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LIST OF S\ 

Fluid 

ß   = Bulk modulus 

cf  = Speed of sound in a general fluid 

cs      = Speed of sound in the outer fluid 

Ci     = Speed of sound in the inner fluid 

K  = Outer fluid wavenumber 

Ls   = Wavelength in the outer fluid 

kr    = Radial wavenumber 

P/   = General fluid density 

Ps     = Outer fluid density 

Pi = Inner fluid density 

9f = General fluid displacement potential 

<P.   = Outer fluid displacement potential 

9/   = Inner fluid displacement potential 

Uf     = Particle displacement of a general fluid 
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Particle displacement of the outer fluid 
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General fluid pressure 

Outer fluid pressure field 
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L = Axial wavelength 
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Yn   =    Bessel function of the second kind 
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r,    =    Calculation radius 

XXVlll 



TR 11,067 

A CLOSED-FORM DYNAMIC ELASTICITY SOLUTION TO THE FLUID/ 
STRUCTURE INTERACTION PROBLEM OF A TWO-LAYER INFINITE 

VISCOELASTIC CYLINDER WITH INNER AND OUTER FLUID LOADING 
SUBJECT TO FORCED HARMONIC EXCITATION 

INTRODUCTION 

This research treats the two-layer cylinder with inner and outer fluid loading subject to forced 

harmonic vibration within the scope of the linearized theory of dynamic elasticity. In previous 

efforts, investigations of the statically loaded single-layer cylinder were documented by numerous 

authors, and the forced vibration response of the single-layer cylinder was investigated by 

Holden,1 Kaul and McCoy,2 and others. 

In the theoretical development presented in this report, the case of nonaxisymmetric vibration 

is discussed in terms of circumferential order number n. Results are presented for the first three- 

order numbers, namely, n = 0, 1, and 2. Three excitation states are considered: the normal 

pressure P0, the longitudinal shear stress Px, and the circumferential shear stress PQ. 

The development proceeds using scalar and vector displacement potentials to describe the 

motion of the solid. The boundary conditions are specified in terms of the stresses and 

displacements, and thus must be rewritten in terms of the displacement potentials. 

For the case of the two-layered cylinder, the problem is reduced to solving a 13-by-13 system 

matrix for the undetermined complex coefficients. This matrix requires inversion at each 

location in the wavenumber and frequency plane, allowing all dynamic quantities (stress, strain, 

and displacement) to be calculated from the coefficients. Even though the solution is closed- 

form, a sizeable numerical computation is still necessary to extract information from the 

governing equations. 

1/2 
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THE PHYSICAL MODEL 

The physical model under analysis is shown in figure 1. A fluid-filled inner cylinder 

(cylinder 1) of inner radius a and outer radius b is joined to a second cylinder (cylinder 

2). Cylinder 2 is in intimate contact with cylinder 1 at radius r = b. At radial distance c, 

cylinder 2 is in contact with an outer fluid. The outer fluid extends to infinity in radial 

coordinate /-. The cylinders and fluids extend to plus and minus infinity in the longitudinal x- 

direction. 

As stated earlier, the system is treated within the context of the linearized theory of elasticity. 

The assumption of linearity implies that both the cylinders and fluids obey linear constitutive 

Figure 1. Physical Model Diagram 
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equations. For the cylinders, this means that there is a linear relationship between stress and 

strain. For the fluids, deviations from the hydrostatic pressure are a linear function of the 

condensation (fractional density change) and similarly the dilatation (volume strain). Strains are 

assumed to be small compared to unity for both the cylinders and the fluids; the response 

therefore is linearly related to the excitation. Both media are restricted to small signal analysis, 

i.e., excitation levels on the acoustic scale. 

Damping is included by the use of a complex modulus of elasticity—the well-known 

structural damping form. The fluids are modeled as inviscid for the purpose of fluid loading the 

moving structure. The radial velocity of the fluids and the cylinders is identically equal at r = a 

and r = c. Under the inviscid assumption, the fluids interact with only the radial motion of the 

cylinders and are uncoupled from the circumferential and longitudinal motions. A perfect slip 

condition is allowed between the cylinders and the fluids for the longitudinal and circumferential 

directions. This assumption allows us to avoid the use of boundary layer physics within the 

context of this development. 

As described in the Introduction, three harmonic excitations are applied by the outer fluid to 

cylinder 2 at r = c: radial pressure P0, longitudinal shear stress Px, and circumferential shear 

stress PQ. In practice, Px and PQ would only be developed by the viscosity of a real outer 

fluid. The amplitude distribution (at r = c) of the excitations in the wavenumber and frequency 

domain must be known a priori; otherwise a calculated quantity is normalized by an excitation 

stress magnitude. As shown in figure 1, the excitations are at a definite wavenumber (k) and 

frequency (to) and are of circumferential order number n. The response of the cylinder will 

therefore be a function of k, to, and n, as well as of the geometric and material properties of the 

composite system. 
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EQUATIONS OF MOTION 

DISPLACEMENT POTENTIALS 

The equations governing the motion of a homogeneous, isotropic, linearly elastic body are 

formulated with the strain-displacement relations (equation (1)), the constitutive relations 

(equation (2)), and the stress equations of motion (equation (3)) from reference 3: 

£U = \{ui,i + ui,i^ CD 

xtj = Khk8ij + 2Vceij' (2) 
and 

XijJ+P/bi =  Pc
Üi> (3) 

where e,y are the components of the strain tensor, itj are the components of the stress tensor, ut are 

the components of the displacement, and pc is the density of the cylinder. The components of 

acceleration are indicated by tf. and the body forces are indicated by ßt. The commas in 

equations (1) and (3) denote partial differentiation as 

Bu; dt-. 
u. . = —i , %.. . = —H , 

''J      Bx. lJ>J      Bx. 
J J                                                   (4) 

where the components of the vector of spatial coordinates Xj are equal to xy = r,x2 = 9, and x3 = x. 

To obtain an equation only in terms of the displacements and their derivatives, equations (1) 

and (2) are substituted into equation (3), resulting in4 

^c\jj+(K + ^ujji = PÄ- (5) 

Equation (5) is expressed in vector notation as 

[icV
2u + (\ + \ic) VV • u = pcü. (6) 
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The displacement vector is decomposed with the scalar and vector relationship 

u = V(p + Vx\|/ , (7) 

where (p = q> (r, 9, x, t) is the scalar displacement potential and \|/ = \|/ (r, 9, *, 0 is the vector 

displacement potential.    Equations (6) and (7) reduce to 

V((Xc + 2)ic)V
2(p-pc(p) +Vx(pcV

2\|/-pc.\|»  =0. (8) 

From equation (8), we obtain the following scalar and vector displacement potentials: 

and 
V2q> = 

1 .. 

ci 

V2\|/ = 
1 .. 
-2¥ 
ct 

(9) 

(10) 

The dilatational and shear wave phase velocities are given by 

2      K + 2V-c 2      I1 

c,  =  > c   = — 
' P, ' Pc 

Ec\ 
where the Lame constants Xc and \ic are equal to Xc =   ,^+y ■, /1 _2v ) 

modulus of the material, respectively.5 

(11) 

and the shear 

For the present cylindrical geometry, we have the following scalar and uncoupled vector 

potentials: 

V2(p = ^cp (12) 
and ci 

V^ = \%- (13> 
c. 



Two coupled vector potentials in r and 0 are 
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and 

Tr    2   ,.2ae t        1 

2 

15¥, 
2-, 2 

cfdr 

V ¥e    r2 + r236     - 

2 

2-.  2 

(14) 

(15) 

The Laplacian is defined in cylindrical coordinates as 

w2    a2   i a   i a2    a2 

ar2   '"3r r2ae2  ax2 (16) 

Considering the scalar potential given by equation (12) and the harmonic nature of the forcing 

functions in figure 1, we will assume a separation-of-variables-type solution in r and 0. The 

scalar potential (p (r, 0, x, t) is then of the form 

(p = Q(r)0(O)e i(kx-mt) 
(17) 

Equation (12) yields the following two equations: 

dQ.    IdQ. 

dr2 +~rdr + 

f     2 
CO        ,2 

~-k Q-^Q=0 
r 

(18) 

and 

2 
d ©      2„ —- + « 0 = 0. 
J0 

(19) 

The solution of equation (18) is in terms of Bessel functions. For a solid cylinder, the field 

quantities must be finite at the center (r = 0); therefore only Bessel functions of the first kind, /„, 

would be retained.    However, for hollow cylinders, such as cylinders 1 and 2, Bessel functions of 
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both the first and second kind are retained.    The solution to equation (19) is in terms of the sine 

and cosine of argument nQ.    The total solution is therefore 

<p =  [cos (nQ) + sin (nQ) ] (A1Jn (pr) + A2Yn (pr)) e'(kx  ow) , (20) 

with p defined as 

2      co     ,2 nu p   = — -k . (21) 
ci 

A similar solution for the x-component of the vector potential, V|/A., is 

\|/x =   [cos (nQ) +sin(n0)] (B^^qr) + B2Yn (qr)) e
i(kx-m) , (22) 

with q defined as 

2 
q2 = ^-k2. (23) 

ct 

The potentials for \|/r and \|/e can be uncoupled by noting that \\fr and \(/e contain trigonometric 

functions of 0 and that a sine dependence on 0 in \|/,. is equivalent to a cosine dependence on 0 in 

\|/e and vice versa.6 With the use of the condition V • \j/ = 0 to eliminate an extra constant, yr 

and \]/e become 

Vr=   [ClJn+l(qr)+C2Yn + l(qr)]sm(nQ)ei{kx-m) (24) 

and 

Ve =   i-CxJn+x(qr) -C2Yn + x(qr)}cos{n%)e[i{kx-m)\ (25) 
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Displacement Potential Summary for Cylinders 1 and 2 

