude: One Exponential Case 

To determine how the amplitude estimate depends on the experimental parameters, the cal- 
culation presented in the previous section must be repeated using the posterior probability 
for the amplitude as the starting point. Given the model, Eq. (3). the posterior probability 
for the amplitude is given by 

P(B1\*,DJ)ocJdalexPL
BlG-G-JB>d-G\ (14) 

where some irrelevant constants have been dropped, and no closed form solution for the 
integral is known to the authors. For the single exponential model and the postulated data, 
the posterior probability density for the amplitude becomes 

^^K^Oocexpj-^Al!} (15) 
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where some irrelevant constants were dropped and a Gaussian approximation was used 
to evaluate the integral over a\. Examining Eq. (15), the (mean ± standard deviation) 
amplitude estimate is given by: 

(B1)eat = Bi±<rs/2&^. (16) 

The conversion to dimensional units was given in Eq. (12), from which one obtains 

(B!)Mt = Bi±*y—jyr-1. (17) 

A number of conclusions can be drawn from this expression: 

1. The estimated amplitude is equal to the true amplitude. As the noise goes to zero, the 
parameter estimate goes smoothly to the true parameter value. 

2. The uncertainty in the estimate does not depend on the signal-to-noise ratio, but varies 
directly with the noise standard deviation a. Once a signal is above the noise level one 
should be able to detect and estimate its amplitude. 

3. The uncertainty in the estimate has the same dependence on the sampling time and the 
total number of data values as the decay rate constant. 

4. The uncertainty in the estimate increases as the true decay rate constant increases; but 
unlike the uncertainty estimate of the decay rate constant, the dependence is on the square 
root of the true decay rate constant, instead of the three-halves power. Consequently, the 
uncertainty in the estimated amplitude does not deteriorate as quickly as the uncertainty 
in the estimated decay rate constant. 

Unlike the uncertainty in the estimated decay rate constant, the uncertainty in the estimated 
amplitude does not depend on the signal-to-noise level; rather it depends only on the noise 
standard deviation. Increasing the signal strength will not make the amplitude estimate 
more precise. Only decreasing the noise level or increasing the sampling rate can do that. 
However, increasing the signal intensity will result in a smaller fractional error. 

The calculations presented in this and the previous section show how the uncertainty 
in the amplitude and decay rate constant depend on the experimental parameters. These 
estimates are valid for high signal-to-noise data containing a single exponentially decaying 
signal that decays away in the acquisition time. They are not valid for truncated signals 
or for data that contain more than a single exponential. Both of these shortcomings are 
easily corrected by repeating the calculations and making the appropriate assumptions. For 
truncated data one would not expect any new phenomena to appear. All that one would 
expect is a more general formula applicable under wider circumstances. However, for the 
two exponential case one would expect new phenomena to appear. In particular, one would 
expect to find interference phenomena. To see how the presence of the second exponential 
affects the parameter estimates these calculations must be repeated for the two exponential 
model. 
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4    Estimating Decay Rate Constant: Two Exponential Case 

In the next two sections the analysis presented for the single exponential case is generalized 
to the two exponential case. The question considered in this section is "How accurately 
can one of the decay rate constants be estimated given data that contain two exponentially 
decaying signals?" The model equation for such data may be written as 

di = ßj exp {-«if,-} + B2 exp {-a2t,} + e{    (l<i< N). (18) 

Using uniform priors, for the amplitudes and decay rate constants, and assuming the noise 
standard deviation (a) is known, the posterior probability density for one of the decay rate 
constants independent of the value of the other decay rate constant is given by 

f [ irih?] 
P(ai\(r,D,I)cc J da2expj —V (19) 

where some irrelevant constants have been dropped. The quantity ~h? is given by 

F_2aia2(a1+a2f(5?       2S,S2       S
2

2 } 
(ai-a2)

2      \2a2     a1 + a2"
t2a1J ^ 

with 
Si = d-exp {-ait}    and   52 = d • exp {-a2t} . (21) 

Postulating two exponential data given by 

d(ti) = Biexj>{-a1t} +B2exp{-&2t} + ei    (1 < i < N), (22) 

where Bi and di are the true amplitude and decay rate constant of the first exponential, 
and B2 and d2 are the true amplitude and decay rate constant of the second exponential, 
then Si and 52 are given approximately by 

Si = —T- + -T-r-    and    52 = -^ + —%-. (23) ai + oti      ai + a2 a2 + ai      a2 + a2 
v    ' 

The maximum of the posterior probability density again occurs at &i; the true value of the 
parameter. Taylor expanding the exponent about this maximum gives 

where some irrelevant constants have been dropped, and the integral was evaluated in the 
Gaussian approximation. From Eq. (24) one obtains 

("1 )esl = 01 ± 2 
<r2df (&! + a2)

4 

B{[ai - a2y 

as the (mean ± standard deviation) estimate of the decay rate constant. The conversion to 
dimensional units was given in Eq. (12), from which one obtains 

t  M -'_LO
CT

 (<*i + ä2)
2    irAt,.^/.2 
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Similarly, for the other decay rate constant one finds, 

A number of conclusions can be drawn from this expression: 

1. The estimated decay rate constant go smoothly to the true value of this parameter as 
the noise level goes to zero. 

2. The uncertainty in the estimated value of the decay rate constant depends only on the 
signal-to-noise ratio of the component of interest and is independent of the signal-to-noise 
ratio of the other component. 

3. Except for the quadratic ratio, the uncertainty in the estimated parameters has the same 
dependence on the experimental parameters as in the single exponential case. 

4. As the true values of the decay rate constants become comparable the uncertainty in the 
estimated values for both decay rate constants increases rapidly. 

To gain some insight into this last item, suppose the dimensionless decay rate constants are 
0.01 and 0.02. Then the uncertainty in the estimated parameters is a factor of 9 worse than if 
the decay rate constants were well separated. Additionally, suppose N=300, corresponding 
to an acquisition time of three e-foldings for the longer component, and both exponentials 
have the same amplitude, then to resolve each of the two decay rate constants at one 
standard deviation the signal-to-noise ratio must be approximately 10 for each component, 
or 20 total. But this assumes N = 300 data values. If the number of data values is low, 
for example N = 30, then the uncertainty in the estimated parameters increases VTÖ. 
To compensate, the signal-to-noise ratio must be increased to 35 for each component, or 
70 total. The presence of the second experimental signal increases the uncertainty in the 
parameter estimates. But note that when the decay rate constants are very different the 
uncertainty in the parameter estimates reduce to the single exponential case. So potentially 
if one can modify the experiment so that one component in very much different from the 
other, one can reduce the uncertainty in the estimated value of the longer lived component. 

5     Estimating Amplitude: Two Exponential Case 

The question considered in this section is "How accurately can one of the amplitudes be 
estimated given data that are known to contain two exponentially decaying signals?" The 
model equation for this data was given in Eq. (18). The posterior probability for Bx is 

given by 

P(Bi\a,D,I)ot Jdaida2exp|-(gl
2~2      \ (28) 

where some irrelevant constants have been dropped, no closed solution for the integral is 
known to the authors, and 

= 2ai(ai + aa)2 L .       {_^t} + (_i22_)d . exp {-a2t}\ . (29) 
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For the two exponential model and the postulated data, Eq. (22), the posterior probability 
density tor the amplitude is given approximately by 

P(J?ila,£,/)ocexpj-(i?1~/l)2 

I        4(T2d1 

a] - a2]
2' 

"1 +<*2. 
(30) 

where the integrals were evaluated using a Gaussian approximation. Examining Eq  (30) 
the (mean ± standard deviation) amplitude estimate is given by 

<*! +&2 
a\ -a2 

(B\)est = Bj ±a 

The conversion to dimensional units was given in Eq. (12), from which one obtains 

{B[)est = B[±c^+&i 

Similarly, for the other amplitude one finds, 

(31) 

«i ~a2 

(B-2 )est = B'.2±a 
Oil + <*2 

a-[ -a2 

2irAta!> 

N 

(32) 

(33) 

A number of conclusions can be drawn about estimating the amplitudes when the signal 
is known to consist of two exponentials: 

1. The estimated amplitudes go smoothly to the true values of the amplitudes as the noise 
level goes to zero. 

2. The uncertainty in the amplitude estimate does not depend on the signal-to-noise ratio 
but vanes directly with the noise standard deviation a. Again, once a signal is above the 
noise level one should be able to detect and estimate its parameters. 

3. Except for the interference factor in front of the square root, the uncertainty in the 
estimated parameters have the same dependence on the sampling time, the total number 
of data values and the true decay rate constant as in the single exponential case. 

4. As the true values of both decay rate constants become comparable, the uncertainty in 
the estimated parameters increase. But, the uncertainty in the estimated amplitudes 
does not increase as rapidly as the uncertainty in the estimated decay rate constant. 

To obtain a better understanding of this last item suppose ttl = 0.01 a2 = 0 02 and 
N - 300, (the same values used previously) then the uncertainty in the amplitude estimate 
is 3 times larger than for the corresponding single exponential case. As the true values 
of the decay rate constants approach each other the amplitude uncertainty becomes large 
However, the signal-to-noise ratio has not changed. If the individual amplitudes cannot be 
determined there must be some quantity that is still well determined. That quantity is the 
sum of the two amplitudes. The difference in amplitudes is undetermined. Conversely if 
the two decay rate constants are very different, the uncertainty in the amplitude estimate 
reduces to that found m the single exponential case. 
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6    Summary 

In this paper, probability theory has been used to obtain an understanding of how the 
uncertainty in the estimated parameters depends on experimental parameters. For decay 
rate constants, there are two ways to reduce the uncertainty in the estimated parameters: 
increase the signal-to-noise ratio or increase the sampling rate while holding the acquisition 
time constant; e.g., take more data over the time one has a signal. For amplitudes a similar 
result holds for taking more data, but not for increasing the signal-to-noise level. To reduce 
the uncertainty in the estimated amplitudes, one must decrease the noise level. A potentially 
much harder condition to fulfill. In the case of data containing two exponentials, probability 
theory shows how the uncertainty in the parameter estimates depend on the presence of 
the other exponential. For such data probability theory indicates that the uncertainty in 
the parameter estimates may be reduced by modifying the experiment in such a way as 
to separate the true decay rate constants. However, barring this last alternative, there are 
only two fundamental ways to reduce the uncertainty in the estimated parameters: decrease 
the noise level (thereby increasing the signal-to-noise of the data) or take more data over 
the region where the signal is large. 
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ABSTRACT. This paper presents the theory of the pixon, the fundamental unit of picture infor- 
mation, and its application to Bayesian image reconstruction. This naturally leads to a discussion of 
picture information content and the degrees of freedom necessary to describe the underlying image 
(i.e. the noise-free, undistorted image) within the accuracy of the data. The implications of these 
concepts for the formulation of appropriate Goodness-of-Fit criteria (i.e. Maximum Likelihood) are 
discussed. Finally, examples of the applications of these methods to artificial and real data are 
presented. These examples demonstrate that pixon-based methods produce results superior to both 
pure Goodness-of-Fit methods and the best examples of Maximum Entropy methods. 

1.    Introduction 

The act of measurement of physical quantities inevitably introduces artifacts. These arti- 
facts can be associated with the statistical limits of the measurement process, e.g. counting 
statistics, as well as characteristics of the measurement device, e.g. finite resolution or 
noise of an instrumental origin. Modern approaches for deducing the underlying, uncor- 
rupted physical quantities from the recorded data often turn to Bayesian estimation in 
which the measurement process is statistically modeled. This is the approach taken here. 
More specifically, the problem we shall analyze is the recovery of the spatial, temporal, or 
spectral resolution lost due to the measurement process. This class of problems can be 
characterized by the equation 

D(x)   =   jdVyK(x,y)l(y) + N(x) (1) 

where D{x) is the recorded data, I(x) is the underlying signal that one wishes to recover 

(or reconstruct) as accurately as possible, K(x, y) is a kernel function expressing how the 

act of measurement blurs the true signal, the integration is over the volume in y -space, and 
N(x) is the noise associated with the measurement. Note that while we have presented this 
problem as an exercise in estimation of true signal in recorded data, equation (1) can be 
viewed simply as an integral equation and the methods described here as techniques useful 
in the inversion of this equation. 

In later sections of this paper we will present inversions of equation (1) for specific 
examples. The field we shall draw on for these examples is astronomical imaging. In this 
case, the integral in equation (1) can be represented as a convolution of the true signal with 
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a point spread function (PSF), H, i.e. 

D{x)   =   JdVyH(x-y)l(y) + N(Z). (2) 

However, the methods we describe here are useful for many other problems as well. 
Before proceeding with a description of our methods, it is useful to establish a historical 

perspective. Not surprisingly, the first approach used to solve equation (2) employed Fourier 
methods. This method takes advantage of the convolution theorem for Fourier Transforms 
which states that the Fourier Transform of the convolution of two functions is the product 
of the Fourier Transforms of the individual functions. Hence the "solution" of equation 
(2) is given by dividing the Fourier Transform of the data by the Fourier Transform of the 
PSF and performing an inverse Fourier Transform on the quotient. In the absence of noise, 
this procedure yields an exact result. Unfortunately, this method is notoriously unforgiving 
with respect to noise, producing strong "ringing", and making the method unsuitable for 
quantitative analysis of images. 

Today, the most successful methods for inverting equation (2) are non-linear in their 
approach. The simplest among these define a figure-of-merit, or Goodness-of-Fit (GOF) 
criterion, for the image and then use multi-dimensional optimization methods to maxi- 
mize this function. Such methods include the familiar Least-Squares method as well as the 
Lucy-Richardson method (Lucy 1974). While these pure GOF techniques typically give su- 
perior inversions to equation (2) than do Fourier methods, they still have many undesirable 
properties. A common problem is over-resolution in which the algorithm attempts to fit 
the noise and introduces features which are unnecessary to fit the data. Lucy-Richardson 
reconstructions, for example, are typically stopped after an arbitrary number of iterations 
in an attempt to overcome this difficulty. This leaves the unpleasant (and difficult) task of 
determining which features are "real" and which are not. More sophisticated approaches 
such as Maximum Entropy (e.g. Skilling 1989) place additional constraints upon the solu- 
tion based on prior expectations. These additional constraints greatly improve the quality 
of the solution by regularizing the problem and controlling over-resolution. 

Recently, we have introduced a new image reconstruction method based on the pixon 
(Piha and Puetter 1993, Puetter and Piha 1993). This method greatly expands upon ME 
methods by introducing a prior with a variable local scale. In fact, our Uniform Pixon 
Basis (UPB) method (Piha and Puetter, 1993) results in a "Super-Maximum Entropy" re- 
construction in which entropy is maximized exactly. In our use of variable correlation length 
scales, pixon-based methods are similar in some respects to the multi-channel methods of 
Weir (1991, 1993a) or the Pyramidal Maximum Entropy techniques of Bontekoe, Koper, 
and Kester (1993). Unlike these techniques, however, pixon-based methods explicitly deter- 
mine the appropriate local scale based on various criteria. Our most recent Fractal Pixon 
Basis (FPB) method (Puetter and Piha 1993) selects the local correlation length based 
on the local structural scale of the image and represents the highest performance image 
reconstruction method we are aware of to date. 

Each of the techniques described above, e.g. GOF, ME, and Pixon-Based methods, can 
be formalized in terms of Bayesian estimation theory. In order to understand the basis and 
merits of pixon-based methods relative to competing techniques, we turn now to a brief 
summary of this theory. 
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2.    The Pixon and Bayesian Estimation 

To statistically model the measurement process, a number of issues must be addressed. 
First, there is the physics describing the measurement process. This, however, is assumed 
to be set down in equation (1). Second, a number of details related to the measurement 
process itself, must be properly incorporated. These include the manner in which the data 
was collected, e.g. as a rectangular grid of counts as is the case for astronomical imaging 
with a solid state detector, as well as the characteristics of the noise, etc. Finally, a number 
of decisions must be made regarding how equation (1) is to be inverted mathematically. 
Common assumptions here are that the image can be represented by a grid of numbers 
and that the integral represented in equation (1) can be approximated by a discrete sum 
over this grid. Each of these aspects of the problem, i.e. the physics, the particulars of the 
measurement, and the mathematical assumptions are part of the model, M, which links the 
image and the data. Since the goal of any inversion scheme is to obtain the most accurate 
image, it is important to realize that every aspect of the model affects the accuracy of 
the image reconstruction, i.e. the physics must be accurately described, the details of the 
measurement must be adequately noted, and the numerical assumptions made must be 
appropriate so as not to compromise the inversion. 

2.1.   The Bayesian Approach 

The Bayesian approach to inverting equation (1) is to use Bayes' Theorem to develop a 
formula for the most probable value of I(x). This begins by factoring the joint probability 
distribution of the triplet, D, I and M, i.e., p(D,I,M), where D,I, and M are the data, 
image, and model respectively. Bayes' Theorem can then be used to factor p(D,I,M) to 
give 

p(D,I,M)   =   p(D\I,M)p(I,M) = p(D\I,M)p(I\M)p(M), (3) 

or 

p(DJ,M)   =   p(I,M\D)p(D) = p(I\D,M)p(D\M)p(M), (4) 

where p(X\Y) is the probability of X given that Y is known. (Bayes' Theorem states that 
p{X,Y) = p(X\Y)p(Y) = p(Y\X)p(X).) 

Equating the right-hand sides of equations (3) and (4), we find 

_    p(D\I,M)p(I\M) 
P(/|Z)'M)   "     pjD\M)  (5) 

or 

p{IM]D) = mi,MW,M)xp{I)]ItM)p{IM) (6) 
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From equation (6) we can find the M.A.P. (Maximum A Posteriori) image using 

p(I\D)   =   I dM p{I, M\D) = j dM^W'MWiM) K XDV, M0)p(I, M0),   (7) 

where M0 is the model from the M.A.P. image/model pair. (The proportionality assumes 
that the peak in the probability distribution is representative of a typical sample from 
the posterior probability distribution. While this is usually the case, it is not absolutely 
guaranteed.) 

Equation (5) is the typical starting point of Bayesian image reconstruction in which 
one wishes to determine the M.A.P. image, i.e. the image which maximizes p(I\D,M). 
(The M.A.P. image, of course, is only one of several choices for the "best image". Another 
sensible choice might be the average image, (/} = JD MdMdD I p{I\D,M).) 

Equations (6) and (7) are our preferred prescription for Bayesian image reconstruction in 
which both the image and the model are varied simultaneously to obtain the best combined 
image/model solution, e.g. the M.A.P. image/model pair. Equation (6) might be used 
directly to find the optimal image, i.e. the image paired with the model in the M.A.P. 
image/model pair. Alternatively, the M.A.P. image can be found using equation (7). 

The significance of the terms in the above equations are well known. The first term, 
p(D\I, M), is a goodness-of-fit (GOF) quantity. The standard choice for p{D\I, M) is to use 
p(D\I,M) = exp(-x2/2), where x2 is the chi-square of the residuals. The terms p(I\M) 
and p(I,M) are "priors". Since they do not depend on the data they can be decided a 
priori. The first of these, i.e. p(I\M), is normally termed the image prior and expresses 
the a priori probability of an image given the model. The second, e.g. p(I,M), we have 
termed the image/model prior, and expresses the a priori probability of both / and M. In 
GOF image reconstruction the prior is ignored or is effectively set equal to unity, i.e. there 
is no prior bias concerning the image or the model. In Maximum Entropy (ME) image 
reconstruction, the image prior is based upon "phase space volume" or counting arguments 
and the prior is expressed as p{I\M) = exp(a5), where S is the entropy of the image and 
a is an adjustable constant that is used to weight the relative importance of the GOF and 
image prior. Many different formulations for S and a appear in the literature (Kikuchi and 
Soffer 1976, Bryan and Skilling 1980, Narayan and Nityananda 1986, and Adorf, Walsh, and 
Hook 1990). Recently, however, Skilling (1989) and Gull (1989) have shown that there is a 
natural, Bayesian choice for the value of a. Indeed, this new, natural Bayesian choice for a 
is directly related to the number of degrees-of-freedom (DOFs) in the data. In this regard, 
the Bayesian choice for a is directly related to the pixon approach presented here. In fact, if 
properly performed, we would expect our pixon-based methods and the Bayesian estimate 
of a to agree exactly on the number of degrees-of-freedom required to describe the data. The 
advantage of the pixon-based approach, however, is that it actually determines the spatial 
locations of these DOFs and presents them to the researcher for accurate determination-see 
below. 

The final quantity, p(D\M), is termed the "Evidence" for the model. (Actually, we 
normally refer to p(M\D) as the Evidence, but p(D\M) is proportional to this quantity and 
normally equal to this quantity since it is common to assume that both p{D) = const and 
p(M) — const since there generally is not an a priori manner for choosing between valid 
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data sets nor between "sensible" models.) Choosing models on the basis of the Evidence 
allows one to "peak-up" on more favorable solutions. 

3.    The Pixon Concept 

Equations (6) and (7) indicate that two quantities, the GOF criterion, p(D\I, M), and the 
image/model prior, p(/,M), are of key importance in obtaining the most probable (i.e. 
M.A.P.) values for the image/model. In this paper we shall concentrate on a new proposal 
for the prior. This is discussed below. 

3.1.    A New, Pixon-Based Prior 

Equation (6) will form the basis of our pixon-based methods, i.e. our goal is to determine 
the M.A.P. image/model pair. Like ME methods we shall base our image/model prior on 
counting arguments. Unlike standard ME methods, however, we will allow certain aspects 
of the model to vary simultaneously with the image. By allowing both the image and model 
to vary simultaneously, we are optimizing our solution over a considerably larger solution 
space than methods which hold the model constant. Previous workers (Gull 1989, Sibisi 
1990, Skilling 1991, MacKay 1992a,b) have already demonstrated the merits of varying the 
model and have shown the efficacy of selecting between models by maximizing the Evidence 
for the model. 

Of course certain aspects of the model should not be varied. This includes, for example, 
the physics that we know to be true for the problem at hand. In fact, however, this simply 
means that the prior for this aspect of the model is very highly peaked around the true 
physics. It is so highly peaked, in fact, that the prior is effectively 1 for the physics that 
we understand to be true and zero for everything else. The same can be said for our 
understanding of the details of the experimental set-up. We typically know with near 
absolute certainty the detailed properties of the noise (e.g. the noise may be Gaussian with 
a particular value of a) and the layout of the instrument, etc. What we most uncertain 
about, however, is how the image, l(x), should be modelled mathematically. Surprisingly, 
the method of modelling the image can have profound implications for the quality of the 
reconstruction. 

To show how the selection of image representation (we shall use the word basis) affects 
the quality of the reconstruction, let us next consider the abstract nature of an image and 
how a generalized image/model prior might be constructed. To do this we shall follow 
closely the development of Piha and Puetter (1993) and Puetter and Piha (1993). They 
pointed out that in an abstract sense, an image is a collection of distinguishable events 
which occur in distinct cells. Hence the value for the image/model prior can be determined 
from simple counting arguments. If there are TV; events in cell i, and a total of n cells, then 
the prior probability of that particular image is: 

p{{Ni}^N)   =    =    N    Nl =p(/,M), (8) 
n     ii.ceUs,i   ivf 

where {TV,} is the set of all numbers of events in cells i, N is the total number of events, i.e. 
N = J2Ni, and the image is now considered to be made up of these events. [In practical 
terms, an event is a photon count in a photon counting detector or the number of counts in 
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units of the standard deviation of the noise in non-photon counting systems. Furthermore, 
these "events" are, in fact, units of information, i.e. the knowledge that something (an 
event) has occurred is the minimal unit of information-see Pifia and Puetter (1993) for a 
discussion. This sense of the term "information" is somewhat different than the classical 
definition which is in terms of the logarithm of the number of states, etc.] Also note, that 
the cells used in equation (8) are quite general. In their definition we have not specified 
a size, shape, or position for the cells. The cell concept simply serves to localize some 
collections of events. 

Since the goal of our reconstruction is to determine the M.A.P. image/model pair, we 
must maximize the product of the image/model prior given in equation (8) and the GOF 
term. Most people have a well developed intuition regarding how to maximize the GOF 
term, i.e. the residuals, R(x) = D(x) - JdVy H(x - y)I(y), must be comparable to 
the noise (strictly speaking, they should be exactly equal to the noise). Intuition concern- 
ing priors is usually less well developed. Equation (8), however, points out the a priori 
desirable properties of the model for the image. These are that the model should contain 
the fewest number of cells with each containing the largest number of events consistent 
with maintaining an adequate GOF. We shall call these generalized cells pixons. The pixon 
name recognizes the pixel (or cell) heritage, and the "-on" suffix recognizes the fundamental 
nature of the pixon in that the pixons represent an optimal set of cells. Ideally, an image's 
pixons represent the smallest number of cells (of arbitrary shape, position, etc.) required to 
fit the data, and represent the minimum DOFs necessary to specify the image. If properly 
selected, this set is irreducible to a smaller set. Hence pixons are the fundamental units of 
information in the image. Using a pixon basis is the fulfillment of Occam's Razor formalized 
in Bayesian terms-it forces the use of the simplest model consistent with the data. 

3.2.    Fuzzy Pixons: A Practical Pixon-Basis Choice 

The simple counting arguments presented in the section above point out the crucial fea- 
tures of the pixon basis, i.e. there should be the fewest number of pixons consistent with 
fitting the data within the accuracy allowed by the noise. Furthermore, these pixons should 
contain the maximum information content. While this prescription is exact, we are still 
left with considerable uncertainty as to how to carry out this prescription in practice. In 
our attempts to derive suitable, practical pixon bases for image reconstruction, we finally 
adopted techniques which are similar to those adopted by other authors, i.e. a correlation 
length method (c.f. Weir 1991, 1993a). This approach controls the number of DOFs by 
reducing the independence of different parts of the image through explicit spatial correla- 
tion. This also causes the resulting degrees of freedom (or pixons) to be "fuzzy", i.e. to be 
localized but without hard boundaries. This still allows the use of the pixon prior of equa- 
tion (8), although it does introduce a few computational complexities and mental hurdles 
for the intuition of the uninitiated. Nonetheless, the practical and performance merits of 
this approach seem to warrant these modest burdens. 

Explicitly, then, our procedure for reducing the DOFs in the image reconstruction is to 
define the image in terms of a pseudo-image, Ipseudo(x), convolved with a local correlation 
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length, S(x), i.e. 

I(x)     =       /     dVy Kpixon       =r—     Ipseudo(y) , (9) 
Jvy y S(x) ) 

where Kpixon is a pixon shape function and /Vy dVy Kvixon(y /S) = 1. The pseudo-image 
is defined on a pseudo-grid which typically has a resolution as fine or finer than the data 
pixel grid. The image is then also defined on a grid with the resolution of the pseudo-grid. 
Because of the local correlation in equation (9), however, the number of DOFs in the image 
can be greatly reduced from the number of pixels in the pseudo-grid. For example, if the 
local correlation length at position x is 10 pseudo-pixels then each 100 pixels (10 by 10 
pixels) represent a single DOF at this location. Reduction in the DOFs greatly improves the 
formal value of the image/model prior expressed in equation (6) and removes many common 
problems with competing methods, e.g. signal correlated residuals and the production of 
spurious sources-see below. 

3.3.    An Iterative Procedure for Pixon-Based Reconstruction 

There are many possible ways by which one might attempt to obtain the M.A.P. im- 
age/model pair for a given data set even when one has decided to use a fuzzy pixon scheme. 
There is, of course, the brute force method in which the pseudo-image values.and the local 
correlation scales at each point in the pseudo-grid are considered as free variables and the 
M.A.P. image/model (in this case the correlation lengths might be considered the model) 
is calculated directly by maximizing p(D\I,M)p(I,M) with any of a selection of multi- 
dimensional methods. Historically, however, this is not the procedure we have adopted 
(although we now feel that this is perhaps the best approach). For the calculations pre- 
sented in Piha and Puetter (1993), Puetter and Piria (1993), and those presented in the 
sections that follow, we have used an iterative approach that first calculates the image with 
a fixed model, then an improved model holding the image fixed. This procedure is then 
iterated to convergence. The scheme is illustrated in Figure 1. 

The iterative scheme for calculating the M.A.P. image/model pair starts with an initial 
guess for the model, i.e. the spatial correlation lengths. A common starting point is to 
assume that the scale lengths are all equal to 1 pseudo-pixel. This is equivalent to starting 
out with the standard ME solution for the image. In other words, for the first estimate 
for the image the fuzzy pixon prior is essentially the ME prior and the GOF criterion can 
be chosen to be the standard chi-squared value of the residuals. In practice, however, we 
typically use a simple GOF solution and ignore the ME prior. This is considerably faster 
in practice and results in a very good first guess. The next step estimates the new local 
scales, holding the image fixed. This is done by maximizing 

P(M\D)   =   JdIP^M^MKP(D\I0,MWo,M) (10) 

i.e. finding the M.A.P. model given the fixed data and current image estimate, I0. In our 
current implementations, this M.A.P. model is determined in only an approximate manner. 
We simply note, for example, that the prior term, p(I0, M), will insist on the largest possible 
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Iterate 
Step 1: Estimate MAR Image 

P<AD) - fatiVMD) = f^p(P|/'^)p(/'M) 

'P (£,l l>MJP <7>Mo>   where u0 is the current 
model estimate 

I 
Step 2: Estimate MAP. Model 

/»(D) 

.p(D|/0,M)p(/0,M)      where /0 is the current 
image estimate 

No 

Figure 1:   Schematic diagram of iterative scheme for Fractal Pixon Basis (FPB) image 
reconstruction. 
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correlation lengths consistent with the GOF, while the GOF term is indifferent to very 
small correlation lengths since they should always produce acceptable fits. Our procedure 
is thus simply to find the largest correlation lengths that provide an acceptable fit to the 
data, i.e., allow a chi-squared value within roughly one standard deviation y/2(N — n) of 
the chi-squared distribution about its modal value N - n - 2, where N is the number of 
independent measurements (pixel values) and n is the number of pixons. Once the local 
scales have been determined, a new image is calculated, etc., and the entire procedure 
iterated until convergence is obtained. 

A bit of intuition into this procedure reveals the fundamental reasons for this method's 
success. Effectively, this is a fractal technique. Independent of the exact method for 
obtaining the local correlation lengths (e.g. the brute force method or an iterative method as 
described above) this procedure seeks the natural local scale present in the underlying image 
as evidenced by the data. The pixon prior ensures that the procedure takes the largest, 
i.e. least informative, scale consistent with fitting the data. Our procedure analyzes how 
a geometric quantity varies as the local scale is varied. In this case we ask how p(I, M\D) 
varies as the local scale is varied, just as the definition of fractal dimension asks how does 
the measure (e.g. length, area, etc.) of a geometric object vary as the local scale is changed. 
For this reason, we have named this entire class of methods Fractal-Pixon methods and the 
pixon representation of the image the Fractal-Pixon Basis (FPB). 

3.4.   The Pixon and DOF Maps 

In the process of performing a pixon-based image reconstruction all of the appropriate local 
correlation lengths are determined. If these lengths, S(x), are given in terms of pseudo-pixel 
sizes, then it is quite easy to determine exactly what fraction of a pixon (or DOF-note, we 
use the terms DOF and pixon interchangeably) each pseudo-pixel is, i.e. the pseudo-pixel 
at position £,- is 

dnD0F 1 
d(pseudopixel) r    ,v , 

6(xi) 

fraction of a pixon, where kpixon(x) is the pixon shape function normalized to unity at 
x = 0. The total number of pixons (or DOFs) in the image is given by 

Nixon  =       y      dnDOF =     y      x (12) p,xon f-*;      . d(pseudopixel) ~   ,  . r     „r , /   .    \ 
pseudopzxels,t     " '       pseudopixel$,i   \y    uVv Kp "pixon I      - 

\6{xi) 

We call the "image" formed by the S(xi)'$ the pixon map, and the image formed by the 
dnDOFI' d(pseudopixel) the DOF map. The pixon map displays the local scale length for 
pixons while the DOF map displays the density of DOFs in the image. The pixon map gives 
a lower limit to the spatial scales resolved by the image reconstruction, i.e. a resolution as 
fine as the local pixon scale (but no finer) has been achieved in the reconstruction. This 
resolution can be limited either by the quality of the data, e.g. signal-to-noise, or by the 
lack of real structure at finer scales in the underlying image. Each of these images can 
be "remapped" into data space by convolution with the PSF. This allows one to see the 
deduced structural scale and DOF density in data space. 
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4.     Sample Image Restorations 

To demonstrate the advances represented by our methods, we present in this section recon- 
structions from both real and "mock" data sets, i.e. artificially created data. We have done 
this for several reasons. In the mock data case, the image reconstruction conditions are 
essentially perfect, i.e. the noise, PSF, and true answer are known a priori with arbitrary 
precision. This leaves no uncertainty in how well each algorithm has performed. However, 
in imaging situations we rarely encounter such benign conditions. For this reason, we have 
also included a real data test case in which the noise and PSF characteristics are exper- 
imentally determined. Unfortunately, the true answer is also imperfectly known, making 
validation of the technique more difficult. 

