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Foreword 

The National Aeronautics and Space Administration's work has 
accelerated progress in many techniques as essential to man's welfare 
on Earth as to the exploration of space. It has, for example, promoted 
the rational design of new composite materials for use in its structures. 
Simultaneously, its researchers and contractors have explored new 
structural concepts, and used electronic computers to help solve 
unprecedented design problems. 

The Office of Technology Utilization strives to make the results 
of such work widely available. Prof. L. Albert Scipio of the University 
of Pittsburgh prepared this report on some of the structural design 
concepts with which NASA has been concerned. It is addressed to 
engineers and intended to facilitate their use of findings in the aero- 
space industry. 

GEORGE J. HOWICK, Director, 
Technology Utilization Division, 
National Aeronautics and Space Administration. 
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direction. Nervi has used it in floor designs. (Reprinted by 
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CHAPTER 1 

Introduction 

As man pushes back the frontiers of high-speed flight, changes in 
structural design requirements necessitate the development of new 
materials. During the last few years, material and structural engineers 
have solved many formidable problems in ways that have led to 
significant changes in the design process itself. They have been able to 
develop new materials and designs without sacrificing structural- 
weight to gross-operating-weight ratios. In fact, these ratios are 
generally comparable to, or in many cases better than, those for slower 
vehicles. This new knowledge and experience are providing a firm 
foundation for the design of structures to meet individual as well as 
space requirements. 

This survey has three main aims: (1) to identify for those in the ■ 
field of structural design the contributions of the National Aeronautics 
and Space Administration (NASA) and the programs it has sponsored; 
(2) to describe the development of construction materials associated 
with these advances; and (3) to suggest, by examples, some of the 
applications in which they may be used. The survey covers structural 
types (including material systems), structural concepts, and structural 
design synthesis and optimization. While the analyst may not find 
this approach as sophisticated as the designer will, he may gain from 
it some insight into the development of new structural design concepts. 
The degree to which these and other developments ultimately are 
utilized commercially depends on the foresight and ingenuity of 
structural designers. 

Selection of materials and structural design to meet specific per- 
formance requirements is a complex problem. Each configuration and 
each part of the configuration must be examined and analyzed to 
provide the best possible structure for each application. Although we 
can only scratch the surface of the subject, we have attempted to 
offer some guidelines for structural designers in material selection, 
design approach, and optimization procedures for minimum-weight 
design. 



CHAPTER 2 

Structural Types 

The basic structural element of the modern aircraft, missile, launch 
vehicle, and spacecraft is the thin-walled shell. Many structural 
types were proposed and tested to strengthen this shell wall; the more 
successful ones have become standard for similar types of structures. 
These include (1) stiffened skin, such as corrugation-skin construc- 
tion; and (2) composite materials, such as fiber, particulate, flake, 
filled, and laminate composites. In this chapter, the basic character- 
istics of these structural types will be examined briefly. 

STIFFENED SKIN 

One of the first steps in the structural design of a configuration is an 
investigation of the structural type that will best fulfill the strength 
requirements. The designer may have several possible choices. Here 
we will restrict our discussion to designs in which the use of heavy 
members is avoided. The designer then has the option of carrying 
the load pressure, bending, compression, and shear by means of 
semimonocoque structures. In our presentation, the term "semi- 
monocoque" designates a skin structure that is stiffened by a number 
of reinforcing elements. Two general types may be used, the stiffened 
skin and the corrugation skin. Quite often both are referred to as 
"stiffened skin" or "reinforced skin" structures. 

Stiffened-skin structures generally consist of reinforcing members 
that run in one direction only. These members can be attached with 
rivets, spot or fusion welded, or machined or "chem-milled" integrally 
with the skin. The bending and compressive loads are carried mainly 
by stiffeners, whereas the skin supports shear loads and twisting 
moments. A variation of this concept, which provides bidirectional 
rigidity, is the grid-stiffened skin. A system composed of stiffeners 
in two directions may be more efficient than one having either stiffener 
orientation alone. 

The corrugation-skin structure is particularly efficient where the 
loading is predominantly unidirectional. The corrugation is assembled 
on the skin by riveting or open spot welding. A variation of this con- 
cept, which also provides bidirectional stiffening, is the waffle structure, 
in which a two-directional pattern is milled on one side of the skin. 
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Figure 1 (from ref. 1) shows several versions of stiffened-skin construc- 
tion. Reference 2 discusses the use of stiffened-skin construction in 
hypersonic vehicles. 

Many theories of the semimonocoque have been developed, and the 
bibliography lists sources of a vast wealth of information. A recent 
paper by Hoff (ref. 3) deals with new advances in the analysis of 
semimonocoque structures. Recent developments in the analysis of 
orthotropic plates and shells are also fairly well documented in such 
sources. 

Waffle - 45* 

Waffle - 90° 
^=^ 

Corrugation (1) 

Corrugation (2) 

Semi-Monocoque 

Integral Stringer and Ring 

FIGURE 1.—Types of stiffened skin construction. 
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COMPOSITE MATERIALS 

To meet requirements of high-speed aircraft, design engineers were 
forced to utilize materials up to, and beyond, their practical limits. The 
material barrier was a major obstacle to further development. To 
meet the demands, new material mixtures, or composites were devel- 
oped; these were strong yet light and able to withstand severe tempera- 
ture and corrosive conditions. Composites, in fact, seem now to repre- 
sent "dream" materials with tailormade properties. 

Composite materials are not new. The Babylonians are credited 
with discovering that chopped straw added to wet earth extended the 
life of a wall and enabled it to support more weight. The Egyptians 
used plaster of paris laced with hair to prepare their tomb walls. What 
these ancients discovered was that a mixture of materials is often 
stronger than any of the individual components. This concept is now 
well established in many technologies. 

What do we mean now by a composite material? Definitions in the 
literature differ widely, as can be seen in references 4 and 5. The most 
appropriate definition of the composite materials covered in this book 
is: a mixture or combination of two or more macroconstituents that 
differ in form and/or material composition and that are essentially 
insoluble in one another. Although this working definition is not 
wholly adequate, it takes into account both the composition of the 
material constituents and the structural form. 

A precise definition is difficult to formulate because of a scale factor 
(ref. 5). At the atomic level all elements are composites of electrons and 
nuclei; at the crystalline and molecular levels, materials are composites 
of different atoms; and at successively larger scales, materials may 
become new types of composites, or they may appear to be homo- 
geneous (ref. 6). In our presentation, we will limit the discussion to the 
macroscale. Many metallic alloys that are composites of several quite 
different constituents become homogeneous materials on a macro- 
scale. Specific examples of such materials are dispersion-hardened 
alloys and cermets. Some engineers will find our definition of compos- 
ites too broad because it includes several engineering materials that 
are not usually considered composites, such as concrete, impregnated 
materials, filled plastics, and precoated materials. All such materials 
fall within the concept of composites, however, and should be treated 
as such. 

Since our definition does not make a clear distinction between com- 
posites and composite structures, some combinations may be consid- 
ered to be composite structures rather than composite materials. For 
example, there are differences of opinion as to whether a sandwich 
should be classified as a structure or a material. Although a precise 



0 STRUCTURAL  DESIGN  CONCEPTS 

distinction is extremely difficult to make, the following discussion 
should be helpful in avoiding confusion. 

Composite materials include mill composites: clad metals, honey- 
combs, nonmetallic laminates, and sandwiches produced in more or 
less standard lines and suitable for many different applications. On the 
other hand, we shall call "composite structures" those material sys- 
tems that are designed and produced for a given application and that 
are also the finished structure, component, or product itself. Examples 
of composite structures are rocket nose cones (constructed of several 
integrated layers), tires (built up of several layers and a fabric-rein- 
forced material), glass-reinforced plastic boats, and filament-wound 
vessels. Although a finished structure is also an integrated materials 
system, this does not preclude regarding it as a composite material. 
In general, structural engineers refer to all structures of complex or 
heterogeneous construction as composite structures. 

The nature of any composite depends on the form and structural 
arrangement of constituents, which may include fibers, particles, 
flakes, laminae, and fillers. These structural constituents, shown in 
figure 2 (from ref. 5), determine the internal character of the com- 
posite. Since the structural constituent is generally embedded in a 
continuous matrix of another material, the matrix is called the "body" 
constituent. It generally encases the structural constituent, holds it 
in place, seals it from mechanical damage, protects it from environ- 
mental deterioration, and gives the composite form. Not all com- 
posites, however, have a matrix. Two or more different materials are 
sometimes bonded together, as in laminates and sandwiches. These 
layers form the complete composite. 

Composite materials are divided into five basic groups by form of 
the structural constituents. (See fig. 3 from ref. 5.) 

(1) Fiber (or fibrous) composites are composed of fibers in con- 
tinuous or discrete filaments (called whiskers for their appearance in 

• 
PARTICLE 

FILLER 

FIGURE 2.—Types of structural constituents. {Cour- 
tesy of Materials in Design Engineering.) 
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the production method) embedded in a continuous matrix. Fiber-fiber 
composites have no matrix. 

(2) Particulate composites1 are composed of minute particles, 
usually uniformly shaped, embedded in a continuous matrix. 

(3) Flake composites are made up of flat particles or flakes, usually 
of isotropic material held together by an interface binder or embedded 
in a continuous matrix. 

(4) Filled, or skeletal, composites have a continuous three- 
dimensional constituent which has a random network of open pores 
or passages, cells, or an ordered honeycomb, filled with another 
constituent. 

(5) Laminar composites are formed by layers of single constituents 
bonded as superimposed layers. 

FIBER   COMPOSITE LAMINAR    COMPOSITE 

PARTICULATE    COMPOSITE 

FLAKE     COMPOSITE SKELETAL    COMPOSITE 

FIGURE 3.—Classification  of structural  constituents. 
{Courtesy of Materials in Design Engineering.) 

Fiber Composites 

Fiber composites, particularly the fiber-matrix types, have been of 
interest to many structural engineers. The forms in which fibers can 
be employed in composites are numerous and draw on the long ex- 
perience of textile technology for help and guidance (ref. 6). The 
simplest and most widely used arrangement is a mat of short fibers 

1 Flake   and   filled   composites   are   sometimes   included   under  particulate 
composites. 
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laid down in a random pattern. The material is essentially isotropic 
in its own plane; however, the strength and elastic modulus are 
determined by only a small proportion of the total number of fibers, 
oriented approximately in a certain direction. Highest strength in one 
direction is achieved when fibers in the form of continuous filaments 
are laid parallel to each other in a unidirectional pattern. This arrange- 
ment produces a high fiber-packed density. Fiber-matrix composites 
with unidirectional fibers are basically anisotropic. The highest 
strength is in the direction of the fibers, whereas strength in a trans- 
verse direction is essentially that of the matrix. Figure 4 summarizes 
the orientation, length, shape, and material characteristics of fiber 
constituents. 

Fibers and matrices are available for a wide range of versatile 

ORIENTATION 
] Uni Unidirectional Multidirectional Random pattern 

LENGTH 

SHAPE 

Continuous Easier to handle and more efficiently oriented 
than short fibers, however, more limited in 
design possibilities. 
Continuous filaments normally incorporated by 
the filament winding process. 

If properly designed, could have substantially 
greater strengths than those made from con- 
tinuous fibers,  (see Whiskers). 

MATERIALS 

• Circular 

Rectangular Elftffi&j 

Polygonal 

Annular 

Irregular # 

■ Present uses of all fibers limited to 
circular cross section which are easy to 
produce and handle.  Other cross sections 
seem to have improved mechanical property 
potential. 
Limited to laboratory. 
Excellent shape for packing. 
In developmental stage. Available as 
short fibers only. 
May be improvement in structures which 
require high compressive strength. 
Hollow fibers difficult to incorporate 
into composite and difficult to handle. 

May be produced as shavings or other by- 
products.  Easy to produce; inefficient in 
design based upon tensile strength as the 
criterion. 

{ Organics - Cellulose, polypropylene, graphite 
Inorganics - Glass, tungsten, ceramic, boron, and metallic 

whiskers 

FIGURE 4.—Fibers in composites. 
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composites. Composites such as glass-fiber-reinforced plastics (GFRP), 
metal-fiber-reinforced plastics, and asbestos-fiber-reinforced plastics 
are fiber-synthetic resin combinations. Glass is the most widely used 
fiber, and synthetic resins such as epoxies, phenolics, and unsaturated 
polyesters are the most widely used matrices. 

Development of fiber composites for high-temperature service has 
led to the use of high-temperature-resistant fibers in high-modulus 
metal matrices (refs. 7, 8, and 9). Alumina- and tungsten-fiber- 
reinforced silver; and carbon-, graphite-, and silica-fiber-reinforced 
aluminum are examples. Until recently most of the work was done 
with strong, stiff fibers of solid, circular cross sections in a much 
weaker, more flexible matrix (such as glass fibers in synthetic resins). 
At present, there is considerable interest in hollow, metal and ceramic 
fibers of noncircular cross sections embedded in stronger, stiffer, and 
more heat-resistant matrices. Although limited quantities of these 
new composites are available for high-performance applications, 
insufficient production and high cost restrict their use. More eco- 
nomical fiber composites, such as glass-fiber-reinforced plastics, are 
now coming into their own for structural applications where high 
strength and fight weight are desirable. 

Although the most commonly used fiber composites may be fabri- 
cated by various techniques, we shall limit our discussion to the use 
of continuous filaments for the fabrication of filament-wound struc- 
tures and of whisker composites. 

Filament-Wound Structures 

The modern era in composites began with filament-wound plastics 
used in glass-reinforced structures such as pressure vessels. Extremely 
high strength-to-weight ratios are achieved. By exploiting the high 
strength of continuous fibers or filaments embedded in a matrix of a 
resinous material (either organic or inorganic), the winding technique 
is used to direct the structural strength. The resin contains the rein- 
forcement, holds it in place, seals it from mechanical damage, and pro- 
tects it from environmental deterioration. Rovings are drawn through 
a resin bath and are wound continuously onto a form, or mandrel, that 
corresponds in shape to the inner structure of the fabricated part. 
This winding technique permits orientation of structural strength to 
resist stress from an imposed load. A wide range of properties can be 
attained, depending on the filament and resin materials, winding 
patterns, and configuration of products. Suitable shapes of filament- 
wound structures include surfaces of revolution or combinations of 
surfaces that are flat or convex. (See fig. 5 from ref. 10.) Figure 6 
(from ref. 11) shows various types of winding patterns. 
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CYLINDER CLOSED END CYLINDER 
(PRESSURE BOTTLE) 

SQUARE TUBE 

FLAT WITH FULL 

RADIUS END 

MODIFIED SQUARE 
WITH CONVEX SIDES 

SPHEROID CONE 

SPHERE 

OVAL TUBE 

FIGURE 5.—Suitable section shapes for filament 
winding. (Courtesy of Machine Design.) 

a. Circular, hoop windings provide 
optimum girth or hoop strength' in a 
filament wound structure. 

b. Single circuit helical windings com- 
bined with circular hoop windings 
provide high axial tensile strength. 

C. Multiple circuit helical windings 
permit optimum use of the glass fila- 
ment's strain characteristics witmut 
the addition of hoop windings. 

„,|,JÜ"™ vf  ."■"f"»' ,1" ,"»"*       e- Verüble heikel winding pattern is       f.  Plener windings provide optimum 
when openings at ends of the struc-       used to produce odd-shaped filament       longitudinal strength (with respect 

wound structures. to winding axis). ture are of a different diameter. 

FIGURE  6.—Filament   winding   patterns.   (Courtesy   of   Materials   in   Design 
Engineering.) 

Whisker Composites 

One of the more promising composites under investigation is the 
whisker composite. Researchers have long been aware of the possibil- 
ities of developing materials that nearly approach their theoretical 
strength. Such materials have been found in the form of small fibers 
or filamentary microcrystals which are actually fine wisps of material 
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grown like mold cultures. Whiskers are extremely thin (about one- 
millionth of an inch to a few thousandths of an inch) and have nearly 
perfect crystal structures, with fewer defects than conventional ma- 
terials. Consequently, some whiskers have tensile strength above 
3500000 psi. Their extremely high strength-to-weight and stiffness- 
to-weight ratios make them particularly attractive reinforcements. 
Until commercial production is established, however, large quantities 
of whiskers will not be available for everyday products. One new 
technique for incorporating whiskers in a metallic matrix is to grow 
them directly in the metal (ref. 5) by the controlled unidirectional 
solidification of an alloy. 

Among the future applications of whisker composites are whisker- 
reinforced plastics for bodies and basic structures in automobiles, 
whisker-reinforced metals for fully cast submarines, and whisker-rein- 
forced concrete. 

Analysis of a combination of materials that act in unison or interact 
is a complex task. The problem is complicated by the presence and 
interaction of many fibers, different stress levels in these fibers, 
differences in elastic moduli and Poisson's ratios between fibers and 
matrix, interaction of fibers and matrix, a boundary layer of indefinite 
thickness, and variable properties where the fibers and matrix interact 
(ref. 6). In addition, many matrices behave viscoelastically; that is, 
their behavior is time dependent. Therefore, a linear relation between 
stress and strain (Hooke's law) is not valid. Stress concentrations that 
develop around discontinuities and stress conditions occurring at the 
ends of fibers and at breaks in fibers also contribute to the difficulties 
of understanding the behavior of a fiber composite under stress. 

For design purposes, a good approximation of fiber-composite prop- 
erties is often obtained by application of a simple rule that says: the 
properties of the composite are the sum of properties of the individual 
components multiplied by their fraction in the total volume. Unfor- 
tunately this rule breaks down when the properties are complex 
functions of fiber geometry, spacing, relative volumes, etc. The deter- 
mination of properties at right angles to the fiber direction is sometimes 
based on the weakest link hypothesis. This link is usually the matrix. 

Detailed analyses of composites have been given in recent works by 
Tsai et al. (ref. 12) and Alexander et al. (ref. 13). 

Fiber composites are now found in a wide variety of products 
including nose-cone shields for spacecraft, rocket motor cases, heli- 
copter rotor blades, high-pressure tanks for liquid gases, storage 
tanks, railway tank cars, automobile fenders, automobile heaters, 
valves, ball bearings, truck bodies, walls of experimental homes, and 
concrete forming pans. Table 1 (from ref. 14) lists some present and 
future uses of fiber composites as primary structural materials. 

. 273-140 0-67-2 
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TABLE 1.—Present Development Applications of Whisker Plastic 
Composites 

Type of composites Application Nonproprietary 
information 

Unidirectional: Rein- Bulletproof vest, deep- Proven alinement, 19 
forced plastic wire. submergence cable. million modulus, yarn 

formation. 
Bidirectional: Reinforced Space helmets, turbine 10 million modulus. 

plastic laminate. blades, high-speed 
centrifuges. 