As stated earlier, cylinders  1  and 2 require Bessel functions of the first and second 

kind.7   The summary of the scalar and vector displacement potentials is 

9 =   [AJJpr) +A2Yn(pr)]cos(nd)ei{kx-(ät\ 

Vx =   [V«(<F) +B2Yn(qr)] sin (nQ)ei(kx-m\ 

Vr =  [<V„+i(^) +C2Yn + l(qr)]Sm(nB)ei(kx-m\ 

Ve =  [-<V„+i(<70 +-C2Yn + 1(qr)]cos(nQ)ei(kx-m\ 

2 2 
2        CO        ,2 2        CO        ,2 

p = —~k > q = —-k 
Cl Ct (26) 
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PARTICLE DISPLACEMENT/DISPLACEMENT POTENTIAL 

Intermediate relationships between the particle displacements and the displacement potentials 

are given by equations (27) through (29),8 where uc is the displacement in the r-direction, vc is the 

displacement in the circumferential 9-direction, and wc is the displacement in the longitudinal x- 

direction: 

c      dr     rdQ      dx 
(27) 

rdQ    dx     dr 
(28) 

and 

l&Vr 3<p     1 d ,       , 
c      dx     rdr   rQ        rdQ 

(29) 

STRESS/DISPLACEMENT EQUATIONS 

In the problem posed, the boundary conditions are prescribed with the stresses and 

displacements. Equations (30) through (35) relate the stress components to the particle 

displacements. We now have a complete progression from displacement potentials to stresses, 

which will allow us to solve for the motion of the composite system: 

v = K 
du      u      13v      dw 
 c + — + ■ + — 
dr       r     rdQ     dx 

du 
(30) 

xee _ ^c 
dur,   ur    i3v     dw 
 c + — + + — 
dr      r     rdQ     dx 

+ 2*ic 
' 's + 1^ 

r      rdQ 
(31) 

t    = A, 
XX c 

du      u      i dv      dw 
 c + — + + — 

ydr       r     rdQ     dx 

dwr 
+ 2^Tx • 

(32) 

10 
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\e = Vc 
3v      v      i du c        c      1      c 

dr      r     rdQ 
(33) 

and 

Te* = K 
13wc.   Dvc 

(34) 

\x = Vc 

du dw 
— + — 
dx     dr 

(35) 

The indicial notation is interpreted in the following manner. The first index refers to the plane 

normal to the coordinate identified by the first index. The second index refers to the direction in 

which the stress acts. Stresses x,.,., xee, and xxx are normal stresses, with xn. acting in the plane 

perdendicular to the radial coordinate in the radial direction. The remaining three stresses (x,.e, 

%QX, and xrx) are shear stresses, with x;.e acting in the plane perpendicular to the radial coordinate in 

the circumferential 0-direction. 

STRAIN/DISPLACEMENT EQUATIONS 

The relationships between strain and displacement in radial coordinates are 

e,-r       dr  ' (36) 

and 

£ee _   „ + 

dwc 

xx        ^x 

Uc  .   ldwc 

rdQ ' 
(37) 

(38) 

11 
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STRESS, STRAIN, AND DISPLACEMENTS IN TERMS OF 
DISPLACEMENT POTENTIAL EQUATIONS 

The stress and displacement equations needed to compose a suitable set for the application of 

the boundary conditions are written in terms of the displacement potentials by substituting 

equations (27) through (29) into equations (30), (33), and (35) to obtain equations (39), (40), and 

(41): 

x..„ = A,. 

2 2 2 
a q>   i3(pc   ia cp   a <p 
—T    + -T-     + 'S ^   + T 3r2      rdr      r

2a02     dx2 + 2u 

^2 2 2 
B(pc    i^    \dyx    dyQ 

3r2 

V 
r2ae + r 363r    3x3r 

(39) 

Ve ^ r2B6      rdQdr    dxdr    rdx      rdxdQ    dr2      rdr      r2dQ2 (40) 

^ 

^2 2 2 2 2 

,d<Pc     l^¥r   i9yr    ^¥e   
d ¥e    1 l^e    la ¥x 

'ar3x + r2ae   raear  a^2 +a72    r2¥e + rar "Vaea* 
(41) 

This same substitution is performed on strain equations (36), (37), and (38) to obtain equations 

(42), (43), and (44): 

*rr      dr2      r2dQ   + rdQdr    dxdr' 
(42) 

l5(Pc    ldVx   l^e    15(PC    l
5Vr    l^V, 

eQQ = -TT-  + — ^— —=—   + ——- + —. ^ee rdr      r2dQ      rdx      r
2a02      rdxdQ    rdQdr' 

(43) 

2 2 2 
a q>   a \\fQ   id\\fQ  xa y 

3x2      3x3r    rdx      rdxdQ 
(44) 

12 



Equations (45), (46), and (47) are now repeated to aid the reader 

3(pc   i*vx   3ye 

and 

ldq>c    3\|/_    d\\f 

13/14 
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M< = ^" + räe "fc ' (45) 

y
C 

= ;ae +Tx ~Tr ' (46) 

3(PC    
a^e    1 l&Vr 

W^TX
+Tr   +^e"ae- (47) 
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OUTER FLUID 

As the surface of the cylinder is set into motion by the excitation of a pressure wave of 

magnitude P0, a pressure field ps is generated in the outer fluid by the cylinder surface. When 

the longitudinal wavenumber associated with the vibration of the cylinder surface is smaller than 

(ö/cs, the pressure radiated into the outer fluid is in the form of a propagating wave. If the 

longitudinal wavenumber of the cylinder vibration is greater than (o/cs, the pressure field decays 

exponentially from the surface of the cylinder in the positive radial direction. The outer fluid is 

modeled as an ideal (nonviscous) linearly elastic media that cannot sustain shear stress, even 

when it is in motion.9    The equation of state is then 

Gtj = -Pfrj, (48) 

whose components are given by Hooke's law (a.. = X£kk§r + 2(i/£/.) by setting \ju = 0: 

Gll   =  a22  =  G33  =  ^f-kk = ~Pf, 

G^■^   -  On   =  CT0o   =  0 • 12 lj li /^Cjx 

The following scalar displacement potential describes the dynamic motion of the fluid in 

cylindrical coordinates:10 

2 
2 1 d cpf 

V qy . ?5/, (50) 
Cf 

where o       ^ o        ? 
w2    a2  i a   i a2   B

2 

dr2     rdr    rW    dz2 
(51) 

In the case of fluids, cy = J^/pf, which is equivalent to cf = J$/pf, where ß is the bulk 

modulus of the fluid. The particle displacement and the pressure in the fluid can be expressed in 

terms of the displacement potential as follows: 

uf = Vqy (52) 

15 
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and 
2 

d (p 

Pf = -PfTi 
dt (53) 

For propagating wavenumbers in the outer fluid field, denoted by subscript s, the scalar 

displacement potential is given by11 

2 2 
./,,(!),       »   1        /   m   i(kx-mt)        o2-—-k2 for — >k2 

Vs = M{Hn    yS2r)   )cos(nQ)eK        ',     S2   -    2    
K ' 2 >K   ' 

C* C^ (54) 

i (it r-CO?) 
For an outgoing wave described by e ,   the pressure field in the outer fluid is physically a 

radiation from the surface of the moving cylinder. The radial dependence in equation (54) is a 

Hankel function of the first kind, indicated by superscript (1); i.e., 

H{n\g2r)   =Jn(82r)+iYn(82r). 

Differentiating equation (54) with respect to radius and time yields equations (55) through 

(57) for the fluid pressure, particle displacement, and particle acceleration, respectively: 

ps = co2p M[ H(
n
l) (g2r)   )cos (n%)ei{kx-m) , (55) 

,.d ( „(1) ,       s    A ,   Q,    i(kx-m) 
us = Mj^Hn    (g2r)   Jcos(nQ)e (56) 

and 

!l- = «fiU^H™ («2r)  )cos („9) ,'<*-> . (57) 

For nonpropagating wavenumbers in the outer fluid, the evanescent field is given by the following 

displacement potential, where the radial dependence is in the form of the modified Bessel 

function Kn: 

2 2 
uv   <t   \ i   en   Hkx-at) 2        ,2     CO for ,2     CO 

<ps = HKn(f2r) cos (nQ)e ,      f2   =k- — > k>~    ' 
c c 

(58) 

16 
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Similar to the above discussion of the propagating case, the pressure, particle displacement, and 

particle acceleration are given by equations (59) through (61) as 

ps = ®2psHKn (f2r) cos (»9) ei{k*-m) , (59) 

us = H^-Kn(f2r) cos (nQ)ei(kx-m), (60) 

and 

—   =HTKn(f2r) cos (nQ)e' . (61) 

Figure 2 connects the wavenumber-frequency plane with the time-space characteristics of the 

field properties in the outer fluid. The vertical axis represents wavenumber with respect to the 

longitudinal x-axis of the cylinder. The horizontal axis is the frequency axis. The positive 

wavenumber direction corresponds to propagation in the positive x-direction, and the negative 

wavenumber direction corresponds to propagation in the negative x-direction. There are two 

distinct regions in the wavenumber-frequency plane corresponding to propagating and non- 

propagating fields in the outer fluid. 