Having outlined our testing plan, we still need to decide to what competing techniques 
we shall compare our methods. In order to make the comparisons as fair as possible, we 
compare our reconstructions to those performed by other professionals well versed in the 
competing techniques. This avoids issues of whether the competing reconstructions are the 
best possible. For the real data test, we have chosen IRAS (Infrared Astronomical Satellite) 
60/xm survey scans of the interacting galaxy pair M51 (the "Whirlpool"). This data was 
used for an international image reconstruction contest at the 1990 MaxEnt Workshop (see 
Bontekoe 1991), which was attended by leaders in the field of image reconstruction. Hence 
our reconstruction of M51 will be compared to the best state-of-the-art reconstructions 
circa 1990. 

From comparisons like the M51 contest, experts generally agree that ME produces re- 
sults superior to GOF methods (e.g. Least-Squares and Lucy-Richardson). The reasons 
are simple. GOF methods do not employ a prior and hence are under-constrained rel- 
ative to ME methods and typically over-fit the data. As mentioned earlier, this is why 
Lucy-Richardson (LR) method reconstructions are stopped after an arbitrary number of 
iterations. This prevents "break-up" of the image into numerous spatially small features. 
For this reason, we shall concentrate on comparing our reconstructions to ME reconstruc- 
tions (although we shall present a LR reconstruction of the M51 data set as well, allowing 
the reader to judge the validity of these claims). The ME code we shall make our compar- 
isons to is MEMSYS, a powerful set of ME algorithms developed by Gull and Skilling (see 
Gull and Skilling 1991). The MEMSYS algorithms probably represent the best commercial 
software package available for image reconstruction. The mock data reconstruction exam- 
ple compares our fractal pixon methods with MEMSYS 5, the most current version of the 
MEMSYS algorithms (see Gull and Skilling 1991). The M51 example compares our results 
to those of MEMSYS 3, the current version of MEMSYS at the time. 

4.1.     Example 1: A Mock Data Set Reconstruction 

Figure 2 presents FPB and MEMSYS 5 reconstructions of a mock-data set. The MEM- 
SYS 5 reconstructions were performed by Nick Weir of Caltech, a recognized MEMSYS 
expert, and were supplemented with his multi-channel correlation method which has been 
shown to enhance the quality of MEMSYS reconstructions (Weir 1991, 1993a). The true, 
noise-free, unblurred image presented in the top row is constructed from a broad, low-level 
elliptical Gaussian (i.e. a 2-dimensional Gaussian with different FWHMs in perpendicular 
directions), and 2 additional narrow, radially symmetric Gaussians. One of these narrow 
Gaussians is added as a peak on top of the low-level Gaussian. The other is subtracted to 
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Figure 2: FPB/MEMSYS 5 Comparison for the mock data set described in the text. 
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make a hole. To produce the input image, the true image was convolved with a Gaussian 
PSF of FWHM=6 pixels, then combined with a Gaussian noise realization. The resulting 
input image is displayed in the top row. The signal-to-noise ratio on the narrow Gaussian 
spike is roughly 30. The signal-to-noise on the peak of the low level Gaussian is about 20. 
The signal-to-noise at the bottom of the Gaussian "hole" is 12. 

As can be seen, the FPB reconstruction is superior to the multi-channel MEMSYS 
result. The FPB reconstruction is free of the low-level spurious sources evident in the 
MEMSYS 5 reconstruction. These false sources are due to the presence of unconstrained 
degrees of freedom in the MEMSYS 5 reconstruction and are superimposed over the entire 
image, not just in the low signal to noise portions of the image. Furthermore, the FPB 
reconstruction's residuals show no spatially correlated structure, while the MEMSYS 5 
reconstruction systematically under-estimates the signal, resulting in biased photometry. 

To illustrate the DOF density concept, Figure 3 provides an illustration of the DOF 
density map, i.e. an image formed from the values of driooFI'd(pseudopixel) for this first 
example. 

4.2.    Example 2: 60 Micron IRAS Survey Scans of M51 

We have also reconstructed an image from 60//m IRAS survey scans of the interacting 
galaxy pair M51. This data was selected for several reasons. First, M51 is a well studied 
object at optical, IR, and radio wavelengths. Hence "reality" for this galaxy is relatively well 
known. Second, as mentioned before, this particular data set was chosen as the basis of an 
image reconstruction contest. Consequently, there have been a number of serious attempts 
at performing image reconstruction on this data set by specialists in the field. Finally, the 
IRAS data for this object is particularly strenuous for image reconstruction methods. This 
is because all the interesting structure is on "sub-pixel scales" (IRAS employed relatively 
large, discrete detectors-1.5 arcmin by 4.75 arcmin at 60fim) and the position of M51 in 
the sky caused all scan directions to be nearly parallel. This means that reconstructions in 
the cross-scan direction (i.e. the 4.75 arcmin direction along the detector length) should 
be significantly more difficult than in the scan direction. In addition, the point source 
response of the 15 IRAS 60/xm detectors (pixel angular response) is known only to roughly 
10% accuracy, and finally, the data is irregularly sampled. 

Our FPB reconstruction appears in Figure 4 along with Lucy-Richardson and Maximum 
Correlation Method (MCM) reconstructions (Rice 1993) and a MEMSYS 3 reconstruction 
(Bontekoe et al. 1991)-see Gull and Skilling (1991) for a description of the MEMSYS 
algorithms. The winning entry to the MaxEnt 90 image reconstruction contest was pro- 
duced by Nick Weir of Caltech and is not presented here since quantitative information 
concerning this solution has not been published-however, see Bontekoe (1991) for a gray- 
scale picture of this reconstruction. Nonetheless, Weir's solution is qualitatively similar 
to Bontekoe's solution (Weir 1993b). Both were made with MEMSYS 3. Weir's solution, 
however, used a single correlation length channel in the reconstruction. This constrained 
the minimum correlation length of features in the reconstruction, preventing break-up of 
the image on smaller size scales. This is probably what resulted in the "winning-edge" for 
Weir's reconstruction in the MaxEnt 90 contest (Weir 1993b). 

As can be seen from Figure 4, our FPB-based reconstruction is superior to those pro- 
duced by other methods.   The Lucy-Richardson and MCM reconstructions fail to signif- 
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Figure 3: Degree-of-Freedom (DOF) density maps in Data and Image space. The top row 
shows the input data (top-left) and the reconstructed image (top-right). The deduced DOF 
density from the reconstructed image is shown below it, i.e. in the lower-right panel, and 
this DOF density mapped back into Data space is shown in the lower-left panel. 



288 Ä. C. PUETTER AND R. K. PIN A 

(c) 

Lucy-Richardson 

(b) 

MEMSYS 3 
MCM 

Raw Co-Added 
IRAS Data 

Figure 4: Image reconstruction of the Interacting galaxy M51. (a) FPB-based reconstruc- 
tion, (b) MEMSYS 3 Reconstruction (c) Lucy-Richardson reconstruction, (d) MCM re- 
construction, (e) Raw, co-added IRAS 60pm data. Figure of panel (b) reproduced from 
Bontekoe et al. (1991), by permission of the authors. Figures of panel (c) and (d) repro- 
duced from Rice 1993 by permission of the author. 
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5. Conclusions 

In conclusion, we have introduced a new concept, the pixon, the use of which provides 
large improvements in the inversion of a broad class of integral equations, such as those 
characteristic of the degradation of spectral, spatial, or temporal resolution in the mea- 
surement of signals in the presence of noise. The pixon is the fundamental and indivisible 
unit of information required to describe the underlying signal within the accuracy allowed 
by the data. In this regard it is an idealized concept. However, this paper also presents a 
practical and capable approximation to this ideal for a broad range of problems, i.e. the 
fuzzy, Fractal-Pixon Basis (FPB). This basis uses the local spatial scale relevant to the 
underlying signal to constrain the inversion of the equations governing the measurement 
process. In doing so, this method provides performance superior to pure GOF (Maximum 
Likelihood) and ME methods. Some of the advantages of pixon-based methods are the 
elimination of signal-correlated residuals and the production of spurious sources typical of 
other methods. Practical examples from the realm of astronomical image reconstruction 
show that pixon-based methods can offer large improvements in resolution as well as the 
detection of extremely weak features in the data. 
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SUPER-RESOLVED SURFACE RECONSTRUCTION 
FROM MULTIPLE IMAGES 

Peter Cheeseman, Bob Kanefsky, Richard Kraft, 
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Moffet Field, CA 94035 U.S.A. 

ABSTRACT. This paper describes a Bayesian method for constructing a super-resolved surface 
model by combining information from a set of images of the given surface. We develop the theory and 
algorithms in detail for the 2-D reconstruction problem, appropriate for the case where all images 
are taken from roughly the same direction and under similar lighting conditions. We show the results 
of this 2-D reconstruction on Viking Martian data. These results show dramatic improvements in 
both spatial and gray-scale resolution. The Bayesian approach uses a neighbor correlation model as 
well as pixel data from the image set. Some extensions of this method are discussed, including 3-D 
surface reconstruction and the resolution of diffraction blurred images. 

1.     Introduction 

Consider the problem of how to extract as much information as possible from a set of images, 
all of the same scene, and of capturing this information in the form of a surface model 
at maximal resolution. This problem is important in many applications where maximal 
resolution is paramount. In this paper we focus on space-based remote imaging. 

Surface reconstruction from an image set is an example of an inverse problem: if we knew 
exactly the shape and emittance of the surface, the illumination conditions, the camera 
angle, etc., we could predict what the camera would observe (the pixels) to within the 
measurement accuracy. This is the rendering problem addressed by computer graphics. 
We have the inverse problem: we are given the observed images (pixels) and must use 
this information to find the most probable surface that could have generated these images. 
Bayes' theorem provides a formal solution to inverse problems, which we apply here to the 
surface reconstruction problem. 

Because the reconstructed surface can only be determined to within a certain maximum 
spatial resolution, we represent surfaces by a discrete uniform grid with the surface prop- 
erties given at each grid point. For the case of a planetary surface, these surface properties 
could include illumination, albedo, slope, emittance at different wavelengths, etc. We will 
describe in detail a model using only surface emittance, and then describe how to extend 
this model. These properties characterize the grid point and describe how it could influence 
the image pixels once the camera parameters are known. This surface grid is a reconstruc- 
tion and is not what was actually observed. For this reason we call the surface grid elements 
mixels (for model pixels) to distinguish them from pixels which are the observed values. 
Unfortunately, in much of the vision literature, the word pixel is used interchangeably to 
refer to both inferred and observed values. 

We are able to get super-resolved reconstructions from image sets because each pixel of 
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each image is a new sample of some patch on the observed surface. Two images generated 
with exactly the same alignment between the camera and the surface, the same illumination 
conditions, etc., record the same information to within the measurement error of the camera, 
resulting in no net gain of information. With slightly differing alignments, however, the 
observed pixel values will be different, because the camera is observing slightly different 
patches on the surface. By relating these differences to locations on the surface, it is possible 
to reconstruct a model grid at a finer resolution than that of the observed pixel grid. This 
technique for combining overlapping information is closely related to deconvolution (e.g. 
radar imaging) and computed tomography (e.g. CAT scan), and is explained in more detail 
in section 3.. In particular, this information combining technique goes beyond the Nyquist 
limit for a single observed image. Fig. 1 shows schematically why subpixel resolution is 
possible. 

o o d 0 

Figure 1:  Because several sampling grids are used, offset randomly with respect to each 
other, resolution beyond the Nyquist limit of any one frame is possible. 

We start by considering "flat" surface reconstruction. This is the best that can be 
achieved when the images are taken from essentially the same camera position and sun angle, 
but with slightly different registrations. This occurs with Landsat images, for example, 
where each location on Earth is imaged from essentially, the same position in space. The 
reconstruction gives the "emittance" of the surface, which is a combination of the effects of 
surface albedo, illumination conditions and ground slope. We develop this theory in detail 
in section 2., and show its application to Viking Orbiter data of Mars. This theory includes 
the use of prior knowledge in the form of neighbor correlations. In section 5., we outline 
how to extend this approach to a 3-D surface reconstruction, where images from different 
directions allow us to separate variations in pixel values due to albedo from those due to 
ground slope. 

2.    2-D Surface Reconstruction 

Our approach is based on Bayesian probability theory. We use a likelihood function, defined 
to be the probability of the observed data given a model of how the data were generated. 
This model of the observation process is normally parameterized with respect to any vari- 
ables that affect the process.   For the current problem, these observational parameters 
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include surface illumination, surface albedo, camera orientation, camera characteristics, 
optical distortions, and any data preprocessing. Computational considerations may require 
that some of these parameters be simplified or omitted, but doing so always entails some 
loss of precision. 

We have made several such simplifications in the work described in this section. The 
first is that we model the "surface" as a plane lacking curvature and local relief — i.e., 
as a grid only of emittance values. Thus, the value of each mixel is simply a scalar — its 
emittance. The second is the substitution of a simple transformation (affine or quadratic) 
for the projective observation geometry and for any optical and electronic distortions of 
the camera system. A third lies in using a preprocessing step to deal with telemetry noise. 
For Mars images, we ignore ambient light contribution from a diffuse background and 
atmospheric attenuation, as they are negligible in the data sets we use. 

In our approach, we begin by constructing a likelihood function that gives the probability 
of each pixel value, given the imaged surface and observation conditions. We take the 
likelihood of the entire image to be just the product of likelihoods of each pixel. This 
means we are assuming that the measurement error of a pixel is conditionally independent 
of the value of its neighbors. This conditional independence assumption is symbolically 
represented as: 

P [all pixel values | observation params, mixels] 

= JJ P [(pixel(p) = $p  | observation params, mixels]. (1) 
v 

Here, pixel(p) is a location of a pixel on some image in the image set, and <J>P is an observed 
energy value1. What we read off the camera is the radiant energy received by each pixel[9]. 
Note the split of parameters into two sets: observation parameters and mixels. We will 
explain the significance of this split below. 

We assume that the probability of an observed pixel value is normally distributed, so 
that the likelihood of each pixel is given approximately by: 

P [pixel(p) = $p | observed params, surface model] « N[<&p | l>p, cr]A$p. (2) 

Here N[x \ fj,, a] is the standard normal (or Gaussian) distribution of x given a mean fi and 
standard deviation a. The A$p term is the observed minimum gray-scale difference. The 
standard deviation a of the observed pixels from their expected values is assumed to be the 
same for all pixels in an image. This deviation results from measurement error (especially 
quantization error2) and model errors of various kinds (e.g. slight mis-registration). If 
these many sources of error are largely independent, the central limit theorem leads us to 
expect the resulting error distribution to be close to normal. Experimental data confirm this 
expectation, as is discussed in section 3.2..The normal approximation in this case assumes 
that a >> A$p. This distribution is just the trapezoid approximation to the integral of a 
normal density over the interval from $p to $p + A$p. 

1This is not physically correct, as the camera outputs joules. However, one can multiply the flux <J> by 
the exposure time and the pixel size to obtain joules Q. We will stick to flux values to keep Eqn.(l) camera 
independent. 

2The quantization of continuous emittance values into integers 
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In Eqn. (2), the term <I>P represents the expected radiant energy3value for pixel p and 
is a function of the observation parameters and surface model. The parameters used in 
determining <3E>P, as used in likelihood Eqn. (2), are: 

1. Mixel Values: This is the model of the reconstructed 2-D surface represented by an 
"emittance" value at each grid point (mixel); 

2. Registration Parameters: These geometric parameters define how a pixel image maps 
onto the reconstructed mixel grid. Here, we use affine and quadratic transformations to 
define a 2-D (camera) to 2-D (mixel grid) function; 

3. Point Spread Function (PSF): This function defines how points on the surface (mix- 
els) contribute to the observed pixels through the camera optics, including any distortions 
produced by camera readout; 

4. Camera Shading: These parameters are necessary for cameras, such as a vidicon4, with 
a nonuniform readout gain across the image plane. These parameters define a scaling 
factor that varies depending on where on the image plane a particular pixel falls. 

The contribution of these parameters to <lp is shown diagrammatically in Fig. 2. Given 

PIXEL GRID 

NOHMAL 

Figure 2: Parameters Relating Pixels to Mixels 

values for the mixels and the parameters relating mixels to pixels, it is possible to calculate 
the expected value of a given pixel, $p, by summing the contribution of each mixel, as 
weighted by the PSF. This is explained in detail in the next section. This pixel prediction 
process is just the "forward" graphics problem, shown in Fig. 2. 

See discussion below in section 3.0 for terminology. 
4 A vidicon camera is an obsolete electron beam readout camera, such as used in the Viking Orbiter 

images shown in this paper. 
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In a maximum likelihood (ML) approach, the goal is to find the set of parameter values 
that maximizes Eqn. (1)—in particular, the ML estimates of the mixels is a way of recon- 
structing an unknown surface from the images. Note that finding the ML mixel values is 
a way of solving the "inverse" graphics problem (i.e. finding a model from data) given the 
likelihood (i.e. probability of the data given a model). When the resolution chosen for 
the mixel grid is over-determined by the corresponding pixel values, the ML approach is 
reasonable. The mixels are over-determined by the pixels when there is no value for the 
mixels which can exactly predict all the pixel values. The over-determined situation means 
that the mixel grid is at a coarser spatial resolution than is otherwise achievable. If the ML 
approach is tried at too fine a resolution, the mixel values are under-constrained—i.e., there 
are many mixel grids that would predict the pixel values exactly, and there is no principled 
way of choosing among them. 

The Bayesian approach used here is similar to the ML approach, but it uses additional 
(prior) knowledge in the form of expectations about correlations among neighboring mixels. 
This additional knowledge in the Bayesian maximum a posterior (MAP) estimate allows 
any scale mixel grid. If too coarse a mixel grid is used (i.e. the mixels are over-determined 
by the pixels), then the neighbor correlations have little effect, and the MAP estimate is 
essentially the same as the ML estimate. However, if a very fine mixel grid is used (i.e. the 
mixels are under-determined), then the effect of the neighbor correlations competes with 
the fit to the data to give a reasonable compromise result that uses all the information. 
The optimal mixel resolution is near the borderline between over-determined and under- 
determined, where the neighbor correlation information begins to suppress the affects of the 
noise in the data. Thus the prior term acts much in the same manner as a "regularization" 
term in related approaches. 

3.     MAP Reconstruction 

Given pixel data and the parameters that specify the imaging model, we want to jointly es- 
timate the mixel grid values together with other auxiliary model parameters. In a Bayesian 
approach one seeks a combination of all these parameters which has maximum posterior 
(MAP) probability, which is the same (up to a normalization factor) as seeking a maximum 
joint probability: 

Joint Probability    =    Likelihood x Prior Probability 

P[Mixels, Pixels, Params]    =    P[Pixels | Mixels, Params] 

xP[Mixels | Params] X P[Params], 

where "Mixels" refers to the set of all mixel values, "Pixels" refers to the set of all pixels 
in all images, and "Params" refers to the auxiliary observational parameters (registration 
parameters, PSF, etc.) listed above. 

Repeating Eqn. (2), the likelihood term is: 

P[Pixels | Mixels, Params] = JJ iV[$p | $p, ap] A$„. (3) 
p 

We now specify the mean for each pixel <Ü>P to be a linear combination of the emittances 
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from mixels projected near the pixel location: 

§p = ^2uiipTni. (4) 
i 

Here m; is the emittance of the ith mixel and u>ip is the mixel-pixel weight defined by the 
PSF and registration information. For images that are not significantly diffraction blurred, 
the radiant energy at a point in the image plane is a sum of contributing emittance values 
(not amplitudes) from the generating surface, as shown in equation (4). 

So far, we have used the physical terminology appropriate for describing the quantities 
radiating from the mixel grid (emittance) and captured by the camera (radiant energy). 
While this convention is admittedly arbitrary, (we could, for example, equip the camera 
model with an exposure term E(Q) that turns radiant energy values Q to flux values <f>) 
it is more precise than the alternate computer graphics convention of labeling a host of 
quantities with "intensity", regardless of its being a light source, a CRT raster, a planetary 
surface, etc. While in the present 2-D super-resolution case these distinctions may not seem 
useful, such precision is helpful when the model is extended to 3-D surface reconstruction. 
It is in this context of anticipated extension that the terminology in this paper is chosen. 

3.1.    Prior 

The prior probability term P[Mixels | Params] is the distinctly Bayesian contribution, and 
it embodies one's beliefs before seeing the data about the kinds of scenes or landscapes one 
might observe. The simple prior used in this paper describes how mixel intensities ra; relate 
to each other. The remaining model parameters — the point spread function coefficients, 
optical angles, etc.—are highly over-determined by the data, so we can reasonably neglect 
the priors PfParams] on these parameters. 

To gain insight into the appropriate prior over the mixel intensities, we analyzed Viking 
Orbiter imagery. This prior can be thought of as a means of preferring a given solution when 
many solutions fit the data equally. We choose a prior that makes a reconstruction more 
likely if its mixel values are highly correlated with their neighbors (i.e. there is emittance 
continuity). A simple, probabilistic model of continuity would be to estimate the value of 
a mixel mi by a weighted sum of its neighbors: 

rhi— 2_,aijrnj- (5) 
i 

Here, the a{j are weights: mixel rrij contributes ct{j to mixel m,'. While this form is 
fairly general, we choose to start with a particularly simple relationship where an = 0, 
o>ij = aji — 1/4 if \i — j\ — 1, and a^ — 0 otherwise. This just means that a mixel 
is directly correlated only with its four cardinal neighbors. Because the neighbors are 
correlated with their neighbors, etc., this also indirectly implies long range correlation. 

Figure 3 shows the well-groundedness of the above continuity preference. First, the 
central peak at 0 shows that mixels are in fact correlated with the four cardinal neighbors. 
The moments of this distribution suggests that a multivariate normal form for the prior, 

P[Mixels | Params] = JV[m,- | mj, £^] JJdm2-. (6) 
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is appropriate. Here, the matrix £t-j collects the a,-j dependencies. The mj in Eqn. (6) 
represents putative "mean" values for a mixel at position i. The model we implement only 
uses a constant value ml = TO, the mean value of ah mixels. Possible extensions could make 
use of varying means mj to capture "trends" in an image. 

I   i   i—i—i—i—I—I—I—\—+- 4—1—I—I—)—I—*—I—I    I    I 
OOi  OD N (p  in -^ CO  CVJ-^-O  *- CM CO  TT U3 CD  S O O!  OT-OJ  CO 

Figure 3: Distribution of TO; 

7-bit Data Numbers. 
TO; for a Viking Orbiter image of Mars. Horizontal axis is in 

Appearances may be deceptive, however. Figure 4 shows the same calculation as in Fig- 
ure 3; although the shape looks fairly Gaussian, examining the moments of the distribution 
reveals that there is much more energy in the tails than is the case for a normal model. This 
is because individual pixels in Earth imagery can differ substantially from their neighbors, 
e.g. a road traversing ground. 

rfrllllil^l i ii ijln r"f""^—""■fr"'*-^ 

noii-oacps^io^nwr-o^wn't   mcDr^cooioT-cjco 

Figure 4: Distribution of m2- — rhi for a Landsat image of Kansas. Horizontal axis is in 8-bit 
Data Numbers. 
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3.2.    MAP Equation 

Now that we are equipped with the prior 

P[Mixels | Params] = jV[m; | m, E,-j] JJ Adrrii (7) 
i 

we combine it with our likelihood 

PpPixels | Mixels, Params] = JJ N[$p | $p, CT]A$P. (8) 
p 

Keeping in mind Eqn. (4) that 

$p = X^'P
771

*' 
i 

we can rewrite the likelihood as 

J[N[§p\mi,u>ip,a]A$p. (9) 
p 

The MAP solution seeks to maximize the product of Eqns. (7) and (9), i.e. the "joint" 
distribution. Since they are both multivariate normal distributions, the joint is as well. 
Thus, 

MAP   =    Max(7V[m,|m,Eii]*IJiV[$p|$p,a]) 
p 

=    Max(N[mi\m,Aij]) (10) 

where 

Al3 = Eij + — 53 ^P^P • (11) 
p 

The matrix Aij in Eqn. (11) is calculated by standard methods in completing the square 
for multivariate distributions[lO]. The peak of the distribution in Eqn. (10) are the m, that 
satisfy 

]T Aij(rrii - m) = — Y^^ipi^P ~ m)- i12) 
i p 

We can thus find the maximum posterior mixel grid m2- given the auxiliary parameters by 
simply solving this linear equation. The method we use to actuaUy compute the maximum 
posterior mixel grid is discussed in the next section. 

4.     Reconstruction Algorithm 

We now concern ourselves with how to solve Eqn. (12). The fundamental "catch" is that 
if we knew the true values of the various parameters (PSF, registration, etc.), we could 
solve Eq. (12) exactly. However, to estimate the necessary parameters to high accuracy, we 
would have to know the true mixel grid! Our way around this dilemma is to iterate between 
two processes: use a current estimate of the mixel grid to (re-)estimate the parameters; use 
these new parameter estimates to re-calculate a better mixel grid, and so on. To start 
this process, we need either a nominal mixel grid or nominal set of parameters. Our data 
includes nominal values for parameters such as the camera location, the sun angle, etc., 
so we choose these as starting values. We begin our bootstrap process by estimating the 
registration parameters. 
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4.1.    Registration 

The registration parameters define the correspondence between points on the image plane 
and those on the modeled surface. The parameters can be thought of as coefficients to a 
function that projects surface points to the image plane; such a function depends on the 
planetary curvature, the imaging system's optics, and the camera's location and orientation 
relative to the surface. In the case of vidicon cameras, there is additional image distortion 
due to the read-out process that cannot easily be distinguished from the above geometric 
effects. Thus the projection function in principle varies for each point pair. The registration 
problem is to estimate the projection parameters for each image to the mixel grid that 
captures all of these components of the projection function. 

As stated above, the strategy to estimate registration parameters first involves con- 
structing a first guess at the mixel grid. To do this, we pick at random one of the pixel 
images and interpolate its pixel values onto a grid at the desired mixel resolution. Using 
this interpolated mixel grid as a reference image, we search for accurate relative registration 
parameters that map each image optimally onto the reference grid. But the quantization 
in the reference grid causes pixel-sized "jumps" in registration values. This in turn creates 
a hazardous search process! To avoid these jumps, we smooth the reference image with a 
Gaussian-like filter. 

In theory, we could find a MAP estimate of the registration (or any other) parameters; 
instead, we seek a simpler ML estimate and ignore priors on the parameters. This is 
because of the large ratio of information (pixels) to the number of parameters that need be 
estimated. If we assume an independent Gaussian likelihood for each pixel relative to its 
projected value from the reference mixel grid, as in Eqn. (3), then finding the ML estimate 
of the registration parameters reduces to finding the registration with the smallest sum of 
squared pixel differences from their projected values (i.e., a minimum squared error). In 
other words, the optimal registration parameters for an image gives the minimum squared 
error when the mixel values projected through the PSF are compared to the corresponding 
pixels. 

There is one difficulty: moving features of an image "off the edge" of the reference 
mixel grid during registration. Clearly, image pixels not matched with anything shouldn't 
contribute to the total error; however, pushing hard-to-register features out of the picture 
is a false minimum! In our data we had available a larger image that contained the entire 
image set as sub-images, and avoided the "edge" problem by processing the larger image 
as the reference. 

Optimal registration parameters were determined by the Simplex algorithm [l], which 
searches for a minimum of the squared error by systematically varying the registration 
parameters, and then calculating the squared error for each such registration. (However, 
we assume that the error is a smooth function of the registration parameters. This is the 
reason for the Gaussian filter referred to above.) The algorithm stops when successive 
squared error values of the trial registrations are indistinguishable. We found that unless 
the registration search starts relatively close to the true registration (i.e., one has good 
nominal information), the search can get trapped in local minima. There are more efficient 
search algorithms than the Simplex algorithm, but they are not generally as robust. Note 
that standard methods for accurate relative image registration required locating "features" 
common to both images and finding a global mapping for all features to their counterparts 
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in the other image [2]. The method described here uses all the information in both images, 
and this is part of the reason for the very high (subpixel) accuracy achieved by the method 
described here. However, feature based methods may be a good way of obtaining a close 
initial registration, when nominal registrations are not available or too inaccurate. 

The affine transformation set is the parameter space in which the registration search 
is executed, and is sufficient for accurate registration provided that the principle nonlin- 
ear camera effects[3] are not severe. When these effects interfere, we have extended to a 
quadratic family of transformations. 

4.2. PSF and Other Parameters 

The point spread function (PSF) describes how the light energy from a point on the external 
surface is distributed over the image plane. The spreading of the surface point energy is 
usually due to the optical system's diffraction and aberration pattern. Typically, the PSF 
diameter is significantly smaller than the pixel dimensions, so that the images are not 
diffraction limited. With the scanning electron beam detector used in a vidicon, the PSF 
can be extended to model the diffuse readout spot as well. Since the PSF is a function of the 
imaging system, it does not depend on the particular image. In practice, the PSF can vary 
across the image plane, and with time. We have not attempted to model this variation, 
and work with an average PSF derived from the instrument's bench calibration [3]. 

"Shading" is the characteristic smooth variation in detector sensitivity across the image 
plane in vidicon tubes, equivalent to the variation of individual cell sensitivities in array 
detectors. The likelihood model must take shading into account, and can be learned from 
the data, given a rough idea of the registration: since all images contain the same subregion 
under similar lighting and viewing angles, any systematic differences in their appearance 
must be due to shading. We assume the shading function is a second order polynomial 
function of pixel position, and currently search for coefficients which make the subregions 
have the most similar mean intensities. 

Defects in the optical system or on the image plane generate blemishes — e.g., dust 
particles and scratches — common to all images from that camera. A blemish map is 
used to identify suspect pixels. Rather than interpolating the missing values as is common 
practice [4], we ignore these pixels, so that the corresponding mixels may be influenced 
only by the other frames. Also, since spacecraft that are many light-minutes away cannot 
be asked to retransmit corrupted data packets, they do not implement a reliable transport 
protocol, and some pixels have incorrect values. Usually no more than two bits are affected; 
our preprocessor uses this to help detect corrupted pixels. In principle it could use it to 
recover the correct value, but this would make little practical difference in our case. We 
simply ignore all suspected corrupt pixels, as well as missing pixels and reseaux marks5. 

4.3. Initial Composite 

Once the above methods are used to find good initial estimates of the basic parameters (PSF, 
registration parameters etc.), we next construct a composite mixel grid using information 
from all the pixel images. We construct the value of a composite mixel by calculating 
the "votes" from every pixel that could affect it from any frame, as weighted through a 
compositing kernel. These "votes" are accumulated to give a total mixel value 

5These are permanent marks on the camera faceplate used for calibrating the optics in the Vidicon 
camera[3]. 
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for each mixel, replacing the values of the reference grid. Clearly, those pixels that are 
nearest the projected position of a mixel have the strongest vote for that mixel. The 
compositing kernel functions algorithmically like a PSF, but needn't be the same function. 
For narrow kernels, the pixel-mixel "voting" is almost 1-to-l, but for diffuse kernels, each 
mixel value is the weighted combination of information from many pixels, leading to a 
"blurred" composite. In fact, if a small kernel is used that accurately models the actual 
PSF, and the noise content of the imagery is relatively small, this becomes a quick method 
for producing a super-resolved image. 

4.4.    Iterative Improvement 

The composite is used as a starting point in a search for the MAP estimate of Eqn. (12). 
We use a standard iterative method (Jacobi's method) to solve the matrix equation. The 
Jacobi method solves an equation of the form Ax = b by triangular decomposition 

A=L+D+U 

and updating 
D-x^ = -{L + U) ■ x(r-V + b 

which, if Ax = x^ - x(r~^ can be rewritten 

Ax = D-\b-A-x(r-V) (13) 

This can be shown to be equivalent to the method of "substitution", a useful fact for 
extensions of the model. To implement Eqn. (13), note that 

0 = £(i + £4) + ^5X (14) 
j p 

is the denominator of Eqn. (13). Combining Eqn. (14) with Eqn. (13) for the numerator, 
one obtains the following iterative mixel re-estimation formula. 

, j EP".-p($P ~ *P) - (mi ~ "*') + Ej a^mi ~ ™i) n^ 
Ami = A -2——ö ^—Ö  { 

The results of applying this iterative formula to initial composite mixel grids is shown 
in Fig. 5; a noticeable sharpening of the composite is demonstrated. When the mixel grid 
resolution is too coarse, the mixels are over-determined by the pixels, so the MAP mixel 
estimate is essentially the same as the ML estimate. In Eqn. (15), this means that the first 
(data) term in the numerator dominates the other two (mixel neighbor correlation) terms. 
When the mixel grid resolution is large enough (under-constrained by the pixels), the two 
terms in the numerator balance each other—i.e. the data term tries to force the mixels to 
exactly agree with the data, while the mixel neighbor term tries to make all mixels look 
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like their neighbors ("smoothing"). It is the tension between these two effects that leads to 
plausible images, even when the mixels are under-constrained by the data. This is the case 
where the prior term acts as a regularization term. 

In Eqn. (15), all the necessary parameters (s, a, and the registration, PSF, etc. param- 
eters that go into u>ip) are assumed known. The A parameter regulates the amount that 
any mixel can change, and is there purely for purposes of numerical stability. Some of these 
parameters, such as the PSF, are often well known ahead of time. Other parameters, such 
as the registration, can be initially estimated from an interpolated version of a single image. 
Since we find a much more probable mixel grid as a result of compositing and iteration, we 
can then re-estimate these parameters, and even repeat this convergence cycle. Fortunately, 
this re-estimation is not needed in practice more than twice. The reason for this is that 
parameters, such as the registration parameters, are typically estimated from thousands of 
pixels in the interpolated initial mixel grid, and so are already very accurate. 