Tridirectional: 
Reinforced casting Dental research » 2X better than any other 

resin. reinforcement. 
Supplementary re- Miniature rockets, elec- 1.5 v/o addition= 20 per- 

inforcement— tronic micromolding. cent increase in tensile 
Transfer molding burst strength. 

compounds. 

Interstitial rein- Filament-wound deep 0.65 v/o addition =38 
forced Fiberglas. submergence vessels.- percent increase in 

interlaminar shear. 

Research on reinforcing dental plastic, metal, and ceramic fillings. 

Particulate Composites 

Particulate composites differ from the fiber and flake types in that 
the distribution of the particulate constituent is generally random 
rather than controlled. In some of these composites, the particulate 
constituent becomes dimensional only on the microscopic scale. These 
discrete particles are contiguous but insoluble and chemically un- 
reactive with the matrix. The particulate constituent generally con- 
tributes strongly to the properties of the composite. 

Particulate composites may be divided into several classes: (1) 
metal in metal, (2) metal in plastic, (3) metal in ceramic (including 
cermets), (4) organic in organic, (5) nonmetallic in nonmetallic, 
(6) dispersion-hardened alloys, and (7) self-lubricating alloys. Each 
of these composite classes is an individual subject beyond the scope 
of the present treatment, but examples may be found in reference 
5. Only three specific types of particulate composites will be discussed 
here. These are (1) cermets, (2) dispersion-hardened alloys, and 
(3) self-lubricating alloys. 

A cermet is a composite in which ceramic grains are held in a 
metal matrix in amounts up to 30 percent of the total volume. Cermets 
are among the most important composites and have a range of proper- 
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ties dependent on the composition and relative volumes of the ceramic 
and metal constituents. Of the various possible combinations, carbide- 
based and oxide-based composites are among the most widely used. 
Examples of carbide-based cermets include tungsten carbide, chro- 
mium carbide, and titanium carbide; examples of oxide-based cermets 
inelude aluminum oxide and magnesium oxide in chromium. 

Dispersion-hardened alloy composites consist of hard, submicron- 
sized particles dispersed in a softer metal matrix; the particles are 
usually less than 3 percent by volume. These composites differ from 
cermets in the smaller size of the particles and by their lower pro- 
portion of concentration. Although both the size and the proportion 
of the total volume of the dispersed particles are small, these particles 
control the strength properties of the composite. The finer the par- 
ticle size and the smaller the spacing, the better, generally, the 
properties (ref. 6). 

Self-lubricating alloys are a recent development based on the dis- 
persion of dry lubricant powders in a metallic matrix. These compos- 
ites include combinations such as molybdenum disulfide or tungsten 
disulfide in nickel, boron nitride or calcium fluoride in steel, and tung- 
sten diselenide in copper or silver. 

Concrete is perhaps the oldest particulate composite. Most recent 
advances in particulate composites, however, have been related 
principally to the aircraft industry and the nuclear field. Aircraft 
builders have used sintered aluminum powder alloys (SAP) for 
impellers and pistons, and in the nuclear field, cermets are used for 
applications such as valve seats and bearings. Other structural uses 
of cermets include high-speed cutting tools, integral turbine wheels, 
and nozzles. Structural uses of steel-particle-filled plastics include 
small-lot production tooling. More exacting industrial demands for 
heat- and oxidation-resistant materials should lead to increased use 
of metal-in-ceramic particulate composites and the use of metals 
and nonmetallics in plastics. 

By treating the particles as inclusions and applying the theory of 
stress concentrations (around discontinuities of various shapes), it 
may be theoretically possible to analyze the resulting structure. 
Some work has been done and solutions have been obtained for a 
circular particle embedded in an infinite matrix. As greater numbers 
of inclusions are considered, this approach becomes impractical, 
however, and composites consisting of small particles randomly 
distributed are generally treated as conventional materials. 

Flake Composites 

Flake composites are still in the development stage. Recently 
they have received considerable attention for structural use where 
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two-dimensional elements are preferable. The considerable overlap 
between flakes in the composite can result in an effective barrier 
against fluid penetration into the matrix as well as reduce the danger 
of mechanical penetration. 

When flakes are embedded in a matrix and made parallel to one 
another in a plane, they give uniform properties to the composite; 
however, parallel orientation is difficult to achieve. Flake composites 
also have special properties due, in part, to their flat shape. They 
can be packed more tightly than other shapes, thus providing a 
high percentage of reinforcing material for a given cross section. 

Although flakes have good bulk-handling qualities and are rela- 
tively inexpensive to produce, desired shapes and sizes are often 
difficult to achieve. Most metal flakes are aluminum; some silver 
is used because other metal flakes are difficult to produce. Aluminum 
flakes can reflect heat, provide a series of protective coatings, and 
give a metallic luster to coatings and plastic moldings. 

Silver flakes are more applicable for composites when high con- 
ductivity is needed. For electrical conductivity, flake-to-flake contact 
is necessary, but this is not easy to achieve without losing good 
bonding qualities. Silver-flake composites are used for conductive- 
coating electrical heating elements in equipment subject to low- 
temperature environments. 

Though nonmetallic flakes include both mica and glass, mica is 
more widely used because of its good heat resistance and dielectric 
qualities. Mica flakes are not as versatile as glass flakes for moisture 
barrier and structural applications. With certain binders, however, 
they can provide a good hermetic seal with vacuum tightness and 
high-temperature properties. If contoured shapes are desired, flakes 
can be laminated in several layers, bonded with a resin (such as 5 
percent shellac, epoxy, or alkyd), heated until the composite softens, 
and molded into various shapes. 

Glass-flake composites with special strength qualities have been 
proposed for a variety of structural and nonstructural applications. 
Less expensive than glass fibers, these flakes have dielectric strength, 
high heat resistance, and offer a high bending modulus because they 
are free to bend in only one plane. Structural uses of glass-flake 
composites include aircraft and missile radomes, battery cases, 
instrument cases, rocket fins, and rocket motor cases. 

Once fabricating difficulties are solved, flake composites will offer 
attractive possibilities. 

As in the case of particulate composites, flakes can be treated as 
inclusions, and the basic theory of stress concentrations can be applied 
for general analysis. The practical utility of this approach, however, 
is extremely limited. 
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Filled Composites 

A filled composite is an open or skeletal matrix containing another 
material that remains a separate constituent. Both materials and 
structure can be varied to give a wide range of physical and mechanical 
properties. Some examples (ref. 5) of what can be done are: (1) im- 
prove the function characteristic, (2) increase the strength and 
ductility of porous metals, (3) prevent leakage of fluids and gases in 
porous metals, (4) improve the performance of electric contacts, and 
(;5) provide high-temperature properties not obtainable with 
monolithic materials. 

The skeleton may be a solid or a fluid becoming soli'd during manu- 
facture. The filler may be fluid when introduced into the void structure 
and may either remain liquid or solidify by cooling. The fluid may be 
introduced into the structure by a carrier that may be removed, 
evaporated, or polymerized. 

Although the concept of filled composites is old, the full potential 
of this type of composite was not apparent until the space age. Pre- 
viously, this technique was used to prevent seepage by filling voids 
in one material with another. Currently, two types of filled composites 
are available: (1) porous, or spongelike, structure, and (2) cellular, 
or honeycomb, structure. Metal, paper, or wax honeycomb filled with 
a ceramic material; silica honeycomb filled with a ceramic material; 
and silica honeycomb filled with fiber-reinforced epoxy and silicone 
rubber are examples of filled cellular composites. Examples of filled 
porous composites include tungsten or molybdenum impregnated 
with copper or silver; plastic filled with porous metal such as alumi- 
num, magnesium, or ferrous castings; TFE fluorocarbon and lead- 
filled bronze; graphite impregnated with lubricating oils; and resin 
impregnated with aluminum, ceramic, or zirconia foams. 

The range of possible uses of filled composites is not fully known. 
Two current applications are a steel matrix composite containing 
titanium carbide for making dies, gages, and punches; and a filled 
honeycomb composite with random network filler metal (ref. 6) for 
high-temperature aerospace applications. 

Laminar Composites 

Laminar, or layered, composites are probably the oldest of all the 
composites; they account for the greatest volume of use and are pro- 
duced in the greatest variety. They differ in material, form, and/or 
orientation, as shown in figure 7. Although the great variety of possible 
combinations makes generalization difficult, we can say that (1) each 
layer of a laminar composite may perform a separate and distinct 
function, (2) properties may vary from one side of the composite to 
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the other,  and  (3)  properties of laminar composites tend to be 
anisotropic. 

Many laminar composites are designed to provide characteristics 
other than strength; for example, improved appearance, protection 
against corrosion and/or high temperatures, and adjustment for size 
limitations. 

Some types of laminates are: precoated and preplated materials, 
clad metals, plastic-based laminates, laminated glass, and laminated 
nylon fabrics. Specific examples of these laminates are alclads; nickel- 
plated steel for flashlight cases; electrogalvanized steel for roofings; 
aluminum-clad uranium, molybdenum-clad aluminum (copper, gold, 
or lead), and silver-clad aluminum for weave guides; lead-clad steel 
for radiation shielding; glass-nylon fabric for personnel armor; glass- 
plastic (usually containing two or more layers of glass sheet and one 
or more layers of poly vinyl butyrol) for safety glass; laminated layers 
of transparent plastic for light filters; and asbestos or other mineral- 
based fabrics laminated with silicone matrices for heavy-duty electrical 
and high-temperature application. 

The analysis of laminates can be lengthy and arduous because of 
the possible combinations of several different isotropic and/or aniso- 
tropic materials. Stress distributions depend on the composition and 
orientation of the individual layers. A laminate may be isotropic, 
but if its constituents exhibit different moduli of elasticity or different 
Poisson's ratios, appreciable nonuniform shear stresses may develop 
and lead to delaihination or other serious problems. Consequently, 
laminates composed of mixed isotropic and anisotropic materials 
present a difficult analytical problem. 

Stress analysis of a laminate subjected to external loads is based 
on the fundamental assumption that at any point the deformation of 
all the constituents is the same; that is, strains are equal. Thus, a 
laminate made of isotropic materials having the same elastic constants 
behaves like a solid mass of the same material. If the elastic constants 
are different, the stresses in the constituents are proportional to the 
elastic constants (elastic or shear moduli). However, even in direc- 
tions in which no load is applied, stresses in the individual layers may 
be produced by different transverse contractions or expansions be- 
cause of different Poisson's ratios; these tendencies are prevented by 
the bond between layers. Both transverse shears are produced as well 
as shear in the bond between layers. When isotropic and orthotropic 
materials are combined, large differential stresses in the laminate as 
well as large shears in the bonds between layers may develop. Changes 
in temperature may similarly cause complex stresses (ref. 6). Further- 
more, when a layer of material is thin, as in most laminates, the thick- 
ness direction is often ignored; even an orthotropic material is treated 
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as a substance that has two elastic moduli, one shear modulus, and 
two Poisson's ratios associated with the natural axes. For analytical 
approaches to laminates, the reader is referred to Tsai et al. (refs. 
12 and 15), Dong et al. (ref. 16), and the bibliography. 

Sandwich Construction 

Sandwich construction2 is a special kind of laminate consisting of a 
thick core of weak, lightweight material sandwiched between two thin 
layers (called "face sheets") of strong material (fig. 7). This is done 
to improve structural strength without a corresponding increase in 
weight; that is, to produce high strength-to-weight ratios. The choice 
of face sheet and core materials depends heavily on the performance 
of the materials in the intended operational environment. 

Sandwich composites are often compared to an I-beam with a high 
section modulus. Because of the separation of the core, face sheets 
can develop very high bending stresses. The core stabilizes the face 
sheets and develops the required shear strength. Like the web of a 
beam, the core carries shear stresses. Unlike the web, however, the 
core maintains continuous support for the face sheets. The core must 
be rigid enough perpendicularly to the face sheets to prevent crushing, 
and its shear rigidity must be sufficient to prevent appreciable shearing 
deformations. Although a sandwich composite never has a shearing 
rigidity as great as that of a solid piece of face-sheet material, very 
stiff and light structures can be made from properly designed sandwich 
composites. 

A useful classification of sandwich composites according to their 
core properties by respective direction is shown in figure 8 (from 
ref. 17). To see the core effect upon sandwich strength, let us consider 
the honeycomb-core and the truss-core sandwich composite. The 
honeycomb sandwich has a ratio of shear rigidities in the xz and yz 

LAMINATE    COMPOSITE SANDWICH   COMPOSITE 

FIGURE 7.—Laminar composites. 

2 The ASTM definition: A structural sandwich is a construction combining 
alternating, dissimilar simple or composite materials, assembled and intimately 
fixed in relation to each other so as to use the properties of each for specific struc- 
tural advantages in the whole assembly. 
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FIGURE 8.—Typical sandwich constructions. 

planes of approximately 2%. to 1. The face sheets carry in-plane 
compressive and tensile loads, whereas the core stabilizes the sheets 
and builds up the sandwich section. The truss-core sandwich has a 
shear rigidity ratio of approximately 20 to 1. It can carry axial loads 
in the direction of the core orientation as well as perform its primary 
function of stabilizing the face sheets and building up the sandwich 
section. 

CURRENT APPLICATIONS 

Figures 9 (from ref. 11), 10, 11, and 12 suggest a few of the many 
uses for composites. Prior to World War II, sandwich construction 
of birch face sheets and balsa core was used extensively in the British 
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FIGURE 9.—Potential applications of filament winding. (Courtesy of Materials in 
Design Engineering.) 

De Havilland Mosquito bomber. Since then a continually growing 
list of sandwich applications in aircraft includes radomes, fuselages 
and wings, ailerons, floor panels, and storage and pressure tanks. 
Because of their dielectric properties, plastic, glass, and fabric 
honeycomb-core sandwiches are being extensively investigated for 
use in things such as radar housings and microwave transmission 
windows. The novel, though costly, design of the B-70 features use of 
machine-fusion   welding   for   joining   brazed,   heat-treated,   steel- 
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FIGURE 10.—Portable, permanent building, 26 by 56 ft. Exterior is white fiber 
glass with rigid foam insulation. (Courtesy of Holiday Manufacturing Co., 
Division of Holiday Inns of America, Inc.) 

FIGURE 11.—Structural frame for ski lift gondola. (Courtesy of American 
Cyanamid Co.) 
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FIGURE 12.—Multilayer wall tank. {Reprinted from Oil and Gas Journal, 
Jan. S, 1967.) 

honeycomb panels into .a homogeneous, compression-resistant struc- 
ture with local stresses and shear flow based on minimum strain 
energy. In a new space-formed system called "Sunflower," the reflector 
is of honeycomb construction, having a thin coating of pure aluminum 
protected by a thin coating of silicon oxide to give the very high 
reflectivity needed for solar-energy collection. The unit is adaptable 
as a power source for a wide range of Earth, Moon, Mars, and Venus 
missions. Thirty panels fold together into a nose-cone package in the 
launch vehicle. 

Building Construction 

Architects use sandwich construction made of a variety of materials 
for walls, ceilings, floor panels, and roofing. Cores for building materials 
include urethane foam (slab or foam-in-place), polystyrene foam 
(board or mold), phenolic foam, phenolic-impregnated paper honey- 
comb, woven fabrics (glass, nylon, silk, metal, etc.), balsawood, 
plywood, metal honeycomb, aluminum, and ethylene copolymer 
foam. Facing sheets can be made from rigid vinyl sheeting (flat or 
corrugated); glass-reinforced, acrylic-modified polyester; acrylic sheet- 
ing; plywood; hardwood; sheet metal (aluminum or steel); glass- 
reinforced epoxy; decorative laminate; gypsum; asbestos; and poured 
concrete. 
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Civil Engineering 
Sandwich construction is now used in bridge decking (stainless- 

steel truss core), retaining walls, and storage tanks. Structural 
aluminum honeycomb panels have been used in the construction of 
the 327-ft-high, 7-million-lb service tower for the Saturn rocket at 
Cape Kennedy. 

Mechanical Design 
Foam-core sandwiches have a promising potential in refrigeration 

and related fields. Early projects involved panels having an expanded 
styrene core bonded to styrene sheet faces. More recently, two pilot 
models have been constructed with anodized aluminum faces which 
offer important cost advantages in tooling. Presently this construction 
is used in high-temperature furnaces as well as pressure vessels and 
tanks, particularly cryogenic tanks. 

Damped Structures 
An increasing number of vibration problems must be controlled 

by damping resonant response. By using a symmetric sandwich panel 
with a viscoelastic core, various degrees of damping can be achieved, 
depending on the core material properties, core thickness, and wave- 
length of the vibration mode. 

Marine Structures 

Urethane, expanded styrene, and other types of plastic foam have 
been used in the construction of small boats. For the same purpose 
the U.S. Rubber Co. has developed a configuration consisting of an 
expanded Royalite ABS core with a ply of hard Royalite bonded to 
each side. 

Transportation 

Sandwich construction has great promise for transit cases, floor 
panels, railway cars, and large transportation carrier panels. It has 
already been used in the design of carriers for experimental rapid 
transit systems. 

Sandwich construction has undergone analytical and experimental 
investigations that have resulted in a wealth of data. Plantema 
(ref. 17) has summarized the theory of strength and stability of 
sandwich-type structures. 

The objective of many of the present investigations is to establish 
rational guidelines for the design and utilization of composite materials 
for structural applications. More accurate methods of structural 
analysis are needed to insure the efficient utilization of composites. 

Which composite material should be used in a specific design 
problem? Unfortunately, there is no simple, direct answer. Many 
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important factors contribute to the characteristics, properties, and 
overall performance of composites. To make the best use of com- 
posites, we must be able to characterize each desired property and 
to assess quantitatively the behavior of the resulting composite. To 
use composites in design, structural engineers need mathematical 
expressions and models, that adequately predict the behavior of 
composite materials under various load conditions. 

We have briefly examined some of the developments and advanced 
concepts in materials and types of construction stemming from space- 
vehicle system research and technology programs. As the deficiencies 
in our knowledge of the behavior of structures are removed, we can 
come closer to rational design per se. As production reliability and 
analytical competence are improved, the behavior of structural ele- 
ments under various loading will become more predictable. Finally, 
when production costs are reduced, more extensive industrial use of 
these developments can be expected. 



CHAPTER 3 

Selection   of   Structural   Materials   and 
Types 

No single known material or construction can meet all the per- 
formance requirements of modern structures. Selection of the optimum 
structural type and material requires systematic evaluation of several 
possibilities. The primary objective often is to select the most efficient 
material and configuration for minimum-weight design. 

In figure 13 (from ref. 18), materials are plotted according to their 
strength-to-density ratios. The most commonly used structural ma- 
terials are clustered in the middle of the figure; those for specialized 
use (such as fabrics, fiber glass, laminates, and beryllium) are widely 
dispersed in the lower half of the figure; and the emerging composites 
containing S-glass, boron, and carbon filaments appear in the upper 
half. Properties of composite materials are calculated for a planar 
isotropic layer of filaments in an epoxy-resin matrix. Although this 
approach is convenient, it is not appropriate for all structures. 