In review, variable k refers to the wavenumber that exists on the surface of the cylinder. The 

vibrating cylinder surface will initiate a propagating field in the outer fluid if co2/c/ > k2. When 

this condition exists, the radial displacement (uc) of the cylinder surface must project (wc') onto 

the propagation direction of the field in the outer fluid. For a given frequency, the wavelength of 

cylinder vibration must be greater than the corresponding wavelength of vibration that the fluid 

will propagate. The axisymmetric n = 0 vibration produces a symmetric field in the outer fluid 

as a function of 0. The spatial representation of a point (k^) in the region of propagating 

wavenumber-frequency pairs given by \ks\ >\k{\ >0, is shown in figure 3, where Lx is the 

wavelength and cx is the velocity of propagation. In the limit of |jfcj| -» 0, the radiated field is 

physically a series of cylindrical, radially spreading wavefronts, emanating outward from and 

parallel to the surface of the cylinder.    The intermediate range shown in figure 3 results in the 

17 
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NONPROPAGATING 
REGION 

FREQUENCY 

NONPROPAGATING 
REGION 

Figure 2.   Outer Fluid Propagating and Nonpropagating Regions of the Wavenumber- 
Frequency Plane 

18 
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wavefronts propagating out along conical planes, forming an angle a with the longitudinal x-axis 

of the cylinder.    The direction, a, of the radiated field will be given by equation (62) as 

Ls cs k\ a = acos — = acos — = acos — 
Ll c{ ks 

(62) 

where 

,        2% _ co 

s s 
(63) 

r  ' t 

^AXTfTl »TT 

\ y \ 
/               X                                                                                                                       ^*^?25>^>\ 

/         x                                     ^l!Pi<E>ocs\ 
4        Xx     uc,  .,                     .^^^ 

^ 

'        a 

/ Ps'^s                        ^    ^ /   
c            ^^^ 

'-^^^^^sPs^isPcX^r^C^H^htJ^          i '                       _-—^ 

V^jt-VvfWiS^^^^2^7^^'- 
d^H^T                     ' 

^      Lx               coj = CONSTANT &^ 
*1 = 27T/L!                                \^ 

Figure 3.   Relationship Between Cylinder Vibration and Radiated Pressure /;s 

Propagation ceases when &j = ^. This condition requires that c{ = cs; therefore, the 

propagation in the fluid would be along the longitudinal x-direction. However, there is only 

coupling between the cylinder motion and a propagating fluid pressure field if the radial 

19 
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displacement u can be projected onto the propagation direction of the fluid pressure wave. This 

is not possible when kx - ks since u and x are orthogonal to each other; this condition is the 

onset of the nonpropagating region shown in figure 2. 

The Hankel function variation of the outer fluid displacement potential can be observed in the 

inset TIME-SPACE diagrams in figure 2. These diagrams depict the radial spatial variation of 

the magnitude of the field quantities at a frozen instant of time. 

As a line of constant frequency is traversed in figure 2, the cylinder wavelength Lx becomes 

shorter, ultimately reaching a length less than the length of the corresponding fluid wavelength 

that supports propagation. Under this condition, there is no longer a component of the radial 

displacement of the cylinder that can be projected onto the propagation direction of the field in the 

outer fluid; equation (62) is no longer valid; and the field in the outer fluid, ps, induced by cylinder 

vibration ceases to propagate. The radial variation of the field quantities is, according to the 

modified Bessel function depicted in figure 2, for the nonpropagating regions. The magnitude of 

all field quantities, such as the displacement potential and all parameters related to it, undergo the 

same qualitative spatial variation. 

20 
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INNER FLUID 

Similar to the behavior of the outer fluid, as the surface of the cylinder is set into motion by 

the excitation of a pressure wave of magnitude P0, a pressure field (pf) is generated in the inner 

fluid by the cylinder surface. When the longitudinal wavenumber associated with the vibration 

of the cylinder surface is smaller than (o/ch the pressure radiated into the inner fluid is in the form 

of a propagating wave. If the longitudinal wavenumber of the cylinder vibration is greater than 

co/Cf, the pressure field decays exponentially from the surface of the cylinder in the direction of 

decreasing radius. 

When considering the behavior of the field at r = 0, we make the observation that Yn and Kn 

approach infinity as the argument of the functions approaches zero. However, because the 

interior pressure field must be finite at r = 0, these solutions are inappropriate and must be 

discarded. Bessel functions /„ and /„ will be retained to describe the displacement potentials in 

the inner fluid. 

For the case of inner fluid, c{ = 7ß/P,-> where ß/is the bulk modulus of the fluid and p,- is 

the density. The particle displacement and the pressure in the fluid can be expressed in terms of 

the displacement potential as follows: 

and 
w. = V(p;. (64) 

2 
dtp. 

Pi = 'Pi— 
dt 

(65) 

For propagating wavenumbers, the scalar displacement potential is given by 

<p,. = DJn(8lr) cos (nQ)ei{kx-mt\     8* = %-k\       for ^>*2 

c
i ci (66) 

21 
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Differentiating equation (66) with respect to radius and time yields equations (67) through 

(69) for the fluid pressure, particle displacement, and particle acceleration, respectively: 

p. = Cd2piDJn(g1r) cos (nd)e , (67) 

«i. = D°-Jn(8lr) cos (nQ)el{kx-m\ (68) 

and 

||' = tfD|7„(g1r)co.(ne)«"b-™). (69) 
dt2 or n     l 

For nonpropagating wavenumbers in the inner fluid (imaginary gx), the field decays 

evanescently and is described by the following displacement potential, where the radial 

dependence is in the form of the modified Bessel function /„, evaluated for real argument m: 

2 2 

<p. = GIn{mr) cos (w8)e ,       m   =k- — >      for k>—    ■ 
C' C( (70) 

In this case, /„ replaces /„ using the identity ln (x) = fnJn (ix). Similar to the discussion of 

the propagating case, the pressure, particle displacement, and particle acceleration are given by 

equations (71) through (73) as 

o     ^ix   ,      ^ /   r\\    i(kx-cot) /"7i\ 
p. = co2pG/n (mr) cos (nö) e , {>>■) 

u. = G^-7 (mr) cos (no) e , (72) 

and 
2 

   = G^-7  (mr) cos («9) e . I'JJ 
3r2 dr " 
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The FORTRAN algorithm that is used to evaluate the /„ Bessel function numerically accepts 

complex arguments. Thus, equations (70) through (73), which use Bessel function /„ to replace 

/„ as the argument of the function becomes imaginary, are not used in the FORTRAN algorithms 

developed to implement the solution of the inner fluid displacement potentials. The 

development presented above is provided in the event that the complex argument Bessel function 

routines might not be available to the reader. 

Figure 4 connects the wavenumber-frequency plane with the time-space characteristics of the 

field properties in the inner fluid. The vertical axis represents wavenumber with respect to the 

longitudinal x-axis of the cylinder. The horizontal axis is the frequency axis. The positive 

wavenumber direction corresponds to propagation in the positive x-direction, and the negative 

wavenumber direction corresponds to propagation in the negative x-direction. There are two 

distinct regions in the wavenumber-frequency plane corresponding to propagating and non- 

propagating fields in the inner fluid. 
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NONPROPAGATING 
REGION 

FREQUENCY 

NONPROPAGATING 
REGION 

Figure 4.   Inner Fluid Propagating and Nonpropagating Regions of the Wavenumber- 
Frequency Plane 
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SINGLE-LAYER CYLINDER/FLUID INTERFACES 

BOUNDARY CONDITIONS 

The solution to the solid cylinder in contact with an outer fluid is obtained by solving for the 

constants Al ,A2 ,BX ,B2 ,CX and C^1 in equation (26), M in equation (54), and D in 

equation (66) for the pertinent boundary conditions by considering the state of stress and 

displacement at the cylinder and fluid interfaces r = a and r = b. (Note from this point on in 

the derivations that subscript c (Lame constants) has been replaced with 1 or 2 to indicate cylinder 

1 or 2. Superscript C\ or C2 has been added to all other pertinent quantities to distinguish the 

first from the second cylinder.) 

The final problem contains a total of seven unknown constants. There are seven boundary 

conditions, which are reflected in rows 1 through 7, respectively, of system matrix 

smcl. Initially the problem was set up with eight boundary conditions, where the eighth equated 

the radial displacement of the cylinder to the outer fluid at r = b. However, due to the 

properties of the cylinder used for the trial problem and the limited precision available for the 

calculation, rows 4 and 8 of this original matrix were not sufficiently different to enable the 

required inversion, a condition refered to as algorithmically singular. 

To circumvent this original inversion problem, the radial displacement boundary condition 

evaluated at r - b, 

c\ 
r = b       dr 

(74) 
r = b 

&"-   (^fc) 

was assembled and written in terms of the unknown fluid constant M, assuming coVc2 > k2, as 

follows: 

+ CC
l
1ikJn + l(qlb) + CC

2
likYn + l(qib) j.       (75) 
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Equation (75) was used in the assembly of boundary condition 1 (equation (76)) to eliminate the 

outer fluid constant M. This added a fluid term to each of the terms in boundary condition 1, 

making it sufficiently different from boundary condition 4 to allow the numerical inverse of 

matrix smc\ to exist. Thus, the system was reduced from eight equations for the boundary 

conditions to seven, which also decreased the time needed for computation. 

The seven boundary conditions are given by equations (76) through (82) as 

Boundary condition 1 

Boundary condition 2 

Boundary condition 3 

Boundary condition 4 

Boundary condition 5 

Boundary condition 6 

Boundary condition 7 

c\ 

c\ 

c\ 
Cr9 

c\ 

c\ 

c\ 
Cr9 

c\ 

r = b \r = b 

= -P. 
r = b 

r = b 

\r = b 

= 'Pi 

= 01 

3q>. 

dr 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 
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The seven boundary conditions are shown diagrammatically in figure 5.    All boundary 

conditions are in effect over the entire area of contact between the cylinder and the fluids. 

BC#2        T"L„ = -'V = „ 

Uint  =   Uc =   U-\ 
i r = a l ;• = a 

'#4 

BC#3 

BC#4 

■'■(*.._,. e. 

"/'; 

B€#5 

INNER 
FLUID • K J BC #7         BC #5 

C'll = ()l 

BC#6 y                      BC#6 
OUTER FLUID 

C'll 
= 0|. 