The ratio s2/a2 of mixel to pixel deviation is more difficult estimate, as the most 
probable value can be many orders of magnitude different from what one estimates from 
a composite. We initially intended to re-estimate these parameters during the iterative 
convergence cycle from the residual error in each new mixel grid. What we did not realize 
was that in some cases this dynamic re-estimation would result in diverging from the correct 
answer. So now when prior information is not enough to set these parameters, we must 
resort to an explicit search. We take a smaU but hopefully representative patch of an image 
and seek parameters values which maximize our quality measure, the determinant of the 
matrix Aij. 

4.5. Complexity 

One may ask why an iterative method, like the one above, was chosen over an algebraic 
computation of Eqn. (12). Essentially, the former method has a lower computational com- 
plexity. To keep the comparison clear we will stick to the "just constrained" case, which is 
described as follows. If we have / frames, with p pixels per frame, the number of mixels N 
is set to the total number of pixels P: 

N = P = fp 

It is "just constrained" because the number of data P is equal to the number of parameters 
N. Let k denote the radius of the point spread function in mixels. Then each iteration 
step of Eqn. (15) is of complexity 0(k2)P, whereas the complexity of an algebraic solution 
of Eqn. (12) is 0{kA)P. As a point of comparison, the compositing routine is of order 
0(k)P, suggesting that finding an optimal compositing routine would be a good strategy 
for obtaining quick (if improbable) results. 

4.6. Results 

Fig. 5 gives results for a U.S. postage stamp digitized at low resolution by a scanner, and 
for Viking Orbiter images of Mars [5]. The Viking reconstruction uses a series of 24 vidicon 
images of Mars; the data are from a high spacecraft altitude, with frames of very similar 
sun and camera angles. From these large images, which also include the edge of the polar 
cap, we extracted rather under exposed 128 X 128 pixel regions containing the same four 
prominent craters. These regions represent the same area to within a few pixels. The images 
were preprocessed using the techniques described in section 4.2..  Vidicon blemishes and 
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Figure 5: Surface Reconstruction 
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telemetry noise were mapped and subsequently ignored; the shading response was modeled; 
image registration used only affine (as opposed to quadratic) transforms. Restoration was 
done at a 1:4 mixel scale (1:16 area ratio), making the restoration slightly over-constrained. 
We leave it to the reader to judge the restoration's quality. 

5.     Extensions 

In the above surface reconstruction, we gave mixels a single scalar emittance value. In some 
applications, color information is available; e.g., Landsat/TM records seven spectral bands 
in each exposure, and Viking Orbiter and Voyager took gray-scale pictures through various 
color filters. The 2-D reconstruction described above can be used on each spectral band 
separately, to get super-resolved surfaces for each band. However, this approach ignores the 
fact that the surface features are often very similar across bands. A mixel having emittance 
values in each band could ensure even higher resolution if mixels are correlated not only 
with neighbors in a given band, but across bands as well. 

In the above we combined the effect of albedo and ground effects into a single emittance 
value, which is appropriate if all the images are taken from essentiaUy the same direction 
under the same illumination conditions. However, for most of Voyager and Viking data, 
there are many views of the same surface taken from different directions with different 
illumination. The theory described above can in principle be extended to handle this case 
as weU. It requires the mixels to have albedo and height values; the registration process 
is similar, but with more parameters. We have derived the ML equations for the surface 
model assuming all of the lighting differences in the images are due to either slope or albedo, 
and not to shadows or occlusions. The effects due to slope and albedo can be distinguished 
because the effects of parallax vary independently of effects due to surface albedo. Note 
that representing the surface emittance by a single scalar (albedo) is an approximation 
that assumes Lambertian scattering. Many real surfaces are not Lambertian. Using bi- 
directional reflectance parameters, including a specular reflectance component, would give 
a more accurate surface model. The priors on the surface may involve properties such as 
continuity, smoothness, and texture. Additionally, we would need to model effects such as 
atmospheric attenuation, clouds, and the camera "hot-spot" for Earth observation data. 

6.     Relation to Other Work 

The research reported in this paper was mainly motivated by attempts to integrate informa- 
tion from Landsat images taken on different passes. The difficulty here is that such images 
did not exactly overlay each other, so pixel-to-pixel comparison is not possible. A standard 
approach to this problem is "rubber-sheeting", which attempts to fit one image grid to 
another (reference) grid by resampling the first image onto the reference grid. Reference 
grid points are mapped, through an appropriate transform, onto the new image, and new 
grid elements are computed by taking an area weighted average of the overlaid image pixels. 
The resulting resampled grid is perfectly aligned with the reference grid. The technique is 
extensively used to rectify and rotate Landsat and similar images to fit the geographical 
survey grid. 

From the Bayesian perspective, the rubber-sheeting approach makes little sense, because 
the new averaged "pixels" are neither actual observations nor a surface model.   Worse, 
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the averaging process destroys information—it is impossible to recover the original image 
from the rubber-sheeted image. This information loss makes pixel-by-pixel comparison 
very dubious. The super-resolved surface modeling described in this paper does allow the 
integration and comparison of information from many images through the accumulated 
super-resolution surface model. 

A related approach to the Bayesian 3-D surface reconstruction described above is called 
"Shape from Shading" [6]. This approach integrates observed surface intensity gradients 
from a single image to give a 3-D elevation model of the generating surface. It assumes a 
constant albedo, known illumination conditions, and surface continuity. Shape from shading 
can be extended to multiple images [7], and the result is greater detail in the elevation map 
because each grid point contains information from multiple images. However, the constant 
albedo assumption is a strong limitation on the ability to extract information from multiple 
images. 

A Bayesian approach very similar to ours is described in [8]. This approach does surface 
reconstruction using images from different viewpoints, and a neighbor correlation prior with 
a Gaussian noise model. The surface is represented by planar patches joined to form a 
curved surface. Unlike our work, these authors assume smooth large scale surfaces that 
can be represented by large parameterized "surface patches". Because these patches are 
estimated from many pixels from many images, the parameters that describe them are 
accurately determined, and so the overall surface is accurately estimated. In our approach 
we achieve super-resolution, and there is no aggregation of surface mixels into large scale 
patches. Although our goals and assumptions are significantly different we use the same 
basic Bayesian approach. 

A related area of study is in combining images from video [ll]. Here, the registration 
of images passes from the discrete to the continuous, and thus the techniques of "optical 
flow" are used. 
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BAYESIAN ANALYSIS OF LINEAR PHASED-ARRAY RADAR 
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ABSTRACT. A number of methods have been developed to analyze the response of the linear 
phased array radar. These perform remarkably well when the number of sources is known, but in 
cases where a determination of this number is required, problems are often encountered. These 
problems can be resolved by a Bayesian approach. 

Here, a linear phased-array consisting of equally spaced elements is considered. Analytic ex- 
pressions for the posterior probability distribution over source positions and amplitudes, and the 
corresponding Hessians are derived. These are integrated to give the evidence for each model order. 

Tests using model data showed that performance at the second level of inference is critically 
determined by the accuracy of position estimation. If adequate parameter optimization is available, 
the Bayesian approach is demonstrated to work well, even in extreme circumstances. A commonly 
employed method of source location, noise subspace eigenanalysis of the correlation matrix, was 
tried and found to be inadequate. A Newton-Raphson optimization was then used starting from 
the positions predicted by eigenanalysis. 

1 Introduction 

We investigate the analysis of data from linear phased-array radar. Recent improvements in 
the speed of computers have made feasible the real-time use of more sophisticated methods 
than simple beam-sweep methods. One technique of interest is noise sub-space eigenanalysis 
of the correlation matrix [1]. This is one of a class of algorithms commonly known as super- 
resolution methods, because of their ability to resolve sources below the Rayleigh criterion 
[2, 3]. 

The merits of Bayesian inference have been demonstrated in many diverse fields of data 
analysis [4, 5, 6, 7]. Here, the improvements which may be made to position inference 
by eigenanalysis, with the application of Bayesian methods, is assessed. The locations of a 
finite number of sources are inferred, with error bars, by maximizing the integrated posterior 
probability. The number of sources is similarly inferred by evaluating the appropriate 
evidence. 

2 Radar Configuration 

The phased-array radar consists of a series of equally spaced elements with (ideally) 
isotropic far field responses. This arrangement is indicated in figure 1. For each source 
configuration, a number of data-sets, 5, are collected in rapid succession. These are known 
as snapshots. 
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far field 
sources 

isotropically receiving 
elements 

Figure 1: Antenna Configuration. 

d: element separation; A: wavelength; 9: source positions. 

For a single snapshot the phase difference between the signal at adjacent elements of 
the antenna due to the jth source is given by: 

(f>j = (2ird/A)s'm8j . 

The response of the kth element may be written as 

Xk - ^2 F3 eXP *(*%) + nk ■ 
j 

This is more elegantly expressed in terms of matrices, 

x = V£ + n , 

:D 

(2) 

(3) 

where x is the antenna response, n, the noise vector, F, the source amphtude vector and 
</>, the source position vector. The steering matrix V is given by 

Vitj = ex-p(ik<j)j) . (4) 

The source locations are assumed not to change between snapshots, although their complex 
amplitudes may. We have, therefore, a single position vector 4> for all snapshots and a set 
of amplitude vectors Ff, one for each snapshot. 

3    Eigenanalysis of correlation matrix 

There are a number of interrelated techniques in spectrum analysis based upon the eige- 
nanalysis of the data correlation matrix [2, 3]. The method described in brief below, due 
to Reilly et al. [1], is one of several super-resolution algorithms known as "maximum like- 
lihood". These can be shown to depend upon the orthogonality relationship given at the 
end of this section [2, 3]. 
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The correlation matrix is formed by taking the outer product of the data vector with 
itself. Using equation (3) we find 

xx} = VF(VF)j + nn? + V£n+ + n(V0 . (5) 

Averaging over snapshots we note that the final two terms will ideally go to zero, since 
the sources and noise are uncorrelated. The matrix V may be removed from the averaging 
since the source positions are the same for all snapshots. Equation (5) may then be written 

R = VRsVf + 2<r2I, (6) 

where R = (xx*) is the correlation matrix, Rs = {FF}) is the source correlation matrix, I 
is the identity matrix, a2 is the variance of real and imaginary parts of the noise, and { ) 
indicates averaging over snapshots. Note that the noise power is assumed identical for each 
element of the antenna. 

R is Hermitian and positive definite by construction. For an N element antenna in 
the presence of k uncorrelated sources, R will have a series of real positive eigenvalues of 
decreasing magnitude, that is, 

Aj + 2a2 > A2 + 2a2 > ... > Xk + 2a2 > 2<r2 = ... = 2a2 . (7) 

Multiplying equation (6) by one of the (JV — k) noise subspace eigenvectors (i.e. an eigenvec- 
tor enoise of R corresponding to an eigenvalue 2cr2), one obtains the orthogonality relation 

Vfenmse = 0 . (8) 

If an average correlation matrix of order (k + 1) is formed by averaging (k + 1) x (k + 1) 
minors along the leading diagonal of R, there will be only one noise subspace eigenvector, 
corresponding to the lowest eigenvalue. In this case, taking the Z-transform of the noise 
eigenvector, one obtains a polynomial whose solutions are Zk = exp(i^) for each of the k 
sources present. 

There exist more sophisticated ways of averaging R to form an order {k + 1) matrix [3]. 
These have the property of resolving correlated sources (i.e. where Ff is correlated with 
F?+1 or Fj) as well as uncorrelated sources. These are disregarded here for simplicity. An 
alternative method due to Burg et al. [8] involves finding the maximum likelihood Toeplitz 
structure matrix from the data. 

4    Bayesian analysis 

SINGLE SNAPSHOT 

The inferred parameters divide naturally into:   the source amplitudes {£f} (which are 
different for each snapshot), the source positions <£, and the number of sources k, (specified 
by the hypothesis H).  Initially a single snapshot will be considered.  This is extended to 
several snapshots in the following subsection. 

We write Bayes' theorem for a series of levels of inference, as follows; 

l-'    '     -; P(D\H,<t>) ' { ' 



312 A.G. GREEN AND D.J.C. MACKAY 

P(±\H,D)=    {    pfäsf      » (10) 
P(H\D)(xP(D\H)P(H). (11) 

We note that P(F\H,4>) = P(F_\H), since F and <f> are independent. 
We assume that these distributions are strongly peaked and may be approximated by 

Gaussians about their peaks. In fact given the choice of likelihood and priors to be made 
later, equation (9) is exactly Gaussian. By making a Gaussian expansion of equation (9) 
and integrating, we obtain the expression for the evidence, 

P(D\H,£) = P(D\H,FM,£)P(FM\H)(27r)kdet-lA(£) , (12) 

where F_M = F_M{<j>) is the F_ that maximizes (9) and the Hessian A is given by 

A(f) = -V£V£ln P{F\H, D,ß . (13) 

Substituting for P{D\H1^) from equation (12) in equation (10), with the Hessian, 

B = -ViVilnP(^|Jff,JD), (14) 

gives upon integration, 

P(H\D) ex P(D\H, FM^M)P{FM\H)P{±M\H){2-K)¥^det'1 AdeHß , (15) 

where 

and 

A(^) = -V£V£ [lnP(£|i7,£,f)+lnP(£|#)] (16) 

-V±V±[lnP(D\H,FM,ß + lvP(FM\H) + liiP{ßH)-lndet-1A(f)}  .       (17) 

Equations (16) and (17) have been obtained from (13) and (14) by substitution from (9) 
and (10), noting that the normalizing factors, P(D\H,<p) and P(D\H) are constant with 
respect to the differentiating variables, F_ and </> respectively. The determinants of A and 
B appear to different powers in equation (15) because F_ is a complex vector and <j> is a real 
vector. 

EXTENSION TO SEVERAL SNAPSHOTS 

In the case of several data sets or snapshots the above theory must be modified. The 
positions of the sources, given by cj>, are the same for all snapshots. Their inference is based 
upon the data from all the snapshots taken together. The complex source amplitudes, 
however, may be different for each snapshot, giving rise to S source amplitude vectors 
{Fs}, where S is the number of snapshots. 

It follows from the product rule of probability that one must take the product of the 
likelihood and priors over snapshots. The amplitude vectors, {Fs}, are assumed, as a 
rather crude first approximation, to have independent priors between snapshots. Then the 
likelihood P(D\H,F, </>) is replaced by P*(D\H,£,</>) = nf=i P(D\H,FS, <f>), and the prior 
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P(F\H) is replaced by P"(FS\H) = Y[ss=1 P{FS\H). The prior on the source positions ^ is 
unchanged. 

Using these distributions with Bayes' theorem we obtain the multi-snapshot analogue 
of equation (9), 

P*(D\H,F>,6)P*(F\H) 

P(D\HA) ' [    j 
PT(Fs\H,D,<j)) = 

Equations (10) and (11) are used without alteration. Expanding the distributions as Gaus- 
sians about their maxima and integrating, as in section 4, we derive the final result, 

P{D\H) oc P*(D\H,Fs
M^)P*(Fs

M\H)P(£M\H)(2Tr)k(s+1Mdet-sA det^B ,      (19) 

where 

A(0) = -VZVZ [in P(D\H,FS,£) + ln P(FS\H)]  , (20) 

and 

B = -V^V^fln P{D\H,Fs
M,ß + In P{FS

M\H) + In P{ßH) - In det A($] .       (21) 
s=l 

Equation (20) is identical to equation (16), and equation (21) is simply the sum over 
snapshots of equation (17). 

APPLICATION TO PHASED-ARRAY RADAR 

For a single snapshot, assuming Gaussian noise, the likelihood function is 

N 

P{D\H,FA)=[-^-2)    exp 
\n\ 

'2&2 (22) 

The noise vector n is defined for each snapshot as the difference between the data and mock 
data, i.e., 

n = x-VF. (23) 

The noise variance a2 is assumed to be known for a particular antenna rather than included 
as a hyperparameter. Noise is generated in the antenna and can be measured. Taking the 
product over snapshots, the likelihood is given by 

P*(D\H,Fs,<f>) = 
27TO-2 

SN 

exp AN2 
s=l 

2u2 (24) 

The prior on positions is simply a uniform distribution between ±^, P(<p\H) = (^ 

The prior on source amplitudes is taken to be Gaussian with variance 62 on real and 
imaginary parts, where <52 is entered as a user defined parameter, i.e., 

P*(FS\H)=    - 
1 

2-KS
2 

Sk 

exp 
2Ö2 Eizi2 

s=l 

(25) 
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Using the above priors, the Hessian matrices A and B defined in equations (20) and 
(21) are found to be: 

V+V 

and 

Ba    = 

where 

A(^) + £2' 

2a 2££'MB1«> + Bltt)-B2«) B2 t B5, 

B2 

+ Tr 

(iO 

-A 

B2*,,, + B3r„, + B3j0.) 
'(H) 

$(u) 

(ij)      "»(ij) 

+ B4W) + B4?(ij)] x' 

jÖA^ÖA 
-A 

d<f>i 

d2A 

tyidcßj 

(26) 

(27) 

Bl 
(Ü) 

B2(y) 

B3 to)    = 

B4 

B5 

(«i) 

to)    = 

a£ 

'avA_!^vt 
dd>i        d<t>; 

-;   VA' 
-1ÖA.-10A. 

VA 

(28) 

5     Results 

Code was written to simulate the antenna response {x3} for up to thirty-two snapshots of 
data. The simulated source environment consisted of up to five uncorrelated sources, with 
arbitrary position and amplitude, and Gaussian noise of arbitary amplitude. Using these 
data, the eigenanalysis procedure was tested, and the ability of equation (19) to evaluate 
the evidence for different model orders was determined. 

EIGENANALYSIS 

Without noise, and given the correct model order {i.e., number ofsourc.es), the eigenanalysis 
predicted the position and amplitude of sources to within the computer accuracy as was 
expected. If the procedure was used assuming a model order greater than the actual, the 
extra sources were predicted to have zero amplitude to within the computer accuracy. 

With Gaussian noise added to the data, eigenanalysis predicted positions and powers 
well, as long as the sources were weU separated. Estimates of resolution for a range of noise 
powers were made by moving two unit amplitude sources together until the eigenanalysis 
predicted a single source of twice their amplitude at their average position. Resolution 
reduced with increasing noise power. 
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Figure 2: Variation of log Likelihood with Optimization iterations. 

Eigenanalysis as described here depends upon the noise-subspace eigenvector, enoise, 
corresponding to the lowest eigenvalue of R. For an S snapshot data-set with Gaussian 
noise, this eigenvalue is ~ 2<72(1 ± 1/VS). For a source configuration containing two nar- 
rowly separated sources, the lowest source subspace eigenvalue, Xk, reduces with separation 
and amplitude of the sources. It is evident from equation (7), that the resolution limit will 
occur when Xk ~ ^j=- 

DOES EIGENANALYSIS MAXIMIZE THE LIKELIHOOD? 

The parameters predicted by eigenanalysis do not maximize the likelihood. This conclusion 
was drawn for two reasons: 

1. Manual insertion of the source parameters used to generate the data gave higher likeli- 
hoods than the parameters generated by eigenanalysis. 

2. The log likelihood is expected to increase by - 0.5 for each additional parameter beyond 
the correct number. This was not the case. (In this case, an increase in k of 1 introduces 
(1 + 2S) extra parameters giving an expected increase in log likelihood of about 32 
between models.) 

Although the predicted parameters do not maximize the likelihood, they do give a fair first 
approximation. A simple Newton-Raphson procedure was used to optimize the parameters 
predicted by eigenanalysis. (This was easily done, since the relevant Hessian matrix, B, has 
already been evaluated using equation (27).) Initially, the integrated likelihood P{D\H,<j>) 
was optimized by setting S2 to a very large value. Figure 2 shows typically how the likelihood 
increased with the number of iterations of the optimization routine. The likelihood increases 
above that for manual insertion of the parameters after only one iteration and remains fairly 
constant at this value through the subsequent iterations. Reassuringly, this indicates that 
the distributions are indeed Gaussian at their peaks. 

Figure 3 shows the variation of log likelihood with model order. The expected increase 
is observed for each additional parameter beyond the correct model order. 
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Figure 3: Variation of Likelihood and Evidence (Parameters Generated by Eigenanalysis 
and Newton-Raphson Optimization.) 
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ESTIMATED EVIDENCE 

Figure 3 shows the variation of log likelihood and log evidence with model order for a well 
resolved source environment with three sources. The evidence has a maximum at the correct 
model order. Figure 4 similarly shows the variation of log likelihood and log evidence, but for 
a situation where two of the sources have not been resolved by the eigenanalysis. Newton- 
Raphson optimization of the eigenanalysis parameters did not resolve these sources. The 
model order predicted by the evidence is correspondingly reduced. 

Note that in cases such as that shown in figure 4, where the unresolved sources have large 
amplitude, the peak evidence is greatly reduced (as compared with cases where parameters 
are correctly evaluated). It is tempting to interpret this as an indication of error in the 
inferring of the parameters, however, it is not at all clear that such deductions may be 
drawn consistently. 

LIMITATIONS OF MODEL COMPARISON 

In all cases discussed up to now, Bayesian model comparison has worked well. No severe 
test of this level of inference has been made, due to the limitations of the techniques used 
to determine the source positions. In lieu of a good optimization method the following test 
of the model comparison was made. 

Several well separated sources of unit amplitude were generated and a source at the 
noise level introduced at a small angle from one of these. Below the correct model order 
eigenanalysis was used to seed the Newton-Raphson optimization of parameters. At and 
above the correct model order, optimization was seeded with actual source positions cou- 
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Figure 4: Variation of Likelihood and Estimated Evidence   (Sources Unresolved by Eigen- 
analysis.) 
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pled with spurious source positions, predicted by eigenanalysis (note that this amounts to 
starting the optimization in the correct place, so this is not a demonstration of the entire 
system; it is only a test of the model comparison part). The variations of log likelihood and 
log evidence obtained in this way are shown in figure 5. The Bayesian analysis correctly 
predicts the number of sources present. 

6     Conclusions 

Limitations to the resolution of noise subspace eigenanalysis have been exposed. For real 
systems, where the number of snapshots is large, resolution will still be much better than 
the Rayleigh limit which restricts Fourier transform and beam-sweep methods. 

The eigenanalysis technique as employed here does not give the maximum likelihood 
parameters. The predicted parameters are, however, a good approximation to the opti- 
mum. The success of Newton-Raphson optimization shows that assumptions of Gaussian 
probability distributions are well founded. 

The application of Bayesian techniques has enabled the prediction of source positions 
to be given error bars. Bayesian model comparison has been shown to give consistent 
predictions even when positions are not well determined. In cases where parameters are 
well optimized, the Bayesian approach correctly infers the number of sources k. 

Finally, it has been shown that the use of Bayesian techniques to make model compar- 
isons is limited only by the standard of optimization routines employed. 
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NEURAL NETWORK IMAGE DECONVOLUTION 

John E. Tansley, Martin J. Oldfield and David J.C. MacKay* 
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ABSTRACT. We examine the problem of deconvolving blurred text. This is a task in which there 
is strong prior knowledge (e.g., font characteristics) that is hard to express computationally. These 
priors are implicit, however, in mock data for which the true image is known. When trained on 
such mock data, a neural network is able to learn a solution to the image deconvolution problem 
which takes advantage of this implicit prior knowledge. Prior knowledge of image positivity can be 
hard-wired into the functional architecture of the network, but we leave it to the network to learn 
most of the parameters of the task from the data. We do not need to tell the network about the 
point spread function, the intrinsic correlation function, or the noise process. 

Neural networks have been compared with the optimal linear filter, and with the Bayesian 
algorithm MemSys, on a variety of problems. The networks, once trained, were faster image recon- 
structors than MemSys, and had similar performance. 

1     Traditional image reconstruction methods 

OPTIMAL LINEAR FILTERS 

In many imaging problems, the data measurements {dm} are linearly related to the under- 
lying image f: 

dm = 53 Rmjfj + vm. (1) 
i 

The vector v denotes the inevitable noise which corrupts real data. In the case of a camera 
which produces a blurred picture, the vector f denotes the true image, d denotes the blurred 
and noisy picture, and the linear operator R is a convolution defined by the point spread 
function of the camera. In this special case, the true image and the data vector reside in 
the same space; but it is important to maintain a distinction between them. We will use 
the subscript TO = 1... JV to run over data measurements, and the subscripts i,j= 1 ... k 
to run over image pixels. 

One might speculate that since the blur was created by a linear operation, then perhaps 
it might be deblurred by another linear operation. We derive the optimal linear filter in 
two ways. 

BAYESIAN DERIVATION 

We assume that the linear operator R is known, and that the noise v is Gaussian and 
independent, with a known standard deviation <jv. 

p(d%^n) = ^^exp (-£ (dm - E; JW;)2/(2*2)) (2) 
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We assume that the prior probability of the image is also Gaussian, with a standard devi- 
ation (Tj. 

P{fW"H) = (!^pexp (-E /.A,7i/M) (3) 

If we assume no correlations among the pixels then the symmetric, full rank matrix C is 
equal to the identity matrix I. The more sophisticated 'intrinsic correlation function' model 
uses C = [GGT]-1, where G is a convolution that takes us from an imaginary 'hidden' 
image, which is uncorrelated, to the real correlated image. The intrinsic correlation function 
should not be confused with the point spread function R which defines the image to data 
mapping. A zero-mean Gaussian prior is clearly a poor assumption if it is known that 
all elements of the image f are positive but let us proceed. We are now able to infer the 
posterior probability of an image f given the data d. 

In words, 

Posterior = 
Likelihood X Prior 

Evidence 

(4) 

(5) 

The 'evidence' P{d\ay, <Jf,H) is the normalizing constant for this posterior distribution. 
Here it is unimportant, but it is used in a more sophisticated analysis to compare, for 
example, different values of <7„ and 07, or different point spread functions R. 

Since the posterior distribution is the product of two Gaussian functions of f, it is also 
a Gaussian, and can therefore be summarized by its mean, which is also the most probable 
image, fMP, and its covariance matrix, 

Ef]d = [-VmogP{f\d,au,af,H)]- (6) 

which defines the joint error bars on f. In this equation, the symbol V denotes differentiation 
with respect to the parameters f. We can find fMP by differentiating the log of the posterior, 
and solving for the derivative being zero. We obtain 

IMP  — RTR+^C RTd. (7) 

The operator RTR-f %C 
-1 

RT is called the optimal linear filter. When the term % C 

can be neglected, the optimal linear filter is the pseudoinverse "R_1" = [RTR]-1 RT. The 

term ^-C 'regularizes' this ill-conditioned inverse. 

The optimal linear filter can also be manipulated into the form: 

Optima] linear filter = C  1RT 
1 -1 

RC-1RT + 
or, 
o~, 

(8) 
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MINIMUM SQUARE ERROR DERIVATION 

The orthodox derivation of the optimal linear filter starts by assuming that we will 'estimate' 
the true image f by a linear function of the data: 

f = Wd. (9) 

The linear operator W is then 'optimized' by minimizing the expected sum-squared error 
between f and the unknown true image . (Interestingly, any quadratic metric using a 
symmetric positive definite matrix gives the same optimal linear filter.) In the following 
equations, summations over repeated indices i, j, m are implicit. The expectation {■} is 
over both the statistics of the random variables {^m}, and the ensemble of images f which 
we expect to bump into. We assume that the noise is zero mean and uncorrelated to second 
order with itself and everything else, with {vmvm') = a't^r, Jrnm. 

1   / V2 {E}   =   -{(Wimdm-fiY) (10) 

WinRmjfj - fi)2) + -WimWim<rl. (11) =    \{(WimRmjfj-fi)
2) + ^-   "'■   -2 

Differentiating, and introducing F = (fj'fj) (cf cr?C_1 in the Bayesian derivation above), 
we find that the optimal linear filter is 

Wopt = FRT [RFRT + all]_1 . (12) 

If we identify F = <T?C
-1

, we obtain the optimal linear filter (8) of the Bayesian deriva- 
tion. The ad hoc assumptions made in this derivation were the choice of a quadratic error 
measure, and the decision to use a linear estimator. It is interesting that without explicit 
assumptions of Gaussian distributions, this derivation has reproduced the same estimator 
as the Bayesian posterior mode, fMP. 

OTHER IMAGE MODELS 

The better matched our model of images P{i\H) is to the real world, the better our image 
reconstructions will be, and the less data we will need to answer any given question. The 
Gaussian models which lead to the optimal linear filter fail to specify that all images are 
positive. This leads to the most pronounced problems where the image under observation 
has high contrast. Optimal linear filters applied to radio astronomical data give reconstruc- 
tions with negative areas in them, corresponding to patches of sky that suck energy out of 
radio telescopes. The 'Maximum Entropy' model for image deconvolution [2] was a great 
success principally because this model forced the reconstructed image to be positive. The 
spurious negative areas and complementary spurious positive areas are eliminated, and the 
dynamic range of the reconstruction is greatly enhanced. 

The 'Classic maximum entropy' model assigns an entropic prior F(f|a, m,?^c]assic) = 
exp(aS(f, m))/Z, where 5(f, m) = J2i{fi^°Z(mi/fi) + fi ~ mi) [6]- This model enforces 
positivity; the parameter a defines a characteristic dynamic range by which the pixel values 
are expected to differ from the default image m. 

The 'ICF maximum entropy' model [1] introduces an expectation of spatial correlations 
into the prior on f by writing f = Gh, where G is a convolution with an intrinsic correlation 
function, and putting a classic maxent prior on h. 
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The 'Fermi-Dirac' model generalizes the entropy function so as to enforce an upper 
bound on intensity as well as the lower bound of positivity. This model is appropriate 
where the underlying image is bounded between two grey levels, as in the case of printed 
text. 

All these models are implemented in the MemSys package. 

2     Supervised neural networks for image deconvolution 

•Neural network7 researchers often exploit the following strategy. Given a problem currently 
solved with a standard data modelling algorithm: interpret the computations performed 
by the algorithm as a parameterized mapping from an input to an output, and call this 
mapping a neural network; then adapt the parameters to examples of the desired mapping 
so as to produce another mapping that solves the task better. By construction, the neural 
network can reproduce the standard algorithm, so this data-driven adaptation can (one 
expects) only make the performance better. 

There are several reasons why standard algorithms can be bettered in this way. (1) 
Algorithms are often not designed to minimize the real objective function. For example, in 
speech recognition, a hidden Markov model is designed to model the speech signal, whereas 
the real objective is to discriminate between different words. If an inadequate model is being 
used, the neural-net-style training of the model will focus the resources of the model on 
the aspects relevant to the discrimination task. Discriminative training of hidden Markov 
models for speech recognition does improve their performance. (2) The neural network can 
be more flexible than the standard model; some of the adaptive parameters might have 
been viewed as fixed features by the original designers. (3) The net can find properties in 
the data that were not included in the original model. 

In this paper we apply this neural network attitude to a toy image reconstruction 
problem. The task is to reconstruct an image of a piece of text from blurred data. This 
is not viewed as a character recognition task; we perform the reconstruction on a pixel by 
pixel basis; the neural network is expected to learn general characteristics of the font, but 
not to memorize the alphabet. We start from the optimal linear filter. If the point spread 
function is a convolution, then the filter of equation (9) should also be a convolution. Such 
a filter can be viewed as the very simplest neural network — a single linear neuron that 
computes 

h*,y) =   J2 W(u,v)d(x+u,y+v)- (13) 
(u,v) 

where (x, y) label the coordinates of points in the image. The neuron has a two-dimensional 
input which might be about twice the size of the point spread function, and a single output 
corresponding to a single pixel in the image. The network receives a patch from a data 
image d as input, and its single output would be trained to produce the pixel value at the 
centre of that patch of data in the true image f. As the trained network is scanned across 
a blurred image, its output produces a deconvolved image, pixel by pixel. The minimum 
square error derivation of the optimal linear filter in the previous section corresponds to 
training this neuron on an ensemble of examples {d,f} where the original images f have 
correlations defined by the matrix F. 

The first advantage of training such a neuron on real data is that the neuron can 
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Figure 1: Optimal linear filters and neural networks 

implicitly learn the correlations F from the data. One need not explicitly know the point 
spread function R, the noise statistics a^ or the correlation statistics F; the optimization 
process implicitly learns all these for itself. This network could also learn the appropriate 
filter if the noise in the data were spatially correlated. Further advantages of a neural 
network approach arise when we imagine using a more sophisticated network than a linear 
one. By changing the function performed by the output unit, we can hard-wire prior 
knowledge into the net. For example, if we know that the true image is everywhere positive, 
then we can use a non-linear output function which only assumes positive values. In the toy 
problem studied here, we know that the true image has only two possible intensity levels 
(black and white, or t = 0 and i = 1), so we can make the network into a classifier which 
discriminates between these different possibilities. We define the output of the network to 
be 

P(t = l|d,w)= \    L    ,. (14) 

By introducing additional non-linear processing between the input and the output, one 
might allow the network to select from a richer space of non-linear filters. Such a network 
could implicitly learn a more complicated prior probability distribution for images, learn a 
more complicated noise model, and learn about non-linear detector responses. We do not 
go that far in this paper. Here we report the performance achievable using just a single 
neuron. 