Figure 14 (from ref. 19) shows the lightest forms of construction 
that will carry pressure and bending loads without cylinder buckling 
or material yielding. The forms considered are filament wound, sand- 
wich, stiffened skin, and simple isotropic walls. Regions to the right 
of the indicated boundary (slant fine) in the chart are those of higher 
bending moment; that is, those where structures must support com- 
pressive and shear stresses efficiently. Consequently, material stiffness 
is an important requirement. While sandwich constructions of various 
types have a wide range of application for most loading parameters, 
the extremes of pressure and bending moment require filament- 
wound and isotropic constructions, respectively. Filament-wound 
construction is superior to other structural types for pressure-vessel 
applications, except when the applied bending-moment index is also 
large; then the conventional isotropic shell is fighter. For lower or 
zero internal pressure, all types of wall construction have a range of 
efficient application, depending on the magnitude of the bending- 
moment index. 

Figure 15 (from ref. 20) is a weight comparison of several types of 
construction for cylinders  as  a function  of loading intensity for 

25 
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FIGUEE 13.—Materials comparison. (Reprinted from Proceedings 
AIAA/ASME 7th Structures and Materials Conference.) (Courtesy 
of American Institute of Aeronautics and Astronautics.) 
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FIGURE 14.—Least-weight construction regimes. (Reprinted from Astronautics 
and Aeronautics.) (Courtesy of American Institute of Aeronautics and 
Astronautics.) 



SELECTION  OF  MATERIALS  AND  TYPES 

MONOCOQUE- 

27 

1000 2000 
APPLIED LOADS NC(LB/IN) 

3000 

FIGURE 15.—Comparison of minimum-weight designs for structural systems and 
materials in an axially loaded cylinder. 

designs involving combined axial compression and bending. Figure 
16 (from ref. 21) presents data for 10-ft-diameter cylinders with 
local compression load capability of 400-1600 lb/in., which is within 
the appropriate range for the early orbiting laboratories. Four types 
of construction were considered: sheet-stringer (stiffened skin), 
waffle, corrugated truss-core sandwich, and honeycomb sandwich. A 
preliminary estimate of wall gages required for these load levels 
indicated that integrally milled waffle plate could be eliminated 
from the study. In theoretical axial strength alone, the honeycomb 
wall is the lightest, followed by truss core and sheet stringer. Since 
weight comparisons are very close, they are very sensitive to design 
ingenuity. 

Figure 17 (from ref. 22) shows a comparison of the structural 
index curves for variously constructed cylindrical shells subject to 
axial compression. The curves include isotropic, Z-stiffened, waffle, 
truss-core sandwich, and multiwall sandwich cylinders. The multi- 
wall sandwich consists of layers of dimpled and flat sheets welded at 
the crests of the dimpled sheets. Structural index curves for flat 
plates of various construction subjected to edge compression are 
shown in figure 18 (from ref. 22). The curves shown in both figures 
are based on formulae given in reference 22 and citations made in 
this reference. The curves 

273-140 0-67-3 
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E 
=115       and 

E 
= 153 

are related to the original report and are included here merely for 
reference. P, is compressive load per unit width; Nx, compressive 
buckling load per unit circumference in the longitudinal direction; b, 
width of plate; R, radius of cylinder; t, equivalent thickness of ma- 
terial; E, modulus of elasticity; pc, density of core; pf, density of face 
sheets; -q, plasticity reduction factor; and o-cy, compressive yield stress. 

One of the major reasons for combining inorganic fibers and in- 
organic matrices is to achieve high-temperature performance not 
possible with organic materials. One of the new and promising com- 
posites under investigation is metal reinforced with alumina whiskers. 
Figure 19 (from ref. 5) shows the tensile strength of various classes 
of whisker-reinforced materials at elevated temperatures. So far, 
strengthening metals with whiskers at elevated temperatures has only 
been demonstrated in the laboratory. 

Theoretical whisker-plastic laminates are compared with present 
bidirectional materials in figure 20 (from ref. 14). The calculated 
strength is based on the assumption that the whiskers are nonwoven, 
biaxial, felt impregnated with epoxy resin, and high pressure molded. 
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FIGURE 17.—Structural index curves for cylindrical shells of 
various constructions subjected to axial compression. 

Under these assumptions, the curves show that the whisker composite 
would offer an order-of-magnitude increase in strength. 

Figure 21 (from ref. 23) summarizes the evaluation for pressure 
vessels. On the horizontal scale, the uniaxial material tensile-strength- 
weight ratios are indicated. For glass filaments, this ratio is based on 
the strength of the rovings. The vertical scale represents the uniaxial 
structural strength-to-weight ratios that can be achieved by appli- 
cation of the best current technology. Although filamentary composites 
appear to be superior to monolithic construction, it must be noted 
that the configuration efficiency coefficient must also be considered 
when evaluating overall pressure-vessel efficiencies. Consequently, 
figure 21 does not permit a direct comparison of the relative efficiencies 
of materials as used in pressure vessels. The values in figure 21 are 
based on short-time-load applications at room temperature; cryogenic 
and elevated temperatures and other environmental factors can change 
the relative efficiencies of monolithic and filamentary materials 
substantially. 

Figure 22 (from ref. 23) depicts the overall efficiencies of mono- 
lithic and filamentary materials for membrane-type pressure vessels. 
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FIGURE 18.—Structural index curves for flat plates of various 
constructions subjected to edge compression. 
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FIGURE 19.—Strength versus temperature for various 
fiber composites. {Courtesy of Materials in Design 
Engineering.) 
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FIGURE 21.—Comparative structural efficiencies of various materials in pressure 
vessel applications at room temperature. 
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FIGURE 22.—Overall membrane efficiencies of pressure vessels at 
room temperature. 

It is based on two efficiency factors: (1) structural efficiency co- 
efficient, C, and (2) material efficiency parameters, (S/p); where C is 
a nondimensional function of the configuration and material-failure 
law; p, the density in pci; and S, the structural strength in psi. The 
crosshatched regions in figure 22 represent materials that have been 
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utilized in full-scale aerospace-production components. One should 
remember that the aerospace environment encompasses temperatures 
other than room temperature, on which figure 22 is based. 

The data of Brewer and Jeppeson (ref. 24) indicate that inflatable 
structures as a class are inherently much less efficient than metallic 
and glass-epoxy composites. Isotropie metallics are not as efficient as 
glass-epoxy composites, when properties are compared at room tem- 
perature. Under the best circumstances for each, a weight-saving 
potential of approximately one-third can be attained with the glass- 
epoxy composite. 

For other materials concepts that have not, as yet, reached the 
aerospace production stage, filament-wound isotropic metal cylinders 
represent an inherent improvement over monolithic isotropic metallics. 
At room temperature, however, the glass-epoxy composites still ap- 
pear to have an advantage. On the other hand, anisotropic metals, 
as opposed to currently used materials, can represent a significant 
weight-saving potential. This potential depends strongly on the degree 
of anisotropy that can be achieved with high-strength metals and the 
configuration of the pressure vessel. This is also true for filament- 
wound, texture-hardened metal cylinders. 

An important improvement in overall efficiency appears possible 
with oriented whisker composites. However, on the basis of the 
analysis used herein, the potential of such composites appears to be 
far less dramatic than predicted by Hoffman (ref. 25). In fact, only 
the low-density whiskers, such as graphite and aluminum oxide, 
appear to be attractive when used in the form of oriented whisker 
composites. 

In selecting a material and design for specific performance require- 
ments, each configuration (and each part of the configuration) must 
be examined and analyzed to provide the best possible structure. 
Ultimately, materials design will be integrated into structural design 
as an added dimension. Since the selection of the configuration re- 
quires consideration of the environment, rigidity requirements, 
fabricability, smoothness, and reliability, a detailed analysis is needed 
to provide a valid basis for selection. In chapter 5, we will consider 
the interplay among design, structures, and materials as well as the 
general aspects of design synthesis and optimization. 



CHAPTER 4 

Structural Concepts and Applications 

In chapter 2, we emphasized advances in strengthening materials 
for structural applications that have resulted in part from aerospace 
requirements. We now turn to some of the recent developments in 
structural concepts, their uses, and general types of construction. 

LAMINATION 

Structural types may be used singly or in combinations, depending 
on the functional requirements of the object to be constructed. For 
example, for ordinary performance a pressure vessel may be made 
from a monolithic material, but when weight is a critical factor, it 
can be made from a filament-wound design. As components of liquid- 
hydrogen flight vehicles, vessels must withstand extremely high 
temperatures for long periods of time without serious loss of structural 
integrity. Composite laminates permit multifunctional constructive 
systems that have this capability. This new structural concept in- 
volves layers of either monolithic or composite materials. Three 
examples developed for application in reusable structures are: hot 
monocoque, insulated, and multiwall designs. 

Hot Monocoque 

Figure 23 shows a hot-monocoque structure for a hydrogen tank 
which operates near equilibrium temperature and supports applied 
load. The interior systems, consisting of an aluminum waffle-plate 
tank with reinforcing rings, are isolated from the exterior load-bearing, 
or primary, structure by insulation and by a carbon dioxide purge 
system. Panels of fibrous insulation are bound to the outside, with 
carbon dioxide filling the voids in the insulation between the tank and 
the outer structure. The primary structure is a corrugation-stiffened 
panel of a high-temperature superalloy with transverse rings for addi- 
tional support. 

Insulated Design 

The insulated structure concept seen in figure 24(a) is composed of 
a superalloy heat shield for temperatures up to 1800° F, fibrous high- 
temperature insulation, a primary structure, cryogenic insulation, and 
a fuel-tank structure. The temperature of the primary structure is 
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FIGURE 23.—Structural research model. 

partly dependent on the thickness of the cryogenic and fibrous insula-, 
tions. This type of construction requires essentially three leaktight 
shells: (1) the internal hydrogen tank, (2) the primary structure which 
precludes liquefaction of air that enters the cryogenic insulation 
area, and (3) the heat shield which prevents trapping and freezing of 
moisture within the fibrous insulation area. 

Multiwall Design 
The multiwall design, shown in figure 24(6), is unique because the 

thermal-protection and load-carrying functions are performed by one 
integral component. The design consists of a sandwich of alternating 
layers of fiat and dimpled sheets joined by welds at the dimples. The 
insulating effect is produced by the multilayer reflective sheets when 
the spaces between these layers are evacuated. The inner layers form 
both the primary load-carrying structure and the tank wall. Because 
large temperature differences through the wall thickness are a major 
problem, the potential of this concept is limited, first, by manufactur- 
ing difficulties and, second, by possible thermal stresses inherent in 
its complex design. A multifunctional, multilayer laminate, neverthe- 
less, has been successfully used in a rocket-nozzle design to withstand 
6800° F. 

Laminates have also been used in filters, printed circuitboards, and 
skis. 

Several layers of felts or other fibrous materials can be bonded by 
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FIGTTBE 24.—Cryogenic tankage for hypersonic aircraft. 

interlocking the fibers. Furthermore, layers of different fiber system s 
with varying pore sizes, densities, and thicknesses can be bonded 
together to form a filter laminate, in which each layer can separate 
particles by specific sizes. Recently a printed circuitboard consisting 
of a layer of silicone rubber bonded between two layers of glass-rein- 
forced-epoxy laminates was introduced. The glass-epoxy layers are 
clad with copper to provide good electrical conductivity; the silicone 
rubber gives damping power; finally, the glass-epoxy adds strength, 
rigidity, and insulating properties. 

A new ski design uses a seven-layer laminate shown in figure 25. 
After a layer of wood-particle board is bonded between two aluminum 
strips, the aluminum strips are bonded to two strips of high carbon 
steel to provide camber and flexure. Lastly, cotton fabric layers are 
applied to the aluminum to increase its bond strength to the wood and 
the steel. The top, bottom, and sides are each bonded to a layer of 
phenolic plastic. 

Many other design problems can be solved with plastic laminates 
bonded to organic or inorganic materials. Potential advantages of 
choosing materials for specific purposes include: better strength-to- 
weight ratios, increased rigidity and strength for soft sealing mate- 
rials, dimensional stability over a wide temperature range, improved 
bearing surfaces and fabrication characteristics, greater range of fric- 
tional and electrical characteristics, higher resistance to corrosion and 
chemicals, and reduced costs. 
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FIGURE 25.—Cross section of ski. 
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FIGURE 26.—Wall section. 

Composite laminates have been shown to provide almost limitless 
design possibilities and versatility. An example of a future commercial 
application is a structural wall (fig. 26) that can be used widely in the 
construction industry. From left to right, the layers consist of (1) a 
film which serves both for weather protection and decoration, and (2) 
a sandwich panel, bonded to a metallic sheet, for load support and 
insulation; this, in turn, provides for radiant heating and cooling. 
Another layer of fluorescent material could be added for lighting (v 
HSofref. 5). 

FILAMENT-OVERWRAPPED PRESSURE VESSELS 

Although glass-fiber composites are excellent for many structural 
applications, their use in pressure-vessel applications is limited. 
Johns and Kaufman (ref. 26) of NASA have described cylindrical 
cryogenic pressure vessels made by wrapping glass fibers around a 
metallic vessel in such a way that the metal acts as an impervious 
liner as well as supports a large part of the pressure load. In over- 
coming the yield strain difference between the glass fibers and 
metal, the glass fibers may be prestressed to put the metal into 
precompression. 

The prestressing problem must be carefully considered. Although 
prestressing by pretensioning is generally desirable during winding, 
pressurization may be necessary, depending on the amount of pre- 
stressing required. To prevent damage during winding, a number of 
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glass fibers, such as S-HTS glass, can be wound at about 25 percent 
of their ultimate load. If the vessel is to be used in either high-tempera- 
ture or cryogenic environments, the difference in the thermal ex- 
pansion coefficient of the filamentary and the metallic materials 
must be taken into account in prestressing. For example, an alumi- 
num cylinder wrapped with S-HTS glass at room temperature 
with near-maximum prestrain will lose most of the prestress at cry- 
ogenic temperatures. Cases of this type require special winding tech- 
niques to obtain the necessary prestrains without filamentary damage. 

In the course of the work described by Johns and Kaufman (ref. 26), 
aluminum cylinders were wound with sufficient glass filament to 
carry about half the hoop load at burst pressure, as based on uni- 
axial tensile properties. Because the metal and filaments reach their 
ultimate strengths simultaneously, this amount of fiber-glass- 
reinforced plastic is referred to as optimum. These cylinders were 
designed to have a one-to-one biaxial stress field at burst pressure, 
with the filaments being uniaxially wound. 

A number of small overwrapped cylindrical pressure vessels were 
tested to burst. (See fig. 27 (a), (b), (c), and (d), from ref. 26.) The 
2014-T6 aluminum tubing was wrapped with S-HTS glass impreg- 
nated with epoxy resin to form a layer of fiber-glass-reinforced plastic. 
Most of the vessels were pressurized to burst. In the optimum design, 
the metal is designed to be in a one-to-one stress field at burst pres- 
sure, where the failure orientation in the metal is not readily pre- 
dictable. The fracture usually originates in the metal; the failure 
is either circumferential or longitudinal, or often both. When less 
than the optimum amount of glass has been used, the fractures seem 
to originate in the glass almost as often as in the metal. 

When cylinders having optimum amounts of glass were tested 
at room temperature, as shown in figure 27(a), some of them failed 
without the glass breaking because of circumferential stress in the 
metal. In these cases, the resin had crazed during straining, allowing 
the pressure to escape when the aluminum failed and leaving the 
glass intact. When the tests were repeated with liquid nitrogen, 
the aluminum failed because of longitudinal stresses, as shown in 
figure 27(&). In some cases, the failure produced a sawtooth pattern; 
in others, a smooth pattern. Tests conducted on cylinders in liquid 
nitrogen with 90 percent of the optimum amount of glass indicated, 
that the glass ruptured first, allowing the aluminum to bulge because 
of plastic flow. (See fig. 27(c).) Failures during tests conducted on 
both types of vessels in liquid hydrogen were catastrophic, as shown 
in figure 27(d). In similar experiments 2014-T6 aluminum cylinders 
wrapped with S-HTS glass proved to be as much as 50 percent more 
efficient than homogeneous 2014-T6 aluminum cylindrical pressure 
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Id) 

FIGURE 27.—Failures of 2014-T6 aluminum pressure vessels over- 
wrapped with S-HTS glass: (a) 70° F, optimum overwrap; (&) 
— 320° F, optimum overwrap; (c) —320° F, 90 percent of optimum 
overwrap; and (d) —423° F, optimum overwrap. (Reprinted from 
Proceedings, AIAA/ASME 7th Structures and Materials Con- 
ference.) (Courtesy of American Institute of Aeronautics and 
Astronautics.) 
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vessels,  and  consequently,  more  efficient  than spherical pressure 
vessels. 

The greatest potential use for overwrapped tanks is as high-pressure 
containers since minimum thickness requirements based on fabri- 
cation and handling considerations usually predominate in low- 
pressure applications. 

SEGMENTATION OF TANKS 

Because enormous propellant tanks are needed for large launch 
vehicles, engineers have made radical changes in tank shapes and 
construction. The size of elliptical bulkheads such as those used on 
conventional tanks became critical because of the length of the launch 
vehicle. The usual bulkheads would not only add to the length but 
also create stability problems due to the increased skirt length, which 
is the peripheral section between tanks. When diameter increases, the 
thrust load and geometry require such increased skin gages and 
stiffener sizes for the skirts that machined integral panels are elimi- 
nated. 

To solve this problem, NASA-Marshall investigated new concepts 
for large vehicle propellant tanks. Of these concepts, three are de- 
scribed below: (1) the multicell tank, (2) the semitoroidal tank, and 
(3) the flat-bulkhead tank. 

Following a suggestion made by Professor Oberth some 40 years 
ago, NASA-Marshall conducted a detailed study of segmented designs 
which have been used quite successfully in large storage tanks for 
many years. One type of segmented tank is the integral cluster, 
scalloped, or multicell configuration.1 The use of the multicell con- 
figuration instead of the conventional cylindrical pressure vessel is an 
innovation developed for launch systems. A 10-lobe version of the 
multicell design (ref. 27), shown in figure 28, is composed of thin- 
walled, partial-circular, cylindrical shells and radial webs. The 
partial cylinders that form the tank periphery and the radial webs 
may be of unstiffened, stiffened, or sandwich construction. The radial 
webs extend from a center tube to the juncture of two outer wall 
sections and then longitudinally between cell and closure bulkheads. 
Bulkheads are partial cones connected to the partial cylinders by 
spherical sectors. Extended and partial Y-sections are used as attach- 
ments for cylinder-web-bulkhead junctures and cylinder-spherical 
skirt junctures along the periphery of the cross section, respectively. 