Ps'c^             BC #7 C'l 3(p 

Figure 5.   Boundary Conditions for Single-Layer Infinite Cylinder and Fluids 
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The fourth boundary condition (equation (79)) for radial stress is assembled by substituting 

equation (67) and the appropriate derivatives of equation (26) into equation (39). The resulting 

expression is in terms of the unknown constants for the displacement potentials and is given as 

A 
c\ d2 ^l d 

(   2 A 
n      ,2 
~2 + k 

\a j 

+ A 
c\ 2 Oi (   2 A 

n      ,2 
-+k 

\a J 

B 
c\ 2\ixnf 3 

-B 
c\ 2\ixn( 3 

-—{Yn{qxa)-a^-Yn{qxa) 

„Cl-      ,,9 .        ,       .      s^C\^      .. 3 „ ,        .   ^        ,   r>\   i(kx-m) 
+ Cj  2^1^^-/n + 1(^1fl) + C2 2[i1ik^-Yn + 1(qla) Jcos(«9)e 

-co2p.D/n(g1a)cos(n6)e 
/ (fa-CO?) (83) 
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As previously described, the first boundary condition, equation (76), is assembled by using 

equation (75) to eliminate the outer fluid constant M, resulting in 

,ci 
(v2^i>ä^>i*>+!/»<Pi*) ä^ <*» 

-\Jnipxb) 

) 

(   2 ^ 
n      ,2 

\b ) 

+ A 
c\ 

a1 + 2n1)^y„(Pl6) + |:yB(p1fc) 
V_2       <X\g2b)        A 

lAHn     <*2*> 
-\Ynipxb) 

) 

(2 \ 
n      ,2 

\b ) 

-B 
c\ 2^\n( d A   nP<®      #„(1) (g0b) 

-B 
c\ 2V\n( d \    nP<®2     H(„l) (gob) 

ä7^M   (s2*) 

+ c c\ n       ;d  T        ,     ,,       ., 2       Hn      (S2
b) 

^l^/n + Ml^ + ^s®   d(      {l)        \Jn+Mlb) 

+ c c\ 2Vlikyn+Mlb) + ikPs^d(
Hn

(l)
i82b)      \?n+Mlb) 

dAHn     <*2*> 

.   „.    i{kx-(üt) _       ,n .. 
cos (n6) e = 0 .   (84) 
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SYSTEM MATRIX 

The seven boundary conditions in equations (76) through (82) are assembled in matrix form in 

equation (85): 

smcl (1,1) smcl (1,2) smcl (1,3) smcl (1,4) smcl (1,5) smcl (1,6) 0 

smc\(2, 1) smcl (2, 2) smcl (2, 3) smcl (2, 4) smcl (2, 5) smcl (2, 6) 0 

smcl (3, 1) smcl (3, 2) smcl (3, 3) smcl (3, 4) smcl (3, 5) smcl (3, 6) 0 

smcl (4,1) smcl (4,2) smcl (4,3) smcl (4,4) smcl (4,5) smcl (4,6) smcl (1,7) 

smcl (5, 1) smcl (5, 2) smcl (5, 3) smcl (5, 4) smcl (5, 5) smcl (5, 6) 0 

smcl (6,1) smcl (6, 2) smcl (6, 3) smcl (6, 4) smcl (6, 5) smcl (6, 6) 0 

smcl (7,1) smcl (7,2) smcl (7, 3) smcl (7,4) smcl (7,5) smcl (7,6) smcl (1,7) 

k'l '-Po 

4> -r* 

»V -Fe 

"V = 0 

c" 0 

c2 
0 

[D _ 0 
(85) 

Elements of the smcl matrix are shown in equations (86) through (134). Solution of equation 

(85) at each point in the wavenumber-frequency plane for the vector of unknown constants allows 

the displacement potentials of the system to be evaluated with equations (26), (54), and 

(58). Equation (85) will be evaluated for only one nonzero forcing function at a time. The 

coefficients will be normalized by the forcing function stress, which will cast the output in terms 

of a transfer surface for the particular cylinder variable chosen, i.e., displacement, velocity, stress, 

or strain. 

From boundary condition 1, 

smcl (1, 1)  = (K + W^nW+^nW* 
\ 2     H™(g2b)      ^ 

—+ p „CO -Z-?  
b     Ws     d   „(i) 

V &"- (^) 

\Jn<Plb\& + k2 

(86) 
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smcl (1, 2) ^+i^)^n(pj)+yn(pxb) V^       //n1)(g2^) 
F + ^än^  

37l^   <*2*> 

-V>1*)[J2+*2 

(87) 

smcl(l,3)  =-2^^.)-^,)),^     ^^    /a(gi,)t       (88) 

smcl(l,4)  - -^^2{Yn(qib)-blYn(qib)) + nPf  zHnJ82b)    ,Yn(qlb),      (89) 
n 

[b2 dr b     3f„(l),     ,, 

#(1) (    b) 
smcl(l,5)  = i2]i1k^JH + l(q1b) + ikps(ü2

d(   n     §2 y/^^6), (90) 

smcl(l,6)  = f2li1^rB+1(^) + ftpy        n      §2 ^Jn + l(qib), 

d?lHn      W) 
(91) 

and 

smcl (1,7)  = 0. (92) 

From boundary condition 2, 

smcl (2,1)  = i2\^xk~Jn(pxb). (93) 

smcl (2, 2)  = /2m^„(p^), (94) 
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smcl(2,3) = -L-Jn(qib), (95) 

i\l,kn 
smcHlA)  = -y-Yn(qib), (96) 

2 
n+ 1    ,->>    3 r      ,    , J n + 1 i     3 

,mcl(2,5)  ^^^.i^^^-^J-^.i^iH-^J-^-^^'    (97) 

i(2,6) = ^(w«i»(^-*)-£w«iK^)-^1,»i(«>*)J- CM) 

and 

smcl(2,7)  = 0. (99) 

From boundary condition 3, 

,mcl(3,l)  =-±.]<hJn(plb)-^tfp,b) 

5«cl(3,2)  = -J-^y^fc)-^^) 

5mcl(3,3)  = ^^^„(«i^ + ^/^iW-^i^J. 

und (3, 4)  = H^-^^W + ^^W-p^i^J. 

smcl(3,5)  = ^(^n + 1(4i&WM+i(^)(-^ 

smcl(3,6)  = rt^W^-W*!*)^ 

and 

(100) 

(101) 

(102) 

(103) 

(104) 

(105) 
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smcl (3, 7)  = 0. (106) 

From boundary condition 4, 

smcl(4,l) =  (\+^)~JniPla)^^y^la)-^Jn(Pla)-k^lJn{pla),    (107) 

smcl(4,2) =  (\ + 2li1)^Yn(Pla) + ^Yn(p1a)-^Yn(pla)-k^lYn(pla),(m) 

smcl (4, 3) = -211^7^^)-al-J^q^, (109) 

smcl (4,4) = -l^lrfati-a^Yfaa)), (110) 

smcl(4,5) = 2\i1ik^-Jn + l(q1a), (HI) 

smcl (4, 6) = 2^1^A7/i + 1(^lfl), (112) 

and 

smcl (4, 7)  = to2p.D/^lö). (113) 

From boundary condition 5, 

smcl(5,l)  = i2[ilk^-Jn(pla), (114) 

smcl (5, 2)  = /211^^-F^ja), (115) 

i]Xykn 
smcl {5,3)  = ——Jn(qia), (116) 
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iiL,kn 
smc\{5,A)  = -^-Yn{qxa), (117) 

2 n+1    ,o^i    3 r      ,     jB+li     3 ,mcl(5,5)  =h^B+ltola)^-*2j_±L/|i + 1(^__j__y|i + 1^1a)j,  (118) 

2 n+1    ,^    3 „     ,     J«+1 i     3 ,mcl(5,6)  = ^[Yn+1(qia)^-Pj-^Yn + 1(qia)[-^J-^Yn + l(qia))All9) 

and 

smcl(5,7)  = 0. (120) 

From boundary condition 6, 

smcl(6,5)  = ik\L1(j^n + l(qla)-Jn + 1(qla)[-^ 

smcl(6,6)  = ik\i\^Yn + l{qxa)-Yn + l{qxa)[^ 

(121) 

(122) 

2\ixnfi 3 
Smc\{6,\)   =   —{-Jn<Pla')-dprn(Pla') 

smcl(6,2)  =^[-YH(pxa)-°?Yn(p,a) 

(    32 13 ft2 

smcl(6,3)  = tx^-—/n((?1a) + -^-/^1a)--/^1a)J, (123) 

smcl (6,4)  = ^1^--^F^1a) + i|:F^1a)-^F/,((?1a)j, (124) 

(125) 

(126) 
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and 

smc\{6,l)  = 0. (127) 

From boundary condition 7, 

smc\{l,\)  = ^-/nipxci), (128) 

smc\{l,2)  = J^„(Pi«), (129) 

smc\{l,3)  = -Jn{qxa), (130) 

smcl{l,A)  = ^„(^i«), (131) 

smc\{l,5)  = ikJn + x(qxa), (132) 

smcl(7,6)  = ikYn+1(q1a), (133) 

and 

smcl(7,7)  = -jLjn(gia). (134) 
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TWO-LAYER CYLINDER/FLUID INTERFACES 

BOUNDARY CONDITIONS 

In this section, we will formulate the 13 boundary conditions required for the two-cylinder 

problem shown in figure 1. At radius r = c (the second cylinder/fluid interface), the radial stress 

in cylinder 2 is set equal to the negative of the magnitude of the pressure in the fluid. Also at 

radius r = c, the radial displacement of the cylinder equals the radial displacement of the 

fluid. At radius r = b, there is a continuity of displacements and stress components between 

each cylinder in the plane of contact perpendicular to the radial coordinate. At radius r = a (the 

first cylinder/fluid interface), the radial stress in cylinder 1 is set equal to the negative of the 

pressure in the inner fluid. Additionally, the radial particle displacement of the fluid and 

cylinder is equated. The shear stresses XrQ and xrx vanish due to the inviscid assumption. For 

the composite problem, the following description at the boundaries exists: 

Boundary condition 1 

Boundary condition 2 

Boundary condition 3 

Boundary condition 4 

Boundary condition 5 

Boundary condition 6 

Boundary condition 7 

Boundary condition 8 

C2 

C2 

C2 

C2 

C2 

C2 

C2 

C2 

(-P   -p  ) v    O       r SJ 

= -P 

=    ~Pr 

r = b 
=  X.. 

c\ 

r = b 
=  1,. 