TRAINING WITH LIMITED AMOUNTS OF DATA 

If our training set {d,f} is small in size, a network trained to minimize the error on 
training data will 'overfit' the data. We cope with this by putting a standard Gaussian 
prior on the network parameters. We find parameters w that maximize the posterior 
probability, i.e., the product of the likelihood (factors of the form (14)) and the prior. 
We optimize the variance of the prior (the 'weight decay constant') using approximate 
Bayesian methods [5, 4]. (Amusingly, these Bayesian regularization methods are descended 
from those developed in the Bayesian Maximum entropy method.) 
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Figure 2: From left to right: original image; blurred and noisy data; reconstruction by 
MemSys; reconstruction by trained network. 

EXAMPLE 

We created data sets from an image of text, using various degrees of blurring and adding 
various amounts of noise. The blur was spatially Gaussian, and noise was additively Gaus- 
sian. For each data set, an optimal linear filter was created, a MemSys deconvolution using 
the Fermi-Dirac prior was performed, and a neural network was trained on a small patch 
of the image. The network was trained on three hundred examples (i.e., just a six letter 
word in the image). 

We first contrast the properties of the network with the optimal linear filter. In all cases 
the trained network outperforms the optimal linear filter in terms of sum-squared error, the 
difference being greatest for the most difficult problems. In figure 1 we display examples 
of the parameters of the optimal linear filter and the network. In the case of a small blur 
radius (a standard deviation of one pixel), the network looks similar to the optimal linear 
filter except for a slight squareness produced by the font statistics. At a larger blur radius 
(two pixels standard deviation), the neural net's weights are completely unlike the optimal 
linear filter, and are also satisfyingly hard for a human to explain — a good sign that the 
network is doing something useful! 

In table 1 we summarize the relative performance of MemSys and a neural network with 
a 13x13 input. In the cases with blurring and noise, the neural net's performance is slightly 
inferior to MemSys's. Where there is noise only, the net significantly outperforms MemSys. 
It is conjectured that the network would have done better had it been trained on more 
examples (the training set consisted of only 6 characters of text). Figure 2 shows patches 
of reconstructions given by the two methods for the case of the small blurring radius. 

The comparison between these methods favours the network most strongly when we 
turn to the computational requirement. Once trained, a network can process an image in 
seconds (about 8 seconds for a well-programmed network with a 13 X 13 input on a 256 X 
256 image). Whereas MemSys takes 10-15 minutes to process the same image. 

3    Discussion 

The neural network approach has proved a viable image reconstruction strategy in a problem 
where there are strong implicit priors in the data. Bayesian Maxent image reconstruction 
with MemSys depends on knowledge of the point spread function, and assumptions about 
the noise process and the prior on images. In contrast, the network approach requires 
examples of data for which the true image is known, but does not require explicit knowledge 



NEURAL NETWORK IMAGE DECONVOLUTION 325 

Blur radius    Noise level    'Difficulty' MemSys error    Net error 
medium 
medium 
high 

15.7 
26.3 
66.9 

7.4 
16.3 
22.0 

18.2 
13.9 

Table 1: Performance of network relative to MemSys 
The 'difficulty' of a task is the sum-squared error between  the data and the true image.   The 
performance measure for reconstruction is the sum-squared error between the reconstruction and 
the true image. Both are in the same arbitrary units. 

of the point spread function, noise level, or image statistics; these are 'learnt' implicitly from 
the data, so that our reconstruction ability is not limited by our inability to express a good 
prior over images. Once trained, a neural network is a much faster image reconstruction 
device. 

It will be interesting to attempt more realistic problems, and investigate networks using 
more complex non-bnear computations. A more sophisticated form of prior knowledge that 
could be incorporated is the spatial smoothness of the point spread function, which leads 
us to expect spatial smoothness in the deconvolving filter also. This prior expectation can 
be incorporated by changing the regularizer from a£)WTOWTO/2 to ctJ2Cmm>WmWmi /2, 
with appropriate cross terms between the parameters. Equivalently, one can retain the 
former regularizer, and blur the input data before feeding it to the network. This may 
sound surprising, but blurring the data even more can indeed enhance the performance of 
such networks [3]. 
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ABSTRACT. A technique is demonstrated for recovering positional and radiometric information 
on unresolved objects that are so closely spaced that their individual blur functions overlap. Empha- 
sis is on point sources. A Bayesian spectral analysis method has been modified to two dimensions 
and applied to resolving "clumps" of objects for both simulated and real data. The method enables 
one to judge the amount of noise in the data and provide error bars in the individual pulse positions 
and amplitudes from a single data set rather than from the deviations observed after measuring 
many independent sets of data. The Bayesian technique also can estimate the number of discrete 
objects in a given clump. Noisy simulated data containing three sources were fitted by one-, two-, 
three-, and four-source models. By the way it formulates the model, the Bayesian approach naturally 
includes a factor which reflects the reduction in the number of degrees of freedom for a model with a 
greater number of sources. As a result, the algorithm gives a higher probability for the three-source 
model than for the four-source model while resoundingly rejecting the one- and two-source models. 
The estimated centroids and amplitudes are shown to agree with the truth within the derived error 
bars to the degree expected by Gaussian errors. 

Studies of data taken during a flight test by a sensor that measured a scene simultaneously 
in the visible and long-wavelength regions show that positional information derived from visible- 
wavelength data can be "fused" with infrared images to derive the long-wavelength infrared (LWIR) 
intensities of individual objects in an unresolved clump. The estimated LWIR intensities using the 
visible assist are shown to be an improvement over working with the LWIR data alone. 

The technique is also applied to real visible CCD data of observations of star clusters in NGC 
6819 and is shown to be internally consistent in counting. 

1.     Introduction 

Every optical system has a point response function (PRF) which is the image generated 
by a sensor from a point source located at infinity. An example of a PRF is shown in Figure 
1 in one dimension for demonstration purposes. In general, the PRF depends on two spatial 
dimensions. Many objects viewed by optical sensors such as stars or distant space vehicles 
appear as point sources, because the geometrical angular subtense of the object is much 
less than the width of the PRF. The PRF width is due to diffraction of the input radiation 
through the system aperture and to the presence of aberrations in the optical system. The 
amplitude of a point source is measured by determining the height of the pulse response. 
The location of a point source is found by computing the centroid of the pulse response. 

If two point sources are separated in object space by less than the width of the PRF, 
the sensor pulse responses from the sources will overlap. If many point sources are located 
within the resolution limit of the sensor, the optical system will produce an image which 
appears as a "clump." The objects in this case are referred to as a cluster of closely spaced 
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Figure 1: Example of single-point source and three-point source CSO clump. Note: Figure 
la represents a two-dimensional single point source, i.e., a scaled PRF. The point source 
centroid is located at 26.1. The amplitude is 125. Pixel values correspond to quarter inte- 
gers. The width of this PRF is I.4I pixels. Figure lb represents a three-source CSO clump. 
The pulse centroids are located at 25.1, 26.1. and 26.7. The amplitudes are 100, 125, and 
75.  The overlapping sources create a clump with a peak of 214-2 at pixel 26.0. 

objects (CSO). An example of a three-source CSO is shown in Figure 1. The individual 
pulses are represented by the dashed lines. Note that the individual pulse amplitudes and 
centroids determine the amount of overlap between the pulses and thus the shape of the 
clump, i.e., the solid line. 

This report demonstrates a technique for counting and recovering positional and ampli- 
tude information of individual pulses from data consisting of a clump of CSO. The technique 
is a modification of the Bayesian spectral analysis method described by Bretthorst.1 The 
Bayesian Probability Theory (BPT) uses probability as the measure of confidence or plausi- 
bility in a particular theory or hypothesis. The probability describes the level of likelihood 
that a hypothesis is true given the available data and prior information about the data. In 
terms of the CSO problem, we use the prior knowledge that a clump is of unresolved CSO, 
so the clump can be modeled with overlapping point sources. The sensor PRF is assumed 
known in either functional form or as a matrix of measured pixel samples. 

The clump is modeled with m-point sources, each located at a hypothesized position 
with a particular amplitude. Because BPT computes the likelihood of each hypothesized 
model, a methodical procedure can be employed to determine the most likely placement 
and amplitudes of the m-point sources. Furthermore, the likelihoods allow one to compare 
models with different numbers of point sources. Thus, the most likely number of point 
sources in the clump can be discerned. In addition, the technique can quantify the noise 
power in the data and thereby provide error bars in the individual pulse positions and 
amplitudes from a single data set. Knowledge of the error bars can be valuable when fusing 
data from multiple sensors in real-time. Conventional least squares fitting techniques either 
require assumptions about the noise or calculate deviations observed after measuring many 
independent sets of data to determine error bars. 

Because BPT was developed to incorporate a priori knowledge into the decisionmaking 
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process, data fusion becomes simplified. For example, positional data from a spatially well- 
resolved spectral band can be utilized to enhance the derivation of radiometric data from 
a less well-resolved spectral band. We did exactly this with real data from a sensor taken 
during a flight test. Specifically, we used target positions from visible data to process long- 
wavelength infrared (LWIR) (10 /im) data and improve LWIR CSO radiometry. This is 
described in Section 3 of this report. The technique is applied to simulated data in Section 
2 and to visible CCD data in Section 4. The theory will not be covered since the principles 
of BPT are explained in detail in References 1 and 5. We extended the BPT equations to 
two dimensions; these equations can be found in References 6 and 7. 

2.     Simulated data examples 

We generated simulated clumps of data to test the theory. With a known number of 
pulses, centroid locations, and amplitudes, we investigated the effectiveness of the parameter 
estimation, the legitimacy of the error bar estimates, and the ability of the technique to 
decide on the most likely number of pulses in a clump. 

In the following examples, clumps of three-point sources were created using the actual 
PRF from a sensor. The sensor is a scanner which simultaneously reflects radiation onto 
visible and LWIR focal plane arrays (FPA) at a 3-sec scan rate. The LWIR PRF and FPA 
were used to simulate the clumps. The LWIR PRF contains 80% of its energy within a 70 
/xrad blur. The LWIR pixels are 32.8 /xrad square, and there are about four samples per 
dwell in the in-scan direction. The three pulses were placed at the centroids indicated in 
Table 1, scaled to the peak amplitudes in Table 1, and added to Gaussian noise having a 
standard deviation of 56.3 counts. The pulses had peak signal-to-noise ratios (SNR) of 7.6, 
22.4, and 27.6. The centroids were taken from a scan of data during a flight test. This test 
is discussed in detail in Section 3. We want to emphasize that the simulated clump is made 
up of a real PRF and pulse locations from a real flight test. An 8 x 32-pixel window was 
isolated and used as the data. The resulting clump is shown in Figure 2. 

Pulse 1 Pulse 2 Pulse 3 
Cross-scan centroid (pixels) 
In-scan centroid (measurement) 
Amplitude (counts) 

3.807 3.943 4.078 
13.105 15.354 17.339 
430.0 1555.0 1264.0 

Table 1: Simulated Clump 

Pulse 1 is separated from Pulse 2 by less than 1/7 of a pixel in the cross-scan direction 
and separated from Pulse 3 by about a 1/4 pixel. In the in-scan direction, the pulses are 
separated by 1/2 and 1 pixels, respectively. The above separations are a factor of two 
smaller in terms of the PRF blur width. 

We analyzed the data using one-, two-, three-, and four-point source models. The 
technique used a genetic algorithm search routine to find the set of centroids to maximize 
the posterior probability for each of the models. The posterior probability was derived by 
marginalizing over the amplitudes and noise terms. The error of each centroid was deter- 
mined by finding the half-power point about the maximum of the posterior probability in 
each dimension independently. The amplitude, noise power, and amplitude error bars were 
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Figure 2: Sensor PRF and simulated three-source CSO clump. Note: Figure 2a represents 
a real three-dimensional LWIR PRF from the sensor. It was used to create the simulated 
three-source clump in Figure 2b. The three sources were located at the centroids in Table 
1, scaled to the amplitudes in Table 1, and added together with Gaussian noise. The pulses 
had SNR values of 7.6, 22.4, and 27.6. 

computed at the peak of the posterior probability. The pulse movement was accomplished 
using a two-dimensional bicubic spline interpolator, rather than fitting the PRF with a 
closed, analytical function. 

The results for each model are contained in Table 2. The one- and two-source models 
both attempt to fit the clump midway between the actual points. The amplitude estimates 
are high in order to fit the width of the clump. The noise estimates are high because the 
signal within the data is not fit completely. As a result, the root mean square (r.m.s.) 
residuals are high. The BPT assigns these models virtually no probability of representing 
the data in comparison to the models which contain more sources. 

The three- and four-source models represent very similar situations in that three of the 
pulses are at similar locations. The four-source model attempts to add a small pulse in 
addition to the three included in the simulated data. This fourth source reduces the r.m.s. 
residual and the noise estimate, since it is fitting the noise. However, BPT assigns a higher 
probability to the three-source model, even though the r.m.s. residuals are higher than the 
four-source model. The reduction in r.m.s. residual of the smaU fourth source is not enough 
to make up for the lower prior probability of the four-source model. Thus, the Occam factor 
in BPT has enabled the correct model selection. 

The error bars in Table 2 are one standard deviation. Comparison of the three-source 
model parameters to the truth reveals that three of the six centroids and one of the am- 
plitudes are out of the la bound. Only the cross-scan location of Pulse 2 is out of the 2a 
bound. We created five more clumps to have a larger sample size to evaluate the error bars. 
Thus, we had 54 estimated parameters: 36 centroids and 18 amplitudes. The numbers 
within 1, 2, and 3 standard deviations are shown in Table 3. The distribution of the 54 
estimated parameter error bars follows that expected from a Gaussian parent distribution. 

3.     Sensor-flight test mission data 

The flight test missile was launched from Wallops Island on 13 April 1992. The sensor 
viewed the flight test payloads from the Firepond test site in Massachusetts.   Just after 
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Position 
cross scan inscan Amplitude Noise r.m.s. 

Actual 3.807 13.105 430.0 56.3 
Values 3.943 

4.078 
15.354 
17.339 

1555.0 
1264.0 

One-Source 3.516 ± 0.029 16.823 ± 0.045 2798.9 ± 46.9 93.0 1491.6 10-51.2 

Model 
Two-Source 3.926 ± 0.017 15.048 ± 0.064 1789.7 ± 43.7 62.1 997.3 10-10.3 

Model 4.043 ± 0.021 17.289 ± 0.095 1330.2 ± 43.9 

Three-Source 3.758 ± 0.047 13.159 ± 0.197 488.4 ± 43.2 55.5 892.2 0.99 
Model 3.999 ± 0.020 

4.000 ± 0.022 
15.485 ± 0.086 
17.314 ± 0.091 

1536.7 ± 63.5 
1214.6 ± 49.9 

Four-Source 3.784 ± 0.050 13.115 ± 0.207 461.4 ± 43.1 55.0 881.4 0.01 
Model 3.958 ± 0.023 

3.996 ± 0.025 
5.008 ± 0.250 

15.474 ± 0.088 
17.295 ± 0.092 
15.639 ± 0.530 

1529.7 ± 63.9 
1213.3 ± 50.3 
91.1 ± 28.5 

Table 2: Three-Source Clump Simulation Results 

apogee, the post-boost vehicle (PBV) released two large balloons. The balloons' surface 
optical properties were designed to have large diffuse signatures in the visible and LWIR 
bands. Their deployment angle with respect to Firepond and delta velocities were such 
that the balloons resolved quickly in the visible but remained a clump in the LWIR for a 
number of scans before they became resolved. 

The sensor data of the closely spaced objects allow clump processing in two ways. First, 
since there were simultaneous visible and LWIR measurements, the visible centroids can 
be fused with the LWIR to assist in the LWIR radiometry. Second, the clumps can be 
processed like the simulated clumps of the previous section. Both analyses are presented 
here. 

3.1.    Visible Assist 

The balloons were released at 413 and 415 sec into the flight. Figure 3 shows the actual 
sensor simultaneous visible and LWIR data at 424 and 457 sec, respectively. The three- 
times improvement in spatial resolution of the visible over the LWIR is readily apparent. 
The visible FPA could resolve the balloons at 418 sec as seen in Figure 3. The LWIR FPA 
could not resolve the balloons from each other until 442 sec analytically and until 457 sec 

12 2a 3a 
Amplitudes 9 16 17 
Centroids 26 35 36 
Total 35 51 53 
Expected for Gaussian 37 52 54 

Table 3: Number of Estimated Parameters within n<x Error Bounds 
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Figure 3: Simultaneous visible and LWIR sensor data at 424 and 457 sec. Note: The sensor 
data taken during the flight test at J,2Jt and 457 sec time after liftoff (TALO) are shown. 
Two balloons were released from a PBV at 413 and 415 sec. The three-times improvement 
in spatial resolution of the visible over the LWIR is readily apparent. The visible focal 
plane resolved the objects immediately as is apparent from the figure. The balloons were not 
resolved visually from each other in the LWIR until 457 sec. The fourth object in the data 
is the spent second-stage of the booster. 

visually. The LWIR pulses from the balloons overlapped until well past 470 sec. Thus, we 
used the visible centroids to enhance the LWIR radiometry from 418 to 448 sec. Specifically, 
the relative spacing between the pulses was fixed using the visible centroids. Then we used 
the posterior probability to fix the location of the clump, i.e., search over a two-dimensional 
space. We then solved for the amplitudes, noise estimates, and error bars. 

The results are indicated in Figure 4. From 418 to 433 sec, the data contained three 
pulses (the PBV and two balloons), so a three-source Bayesian model was employed. After 
433 sec, the pulse from the PBV did not overlap the balloons, so a two-source model was 
used from 433 to 448 sec. After 448 sec, the balloons were separated enough to be able to 
use a single-pulse pulse-matcher, which is an algorithm that estimates the amplitude and 
centroid of a well-resolved single. The SNR for the resolved balloons was approximately 50. 
As a point of comparison, the results from the single-pulse pulse-matcher are included for 
the whole measurement interval, even when clumps were present to show its performance 
on CSO. This figure dramatically reveals the earlier detection time and measurement im- 
provement of individual pulse amplitudes by using the Bayesian m-pulse model. 

Table 4 compares the estimated model amplitudes to the resolved pulse measurement 
amplitudes averaged over the observation times. The 1-sigma errors about the time averages 
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Figure 4: Bayesian CSO LWIR radiometry with visible assist. Note: The sensor data taken 
during the flight test were used with the Bayesian m-source model from 418 to 448 sec. 
The visible centroids were combined with the LWIR data to improve the LWIR radiometry. 
After 448 sec the balloons were resolved in the LWIR, so resolved pulse measurements were 
obtained using a single-pulse pulse-match algorithm. From 418 to 433 sec, a three-source 
model was used. From 433 to 448 sec, a two-source model was used, because the PBV was 
resolved from the balloons. The figure shows that the Bayesian model produced amplitudes 
with scan-to-scan variations very close to the resolved pulse measurements. The results using 
the single-pulse pulse-match algorithm on the clumps reveals the improvement in detection 
time obtained by using the Bayesian model with visible assist. 

are indicated. On average, the visible-assist Bayesian pulse model amplitudes are within 
4% of the resolved pulse measurements. Further, the model reflects the measurements in 
that the amplitude of Balloon 2 is about 3% higher than the amplitude of Balloon 1. The 
scan-to-scan precision, however, is about 30% greater for the model estimates than for the 

resolved measurements. 

The Bayesian error bars on the amplitudes are about 40 counts, which is less than 
the scan-to-scan precision of the measurements. The small error bars are different from the 
results for the simulated data, where the derived error bars matched very well the difference 
between the estimated parameters and truth. We believe that atmospheric effects and scan 
mirror jitter resulted in a nonstationary PRF in the real data. For the simulated data, 
the same pulse used to create the clump was also used in the model. For the real data, 
this was not the case. The model pulse was a measured point source at the same elevation 
angle as the balloon/PBV clump but at a different time. The Firepond site essentially is at 
sea level, and atmospheric distortions in seeing and speckle were prominent. Furthermore, 
significant scan mirror jitter was observed during the measurements.  The PRF modeling 



334 N.W. SCHULENBURG 

Resolved Pulse Measurements 
Bayesian m-Pulse Model 
(with visible assist) 

Balloon 1 
1204 ± 155 
1162 ± 223 

Balloon 2 
1247 ± 142 
1199 ± 207 
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Table 4: Balloon Average Amplitudes, Visible Assist 
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Figure 5: Bayesian CSO LWIR radiometry without visible assist. Note: The Bayesian 
m-source models described in Figure 4 also were employed without using the visible cen- 
troids. Rather, the posterior probability was maximized by moving the three LWIR sources 
independently. Note that the scan-to-scan variation is greater than the visible assist case. 

mismatch serves to underestimate the noise power and thereby create error bars that are 
too small. This emphasizes the need for excellent PRF measurements for any algorithm 
designed to deconvolve CSO clumps. 

3.2.    No Visible Assist 

For this analysis, we used prior knowledge only to specify the number of objects, m, in 
each clump. The search algorithm had to maximize the posterior probability over a 2m- 
dimensional space corresponding to the 2m model pulse centroids. The results are displayed 
in Figure 5 and summarized in Table 5. 

Whereas the amplitudes derived using the methods agree well for Balloon 2, the ampli- 
tudes for Balloon 1 differ from one another by over 7%. Furthermore, the Bayesian model 
without visible assist assigns a greater amplitude to Balloon 1 rather than to Balloon 2. 
The scan-to-scan precision for the model without visible assist is greater than the model 
with visible assist. This illustrates the benefits of data fusion, i.e., using visible centroids 
to improve the LWIR amplitude estimates and the scan-to-scan amplitude variation. Fur- 
thermore, the BPT formulation easily allowed the use of the visible centroids in the LWIR 
model via the prior probability. 
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Balloon 1 Balloon 2 
Resolved Pulse Measurements     1204 ± 155 1247 ± 142 
Bayesian m-Pulse Model 1290 ± 232 1233 ± 326 
(no visible assist) 

Table 5: Balloon Average Amplitudes, No Visible Assist 

4.    Visible sensor data 

We hypothesized in Section 3 that using the measured PRF in the model equations 
resulted in non-Gaussian noise processes due to the scan mirror jitter, non-integer samples 
per dwell, and atmospheric fluctuations. These problems caused the Bayesian amplitude 
error bars to be smaller than the scan-to-scan variation. 

We thus desired sensor data with a more stationary PRF, i.e. a PRF which would 
not vary significantly across the field-of-view nor be adversely affected by atmospheric 
fluctuations. We acquired a set of data from a staring visible CCD sensor attached to a 
24-inch telescope on Table Mountain, CA. The visible band was filtered to cover 450-550 
nm. The PRF was reported to be stationary across the field. The PRF width was 6-7 
pixels; each pixel was 2 yurad so the response was well-sampled. The array contained 512 
x 512 pixels. The sensor took 60 second exposures so the atmospheric fluctuations of the 
point source response should theoretically have been smoothed. Since the background was 
very smooth it appeared to be true. Figure 6 shows the center 256 x 256 pixel scene of NGC 
6819 measured September 19, 1992. To the eye, the single point source responses appear 
circularly symmetric and consistent across the scene. We chose four stars as model PRFs 
and ran 1-4 source models on 32 different clumps. The clumps were chosen to include single 
and multiple sources with a variety of amplitudes at locations all over the scene. Three 
cases will be discussed below. In these examples, the bright star at (250, 320) was used as 
the PRF. It produced the greatest posterior probability of the candidate PRFs. The three 
clumps are displayed in Figure 7 as detailed contour plots. 

Star clump 423 at ~(300, 190) is commonly thought to be a single source and is used 
for calibration photometry. Our algorithm agreed with this hypothesis with an extremely 
high confidence of 99%. The estimated amplitude was 1198 counts with an error bar of 
only 3 counts. The location was 9.704 ± 0.006 pixels east and 11.493 ± 0.006 pixels north. 
The small error bars result from the high signal to noise ratio of ~150. 

Star clump 416 at ~(200, 360) is also commonly taken to be a single source. Our 
technique, however, assigned virtually no probability to a one-source model compared to a 
two-source model. The two-source model was also preferred over the three-source model by 
a factor of 100. The two-source model put a source about 11 times dimmer than the other 
separated by 2.2 pixels to the east and 2.5 pixels to the south. The location error bars are 
greater than ~l/6 pixel for the dimmer source compared to 0.013 pixel for the brighter 
source. The amplitude error bars for the dimmer source were about 6% compared to 0.5% 
for the brighter source. 

Star clump 414 at ~(340, 210) looked interesting because the bulge to the south and 
west of the doublet gives evidence for another source. The technique, in fact, strongly 
preferred a three-source model with a dim source located at 8.8 pixels east and 6.9 pixels 
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Figure 6: Figure 6 shows real data from a staring visible CCD sensor attached to a 24-inch 
telescope. The visible band was filtered to cover 450-550 nm. The PRF width was 6-1 pixels; 
each pixel was 2 firad so the response was well-sampled. The array contained 512 x 512 
pixels. The sensor took 60 second exposures so the atmospheric fluctuations on the point 
source response should theoretically have been smoothed. Since the background was very 
smooth it appeared to be true. 

north.   It was separated by 4.6 pixels east and 0.5 pixels south from one source and 0.6 
pixels east and 5.2 pixels south from the other pulse. 

We are currently searching for other data sources to verify the source counting of the 
technique. However, since it counted nine apparent single sources as singles we are confident 
in the technique. We found that choosing the PRF in the model is the key to success. The 
examples above used a PRF from the same region of the focal plane. PRFs chosen from 
other regions on these stars produced a much lower posterior probability which consequently 
led to miscounts and different amplitude estimates. This leads us to believe there are spatial 
distortions across the field of view. Furthermore, it was observed that the pulse response was 
nonlinear in amplitude. Thus if a star chosen as a PRF had a significantly lower amplitude 
than a particular star dataset, the posterior probability was less than if a brighter star was 
used as the PRF. The amplitude estimates invariably would be low; in effect, the model 
was not able to extrapolate well to higher amplitudes. We also tried to fit a Gaussian to a 
star and use the fit as the PRF. This resulted in posterior probabilities hundreds of orders 
of magnitude less than using the measurements themselves.  We thus concluded that the 
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STAR CWUP 423 

Amplitude =. 1198.2+/-3.1 

East = 9.704 +/- 0.006 

North = 11.493+/-0.006 

STAR CUIMP <u 

STAR CLUUP 416 
Amplitudes - 247.9 +/- 1.4 

22.7+/-1.4 

East - 10.464 +/- 0.013 
12.689 +/- 0.157 

North = 8.808+/-0.012 
6.380+/-0.121 

Amplitudes . 137.6 +/-1.3 
31.1 +/-1.3 

173.7+/-1.3 

East - f 3.444 +/- 0.024 
8.813+/-0.111 
9.480+/-0.018 

North» 7.424+/-0.021 
6.924+/-0.093 
12.194+/-0.017 

Figure 7: Figure 7 displays the detailed contours of three star clumps which were analyzed. 
For the number of sources with the greatest posterior probability, the estimated amplitude (s) 
and centroids are stated with the corresponding derived error bars. Clumps 423 and 416 are 
commonly taken to be single stars. 

pulse responses were decidedly non-Gaussian. 

In the results discussed above, the data were preprocessed to remove the background. 
However, because the model in the Bayesian formulation is completely general, we added 
a term to account for the background on unprocessed data. We added the equation for a 
plane. This created three new amplitudes in the formulation, namely a dc term and a linear 
term in both the x and y directions. The technique correctly solved for the background 
amplitude terms and resulted in nearly identical centroid and amplitude estimations for the 
stars. This has implications for how data from optical sensors can be processed. Typically, 
raw sensor data is put through a number of time-dependent processing algorithms to remove 
the background and identify regions of interest or detections. The detections are then 
individually sent to an object-dependent processor which performs the parameter estimation 
for the amplitudes and centroids. With the Bayesian formulation, it may be possible to 
combine these two steps into one calculation. 

5.     Summary 

In this report we have used real and simulated data to show that the Bayesian Probabil- 
ity Theory can be employed to deconvolve clumps of closely spaced objects into individual 
pulse measurements. Pulse centroids and amplitudes with error bars can be determined 
from a single scan of data, since the sensor noise power can be estimated. This has im- 
plications for the way sensors can work together. Instead of having to communicate all 
of the data from one sensor to another so that the receiving sensor can compute relative 
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confidences in the measurements, only the covariances for all estimated parameters need to 
be sent because they are available. 

We also showed that a decision can be made on the most likely number of objects in 
a clump. The decision comes directly from using maximum entropy in the Bayes theorem 
and the rules of probability theory without relying on contrived penalty functions or fudge 
factors. 

Finally, we showed how easily the Bayesian Probability Theory can be used to fuse 
visible centroid information into LWIR data to obtain better LWIR amplitude estimates 
compared to using the LWIR data alone. 
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ABSTRACT. Improvement in an ultrasonic image can be obtained by using the echo amplitude 
in adjacent traces of the ultrasonic signal to form a Bayesian prior. The location of an echo in a 
trace is usually accompanied by an echo in the adjacent traces, as the beam width is greater than 
the distance between traces. A scaled version of the sum of the adjacent traces is used as a prior. 
By keeping the area under the curve at a constant value (as the probability must sum to unity), a 
consistent criterion is maintained. Adjacent traces with no echoes would result in a uniform prior. 
An example is presented in which the known shape of an object is more closely recovered than the 
shape inferred when the adjacent trace information is not used. The technique might be regarded 
as a Markoff process, as only the adjacent trace (channel) is used in forming the prior. 

1 Background 

Ultrasonic beams, particularly unfocused beams, sweep out a volume of space. Due to the 
finite beam diameter, each trace contains some fraction of the adjacent trace information. If 
we model the signal as an autoregressive model, following [1], a smoothly changing estimate 
of the echo source versus depth of beam penetration is obtained [2, 3]. 

By using adjacent traces to form a Bayesian prior, information from adjacent regions is 
incorporated in the estimation of the validity of the current trace's echoes. If the adjacent 
traces contained no echoes, then they would form a uniform prior. All priors, of course, 
would have the area under their curves normalized, as the probability must sum to unity. 

The example illustrated, scanning a piece of spaghetti, produced a more circular cross 
section than the cross section described by the raw data. This improvement in resolving 
the known target, as well as the sharpness of the image, show promise in more complicated 
images. Though spaghetti is of little clinical interest, the example provides encouragement 
to apply the method in clinical trials on biological tissues. 

Some criterion of goodness must be chosen to determine when to stop calculating the 
autoregressive filter coefficients. For this very simple example, a low order filter was suffi- 
cient by any criterion [5, 6]. Low order gives a slowly changing prior, which is intuitively 
pleasing. 

2 Example 

The method of echo identification using the phase information has proved useful [3, 4]. 
The highly overlapped echoes are shown in Figure 1, the original time domain signal. 
The signal source and receiver are a conventional pulsed medical ultrasound instrument 
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whose transducer is centered at 3.5MHz. The object (a piece of boiled spaghetti) was 
mechanically scanned. By processing the signal phase using maximum entropy methods [2, 
3], the localized echo can be identified. This localized echo is used as the raw signal for 
further processing. Figure 2 is the localized echo from the data of Figure 1. Conventional 

6 

x10-« Time (s) 

Figure 1: The Received Signal in Trace 4 (Volts) 

signal processing would display each trace, independent of the adjacent traces. In this 
example, however, the two adjacent traces of raw signal are summed; then the area under 
the curve normalized. The resultant summed curve is used as the Bayesian prior. The 
justification is that each adjacent curve contains some information about the center curve 
due to beam overlap. The method is illustrated in Figure 3. Biological structures of interest 
are usually of larger extent than the ultrasound beam width. This would be an intended 
application area. Finally, Figure 4 provides a reconstruction of the object, giving some 
confidence in the method by both its shape and sharpness. 

3     Conclusion 

The example shows a relatively simple method of incorporating adjacent traces of a broad 
beam sensor into the image analysis. 

References 

[1] J.P. Burg, "Maximum Entropy Spectral Analysis", Modern Spectrum Analysis, D.G. 
Childers ed, IEEE Press, New York, pp. 34-41, 1978. 

[2] J. Yao, L. Roemer, N. Ida, Ke-Sheng Huo, "Delay Estimation Using Maximum Entropy 
Method Derived Phase Information," Maximum Entropy and Bayesian Methods, 1989, 



ULTRASONIC IMAGE IMPROVEMENT 341 

x10« 

3.5 4 

x10-« 

Figure 2: Echo (raw signal, unsealed) for Trace 4 versus Time (s) 

P. Fougere ed., Kluwer, a division of D. Reidel Publishers, Dordrecht, Holland. 

[3] Jie Hu, Maximum Entropy Estimation Method Applied to Ultrasound Overlapping 
Echoes Identification, M.S. Thesis, Louisiana Tech University, November 1991. 

[4] J. Zhang, Ultrasound Detecting The Shape Of An Object By Maximum Entropy 
Method M.S.Thesis, Louisiana Tech University, May 1993. 

[5] H. Akaiki, "Power Spectrum Estimation through Autoregression Model Fitting," Ann. 
Inst. Stat. Math., vol 21, pp 407-419, 1969. 

[6] W.J. Fitzgerald and M. Niranjan, "Speech Processing using Bayesian Inference", Max- 
imum Entropy and Bayesian Methods, 1992, A. Mohammad-Djafari ed., Kluwer, a 
division of D. Reidel Publishers, Dordrecht, Holland. 