One advantage of the multicell configuration over the conventional 

1 The multicell configuration is no longer an isolated concept, but is now con- 
sidered to be a tank with low-profile bulkheads. 
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FIGURE 28.—Ten-lobe multicell tank. 

pressure vessel design is the reduction in bulkhead depth. As figure 
29(a) shows, the bulkhead of the multicell structure is relatively flat. 
The multicell design not only permits a reduction in overall missile 
length by decreasing the length of the tanks but greatly shortens 
the space between the tanks themselves. The radial webs, used most 
efficiently as part of the basic structure, eliminate the need for baffles 
to reduce sloshing. The multicell construction provides a flexibility 
that no other configuration can offer; namely, it distributes basically 
needed material for a given pressure vessel into both the outer shell 
and the internal tension wall system. Furthermore, it offers flexibility 
in selecting tank diameters and bulkhead arrangements and makes it 
possible to use existing facilities for manufacturing sections of a 
multicell vehicle. Blumrich (refs. 27, 28, and 29) and Wuensher and 
Berge (ref. 30) of NASA, among others, have been associated with 
this launch vehicle design, and their reports include excellsnt discus- 
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FIGUEE 29.—Large-size first- and second-stage structural systems (dimensions in 
inches). (Reprinted from Astronautics and Aeronautics.) (Courtesy of American 
Institute of Aeronautics and Astronautics.) 
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sions of the design and development of manufacturing techniques. 
The analysis of multicell structures also has been treated recently 
by Blum (ref. 31) and Wilson et al. (ref. 32). 

Another principle under investigation is the semitoroidal tank, 
shown in figure 29(6), in which two ellipses smaller than those in 29(a) 
form a bulkhead. In figure 29 (from ref. 29), three design concepts 
are compared: the multicell, semitoroidal, and elliptical bulkhead. 
Features of the semitoroidal tank are: (1) supports between the 
tanks and between rear tank and thrust structure; (2) the centerpost 
which has a diameter determined by the acceptable thickness of the 
adjacent bulkhead portion; and (3) a connection from the bulkhead to 
the centerpost. The tank is supported on the thrust structure by the 
tail section which has either radial beams or at least one member 
extending through the centerpost of the vehicle to pick up the load. 
If the material is too thick, it is not possible to make a tangential 
connection from the elliptical bulkhead to the centerpost. For struc- 
tural and manufacturing reasons, a conical transition between bulk- 
head and centerpost seems to be preferable. The advantages of the 
semitoroidal design include: (1) reduction of stage and vehicle 
lengths, and (2) elimination of deep elliptical bulkheads because the 
new design permits the use of separate tanks, with some additional 
reduction of stage length. 

A third principle under investigation is the fiat-bulkhead concept 
(shown in fig. 30 from ref. 27), so named because of the overall 
appearance of the design. The concept is that of a segmented tank 
employing several of the principles already discussed under multicell 
tanks. Further tests are being conducted on a model of the flat- 
bulkhead concept to determine its structural integrity. Kesulting 
data may be used to compare tank designs and determine preferability. 

ISOTENSOID STRUCTURES 

Design problems involving filamentary-matrix construction are 
simplified if the direction of loading is confined to the principal 
directions of stress and shear stresses in the matrix are avoided. 
When shear stresses can be prevented or offset, conditions such as 
those found in so-called isotensoid structures (ref. 5, p. 126) are 
produced. 

In isotensoid structures, the filaments (in filament-wound struc- 
tures) are oriented so that they are equally stressed and provide 
resistance in the principal stress directions in proportion to the 
magnitude of principal stresses. Because this technique allows cir- 
cumferential stresses to be twice as great as axial stresses, it is excel- 
lent for cylindrical pressure vessels in which about half the fibers 
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are wound axially and half circumferentially. For the preferred helical 
winding pattern, the filament is wound using an angle to produce 
its tensile resistance so as to give a desired 2-to-l ratio when resolved 
in the two directions of principal stress. Under design conditions, 
however, such a layer of filament will produce considerable shear 
stresses in the matrix. Therefore, a second layer is wound in the oppo- 
site direction (a reverse wind) to offset the shear stresses. 

Comparisons of practical design parameters of the cylindrical and 
spherical shells have shown that a sphere is a more efficient strength- 
to-weight ratio pressure vessel. Glass-fiber-reinforced plastics have 
been found to be the best basic constituents. 

The isotensoid design is based on the concept of designing an 
equal and uniform tension in each fiber. Levenetz (ref. 33) showed 
that certain modifications of the spherical shape can improve the 
efficiency of a vessel. He designed the winding pattern of the fibers 
to maintain unidirectional loading and uniform tension. The geometry 
of this modified sphere is called oblate spheroid, ovaloid, or ellipsoid, 
as shown in figure 31. This efficient type of pressure vessel is char- 
acterized by a short polar axis and a larger perpendicular equatorial 
diameter. The head shape is determined by an elliptic integral. The 
only parameter is the ratio of the central opening to the vessel diam- 
eter, which determines the variations of the winding angles, with 
fibers oriented toward the polar axis. The angle of the fibers with the 
polar axis depends on the polar openings (end closures). 

Composite stresses of 200 000 psi have been reported in rocket 
cases of this configuration. Recent research at NASA Langley Re- 
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FIGURE 31.—Isotensoid configuration. 
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search Center (ref. 34) and in industry on the isotensoid concept of 
filament winding has resulted in extremely high strength-to-weight 
ratio rocket-motor cases. The determination of the coordinates for 
isotensoid pressure vessels is given by Zeckel (ref. 35) and in other 
references. 

TENSION-SHELL CONFIGURATION 

The tension-shell configuration, sometimes called the "Langley 
tension shell," is a reentry vehicle design developed for the Voyager 
mission to meet minim urn weight and high-drag profile requirements. 
Since high-drag profiles generally have a wide base as compared to 
axial length, buckling is the usual mode of failure of such a 
configuration. 

In figure 32 (a) and (b), a conventional design is compared with 
tension-shell design. In the tension-shell configuration in figure 32 (6), 
the meridional contour flares outward toward the base. The payload 
is so attached to the shell that the inertial forces, resulting from the 
deceleration of the payload, develop an axial tension in the flared 
portion of the shell. Although the external aerodynamic pressure 
tends to produce circumferential compression in the shell, this com- 
pression is more than compensated for by the circumferential tension 
produced from a combination of the axial tension and the flared 
portion. In turn, this tension-shell configuration reduces the buckling 
tendency of the shell. Nevertheless, the crushing action of aerodynamic 
forces must be resisted even in the tension shell with a compression- 
resistant spherical nose segment at the forward end and a compression- 
resistant ring at the aft section. Papers by Anderson et al. (ref. 36), 
Halberg (ref. 37), and Levy and Hess (ref. 38) give detailed discus- 
sions and analyses of the tension shell. 

TENSION-STRING STRUCTURE 

Alai (ref. 39) has reported a new ultralight, high-drag concept 
called the "tension-string structure," which is a variation of the 
tension shell. This configuration, lying between that of the sphere 
cone and a tension shell, is produced by using high-strength filament 
materials in tension, as shown in figure 33 (from ref. 39). The basic 
elements are a strong forebody and shield, nose cap, equatorial ring, 
afterbody, central support, and payload. Figure 34 (from ref. 39) 
shows a completed model. 

A forebody is generated by straight strings in tension, arranged to 
form a curved (ruled) hyperboloid surface. A specified amount of 
pretension is applied to each string during winding to assure tension 
under all loading conditions specified by the mission. The strings 
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(A)    CONVENTIONAL      DESIGN 

(B)     TENSION-SHELL     DESIGN 

FIGURE 32.—Tension-shell structure. 

generate a surface of revolution of negative Gaussian curvature. The 
finished shape is obtained by applying an elastomeric-shield material 
over the filaments. The nose cap may be either blunt or pointed, 
wound along with the forebody, or solidly integrated with the pay- 
load. The equatorial ring, one of the primary compression elements, is 
restrained (bonded) by the forebody and afterbody strings, stabilizing 
the ring laterally while providing resistance against lower-mode 
overall buckling. 

The afterbody, wound as a continuation of the forebody, is shaped 
like a truncated hyperboloid. The exact configuration, however, is 
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FIGURE 33.—Tension-string structure. (Reprinted from Proceedings, Al A Al 
ASME 7th Structures and Materials Conference.) (Courtesy of American In- 
stitute of Aeronautics and Astronautics.) 

FIGURE 34.—Tension-string model. (Reprinted from Proceedings, AIAA/ASME 
7th Structures and Materials Conference.) (Courtesy of American Institute of 
Aeronautics and Astronautics.) 
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arbitrary and depends ultimately on vehicle requirements rather than 
on aerodynamic considerations. 

The central support, the other primary compression element, may 
be any shape required. In figure 34 it is shown as a cylinder supporting 
the payload and fore-and-aft rings, to which forebody and afterbody 
strings are bonded. 

EXPANDABLE STRUCTURES 

The size and mass of missile payloads will always be restricted. At 
present, there are two approaches to transporting large structures into 
space in small, lightweight packages. One approach is space construc- 
tion, requiring prefabricated sections to be launched, rendezvoused, 
and assembled in space. The second uses a structure that can be ex- 
panded from a small to a large volume. Figure 35 (from ref. 40) is a 
step-by-step illustration of the ejection, erection, and rigidification of 
an antenna dish. There are four basic types of expandable structures: 
(1) inflatable, (2) chemically rigidified, (3) unfurlable, and (4) elastic 
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FIGURE 35.—Ejection, ereetk and rigidification 
of antenna dish. (Reprintea ,rom Proceedings, 
AIAAjASME 7th Structures and Materials 
Conference.) (Courtesy of American Institute of 
Aeronautics and Astronautics.) 
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recovery structures. Seven basic techniques (see fig. 36 from ref. 41) 
are available to the structural engineer to bring about the expansion 
and rigidification of flexible materials. Brink et al. (ref. 42) and Schuerch 
and Schindler (ref. 43) have analyzed the foldability of expandable 
structures. 

TYPICAL APPLICATION 
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FIGTJEE   36.—Expandable  structure   deployment  technique and  applications. 
(Courtesy of Space/Aeronautics.) 
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Inflatable Structures 

"Inflatable structures" are defined as fabric or film envelopes that 
maintain structural integrity by internal pressurization. Generally 
they are spherical, cylindrical with dome ends, or toroidal shells. An 
example of this concept is the inflato plane (designed by Goodyear 
Aircraft Co. for the U.S. Army), an aircraft with a 28-ft wingspan, 
that weighs only 290 lb. A variation of the principle is found in the 
Airmat (also developed by Goodyear), in which varying lengths of 
integrally woven drop threads create cross-sectional shapes, such as 
flat panels or airfoils. (See fig. 37 (a), (6), and (c) from ref. 41.) 
Potential space applications include extensions for space stations, 
space furniture, and rendezvous docks. 

Chemically Rigidified Structures 

Deployed structures given rigidity through a chemical reaction are 
made by impregnating a film fabric with a rigidifying resin. Woven, 
fluted, or corrugated sandwiches also may have application in these 
structures to provide buckling resistance under bending loads. Three 
basic types of chemical rigidification systems are: (1) plasticizer boil- 
off, (2) gas catalyst, and (3) radiation-cured systems. 

The best plasticizer boiloff system utilizes gelatin and water as a 
plasticizer. Gelatin rigidification systems were developed by the U.S. 
Air Force, Swift & Co., Monsanto Chemical Co., and Hughes Aircraft 
Co. for the Air Force. Such a system permits a structure to be de- 
ployed, rigidified, and tested on Earth, then plasticized and packaged 
for launch. Gelatin can be replasticized repeatedly by exposure to 
humidity. In the space environment, vacuum causes water migration 
out of the structure and produces rigidity. 

Gas-catalyzed urethanes, developed by Archer Daniels Midland 
Corp. for the U.S. Air Force, are cured into rigid plastic upon ex- 
posure to water vapor. Another example, developed by National 
Cash Register Co. for the Air Force, is a fast-reacting system that 
utilizes a vinyl monomer and an amine catalyst. The catalyst, locally 
introduced by a fine spray or gas, will automatically cure and prop- 
agate throughout the entire structure. Both of these gas-catalyst 
systems require refrigeration to extend storage life. 

Radiation-cured systems employing epoxy and polyester resins have 
been developed by Hughes Aircraft Co. for the Air Force and NASA. 
These systems require exposure to solar radiation for initiation and/or 
continuation of the rigidification process. A foam-in-place rigidifi- 
cation system was once considered for space use, but tests of several 
versions for the Air Force and NASA showed it to be impractical 
because of its complexities and poor strength-to-weight ratios. 
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FIGURE 37.—Three expandable 
structure sections: (A) seg- 
ment of rigidified-foam solar 
reflector which would be 
activated in space; (B) rigid- 
ified honeycomb section; and 
(C) sample of airmat. (Cour- 
tesy  of Space/Aeronautics.) 
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FIGURE 38.—Solar cell array: (A) stowed 
position for launching, and (B) operating 
position. (Courtesy of Radio Corporation 
of America.) 
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Unfurlable Structures 

55 

Unfurlable structures are defined as bodies that are mechanically 
deployed by hinges, sliding sections, and telescoping members. Con- 
ventional materials often can be designed to fold mechanically into a 
component package. This concept and its variations have been widely 
used by aerospace designers because conventional mechanical design 
procedures can be applied with high reliability. Figures 38 (a) and 
(6) and 39 (from ref. 44) are designs used for solar cells. 
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FIGUBE 39.—Unfurlable sail type of solar collector. {Courtesy of Radio Corpora- 
tion of America.) 
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(B) 
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LATERAL SOLAR. 
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FIGURE 40.—Pegasus satellite and its center section: (A) showing orientation of 
axes, and (2?) center section. 
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The Pegasus Satellite (Fig. 40 (a) and (6) from ref. 45), formerly 
called the Micrometeoroid Measurement Capsule, was an excellent 
example of this type of structure. A modular winged satellite launched 
for meteoroid detection in near-Earth orbits, it was developed by 
Fairchild Hiller Corp. for NASA under the supervision of Marshall 
Space Flight Center. Deployment of the detection panels was accom- 
plished by a mechanical unfolding stress structure, giving a wingspan 
of 96 ft. 

Elastic Recovery Structures 

Both the Air Force and NASA have launched programs to develop 
expandable structures for aerospace applications, such as solar col- 
lectors (Geophysics Corp. of America, Viron Division; National Cash 
Register Co.; Goodyear Aerospace Corp.); reentry applications (Good- 
year Aerospace Corp.); space stations (Goodyear Aerospace Corp. for 
the Air Force); expandable airlocks, crew tunnels, and hangars (Good- 
year Aerospace Corp., Geophysics Corp. of America, Viron Division, 
for the Air Force and Narmco Division of Whittaker Corp. for NASA); 
and lunar shelters (Goodyear Aerospace Corp. for NASA). A recent 
report by Brink et al. (ref. 42) contains a detailed discussion of the 
development, feasibility, and applicability of the elastic recovery 
concept to expandable structures. 

These structures are defined as those that utilize the basic elastic 
properties of the materials to deploy and provide limited structural 
rigidity. Such a structure is packaged by compressing and folding it 
into an extremely small container. Upon release from the container, 
the stored potential energy of the material is sufficient to expand and 
rigidify the structure. 

The STEM boom of De Havilland Aircraft Co. is an excellent ex- 
ample of this concept. Circular in cross section, the boom is slit along 
its entire length so that it can be rolled up on a drum that flattens 
the cross section. Upon extension of the boom, the flat ribbon springs 
back into its original circular cross section. 

Figure 41 (from ref. 41) shows properties and applications of the 
expandable-structure techniques, and figure 42 (from ref. 41) com- 
pares structural-merit to packaged-to-deployed volume ratio. 

BUILDING CONSTRUCTION APPLICATIONS 

Pneumatic Structures 

Experience with novel structures in space may facilitate the use of 
such new ideas on Earth. Within the atmosphere, an inflatable struc- 
ture is commonly referred to as a pneumatic structure; this has become 
an important concept for commercial structures. Membranes pre- 
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PROPERTIES 

Structural Merit—Tension 

Structural Merit-Compression 

Structural Merit-Bending 

Expanded-to-Packaged Volume Ratio 

Reliability—Deployment (including 
curing & rigidization) 

Expected Reliability—Postdeployment 

Micrometeoroid Resistance 
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FIGURE 41.—Properties and uses of expandable structures. (Courtesy 
of Space/Aeronautics.) 

stressed by internal pressure completely enclose a volume or a number 
of separate volumes. The membranes are very thin stressed skins, 
generally built from sheet metal, fabrics, or fiber-reinforced plastics. 
They are so thin that, for all practical purposes, they cannot resist 
compression, bending, or shear, but only tension. Figure 43 (from 
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FIGURE 42.—Comparison of structural merit to deployed-to-packaged volume 
ratio of expandable structure techniques. (Courtesy of Space/Aeronautics.) 

ref. 46) illustrates an advanced application of membrane structures 
called a "wavehall."   ■ 

Structural membranes may be classified as either anticlastic or 
synclastic, depending on the curvature of the surface. "Anticlastic" 
means having opposite curvatures; i.e., having the center of principal 
radii at different sides of the observed tangent plane. A soap bubble 
and certain pneumatic structures are synclastic surfaces. The rubber 
raft is an excellent commercial application of this principle. 

Concepts of an optimal structural form for two-dimensional com- 
ponents have long been in common use for the arch and suspension- 
cable structures. The extension of these concepts to curved surfaces 
or three-dimensional structures can be characterized by the structural 
membrane or minimum structure. Otto and Trostel have developed 
"sail-shells," stiffened pneumatic surfaces, and other tensile-stressed 
forms (ref. 46), which are based on the premise that structural form 
is determined by the equilibrium of forces rather than the geometry. 
In certain applications, a reversal of the tensile-stressed structure 
seems to result in a parallel reversal of stresses from tension to com- 
pression. 

Pneumatic-structural systems, proposed by Lanchester in 1917, 
have made practical great large-span domes and hydraulic structures 
such as large-span dams. Figure 44(a) (from ref. 47) illustrates a pneu- 
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FIGURE 43.—A wavehall membrane structure. 

matic-roof application with thin plastic membranes inflated by a 
small pressure to create stable domes for swimming pools or other 
installations. An overpressure of only one-tenth or two-tenths of a 
psi is sufficient to hold up such a structure. Regular doors can be 
used, since, even if they are opened frequently, the loss of pressure 
in the large enclosed volume is negligible. Such losses, of course, are 
replaced intermittently under control of a pressure gage. 

Koch and Weidlinger designed a balloon roof (fig. 44(6)) for a 
summer theater in the form of a lens inflated by a pump to an over- 
pressure of 10 psf. And some 24 years ago, Wallace Neff began tö 
produce stiff shells called "igloo houses" by pouring concrete over 
rubber balloons (fig. 44(c)). An inflated balloon supports a reinforcing 
steel mesh which is sprayed with a 1-in. layer of concrete from a 
concrete gun. After the concrete has hardened, the form is deflated 
and pulled out of the house through the door opening. The igloo 
house was invented by Neff and designed by Elliott Noyes and Mario 
Salvadori. 