C\ 

= X 
r = b 

r = b 

C\ 
;-9 

c\ 

=  v„ 
c\ 

r = b 

r = b 

r = b 

r = b 

r = b 

r = b 

(135) 

(136) 

(137) 

(138) 

(139) 

(140) 

(141) 

(142) 
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Boundary condition 9 

Boundary condition 10 

Boundary condition 11 

C2 
W, 

c\ 
= w„ 

r = b r = b 

C\ 

C\ 

= -Pi\ ■ r = a \r = a 

= 0. 

(143) 

(144) 

(145) 

Boundary condition 12 
c\ (146) 

Boundary condition 13 
c\ 

=  UA . 
r = a \r = a 

(147) 

The same procedure employed for the single-layer cylinder, which combined the outer fluid 

radial displacement condition with the boundary condition for radial stress, is used in the two- 

layer cylinder problem formulation. At radius r = c, the continuity of radial displacement 

between the cylinder and the outer fluid requires that 

C2 3(0 

r = c        or 
(148) 

This boundary condition is assembled with equations (26), (27), and (54).    Solving for M as 

follows yields 

M = 
1 

ä"»'^ 
^cin ,C2«, 

A? yn(Pic)+4%Yn(P2^)+K'iuii*+Tiuw) 

+ CC
l
2ikJn + x{q2c) + cfikYn + fac)  I ■ 

(149) 

Equation (149) is combined with equation (135) to eliminate the constant M, reducing the size of 

the system matrix from 14 by 14 to 13 by 13. 
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The 13 boundary conditions correspond to rows 1 through 13, respectively, of equation 

(150). The elements of the system matrix, C, are given in equations (151) through 

(319). Solution of equation (150) at each point in the wavenumber-frequency plane for the 

vector of unknown constants allows the displacement potentials of the system to be evaluated 

with equations (26), (54), and (58). Matrix C will be evaluated for only one nonzero forcing 

function at a time in any given simulation. The coefficients will be normalized by the forcing 

function stress magnitude (P0, Px, or Pe), which will cast the output in terms of a transfer surface 

for the particular cylinder or fluid variable chosen, i.e., displacement, velocity, stress, strain, or 

fluid pressure. 

The 13 boundary conditions are shown diagrammatically in figure 6 for the two-layer solid 

cylinder immersed in an outer fluid. All boundary conditions are in effect over the entire surface 

of contact for the media at radii r = a,b, and c. 
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BC#1 <-p„-i\ 

BC#2 T.1 =  -P 

BC#3       <BI_ =-'Je| 

BC#4       v|   , =i.,   , 

BC#5       t; I   ,=' 

cos(nö)^ 
(lo x-fflt) BC #1 

(kx-ot 

Cl 
"/,,/   =   "r 

BC#7 
=   U-\ 

I 
r = a >r = <y 

INNER FLUID 

Pi>c« 

OUTER FLUID 

Ps>    .? 

BC#13   BC#9 

BC#10 

BC#11 

BC#12 

BC#13 

BC#2 

BC#3 

'      If = /) '       !/■ = /> 

BC#8 vn, = /, = v'''L„ 

■'':l        -    .'''I 

= 0| 

Figure 6.   Boundary Conditions for Two-Layer Infinite Cylinder and Fluids 
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SYSTEM MATRIX 

As noted earlier, the 13 boundary conditions are assembled into matrix form in the following 

expression: 

C(l, 1) C(l, 

C(2, 1) C(2, 

C(3, 1) C(3, 

C(4, 1) C(4, 

C(5, 1) C(5, 

C(6, 1) C(6, 

C(7, 1) C(7, 

C(8, 1) C(8, 

C(9, 1) C(9, 

0 0 

0 0 

0 0 

0 0 

2) C(l,3) C(l,4) C(l,5) C(l,6)        0 0 0 0 0 0 

2) C(2,3) C(2,4) C(2,5) C(2,6)        0 0 0 0 0 0 

2) C(3,3) C(3,4) C(3,5) C(3,6)        0 0 0 0 0 0 

C(4,9) C(4, 10) C(4, 11) C(4, 12) 

C(5,9) C(5, 10) C(5, 11) C(5, 12) 

C(6,9)    C(6, 10)    C(6, 11)    C(6, 12) 

2) C(4, 3) C(4,4) C(4, 5) C (4, 6)   C (4, 7) C (4, 

2) C(5, 3) C(5,4) C(5, 5) C (5, 6)   C (5,1) C(5, 

2) C(6, 3) C(6,4) C(6,5) C(6, 6)   C(6,7) C(6, 

2) C (7,3) C (7,4) C (7,5) C (7,6)   C (7, 7) C(7,8)    C(7,9) C(7,10) C(7,ll) C(7, 12) 

2) C (8,3) C (8,4) C (8,5) C (8,6)   C (8, 7) C(8,8)    C(8,9) C(8,10) C(8,II) C(8,12) 

2)       0            0 C(9,5) C(9,6)   C(9,7) C(9,8)         0 0 C(9,ll) C(9,12) 

0            0 0            0        C(10,7) C(10,8) C(10,9) C(10, 10) C(10, 11) C (10, 12) C(10, 13) 

0            0 0            0        C(ll,7) C(ll,8) C(ll,9) C(ll, 10) C(ll, 11) C(U,12)         0 

0            0 0            0        C(12,7) C(12,8) C(12,9) C(12, 10) C(12,ll) C(12, 12)         0 

0            0 0            0        C(13,7) C(13,8) C(13,9) C(13, 10) C(13,ll) C(13, 12) C (13, 13) 

C2 
~P 

42 -P 

B? -PB 

B? 0 

ccl 
0 

c? 0 

*v = 0   ( 

41 0 

<' 0 

*V 0 

c" 0 

c" 0 

D 0 

(150) 

The elements of equation (150) are given by equations (151) through (319). From boundary 

condition 1, the first row yields 

C(l,l)   =  (^2 + 2\i2)^Jn(p2c)+^Jn(p2c) —+ p G) 

V 
a f „(i) 

3T K ' (g2c) 

C(l,2)  =  {\ + ^2)^Yn(p2c)+yn(p2c) 

V 
ai\,o) K    (82c) 

V>2C>    -1 + k2 

X
2 2       Hn      (#2

C) 

(151) 

-V*(P2C)   V*2 

(152) 
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C(l,3)  =-2n2-^2c)-c^(,2c)j+     c     d( 

2       r/O) ,        ^ 

Jn(q2c), (153) 

C(l,4)  =-2n2-   Fw(,2c)-c^(,2c)   + , 

2 I/O)   / \ 
Yn(q2c), (154) 

2     H(
n
l\g2c) 

C(l, 5)  =i2\i2k^?Jn + 1(q2c) + ikps^1      (i) ^n+l^' 

2      ^1}(*2C) 
C(l,6) =       ^^„^(^O    +    I^O) g (1) 7n+l(<?2C)' 

(155) 

(156) 

C(l,7)  = 0, (157) 

C(l,8)  = 0, 

C(l,9)  = 0, 

C(l, 10)  = 0, 

C(l, 11) = o, 

C(l,12)  = 0, 

and 

(158) 

(159) 

(160) 

(161) 

(162) 

C(l, 13)  = 0. (163) 
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From boundary condition 2, 

C(2,  1)     = =  i2Hkfr?n<P2C) > (164) 

C(2,2)  = =  J'2M^7>2C) (165) 

C(2,3)  = 
z'H2&n 

(166) 

C(2,4)  = =       c     r«(^2C)' (167) 

C(2,5)  = =  ^(/„tl^^    c2    " -k
2)- 

dr n + Mi 4n-v o- 9r2   » + l(<?2' 4 (168) 

C(2,6)  = = ^(yB+1(92c)(^- ~kA- -Ay 
dr n + Mi 4*7 iV -

3V 
dr2   n4 1^2 o), (169) 

C(2,7)  = = o, (170) 

C(2,8)  = = o, (171) 

C(2,9)  = = o, (172) 

C(2, 10) = o, (173) 

C(2,ll) = o, (174) 

C(2,12)  = 0, (175) 

and 

C(2,13)  = 0. (176) 
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From boundary condition 3, 

2u,~n(i a 

c(3,3) = H{-^Jn(q1c)^\yn(q2c)-nj1Jn{q2c) 

C(3,4)  = hi-|w + ^W-^WJ- 

C(3,5)  = ^2(^/w + 1(^2c)-/«+i^2c) 

C(3,6)  = ^2(|;^ + 1(^)-Fw+1(^c)ri+" 

(177) 

CC^^^^lF^O-^c)), (178) 

(179) 

(180) 

(181) 

(182) 

C(3,7)  = 0, (183) 

C(3,8)  =0, (184) 

C(3,9)  = 0, (185) 

C(3, 10)  =0, (186) 

C(3, 11)  = 0, (187) 

C(3, 12)  = 0, (188) 

and 

C(3, 13)  = 0. (189) 
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From boundary condition 4, 

C(4,l)  =  (X2 + 2v2)^Jn(p2b) + ^Jn(p2b)-l2Jn(p2b)(£2 + k^, (190) 

C(4,2)  =  (^2 + 2^)Ar>2ö) + -2|:yn(p2ö)-^7>2&)(^ + ^, (191) 

C (4, 3)  = -2[l2^Jn(q2b) - b^-Jn(q2b)) , (192) 

C(4,4)   =-2^2(Fn(^)-ö|-F^2ö)), (193) 

C(4,5)  = ^ii^A/^^), (194) 

C(4,6)  = i2ji2^yB+1(^), (195) 

C(4,7)  = -(Xl+2lil)^Jn(Plb)-^Jn(Plb) + V«<Pi*)(^ + *2). (196) 

C(4,8)  = -(A.1 + 2^1)Ay||(Plft)_^|:yB(plft) + xly|i(p1fc)(2? + ^, (197) 

C(4,9)  = 2iLl±(jH{q1b)-b^H(qlb)), (198) 