342 ROEMER AND ZHANG 

A Amolitudp    , ^ x        center trace . , A nmP|lluae    left trace     right trace 

Time (s) 
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ABSTRACT. Information about the spectral density gained by inverse photoemission spec- 
troscopy is distorted by the Fermi distribution and the apparatus function. In many cases recovery 
of the desired physical quantities is hampered by an ill-posed inversion problem. 

It is shown, based on the spin- and temperature dependent quasiparticle spectrum of Ni. that 
the maximum entropy method yields unbiased access to the spectral density independent of model 
assumptions. The effective energy resolution is thereby improved by a factor of 5 and structures 
below the Fermi level Ep, which are generally lost in inverse photoemission, are recovered. 

1.     Introduction 

In this article we will show that the maximum entropy method [1] is an ideal data- 
analysis tool for recovering "hidden information" from experimental data without making 
any model-assumptions. We will address a longstanding problem in the field of itinerant 
magnetism. 

For the microscopic understanding of collective magnetism of itinerant electrons, as in 
transition metals, the temperature and spin dependence of the spectral density Aka{oj) close 
to the Fermi level Ep play a vital role. In an homogeneous magnetic field the electronic 
spectral density consists of a single ^-function &(u - oJka) for given spin direction a and 
momentum k. The quasiparticle energy, uk(J = ek + aBa, depends on the free electron dis- 
persion £,t and the Zeeman term which splits spin-up and spin-down energies proportional 
to the external magnetic field. Inside a transition metal, below the Curie temperature Tc, 
there exists an effective magnetic field which is proportional to the net magnetization of all 
electrons, B^ ex (S~). Within the mean field approximation, J3efr acts like an external field 
and one expects Akdw) to show a pair of peaks, one for each spin direction. More elaborate 
approximations to the many-body problem allow for changes in the electronic spin due to 
electron-electron interactions. Thus an electron with initial spin a experiences also states of 
opposite spin. One would therefore expect a "multiband structure" with temperature de- 
pendent pole strength and quasiparticle energies. With increasing temperature correlation 
effects are expected to lead to a mixing of spin-up and spin-down states resulting in "ex- 
traordinary" peaks. Above Tc the spin asymmetry disappears, as the rotational symmetry 
is restored. The multiband structure is, however, retained at and above 7c, owing to short- 
range ferromagnetic spin-correlations. These ideas are underpinned by, for example, the 
fluctuating band theory [2, 3, 4] or approximate many-body calculations based on Hubbard- 
type model Hamiltonians [5, 6] and cluster-calculations [7]. At present, however, there is 
no generally accepted theory for band magnetism.  Even the more fundamental question, 
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whether model Hamiltonians such as the Hubbard model describe ferromagnetism at all is 
not settled [8]. It is therefore important to have accurate and conclusive experimental data 
to test the various theories. 

Experimentally the situation cannot be solved rigorously either, since Aka{u) cannot 
be measured directly. The deconvolution of the experimental IPE data is hampered by 
an ill-posed inversion problem. There exists an infinity of possible solutions consistent 
with the experimental data within the error bars. Experimental efforts have been made to 
reveal the detailed spin and temperature dependence of the electronic states. A number of 
photoemission and inverse photoemission (IPE) studies on Fe and Ni have been performed 
[9, 10, 11, 12, 13, 14]. While for Fe clear evidence has been found for non-collapsing band 
behavior at specific points in k-space [9, 10], the situation is more subtle for Ni and direct 
conclusions from the raw experimental data are not possible. 

2.    Formalism 

To reveal such detailed features of the spectral density, as the quasiparticle energy and 
lifetime, particularly for states lying below the Fermi energy, which are buried under the 
Fermi distribution, a more subtle analysis of the experimental data is required. To this end 
we invoke the Maximum Entropy (MaxEnt) method which is based on Bayesian probability 
theory, the importance of which has been emphasized recently by P.W. Anderson. [16]. 

The experimental IPE intensities for 100% spin-polarized electrons of spin a are pro- 
portional to 

I°(u,T,l£) = fJA°{J){\-f(J,T,ix)}g(J-u)dJ        . (1) 

Here A"(u) is the required spectral density of quasiparticles with energy u, spin a and 
wavevector k. f represents the current density of incoming electrons of spin a. To derive 
(1) standard approximations have been made, in particular ignoring matrix element- and 
relaxation-effects. The information about the electronic structure is contained entirely 
in the electronic spectral density. Dependence on temperature T and chemical potential /i 
enters via the Fermi distribution /(w, T, fi) = l/(l+exp((w-/i)/fcr). In (1) g(u'-u>) stands 
for the apparatus function, which is a convolution of the energy distribution of the incoming 
electrons and the energy window for the detected photons. The apparatus function can be 
estimated quite accurately from a comparison of image-potential surface states on Ni(lll) 
measured by IPE and two-photon photoemission. We find that the apparatus function can 
be approximated fairly well by a Gaussian with standard deviation 195 meV [17]. 

For numerical purposes we evaluate the spectral density Aa
n = y4CT(wn) at discrete en- 

ergies un with 72 = 1,2, ...,Avar and interpolate it linearly between these. The integrals 
of the piece-wise linear Aa(u>) in (1) and the exact Fermi function f(u,T,fj,) are computed 
numerically. Eq. 1 transforms into a set of linear equations 

I? = I°{ül,T,lM) = f<rMHA°        /=l,2,...,iVeq       , (2) 
i=l 

where Ü); represents the (coarser) mesh on which the experimental data are available. The 

spin polarization of the incoming electron beam has been estimated as p = ^T~^j ss 0.33 
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Figure 1: Direct inversion of Eq.2 with JVeq = JVvar = 20 

[15]. The incoming beam of predominantly spin-c electrons contains, therefore, a proportion 
n^ = (1 + p)/2 of spin-<7 electrons, while the remaining proportion of electrons na-a = 
(1 - p)/2 has opposite spin. Therefore the measured intensity for a <r-polarized beam of 
incident electrons is 

gf(Ä) = Y,Milna^Af (3) 

To recover the spectral density, Eq. (3) has to be inverted. At first sight this inversion 
appears to be utterly ill-posed. The kernel Mti is almost singular due to the Fermi function, 
which suppresses structures below the chemical potential (|w - Ep\ > kßT) exponentially. 
Therefore the inverse matrix has very large eigenvalues and the experimental errors are 
strongly amplified. The scatter of solutions compatible with the experimental data, is 
therefore enormous. A direct inversion of (3) as depicted in fig. 1 (with Nva.T = NPn) leads 'eq; 
to results fluctuating between +105 to -105, while the real values for A(u) are positive and 
of order 1. Only if the experimental data have a relative accuracy of better than 10~6 is 
direct inversion of (3) feasible. Moreover, this direct approach is restricted to 7Vvar < jVeq. 

We use Bayesian probability theory to determine the posterior probability P{A\ge,\) 
for a particular solution A given the experimental data g* and additional experimental 
parameters A, such as the scale of the error bars, the chemical potential or the width of 
experimental resolution: 

P(A\g*,\) = P(g°\Ä,\) 
P(A\X) 

P(9eW 
(4) 

P(g\A,X) is the likelihood function which contains the new information provided by the 
experiment. In IPE experiments the data are independent and normally distributed with 
error U{. The likelihood function is therefore 

P{F\A,\)    =    e -ix
2 

iVe« 

with x2 = E' ■9f-9l(A) 2 

o-i 
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Here gi{Ä) is the theoretically predicted result for given A. The spectral density is a 
positive, additive distribution function, for which the appropriate uninformative entropic 

prior is invoiced [18]. 

A- 
P{A\X)   =    eaS    with     S = Y1A*- TO'~ A,-ln( —) 

TO; 
z 

the information theory entropy relative to a default model TO;. We have chosen TO; = 
£, where £ is a small quantity which serves to suppress noise in regions of insufficient 
information. 

The MaxEnt solution for A is obtained by maximizing the posterior probability, or 
equivalently aS - \x2, 'with respect to A. The regularization parameter a is determined 
self consistently as elaborated by Skilling [18] upon maximizing the evidence P(a\ge) for 
a, given the experimental data. Other parameters, like chemical potential, width of the 
Gaussian resolution, and degree of polarization, can likewise be determined. 

3.     Discussion and Results 

We have applied the MaxEnt deconvolution to temperature-dependent spin- and angle- 
resolved IPE data of Ni(llO) for. the Z4 -+ Z2 transition [15]. The experimental data are 
taken for 20 energies per spin direction and A^u) is reconstructed for 80 energies. The 
inversion problem of Eq. (3) is therefore highly underdetermined. Experimental data are 
available for temperatures T/Tc = 0.48,0.64,0.72,0.82,0.95 and 1.02, covering the range 
from almost perfect ferromagnetic order out into the paramagnetic regime. 

Before discussing the physical conclusions we will address characteristic parameters of 
the experiment. The statistical errors of the IPE data are known and fairly small (< 
2%). MaxEnt analysis consistently leads to a confirmation of these values. The same 
holds for the chemical potential, for which only slight deviations |A//| < 0.04 eV from 
the experimentally determined values were found. A further convincing result of MaxEnt 
concerns the apparatus function. We allowed for more flexibility by supposing that the 
"Gaussian" can fall off at rates corresponding to different standard deviations di,dr on the 
left and right flank of the peak. We find that the evidence is sharply peaked at a value 
di = 183 meV and dr = 195 meV, with an uncertainty of ±1 meV. These values are in good 
agreement with the estimate based on the comparison with two-photon photoemission data 
[17]. As the MaxEnt values for auor have only very small uncertainty, this approach is very 
useful for determining the apparatus function whenever it is not accessible by experimental 
means. 

Due to the incomplete spin polarization of the incoming beam one always observes two 
peaks in the experimental raw data. The polarization of the incoming beam had been set 
experimentally to make the extraordinary peak vanish for the T/Tc = 0.48 data [15]. Using 
this experimentally determined value p « 33% for all temperatures we find almost negligible 
and temperature independent "extraordinary" peaks. As MaxEnt is not a linear method it 
is expedient to use it on the full experimental information in the form of Eq. 3 using p as an 
adjustable parameter. Since the polarization of the incoming beam is independent of the 
sample temperature, the same polarization p is used for all temperatures and the combined 
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Figure 2: Spin-dependent quasiparticle spectral density (a,c) and experimental IPE data 
(b,d) of the ZA -> Z2-transition in Ni for two temperatures T/Tc = 0.72 (a,b) and 0.82 
(c,d). 

evidence ]1; P(p, Ti) has to be maximized simultaneously. The maximum evidence is ob- 
tained for p = 0.32, which is in good agreement with the experimentally determined value 
oip= 0.33 ± 0.03. At this value of p extraordinary peaks disappear for all temperatures. 

Typical results obtained by the MaxEnt deconvolution are given in fig. 2(a), (c) for 
T/Tc = 0.72 and 0.82. For comparison we also depict the experimental data. In the ex- 
perimental data (fig. 2(b), (d)), both spin-up and spin-down features appear above EF 

[15]. The reconstructed spectral densities, however, reveal the spin-up peak clearly below 
(above) EF for T/Tc = 0.72 (0.82) with a line-width of about 80 meV independent of tem- 
perature. The resolution of IPE+MaxEnt is better then 40 meV, which is an improvement 
by at least a factor of 5 over the raw experimental resolution. The explanation is that the 
experimental resolution is due to a convolution with a smooth function which can be char- 
acterized extremely accurately by a few parameters, independent of temperature. There 
is no significant indication of "extraordinary" peaks at all temperatures. To quantify this 
statement, we have determined the posterior probability of a two-peak structure, where we 
have mixed in a proportion q of the minority peak to the majority structure. It appears 
that the posterior probability falls like P(q)/P(0) « e~a"2, were the constant a depends 
on temperature. Remarkably, in the T/Tc = 0.72 data of fig.2 the posterior probability 
falls to 1/e already for q = 0.009 even though the results are still within the experimental 
error bars.   This observation demonstrates emphatically that extraordinary peaks can be 
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Figure 3: Exchange splitting AEex(T)/AEex(0) of the Z2-band in Ni as a function of tem- 
perature (full circles). Errorbars are obtained self consistently from MaxEnt. Extrapolation 
yields AEex{Q) « 0.28eF. The solid line is the experimental bulk magnetization M(T)/M(0) 
of Ni rescaled to fit the AEex data [19]. 

ruled out. With increasing temperature a decreases slightly as the peaks approach each 
other. For T/Tc = 0.95, the posterior probability drops below 1/e at q = 0.02. The slight 
structures visible in fig.2 for T/Tc = 0.72 are attributed to noise and are completely ab- 
sent for T/Tc > 0.82. The minor structure at « 0.5 eV stems from irregularities in the 
experimental data a few eV above EF and has no physical relevance. 

It is instructive to compare the experimental data with those obtained by using the 
MaxEnt result for A(ui) in Eq. 3 (solid lines through the data points in fig. 2(b),(d)). The 
agreement is perfect, but for ill-posed inversion problems this is not surprising. It is likewise 
a completely useless test for theories to compare the theoretical and experimental values of 
gi. The different heights of the peaks above and below the chemical potential should not 
be taken too seriously for the following reason. With a uniform model, MaxEnt reduces 
structures where the signal-to-noise ratio is poor, which is the case below \i due to the 
exponential decay of the Fermi function. The same argument leads also to a slight shift of 
structures in the direction in which the kernel of the transformation increases. In the present 
case we therefore expect that structures below /j, are actually somewhat lower in energies. 
This effect is, however, accounted for in the error bars given by MaxEnt. The temperature 
dependence of exchange splitting AEex(T)/AEex(0) for the Z2 band in nickel is given in 
fig.3. The zero temperature value is estimated by extrapolation as AEex(0) as 0.28eF. The 
data follow nicely the rescaled experimental bulk magnetization curve [19] which yields 
strong support for a Stoner-like band behavior. The extrapolated ground-state exchange 
splitting of the magnetic Z2-band is 0.28 ± 0.05 eV. Similar values, ranging from 0.17 to 
0.33 eV, have been reported for occupied d-bands in Ni [20, 21]. 

In conclusion, we have shown that the maximum entropy method gives spin-dependent 
quasiparticle spectral densities from IPE data. In the present case the resolution is improved 
by a factor of 5 and structures below EF, which are generally lost in inverse photoemission, 
are recovered. This is important for the study of electronic structures in general and high 
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temperature superconductors in particular, where the detailed behavior of quasiparticle 

energies and lifetimes is important for theoretical understanding. 
We found that the quasiparticle spectral density of Ni consists of only one peak per 

spin direction for all temperatures. The exchange splitting A£ex decreases with increasing 
temperature and vanishes at Tc. Hence, it appears that the influence of transverse spin 
fluctuations is negligible for the electronic bands in Ni in the energy regime under consid- 
eration. The Maximum Entropy concept is clearly very useful to deconvolve experimental 

data, and can be applied immediately to other types of spectroscopy. 
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ABSTRACT. In this paper we present a novel technique for calculating the entropy of a dataset. 
We then apply this technique to measure the entropy of traffic streams in high-speed telecommuni- 
cations networks. The entropy estimation technique is motivated by the Lempel-Ziv universal data 
compression algorithm, which is well known to asymptotically compress sequences to their entropy. 
However an LZ based "-compression ratio" test has no characterizable statistical signifigance. We 
utilize a string matching technique, based on the LZ algorithm, but modified to estimate entropy 
rather than to compress data. This technique provides an estimate in a framework where statistical 
analysis is possible, and retains the universal properties of Lempel-Ziv. Such a tool is useful be- 
cause the traffic streams in high-speed networks have distributional properties that are analytically 
intractable. We represent a network path by G/D/1/oo-FCFS queues connected in series, and use 
the entropy estimator to calculate the entropy of the queue output processes. We consider queues 
with two inputs and two outputs, and we examine the entropy of a single output class. Our results 
show that the entropy can either increase or decrease depending upon the type of input traffic. We 
show that even with large amounts of data it is not possible to confirm the hypothesis that the 
entropy converges as the number of queues grows. 

1.     Introduction 

High-speed telecommunications networks will support voice, video, data, fax and other 
traffic simultaneously. Since resources are shared in these networks, heterogeneous traffic 
streams will be merged and split apart as they traverse various devices inside the network. 
In order for the network to guarantee a specific level of performance, the network must 
understand the nature of the traffic traversing its devices. We use the term through traffic 
to refer to a traffic stream which travels through the network from a specific source to 
a specific destination. The expression cross traffic refers to other traffic streams which 
may have different sources and destinations. As a through traffic stream travels across the 
network, it traverses multiple network buffering devices such as switches and multiplexers. 
The cross traffic will interact with the through traffic temporarily, that is at a few devices 
and then continue on a path distinct from the path of the through traffic. See Figure 1. 
Thus both the network device and the cross traffic will affect the statistical nature of the 

through traffic. 
A connection from one end of the network to the other, usually consists of a number of 
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these network buffering devices in tandem. In order to understand the nature of through 
traffic as it traverses multiple network devices, we study the behavior of traffic in a tandem 
queueing system. We are thus interested in properties of queue departure processes. Typi- 
cally when one uses analytical methods to model end-to-end network paths, one is forced to 
use a model containing a single queue, due to the intractable nature of most tandem queue- 
ing systems. Aside from a few exceptions, including for example quasi-reversible queues, it 
is not known how to find the distribution of a queue output process. Therefore our main 
method of study is simulation. 

Upon requesting a connection through a network, a user must describe the traffic it 
will send with a few simple descriptors. The network then uses this information to setup 
a connection and to allocate sufficient resources (eg: bandwidth) to that connection. The 
user's description is of its traffic at the input to the network, and does not reflect the 
statistical nature of the traffic inside the network, once it has been mixed with other 
heterogeneous traffic streams. Common parameters to describe traffic are average, variance- 
and peak size of clusters of cells. The interaction of the heterogeneous traffic traversing 
network devices causes cell scattering and clustering. In order to describe this scattering 
and clustering phenomenon, we propose the usage of entropy as a new traffic descriptor for 
high-speed networks. In this work we examine the entropy of successive departure processes. 

Since we do not know the distributions of the queue departure processes, we cannot 
compute the entropy analytically. Instead, we use an entropy estimation technique that 
is motivated by the Lempel-Ziv (LZ) universal data compression algorithm, which is well 
known to asymptotically compress sequences to their entropy. However, an LZ based "com- 
pression ratio" has few known statistical properties; and those that are known indicate that 
the compression ratio converges to the entropy only very slowly [7]. In [7], A. J. Wyner 
develops a new entropy estimation method which avoids these problems. The entropy es- 
timator utilizes a string matching technique, based on the LZ algorithm, but modifies the 
LZ method to estimate entropy rather than to compress data. This technique provides a 
more efficient estimate, in a framework where statistical analysis is possible, and retains 
the universal properties of Lempel-Ziv. 

The high-speed Asynchronous Transfer Mode (ATM) network has received considerable 
attention in the last few years and is the expected network of the future. We study a 
queueing system which is useful for modeling ATM networks. The ATM network carries 
small fixed sized packets (53 bytes in length), usually called cells, hence the transmission 
(service) time is deterministic. Therefore we use G/D/1/co-FCFS queues to represent 
network devices. These queues can represent either ATM statistical multiplexers or non- 
blocking output-buffered ATM switches. Each queue has two input classes. Input class 
1 carries through traffic and input class 2 carries cross traffic. Each cross traffic stream 
enters a particular queue and departs the system after service by that queue. In the case 
of simultaneous arrivals we use a discipline which always serves the cell from input class 1 
first. The system we consider, with Q queues in tandem, is depicted in Figure 1. To capture 
the heterogeneous traffic, we consider traffic streams with varying amounts of correlation. 
We calculate the entropy of the through traffic at each of the queue outputs. 

In Section 2., we present the basic traffic models and discuss the scattering and clustering 
phenomenon. The entropy estimator is given in section 3. and a description of its accuracy 
is given in subsection 3.1..   The implementation of the estimator algorithm is discussed 
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Figure 1: Tandem Queueing System 

Figure 2: On-Off Traffic Model 

in subsection 3.2. We designed a simulator, written in the C programming language, to 
simulate multiple queues and to carry out the estimator algorithm. The simulation results 
are given in section 4. 

2.    Traffic 

We consider both an "on-off" bursty traffic generator and and a Bernoulli traffic generator. 
The former is a two-state discrete time Markov Chain, as depicted in Figure 2. In state 
1 we generate a cell and in state 0 we generate an empty slot. A cluster of back-to-back 
cells, with no spacing between them is called a burst. Similarly a sequence of back-to-back 
empty slots is called an idle period. This on-off model generates an alternating burst/idle 
renewal process. Let B be the random variable which denotes the length of a burst, and / 
be the random variable which denotes the length of an idle period. B and / are geometric 
random variables with parameters p and q respectively; E(B) = jj and E{I) = K Bursty 
traffic streams generated this way exhibit correlations over successive slots. We generate 
traffic streams with varying amounts of correlation by adjusting p and q. Note that the 
correlations here are only among the cells of a given burst; there is no correlation between 
different bursts. In a Bernoulli traffic stream, the probability that a slot contains a cell is 
p and the probability that a slot is empty is 1 - p. The Bernoulli traffic is a special case of 
the on-off model when q = 1 - p. 

Because we consider a system with fixed sized time slots which may or may not contain 
a cell, a traffic stream can be represented by a binary sequence of O's and l's, where a '1' 
indicates the presence of a cell and a '0' indicates an empty slot. This observation provides 
us with a representation of traffic streams for which it is then possible to apply entropy 
estimation techniques. Define the random variable X, as 

Xi 
1    3 cell in slot i 
0   no cell is slot i 

Thus {X;}Q° denotes the stochastic traffic process. 
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-O 
Figure 3: Cell Scattering 

Figure 4: Cell Clustering 

The cells in the through traffic can either be scattered or clustered as they traverse each 
queue. We say that a group of cells become more scattered (clustered) when the distances, 
measured in time slots, between individual cells increase (decrease), respectively. Examples 
of cell scattering and clustering are given in Figures 3 and 4. The figures depict snapshots 
in time. The input streams and queue depict the state of the system at some time t. The 
output streams depict the through traffic at a later time, after all the cells in the example 
have been served. The cells in the through traffic are numbered, at both the input and the 
output, to show the change in their relative positions. In the cell scattering example, the 
queue is empty immediately before the arrival of cell #1. Since the cross traffic cells leave 
the system after service, they effectively create holes in the original input stream, scattering 
the initial group of back-to-back cells. In the cell clustering example, the queue has 7 cells 
in it immediately before the arrival of cell #1. During the next 6 time slots, cells numbered 
#l-#4 will arrive and be positioned back to back in the queue. After they have all been 
served they will be clustered together, with no holes between them. 

The entropy descriptor captures the behavior of cell scattering and clustering by de- 
tecting frequently occurring patterns, in this case binary patterns. The entropy descriptor 
is one dimensional, which makes it a feasible descriptor to use in high-speed networks. 
Certainly the entropy measure is only a partial traffic descriptor since different underlying 
traffic distributions can generate the same entropy. * We discuss the entropy of traffic 
streams more formally in the next section. 

3.     Entropy 

The entropy of a Bernoulli traffic source with load p is given by the familiar equation 

#(?)= -plogp-(l-p)log(l-p) (1) 

since such a traffic stream is equivalent to coin tossing. Recall that for a stationary Markov 
chain, {Xi}, with stationary distribution \i and transition matrix P, the entropy rate [2] is 

H(X2/X1) = -'£^PijlogPij (2) 

JThe most informative traffic descriptor would be the entire distribution function, but this infinite di- 
mensional quantity is unlikely to be available even to an approximation. 
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Entropy of an On-Off Traffic Source 

Figure 5: Entropy of an On-Off Markov Traffic Model 

Using this equation (2) the entropy of our bursty on-off traffic source is 

■ß(q) + -H{p) „  (3) 
p+q p+q 

A plot of the entropy of this traffic process for various p and q is given in Figure 5. Although 
we can find the entropy of the input traffic processes analytically, recall we do not know 
the distribution of the underlying stochastic process {X,-} at queue outputs. Therefore we 
estimate the entropy of these processes from empirical data produced in simulations, using 
the following entropy estimation method. 

The LZ universal data compression algorithm 2 can compress a sequence derived from 
any finite alphabet. We consider binary alphabets, 0 = {0,1}, and thus represent each 
sample traffic stream as a sequence of 0's and l's. The compression ratio is given by the 
ratio of the length of the compressed string over the length of the original string. Ziv proved 
that as the length of the data string goes to infinity, the compression ratio approaches the 
entropy. One might then consider finding the entropy of a dataset (or a traffic stream in 
this case) by compressing the dataset and observing the compression ratio. We now discuss 
the problems with this and related methods in order to explain why we chose the method 
used here. 

The basic LZ data compression algorithm is as follows. An input sequence is processed 
sequentially starting from the first bit. The sequence is parsed into strings that have not 
yet been seen, and a comma is placed after every new string. For example, the string 
01000111011 would be parsed as 0,1,00,01,11,011. After every comma, we look along the 
sequence until we come to the shortest string that has not been marked off before. Since this 
is the shortest such string, all its prefixes must have occurred earlier. Actually the string 
consisting of all but the last bit of this string must have occurred earlier. Each sequence 
between two commas is called a phrase. Each phrase can be coded by a tuple (a,b) where 

2LZ compression has become the Unix standard for file compression. 



356 NINA T. PLOTKIN AND ABRAHAM J. WYNER 

'a' indicates the location of the prefix and 'b' e {0,1} indicates the value of the last bit. 
Let c(m) be the number of phrases after an input sequence of length m has been parsed. 
Then log c(m) bits are needed to describe the location of the prefix and 1 bit is needed to 
describe the last bit. Therefore the compression ratio is given by c(TOHlogc(m)+1> A proof 
that «WP*w«W+i) _> H(Q) can be found in [2]. 

We call the set of strings seen so far the database. With this LZ algorithm the database 
is not bounded, but rather grows with the entropy of the input sequence. Clearly any 
program which potentially uses an unbounded amount of memory cannot be implemented 
on a computer. Therefore a variant of this algorithm, called the fixed database Lempel-Ziv, 
FD-LZ, algorithm was developed. Let the first n, (n < m), bits of the input sequence be 
the database. Now the database is not parsed, but rather any subsequence in the database 
starting at any position is a valid phrase. Starting with the first input bit, we look along 
the input sequence until we find the longest string which also exists in the database. This is 
caUed the longest match. The process is then repeated starting with the next sequential bit, 
not in the previous match. For example, consider the database 01000111011 and the input 
sequence 00101011011. The sequence of matches found is 001,010,11011. Now each match 
is coded into tuples (a,b) where 'a' denotes the position in the database of the first bit in 
the match, and 'b' denotes the length of the match. The code for this last example would 
be (4,3),(1,3),(7,5). It has been proved in [6] that FD-LZ compression also asymptotically 
approaches the entropy. 

The "compression ratio" of the FD-LZ algorithm has almost no known statistical prop- 
erties, and thus cannot be used in statistical analysis. The one known property states 
that the compression ratio yields H * (1 + 1^JH) [7]. In other words, a FD-LZ compres- 

sion ratio test, on an input sequence of size m, would have an error term of loSloS"\ YOT 

m = 1,000,000, this yields an error term of approximately 1/4. Since for a binary dataset, 
0 < H < 1, this is unacceptably large. 

From a recent result of A. J. Wyner in [7], one can develop an entropy estimator that 
uses a fixed size database and that has a small error term. Consider the random process 
X{°-n+i}' where Xi € {0,1}. For any fixed positive n, let Dn = X? 1} be the database. 
We look along the input sequence, Xu X2,... sequentially, looking for the longest match in 
the database. Let i, denote the ith longest match found. The result states 

K    J       H < 0(1) (4) 

where n denotes the database size. This implies that we can calculate the entropy of a 
dataset by computing the longest matches. It is required that the database be formed 
from the first n elements of the random process, because the theorem only holds if the 
distribution of the database is the same as the distribution of the input sequence (other 
theorems apply in the general case, see [7]). In addition, the result requires that the {Xt} 
process be stationary, ergodic and Markov. Within this large class of distributions (larger 
still considering that Markov processes can approximate general stationary ergodic sources) 
the theorem is universally applicable. Although the error term, giij, can be reduced by 
increasing the size of the database, we cannot increase n arbitrarily. We are constrained, as 
we will see in §3.2., in our choice of n by the memory required and the running time of the 
estimator algorithm. At the time of this writing, nothing is known about the 0(1) error 
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constant; however based on experience as described in the following section, it is believed 

to be very small. 

3.1.    Accuracy of the Entropy Estimator 

To examine the accuracy of this entropy estimator, we observe its performance on two 
processes, namely the Bernoulli and the on-off traffic processes, whose entropies are known 
analytically (equations (1) and (3), respectively). First we empirically generated a Bernoulli 
traffic stream with parameter p. In Figure 6, we plot both the estimated entropy (H) and 
the true entropy (H) versus p. Since computer random number generators are not perfect, 
we plotted p on the abscissa, which is the actual coin bias produced by the random number 
generator. This figure shows that the error is largest for the maximum entropy case, p = 0.5. 
For 0.2 < p < 0.8, the entropy is biased on the low side, and for p < 0.2 and p > 0.8, the 

estimator is slightly biased on the high side. 
For the datum in Figure 6 a database of 20,000 bits and an input of 30,000 bits was 

used. For a given process, the error is a function of the database size n, the input size 
TO and the process parameter(s). We must choose TO and n in such a way as to minimize 
the error in our estimate. We need TO large enough to generate a sufficient amount of 
data to achieve a 98% confidence interval in our estimate. (Note that rather than generate 
k realizations of traffic streams, each of length TO, we can generate one traffic stream of 
length km since the process is ergodic.) We also want n large because, as we will see, our 
estimator has an inherent bias, which can be partially reduced by increasing n. Intuitively, 
this occurs because the database must contain sufficiently many bit patterns to represent 
the true process entropy and generate a meaningful E(Lt). However we also want n and TO 

small enough so that the algorithm will run in minimal time and utilize minimal space. 
Let H(n,m) denote the random variable which gives an entropy estimate using a 

database of size n and an input of size TO. Then Hl{n, m) denotes a single realization 
of the random variable. Let H(n, m) = \ YA=I Hi(n, m) denote the sample mean. The root 
mean squared error (RMSE) is given by 

\ 

1       k 

— £(ff;(n,m)-#(n,m))2 

We choose the smallest n and m which are large enough to minimize the RMSE for the 
Bernoulli process which generated the worst case error, namely p = 0.5. With n = 20,000 
and km = 30,000 the RMSE = 0.001. Increasing either n or km did not reduce the RMSE 
any further. For this n and km we obtained H - H(n,m) = 0.021, which indicates that 

the estimator itself has an inherent bias. 
We performed the same test for on-off traffic streams. The error now is a function of 

TO, TI, p and q. For small p and q (we consider p < 0.1 and q < 0.1 since our bursts sizes 
are typically larger than 10), the errors were slightly larger than in the case of Bernoulli 
traffic. In order to bring the RMSE down to 0.001 we needed to increase km to 200,000. 
In this case the inherent bias (for worst case p and q) was 0.027. 

We should not be confounded by this bias for several reasons. First, we are estimating 
entropy using a universal algorithm that clearly cannot compete with a variety of simpler 
techniques that exploit known properties of the distribution. Secondly, the worst case error 
occured in the Bernoulli process with p = .5.   Since it is known that this distribution is 
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Figure 6: Entropy Estimator Error for Coin Tossing 

pathological, in the sense that the distributions of the longest match converge weakly to 
a different limit than the limit for any other stochastic source [7], we have some hope to 
believe that the worst bias occurs in this example as well. In point of fact, the worst case 
bias is still quite reasonable. 

We chose to use n = 20,000 and m = 200,000 in all our simulation runs. For a 
RMSE = 0.001 we can be 98% confident that the true mean of H(m, n) lies within ±0.0022 
of the sample mean. Even though the traffic inside the virtual circuit is neither Bernoulli 
nor an on-off stream, these tests give us some confidence that the error in our entropy 
estimator will be small. 

3.2.    Implementation of the Entropy Estimator 

The implementation of the entropy estimator requires careful consideration of the tradeoffs 
between memory and speed. A brute force implementation of the estimator would require 
only n bits to hold the database, but would have a running time of 0{nm) comparison 
operations. We sometimes process hundreds of queues and are thus more concerned with 
speed than memory; however we cannot use so much memory that the speed is reduced due 
to memory swapping. 

Our algorithm has two stages. In the first stage the database is preprocessed to form 
a binary tree. In the second stage we find the longest matches. The tree is constructed 
such that all possible subsequences of strings in the database can be found by tracing a 
path which starts at the root. Each subsequence has a unique path in the tree. Traversing 
the left (right) edge from a node at a depth k indicates a '0' ('1') in the fcth position of a 
string, respectively. To build the tree we start at the first bit in the database, and build 
the tree for all subsequences starting with that bit, of which there are n. The process is 
repeated starting at the second bit (for which there are n - 1 subsequences), and so on. If 
a particular subsequence already exists in the tree, it is not added again. The total number 
of subsequences in the database is £*=1 i = ^^, which is therefore an upper bound on 
the total number of unique subsequences. Because we have a binary alphabet, and exactly 
two edges emanating from each node, we do not need to label the edges in the tree. The 
amount of memory required to store the tree is O(^) node units, and the running time of 
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this stage is also 0(JY). A node unit requires 8 bytes to hold 2 pointers. 