In 1962, in Essen, Germany, a pneumatically stressed balloon skin 
was sprayed with plastic from the inside to produce a weatherproof, 
insulated shell. The finished wall was a 20-mm-thick sandwich con- 
struction produced of glass fiber, polyester, and Perlite. After the 
polyester had set, the inside pressure (55 mm H2O) was lowered and 
openings were cut into the shell. In this construction a translucent 
skylight can be made. Another example in figure 45 (from ref. 48) 
illustrates a step-by-step version of this same technique. In this case 
a plastic film was inflated and held taut by compressed air while 
a 2-in. coat of urethane foam was sprayed onto the inside of the film. 
After drying, the shell was covered with metal reinforcing bars and 
openings were cut into the shell. The outer surface was then sprayed 
with 3 in. of concrete to make a durable, well-insulated, contemporary 
design. 
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(a) 

(b) 

f^n^f 
(c) 

FIGURE 44.—Modern enclosures: (a) pneumatic roof, (6) balloon roof, and (c) 
igloo (balloon) house. 
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Lattice Shells and Domes 

Lattice shells can have very high efficiency, use little material, 
and are stiff against buckling. Although their forms look complicated, 
they are very similar to their natural counterparts. (See fig. 46 from 
ref. 46.) 

In figure 47 (from ref. 46), a method of forming a continuous lattice 
is shown. On a formwork {A), a steel wire fabric (B) and a second 
fabric {(J) are placed in layers connected with wire ties (D). Between 
the ties are placed rubber balloons (E), which are blown up to pre- 
stress the wire fabric. After the balloons are deflated, only small 
voids remain; these are filled and stiffened with cement, concrete, 
or resins to form a continuous lattice shell. Finally, the rubber balloons 
are removed. 

Shell systems may also be constructed from thin laths; in these 
systems a flat square grid is deformed into a spatially curved surface. 
Some examples are shown in figures 48 and 49 (from ref. 46). Such a 
shell may be erected over any arbitrarily chosen planform, such as 
one- or two-sided curvatures in dome or saddle form. Elastic, thin, 
flexible profiles of wood, aluminum, or steel are best suited as building 
materials for this adaptable method. Lattice shells can be easily 
erected and dismantled, and their form can be changed without 
destroying the structure. 

Space-frame domes permit the spanning of large distances with 
relatively less material than required by other methods. In the 
geodesic dome designed by Fuller (ref. 49), the triangle and the pen- 
tagon are used in subdivision of bars of equal length (fig. 50). It is 
called "geodesic" because the vertexes of the curved figures that 
form its structure mark the arcs of great circles, known in geometry 
as geodesies. Radar domes built this way have withstood winds up 
to 150 mph and temperatures ranging from far below zero to over 150° 
in direct sun. The U.S. Pavilion at Canada's Expo '67 is an example 
of the geodesic dome. 

The technology developed for space-frame domes with fiber-rein- 
forced plastic skins can be interpolated into a folded-plate design 
for use in flexible and demountable dome structures. Although used 
mainly as roof structures, these plates may also be used as vertical 
walls to resist both vertical and horizontal loads. Combinations of 
folded-plate roofs and walls have been used to enclose large spaces. 
These plates may be ribbed, curved, or sandwiched for strength and 
rigidity (fig. 51). 

Figure 52 is a proposed design employing the shatterproof sheet- 
panel concept. These panels are now available in a wide variety of 
sizes, colors, and light-transmission properties. 
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FIGUBE 45.—Plastic building shell. 

Figure 53 illustrates the formed-skin concept. A pavilion, con- 
structed in 1950 for the U.S. Exhibition in Moscow, had a roof com- 
posed of a 20-ft-high, umbrellalike cluster of 16-ft-diameter hexagonal 
canopies supported on hollow columns. For translucency, as well as 
strength in shape, glass-fiber, mat-reinforced plastic was used as 
forming skin. Thickness ranged from %6 to % in., depending on the 
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FIGURE 46.—Two-layered lattice shell made of 
sheet elements. 

number of layers of material. The formed-skin concept, utilizing 
compound curvatures and shapes, is almost unlimited as a design 
approach. 

Large spherical domes over radar installations (radomes), built 
on the principle of thin plastic membranes, do not interfere with the 
reception and transmission of electromagnetic beams. One recent type 
of dome structure for a ground-based radome uses foamed plastics 
which have very low electrical-loss characteristics. The edges of foam 
panels can be joined together with foam plastic or adhesive bonding 
to provide a uniform wall radome with a minimal effect upon trans- 
mission losses. This design may have wide uses, particularly for 
higher frequency applications. 
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FIGTJRE 47.—Method of constructing a space structure. 

The "House of the Future" at Disneyland uses self-supporting 
shells of fiber-glass-reinforced plastic in a unitized design that permits 
both brightness and stiffness. The 8- by 16-ft cantilevered, hollow- 
structure monocoque shells comprising the structure are glass-fiber 
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FiGtJBE 48.—Chain model. 

FIGURE 49.—Finished dome. 

FIGURE 50.—Space-frame dome structures. (Courtesy of Owens-Corning Fiberglas 
Corp.) 
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FIGURE 51.—Folded-plate design.  (Courtesy of Owens-Corning Fiberglas Corp.) 

roving and resin 0.3 in. thick. Another unitized design, shown in 
figure 54, is for portable shell units for motels. 

"Buildings of the Future" include a home design with the basic 
roof and floor structures consisting of quarter moldings of fiber- 
reinforced plastic bonded together to form modules of shell construc- 
tion; fiat fiber-reinforced plastic panels and glass provide the other 
surfaces. In addition, a swimming pool, diving board, sun lounge, 
garden furniture, and woven fencing are molded in fiber-reinforced 
plastic. 

A dynamic new design for tall buildings made of lightweight steel 
(or aluminum) girders supporting prefabricated, fiber-reinforced 
plastic modules molded on the shell principle has also been published 
(ref. 50). Another imaginative design of the future is a school building 
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FIGURE 52.—Sheet-panel structure. (Courtesy of Owens-Corning Fiberglas Corp.) 

with roof sections, supported on a stressed framework of fiber- 
reinforced plastic, forming a light, immensely weatherproof structure. 
Panels can Tary from translucent to opaque, whereas the walls are 
clad in a sandwich construction of pigmented fiber-reinforced plastic 
with a core of insulating material. 

Some other treatments of futuristic houses are filament-wound 
glass houses (shown in fig. 55 from ref. 51), which could be produced 
in round, conical, doughnut, or mushroom shapes by using filament- 
winding techniques. Double-wall construction, decorated with per- 
manent, nonfading color, would provide insulation, and walls would 
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FIGURE 53.—Formed-skin structure. 

be translucent to eliminate dark corners during the day. The entire 
structure could also be fabricated on the building site, once winding 
machines capable of such large tasks are developed. 

An innovation not yet seen in this country is the isostatic-ribbed 
plate. As the reader knows, a plate is capable of developing grid 
action in any direction. Furthermore, any point in the plate may be 
considered as the intersection of two beams of a rectangular grid 
system, and any number of rectangular grid systems may be considered 
to be passing through a plate point. At each point there are two di- 
rections for which the bending stresses are, respectively, maximum 
and minimum, and for which the shear stresses are zero. If one in- 
dicates the principal stress directions at various points by crosses, 
principal stress-line patterns, or isostatics, may be plotted; these 
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FIGURE 54.—Fiber-composite structures.  {Courtesy of Owens-Corning Fiberglas 
Corp.) 

^6a ■ i *s 

FIGURE  55.—Futuristic houses spun by large filament-winding machine. 
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represent the flow of stress in the plate. The pattern, of course, de- 
pends on the support conditions at the plate boundary and the loading. 
Since the shear stress is zero along isostatics, the plate may be visual- 
ized as a grid of curved beams that intersect at right angles and do 
not transmit loads to adjoining beams by shear action. 

Isostatic lines form very interesting patterns and have been used 
by Nervi in floor designs (see frontispiece). The appearance of a 
ribbed plate can be made very attractive by constructing the ribs 
along isostatics. 

These are examples of building ideas that aerospace research may 
help bring into wider use. 



CHAPTER 5 

Design Synthesis and Optimization 

Design is the process of evolving a configuration to perform specific 
functions. It proceeds from the abstract to the concrete, and the 
initial concept is a relationship among ideas or geometrical forms. 
A final engineering design results from a series of problem-solving 
steps by which the configuration is evolved. This sequence of opera- 
tions, called the "design process," carries a problem through analysis, 
synthesis, and evaluation and decision into optimization, revision, 
and implementation (ref. 52). In most engineering situations, the 
design process involves a number of successive iterations rather than 
a single direct solution of a closed-form equation that expresses the 
primary design problem (ref. 53). In general, the designer selects 
a configuration, analyzes it, selects another, analyzes it, selects a 
third, and so on; he also sets cost schedules and evaluates performance 
implications of alternate structures. In other words, the designer 
inputs the design requirements and makes systematic variations in 
concept, material, and detail to arrive at a set of designs that satisfy 
the design criteria and performance requirements. 

To see the difference between the analysis and the design of a 
structure, suppose that the total geometry and load conditions are 
known and the material is given in the analysis. Then it is necessary 
only to analyze for structural behavior under the given load condi- 
tions. In the design process, however, only performance requirements 
are given; the geometry is not generally known. Thus the designer 
must generate a structure to meet specified requirements. 

Synthesis is the fitting together of parts or separate concepts to 
produce an integrated whole. Because of the complexity of the process, 
constant revisions and reevaluations of the revised results often must 
be made and newly developed information added to the design 
considerations. Although the synthesis step formally begins after the 
design problem is well understood, some hypothesis for possible 
solutions will probably be suggested during earlier steps. 

When the major design parameters must be set at specific values, 
optimization is used to find the best combination of parameter values 
to satisfy design requirements. This may be done mathematically, 
in which case all considerations associated with selection of the prime 
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solutions are set forth in an equation called the "criterion (merit) 
function." 

The mathematical description of a design problem involves input 
(independent) and output (dependent) variables associated through 
transforming mechanisms analytically expressed. If all the variables 
and design parameters are known, one can calculate the criterion value 
that will give a measure of the excellence of a particular design. In 
general, we must compare a particular design choice with other 
possible choices to determine its excellence. 

While a complete exploration of all physically realizable design 
parameters could be made, and the best set determined by elimina- 
tion, the usual design situations have two constraints: functional and 
regional. Functional constraints essentially constitute the mathe- 
matical description of the archetype of the proposed design. Regional 
constraints set the allowable limits on design parameters, or on 
derived groups of parameters, representing more complex attributes 
of the proposed object. Thus, in the general optimization problem, 
three factors must be considered: (1) the criterion function, which is 
brought to a maximum or minimum, depending on which corresponds 
to an optimum through proper choices of design parameters; (2) the 
functional constraints; and (3) the regional constraints. 

To state the problem mathematically (ref. 52), let us lump all of 
the variables together, so that the set (Xh . . ., Xn) contains the 
design parameters, input variables, and output variables. The criterion, 
represented by U, takes on the values of the criterion function 
U(XU . . ., Xn); the set of functional constraints is represented by 
(fti • • • &»); and the regional constraints by (fa, . . ., 4>v). 

For the regional constraints, the ith one will be constrained between 
the lower limit lf and the upper limit Lt. 

Thus, the optimization problem is described by the following set of 
equations: 

U=U(Xi, ■ ■ ■, Xn) —»optimum 

h=MXlt ■ ■ ; Xn)=0 

^m = lpm(Xi,   ■   ■   •, Xn)=0 

k<fa(X,   ■   ■   -,   Xn)<Lx 

lp<<t>p(Xi, ■ ■ •, Xa)<Lp 
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To give a geometrical interpretation of the analytical description, 
let us consider a three-dimensional space in which we can plot two 
variables (XUX2), since higher order spaces, or hyperspaces, are 
impossible to visualize. Let Xx correspond to the z-axis and X2 to the 
y-axis; the criterion value, U, corresponds to the 2-axis. In order to 
plot n variables, Xn, an (n.+l)-hyperspace is required. The Xy and 
-Xj-axes form a basis plane over which the criterion (merit) functions, 
U(XUX2), are constructed. 

The functional constraint fa{Xl,X2)=0 describes a curve on the 
basis plane. Projection of this curve onto the criterion surface gives a 
curve in space corresponding to fa(Xi,X2) =0; while at the same time, 
the curve conforms to the surface U(XUX2). This space curve "rises" 
or "falls" depending on the shape of U. If the optimum corresponds to 
a maximum, the highest point on the curve is sought; if it corresponds to 
a minimum, the lowest point is sought. In either case the XltX2 

coordinates of the optimum point will satisfy the constraint fa, since 
the projection of its curve on the surface, U, was followed. If there 
is a second functional constraint, ^2(-^i,-X'2)=0, the two curves cor- 
responding to the two constraints will intersect at a particular point, or 
possibly at several points on the basis plane. In an m-dimensional 
problem, fa and fa will intersect to form a new hypercurve that will 
still be on the n-dimensional basis plane. 

Now if we project the curve and the «.-dimensional basis plane to the 
criterion function surface, a curve is traced on the latter surface. If 
we move along the projected curve, we shall rise or fall according to 
the shape of the criterion function surface. As before, the highest point 
on the curve is sought for a maximum; the lowest point, for a 
minimum. 

Consider now the applications of regional constraints on a two- 
dimensional basis plane. The relation 4>i(X1,X2) represents a family of 
curves on the Xu X2 basis plane. Of this family, one extreme is 
<l>i(Xi,X2)=li, and the other is <fo(Xi,X2)=Li. Projection of the region 
between the two extreme curves to the criterion function surface 
defines a region on the surface that may be explored for an optimum. 
The introduction of a second regional constraint l2<4>2(XUX2) <L2 

leads (upon projection) to another region on the criterion function 
surface that may be explored for an optimum. The two curved strips 
of area will intersect on the basis plane to form a four-sided area, each 
of the sides being a segment of one of the limiting curves. Projection of 
this area onto the criterion function surface maps a specific region 
in which the optimum can be found. If other regional constraints are 
added, a region of many sides (equal to the number of constraints) 
must be. projected onto the criterion function surface. 
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STRUCTURAL DESIGN-SCIENCES APPROACH 

Although stringent demands may be placed on materials to achieve 
overall design efficiency, it is important to utilize materials effectively. 
Although many aspects are involved in the effective utilization of 
materials, particularly under severe environmental conditions, three 
basic factors are summarized in figure 56 (from ref. 54): design, 
structure, and materials. The optimum design of a system requires 
consideration of all three factors simultaneously. 

Aircraft, spacecraft, surface ships, submarines, and other vehicles 
have configurations, overall loads, and leading dimensions specified 
within rather narrow limits by performance requirements (ref. 55). 
The structural designer has some freedom within the confines of the 
leading dimensions to subdivide the structure with suitable stiffening 
systems to achieve a minimum-weight design (see fig. 57), but he 
must select materials that meet the particular structure and design 
conditions. 

The design-sciences approach synthesizes the statement of the 

FIGURE 56.—Nature of the interplay. 
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FIGURE 57.—Examples of design-sciences approach. (Reprinted from Astronautics 
and Aeronautics.) (.Courtesy of American Institute of Aeronautics and Astro- 
nautics.) 



78 STRUCTUBAL DESIGN CONCEPTS 

design problem by using certain design indices to combine the external 
loads and leading dimensions. It then uses idealized structural con- 
figurations, such as stiffened box beams and stiffened cylinders, to 
establish optimum designs from which to evaluate the comparative 
efficiencies of various materials. 

This approach reached maturity within the last two decades. 
It permits the engineer to establish significant design parameters to 
evaluate the efficiency of various structural configurations and 
materials, using minimum weight as the criterion of optimum design. 

As a broad generalization, the results of various types of minimum- 
weight analyses of representative structures can be expressed in the 
form: 

W=SMDm 

where 

W=weight efficiency factor 
S=structural efficiency factor 

M=material efficiency factor 
D=structural design index 
m=exponent (0<m<l) 

Although the weight efficiency factor, W, can be interpreted in several 
different ways, it is expressed in the form of a weight/strength ratio 
in the aerospace field. The structural efficiency factor, S, is generally 
a nondimensional quantity, whereas M is generally a density/modulus 
ratio representative of the material efficiency. The design conditions 
involving the external loads and leading dimensions are characterized 
by the structural design index, D. Thus, this equation, shown graphi- 
cally in figure 57, represents the interrelationship among structures, 
materials, and design. Examples of the design-sciences approach 
follow: 

Box-Beam Structures 

Surface-ship hulls, aircraft wings and tails, hydrofoils, Army 
combat vehicles, and military bridges can be characterized in idealized 
form as stiffened box beams under bending loads. (See fig. 57 from 
ref. 55.) 

Longitudinal stiffeners are I, Z, or hat sections, supported by 
transverse stiffeners that are transverse ribs at optimum spacing. 

weight /jLV^r* 
w ""strengtii      ** \E0-tJ\h'voJ 

stability limitation due to buckling 
with 
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5=2.38 

D=M/h2w 
m=—0.4 

When the buckling strength equals or exceeds the compressive yield 
strength of the material, 

weight _ p 
strength    <rc: 

Therefore, 

<T, cy 

when strength limitations govern, or 

M=& 

when stability limitations govern. 

Stiffened-Cylinder Structures 

Aircraft fuselages, missiles, and launch vehicles can be idealized as 
stiffened cylinders under bending and axial compression, respectively. 
(See fig. 57.) 

The longitudinal stiffeners are I, Z, or hat sections, supported by 
transverse frames which are I, Z, or hat sections. 

^"strength-1-25 \&>-*)\d) 
with 

S=1.25 
M=p/£0-6 

D=N/d 
m=—0.4 

Also, 

Pressure Vessels 

W 

Submarine pressure hulls, solid-propellant rocket motors, and vari- 
ous ordnance can be treated as pressure vessels under external or 
internal pressure. 
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For an I-, Z-, or hat-frame-stiffened cylinder (L/D=l), 

W=stoe1ngth==1-5 \^l)(p)~°'U       external Pressure 

Also,  W/S=p/ccy, the strength-limitation region, is valid for both 
internal and external pressure. 

Further Development of the Approach 

The foregoing examples demonstrate the application of the design- 
sciences approach to the evaluation and improvement of material 
properties in terms of their potential applications. This approach was 
also used to identify structural design limitations in the case of deep 
submersibles. 

If we accept improved weight/strength efficiency as a desirable goal, 
we can summarize potential improvements, as shown in figure 58. 
Here, if a given design application has a design-index range correspond- 
ing to Dh then design, structures, and materials (density and elastic 
modulus) improvements can lead to greater weight/strength efficiency. 
On the other hand, if the design-index range corresponds to Z>2, only 
material improvements (density; yield or ultimate, strength; ductility) 
can contribute to weight/strength efficiency. 