C(4, 10)  = 2iil^Yn(qlb)-b^Ytt(qlb)), (199) 

C(4,ll)  =-/2n1^n + 1(^1fe), (200) 

C(4, 12)  = -il^k^-Y^^b), (201) 

and 

C(4, 13)   = 0. (202) 
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From boundary condition 5, 

C(5,l)  = i2\i2k^-Jn(p2b), (203) 

C(5,2)  = i2ii2k^-Yn(p2b), (204) 

iu.~kn 
C(5,3)  = -j-Jn(q2b), (205) 

C(5,4)  = -^-yB(^2fc), (206) 

2 
n +1    j,^    3 r      ,    ,,f n+1]     3 C(5,5)  = ^/„^(^^^-^-^^(^^j-^/^^^j, (207) 

C(5,6)  = ^(Fn + 1(^)(^-^_|.Fw+i(^)^]_^_rw + 1(^)), (208) 

C(5,7)  = -i2\ixk^-Jn{pxb), (209) 

C(5,8)  =-/2^^|-7>1ö), (210) 

i\L,kn 
C(5,9)  = ^„(q.b), (211) 

C(5, 10)  = ^-l^fc), (212) 

/ \ 2 
n+ 1    r0\    d r      ,    ,Jn+\]     d C(5,ll)  =-^1[/n + l(^^^-^j_^ + i((?i^__j_^_/n + i(^i6)j)    (2i3) 

«+1    ,9^     d„      ,    ,Jn+\}     d C(5,12)  =-^1^B + 1(?1fc)^-*2J_^yH + i(^)^j_^_yji+i(^)j>   (2i4) 

and 

C(5, 13)  = 0. (215) 
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From boundary condition 6, 

C(6,1)  = -JrliJH<P2b)-£jH<P2b)), (216) 

C(6,2)  = -f-[fniP2b)~Ynip2b)), (217) 

C (6, 3)  = V2{-^JM2b) + ^Ä*) - j£ W»). (218) 

C (6' 4)  = \h{-J^nW + l&nW ~ £ W>) • (219) 

C(6,5)  = ^2(|:/„ + 1(^)-/„ + 1(^)(^)), (220) 

C(6,6)  = ik^Yn+l(q2b)-Yn + l(q2b)[l-±^)), (221) 

C(6,7)  = —±.^Jn(Plb)-^JH(plb)y (222) 

C(6,8)  = -^(iy^^)-!-^^)), (223) 

C (6' 9)  = -f1^-^^!« + W/n^b) - f2Jn^b)) , (224) 

C(6, 10)  = -^(--^F^^)-,!^^)-^^^)), (225) 

C(6, 11)  = -^1(|:/w + 1(^1ö)-/n + l(9l6)(i^)), (226) 

C(6, 12)  = -^i(^„+ 1(^1« " y„ + itoi*)(L^)). (227) 

and 

C(6, 13)  = 0. (228) 
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From boundary condition 7, 

C(7,D =|:-W>)> 

C(7,2)  =^Yn(p2b), 

(229) 

(230) 

C(7,3)  = 2/„(<72&), (231) 

C(7,4)  = ^H(?2fe), (232) 

C(7,5)  = ikJn + 1(q2b), (233) 

C(7,6)  = ikYn + 1(q2b), _ (234) 

C(7,7) =-!:(/>!&)), (235) 

C(7,8)  =-|;(F>1&)), (236) 

C(7,9)  =—/„(*!*), (237> 

C(7,10)  = --bYn{qxb), (238) 

C(7, 11)  =-ikJn + l(qxb), (239) 

C(7,12)  = -/fcyn + 1(9lfc), (240) 

and 

C(7, 13)  = 0. (241) 
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From boundary condition 8, 

C(8,l)  =-~JB(p2b), (242) 

C(8,2)  =-lYn(p2b), (243) 

C(8'3)  = ~d^Jn^2b^ (244) 

C(M)  = ^?Y^b)' (245) 

C(8, 5)  = ikJn + l(q2b), (246) 

C(8, 6)  = ikYn+1(q2b), (247) 

C(8,7)   =^/>!Ö), (248) 

C(8,8)  =gy|I(p1Ä), (249) 

C(8'9)  =|/B(*i*). (250) 

C(8,10)  = |T(^), (251) 

C(8,ll)  =-i*/B + 1(^fc), (252) 

C(8,12)  =-i*yH + 1(^), (253) 

and 

C(8,13)  = 0. (254) 
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From boundary condition 9, 

C(9,1)  = ikJnip2b), (255) 

C (9, 2)  = ikYn(p2b), (256) 

C(9,3)  =0, (257) 

C(9,4)  =0, (258) 

C(9,5) = -^Jn+l(q2b)-^Jn + 1(.q2b), 

C(9,6) =-|:W?2*)-^r„ + ,(*2*). 

C(9,H)  =|/II+i(^) + ^/II + i(^). 

C(9,12) ^W^ + ^W«!*). 

(259) 

(260) 

C(9,7)  =-iUn(p]b), (261) 

C(9,8)  = -ikYn(pxb), (262) 

C(9,9)  =0, (263) 

C(9, 10)  =0, (264) 

(265) 

(266) 

and 

C(9, 13)  = 0. (267) 
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From boundary condition 10, 

C(10, 1)  =0, (268) 

C(10,2)  =0, (269) 

C(10,3)  =0, (270) 

C(10,4)  =0, (271) 

C(10,5)  =0, (272) 

C(10,6)  =0, (273) 

C(10,7)  =  (^1 + 2^1)^2/„(p1a) + ^|;/M(p1a)-V«^iü!)(^ + ^2)' (274> 

C(10,8)  =  (\ + 2[il)^IYn(pla) + ^Yn(pla)-XlYn(pla)(^ + kA, (275) 
adr n^1 l  n^1 \a2 

C(10,9)   = -l^-^J^q^-a^J^a)^, 

C(10, 11)  = /2^^/w+ x(qxa). 

and 

(276) 

C(10, 10)  =-2n1-^[7/t(^1fl)-fl^:y/l(^1fl)J, (277) 

(278) 

C(10, 12)  = il^k^Y^^a), (279) 

C(10, 13)  = ppDJn(gxa). (280) 
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From boundary condition 11, 

C(ll,l)  =0, (281) 

C(ll,2)  = 0, (282) 

C(ll,3)  = 0, (283) 

C(ll,4)  =0, (284) 

C(ll,5)  = 0, (285) 

C(ll,6)  = 0, (286) 

C(ll,7)  = il^k^J^a), 

C(ll,8)  = il^k^Y^a), 

a 

a 

(287) 

(288) 

C(ll,9) = ^/ll(*1«), (289) 

C(ll,10)  = -^-F^a), (290) 

coi.il) =n,(/.+1to,«)(!i^-*2)-|/.+,(«,«)(!^1)-^'.+.(«i'')J. <291> 

c(ii,i2) =n1(y.tl(,1«)(!!ii-*')-^„1(«1<.)(2ii)-^F.tlto,<.)J. (»2) 

and 

C(ll, 13)  =0. (293) 
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From boundary condition 12, 

C(12, 1) = 0, 

C(12,2) = 0, 

C(12,3) = 0, 

C(12,4) = 0, 

C(12,5) = 0, 

C(12,6)  = 0, 

(294) 

(295) 

(296) 

(297) 

(298) 

(299) 

C(12,7)  ^(^„(P!«)-^«)), (300) 

C(12'8)=^(^>1^-^>1^' (301) 

C(12'9)  = ^i(-ä^^ifl) + ^^ifl)-^i«)). (302) 

C(12, 10)  = ^(-^(^a)-,!^^)-^^^)), (303) 

C(12, 11)  = ik^ly^M^-J^M.a)^]), (304) 

C(12,12)  = ik\i{yn+M^)-Yn+Mxa){^)), (305) 

and 

C(12,13)=0. (306) 
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From boundary condition 13, 

C(13, 1) =0, (307) 

C(13,2) = 0, (308) 

C(13,3) =0, (309) 

C(13,4) =0, (310) 

C(13,5) = 0, (311) 

C(13,6) =0, (312) 

C(13,7)  =ynipxa), (313) 

C(13,8)  =1;^^), <314) 

C(13,9)  = ^Jö), (315) 

C(13, 10)  = -r^a), (316) 

C(13, 11)  = ikJn + x(qia), (317) 

C(13, 12)  = ikYn + l{qia), (318) 

and 

C(13,13)   =-|;/„(^)- (319) 
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SOLUTION METHODOLOGY 

As discussed in the previous sections, the system matrices in equations (85) and (150) provide 

the undetermined constants that allow for the evaluation of the displacement potentials directly 

from equations (26), (54), (58), (66), and (70). At this point we can evaluate all of the dynamic 

quantities of the composite systems, i.e., the single- or two-layer cylinders with fluids. At any 

cylinder radius, the stresses can be evaluated with equations (39) through (41), the strains with 

equations (42) through (44), and the displacements with equations (45) through 

(47). Additionally, the inner fluid pressure field can be evaluated with equations (67) and (71), 

and the outer fluid pressure field with equations (55) and (59). Fluid velocities can be evaluated 

in a similar fashion. The Bessel functions are evaluated with the series representations given in 

appendix A, and the necessary derivatives are formed with the relations given in appendix 

B. The equations used for calculating the output quantities are given in appendix C. The 

output quantity is normalized by the particular excitation chosen (equations (85) and (150) are 

evaluated for only one nonzero excitation at a time). Normalizing the output quantity by the 

excitation casts the results in a transfer surface when computation is over a range of wavenumbers 

and frequencies. 

The two-layer model is compared against the single-layer model for an equivalent cylinder in 

appendix D. The two simulations, which are shown overlaying each other, provide a verification 

of the agreement between the elasticity models. 