We find the longest matches of the input sequence in the database as follows. The input 
sequence index starts at X0. The tree index starts at the root. If the next bit in the input 
sequence is a '0' (T), then traverse the left (right) edge of the current tree node. Repeat 
this process until a bit in the input sequence is encountered for which no corresponding 
edge exists in the tree. Then the current depth of the tree gives the length of the match. 
In this algorithm the string matching time is linear in the size of the input sequence; i.e. it 
uses 0(m) comparison operations. 

We are motivated to use large databases in order to reduce the error term. With the 
above method a database of size 3000 can require up to 4.5 x 106 nodes units, or 36 Mbytes 
of storage just for the matching tree. We cannot use much more memory than this because 
then even a good Sparc station with 32M RAM will spend most of its time swapping to 
disk, which drastically reduces the speed of the simulator. In order to increase the database 
size by an order of magnitude, and not increase the amount of memory needed, we modified 
the algorithm as follows. Our observations showed that typical match lengths range from 2 
to 200. In the modified algorithm we do not allow the tree to grow beyond a depth of 250. 
In the rare event that there is a match of length greater than 250, we do a brute force search 
in the database for that longest match. Such matches occur typically less than 0.5% of the 
time. With this method the time to construct the tree is now O(ra), where the constant 
hidden in the big-0 notation is 250. This method allows us to use a database of size 20,000, 
which requires at most 40 Mbytes of storage. Increasing the database from 3000 to 20,000 
cut the bias by 30%. In summary, our algorithm has a running time of 0(n + m) where n 
is the size of the database and m is the size of the input sequence. 

Some implementations of data compression algorithms are discussed in [3, 4, 5]. Our 
algorithm is slower and uses more memory than the compression algorithms used in practice 
because we compute entropy rather than compress data. This necessitates a database size 
on the order of 105. The type of algorithms used in practice are in the FD-LZ class and 
many implementations use a database size as small as 12. In many computer systems, a 
database for compression and decompression is maintained as part of the system (i.e. it 
exists before compression starts). Recall that our method requires that the database have 
the same distribution as the input sequence, and thus cannot use a pre-existing database. 
Instead we have to generate a new database and preprocess it for each traffic stream. 

4.     Simulation Results 

4.1.    Basic Properties 

Recall that the through traffic corresponds to the traffic on input stream 1 and departure 
class 1. The cross traffic corresponds to the traffic on input stream 2 and departure class 2. 
Since we are only interested in the properties of the through traffic we use the term input 
to denote input stream 1 and the term output to denote departure class 1. We can view 
the cross traffic as part of the queuing system, and together they transform the input into 
the output. 

Intuitively, the cross traffic is the predominant cause of cell scattering, which leads to 
entropy increases, and the queue is the predominant cause of cell clustering, which leads 
to entropy reduction. Which of the cell scattering or cell clustering effects is predominant 
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will depend upon the traffic types and the loading conditions. We examine these effects, in 
terms of entropy, in the figures below. 

The notation EB/EI = x/y indicates the average burst size and average idle period 
size, which specify the parameters in the on-ofF input model. The load for the on-off model 
is thus given by RJTW- The notation xJoad indicates that the cross traffic is a Bernoulli 
process with parameter equal to xJoad. In Figures 7 and 8 we consider Bernoulli cross 
traffic and in Figures 9 and 10 we consider correlated cross traffic. The abscissa label 
"Departure Process Number" i correspondes to the traffic process at the output of queue 
i. (Departure process number 0 specifies the input to the whole system.) 

In Figure 7 we consider correlated input traffic with 0.4 load, and we vary the load of 
the Bernoulli cross traffic. As expected, the entropy of the output is greater when the cross 
traffic load is larger. We see that the entropy grows rapidly during approximately the first 
six queues, and from there on grows slowly. In Figure 8 we consider Bernoulli inputs on 
stream 1 as well as Bernoulli cross traffic. In this case the entropy of the output decreases. 
It is reasonable that under these traffic conditions, cell clustering is more predominant than 
cell scattering since the i.i.d inputs are completely random to begin with. The entropy is 
reduced more quickly at higher cross traffic loads, although not significantly. Notice that 
these first two graphs together imply that the entropy of a single departure class can either 
increase or decrease depending upon the input types. 

In Figure 9 we consider correlated traffic on both the through and cross traffic streams. 
Here the total load and cross traffic load, 0.8 and 0.4 respectively, are fixed. The cross 
traffic streams represent streams of increasing correlation. The entropy remains rather low 
(less than 0.5 for example), even after 20 queues, when both traffic streams have average 
initial burst sizes greater than 40. We can compare this figure to the xJoad = 0.4 case 
in Figure 7. The entropy of the through traffic grows substantially slower when the cross 
traffic is correlated (Figure 9) than when the cross traffic is Bernoulli (Figure 7). We 
saw in Figure 7 that the higher cross traffic load, the higher the entropy of the output. 
However in comparing Figures 7 and 9 we see that a lightly loaded Bernoulli cross traffic 
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stream increases the entropy of the ouput more than a highly loaded correlated cross traffic 
stream. For example, consider xJoad — 0.2 in Figure 7 and EB > 60 in Figure 9. 

Figure 10 demonstrates the entropy behavior for Bernoulli through traffic and correlated 
cross traffic. Here again the total (cross) load remains the same 0.8 (0.4). We vary the 
amount of correlation. In comparing Figures 8 and 10, (i.e. Bernoulli inputs) we see 
that the output entropy is sensitive to increasing amounts of correlation, but insensitive to 
increasing Bernoulli traffic loads. 

4.2.    Convergence 

Next we consider the asymptotic behavior of the entropy of the through traffic as the 
number of queues grows. We consider only Bernoulli cross traffic in this section. Let 
{Xi}3, i = 0,1,..., denote the input to a queue j + 1, and the output process of queue 
j. We can view the behavior of the queue and cross traffic as applying some function T 
which is an input-output mapping and has parameter p (cross traffic load). In other words 
P(X3) = T{P{X3-l),p) where P{X>) denotes the joint probability distribution of the {Xi}3 

process. Passing the input through many queues in tandem is equivalent to repeatedly 
applying this function to each successive output process, i.e. P{X3) = T3(P{X°),p). We 
can hypothesize that as j grows, the traffic process might reach an invariant distribution, 
and hence the entropy would no longer change. A weaker hypothesis would be that just 
the entropy converges, without requiring that the distribution converge. We distinguish 
two separate convergence hypotheses. The first hypothesis is that the entropy of a traffic 
stream converges as the number of queues grows, for Bernoulli cross traffic. The second 
hypothesis is that all types of through traffic streams, at a specific load, converge to the 
same limit, for a given load of Bernoulli cross traffic. 

In Figures 11 and 12 we examine the entropy through 2000 queues, calculating the 
entropy at the output of every 50th queue. The cross traffic load was 0.3 in Figure 11 and 
0.4 in Figure 12. Both Bernoulli and correlated through traffic were considered in each 
case. Although the entropy values appear to be leveling off, a close examination of the 
data reveals a very slow downward trend. This means that if the entropy converges it does 
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so extremely slowly (not even by the 2000th queue). Both these figures exhibit bunching 
behavior; i.e. regardless of the initial input type, by the 100th queue, all the entropies are 
close, but not precisely the same. Although this bunching behavior intuitively supports the 
second hypothesis, the different convergent values cast doubt on this hypothesis. The data 
here is insufficient to validate these hypotheses. The difficulty in validation may be due to 
very slow convergence, in which case simulation is not a suitable method of study. 

5.     Summary 

In this paper we first presented some basic trends in high-speed telecommunications net- 
works today. We described the motivation for studying tandem queueing. We then pre- 
sented two traffic models and discussed entropy as a traffic descriptor that can be used by 
network designers. We considered networks in which traffic streams can be represented by 
a binary sequence. We compute the entropy of sample traffic streams, generated via simu- 
lation, using a novel entropy estimation algorithm. The algorithm is a modified version of 
Lempel-Ziv data compression schemes designed to compute entropy rather than compress 
data. We describe an implementation of the algorithm whose running time is linear in the 
size of the data sequence. 

We developed a fast simulator to simulate multiple queues in tandem, and looked at 
the entropy of successive queue departure processes. These departure processes represent 
internal network traffic. Our results show that the entropy of the queue output stream can 
either be larger or smaller than the entropy of the queue input stream, depending upon the 
types of input traffic. The amount of change in the entropy - from the input to the output 
- is greater at higher loads. We show that even with large amounts of data it is not possible 
to confirm the hypothesis that the entropy converges as the number of queues grows. 
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ABSTRACT. Multiuser detection is the problem of detecting the data sequence from several 
simultaneous code division multiple access (CDMA) users and cancelling the interference between 
users. Equalization of intersymbol interference (ISI) is the separate problem of data detection 
in the presence of interference generated by the channel's effect on the user's own data stream. 
A commonality in these two problems arises from the finite memory associated with each. Both 
problems can be solved by a maximum likelihood sequence estimation (MLSE) approach, for example 
by the Viterbi algorithm (VA). The VA is driven by likelihoods conditioned on every possible data 
sequence with length equal to the channel memory. As is well known, the VA incurs a probabilistic 
decoding delay, and is burdened with the need to maintain track of all survivor sequences through 
the trellis. An alternative "symbol-by-symbol" approach to this problem offers a fixed decoding 
delay and no need to maintain survivor sequences. This approach is based on a Bayesian recursion 
of posterior probabilities due to Abend and Fritchman (AF). In the AF algorithm, maximum a- 
posteriori (MAP) symbol decisions are made (based on the entire history of past measurements) at 
each symbol time. In this paper, we provide a common framework that can be applied to both the 
multiuser detection and ISI equalization problems, and explicitly develop the Bayesian recursions 
for each. We emphasize the distinction between the MAP symbol detection and MLSE approaches, 
and discuss the trade-offs in performance and complexity. 

1     Introduction 

The code division multiple access (CDMA) communication system, in which many users 

modulated with special "signature waveforms" share the same transmission bandwidth, is 

being considered for use in future radio-based data networks. A well-known limitation of 

the basic system is the self- interference, or near-far effect, in which excessive bit-error- 

rate (BER) degradation can occur due to reception of "strong" signals from other users. 

The recent interest in multiuser detection stems from the result that the ideal multiuser 

detector is free of any such near-far effect, and thus does away with the need for power 

control or other ad hoc remedies. The multiuser detector theoretically outperforms the 

conventional matched filter detector simply because the matched filter is optimal for the 

Gaussian channel, whereas the CDMA interference is non-Gaussian [1]. 

The form of the optimal multiuser detector is known [1] [2] [3], and consists of sam- 

pling the matched filter outputs and applying either a maximum-likelihood or maximum 
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a-posteriori criteria. Such implementations tend to be highly complex, with complexity ex- 
ponential in the number of users. The optimal linear multiuser detector is also known [4], 
which offers satisfactory performance and greatly reduced complexity (linear in the number 
of users). Implementation of the optimal multiuser detector requires that the amplitudes 
and delays of each signal be known a priori, or jointly estimated. Our previous work de- 
scribes anon-linear estimator/detector employing extended Kaiman filter (EKF) estimation 
of amplitudes and time delays [5]. We have also described an importance sampling approach 
for simulating the bit error rates of such systems [6]. 

In this paper we give a discussion of the related topic of intersymbol interference (ISI) 
channel equalization. Examination of the ISI problem will reveal that it is closely related to 
multiuser detection, and in particular, that multiuser detection is simply ISI equalization 
with M-ary1 composite symbols, and a "channel memory" of one (i.e. the current and 
previous composite symbols affect the current data vector). This close connection led us 
to consider solving the multiuser detection problem using the Abend and Fritchman [7] 
algorithm; a technique that was originally developed for the ISI problem. We develop 
here the Bayesian recursion in posterior metrics that has been used in our prior work, 
and demonstrate that this technique provides a common framework for solving both the 
multiuser detection and channel equalization problems. While the AF algorithm has not 
enjoyed the widespread popularity of the VA, in some applications the AF approach may be 
preferable. For example, metric pruning provides a natural way of reducing the complexity 
of the algorithm [8], and some apptications may benefit from the fixed-delay property of 
the algorithm [9]. 

Both the multiuser detection and ISI channel equalization problems have been solved 
previously by a MLSE approach (i.e. by a Viterbi algorithm) [10] [11] [12]. We consider 
here the differences between the MAP symbol detection (AF) and MLSE techniques. The 
two algorithms give similar performance and the increased computations required for AF 
are not very significant given current technology. 

2     Bayesian Equalizer 

We consider the problem of optimal data detection over a channel containing intersymbol 
interference (ISI). ISI may result from abandlimited channel, and/or multipath conditions. 
We employ the conventional discrete-time channel model established in [10]. The received 
samples at time k are given by 

D-\ 
r(k) = Y^ b(n)d(k -n) + z{k). (1) 

71 = 0 

where D denotes the effective memory length of the channel in bit durations, b{n) denotes 
the equivalent channel tap weights, d(n) the transmitted binary data sequence, and z(k) 
denotes a circular white Gaussian noise sample with 

E{z(k)z*(j)} = a26k>J. (2) 

The tap coefficients in the above model represent the combined impulse response due 
to baseband pulse shaping, channel transfer function, matched filter, and (if necessary) 

M, the alphabet size, is herein assumed to equal 2. 
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whitening filter. For our purposes here we will consider this to be a fixed, known sequence. 
Baseband samples are produced at the rate of 1/T&. Define the following sequences: 

dk-D = [d(k),d(k- \),...,d(k- D + 2),d(k- D + I)), (3) 

dk = dk'k, (4) 

rfe = [r(fc),r(fc-l),....r(2),r(l)]. (5) 

The likelihood function for a single sample is given by 

D-i 
p(r(k)/dk>D) = -^ exp {~\r(k) - £ b(l)d(k - l)\% (6) 

and by the i.i.d. property of the noise, the likelihood for a sequence of samples is 

p(rk/dk)=l[p(r(j)/di>D). (7) 
i=i 

The optimal MAP symbol decision for symbol k is 

dk = arg max p{d(k)/rk+D-1), (8) 
d(k) 

which utilizes the entire received sequence up to time k + D-1. This rule implicitly takes 
a "symbol-by-symbol" approach; a decision is made on each symbol d(k) at time k + D-1. 
This is in contrast to the sequence detection strategy employed in the VA solution, to be 

described later. 
We now proceed to determine a Bayesian recursion for the posterior probabilities, 

p(d(k)/rk+D-'1), according to [7]. The development closely follows [13]. First, applying 

Bayes' rule to (8), 

dk = arg max K^Mt))^!). W 

dk = zTgmzx-p(rk+D-1 /d(k))p(d(k)l (10) 
d(k)   C 

where (10) follows because the denominator does not depend on the argument d(k) and is 
thus a normalization constant. This constant will be carried through the remaining analysis 
because the re-normalization will minimize numerical underflows in the resulting recursive 
formula. Note that if all symbols are equiprobable. the MAP detector is equivalent to a 

ML symbol detector. 
Consider the detection of the first symbol (k = 1). which is written as 

^=argmaxp(rDMl))^^. (") 
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Note that the required likelihood is conditioned on a single symbol, and may be found from 

p(rD/d(l))=        J2       P(rD/d?'D)p(df>D-'). (12) 
Vj:d(^df'D 

The notation Vj : rf(l) g dj '    denotes a sum over aU sequences of length D whose first 
element is equal to d{\). This notation will be used extensively throughout this paper, and 
is simply a more compact way of writing the sum that occurs in the following variation of 
the law of total probability 

p(rD/d(l))=Y:    E   ■■■J2p(rD/d(D),d(D-l),...,d(2),d(iy). 
d(D)d{D-l)       d{2) 

(13) 

PK/?),..-,d(2),d(l)/d(l)). (14) 

Define the posterior metric at time k = 1 as 

rm(dD>D) = \(r°/df'D)p(df'D), (15) 

where we note there are MD possible sequences, and thus MD metrics at time k = 1. The 
decision for symbol 1 is 

Vj:dmd?'D 
(16) 

Now consider the MAP symbol decision at time k = 2 

d2 = argmax p(d(2)/rJ+D) - argmaxp(r1+D/d(2))P^2^ (17) 

By total probability we get, 

d2 = argmax         £         p(ri+i>/di+i>.y^         \ (18) 

or, 

d2 = argmax         £         m2(dJ+D'D). (19) 

Now consider the relationship between 7n2(d
1+D>ö) and m,(dD'0). By the i.i.d. 

of the noise we may break up the likelihood expression, 
property 

Md)+D'D) = P(r(l + D)ld^D>D)P{r°ldy
D>D)p{d3{l + D))P{d^] 

C2 
,        (20) 

and then, because rD is independent of d{\ + D), 

*-2 
(21) 
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By total probability, 

m2{d)+D>D) = P(r(l + D)/d)^D)c^l + D)) Y, "HO*?'*). (22) 

and consolidating constants, 

m2(d}+D'D) = -p{r(l + D)/d)+D'D) £ ml(^'D). (23) 

Vr.if'De^ + °'B 

or, in general, 

mk+l(d^
D'D) = ip(r(fc + D)/d^D'D) £ m^^-1'0). (24) 

c v.-:df+D-1-fled*+I>'D 

This last equation gives the recursion of Bayesian posterior probabilities. It states 
that the updated metric is obtained via a sum over the previous metric, multiplied by the 
likelihood of the newest sample. The normalization constant c ensures that m,k(dk+D'k) 
sums to unity (i.e. is a valid probability density). 

The recursive algorithm requires computation of MD metrics at each step, or kM 
metrics for k symbols.   We observe that if p(dk/rk+D) were calculated directly, it would 
require calculation of Mk metrics.   Thus, the recursive algorithm is highly efficient, and 
implicitly collapses an exponentially growing sequence tree into a fixed-length trellis. 

3     Multiuser Detection 

The multiuser detection problem refers to the simultaneous detection of several users, each 
employing a unique signature waveform. The waveforms are traditionally pseudo-noise (PN) 
sequences, which are quasi-orthogonal (i.e. have low cross-correlation). However, since 
the cross-correlation is not zero, a large number of simultaneous users, or a single strong 
user could substantially degrade the BER performance of a traditional correlation-based 
detector. In contrast, the multiuser detector uses knowledge of all the signature sequences, 
including their amplitudes and time delays, to effectively cancel the interference. 

The received signal is downconverted, low-pass filtered with bandwidth Tc, and sampled 
at the Nyquist rate. Samples are grouped into vectors of length Ns, where NSTS = T&. The 
received samples due to N simultaneous users have the form 

1     N 

r(mNs + *0 = E E d»(m ~ l)*nSn(kTs + lTb - T„) + z{k) (25) 
i=On=l 

for k = 0,l,...,Ns-l, 

where Th refers to the bit period, Ts is the sampling period, Tn 6 [0,7V] is the time delay of 
the n-th user, an is the (complex) amplitude of the n-th user, dn(k) is the binary data bit 
of the n-th user at time k, and sn(-) denotes the output of an ideal low-pass (anti-aliasing) 
filter of bandwidth Tc whose input is the signature sequence of user n. The index over / 
indicates that two bits from each user may contribute to any given received vector (because 
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the vector is not time synchronous with the bit transitions). The noise samples, z(k), are 
circular Gaussian with 

E{z(k)z'(j)} = aHkt3. (26) 

For the purposes of this paper, we will treat an and Tn as fixed, known quantities. 
Previous work has established that it is also possible to use EKF's to estimate these pa- 
rameters. We now consider (25) as a variation of equation (1) which specified the received 
samples under ISI. It is readily apparent that the multiuser waveform is equivalent to N 
simultaneous ISI signals of memory length 2 (/ = 0,1). The sum over ansT,\-) acts as a 
generalized &(•). If we use likelihoods conditioned on all possible length-2 sequences from 
N users (22N possibilities) then the problems are essentially equivalent. 

We now develop a recursion for posterior probabilities as was done for The Bayesian 
equalizer. Define the sequences: 

dr'2 = [d.-(«0,d;(m-l)], (27) 

r(m) = [r(mNs), r(mNs + 1),..., r{(m + l)Ns - 1)], (28) 

rm = [r(m),r(m-l),...,r(l)]. (29) 

Note that d;(m) is now an N-dimensional vector of binary data bits ( "composite sym- 
bol"), and that df' is a length-2 sequence of vectors. Likewise, r(m) denotes a vector of 
complex samples, and rm a sequence of such vectors. The likelihood for a single sample is 
written, 

1,1 J      N 

P(r(mNs + k)/dm'2) = —exp(~~\r(7nNs + k)-^Y:d^n-l)ansn(kTs^lTb~Tn)\2), 

(30) 
and the likelihood of a sequence can be written as a product of such terms, as in (7). The 
MAP symbol decision for k = 1 is 

d*i = argmaxp(d(l)/r2) (31) 
rf(l) 

d\ = argmax        ]T       p(d,(l)/r2) (32) 

Vj:rf(i)edj(i) 

d,= argmax       £ £       p{df2/v2) (33) 

vMijed^Vird^edf"-2 

2,2N 

d1= argmax       £ £       rf^/d^^J 

Vi:d(l)ed''2Vi:d].'2ed?-2 Cl 

(34) 

J, = argmax       £ £       m,(d?'2) (35) 

vi:d(i)ed;'2vi:d;-2ed?'2 
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The MAP symbol decision at time k=2 is 

d2 = argmaxp(d(2)/r3) (36) 
d(2) 

d2 = argmax      £      p(d,(2)/r3) (37) 
fi(2) - 

vi:d(2)ed> 

d"2 = argmax      £ £       p(d3'7r3) (38) 
(2) Vi:d(2)6d*   V.dfedf 

p(d3"2/r3) = Kr3/df 2)^ö (39) 
c2 

p(d?'V) = P(r(3)/df2
)p(r

2/df 2)^Ö (40) 

p(r2/df2) =        S       p(r»/d?'2Md?'2) (41) 
v,-:d?'2ed?-2 

m2(d
3'2) = p(r(3)/d3'2)^        £       ma(d

2'2) (42) 

Vj:a,    6Q; 

Finally, in terms of general time k, 

m*+1(df
2'2) = -P(r(* + 2)/df2'2) £ ^(df+1-2) (43) 

C Vi:d?+1'26d*+2-2 

We see that this metric update is essentially identical to (24) with a channel memory length 
of D = 2. 

4     Comparison With Maximum Likelihood Sequence Estimation 

The previous sections have developed Bayesian recursions that can be used as the basis 
for optimal data detection in both the multiuser detection and ISI channel equalization 
problems. The decisions are optimal in the sense of maximizing the posterior probabilities 
for an individual symbol. 

In this section, we follow a different strategy and derive a recursion in likelihoods ac- 
cording to the VA. The decisions are optimal in the sense of maximizing the likelihood of a 
given sequence. Consider again the equalization problem. The MLSE of the entire received 
sequence is, 

dk = argmaxp(rfc/dA") (44) 
dh 

p{rkldk) = p(r(k)/dk)p(r(k - l)/dk).. .p(r(l)/dk) (45) 

p(rk/dk) = p(r(k)/dk'D)p(r(k - l)/dk~^D).. .p(r(l)/d(l)) (46) 
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p(rk/dk) = f[p(r(z)/d''D) (47) 
t=i 

At time k + 1 

p{rk+ljdk+l)    = p(r(k+l)/dk+')p(rk/dk+l) (48) 

= p{r(k + l)/dk+''D)p{rk/dk). (49) 

This last line gives a recursion in likelihoods, however the number of metrics to compute 
is increasing exponentially with k. The Viterbi algorithm collapses this expanding tree of 
sequences into a fixed-size trellis as follows. At time k=D-l, 

p(rD-'/dD~')= f[p{r(i)/cP'D). (50) 

At time k — D we can compute all MD metrics 

P(rD/dD)=f[p(r(t)/d^), (51) 
t'=i 

but "prune" according to 

p(rD'D^/dD^) = m^f[p(r(i)/d-D), (52) 

which keeps the number of retained "survivor" metrics fixed at MD~l. The general recur- 
sion is, 

k 

p(rk'D-'/dk'D-l)=     max    T{p{r{i)ld^D). (53) 
V ' 2 = 1 

The AF algorithm also calculates MD metrics, but retains MD metrics at each step, ac- 
cording to 

p(r,+1,D/^+1,D) =  1   {r(k + 1 + Dydk+1+D,D) £ p{rk,Djdk,Dy       (54) 

vJ:4
+D'°e4+D+,"D 

Comparison of equations (53) and (54) reveals the essential difference between the AF and 
VA procedures. Calculation of (53) is especially simple because taking natural logarithms 
turns the product of exponentials into a sum of arguments followed by the "max" operation. 
For the AF procedure, no such simplification occurs; we must calculate the argument, take 
the exponential, perform the sum, and multiply. Although these calculations are trivial, 
this extra burden is undoubtedly the reason why the VA is used far more extensively than 
the AF algorithm. 

As mentioned previously, the VA procedure in general does not make a decision on any 
given symbol until the entire sequence is received. In practice, any implementation will 
have finite memory and a release depth of five times the constraint length is a commonly 



BAYESIAN APPROACH TO MULTIUSER DETECTION 373 

used rule of thumb. A subtle point is that if a "merge" has not occurred when memory is 
exhausted, the algorithm is forced to make a decision on the oldest symbol. It does this 
on the basis of which sequence has the greatest likelihood. This is of course a non-optimal 
symbol decision (in the sense of MAP symbol detection). Consider the following simple 
example. Let the decoder have a memory of 2. Thus we have four possible sequences and 
their likelihoods, for example: 

d2d, p(d(2),d(l)/r2) 

0 0 0.4 

0 1 0.3 

1 0 0.0 

1 1 0.3 

Forced to make a symbol decision for d\ the decoder will choose sequence 0, 0 (since it has 
the maximum metric), and hence decide dj = 0. The AF strategy, on the other hand, is 
to sum all sequences stemming from the same d(l) value. Hence the probability in favor 
of d(l) = 1 is 0.3 + 0.3 = 0.6, and for d(l) = 0 is 0.0 + 0.4 = 0.4. Thus, the AF algorithm 
decides d\ = \. 

5     Summary 

The problem of multiuser detection has been shown to be closely related to the problem 
of channel equalization. Because of this close relation, the Abend and Fritchman (AF) 
algorithm, which was originally developed for the equalization problem, may also be applied 
to the multiuser detection problem. The AF algorithm calculates the maximum a-posteriori 
probabilities of each possible symbol in a recursive manner. This accords nicely with the 
Bayesian view of probability, as we decide in favor of the symbol in which we have the 
greatest "belief" in being correct. We have considered the fundamental differences between 
the AF algorithm and the better-known Viterbi algorithm (VA). The AF algorithm is 
optimal in the sense of MAP symbol detection, while the VA is optimal in the sense of 
maximum-likelihood sequence detection. Examining the algorithms closely shows that while 
both must compute M metrics, the VA requires only addition to update its metrics, while 
the AF algorithm requires calculation of exponentials, sums, and products. Given the state 
of modern digital signal processing technology, the additional operations are no longer 
very significant, and the common selection of the VA over the AF algorithm needs to 
be reconsidered. We believe the AF algorithm could be preferable in some applications, 
for example in blind equalization, where it leads to an efficient parallel adaptive filtering 
structure [9]. 
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ABSTRACT. At a recent MaxEnt conference, the Bayesian econometrician Arnold Zellner 
noted that "much more empirical and theoretical work needs to be done to get a 'maximum en- 
tropy, thermodynamic model' that performs well in explaining and predicting the behavior of eco- 
nomic systems". This paper reports modest progress toward such a model in financial economics. 
Arbitrage-free financial models imply the existence of risk-neutral probability measures, which are 
used in the prediction of asset prices. This paper uses MaxEnt to select a risk-neutral probabil- 
ity measure, and develops a few applications of it. In this way, the connection between Jaynes' 
formulation of statistical mechanics and important problems in financial economics are made clear. 

1.     Introduction 

The constrained maximization of entropy (MaxEnt) has been widely and successfully used 
to select probability measures for a myriad of applications. Subsequent to Josiah Willard 
Gibbs' pioneering use of expectations taken with respect to the canonical measure, which 
maximizes entropy subject to linear constraint(s), one of the best known successes of Max- 
Ent has been Jaynes' [8] parametric sensitivity analysis of this MaxEnt problem, providing 
a foundation for a "generalized statistical mechanics" and thermostatics. 

Economists call the parametric sensitivity analysis of general constrained optimization 
problems "comparative statics". It has been universally adopted as the foundation for much 
of neoclassical economics, since the publication of Paul Samuelson's influential Foundations 
of Economic Analysis [13] in 1947. For example, consumer behavior is modelled by assuming 
that consumers act as if they maximized a concave utility function subject to a linear budget 
constraint. Using this formulation, one can study the parametric sensitivity of consumption 
choices when, say, the consumer's income is increased. 

Because Samuelson's thinking was heavily influenced by the lectures of Edwin Bidwell 
Wilson, J.W. Gibbs' last protege [14], it is puzzling that MaxEnt -in particular, the canon- 
ical measure - hasn't been utilized more in conventional economic theory. Examining some 
past efforts to do so J prompted Arnold Zellner to note at a recent MaxEnt conference 2 

that "much more empirical and theoretical work needs to be done to get a 'maximum en- 
tropy, thermodynamic model' that performs well in explaining and predicting the behavior 
of economic systems." [21, p.21] 

10f course, there have been other papers in economic theory which employ MaxEnt. For a survey, see 
Kapur [chaps. 13,19][10]. But these results are seldom, if ever, included in economics textbooks, and are 
accordingly out of the mainstream-rightly or wrongly. 

2At this point, MaxEnt has only found a measure of acceptance in some parts of econometrics described 

by Zellner (also see the survey article by Maasoumi [11]). 
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This paper reports some modest progress toward such a model. The economic system 
modelled will be the financial markets. Both academicians and many financial market par- 
ticipants have adopted the assumption that competition for financial gains will eventually 
eliminate any arbitrage opportunities, i.e. investment strategies which cost nothing yet risk- 
lessly earn investment income. It is argued that attempts to exploit such "free lunches" 
will eventually become self-defeating, by changing demand and supply for financial assets 
in ways which move the assets' prices away from those at which the lunches were free. As 
an approximation to reality, it is thus not unreasonable to develop an equilibrium theory 
which rules them out. When coupled with other assumptions about the stochastic pro- 
cesses governing the movements of asset prices, a fundamental duality theorem in financial 
economics shows that this no arbitrage assumption is equivalent to the existence of a set of 
risk neutral probability measures, which satisfy a set of linear contraints. These risk neutral 
measures are widely used to predict the prices of contingent claims, such as stock options, 
as well as to test and interpret more elaborate behavioral theories of asset prices. 

Under the conditions of incomplete information that analysts typically work under, this 
paper uses MaxEnt to select a canonical risk neutral probability measure. The computation 
of expected values taken with respect to the canonical distribution, a procedure familiar 
from statistical mechanics, provides an alternative, simple derivation of a well-known asset 
pricing prediction called a multi-beta, approximate arbitrage pricing model. Its "market 
prices of risk" are provided by the canonical distribution's parameter vector (the Lagrange 
multipliers from the MaxEnt problem), which is also the vector of risky asset weights in a 
canonical mean-variance efficient portfolio. Because a similar procedure has previously been 
used to derive the justly celebrated Black-Scholes formula for predicting the price of a stock 
option [18], it is hoped that MaxEnt may eventually be used to provide a foundation for 
a general theory of arbitrage-free, contingent claim pricing under conditions of incomplete 
information. 

Having established that some conventional asset pricing results can be derived by taking 
expectations with respect to the canonical risk neutral measure, we turn to an exploratory 
investigation of the financial analog of thermostatics. In particular, we will explore both 
similarities and differences between the thermostatic analysis of weakly interacting physical 
systems brought into thermal contact, and an analysis of the integration of formerly seg- 
mented financial markets. We will argue that a combination of thermostatic modeling and 
empirical investigation is a promising route to sharp, testable predictions about the effects 
of financial market integration 3. 

2.    A Standard Model of Arbitrage-Free Asset Prices 

We utilize an important special case of the standard, finite dimensional securities market 
model with a finite number of states and a single consumption good 4. At the beginning of 
any period, an uncertain state of nature is drawn independently from a set of possible states 
of nature Ü = {wi,.. .,LJK}- The particular state drawn determines the end-of-period price 

3It is highly unlikely that more traditional structural economic models of market integration will imply 
anything analogous to, say, the Ideal Gas Law. To obtain even qualitative comparative statics predic- 
tions, the framework must be augmented by auxiliary hypotheses, e.g. specific functional forms for agents' 
optimization problems and specific values of their free parameters. Because no one would ever accuse ther- 
mostatics of failing to make sharp predictions, it is reasonable to consider thermostatic reasoning as an 
alternative predictive framework in this setting. 

4For more detail about the standard securities market model, see Dothan [1, chaps. 1-2], or Willinger 
and Taquu [20] 
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and/or dividend paid for each of the N + 1 primary assets available for trade. Formally, 
asset i pays Xi{u>j) of the consumption good to the buyer from the seller when state j 
occurs at the period's end, with (objective) probability ICJ > 0. Because there are a large 
number of events which could affect the future prices and dividends of financial assets, we 
will assume that the number of states K is quite large. Denoting the price paid for asset i 
at the beginning of the period by Pi, the asset's total (gross) return Ri(uj) over the period 
is Ri(uj) = Xi(uj)/Pi when state j occurs. In other words, a dollar invested in asset i 
returns £;(WJ) at the end of a period, after adjusting for inflation. If state j occurs at the 
end of some period in which an investor owned asset i, and £,-(WJ) > 1, the investment 
appreciated at a rate in excess of the rate of inflation. Of course, the expected (gross) 
return per period is ET[Ri\ = ]£j=i Ri(uj)icj. 