• DESIGN    IMPROVEMENTS 

^ENT  STATE STRENGTH % 
OF THE   ART 

• STRUCTURAL   IMPROVEMENTS 
I 

• MATERIAL    IMPROVEMENTS 
w 

• MATERIAL 
IMPROVEMENTS 
ONLY 

DESIGN    INDEX 

FIGURE 58.—Potential improvements in current state of the art. (Reprinted from 
Astronautics and Aeronautics.) (Courtesy of American Institute of Aeronautics 
and Astronautics.) 
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Although conclusions concerning improved materials depend on the 
design-index range corresponding to the application, the surprising 
fact is that the various applications indicated in figure 57 are charac- 
terized by rather narrow design-index ranges. This permits valid con- 
clusions regarding current designs to be drawn from this approach and 
also permits rather safe conclusions for future designs. As a result, 
this approach can help in technical decisions for long-range material- 
development cycles. 

The design-sciences approach is reasonably well developed in 
certain aspects and can be effectively employed in the following areas: 

(1) To evaluate current and experimental materials over a broad 
temperature range extending from cryogenic to elevated temperatures 

(2) To provide guidelines for identifying and developing improved 
material properties for projected applications 

Further investigations in the following areas could greatly advance 
this approach (ref. 55): 

(1) Engineering studies of structures to provide design-index data 
for current and projected applications 

(2) Determinations of why applications fall within a narrow range 
of design-index values 

(3) Study of various design configurations to alleviate or remove 
the design limitations 

(4) A project relating minimum-weight results to cost for optimum 
structures 

FULLY STRESSED DESIGN 

For a structure under multiple-loading conditions, the method of 
fully stressed design proportions the structural members by equalizing 
the allowable stress in any member in at least one loading condition 
(ref. 56). If analysis shows that a certain member is overstressed in 
a critical load condition, the method of fully stressed design increases 
the area of that member enough to remove the overstress. Conversely, 
this method does the opposite if the member is understressed. 

For structures with so-called hybrid action, each member must be 
designed with consideration of its effect on other members. For this 
type of structure, the convergence is generally slow; and the resulting 
repetition of analysis and fully stressed redesign often tends to simplify 
the structure by eliminating some of its members. 

The minimum-weight design of a structure is an arrangement of the 
structural element in which all the design requirements (such as 
stresses, deflections, and geometric constraints) are satisfied, while the 
total weight of the entire structure is minimized. This minimum- 
weight design can generally be set up as a mathematical programing 
problem. Efficiency of the fully stressed design and its relationship to 
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a minimum-weight design has been discussed by a few investigators. 
Although Schmidt (ref. 57) has argued that a minimum-weight design 
may be selected from among fully stressed designs, Schmit (ref. 58) 
has shown that a fully stressed design is not necessarily a minimum- 
weight design. Under some loading conditions, in fact, the fully 
stressed method may lead to an inefficient design. Razani (ref. 56) 
has sought to determine when a fully stressed design has minimum 
weight and when it has not; when it has not, he suggests a method of 
determining optimum structure. 

The iterative, fully stressed design usually changes the configuration 
of the structure considerably in the initial cycles, but successive 
changes generally result in progressively fewer modifications. 

In the method of fully stressed design, the problem of convergence 
is studied within the range where changes in area or stiffness of 
structural members are small. It is assumed, in addition, that the 
critical loading condition for each member does not change abruptly 
because of a small change in design configuration; thus, the critical 
forces in the members can be treated as continuous functions (ref. 56). 

Relationship of Fully Stressed and Minimum-Weight Designs 
For determinate structures (see fig. 59) then, the fully stressed 

design is the minimum-weight design; whereas for indeterminate 
structures, the critical force in each member is not only a function of 
the applied loading but also a highly nonlinear function of the areas of 
all the members of the structure. Consequently, the fully stressed de- 
sign is not always an optimum design. 

Condition of optimality 

\—(I—B^^pL^O       Kuhn-Tucker optimality conditions 

where 
X's=optimality coefficients 
B—mXm design variation matrix, B=(bv) 

2?r=transpose of matrix B' 
I—mXm unit matrix 
p=material density or unit weight of material 
L=length of section 

Fi=critical load of ith member 
ff=corresponding stress for the critical load 

Ai=area of ith member 
m=number of members 
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When the fully stressed design is not optimum, the productivity 
test can be used to determine and separate the free variables from the 
fully stressed ones (refs. 56 and 59), 

Pt= 
W ä±=^+g w-^?>. = 1,2, TO 

Mi 
where 

P=productivity coefficients 
-4"=final area of jth member obtained by an iterative, fully stressed 

design while keeping the area of the ith. member constant 
and equal to A°+&At 

A]=initial area of the jth. member before change in the ith member 
AV— total change in the volume of the truss due to a change 

AAZ—the ith member 

In this case, dimensionality of the problem is reduced and optimiza- 
tion is decentralized to an optimal search for free variables and to the 
fully stressed design of the remaining variables. In general, the faster 

SYNTHESIS 

FIGURE 59.—Relationship of design steps. 
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the convergence rate of the iterative, fully stressed design, the more 
likely the optimality of the design. Consequently the fully stressed 
design of structures with normal action is more likely to be op- 
timum. We, therefore, have another approach for structural-design 
optimization. 

STRUCTURAL OPTIMIZATION METHODS 

We may divide the classical numerical optimization methods into 
three general groups: (1) "Perturbation Methods," which include the 
indirect methods of Adjoint Functions and Perturbation Functions; 
(2) the "Quasilinearization Methods," which also include the indirect 
methods of the "Generalized Newton-Raphson," a "Modified Gen- 
eralized Newton-Raphson," and the "Modified Quasilinearization"; 
and (3) "Gradient Methods," which are direct methods including 
the "Method of Steepest Descent" and the "Modified Method of 
Steepest Descent." An excellent paper which analyzes and compares 
these conventional methods was recently given by Lewallen and 
Tapley (ref. 60). We shall briefly discuss one of the more recent 
methods devised for structural optimization, called the "Random- 
Sampling (RS) Method." 

Random-Sampling Method 
The general problem of optimization with arbitrary constraints is 

treated by means of random numbers and Monte Carlo sampling 
techniques. Kiciman (ref. 61) demonstrated the validity of the tech- 
nique by comparing his results on structural synthesis problems with 
published results using the gradient method. Although the design 
configurations produced by this approximating technique are not 
better than those given by the gradient method, they are acceptably 
close. A specific application to the minimum-weight design of a Z- 
stiffened compression panel is also given and the results checked 
against values computed by the designer using conventional methods. 
Indications are that this generalized and readily applicable synthesis 
approach will enable the designer to investigate several different 
design concepts for their relative design values without waste of time 
and effort. Two main advantages of this technique are: (1) no restric- 
tions are placed on any of the constraint and merit functions, and 
(2) any number of variables and constraint conditions can be used. 

Application of Random-Sampling Method 
Structural synthesis (ref. 61) can be defined as rational selection 

and improvement of a structural design configuration, in terms of 
weight or cost, without violating given failure conditions, manu- 
facturing, or design limitations. The conventional way of designing 
an efficient structure is based on the designer's past experience, good 
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judgment, and trial and error until a satisfactory solution is found. 
The basic rationale for applying random-sampling (RS) methods to 

structural synthesis problems is the similarity in method between an 
RS-type solution and the conventional solution, previously described. 
Another point in favor of an RS method is that it can be applied to 
almost any type of structural synthesis problem with little statistical 
theory. Finally, since the method is a completely random procedure, 
those using it cannot be handicapped by prejudices or oversights 
unless purposely biased by the programer. 

For the sake of illustration, let us assume that the structural part 
to be designed has three variables of thickness, spacing, and height, 
each with given limitations. This design can be expressed as 
X=X(£i£i, |3), where fi, |2, £3 are thickness, spacing, and height, respec- 
tively. The requirements are given as the local and general stability 
for a given load; the merit function is the weight. 

This problem can be solved by checking all possible design con- 
figurations, that is, all the distinct X's for local and general insta- 
bility, and selecting the one with the minimum weight among the 
stable configurations. However, & is a continuous variable that can 
take any value between |imln and %lmix making the number of distinct 
X's infinite. In practice, however, the interval (£imln—&m„) can be 
divided into a finite number of slices, assuming that |i is a variable 
that can take only a given number of values between minimum and 
maximum. 

Assuming that thickness, spacing, and height can be divided into 
100 slices each, the number of distinct design configurations is 1 
million. Since there are two stability conditions in addition to weight, 
3 million computations are the number of points theoretically to be 
checked. The function of the RS procedure is to cut the number of 
computations to an economical few hundred. Some of the sampling 
steps used are described below. 

Importance sampling gives a way of biasing the random sampling 
so that some samples are drawn from zones where the probability 
of success is high, and less from zones where the probability of success 
is small. In other words, biasing is done to increase the probability 
that the sample will be drawn from an interesting region (ref. 62). 

The combination of analytical and probabilistic solutions sometimes 
reduces the variance of the outcome; therefore, the optimum sample 
size is computed for some of the steps whenever that can be done 
without excessive effort. 

If the density function of the random sample is approximated from 
the initial trial with respect to certain sections of the sample space, 
this function is used to assign a certain size of sample to each section 
for consecutive trials. 
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Basic Screening Steps of the Program 

The problem consists of locating a design point in the space of all 
possible design points, so that all the design requirements are satisfied 
and the evaluated merit function is as close to its optimum value as 
desired. Such a design point is denoted as -X"*. Initially, then, we have 

P(X=X*)=P(XeS*)        if    XeS 

S is the n-dimensional space of design variables where n is the number 
of variables for the particular problem. The position of each design 
point X in this space is specified by the value of its coordinates £*: 

x=x(iü, &, • • ., y 

The boundaries of the design space are specified by the minimum and 
maximum allowable values of the design variables. In the literature 
these boundaries are commonly referred to as side constraints. 

In design problems the number of significant digits is limited for 
practical reasons; therefore, the random variable |s can take only 
discrete values. 

A design point is considered unacceptable if it violates any of the 
constraint conditions. Thus the only requirement for the gt is that it 
must have a computable value for every X in S. 

The concepts mentioned so far have been illustrated in a problem 
having two variables. (See fig. 60 from ref. 61.) The boundary between 
U and A is designated by 6, which represents a hypersurface having 
concave and convex portions. By this program, random points are 
chosen and checked against the given constraints to determine 
whether they are in A or U; this checking continues until no point 
in A can be found with a merit function lower than the previous one. 
The merit function F(X) is the function to be optimized. It has a 
unique value for every X, which is computable. To improve the 
probability of success with a minimum number of computations, a 
system of sampling techniques is utilized (described in ref. 56). This 
operation is based largely on the assumption that the evaluation of 
main constraints for a given X demands an effort much greater than 
the computation of merit function for that design point; therefore, X 
must be avoided as much as possible, and the information obtained 
from the merit function values must be fully used. 

COMPUTER-AIDED DESIGN OF STRUCTURES 

Let us consider the possible utilization of computer capabilities 
to make design decisions more rapid and effective (ref. 53). In the 
past, engineers have carried out much of their design and practice 
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FIGURE 60.—Search for zone of optimum design. (Reprinted 
from Proceedings 4th Aerospace Science Meeting.) (Cour- 
tesy of American Institute of Aeronautics and Astronau- 
tics.) 
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efforts by analytical investigations using computers. The engineer, 
for example, determines the response of a given structure under 
applied loads and compares the behavior to allowable criteria. Gen- 
erally, this design process involves a number of successive iterations. 
Although it is conceivable that a design can be made by direct solution 
of a close-form equation that expresses the primary design problem, 
the difficulties associated with the expression of design-problem 
parameters make use of this process very unlikely in the near future. 
Kather, the computer can be used as an effective design tool for 
analytical techniques, since it allows rapid synthesis by iteration. 

In the past, designers often had the solutions to a limited number 
of discrete problems compiled from experience. With increased 
knowledge, experience, and the aid of high-speed, electronic digital 
computers, today's designer can execute the design process with 
greater effectiveness. Needless to say, many problems formerly 
beyond the designer's capabilities can now be solved. 

In the preliminary design process, furthermore, several simplified 
techniques enable the computer to generate considerably more data 
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COMPUTER AIDED 
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FIGURE 61.—General logic flow of computer-aided solution. 
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than the engineer. A computer can also exhibit these data in the 
form of drawings and specifications. Figure 61 shows the logic flow 
of computer-aided solutions. In table 2 (from ref. 53) a summary- 
comparison of computer-aided design procedures is given with 
applications to multistage launch vehicles, bridges, and domelike 
structures. 

TABLE 2.—Comparison of Computer-Aided Design Procedures 

Launch vehicle Bridges Domelike structures 

Performance require- 
ments: 

Velocity require- Number of traffic lanes. Specified enclosed 
ments. Magnitude and distribu- volume of surface 

Specified payload tion of loads. area. 
weight in specific Clearance height for ve- Specified maintained 
(orbital) mode. hicles. environment in the 

Type of mission Topographical condi- enclosed volume. 
(scientific vs. mili- tions. Specified esthetic 
tary; manned vs. Subsurface conditions. requirements. 
unmanned). Arterial approach require- Structural provisions 

ments. to resist specified 
type, magnitude, and 
distribution of loads. 

Material behavior prop- 
erties: 

Strength/density Strength/density rela- Strength/density 
relationships. tionships. relationships. 

Elastic/density Elastic/density relation- Elastic/density rela- 
relationships. ships. tionships. 

Chemical compati- Corrosion-resistant prop- Absorptivity/emissivity 
bility factors. erties. properties. 

Thermal insulation/ 
weight relationships. 

Acoustic insulation/ 
weight relationships. 

Constraint functions: 
Acceleration limits. Feasible geometric pro- Minimum height as a 
Feasible stage diam- portions. function of distance 

eters and fineness Navigation clearance. from dome perim- 
ratios. Minimum traffic lane eter. 

Time element for width. Upper and lower 
design (i.e., 1965 Applicable specifications bounds on tempera- 
vs. 1970 type of the American Asso- ture and humidity. 
structure systems). ciation of State Upper and lower 

Manufacturing-pro- Highway Officials. bounds on acoustic 
curement feasibil- Gradient limitations. characteristics. 
ity of components. Dynamic response. Fabrication limitations. 
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TABLE 2.—Comparison oj Computer-Aided Design Procedures—Con. 

Launch vehicle Bridges Domelike structures 

Least cost compo- 
nents. 

Manufacturing, R&D 
time scheduling. 

Launch environment. 
Recovery problems. 
Minimum gage 

restrictions. 
Scope of design 

investigation: 
Vehicle geometric 

models 
(configurations). 

Construction concepts 
(components). 

Variations in strength/ 
density of materials. 

Effects of loadings 
induced by various 
trajectories. 

Pressure and 
temperature 
variations due to 
flight loadings, 
trajectories, and 
system changes. 

Performance weight 
partials. 

Cost analysis (R&D 
plus Operational). 

Design exhibit: 
Profile drawings. 
Design sketches. 
Component detail 

sketches. 
Master dimensions. 
Parts lists. 
Cost analysis weight 

statements. 
Detailed weight 

statements. 
Performance weight 

statements. 
Detailed geometry of 

components. 

Aerodynamic response. 
Fabrication limitations. 
Construction period 

limitations (time and 
environment). 

Construction time 
period. 

Depreciation method. 

Variations in deck width 
as function of number 
of traffic lanes. 

Deck stacking concepts. 
Variations in span 

lengths. 
Variations in support 

concepts. 
Variations in profile 

gradients. 
Variations in anchorage 

configurations. 
Variations in strength/ 

density ratios of 
principal structural 
materials. 

Variations in ramp 
concepts. 

Cost effects upon 
adjacent land areas. 

Drawings of bridge 
profile, cross sections, 
and elevation. 

Detailed geometry of 
components. 

Horizontal, vertical and 
torsional rigidities of 
bridge sections. 

Dynamic response 
properties. 

Aerodynamic response 
properties. 

Parts list. 
Excavation and 

Maximum construction 
time. 

Construction time 
period. 

Amortization method. 

Variations in aspect 
ratios (height/radius 
at base). 

Variations in meridian 
curvature properties. 

Variations in framing 
geometry. 

Variations in framing 
material. 

Variations in support 
concepts. 

Drawings of dome 
cross section. 

Three-dimensional 
coordinate values of 
all space frame joints 
and other significant 
positions. 

Internal loads and 
stresses in all 
members. 

Load deflection of all 
significant joints. 

Aerodynamic response 
properties. 
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TABLE 2.—Comparison of Computer-Aided Design Procedures—Con. 

Launch vehicle Bridges Domelike structures 

Design conditions foundation costs. Excavation and 
(loads, pressures, Material costs. foundation costs. 
temperatures). Fabrication costs. Material costs. 

Evaluation logic in Erection costs. Fabrication costs. 
selection of Maintenance costs. Erection costs. 
candidate vehicle Operational costs. Maintenance costs. 
evaluation curves). Total construction time. Operational costs. 

Total construction time. 
Merit function: 

Cost per pouüd Cost per year of Cost per year of 
payload in specified operation per vehicle operation per usable 
earth orbit or space ton capacity. unit enclosed, 
trajectory as a operating in the 
function of number specified 
of launches within environmental 
particular time condition. 
period. 

Finally, let us emphasize one aspect of the design process that has 
not yet received particular attention: proposed, or baseline require- 
ment, changes. Often changes are made in design criteria, design 
philosophy, geometrical constraints, and/or environmental conditions 
for one or more reasons. These changes may result in revised engineer- 
ing drawings and specifications and, perhaps, in additional tooling 
and testing. Whatever the effects of a given change are, however, the 
objective of that change must be met. Since detailed analyses cannot 
be made to check the results of a proposed change, a tool is needed to 
assess it rapidly and efficiently. This can be a digital computer pro- 
gramed to synthesize a structure for loads imposed on the body for a 
specific function and to calculate a specific parameter, or its changes, 
in terms of other suitable parameters. 

273-140 O - 67 - 7 



Appendix 

SELECTING MATERIALS FOR MINIMUM WEIGHT 

Particularly in aerospace work (ref. 63), reduced weight means im- 
proved performance. Weight savings can also be important for autos, 
trucks, and railway cars, because a pound saved in the structure may 
permit a greater payload or increase general performance. 

Since an aerospace vehicle cannot be designed for minimum weight 
alone, however, the designer must consider the environmental effects 
to which the structure may be subjected. No single material or con- 
struction can retain superior strength over the entire range of poten- 
tial loads and temperatures. The optimum structure must consist of 
many materials, each suited for a particular job. In addition to 
strength and stiffness, the materials must be evaluated for cost, ease 
of fabrication, toughness, durability, and other properties. 

Weight Index for Stiffness 

Geometry is particularly critical in structures designed for stability 
and stiffness. Although stiffness will change with the geometry of the 
structure, the efficiency of a given geometry is proportional to the 
merit-weight index. This index can be calculated using the ratio of a 
material's modulus of elasticity to density (E/p). 