NUMERICAL CONSIDERATIONS 

The procedure described above is repeated over the domain of wavenumber and frequency at 

regular intervals. The interval used for the simulations extending to 5000 or 8000 Hz is 20.0 Hz 

and the interval used for the 60,000-Hz simulations is 200 Hz. The wavenumber interval used 

for the 5000-Hz simulations is 0.257 rad/m; 1.545 rad/m is used for all other simulations. These 

intervals produce transfer surfaces ranging from 32,000 to 194,000 points each. 

When sharp resonances are present, a visual/numerical artifact is apparent in the simulations 

due to the finite wavenumber and frequency interval used for evaluating the closed-form 
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solution. This is most evident in the wire frame surface representation of the simulations, which 

is shown later in the report. Small asymmetries with respect to wavenumber are evident in the 

magnitude cuts as well. The first problem, which arises when a Cartesian wire frame surface 

algorithm is used with sloped topography in the xy plane, is inevitable because of the graphics 

software that is used to display the wire frame surfaces. The second problem results when, for a 

given frequency, slightly different wavenumber locations are being calculated in the minus and 

plus wavenumber half-planes. This problem could be minimized by decreasing both the 

frequency and wavenumber interval by several orders of magnitude, although a corresponding 

increase in calculation time would result. The image sizes were selected as an appropriate 

compromise between calculation time and the requirement to convey the physics embodied in the 

simulations. 

Evaluation of the equations requires the use of the quad precision complex data type. The 

language of choice is FORTRAN (version 3.0) running on a Sun Microsystems SPARC Station 

model 10SX-512, Operating System Solaris 2.3. The calculation time varies from 45 minutes to 

6 hours. 

The FORTRAN algorithms developed to produce the simulations contained here are 

published in a separate document,12 which is available via e-mail at 

peloquin@cascade.nl.nuwc.navy.mil. 
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RESULTS 

SINGLE-LAYER CYLINDER SIMULATIONS—RADIAL PRESSURE 
EXCITATIONS 

Types of Wave Propagation 

In review, an infinite isotropic elastic media will support two distinct types of waves: the 

dilatational wave and the transverse (or shear) wave. The phase velocity of the dilatational wave 

is given by equation (320) as 

*,(l-vr) c 

lpc (1+VW1-2V)- 
(320) 

For a dilatational wave, the particle displacement and the wave propagation vector, which defines 

the direction of energy propagation, are coincident. For the wavenumber and frequency range 

shown in the simulations, the manifestation of this wave in the long thin cylinder produces a 

modified phase velocity, known as the bar velocity or extensional wave phase velocity. It is 

given in equation (321) as 

(321) 

The other wave, the transverse (or shear) wave, is characterized by a particle displacement 

that is perpendicular to the wave propagation vector. An expression for the shear modulus in 

terms of the Young's modulus and Poisson ratio of a material is given by equation (322) as 

^ = 2öT7y <322> 

From equation (11), the shear wave phase velocity is calculated. The phase velocities of the 

dilatational and extensional waves of the cylinder and the dilatational wave of the fluids are listed 

in table 1 and are based on the data provided in table 2. 
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Table 1.   Single-Layer Cylinder/Fluid Phase Velocities 

Wave Type 
Phase Velocity 

(m/sec) 

Dilatational Wave Q 447.51 

Transverse Wave ct 182.68 

Extensional Wave ce 305.71 

Dilatational Wave ct,cs 1500.0 

The system under consideration in this report is infinite in longitudinal coordinate x; however, 

it is bounded in r and 0. Furthermore, the cylinder is in contact with fluids. This composite 

system will produce branches of wave propagation that are related to the dilatational and 

transverse waves of the media but which do not necessarily propagate at the same velocity. The 

velocities listed in table 1 will serve as a guide for analyzing the responses that follow. 

Mechanical damping in the cylinder is incorporated by the use of the structural loss factor ^. 

This structural loss factor represents the fraction of the Young's modulus that causes the strain 

response to be out of phase with the applied stress: 

E*,.   =   i?,.(l +/£;), (323) 

where j equals 1 or 2, corresponding to the first and second layers of the cylinder, 

respectively. It is therefore possible, with the formulation presented here, to have different 

structural loss factors for each cylinder. This is, in fact, how the two-layer simulations were 

performed. 

Cylinder and Fluid Material Properties 

The material properties for the single-layer cylinder/fluid simulations are listed in tables 2 

through 5. The values listed approximate water as both an inner and an outer fluid. The 

cylinder properties are those of urethane or rubber, much like an ordinary garden or fire hose. 
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Table 2.   Single-Layer-Cylinder Properties—3.00-in. Diameter 

Property Definition 

8 N 
E.    =    1.0X10   -^ 

m2 Young's Modulus 

d - 0.3 Structural Loss Factor 

p, = 1070^ Density 

v1 = 0.4 Poisson's Ratio 

a = 1.200 in. Inner Radius 

b = 1.500 in. Outer Radius 

hx = 0.300 in. Thickness 

Table 3.   Single-Layer-Cylinder Properties—0.670-in. Diameter 

Property Definition 

8 N 
E. = 1.0x10 -^ 

m2 Young's Modulus 

Ci = 0.3 Structural Loss Factor 

p, = 1070^ Density 

Vj = 0.4 Poisson's Ratio 

a = 0.235 in. Inner Radius 

b = 0.335 in. Outer Radius 

/zj = 0.100 in. Thickness 
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Table 4.   Single-Layer-Cylinder Outer Fluid Properties (Water) 

Property Definition 

ps = 1000.0^ Density 

c   = 1500.0— 
*                 sec 

Velocity of Sound 

Table 5.   Single-Layer-Cylinder Inner Fluid Properties (Water) 

Property Definition 

p. = 1000.0^ Density 

c = 1500.0— 
'                  sec 

Velocity of Sound 

Circumferential Order Shapes 

For the simulations that follow, most of the significant branches of wave propagation will 

produce cylinder deformation shapes as depicted in figures 7 through 10. Figure 7 depicts the 

radial «-displacement that occurs in the cylinder as energy is propagating in the first branch of 

wave propagation, corresponding to circumferential order number n = 0. This first branch of 

wave propagation is commonly referred to as a breathing wave. Figure 8 depicts the 

longitudinal w-displacement that occurs in the cylinder as energy is propagating in the second 

branch of wave propagation, corresponding to circumferential order number n = 0. This second 

branch of wave propagation is commonly referred to as an extensional wave. The displacement 

shapes depicted in figures 9 (n = 1) and 10 (n = 2) cause the cylinder to undergo a state of 

bending. 

The cylinder deformation in figures 7 through 10 has been magnified for the purpose of 

visualizing the deformation. It should be remembered that this is a small strain analysis, suitable 

for analyzing problems undergoing loading on an acoustic scale. 
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Figure 7.   Circumferential Order Number n = 0, First Branch 

Figure 8.   Circumferential Order Number n = 0, Second Branch 
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Figure 9.   Circumferential Order Number n = 1, First Branch 

Figure 10.   Circumferential Order Number n = 2, First Branch 
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Radial Stress Variation in the Cylinder Wall 

This first set of simulations is performed for the data listed in tables 2, 4, and 5. The radial 

stress transfer surface is calculated at three different radial positions in figures 11, 12, and 

13. These positions correspond to the outer, middle, and inner surface of the cylinder wall. In 

reality, the inner and outer radial positions are 0.01 inch from the actual free surface of the 

cylinder. 

The curves plotted in figures 14 and 15 show the distribution and variation of radial stress as a 

function of radial position r within the cylinder wall. The principal assumptions made in shell 

theory,13 which ignore the variations of quantities across the cylinder wall thickness, are not made 

in elasticity theory. The model developed here does not make any assumptions that discard parts 

of the physical behavior of the system. As can be clearly observed in figures 14 and 15, the 

radial stress varies across the cylinder wall thickness. 

In figure 15, the radial stress increases with decreasing diameter, which amplifies the stress 

level beneath the outer diameter of the cylinder. This behavior is consistent with the principle of 

conservation of energy owing to the fact that the circumferential area at a radial location within 

the cylinder thickness is actually less than the circumferential area at the cylinder outer diameter. 

The radial stress boundary conditions imposed on the cylinder wall require the stress to vary 

from a value equal to the inner fluid pressure field at r - a to a value equal to the outer fluid 

pressure field at r - b.    This variation can be observed in the behavior of the curves in figure 14. 

The other significant feature in the simulations is the resonance at approximately 2800 Hz, 

which is clearly apparent in figure 15. The cylinder is experiencing a predominantly radial 

vibration that is heavily influenced by the presence of the fluids in this case. This resonance will 

be discussed in some detail in a later section of this report. 
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at rt = 1.49 in. for Elasticity Model, Where n - 0 and Diameter = 3.00 in. 

s MAGNITUDE 
R-Ha 15 

CO 20.00 ^■jH 
.   „         Ml-  —^-'**< 11 

W 
CQ 

> 

0.00 

-20.00 --^^-»Mjijj,^ 

7 

3 

-1 

-5 
-9 

1000.00      2000.00      3000.00 4000.00      5000.00 
FREQUENCY (Hz) 

Figure 12.   Radial Stress Transfer Surface With Magnitude = \$Log{Trr(ry)IP0)2 

at rx - 1.35 in. for Elasticity Model, Where n - 0 and Diameter = 3.00 in. 

MAGNITUDE 

T3 
CO 
Si 

K 
H 
CQ 

> 

20.00 

0.00 

-20.00 

■ fip"^-r^\-'- ■-• ■■■■   ": 

-* - ' -*^ 
15 
11 

7 

3 

-1 

-5 
-9 

1000.00      2000.00      3000.00      4000.00      5000.00 
FREQUENCY (Hz) 
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at rx= 1.21 in. for Elasticity Model, Where n = 0 and Diameter = 3.00 in. 
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Figure 15.    Comparison of Radial Stress Transfer Surfaces With 
Magnitude = 10Log(x Jn)/P0)2 for Elasticity Model, 

Where n = 0, Diameter = 3.00 in., and k = 0 rad/m 
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Model Comparisons—3.00-Inch-Diameter Cylinder 

In this section, we will compare the elasticity model developed in this report to the membrane 

shell and bending shell models presented in reference 13. As noted previously, the assumptions 

made for shell theory have limitations on the mean diameter-to-thickness ratio (which should be 

above 10 for accurate model behavior) as well as on the wavelength-to-diameter and wavelength- 

to-thickness ratios. The elasticity model represents the true behavior of the cylinder because it 

does not introduce simplifying assumptions for the elastic behavior of the material. Although it 

is acknowledged that the shell models will not always be in full agreement with the elasticity 

model, a further understanding of the fluid/structure interaction is obtained by investigating the 

agreement that does occur between the models for the 3.00-inch-outer-diameter cylinder (in this 

section) and the 0.670-inch-outer-diameter cylinder (in the following section). 