A myriad of financial assets can be represented in this way. For example, we will 
assume that asset 0 is a riskless asset, i.e. its gross return per period is not random. This 
is represented by 

Ro(uj) = r, j = l,...,K. (1) 

A riskless asset plays an important role in many asset pricing theories, serving as a 
perfect hedge against inflation.   The constant r is then the (gross) real rate of interest. 
In some applications, a riskless asset is approximated by a government treasury bill with 
maturity equal to the period length. 

2.1.    The Fundamental Duality Principle 

Suppose some asset i ^ 0 has the random return Ri(wj) > r, j = 1,..., K. In other words, 
the asset returns a variable amount which will always be in excess of the rate of interest. If 
an investor sold a dollar's worth of the riskless asset and invested that dollar in asset i, one 
would earn Ri{wj) - r > 0 when state j occurs at the end of the period. That is, for a net 
investment of 0 dollars, one would always earn something net of inflation. Effectively, the 
investor financed her purchase of asset i by borrowing at the interest rate r, knowing that 
she would always be left with some purchasing power after selling the asset at the end of 
the period to repay her loan. Clearly, this is a good deal, for by borrowing a large number 
of dollars, one would always obtain a larger number back. It is a "free lunch", so why not 
eat to your heart's content? In fact, investors should have no trouble convincing lenders to 
lend them unboundedly large amounts to do this, because they will never have any trouble 
repaying them out of the investment proceeds. 

It is this sort of opportunity that economists dub an arbitrage opportunity. An arbitrage 
opportunity allows the investor to produce something out of nothing. Of course, arbitrage 
opportunities might be much more complex, involving the simultaneous purchase and sale 
of many assets, perhaps in some complex way over time. But the result of an arbitrage 
opportunity is always the same: purchasing power in the future is produced at no cost now. 

But how likely are these opportunities to arise and persist? Investors attempting to 
exploit the above opportunity would drive up the demand for asset i, raising its price Pi and 
lowering its return Ri(uj) = Xi(uj)/Pi. And their attempts to borrow large amounts will 
drive up the interest rate r. Once the interest rate rises above maxj Ri(uj), the free lunch 
vanishes, for the investor would lose r-maxj ä,-(WJ) if state arg maxj Ri(oJj) occurred, which 
it does with positive probability. The fear of this occuring would curb lenders' appetites to 
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give the investors unlimited funds, and fear of losses in those states where the asset's return 
is lower than r would curb some investors' desire to do so. In other words, attempts to 
exploit arbitrage opportunities sow their own seeds of destruction in the financial markets. 

As such, it is reasonable to assume that the assets' random returns and the riskless 
rate r can not assume values permitting arbitrage opportunities. But exactly what values 
does this assumption rule out? Note that in our example, because Ri(uij) > r for all states 
j = 1,.. .K, it is also true that EQ[Ri] = £V Ri(uj)Qj > r for any probability distribution 
Q over the possible states of nature, including the actual state probability distribution 
■K. Note that if for some asset m, Rm{^j) < r for all states j = l,...K, an arbitrage 
opportunity would arise by selling a dollar's worth of asset m and investing the proceeds 
in the riskless asset. This would produce r - Rm{uj) > 0 for any state j at no cost to 
the investor. In that case, EQ[Ri(üjj)] < r for any probability distribution Q over states of 
nature. Furthermore, any portfolio formed by buying some assets and selling some others 
will admit an arbitrage opportunity when it always returns a random amount R(u) in 
excess of r, in which case EQ[R] > r, and the sense of the inequality would be reversed if 
the portfolio always returned less than r. 

The discussion above linked the presence of arbitrage opportunities to the nonexistence 
of a probability measure under which the expected returns of some assets would equal 
the riskless rate of interest. Furthermore, it would be reasonable to conjecture that the 
converse is true, i.e. that the absence of arbitrage opportunities requires the existence of a 
probability measure Q under which the Q-expected returns of all risky assets must equal 
the riskless rate r. Of course, we didn't examine other potential arbitrage opportunities 
involving portfolios whose returns are not always greater or always less than r, nor did we 
examine conceivable mult'iperiod investment strategies. But in the special model described 
in this section, it turns out that the conjecture and its converse are true. While we won't 
formally state and prove it here 5, a fundamental duality theorem of financial economics 
shows that the assumption of no arbitrage opportunities is equivalent to the existence of a 
probability distribution Q under which all assets have expected return equal to the riskless 
rate r. That is: 

Theorem 2..1 Under the assumptions of this section, there are no arbitrage opportunities 
possible if and only if there exists a strictly positive probability measure Q, called a risk 
neutral probability measure, satisfying: 

K 

EQ[Ri] = y£Ri(uj)Qj = r,   i = l,...N (2) 
3=1 

Theorem 2.1 provides the restriction on the N random asset returns and the riskless 
rate of interest which is equivalent to the no arbitrage assumption. Theorem 2.1 also places 
restrictions on the returns from a portfolio of these assets. Let 0,- denote the share of the 
portfolio's cost tied up in asset i (so 0,- < 0 for an asset which is sold, rather than bought). 
The return from the portfolio in state j is then R(UJ) = £-Io0;£;, where J^iLi #i = 1- 
Due to linearity of the expectations operator, the following is a corollary of theorem 2.1. 

For a more formal definition of arbitrage opportunities and a proof of this result, see Stutzer [18]. 
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Corollary 2..1.1 For any portfolio of the N + 1 assets with random return R(u>), and any 
risk-neutral measure Q, EQ[R] = r. 

3.    The Canonical Risk Neutral Probability Measure 
Any modern graduate text in financial economics contains numerous applications of risk 
neutral measures 6. Here, we develop an application of the MaxEnt choice of risk neu- 
tral measure. The canonical risk neutral probability measure solves the following MaxEnt 
problem: 

Definition 3..1 The canonical risk neutral probability measure Q solves the con- 
strained maximum entropy problem: 

K 

max 5 = - ^2 Qj log Qj (3) 
Q j=i 

subject to: 
EQ[Ri] = r,i = 0,...,N (4) 

Note that due to the existence of the riskless asset with return RQ{UJ) = r, the constraint 
in (4) corresponding to i = 0 is just the normalization constraint on probabilities. If we 
obtain data on N + 1 = K linearly independent assets 7, the no arbitrage assumption and 
Theorem 2.1 guarantee that there is a unique feasible point in problem (3), in which case 
the probabilities are also called normalized Arrow-Debreu state prices. In our applications, 
however, N + 1 < K, so there is a convex polytope of risk neutral measures, and MaxEnt 
selects the familiar Gibbs' canonical measure: 

Theorem 3..1  The canonical risk neutral measure has the form: 

Qj = eT>L*Rito)/Z,j = l,...,K (5) 

where the partition function Z is the normalizing constant: 

Z=^e^.WW. (6) 
3=1 

The parameter vector 7 may be computed by finding a stationary point of the free energy 
function F: 

K        N 

7 = arg   min   F{1;r) = Te^^^R'^)-r) (7) 
71 ,—,lN T~Z 

3 = 1 

and the maximum entropy attained is 

5m,x = logF(7;r) (8) 
6 Perhaps the best known application is the discrete time binomial option pricing model. Textbook 

presentations can be found in, e.g. Huang and Litzenberger [pp.248-54][6] or Jarrow and Rudd [chap. 13] [7]. 
7 Linear independence means that no asset payoff Xi(u) can be written as a linear combination of the 

other N assets' payoffs. If this were not true, the return R,(ui) could also be produced by a portfolio of the 
other assets, and investors would find asset i to be redundant. 
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3.1. Isomorphism with Jaynes' Generalized Statistical Mechanics 

The canonical measure Q is the tool Jaynes [8] used to develop the Gibbsian statistical 
mechanics of systems subject to conservation laws 8. Each of the N no arbitrage constraints 
in (4) is identified with one of Jaynes' conservation laws. Because it is generally presumed 
that the financial analyst is studying a much smaller number of risky assets than is necessary 
to complete the market, N < K - 1, which is isomorphic to Jaynes' assumption that 
the number of conservation laws is less than the number of states. In the most common 
application of statistical mechanics, there is only N = 1 conservation law, where Äi(wj) is 
identified with the energy level of a system (e.g. a gas) in state j, and the riskless rate r is 
identified with the expected value of the energy [19, p.158]. But unlike Jaynes' analysis of 
the general case of N > 1 conservation laws, here the Q-expected value of each conserved 
quantity must equal the same constant, r. Financial counterparts of temperature, heat, 
work, and forces will later be identified with the MaxEnt solution and its comparative 
statics, and used to interpret financial data. 

3.2. An Example 

Of course the size of the rate of interest r, as well as other assets' returns, will depend on 
the period length chosen. To model this, we let T = 1 represent the total length of time 
over which we wish to model asset prices, and assume that asset trading may occur during 
all of the n periods of length At = 1/n within it. We assume that 

it'-i 
Ri(vj)   =   1 + inAt + J2 ^jio-iiVAi (9) 

r   =   1 + iAt 

where eji is element (j,l) of a K x K - 1 matrix e = (ei,.. .,en-i), whose columns 
form an orthonormal basis for the K - 1 dimensional linear space which is orthogonal 
to the K-vector of ones. Thus when state j occurs, the eji - e/(wj), / = 1,...,K - 1, 
additively affect all the risky assets' returns, through the coefficients in the matrix a with 
element an in row i and.column /. We assume that there is a uniform actual probability 
distribution of states, i.e. Wj = l/K, j = 1,...,K. It is then easy to show that the 
columns of e are uncorrelated random variables with zero mean and unit variance. The 
returns are contemporaneously correlated, and we assume that the symmetric matrix o~o~', 
which determines their covariances, is positive definite (and hence invertible). 

In the continuous time limit with the number of trading periods n —> oo, so the period 
length At = 1/n -* 0, the method of Hua He [4] proves that the process of net rates 
of return Ä; - 1 from (9) converges weakly to the continuous time, correlated geometric 
Brownian process, 

dP K~l 

—^   =   iadt+ £a«dW, (10) 

—    =   idt 

See also the textbooks of Tribus [19], Hobson [5] and Haken [3]. 



THERMOSTATICS IN FINANCIAL ECONOMICS 381 

for the i = 1,...,JV risky assets. Here, Wj denotes component / of a K - 1-dimensional 
standard Brownian motion W, m is a drift parameter for asset i, and t is the instantaneous 
riskless rate of interest. Thus, column e/ in (9) is used to approximate the increment dW[, 
and the instantaneous covariance matrix of returns is a&'. 

To obtain the canonical risk neutral probabilities, we must solve (7). Of course, the 
solution will depend on the number of trading periods n as well as on the matrix e whose 
columns model the Brownian shocks. To see what is likely to result when the number of 
trading periods n is large, we study the solution in the continuous time limit as n -»• oo. 
To do so, it is useful to multiply (7) by Xj = l/K and sum to produce the equivalent 
minimization 

7 = arg   min   Ev \eT,M^u)-r)} (11) 

and to note that, in this case where n is uniform, the canonical measure (5) may also be 
written 

Qj = T^-eEL **<n)/Z, j = 1,.. •, K (12) 

where the partition function Z is now the normalizing constant 9 

Z   =   Er, (13) 

Take a Taylor series expansion of (11) about the N risky assets' mean gross returns 
1 + m/n and take the logarithm to obtain the following equivalent minimization problem: 

N 
min   y>j(w " i)/n + \og[l + i'aa'i/2n + o(l/n)] . (14) 

For each n, minimization of (14) is equivalent to the minimization of n x (14). Doing so, 
the series expansion for ex identifies the second term to be 7W7/2 asn-+oo, yielding a 
quadratic minimization having the solution: 

um 7 = -(C7CT')
_1

X (15) 
n—*oo 

where x = (/Lti -A, ..., /ijv-i)'is the vector of the excess mean returns over the instantaneous 
riskless rate 1. 

By way of analogy to the thermodynamic limit employed in physics, the continuous 
time limit also provides sharp predictions, for calculations using it are independent of the 
matrix e used to model the random shocks. 

We now use (15) to develop a general asset pricing result relating the N risky asset 
returns to another asset's return R. If an asset having return J? is a portfolio of the N 
assets, then we know that R is a weighted average of the assets' returns, and that E§[R] - r. 

9For nonuniform state probabilities v, it turns out that (11) produces the parameter vector for the 
"exponentially twisted" measure (12) which minimizes the Kullback-Leibler Information Criterion (KLIC) 
"distance" D(Q | x) = ^Qjlog(Q>/xj) subject to (4). Thus, by adopting the KLIC to interpret our 
findings, rather than the Shannon Entropy, all our calculations using (11)-(13) are valid for the general case 

of nonuniform it. 
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But suppose it is not a portfolio of the assets, so that it is possible that £U[A] ^ r. It may 
be possible to discover additional assets, which when added to the N assets, will enable R to 
be written as a weighted average of the returns from the larger set. Adding the additional 
no arbitrage constraints to (4) and solving for the different canonical probabilities Q* would 
then permit us to investigate the consequences of EQ*[R] = r. 

To test for the importance of searching for this potentially larger set of assets, we 
derive a testable relationship among asset returns which follows by assuming that the 
arbitrage-free relationship holds only approximately, i.e. that £U[£] ss r. We interpret 
the approximate arbitrage-free relationship using the Bayesian, MaxEnt perspective. In 
the absence of explicit knowledge about which additional assets are needed (if any), one 
views Q as the Bayesian estimate of the actual, but unknown risk neutral probabilities 
(Q*) consistent with the larger set of assets 10. Under this interpretation, we are using 
estimated risk neutral probabilities rather than actual ones, so one can only expect that 
EQ[R] SS T, rather than the exact relationship. Substitute (12) and (13) and take logarithms 
to transform this into the equivalent statement log [Ev [R/rexp[J2{ 7;Ä;]]] « log[Z]. As 
before, substitute (9) and expand both sides in a Taylor series about the assets' mean 
returns, multiply both sides by n, and take the continuous time limit n ->■ oo to yield the 
foDowing result : 

Theorem 3..2 (Canonical Pricing Theory) Assume that only N asset returns with 
processes (9) are used to price all other assets. In the continuous time limit n -> oo, 

»R-L~-Y,1I
C0V

(
R

TRI)- (16) 
/ 

That is, MaxEnt predicts that an asset's mean excess return approximates a -7 = (era')'1 x- 
weighted sum of its covariances with the N risky assets. 

The "market price vector of risks" -7 is also the vector of risky asset portfolio weights 
in the canonical mean-variance efficient portfolio formed from the factors and the 
riskless asset. This is the mean-variance efficient portfolio which has standard deviation 
equal to the maximal Sharpe performance measure y/F = y/x'fao-')-1*. attained by the 
tangency portfolio of risky assets, and which has expected return H + i [6, p.76-7], [9, p.435]. 
Substitute (15) into (16) to obtain an approximate arbitrage pricing theory: 

fJ-R-t-^ßRX (17) 

where ßR = (cov(R, Rr),..., cov(R, R^aa')-1 

EXAMPLE: 

Suppose there are N = 3 risky assets, with drift vector /z = (.062, .146, .128)', and a 
riskless rate t = .05, so x = (.012, .096, .078)'. Suppose the positive definite covariance 
matrix 00' of the returns is: 

"Unlike the MaxEnt analysis in Grandy [2], we assume here that all investors agree about the actual state 
probabilities T(ü;_,)=1/K, j = 1,...,K. Grandy assumes that investors don't know these probabilities, and 
use MaxEnt to form subjective probabilities. Here, we use MaxEnt to estimate risk neutral probabilities, 
rather than actual state probabilities. 
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.0146   .0187   .0145 N 

aa'= |   .0187   .0854   .0104 
.0145   .0104   .0289 j 

used by Markowitz[p.l76] [12]. The weights in the canonical mean variance efficient portfolio 
are -7 = (CTCT')

_1
X = (-7.52124,2.07369,5.72635)'. Because £t--7; = -2788, the riskless 

asset's weight in the canonical portfolio is .7212 = 1 + X^7;, while the tangency portfolio 
of risky assets is --y/.2788. Suppose another asset's covariances with the factors are known 
to be .01, .02, and .015, respectively. Then, ßR = (.0123909,-176775,.4492) and (16) 
predicts that the asset's mean excess return will be close to -(.01, .02, .015)7 = -0522, or 
/3fi(.012,.096,.078)'from(17). 

Note that the canonical pricing theory does not presume that there are N assets which 
make (16) valid for other assets. Rather, it is a test of "factorhood", by testing restrictions 
on other assets' excess returns and covariances with the N assets'. If the priced asset is 
in fact a portfolio of the N assets, a simple computation shows that ßn just equals the 
vector of portfolio weights, so the relation is exact. If it isn't a portfolio of the factors, the 
multi-beta relation (17) is a Bayesian, MaxEnt inference obtained solely from the returns 
data on the N assets with returns process (9) and the hypothesis of no arbitrage. As in 
other applications of MaxEnt, failure of the relationship to explain asset returns of interest 
indicates that other contraints are needed in (4), i.e. that other assets are required to 
"span" it. 

4.    The Thermostatics of Financial Market Integration 

The previous section illustrated one use of the canonical measure: expectations taken with 
respect to it can be used to predict pricing relationships among a group of assets. And 
in [18], the celebrated Black-Scholes model for predicting the price of a stock option was 
rederived using canonical expectations. So one ubiquitous procedure in Gibbsian statisti- 
cal mechanics is useful in conventional financial economics. We now begin to explore the 
more provocative prospect that thermostatic reasoning may lead to a predictive theory 
of the effects of financial market integration. Consider two distinct groups of assets, Ra 

and R6, which originally were not linked by the absence of arbitrage opportunities. For 
example, the two groups might be used to represent assets in separate countries, in which 
currency controls and/or other regulations impeded the ability of investors to realize inter- 
national arbitrage opportunities. Solnick [15, pp.iii-iv] noted that international integration 
of financial markets proceeded rapidly in the 1980's, spurred by recognition of the need 
for international diversification, by deregulation, and by technological innovation in trad- 
ing technologies. The 1990's will bring further integration of formerly segmented markets. 
What effects will international integration have on the financial markets? 

The conceptual framework explored here is to make these predictions by the same 
method used to predict the outcome of bringing two formerly isolated physical systems into 
thermal contact. The two countries' "isolated" financial systems could formerly sustain 
two separate riskless rates of interest, ra and rb. But once their markets are integrated, 
i.e. linked by the absence of international arbitrage opportunities, this can no longer occur. 



384 MICHAEL STUTZER 

Investors would rush to borrow at the lower of the two rates, taken without loss of generality 
to be country b, causing it to rise by Ar6, and would use the loans to invest at the higher rate 
in country a, causing its riskless rate to fall by Ara, until the two rates were equilibrated 
at a common value r. Thus, unlike conventional thermostatics, it is not the sum of the 
two subsystems' internal (average) energies which need be conserved [19, p.118], but rather 
the right hand side of the "conservation constraints" (4) (i.e. the riskless interest rate) for 
each subsystem must adjust to attain a common value. Furthermore, changing investment 
flows may result in changes to the parameters of the two countries' price processes, i.e. 
their drift vectors fia and fib and volatility matrices aa and ab. In fact, adjustment of the 
riskless rates and the absence of arbitrage may necessitate some parametric change, for if all 
these parameters remained the same following integration, it is possible that intra-country 
arbitrage opportunities would arise with the new riskless rate r that were absent at the old 
rates ra and rb. Investor's attempts to realize the arbitrage profits would radically change 
demands for risky assets involved in the arbitrage strategies, changing their drift and/or 
volatility parameters. Such a temporary arbitrage opportunity would be analogous to a type 
of phase transition, associated with parameters for which the constraints (4) fail to have a 
solution. 

The assumption that parameters change in such a way as to maintain the absence 
of arbitrage opportunities is analogous to the "quasi-static" assumption in thermostatics. 
Following Jaynes [8], we let a denote a parameter which affects the riskless rates (say, the 
flow of investment), and which possibly also affects the risky asset returns, now written 
Ri{uj-,a). 

The highest conceivable value of 5max in (3) would be log K, attained by the uniform 
canonical measure Qj = 1/Ä' = Xj. But from (4), that would require £?„•[£,-] = r, i = 
1,...N. That is, all assets' actual expected returns would have to be the riskless rate 
of interest. Of course, this is highly unlikely. Financial economists attribute this to the 
influence of risk, calling the nonzero difference E^Ri] - r the risk premium for asset i. So 
the analog of "heat death" is a "risk neutral" world with no risk premia. The degree of risk, 
denoted Anim may be measured by a decrease of entropy from its maximum possible value. 
Because of our assumption that the actual state probabilities Xj = 1/K, straightforward 
algebra shows that the degree of risk jDmin is just the Kullback-Leibler Information Cri- 
teria (KLIC) "distance " between the canonical risk neutral measure and the actual state 
probability measure. 

Anin   =   log K - 5max 

=   D(Q)x) 
K 

=   ^Qilog^/x,) (18) 
j=i 

Direct substitution of (12) and (13) into (18) verifies that 

Anin = -log A [eE^Wto«)-)] (19) 
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Because the degree of risk Anin is a scalar index of the vector of risk premia n, a theory 
of its temporal change would be useful. Following the Jaynesian treatment of thermostatics, 
we decompose changes in the countries' values of I^n into "thermal" and "mechanical" 
parts. Applying the envelope theorem to (19) yields the following decomposition of the 
changes in the countries' degrees of risk: 

dD^n   =    E7.-0(dr0-25<3.[d£f]) 
i 

«"tin     =     ET.'(^-^4^]). (20) 
i 

In the "generalized statistical mechanics" of Jaynes [8, p.627], equation (20) decomposes 
the changes of countries' degrees of risk into the sum of N terms, term i being the product of 
the "integrating factor" 7; and the "ith type of heat". Each expectational term represents 
a "generalized force" contributing to the summed "work effects" [19, chap. 6]. 

After financial market integration, it is possible that only the riskless rates of interest will 
change, leaving other asset price process parameters, e.g. the drift and volatility matrices, 
unchanged. This corresponds to the special case of strictly "thermal interaction". From 
(20) we then have 

dDa
mhl   =   draY,li 

i 

dVL»    =    dr^li- (21) 
i 

Thus, when the interaction is strictly thermal, Ylili 1S the slope of its (r,-Dmjn) curve. 
This is analogous to the relationship between internal energy and thermostatic entropy, so 
it is natural to think of the slope J2ili as ^e "conjugate" [8] concept to temperature in 
thermostatics. 

It is easy to show that 5max is concave in the riskless rate, so that the curves (ra, D£,in) 
and (r6, I^in) must be convex in the plane, each having a global minimum at a riskless 
rate where its slope is zero 12. To test this prediction requires empirical estimates of the 
curves. 

In regimes of constant parameters, it is possible to use vector time series of returns to 
empirically estimate 7° and 76 for given values of ra and r6, producing estimates of D^in 

and -D^ün- To do so, one first uses a law of large of numbers (i.e.ergodicity) to identify the 
phase average in (19) with the time average. FormaUy, 

ET [cE.-*(ft(«;°)-')] = ^If^E.-WMOioO-O (22) 

Upon substituting a time series of returns of length T into the right hand side of (22), 
the Newton-Raphson method can be used to numerically minimize it.  This produces an 

11 See [16] or [17] for additional reasons to interpret Dmm as a preference-free index of the influence of 
risk. 

12This property is also true when ■K is not uniform. 
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estimate of 7. Because a finite length time series is used, the estimate is subject to sampling 
error, which can be quantified as well [17]. Using monthly indices of U.S. stock and long term 
government bond returns, Figure 1 reports the estimated (r, Dmin) curve for the country over 
a reasonably long period. Note that the predicted strict convexity is confirmed empirically, 
with a global minimum occuring when YA=\ 7; = 0, at a monthly gross real interest rate 
around 1.002 (i.e. an effective annual net real rate of 2.4%)13. 

Because the (r, Dmin) curve is strictly convex, we may replace the differential relations 
(21) with inequalities valid for discrete changes in interest rates, and add to obtain the 
discrete change in the sum of the two countries' degrees of risk: 

A(^ , + ^n)>Ar^7r + Ar^7J
6 (23) 
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Figure 1: Convexity of Dmm 

U.S. Stocks and Bonds: 1959:7-1986:12 
13In [16], this curve was used to provide a diagnostic aid for interpreting estimated consumption-based 

asset pricing models. 
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The financial interpretation of (23) is straightforward. We first interpret the left hand 
side of (23). To do so, we additionally assume that e^'7^ is uncorrelated with e^"1^'', 
so that the expectation in (19) for the combined markets after integration factors into the 
product of the country-specific expectations: 14 

Ev [eEi'vf(Rf(^)-0+E,^(^(^)-'-)] = ET re£i'rf(Äf('«';«)-'-)| Ev [cI>?(Ä?(«;«)-r)l . 

(24) 
By (19), this assumption insures that A™ = D^n + Db^n (or Smax = S£ax + Sb

max) 
after the financial markets are integrated. So this assumption is the financial analog of the 
"weak interaction", or "additivity of entropy" postulate in thermostatics. Thus, the sum 
of the two countries' degrees of risk at the common, post-integration riskless rate is in fact 
the integrated market's degree of risk. The right hand side of (23) is a lower bound on the 
sum of the countries' separate degrees of risk. Because both countries must have a common 
interest rate r after integration, the discrete changes in the countries' interest rates must 
satisfy the following equation: 

r = ra + Ara = rb + Ar6. (25) 

Solving (25) for Ar6 and substituting in (23) yields 

A(££un + DLn) >^ra(J2 iia + E #) + E #(ra ~ rb) (26) 
i i i 

By way of analogy to the Second Law of thermostatics, one might conjecture that the 
total entropy should increase, i.e. that the total degree of risk will decrease, so the left 
hand side of (26) will be less than zero. Unlike the Second Law of thermostatics, there 
is no obvious theoretical reason why this should be true in our context. But it is not 
implausible either, and would have to be verified empirically. Adopting this assumption, 
(26) becomes the following testable restriction on the change in a country's interest rate 
following integration: 

Ar° fe«fc8 + E7*) < E7«V ~ ra) (27) 
\   i i / i 

Thus, if the asset price process parameters remain invariant following integration, em- 
pirical validation of the analog of the Second Law would enable a prediction (27) about 
the size of the change in a countries' riskless rate following integration. This is a testable 
prediction, requiring estimates of the countries' pre-integration interest rates and "tem- 
pers" (obtained by the aforementioned time series methods). It is hard to imagine that 
a sharper and/or more easily tested prediction about Ara would arise from a structural 
general equilibrium model of market integration. 

The general relationship incorporating "mechanical interaction", i.e. changes in asset 
price processes induced by financial market integration, is similarly found from (20) to be: 

14 Alternatively, the partition function for the system factors into the product of the separate countries' 
partition functions. 
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diD^ + DL*)   =   dr°Y;iia + drbY;ii 
i i 

+   £7?%Ä?] + £7t%[<^] (28) 
i i 

The first term in (28) is the effect just analyzed (i.e."thermal" interaction). The second 
term in (28) corresponds to the "generalized forces" associated with the flux of investment. 
The expectational terms play a role like pressure does in thermostatics, the flow of invest- 
ment is hke a change in volume 15, and the product of the two is a "work effect". Once 
again, it is not implausible that the left hand side of (28) will be negative. International 
diversification of assets which would accompany financial market integration might very 
well result in smaller risk premia than existed in the segmented markets, thereby lowering 
the degree of risk in one or both countries. In thermostatics, relations like (28) are very 
useful, because they lead to results which were known and used long before their micro 
foundations were provided by statistical mechanics. But in much of economics, widely ac- 
cepted and used macro relations of this nature are few and far in between, in part because of 
the inability to do controlled experiments. While volume is an experimentally controllable 
quantity in repeatable experiments, the flow of investment induced by financial integration 
is not controllable. Furthermore, observed instances of financial market integration are not 
as clearly demarcated as, say, a supernova. And it is not as simple to compare one instance 
of financial market integration to another as it is to compare repeatable experiments dif- 
fering by one controlled variable. Econometric methods are a poor substitute for rigorous 
experimental control of parameters. 

5.     Conclusions 

The absence of arbitrage opportunities in a popular model of financial economics is equiva- 
lent to a set of linear constraints on probability measures. Using MaxEnt to select a measure 
from this set produces Gibbs' canonical distribution. Computation of expectations taken 
with respect to the canonical distribution - one of the hallmarks of Gibbsian statistical 
mechanics - provides an alternative means of deriving some asset pricing formulae. 

The connection between Gibbs' canonical distribution and arbitrage-free asset pricing 
permits us to explore financial uses of thermostatics, which is based on a parametric sensi- 
tivity analysis of the MaxEnt problem. The first step was taken toward a thermostatic-like 
theory of effects caused by the integration of once segmented international financial markets. 
A lack of adequate empirical evidence helped ensure that this wasn't an earth-shaking step. 

15Much of thermostatics is based on the analysis of changes in "extensive parameters'. An extensive 
parameter is one which adds to a constant across the two subsystems, thereby playing a role analogous 
to internal energy or volume in thermostatics. Using them, one may develop differential relations linking 
changes in subsystem entropy (or degree of risk) to "forces and fluxes" associated with extensive parameters, 
as in Haken [sec.3.5][3]. Because there is no guarantee that Ar" + Arb = 0, the riskless rate itself cannot 
be treated as an extensive parameter. But a conceivable extensive parameter would be the total investment 
in the two countries' financial assets. Under the plausible (but not inevitable!) assumption that total 
investment will remain unchanged after financial market integration, any changes in riskless rates and/or 
other asset returns will be associated with a "flux" of investment between the two countries. 
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Still, the method has the potential to generate sharp, testable predictions about interest 
rate and asset price process movements following integration. 

We thus see that the two hallmarks of generalized statistical mechanics, i.e. expec- 
tations taken with respect to Gibbs' canonical measure and the parametric sensitivity of 
the MaxEnt problem, both provide useful insights into important problems in financial 
economics. This extends Gibbs' influence on economic theory beyond the fundamental 
contributions related to Samuelsons' (and others' subsequent) stress on the solution and 
parametric sensitivity of general constrained optimization problems. 

Economic theorists' current understanding of its mainstream conceptual framework has 
taken over 200 years. The centenary of the publication of Gibbs' Elementary Principles of 
Statistical Mechanics is less than a decade away. Perhaps future research will bring MaxEnt 
into the mainstream economic theorists' liturgy by its bicentennial. 
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ABSTRACT. There has been much debate on whether Bayesian probabilistic analysis of legal 
disputes can improve court decision-making. In this paper we ask what Bayesians can learn from 
problems faced by the courts. 

Though debate continues, the Bayesian approach is clearly right for analysing those clearly de- 
finable and quantifiable problems which arise in forensic science. When we attempt to generalise and 
apply these techniques to other forms of evidence some fundamental difficulties arise. Typically there 
are two responses. The statisticians respond by redefining the question so that it can be answered 
using orthodox frequentist techniques. Alternatively, some lawyers respond that the evidence should 
be treated 'holistically'. The problems are difficult and are general to real life decision-making but 
only Bayesian probability theory offers an approach for analysing and eventually overcoming them. 

1. Introduction 

There is vigorous debate and substantial literature on the use of Bayesian methods and 
techniques such as inference charts to analyse evidential problems in court cases. This 
movement is commonly termed the New Evidence Scholarship as descibed by Eggleston 
(1983), Tillers and Green (1988) and Watson (1991). Most of this literature is written 
on the assumption, at least by those arguing in favour of Bayesian methods, that the 
application of well established techniques will inevitably improve court decision-making. 
Others argue that practical courtroom problems are much too difficult ever to be captured 
by analytical techniques. 

There has been less thought about whether we can improve and develop Bayesian meth- 
ods using lessons learned from analysing problems which, in size and complexity, usually 
dwarf the problems used to expound Bayesian methods. Here we consider a few points that 
have arisen from our attempts to analyse legal problems from the Bayesian view. 

2. Scientific evidence 

Even opponents of the general applicability of probabilistic methods in legal problems will 
usually agree that forensic scientific evidence can often be properly analysed and presented 
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in this way. Despite this general approval there are vigorous arguments within the forensic 
science community between the proponents of orthodox and Bayesian methods. 

The question the court must answer is "how much does the evidence presented tend to 
prove or disprove the defendant's liability?" In our view this is best answered by the value 
of the likelihood ratio of the evidence for two competing positive and specific hypotheses 
(Vignaux and Robertson, 1993). Currently prevailing orthodox methods, in contrast, an- 
swer pre-data questions such as "what is the probability of obtaining a 'match' by chance 
using the procedure I am about to use?" 

Orthodox statistical techniques may have survived for so long because in one special 
case they give the same answer as the Bayesian techniques. This special case is when: 

1. The characteristic concerned is either present or absent (i.e. the samples either 'match' 
or do not 'match'). 

2. A single mark is being examined, e.g. only one bloodstain at the scene of the crime is to 
be matched or there is only one group of glass fragments on the accused's clothing. 