In an aerospace vehicle, increases in stiffness are accompanied by 
increases in structural stability and natural frequencies. Thus, a high 
merit-weight index for stiffness (E/p) would indicate that the structure 
can efficiently handle static and dynamic problems of elasticity (e.g., 
aerodynamic response and flutter), acoustics (e.g., vibration fatigue), 
as well as load-carrying capacity. 

Weight Index for Tensile Loads 

Selection of the optimum material and construction is often made 
easier by using merit-weight indices. In a structure subject to short- 
time tensile loading, for example, the weight is inversely proportional 
to the (o-auow/p) index, which is the ratio of allowable tensile stress 
to the density of the structure. This index is commonly known as the 
merit-weight index for tensile criteria. 

93 
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An evaluation of the merit-weight index for tensile conditions as 
a function of temperature and time is shown in figure 62 (from ref. 63) 
for a few typical materials. This illustrative guide shows that an in- 
crease in time at temperature is equivalent to shifting the abscissa 
(time-temperature parameter) to the right, thus resulting in a de- 
crease in strength. 

The merit-weight index of a particular material is determined by 
the intersection of the curve with a vertical line, the lower end of 
which passes through the intersection of the appropriate time and tem- 
perature lines. In figure 62, which gives a typical example of how this 
index is obtained, titanium is shown to be the lightest of the materials 
considered for withstanding a tensile load after exposure to 800°/F for 
100 hrs. 

Plots similar to those shown in figure 62 can also be made for other 
merit indices, such as allowable rupture stress/density (<rT/p), or allow- 
able creep stress/density (a-elp) in areas of constant stress, such as the 
powerplant. 

Except for orthotropic constructions such as filament-wound pres- 
sure vessels, the geometry of tensile-loaded structures is not too 
critical. This is generally true provided that good design practices, 
such as avoiding stress concentrations, are observed. 
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FIGURE 62.—Merit-weight indices of materials under tensile 
loading as a function of temperature and time. (Courtesy of 
Materials in Design Engineering.) 
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Weight Index for Compressive Loads 

The weight efficiency of materials carrying compressive loads can be 
expressed by a merit-weight index for stability (<rcr/p). Here o-CT is the 
instability stress depending on the geometry of the structure , the load, 
and stress-strain relationship of the material. 

Evaluations can be made independent of structural size by using 
weight (W/b2) and load (P/62) indices, where ^represents the weight 
per inch of the structural cross section, P represents the load, and b the 
characteristic dimension of the structure (e.g., width of plate or 
length of column). Thus, as shown in figures 63 and 64 (from ref. 63), 
typical plots of these indices can be derived for various materials and 
structural configurations. Such plots are an effective tool for selecting 
the right material and/or structural configuration. 

Unstiffened Plate 

A comparison of the weight and load indices (in the form of a log-log 
plot) of typical engineering materials is shown in figure 63. By math- 
ematical analysis, the weight index of a material is proportional to the 
cube root of the load index at low load indices. The relationships can 
be represented by straight lines with a slope of 1/3 as a result of com- 
paring materials. Thus, at low load indices, the merit index or efficiency 
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FIGURE 63.—Weight-load comparison of fiat unstiffened com- 
pression panels at room temperature. (Courtesy of Materials 
in Design Engineering.) 
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FIGURE 64.—Weight eflBciencies of four configurations. Com- 
parison is generalized for any material. {Courtesy of Materials 
in Design Engineering.) 

of a material can be calculated by {E^^jp). (For double-faced corruga- 
tions, instead of unstiffened plate, the merit index or efficiency of a 
material would be (Ü^/p).) 

For high load indices, the straight lines assume a slope of 1/1, and 
the weight index is directly proportional to the load index. In this area 
the efficiency of the material can be measured by the allowable com- 
pressive yield stress/density (<rcy/p). This index can be used for all 
types of construction. 

Types of Construction 

A guide to the weight efficiency of four typical structural configura- 
tions is given in figure 64. This comparison can be generalized for any 
material used in stiffened or unstiffened flat plate, honeycomb, or 
corrugated sandwich form. 

For a given load in figure 64 the construction having the best weight 
efficiency is indicated by the lowest vertical ordinate. For any of the 
four constructions, the efficiency can be calculated by the merit index 
(o'cr/p) (allowable stability stress/density), which is equal to the 
abscissa divided by the ordinate, P/b2:W/b2. This figure shows that the 
optimum stress efficiency is (crcy/p) (allowable compressive yield stress/ 
density). Each of the four constructions approaches the optimum 
value asymptotically with increasing load indices. 

Figure 64 also shows that at low load indices, a honeycomb sandwich 
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FIGURE 65.—Efficiency of beryllium, steel and titanium in two 
types of constructions at room temperature. (Courtesy of 
Materials in Design Engineering.) 

construction is most efficient, since it is capable of stabilizing the faces 
to yield, although it suffers a slight weight penalty due to core and 
bonding materials. Keep in mind, however, that variations in efficiency 
can occur at very low loads because of minimum gage and fabrication 
requirements. 

Next in weight efficiency is the corrugated sandwich, in which the 
stabilizing stress rapidly approaches the asymptotic yield stress. The 
stiffened steel-plate construction, in which efficiency increases with 
the number of stiffeners used, is next in efficiency; whereas the un- 
stiffened plate is the least efficient structure, since it requires the 
largest load index to attain the yield stress. The relative efficiency of 
honeycomb sandwich can be offset by an extremely high stiffness 
merit index (E/p), such as is exhibited by beryllium. 

Additional weight indices, given in figure 65 (from ref. 63), show the 
efficiency of steel, titanium, and beryllium when used in a honeycomb- 
sandwich or sheet-stringer construction. This study is far from com- 
plete; additional materials, configurations, and temperatures should 
be considered before making a final selection. 

Other Important Factors 

In choosing material and configuration for minimum weight, 
allowance must also be made for factors such as tolerances, available 
gages, and required design details (e.g., joints and reinforcements). In 
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addition, the physical properties of the material have to be considered, 
and compromises often must be made in determining the best combi- 
nation of properties. 

For example, a low thermal expansion coefficient, a, is desirable for 
reducing thermal distortion. Similarly, a low product of elastic mod- 
ulus and thermal expansion coefficient, Ea, will help reduce thermal 
stresses. Reductions in thermal gradients that result in thermal stresses 
require materials with a high thermal conductivity (Jc), specific heat 
(c), emissivity (e), or diffusivity (k/cP). 

Although minimum weight analyses are relatively simple when a 
monolithic structure is used, these procedures become more complex 
with composite structures. An aerospace vehicle, for example, may 
consist of a hot structure that supports the applied loads near the 
equilibrium temperature, or a protected structure which consists of a 
thermal protection system to resist local air loads, while maintaining 
an efficiently lower temperature on the load-carrying structure. When 
designing such a composite structure, consequently, tradeoff studies 
must be made to determine what combination of thermal protection and 
load-carrying structure will provide the minimum weight. 

CALCULATING WEIGHT EFFICIENCIES OF PRESSURE VESSELS 

Although unfired pressure vessels are often selected without regard 
to weight, many applications require them to be as light as possible. 
When low vessel weight is needed, it is important to know how the 
relative weight efficiencies of different materials compare when they 
are used in such common shapes as cylinders, spheres, and oblate 
spheroids. 

Material and Shape Comparison 

A basic formula that can be used in evaluating the weight efficiency 
of pressure vessel materials is 

PV    l_/v\ 
W    K\P) 

In essence, this formula tells us that the product of pressure P and 
volume V divided by weight W is theoretically equal to a shape factor 
1/K times the strength-to-density ratio (c/p) of the pressure vessel 
material. 

So as to make a direct weight comparison for vessels of the same 
pressure-volume (PV) capability, this formula can be rearranged as 
follows: 

W=K( - )PV '-*© 
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Since we want to keep the PV product constant when comparing 
materials, the formula simplifies to: 

© WozK\ 

This formula tells us that for a given pressure-volume value, the 
vessel weight for a material is equal to its density /strength times a 
shape factor. The shape factor (K) is 2 for cylinders, 1.5 for spheres, 
and 3 for oblate spheroids. 

This last formula can be used to make a side-by-side comparison, 
such as that shown in figure 66 (from ref. 63), which lists the relative 
weights, at constant pressure and volume, of three basic shapes 
fabricated from fiber glass, titanium, aluminum, and high-strength 
steel. In this chart, the relative weight values are calculated simply 
by taking the weight of the lightest vessel (S fiber glass) and dividing 
all other weight values by it. Thus, the following formula can be used 
to find the relative weight for a cylinder of aluminum (A) compared 
with S fiber glass (F): 

WA_2(pJ<rA)PV_, rA „ „, x__2 g 

Wv   2(PFK)?f ifX^h 
Naturally, in a relative weight evaluation, several assumptions 

have to be made in establishing the appropriate strength values. 

Establishing Strength Values 

The strength values for fiber glass in figure 66 are based on total 
wall composite strength (adjusted to vessel axis) computed from 
room-temperature burst tests on 4-in. balanced cylinders, 8-in. 
spheroids, and 17-in. spheres. Strength values will be different for 
other vessels, depending on their sizes and proportions; however, 
scaling factors can be calculated. 

The strength of virgin glass filaments is much higher than the 
strengths actually achieved when these filaments are used in pressure 
vessels. Nevertheless, all other considerations aside, fiber-glass 
vessels have a higher strength-to-density ratio than metals. Ultimate 
strength, rather than yield strength, is used here because some 
fabricators have the capability to provide the higher strength levels. 
However, care must be exercised in selecting the spread between 
yield and ultimate strengths of the pressure-vessel materials. 

In the calculations for relative weight, allowance has not been made 
for the beneficial effect of biaxial reinforcement under load for homo- 
geneous metals. Allowance for the biaxial reinforcement effect may 
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provide as much as a 15-percent reduction in the relative weights that 
are indicated for homogeneous metal vessels. 

The differences in weight of thermal insulations required for glass 
or metal vessels are not especially significant for some applications, 
such as rocket motor cases. Unlike a metal vessel, however, a glass 
vessel for gas storage requires a sealant liner that may vary in weight 
from 5 percent (for thick-walled vessels) to as much as 30 percent 
(for extremely thin-walled vessels) of the structural membrane weight. 

Correction factors should be made in allowable design stresses of 
the various materials to compensate for the effect of extended internal 
pressure cycling or holding time. The degree to which these factors 
become significant depends on the specific application. 

Allowance should also be made for all structural loads other than 
those imposed by internal pressure. In such cases, factors such as 
compressive strength, modulus of elasticity, and other material 
constants (as applied to buckling relationships) become important. 
These additional factors can change the comparisons which have 
been made here for conditions of simple internal pressure loading. 

EXAMPLES OF COMPUTER-AIDED DESIGN OF STRUCTURES 

Space-Frame Dome 

The design requirements for a space-frame dome (ref. 53) include: 
a certain volume, specified (or range) height-to-radius ratio (s), load 
conditions, and environmental conditions. Common variations in 
dome surfaces are shown in figure 67 (from ref. 53). 

By using computer-aided design techniques, a study of the effects 
of perimeter discontinuities along with wind-load distributions, 
irregular loads, thermal stresses, and support conditions can be per- 
formed simultaneously. These computer technques have been devel- 
oped to analyze space frames by using the principle of minimum- 
strain energy. In addition to the geometry and wind-load inputs, 
structural parameters, such as cross-sectional areas of members, 
moments of inertia, and connection rigidities, are coded into the 
computer program so that they may be easily revised for design 
optimization. These programs permit summing of the total inter- 
strain energy of the structures, case by case, together with all the 
interaction products, so that required influence coefficients and 
structural deflections may be computed. 

The design display may include such items as: a graphic profile 
of each configuration investigated, three-dimensional coordinate 
values of all space-frame joints and other significant positions, internal 
loads and stresses in all members, deflection of all significant joints, 
cost data, and construction time, to mention a few. 
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FIGURE 67.—General categories of surfaces of revolution analyzed by computer 
subroutines. 

A typical geometrical configuration resulting from a computer- 
aided design study is shown in figure 68 (from ref. 53). In this study, 
the base radius and dome height were input data; load magnitudes 
and distributions were also specified. The merit function used in this 
study was defined as "cost-in-place," expressed in terms of enclosed 
volume.   The  configuration,   called   "Geolatic  Framing,"   resulted 
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FIGURE 68.—Dome-framing  plan  developed by  computer-aided  design 
techniques. 

from a study at North American Aviation, Inc., relating to the 
application of computer techniques to civil structures. "Geolatic" 
refers to framing systems in which a considerable number of framing 
members are in parallels of latitude. In the configuration shown, 
approximately 60 percent of the framing members were identical in 
fabrication. 

Bridge Design 

Another example of a computer-aided structural design is a bridge 
which spans a given distance and provides a specified traffic-flow 
capability. The performance requirements may include the number 
and width of traffic lanes; magnitude and distribution of imposed 
loads (static, dynamic, aerodynamic, seismic); and arterial-approach 
geometry. Constraint functions may include minimum clearance below 
the  bridge,  maximum  allowable  profile  products,  and  applicable 
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Government specifications. Outlines of general bridge concepts are 
shown in figure 69 (from ref. 53). 

The investigation of each proposed configuration should include 
principal variations in truss-framing geometry, pier locations, deck- 
framing concepts, approach ramp effects, material usage, maintenance 

-SP 

(A)  CONTINUOUS TRUSS (8)  SUSPENSION 

(C)   CONTINUOUS TRUSS (01   ARCHED CANTILEVER 

(E)   CONTINUOUS TRUSS. CENTER SPAN SUSPENDED IF)   CANTILEVER 

-j/w&iitiiBS?^ 

"tair^^±tt^sää 

ICI   CANTILEVER (H)   CANTILEVER 

(II   CANTILEVER IJI   TIED ARCH BRIDGE 

IK)   CANTILEVER (LI    THREE-HINGED ARCH BRIDGE 

FIGTJBE 69.—Representative bridge configuration available for evaluation. 
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concepts, and related problems. An overall merit function can be 
expressed for each proposed design to indicate the total cost of owner- 
ship and operation per year in terms of vehicle-ton capacity. Output 
data may include: graphic profile of each configuration investigated, 
including cross sections and elevations; detailed geometry of com- 
ponents; rigidities of bridge sections; aerodynamic and dynamic 
response properties; cost data; and construction time, among others. 

EXAMPLE OF STRUCTURAL OPTIMIZATION 

The purpose of this analysis (ref. 64) is to establish a procedure 
for optimizing an integral stringer and ring-stiffened shell subjected 
to axial load. (See fig. 70 from ref. 64.) Two modes of failure are 
considered: strength based on the Von Mises yield criteria and 
elastic instability. The elastic instability consists of general insta- 
bility (overall collapse of the cylinder), buckling of the unsupported 
panel lengths between rings, buckling of the skin bounded by the 
ring and stringers, and crippling of the outstanding stringer rib. 

The optimization procedure is based upon elastic buckling with the 
following parameters being optimized: depth of rib, skin thickness, 
rib thickness, rib spacing, and ring spacing. The following assump- 
tions are made: 

(1) Internal pressure has no effect on the overall general instability. 
(2) Ring spacing is. sufficiently close so that the rings and skin are 

equally stressed. 
(3) Curved panels are treated as flat plates, since the ribs are closely 

spaced. 
(4) Critical buckling stresses are within the elastic limit. 
To minimize the number of design parameters, two relationships 

are established: 
(l) The depth of the ring is 2% times that of the longitudinal 

stringer. This depth is arrived at by equating the local crippling 
stress of the outstanding leg of the longitudinal stringer with that 
of the ring web: 

where 

Zrs=0.385 (one edge free) 
&r=3.29 (both edges simply supported) 

and ULI equals 2.92; however, since one of the edge conditions of the 
web is actually elastically supported, use üCi=2.5. Therefore, depth 
of ring equals 2.5bw. 

(2) By equating the local crippling stresses of the outstanding leg 
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FIGURE 70.—Integral stringer and ring-stiffened cylinder geometry. 

of the longitudinal stringer with that of the ring flange, we obtain a 
flange width equal to that of the stringer depth. 

Failure Modes 
Buckling Criteria 

In predicting general instability, the equations developed by Block, 
Card, and Mikulas (ref. 65) are used. These equations represent the 
latest state of the art in buckling of orthotropic cylinders and take 
into consideration the effects of asymmetry; i.e., the effect of whether 
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the rings and stringers are located on the inside or outside of the 
skin. The equations are: 

■ 12Z2 fl+SAs+RAT+SRArs\ 

where 

Ar=l+W(1-/8
2
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In order to use the previously defined equations, the basic stability- 
equation must be minimized with respect to m and n to obtain the 
minimum allowable loading. Because of the complexity and time 
limitation involved, however, it is assumed that the ring and stringer 
eccentricities do not affect the buckling-mode shape. Based on this 

273-140  0-67-8 
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assumption, which has been subsequently proved to be valid, the 
equations for determining the buckling-mode shape for the Becker 
equation (ref. 64) are used. By utilizing the Becker equation to de- 
termine the buckling-mode shape and to nondimensionalize the 
design parameters, the following equations are obtained, letting 

bs=Csbw 

bT=C4bw 

2ECbJ 
Nx=j(CltCa,Cz,Ct) 

where 
B 

+°^(S+^*)] 
+£f /I+§A,+RAT+SBA„\ 

*=(d„+0.375j9y»+/3yB) (±+^™P+l-) 
\Ct,22 O      33      Oil/ 

p__033 / OgiC?ll—0110*22 \ 

Ö22  \Olltt22—2ffi33ffi33/ 

Q_<hl /022ttl 1—2ffl33fl,
33\ 

©22 \Oiltt22—2033(133/ 

If ß2 is negative, set /32=0 
If (P2+(?) are negative, set ß"=0 
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C, the buckling correction factor, equals 0.58. 
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Because no test data are available for this type of construction, 
the same buckling correction factor will be used as for the single-face 
corrugation (ref. 64). 

In predicting the buckling of the unsupported panel lengths between 
rings, the same equation used for general instability will be used, 
with, of course, the stiffness of the circumferential rings being taken 
as zero. 

The equation is 

N "72 WT m 

12Z2|~ _1+SA3      _ I 
mV |_(1+/32)2+2S/32(1+M)+S(1-M2)J fflVL(l+j5s)!+2S^(l+|t)+S(l 

In predicting the theoretical panel buckling load, the above equation 
must be minimized with respect to m and n. In order to simplify the 
minimization, a value of 1 is used for m, the number of buckling half 
wavelengths between rings. This is analogous to the buckling-wave 
pattern of a simply supported Euler column between rings. In order 
to minimize with respect to n, a numerical iteration scheme is used 
to obtain the minimum value of Nx

p. (See fig. 71 from ref. 64.) 
To do this, let 

ra=l 

d= C3hw 

so that 

Minimum N p 

x 

n 

FIGTJEE 71.—Minimum value of Np
x- 
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v,_ f*>D(l+ß*y.**C2Ebw.    **CjEbw 
z     \     C3J    +   12C4

2 +/?2   8<VC, 

■ i2Z?z2 r _I+SAS -I\ 

W&„2 L(1+/32)2+2^2(1+M)+S(1-M2)J/   * 
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CP, the buckling correction factor, equals 0.58, which is the same 
factor used for general instability. 