3. The population from which any frequency is derived is homogeneous. This means that 
if we are considering the human population it must be in Hardy-Weinberg equilibrium, 
ie, randomly mating. We must not have sub-populations where the distribution of the 
characteristic differs from the population as a whole. 

4. Only one comparison is made (either between the accused and a mark at the crime scene 
or between the crime scene and a mark on the accused), we are not screening large number 
of suspects or searching through databases for a match. 

Suppose a single bloodstain at the scene of a crime is analysed by conventional blood 
typing methods and found to have a combination of characteristics shared by only 1 in 1000 
of the population. The accused, after arrest, is found to share these characteristics. Assume 
there is no other evidence about the perpetrator. The Bayesian report would state that the 
blood evidence was 1000 times more probable if the accused were the perpetrator than if a 
'randomly selected' member-of the population were. The orthodox statistical report would 
be that the probability of a 'match by chance' is 1 in 1000. In this case, then, the jury 
would probably see little difference in meaning between the two reports. 

If any of these conditions is violated the orthodox techniques produce a wrong answer. 
Firstly, where the characteristic is continuously variable (like glass refractive index or DNA 
band position) we meet the problems inherent in significance testing. A very early paper 
by Lindley (1977) pointed out the consequences of this "fall off a cliff" problem but most 
scientists, under the influence of orthodox statistics teaching, failed to change their practices 
and the courts are used to receiving evidence in this form. The introduction of DNA 
evidence makes the problem more acute. DNA bands separated by 2.99 standard deviations 
(sd) may be 'declared a match' while bands separated by 3.01 sd are considered 'not to 
match'. Authorities disagree on appropriate 'match criteria' and argument has become 
diverted into this question and into whether, as in the famous Castro case (1989), the 
chosen arbitrary criteria have been adhered to. 

Secondly, where more than one mark is found the orthodox techniques gives the same 
answer regardless of which mark the accused matches even when the characteristics of one 



LESSONS FROM THE NEW EVIDENCE SCHOLARSHIP 393 

mark are common and the others rare. Evett (1987) showed that the value for the Likelihood 
Ratio where there are n marks (such as n different bloodstains) is l/nf where / is the 
frequency of the characteristic shared by the accused. 

Thirdly, orthodox techniques lead to considering the frequency of the accused's charac- 
teristics within his sub-group of the population whereas the correct alternative hypothesis, 
assuming no other information, is that the perpetrator was some unknown person. As 
Walsh, Buckleton and Evett (1991) pointed out, the relevant sub-population is correctly 
defined by what is known of the perpetrator, not the accused. This point has generated 
most of the misunderstanding and argument about the value of DNA evidence (Lewon- 
tin and Hartl, 1991). It is often argued that, as the accused comes from some peculiar 
sub-population, the evidence is of questionable value if there is no database for that sub- 
population. This would arise, for example, in New Zealand if the accused is from a small 
Pacific island population such as Niue and the database contains no samples from that sub- 
group. This argument ignores two matters: (a) the correct alternative hypothesis usually 
relates to a much larger population and (b) evidence, if it exists, identifying the perpetrator 
as a member of a small sub-group also affects the prior probability that should be used. 
This can easily be handled in the Bayesian framework. 

Fourthly where a large number of people are screened or a database is searched the 
probability of finding a 'match by chance' is obviously increased. Orthodox techniques 
therefore mandate that this is found (approximately for small frequencies) by multiplying 
the proportion of the characteristic in the population by the number of comparisons carried 
out. Logical analysis shows that the value of the evidence is not in fact affected by databases 
size if the whole database is searched. A characteristic with a frequency of 0.001 yields a 
likelihood ratio of 1,000 however many comparisons are carried out. 

There are two points which need to be made about databases. First we may be using 
the database to assess the frequency of a characteristic about which we have no initial data 
such as that of facial tattoos. In this case for any given number of 'matches' the value of 
the evidence actually increases with the size of the database, the extreme example being 
where only one 'match' is found in a database of the entire population. The idea that to an 
orthodox statistician an increase in the size of a database makes evidence weaker while to a 
Bayesian it makes the evidence stronger starkly illustrates the difference between pre-data 
and post-data approaches. 

Again, where a database has been screened, the prior odds and the strength of the case 
as a whole need to be carefully examined. We suggest that the prior odds should be 1: 
the size of the population from which the database is drawn. Thus if the database is the 
criminal records drawn from the entire population of the USA the prior odds should be 1:250 
million. Detection of a matching characteristic with a frequency of 1 in one million will 
therefore yield posterior odds of 1:250 (ie 250 to 1 that the accused is not the perpetrator). 
The Bayesian scientist must ensure that the jurors do not invert the conditional here; but 
that should be done by careful explanation, not by doctoring the evidence. 

Application of probability theory forces us to identify the right questions and to realise 
that we can only produce a likelihood ratio for competing hypotheses. If the alternative 
hypothesis is altered the value of the evidence will be affected. The dependence of the 
value of the evidence on all the circumstances is dramatically illustrated by the example of 
'associative evidence' which can reduce the probability that the accused was the perpetrator. 
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Evett (1987 showed that this may occur where n bloodstains at the scene of a crime are 
examined and the characteristics of the stain which the accused matches have a frequency 
greater than 1/n. 

Presentation of the evidence in likelihood ratio form leads to two difficulties that do not 
appear in the orthodox approach: 

1. If we ask a question like "What are the probabilities this accused would have this glass 
on him if he were or alternatively were not the person who broke the window?" we have 
to assess the probability that, given everything we know about the incident, glass would 
be transferred from the window to the person who broke it (the transfer probability) and 
remain until the forensic scientist observed it (persistence). Before the use of Bayesian 
techniques for forensic work neither these probabilities of transfer and persistence nor the 
question of what proportion of people generally have glass on their clothing was addressed 
(Abadom, 1983, Evett and Buckleton, 1990, and Evett, 1986). We have identified a 
factor which not only affects the value of the evidence but also increases the complexity 
of the problem. Thus even if we limit ourselves to analysing forensic scientific evidence a 
Bayesian approach may increase complexity. However this is a minor problem compared 
with the question to which this analysis ineluctably leads: 

2. If evidence is to be presented as a likelihood ratio which is to be applied to prior odds 
where do these prior odds come from? In other words, is the other evidence in the case 
susceptible to the same analysis? 

3.    Evidence Generally 

When we try to apply Bayesian methods to the analysis of evidence other than forensic 
evidence we meet more severe problems. First there is the complexity of the problems and 
the interactions between different pieces of evidence and inferences. Diagrams have been 
suggested for dealing with this but such techniques seem to be unable to accommodate 
the richness of courtroom problems. Then there is the need to deal explicitly with the 
differences in background information available to different players in the courtroom. 
3.1.    Diagrams of Evidence 

Diagrammatic methods have been proposed in the past for analysing the structure of com- 
plex legal problems by Wigmore(1913) and presented by Vignaux and Robertson (1993a,c). 
Such diagrams enable the human mind to grapple with complex problems by allowing one 
to examine the problem one part at a time while at the same time documenting the connec- 
tions between the parts. Bayes networks (or belief nets or influence diagrams), as described 
in Oliver and Smith (1990), set out in an acyclic network of nodes connected by directed 
arcs the propositions (hypotheses) to be proved and the evidence, in the form of proposi- 
tions, on which we expect the proof to be based. These form the nodes of the network; 
each node represents all the possible values that a proposition can have. 

An arc between two nodes represent conditional dependence between those nodes; lack 
of an arc represents the assumption of conditional independence between them. 

Having defined the problem, identified the influences, and drawn the diagram, condi- 
tional probability tables are established for each proposition (node). The first version of 
the diagram represents the problem prior to the receipt of evidence, taking into account 
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all the possible values that the evidence could take. Evidence is then gathered to give the 
values of some of the lower-level propositions. These values propagate through the network 
to establish probabilities for the various propositions conditional on the given evidence. 

Standard probability calculations are represented on the network by changing the direc- 
tions of the arcs (corresponding to the Bayes Rule calculation of P(H\EI) from P{E\HI)) 
and updating the conditional probability tables. Additional links appear between the dif- 
ferent pieces of evidence. These links correspond to the predictability of unknown evidence 
from known evidence. The diagram quickly becomes very dense. 

Though such a graphical presentation can be helpful it has a number of limitations which 
mean that it still does not capture the messy and dynamic nature of real-life inferential 
problems. 

First, the standard exposition of Bayes networks assumes a defined problem, a prede- 
termined set of influences, and a process clearly divisible into problem definition and data 
gathering. But knowledge of the problem is required in order to identify relevant influ- 
ences and as one acquires more knowledge one may discover new effects which may have 
to be investigated. The stages of the process are thus more interactive than the model can 
describe. 

Second, a pre-condition for the admissibility of any evidence into court is that it is 
"relevant". Relevance is defined in the US Federal Rules of Evidence, Rule 401: ' "Relevant 
evidence" means evidence having any tendency to make the existence of any fact that is 
of consequence to the determination of the action more probable or less probable than it 
would be without the evidence.' 

Leaving aside the question of whether the existence of facts can be made more probable 
by evidence, this definition clearly implies that proposition B is relevant to proposition 
A whenever the likelihood ratio is other than 1. However, for any A and B it is highly 
improbable that the likelihood ratio is precisely 1. In other words, any proposition is 
potentially relevant to any other. This means that there is no clear legal limit to what 
should be included in any Bayes network nor a clear distinction between nodes that should 
be connected by arcs and those that are not. 

Another Federal Rule, Number 403, states: "Although relevant, evidence may be ex- 
cluded if its probative value is substantially outweighed by the danger of unfair prejudice, 
confusion of the issues, or misleading the jury, or by considerations of undue delay, waste 
of time or needless presentation of cumulative evidence." 

There is a cost to introducing any item of evidence and so in every case the application 
of Rule 403 involves balancing probative value (ie how much the likelihood ratio differs from 
1) against the increasing complexity. This is also the judgement that has to be made in 
deciding whether to connect two nodes by an arc. Each decision to draw or not to draw an 
arc is a matter of balance and judgement, in contrast to the standard view that propositions 
are either dependent or conditionally independent. 

The same difficulty arises in defining the boundary of the diagram. Why are some mat- 
ters included and others left out? Some matters, such as the law of gravity, are so obvious 
and pervasive, that they are automatically included in every assessment and therefore do 
not appear as a node. Other matters we may know, because of our background knowledge, 
will have no influence. For example, until recently it was not possible to obtain a DNA 
analysis from cut hair. An investigator who knew this would not have included a node for 
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a DNA match in a Bayes network of the problem, indeed would not even have collected the 
hair sample. In other instances a factor's influence may be so tenuous so as not to justify 
consideration. In the end judgement has to be made about what factors to include in a 
Bayes net and that judgement will depend on knowledge of the world and about the prob- 
lem. This further emphasises that problem definition and data gathering are not distinct 
phases. 

The parallel legal concept is "judicial notice". Matters such as "Mr Clinton is currently 
the President of the USA" may be "judicially noticed" if it is important in the case. This 
is conventionally expressed as an exception to the rule that cases are decided only on the 
evidence presented in court. Seen in a Bayesian light, however, judicial notice is not an 
exception but represents the grey area between those matters which must clearly appear in 
the Bayes network and the very large body of background knowledge (that will be absorbed 
into I). 

3.2.   Different Background Information 

In the odds form, Bayes rule tells us that, given evidence E\ 

P{E\EXJ) _P{H\I)P{El\H,I) 
P{H\E„I)      P(H\I)P{E^\H,iy {l) 

where H is the hypothesis to be proved and / is our background knowledge. It would then 
conventionally be said that the posterior odds in (1) provide the prior odds when a new 
piece of evidence, E2 is considered. The effect of the new piece of evidence would then be 
shown as: 

P(H\E1,E2,I) = P(H\EUI) P{E2\H,EUI) 
P(H\E1,E2,I)     P{H\EUI) P(E2\H,EUI) {Z) 

We discuss two problems that arise from this exposition. 
The rule is obviously only formally valid if the J, represents the same body of knowledge 

wherever it appears. If the same piece of evidence is examined against different background 
knowledge, different conclusions may result (Jaynes, draft, Chapter 5). 

However, where a forensic scientist expresses a likelihood ratio for an item of evidence 
it will be informed by the scientist's own /. the prior odds being determined by the jury 
will be informed by the jury's own /. This leads to a number of observations. 

1. Each juror's I will also be different. The jury may, inter alia, be a device for ensuring 
that decisions are taken against a background of a number of different Is in the hope 
that distortions in perception are evened out. During jury vetting procedures in the USA 
parties attempt to obtain a jury whose composite I is likely to lead to a favourable result. 
In England and New Zealand such procedures are not permitted, the theory being that 
the jury should be representative of the population. 

2. Strategies are necessary to make the value of evidence insensitive to differences in the 
/. Chief among these is the Opinion Evidence Rule. Whilst a strict distinction between 
fact and opinion cannot be sustained, the principle is that witnesses should only testify 
as to what they have perceived with one of the five senses. Thus ordinary witnesses must 
not give their opinions (their inferences). They are allowed only to give observations. 
Inference should, so far as possible, be conducted only by the jury.   There is however 
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an irreducible element of interpretation in all evidence so the problem of different 7s for 
different items of evidence provided by different witnesses cannot be avoided; it can only 
be minimised. 

This problem will arise whenever evidence from different sources is considered. The 
Opinion Evidence Rule tells us that, as far as possible, one should go back to "raw" 
data. This enables one to interpret the data not only in the light of the hypotheses 
in which one is interested but also one's own consistent 7. The techniques proposed 
by Garrett and Fisher(1992) in dealing with evidence from different sources achieve the 
same object. Even if the different investigators were all Bayesians and provided likelihood 
ratios, combination of their results still requires resort to the original data to eliminate 
the effect of different 7s. 

3. This point will be missed if one is not rigorous about including the 7s in the notation, a 
point made frequently by Jaynes (draft, Chapter 15). 

4.    Responses 

Attempts to analyse evidential problems in court in Bayesian fashion are frequently met 
with the objection that these methods do not capture human thought processes even when 
those processes are rational. We have previously shown (Vignaux and Robertson, 1993b) 
that many of these objections are based on a purely frequentist model of probability. How- 
ever it may be true that some such objections identify ways in which Bayesian techniques, 
as conventionally explained, are not as helpful as they might be. Certainly, Bayesian analy- 
sis of legal problems is a complex and subtle process. There have been two stock responses 
to this complexity. 

The first is that of the orthodox statistician, to redefine the problem so that it can be 
tackled by orthodox statistical techniques. This has two important drawbacks: first we do 
not advance our understanding of the problems of inference since we simply define them 
away; secondly, we saw in dealing with the forensic scientific evidence that the questions 
addressed by this approach are actually quite different from the questions the court wants 
to answer. This means, as Pratt (1961) puts it, "the problems it solves, however precisely 
it may solve them, are not even simplified theoretical counterparts of the real problems to 
which it is applied". 

The lawyer's response has been to assert that jurors can or should assess the evidence 
"holistically" using some non-quantitative technique. There are a number of problems to 
this approach. First it is inaccessible. It is unclear how evidence is to be assessed holistically. 
It is even unclear what it means. Secondly, as Jaynes demonstrates (draft, Appendix A), any 
system of analysis must either be reducible to quantitative form or violate the requirements 
of rationality. Thirdly "it is hard to imagine how we can imbibe the evidence we 'see' 
without performing some sort of mental analysis, which, by definition, seems to involve 
some sort of dissection."(Tillers,1989). 

Neither of the above approaches enables us to proceed. We must recognise as Fried- 
man(1992) said that "the world is a complex place but that is not the fault of Bayesian 
analysis". At their present stage of development Bayesian techniques are based upon models 
which, while constituting a vast improvement on those used in classical statistical analysis, 
still do not capture the complexity of the reasoning process. Thus we cannot pretend today 
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to have all the answers to every objection raised to probabilistic analysis of legal decisions 
but the only hope of analysing and eventually overcoming these problems is offered by 
Bayesian probability theory. 
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ABSTRACT. We present a new way to understand and characterize the choice of scoring rule (probability 
loss function) for evaluating the performance of a supplier of probabilistic predictions after the outcomes 
(true classes) are known. The ultimate value of a prediction (estimate) lies in the actual utility (loss reduction) 
accruing to one who uses this information to make some decision(s). Often we cannot specify with certainty 
that the prediction will be used in a particular decision problem, characterized by a particular loss matrix 
(indexed by outcome and decision), and thus having a particular decision threshold. Instead, we consider the 
more general case of a distribution over such matrices. The proposed scoring rule is the expectation, with 
respect to this distribution, of the loss that is actually incurred when following the decision recommendation, 
the latter being the decision that would be considered optimal (/we were to assume the predicted probabilities. 
Logarithmic and quadratic scoring rules arise from specific examples of these distributions, and even common 
single-threshold measures such as the ordinary misclassification score obtain from degenerate special cases. 

1.   Introduction 

1.1. Purpose 

One of two outcomes (events or classes) will occur in an observation or experiment. We consider 
a forecaster providing an assessment, i.e. estimate, opinion, or prediction, of the probability that 
one of them (say outcome 1) will occur. We use the term forecaster broadly: this could be a human 
expert, maximum-likelihood fit of some parametric model, classifier / learning machine, or Bayesian 
inference procedure given a particular prior, to name some possibilities. We are not concerned here 
with how this prediction was or should have been generated from some set of available information 
(such as training sample data and prior knowledge), but rather with the question of what figure of 
merit, i.e. scoring rule or probability loss function, we should assign to the (probabilistic) prediction 
in hindsight once the true outcome is known. 

1.2. Probability Loss Function 

As an example, consider a weather forecaster who states that "the probability of rain today is p", 
and of course, perhaps implicitly, "the probability of no rain today is (1 - p)". 

We wish to choose a function L in order to assign a score to today's prediction by the forecaster 
as L(i, p), where i is the actual outcome: 0 for no rain or 1 for rain. Examples of such a function 
include the logarithmic loss L(i, p) = —i log(p) - [1 - i] log(l — p) [6], the quadratic loss (squared 
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error) L(i,p) = [i- p]2 [3,15, 5], and of course the binary misclassification loss, which is zero or 
one depending merely on whether p is on the appropriate side of \. 

1.3. Importance of the Probability Loss Function 

To place this problem into a particular practical setting for concreteness, suppose that some user of 
weather forecasts wishes to hire one forecasting consultant (or purchase one computer-based weather 
forecasting system) from among several available. The user has access to the forecasters' respective 
predictions and the true weather every day for the past year, and wishes to decide which one to hire 
(or buy) based on performance on this set of test data1. The relevant measure of performance is the 
expected benefit (i.e. utility) that would have accrued to the user during the test period if he had 
relied entirely on a given forecaster's predictions. 

Then the user might hire the forecaster providing the best performance (after subtracting off the 
consulting fee each charges, if these differ). 

We consider the predictions of a single forecaster. Since (expected) utilities are additive, it 
suffices to consider each test point (this forecaster's prediction and the actual outcome, for a single 
day) separately, and then sum these later. Thus, we are back to the problem of choosing a loss 
function for a single probability prediction, but now with the idea that it should perhaps represent 
the actual loss to the user of a prediction p when the ith outcome occurs. 

1.4. Overview of Paper 

Section 2. explains how a probability prediction can be viewed as a mapping from possible decision 
problems the user may face, each characterized by a decision loss (utility or regret) matrix, to 
corresponding decision recommendations. For any one such decision problem, the loss actually 
incurred after making the recommended decision defines the quality of the probability prediction. 
Then in Section 3. we consider the case in which we might use the probability prediction in any of a 
continuum of decision problems, described by a distribution of decision loss matrices. We show that 
the recommendation loss approach to scoring or loss functions can be generalized by using as our 
scoring function the expected recommendation loss (ERL), where the expectation is over (only) the 
decision loss matrix distribution. We explain how the commonly used scoring functions mentioned 
above arise in this recommendation loss approach. Table 1 summarizes the quantities and notation 
used in this paper. 

Section 4. briefly discusses some of the literature on probability loss functions based on truth- 
or honesty-rewarding properties, and relates this to the ERL results of the present paper. 

2.    Decision, Prediction, and Recommendation 

A decision problem concerns the choice of a course of action having real-world consequences 
(costs) that depend on both the action (decision) and an outcome event (true class). In the case of 
weather, examples would include deciding whether to water the lawn, bring an umbrella, or cancel 
some outdoor social event. The "cost" of cancelling a social event unnecessarily (vs. having the 
event rained on) may be quite different from the "cost" of the lawn being neither watered nor rained 
on (vs. being both watered and rained on), so you might make a different decision for each based 
on the same probability prediction. 

xThis is an oversimplification since the user should be interested in expected future (generalization) performance 
rather than empirical past (test set) performance. But we certainly cannot determine the expectation (over outcomes) of 
performance if we cannot determine performance even when the true outcome is known. 
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Table 1: Quantities and functions appearing in this paper. 

=    observed outcome event (true class) 

P =   prediction (judgment or estimate) of probability of outcome i = 1 
L(i,p)       =    probability loss function (prediction scoring rule) 

=    decision index (in some decision problem where i is relevant) 
C = {c{j}    =    decision loss (regret or cost matrix) characterizing a decision problem 

=    decision threshold = „ 1' 

=    stakes = coi + cio 
=    decision recommendation = I(p> t) 

Lc (i,P)     =    recommendation loss = c^ = Cij^>t) 
LEHL(i,p)    =   expected recommendation loss = EcLc(i, p) 

h(t) =    threshold importance density = pi(t)Es{s\t} 

P =    "true" outcome probability or that believed by expert (Sec. 4.) 

Table la: Notation. 
/(inequal.)     =    1 if inequality is true; 0 otherwise 
Ez{g(z)\A}    =    expectation over zof g(z) given A     = Jz dzpr(z\A)g(z) 

Probability predictions per se have no real-world consequences—until used to make decisions. 
Thus the true measure of a system's performance is of course the actual (or expected) gains or losses 
to those who use its predictions to make one or more decisions. 

2.1.   Decision Loss (Cost Matrix) 

A decision problem is characterized by the decision loss c^ for each observed outcome i and 
decision j; these c2j can be said to form the elements of a cost matrix C. 2 In general, the number 
of decision alternatives need not be equal to the number of outcomes (classes), but we assume the 
two-outcome (i.e. two-class) two-alternative case for simplicity, giving 

i = o i = i 
* = 0 0 coi > 0 

» = 1 cio >0 0 

where we have defined decision j = 0 as that most favorable when outcome i = 0, and ignored 
nonzero coo or en (diagonal elements) as merely leading to overall offsets (Section 3.3.). 

2.2.   Decision Recommendation Implicit in Prediction 

Presumably, if our system were designed for (or a human expert were apprised of) a particular 
known decision loss matrix C, it could simply plug this and its prediction p into elementary decision 
theory, and thus recommend the course of action j = j that minimizes the expected decision loss 

El{cij\p}   =   Pcij + (I-P)coj   = 
pew ifj" = 0 
(l-p)coi   if i = 1 

2Note that the decision loss is a function of (i.e. is indexed by) outcome and decision made, while a probability loss 
is a function of outcome and probability prediction. 



404 
D. B. ROSEN 

«a   2 
Oc 

8C'° 
2 o 

\Lc(0,p) 

..' 

t 0 

(a):    cio = CDi = 1   <S>  t = .5, s = 2 (b):    c10 = .5, c0i = 1.5  «■ i = .75, s = 2 

Figure 1: Recommendation loss Lc(*\#) = Cj,/^) vs. prediction p for two fixed 
decision problems indicated. In (a) this gives the ordinary "0-1" misclassification loss. 

The solution is given by 3    = 
\   1   if (1 - p)coi < pc10 

[ 0   otherwise 

I((l - p)coi < pew) 

I(p>t), 

where decision threshold t is defined as ^'^ and lies between 0 and 1 (inclusively). Of course 
this recommendation may be poor if the prediction is poor. 

In the work of Thomas Bayes, one can interpret a personal probability as merely a convenient 
summary of one's decision rule, which is a function mapping the cost matrix to a decision preference. 
Similarly, we consider a probability prediction p to be merely a convenient summary of the function 
mapping cost matrix C to decision recommendation j. 

2.3.   Decision Recommendation Loss 

We rewrite the cost matrix in terms of threshold t (Section 2.2.) and overall stakes s = c0i + c10 as 

Coi = ts, cw = (1 - t)s. 

Since we consider a probability prediction to represent an implicit decision recommendation to 
the user, this user's question "how much would the prediction p (by itself) be worth to me?" naturally 
becomes equivalent to "what would be my losses if I followed the corresponding recommendation 
3 = I(p> <)"• The user need not make this recommended decision, but then the user's decision loss 
would not be a measure of the value of the prediction p by itself in decision problem C, since we 
presume then that the decision was based (at least in part) on different believed/assumed outcome 
probabilities or other information. 

The actual decision loss in a given decision problem, when following the recommendation 
implicit in p and the actual outcome is i, is given by the recommendation loss 

Lc(i,p) = ciS = citI(ß>t^   = tsl(p>t) if* = 0 
(l-t)sl(p<t)   if* = l 

=    [l-i]tsl(p>t) + i[l-t]sl{p<t), (1) 
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(a) (b) 

Figure 2: Recommendation loss (with constant stakes s = 2) vs. decision threshold t for 
fixed prediction p and (a) i = 1; (b) both values of i. In (b), the shaded areas represent 
L(i,p) = quadratic loss (squared error), which is the expected recommendation loss 
(ERL) when importance h(t) = 2 (Section 3.1.). 

which is plotted as a function of the prediction in figure 1, for two particular decision problems. 
If we are given a single decision problem of interest (with a specific cost matrix C determining a 
specific threshold), then our final performance measure (probability loss) should simply be given 
by this recommendation loss. We call this type of probability loss function single-decision or 
single-threshold, since it depends only on whether p is above or below a particular t. 

2.4.    Cost Matrix Unknown 

If we don't know what the cost matrix, and thus the decision threshold, will be, we can plot the 
recommendation loss as a function of this unknown threshold for a given prediction and outcome, 
as in figure 2. By summing or averaging such curves over a data set consisting of many prediction- 
outcome pairs, we can completely characterize the performance on this data. We call this a(n 
empirical) recommendation loss characteristic (RLC)[12] curve, as it is an alternative to the widely- 
used receiver operating characteristic (ROC)[8] curve. 

To measure and compare the overall performance of forecasters, we need in general a probability 
loss function to assign a single numeric score to each. A single-threshold loss is crude and not 
appropriate unless we are certain that the predictions are never to be used in any other decision 
problem. Other probability loss functions have been proposed and used historically, but which 
should we use, and what relationship (if any) will it have to the recommendation loss in decision 
problems? 

3.   Expected Recommendation Loss (ERL) 

When it is uncertain in which decision problem a prediction will be used, we can describe the 
situation by a probability distribution over possible decision problems. Suppose pr(C) gives the 
probability density that our actual decision problem will be described by cost matrix C 3 The natural 

3C will be known exactly by the decision-maker; we simply do not know it (and thus the decision threshold) now. In 
contrast, if pr(C) were to remain when the decision itself were made, the decision problem would simply be characterized 
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probability loss function is then the expectation over cost matrices of the recommendation loss, i.e. 
EcLc(i,p) = fdCi?T(C)Lc{i,p). We call this choice of probability loss function the expected 
recommendation loss LBHL(i, p). 

It is convenient to express the distribution of cost matrices as a joint probability density pr(t, s) 
over threshold and stakes, instead, of over c0i and c10. From (1), we have 

LsBi{i,P)   =   J dt J   dspT{t,s){[l-i]tsI{p>t) + i[l-t]sI(p<t)} 

=   [1 - i] f dtth{t) +i f dt[l- t]h(t), (2) 
Jo Jp 

where the threshold importance density is 

h(t) = VT{t)Es{s\t}    > 0, 

i.e. the probability that a decision problem will use this threshold, times the expected stakes of 
decision problems having such a threshold. 

The ERL probability loss function (2) can be described as an average of the decision recommen- 
dation loss per stakes (or recommendation loss for unit stakes), weighted by the importance h(t) 
of each decision threshold. It reduces to a single-threshold loss (for example the misclassification 
loss) when h(t) is concentrated at a single t (for example |). 

3.1. Quadratic Loss 

For uniform threshold importance density h(t) = 2 (for t £ [0,1]), the ERL is given by the area 
under the recommendation loss curve, which is the quadratic loss LEHL(i, p) = [i - p]2, as indicated 
by the shaded areas in figure 2b. 

3.2. Logarithmic Loss 

Let h(t) = {t[l - t]}'1, sometimes called the Haldane density. From eqn. (2), LEBL(i,p) = 
-i log(p) - [1 - i] log(l - p), which is simply the logarithmic loss mentioned earlier. This assigns 
an unbounded penalty when the prediction p is near 0 (1) when the true outcome i = 1 (i = 0). 
This is due to the unbounded importance given to thresholds near zero or one by this improper 
(non-normalizable) density. It can be argued[12] that the Haldane density may be an appropriate 
noninformative prior when all that is known about the decision problem is that it is nontrivial, thus 
leading to the choice of the logarithmic loss as a performance measure in such a situation. 

The logarithmic and quadratic probability loss functions are members of a particular one- 
parameter family [7] of ERL loss functions. Even the misclassification loss (recommendation loss 
when coi = c10 = 1) is obtained [11] in a limiting case of this parameter. 

3.3. Arbitrary offsets in loss functions 

If we add to the costs in a decision problem an amount depending on the outcome i but not on the 
decision j, i.e. at + b[l - i] with arbitrary real a and b, we then have nonzero diagonal elements 
coo and cn, but the decision analysis does not change. Similarly, if we add such arbitrary offsets to 
a probability loss function, the comparison of two forecasters is never affected, even after summing 
over a data set or taking expectations[13]. If we had considered a distribution over a full cost matrix 
without assuming diagonal elements of zero, the effect in Section 3. would have been to add to the 

by the expected cost matrix E{C], with a single resulting decision threshold. 
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resulting probability loss function (2) terms that could simply be incorporated into its own arbitrary 
offsets. In addition, of course, multiplying all loss functions by a constant has no substantive effect. 

The logarithmic loss, also called empirical cross-entropy, is related to Kullback-Liebler distance 
and mutual information by such arbitrary offsets and overall scale[5]. 

4.   Truth-Rewarding Loss Functions 

A strictly proper probability loss function L(i,p) can be defined as one that is truth-rewarding, 
i.e. its expectation (over i) is minimized when and only when p is equal to the true probability p 
(input-conditional class probability4 pr(i = l\x) for classification from input features/predictors). 

Equivalently, a strictly proper loss function is honesty-rewarding: if we dock an expert's pay 
by L(i, p) for prediction p and outcome i, then her expected pay (conditional on her belief) will be 
maximized if and only if she gives us p equal to the probability p implied by her belief[13]. 

The form (2) of our ERL loss functions (or variants of it, or generalizations to continuous 
outcomes [2] or their expectation [13, 9], or to more than two discrete outcomes5) has previously 
been proposed as either an objective function to be optimized in parameter estimation [7, 9] or as 
a device to elicit honest predictions from an expert [1, 13, 10, 4], in contrast to our interpretation 
as the expected recommendation loss to the user. Also in those treatments, h(t) is an arbitrary 
non-negative function, in contrast to our interpretation in terms of a probability distribution over 
cost matrices. For greater than two outcomes (classes), the logarithmic loss is often advocated 
based on its locality, i.e. that it depends only on the predicted probability of the outcome that did 
in fact occur, rather than on the entire predicted probability distribution. The characterization of 
this assumption as a kind of "likelihood principle" for probability loss functions is attributed by 
Bernardo [2] to one of his manuscript's referees. Locality would not necessarily seem appropriate in 
the ERL context, since the decisions one makes, and thus the value of predictions, would in general 
depend on the entire predicted distribution. Locality alone also leaves the choice of h() completely 
arbitrary in the two-discrete-outcome case, which is precisely the case considered in the present 
paper. 

Single-threshold loss functions are not strictly proper, since they have the same expected loss 
for any p on the same side of the threshold, not just the true p. They are however loosely proper, 
meaning that the true p does indeed minimize the expected loss, even if other values do as well. A 
loosely proper loss function never rewards an expert for lying, but it may not always penalize the 
expert for doing so. 

It follows from the work cited above that all ERL loss functions are (at least loosely) proper. 
An ERL with h(t) > 0 almost everywhere (on [0,1]) is strictly proper. In addition, at least one of 
those authors [13] showed that any absolutely continuous strictly proper loss function can be written 
in the form (2), or to restate this in our present framework, there exists some importance h() that 
generates such a loss function as an ERL. 

5.    Conclusion 

It has been said [14]6 that 

4 Often called a posterior probability in the pattern recognition literature, where typically Bayes' Theorem is used to 
calculate it from a class prior and the input features' class-conditional probabilities. 

5 In some cases the results are given in differential form instead of integral form. 
6Parentheses added and clauses rearranged; "[strictly]" added; references can be found in the cited paper. 
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.. .in most situations, rewarding the assessor according to the value of his forecasts 
with respect to some decision-making problem (if such a value can be determined) 
(Murphy, 1968) would conflict with the desire to use a [strictly] proper scoring rule 
(Roberts, 1968). 

The present paper can be viewed as a way around this conflict, where we replace "some decision- 
making problem" by "some generalized decision-making problem", the latter meaning the situation 
described by a distribution over ordinary decision problems. 
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