Assuming simply supported edge conditions and an aspect ratio of 
infinity, the critical rib-crippling stress (ref. 66) is 

<r„=0.385 -^-2 d 
l—ir 

Assuming simply supported edge conditions and an aspect ratio of 
infinity, the critical skin buckling (ref. 66) is 

Strength Criteria 

In order to determine the maximum stress level in the skin, a mod- 
ified form of the Von Mises yield equation is used. The skin is in- 
vestigated, since its resultant stress will always be greater than, or 
equal to, that of the stiffening elements 

T=   l( N* V   ( NXNV \   / Nv V 
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Optimization Procedure 

Optimum design parameters Cu C2, C3, C4, and bw must be deter- 
mined to obtain a minimum-weight configuration. The approach to be 
taken is the concept of maximum strength-to-weight ratio. A logical 
range of d, C2, C3, and C4 will be investigated and the corresponding 
strength-to-weight ratios calculated. The configuration with the 
maximum ratio will be investigated for panel buckling and for local 
forms of instability (skin buckling and rib crippling). If any of these 
forms of instability are violated, the values of Cu 02, C3, and C4 

with the next highest strength-to-weight ratio are investigated. This 
process is continued until all forms of instability have been satisfied. 
Having determined the optimum values of Cu C2, C3, and C4, the 
value of the rib depth can be calculated to satisfy general instability 
using: 

4 NXR 
2CE[f(Cu C2, C„ C«)] 

In determining the strength-to-weight ratios, the following equa- 
tions are required: 

Average thickness, ta,ve=g(Ci, C2, C3, Ci)bw 

where 

g{Cu C2, C3, C4)=Ci+§4-4.25 % 

Substituting the value of bw into the average thickness equation 
results in 

g{Cu C2, C3, C,)   /NZR\* 
a"   [/(<?!, <72, C3, CdYl2\2CEj 

In order for the average thickness, and consequently the weight, to 
be a minimum, the following ratio must be maximum: 

[/(A, C2, C3, ft)]
1* 

9(CUC2>C3,C4)   -*™™™ 

The first step in determining a logical range of d, C2, C3, and C4 is 
to investigate skin buckling, which is dependent on the ratio C3/C1. 
A plot of critical skin buckling versus C3/d was constructed and is 
shown in figure 72 (from ref. 64). Based on this plot, a range of C3/C1 
from 20 to 120 is sufficient to cover a wide range of allowable stress 
levels. Using d from 0.05 to 0.09 and C3 from 2 to 6 will result in 
the desired range of C3/C1. Similarly, a plot of C2-versus-critical rib- 
crippling stress is constructed to determine the range of C2 to be 
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Skin Buckling 

CO 

/Ac, 

FIGURE 72.—Critical skin buckling versus C3/C1. 

FIGURE 73.—C2 versus critical rib crippling. 
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FIGURE 74.—Critical Euler stress levels versus Ct. 

investigated (fig. 73 from ref. 64). Based on this plot, a reasonable 
range of C2 is from 0.05 to 0.15. 

Since C4 is a measure of ring spacing, panel buckling must be inves- 
tigated to determine the range of values. Due to the complexity of the 
panel-buckling equation, however, this form of instability will be 
simplified by considering the stringers as Euler columns simply sup- 
ported between rings. Values of the critical Euler stress levels versus 
Ct are plotted in figure 74 (from ref. 64). The value of l/p=Ci 
was arrived at as follows: 

<Vw 
2 1      Cjbg 

p ~Ä~\2C2bJ 

P=VÜ** 

l=CJ)w (ring spacing) 

Stringer cross section 

Therefore, lip =3.42C4. upon investigating the curve, it was concluded 
that the logical range of C4 was from 10 to 30. 
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Development of Weight Equation 

In order to calculate the weight of the cylinder, the average smeared- 
out thickness, including the circumferential rings, is 

*«.=(a+g+4.25 g) bw 

The weight per surface area equals tmePFb, where Fb, the fabrication 
factor accounting for noncalculated items, equals 1.20. 

SYMBOLS 

Nx    axial load per inch, lb/in. 
Nv    hoop load per inch, lb/in. 
R      radius of cylinder, in. 
L      length of cylinder, in. 
bw     depth of rectangular stringers, in. 
ts      skin thickness, in. 
ta,     thickness of rectangular stringers, in. 
bs      spacing of rectangular stringers, in. 
bT      spacing of circumferential rings, in. 
t        thickness of cylinder shell wall, in. 
d      stringer spacing, in. 
I        ring spacing, in. 
JT      torsional constant for ring, in.4 

J,     torsional constant for stringer, in.4 

6      shear modulus, psi 
E      modulus of elasticity, psi 
fi       Poisson's ratio 
As     area of stringer, in.2 

AT     area of ring, in.2 

I,      moment of inertia of stringer, in.4 

IT      moment of inertia of ring, in.4 

ZT      distance from centroid of ring to middle surface of shell, positive 
if stiffener lies on external surface of shell, in. 

Zs     distance from centroid of stiffener to middle surface of shell, 
positive if ring lies on external surface of shell, in. 

ip,     indicates whether stringers are external or internal to the skin 
surface; —1 if internal, +1 if external 

fr      indicates whether rings are external or internal  to the skin 
surface; —1 if internal, +1 if external 

m      number of half waves in cylinder buckle pattern in longitudinal 
direction 

n       number of full waves in cylinder buckle pattern in circumferential 
direction 
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C buckling correction factor 
An extensional stiffness in longitudinal direction, lb/in. 
^22 extensional stiffness in circumferential direction, lb/in. 
A33 shear stiffness, lb/in. 
Ai flexural stiffness in longitudinal direction, in.-lb 
DM flexural stiffness in circumferential direction, in.-lb 
Z?33 torsional stiffness, in.-lb 
<r stress level, psi 
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Glossary 

Anisotropie—Having properties that differ in several directions; possessing sev- 
eral natural axes, i.e., preferred directions with respect to a particular property 
or properties. 

Anticlastic—Having opposite curvatures; having the center of principal radii at 
different sides of the observed tangent plane. 

Cementation (diffusion)—Process for application of a coating metal by means of 
diffusion at elevated temperatures. The base metal is heated with a powdered 
coating metal to a temperature high enough to permit diffusion of fine particles. 

Cermet—Composite having ceramic grains embedded in a metal matrix. Structural 
constituent accounts for as much as 30 percent of total value. 

Chemically rigidified structure—Structure given rigidity through chemical re- 
action. 

Cladding—Process by which a dense homogeneous layer of metal is bonded firmly 
and permanently to the base metal on one or two sides. 

Composite (composite material)—Mixture or combination of two or more macro- 
constituents that differ in form and/or material composition and that are essen- 
tially insoluble in one another. 

Composite structures—Material systems, designed and produced for a given ap- 
plication, that are the finished structures or products themselves. 

Criterion (merit) function—Mathematical equation expressing all considerations 
associated with selecting the prime solution of a design problem; the function 
to be optimized. 

Design—Process of evolving a configuration to perform specific functional re- 
quirements. 

Design process—Sequence of operation by which the design configuration is 
evolved. 

Dispersion-hardened-alloy composite—-Composite having hard particles (usually 
of submicron size) of a structural constituent dispersed in a matrix of softer 
metal. Structural constituent is usually less than 3 percent by volume. 

Elastic recovery structures—Structures utilizing the basic elastic properties of 
the materials to deploy and provide structural rigidity. 

Fiber (filament) composite—Composite of fibers in continuous or discrete filament 
form embedded in a continuous matrix. 

Filament-wound structure—Structure formed by draining continuous fiber (fila- 
ment) through a resin bath and winding continuously onto a form, or mandrel, 
corresponding in shape to the inner structure of the fabricated part. 

Filled (skeletal) composite—A continuous three-dimensional constituent having a 
random network of open pores or passages, cells, or an ordered honeycomb filled 
with another constituent. 

Flake composite—Composition of flat particles or flakes, usually of an isotropic 
material, held together by an interface binder or embedded in a continuous 
matrix. 
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Fully stressed design—Structural members or elements are proportioned by 
equalizing the stress in any member (or element) in at least one loading con- 
dition. 

Functional constraint—Mathematical description of the archetype of the proposed 
design. 

Geodesic dome—Type of roof employing the triangle and pentagon used in sub- 
division with bars of equal length. Vertexes of the curved figures forming the 
structures mark the arcs of great circles (geodesies). 

Inflatable structure—Fabric or film envelope maintaining structural integrity by 
internal pressurization. 

Interface—Surface forming the common boundary of the constituents. 
Isostatics—Plot of principal stress lines. 
Isotensoid—Filamentary structure (pressure vessel) in which the filaments are 

oriented so that there is equal and uniform tension in each fiber. 
Isotropie—Having no preferred direction with respect to a particular property or 

properties; having no natural axes. 
Laminar composite—Composition of layers of single constituents bonded as 

superimposed layers. 
Lattice dome—Shell system constructed from thin laths in which a fiat square 

grid is deformed into a spatially curved surface. 
Matrix—Body constituent of a composite; the "enclosure" material. 
Membranes—Very thin stress skins capable of resisting only tension. 
Micromechanics—Analysis of composite behavior based on the individual con- 

stituents and their interactions. 
Minimum-weight design—Arrangement of structural elements in which all the 

design requirements such as stresses, deflections, and geometric constraints are 
satisfied while the total weight of the entire structure is minimized. 

Monolithic material—A simple material. 
Optimization—Technique for finding the best combination of design parameter 

values that satisfy the design requirements. 
Orthotropic material—Material possessing three natural axes at right angles. 
Particulate composite—Composition of minute particles, usually of uniform 

shape, embedded in a continuous matrix. 
Regional constraint—Sets the allowable limits on design parameters or derived 

groups of parameters that represent the more complex attributes of the proposed 
object. 

Roving—Untwisted grouping of filaments. 
Sandwich—Construction comprising a combination of alternating dissimilar, 

simple or composite materials, assembled and intimately fixed in relation to 
each other so as to use the properties of each to the specific structural advantage 
of the whole assembly. 

SAP—Sintered aluminum powder. 
Self-lubricating alloy—Dispersion of dry lubricant powder in a metal matrix. 
Semimonocoque—Skin structure stiffened by a number of reinforcing elements. 
Structural constituent—Constituent determining the internal structure of the 

composite. 
Synthesis—Fitting together design elements or separate concepts to produce an 

integrated whole. 
Unfurlable structure—Body that is mechanically deployed by hinges, sliding 

sections, and telescoping members. 
Viscoelastic material—Material having behavior characteristic of fluids while 

maintaining some of the rigidity of solids. 



Symbols 

Notations 
A      area, in.2; subspace of acceptable design points 
b       spacing; width, in. 
C      coefficient;    buckling    correction    factor;    optimum     design 

parameter 
c       specific beat, Btu/lb/°F 
D      structural design index, psi 
d       stringer spacing, in.; diameter, in. or ft 
E     modulus of elasticity, psi 
e       emissivity 
F     force, lb; merit function to be optimized 
6      shear modulus,  psi;  combined  constraint boundary between 

A and U 
gt     ith constraint function 
h      depth, in. 
/      moment of inertia, in.4 

J      torsional constant, in.4 

K     coefficient; shape factor 
k       thermal conductivity, Btu/hr/ft2/°F; coefficient 
Jc/cP   diffusivity, ft2/hr 
L      length, in. or ft 
I        spacing, in. or ft 
M     material efficiency factor, pci/psi; moment, in.-lb or ft-lb 
m      number of half waves in cylinder buckle pattern in longitudinal 

direction 
N     edge or end loading, lb/in. 
n      number of variables; number of full waves in cylinder buckle 

pattern in circumferential direction 
P      load, lb; probability symbol 
p       pressure, psi 
R      radius, in. or ft 
S      structural strength, psi; structural efficiency factor, nondimen- 

sional; design space 
t        thickness, in. 
U     criterion (merit) function; space of unacceptable design points 
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V volume, in.3 or ft3 

W weight, lb; weight efficiency factor, pci/psi 
w width, in. or ft 
X variable; design parameter 
x coordinate 
y coordinate 
a coefficient of thermal expansion, in./in.-°F 
7) plasticity reduction factor, nondimensional 
fi Poisson's ratio, nondimensional 
if variable; coordinates 
p density, pci 
<T stress, psi 
<rcy compressive yield strength, psi 
4> regional constraint 
f functional constraint 

Subscripts 
c core 
f face sheet 
r rib 
s stringer 
w depth 
x z-direction 
y y-direction  . 

Special Notations 
An Extensional stiffness in longitudinal direction, lb/in. 
A22 Extensional stiffness in circumferential direction, lb/in. 
-433 Shear stiffness, lb/in. 
Du Flexural stiffness in longitudinal direction, in.-lb 
Z>22 Flexural stiffness in circumferential direction, in.-lb 
D33 Torsional stiffness, in.-lb 
ZT Distance from centroid of ring to middle surface of shell; positive 

if ring lies on external surface of shell, in. 
Zs Distance from centroid of stringer to middle surface of shell; 

positive if stiffener lies on external surface of shell, in. 
\//r Indicates whether rings are external or internal to the  skin 

surface; —1 if internal, +1 if external 
&s Indicates whether stringers are external or internal to the skin 

surface; —1 if internal, +1 if external 
e Reads "contained in" 



Index 
Airmat, 52 
Anisotropie material, 169 
Anticlastic, 59 
Baseline-requirement changes, 91 
Body constituent, 7 
Bridge design, 103 
Buckling correction factor, 109 
Cermet, 12 
Chemically rigidized structures, 52 
Composites, 5 

flake, 13 
fiber, 7 
filled, 15 
laminar, 15 
particulate, 12 

Composite laminates, 35 
Composite materials, 5 

classification, 6 
Composite structures, 6 
Composites, milled, 6 
Composites, whisker, 10 
Computer-aided design for structures, 

86, 101 
Condition of optimality, 82 
Constituents, 7 

body, 7 
structural, 7 

Constraints, design-parameter, 74 
functional, 74 
regional, 74 

Continuous lattice shells, 62 
Core, sandwich, 17 

types, 17 
Corrugation-skin, 3 
Density/modulus ratio, 79 
Deployed structured, 50 
Design definition, 73 

parameters, 73 
point, 75 
requirements, 73 
space, 75 

Design process, 73 
Design-sciences approach, 76 
Design-structure-materials   interplay, 

76 
Dispersion-hardened alloys, 13 

Elastic recovery structures, 57 
Expandable structures, 50 
Fiber composite, 7 
Fiber-composite structures, 7 
Fiber-fiber composites, 7 
Fiber-matrix composites, 7 
Fiber-packing density, 8 
Filamentary composites, 9 
Filament-overwrapped vessels, 38 
Filament-wound structures, 9 
Filament-wound technique, 9 
Filled cellular composite, 15 
Filled composites, 15 
Flat-bulkhead tanks, 44 
Foam-dome structures, 64 
Folded-plate design, 62 
Formed-skin concept, 63 
Functional constraints, 74 
Fully stressed design, 81 
Geodesies, 62 
Geodesic dome, 62 
Geolatic framing, 102 
Geometrical constraints, 81, 91 
Grid-stiffened system, 3 
Hooke'slaw, 11 
Hot monocoque design, 35 
Igloo house, 60 
Inclusions (structural constituents),  7 
Inflatable structures, 52 
Inflato plane, 52 
Insulated design, 35 
Interface, 170 
Isostatics, 69 
Isostatic-ribbed plates, 69 
Isotensoid structures, 44 
Isotropie material, 170 
Laminar (layered) composites, 15 
Laminates, 16 
Lamination, 35 
Langley-tension shell, 47 
Large propellant tank, 41 
Lattice shells and domes, 62 
Materials, 25 

Anisotropie, 169 
Composite, 5 
Isotropie, 170 
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Materials—Continued 
Orthothropic, 170 
Viscoelastic, 11, 170 

Material efficiency factor, 78 
Matrix, 6 
Membranes, 57 
Merit function (criterion function), 74 
Metal-in-ceramics composites, 13 
Metal-in-metal composites, 11 
Metal-in-plastic composites, 9, 13, 14, 

15 
Minimum-weight analysis, 78 
Minimum-weight design, 76 
Monolithic materials, 170 
Multicell tank, 41 
Multiwall design, 36 
Oblate spheroid, 46 
Optimization, definition, 73 

mathematical representation, 74 
methods, 84 
structural, 84 

Optimality, condition of, 82 
Orthotropic material, 170 
Ovaloid, 46 
Packaged-to-deployed volume ratio, 59 
Particulate composites, 12 
Pegasus satellite, 57 
Plasticizer, 52 
Pneumatic structures, 57 
Pneumatic-structural system, 59 
Polar axis, 46 
Polar opening, 46 
Productivity coefficients, 83 
Radiation-cured systems, 52 
Radomes, 64 
Random-sampling method, 84 

basic screening steps, 86 
Regional constraints, 74 
Reinforced skin (stiffened skin), 3 
Reinforcing elements, 3 
Rigidified structures, 50 
Sandwich construction, 17 
Sandwich core, corrugated truss, 17 

honeycomb, 17 

Sandwich core—Continued 
sheet-stringer, 18 
types, 18 
waffle, 18 

Sandwich structures, 18 
Selecting materials, 93 
Self-lubricating alloys, 13 
Segmented tank, 41 
Semimonocoque structures, 3 
Semitoroidal tank, 44 
Sheet-stringer waffle, 27 
Skeletal composite, 15 
Space-frame domes, 62, 101 
Stiffened skin (reinforced skin), 3 
Strength-weight ratio, 11 
Stress concentration, 11, 13 
Structural concepts, 35 
Structural constituents, types, C 
Structural design index, 78 
Structural efficiency coefficient, 32 
Structural material selection, 25 
Structural-merit ratio, 59 
Structural optimization, 105 

methods, 84 
Structural synthesis, 84 
Structural types, 3 

selection, 25 
Synclastic surface, 59 
Synthesis, design, 73 
Tension-shell, 47 
Tension-string structure, 47 
Toroidal shells, 52 
Unfurlable structures, 55 
Viscoelastic materials, 11 
Waffle pattern, 3 
Waffle sandwich, 18 
Weight-efficiency calculations, 98 
Weight-efficiency factor, 78 
Weight equation, example, 115 
Weight index, 93 
Weight-strength ratio, 78 
Whisker composite, 10 
Whisker-reinforced materials, 11 
Winding patterns, 9 
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