Each simulation is displayed as a color image, where color indicates magnitude. For clarity, 

and in an effort to reveal the true character of the surface, the color image is also displayed as a 

wire frame surface directly below the corresponding color image. 

Figures 16 through 21 are the simulations (n = 0) for the membrane shell, bending shell, and 

elasticity models, respectively. In figure 22, which is a comparison of the three models at k = 0, 

both shell models predict the resonance frequency of the cylinder to be higher than does the 

elasticity model. The shell models indicate the resonance frequency to be at approximately 11 

kHz, while the elasticity model is indicating the resonance at 2870 Hz. The combination of 

urethanelike properties (cylinder) and water (fluids) causes the shell models to incorrectly predict 

the first radial resonance of the cylinder. If air had been chosen for the inner and outer fluids, the 

resonance frequencies of the models would have been in close agreement. 

The breathing wave, evident in the three model types, is dispersive in all. Figures 23 and 24 

compare the breathing wave resonance peaks at 200 and 600 Hz, respectively. The 

corresponding phase velocity for these two frequencies is 94 and 74 m/sec for the elasticity 

model, and 126 and 80 m/sec for the shell model. At high frequency, the character of the 

breathing wave in the membrane model is very different from both the bending shell and elasticity 

models.    Above 1000 Hz, the breathing wave in the membrane model slows dramatically and 
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falls in amplitude relative to the other two models. In figure 23, at 80 rad/m, the membrane 

model begins to underpredict the transfer function roll-off, ultimately underpredicting the roll-off 

relative to the elasticity model prediction by approximately 40 dB at 300 rad/m. 

The extensional wave is evident in the elasticity model of figure 24. It appears as low-level 

peaks on either side of k = 0 at a phase velocity of 291 m/sec and exhibits no dispersion. In 

figure 25, the extensional wave is more clearly visible at 100 rad/m; it is also visible in figure 

20. Comparison of the three models in figure 25 indicates significant divergence of the shell 

solutions from the elasticity solutions above 20 rad/m. 

The simulations for circumferential order number n = 1 are shown in figures 26 through 

31. The first branch of wave propagation places the cylinder in a state of bending, as shown in 

the wire frame representation of figure 9. Two additional branches of wave propagation are 

visible in the simulations. The second branch has a cutoff frequency of approximately 1000 Hz 

and causes the longitudinal displacement to undergo one wavelength of variation around the 

circumference of the cylinder. The third branch has a cutoff frequency of approximately 2000 

Hz, causing the circumferential displacement to undergo one wavelength of variation around the 

circumference of the cylinder. Both of these branches couple into the radial displacement, 

which develops a pressure in the inner fluid. However, these pressure field components are 

weak because of the magnitude of the damping (^ = 0.3). The reader is referred to reference 

13 for a complete set of figures depicting the deformation shapes of the cylinder for these 

branches of wave propagation. Figures 32 through 34 compare the three models at k - 0 and at 

various cuts in wavenumber. The resonant peak of the first branch of wave propagation 

compares favorably for all three models up to 600 Hz, as seen in figure 34. The membrane 

model's roll-off in wavenumber departs from the other two models by approximately 60 rad/m, 

and at 4500 Hz (figure 35) the significant divergence of the shell models from the elasticity model 

renders the shell models to be unacceptable predictors of the cylinder's behavior. 

Figures 36 through 41 are the simulations for circumferential order number n = 2. We see 

from figures 36 and 42 that the membrane model will not support a cutoff frequency for the first 

branch of wave propagation.    This first branch produces a deformation in the cylinder as shown 
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in figure 10. Two additional branches are visible, both with cutoff frequencies. Each produces 

the same kind of deformation in the shell as described for n = 1, only now there are two 

wavelengths of variation around the circumference. In figures 43 through 45, we see that the 

bending shell model is useful up to 600 Hz, diverging from the elasticity model only at higher 

frequencies. 

To summarize, for the 3.00-inch-diameter cylinder considered here, the shell models are in 

good agreement with the elasticity model for the region extending to 1000 Hz and ±75rad/ 

m. Outside of this region, the difference increases beyond 5 dB, and the elasticity solution 

should be used. For the n = 0 case, the fluid loading influences the first radial natural frequency 

of the shell models so dramatically that the error relative to the elasticity model is greater than a 

factor of three, as evidenced by figure 22. For the n = 2 case, the membrane model should not be 

used, owing to the misrepresentation of the behavior of the first branch (i.e., lack of cutoff 

frequency and appropriate branch structure). Although not shown here, similar behavior will 

occur with the membrane shell model for n > 2. 
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Figure 16.   Pressure Transfer Surface With Magnitude = lOLogCF/r^/F^)2 at rx = 0.75 in. 
for Membrane Shell Model, Where n = 0 and Diameter = 3.00 in. (Color Image) 
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Figure 17.   Pressure Transfer Surface With Magnitude = lOLogiPJr^/PJ2 at rx = 0.75 in. 
for Membrane Shell Model, Where n = 0 and Diameter = 3.00 in. (Wire Frame Surface) 
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Figure 18.   Pressure Transfer Surface With Magnitude = 10Log(F/r,)/Po)2 at rx = 0.75 in. 
for Bending Shell Model, Where n = 0 and Diameter = 3.00 in. (Color Image) 

Figure 19.   Pressure Transfer Surface With Magnitude = 10Log(P/rj)/Po)2 at rl = 0.75 in. 
for Bending Shell Model, Where n = 0 and Diameter = 3.00 in. (Wire Frame Surface) 

71 



TR 11,067 

MAGNITUDE 

200.00 

u 

K 

m 

P 

> 

0.00 

-200.00 

10 

4 

-2 

■14 

-20 

-26! 
1000.00      2000.00      3000.00 

FREQUENCY (Hz) 
4000.00      5000.00 
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Figure 21.   Pressure Transfer Surface With Magnitude = 10Log(P,<rj;/Po)2 at rv = 0.75 in. 
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Figure 27.   Pressure Transfer Surface With Magnitude = 10Log(P/rj)/Po)2 at rx = 0.75 in. 
for Membrane Shell Model, Where n = 1 and Diameter = 3.00 in. (Wire Frame Surface) 
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Figure 30.   Pressure Transfer Surface With Magnitude = 10Log(P Jr^/PJ2 at rx = 0.75 in. 
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Figure 31.   Pressure Transfer Surface With Magnitude = lOLogCP/r^/P,,)2 at r, = 0.75 in. 
for Elasticity Model, Where n = 1 and Diameter = 3.00 in. (Wire Frame Surface) 
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Figure 38.   Pressure Transfer Surface With Magnitude = 10Log(P/rly)/Po)2 at r, = 0.75 in. 
for Bending Shell Model, Where n = 2 and Diameter = 3.00 in. (Color Image) 

Figure 39.   Pressure Transfer Surface With Magnitude = 10LogOPl<r1)/P0)2 at rx = 0.75 in. 
for Bending Shell Model, Where n = 2 and Diameter = 3.00 in. (Wire Frame Surface) 
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Figure 40.   Pressure Transfer Surface With Magnitude = lOLogCP^j/PJ2 at rj = 0.75 in. 
for Elasticity Model, Where n = 2 and Diameter = 3.00 in. (Color Image) 

Figure 41.   Pressure Transfer Surface With Magnitude = lOLog^fr^/PJ2 at rY = 0.75 in. 
for Elasticity Model, Where n = 2 and Diameter = 3.00 in. (Wire Frame Surface) 
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Model Comparisons—0.670-Inch-Diameter Cylinder 

Let us now consider the case of a cylinder with the properties listed in table 3, surrounded by 

fluids with the properties listed in tables 4 and 5. This cylinder, similar to the one previously 

considered, has properties that are representative of a garden or fire hose, and the fluids have 

properties consistent with those of water. Figures 46 through 51 are the n - 0 simulations for the 

three models. The output quantity is the pressure in the inner fluid; this field quantity is 

calculated at rx = 0.1 inch. Figures 52 through 55 are the comparisons of the three 

models. The major branch of wave propagation is the breathing wave, indicated on figures 47, 

49, and 51. The extensional wave is visible in the elasticity model (figures 51 and 55). All 

three models are in close agreement up to ±150rad/m. Above this point, the membrane shell 

model diverges; however, the bending shell model continues to remain within 4 dB of the 

elasticity model up to 4500 Hz and ±300 rad/m. 

The large discrepancy between the shell models and the elasticity model for the first radial 

natural frequency of the cylinder is apparent in figure 52. The fluid-loaded shell models produce 

resonances at 53,136 Hz, while the fluid-loaded elasticity model displays this resonance at 10,793 

Hz. As was seen in the 3.00-inch-diameter simulations of the previous section, the shell models 

are not adequate for predicting the first radial natural frequency when the present combination of 

water and rubberlike cylinder properties is chosen. The elasticity model provides the best 

solution in this case. 

Figures 56 through 61 are the simulations for circumferential order number n-\. Figure 62 

is a comparison of the models across frequency, and figures 63 through 65 are comparisons of the 

models across wavenumber for particular frequencies. The first and dominant branch of wave 

propagation in the simulations is one in which the cylinder is placed in a state of bending, as 

depicted by the wire frame representation of figure 9. The shell models are in close agreement 

with the elasticity model up to ±150 rad/m and 5000 Hz, as seen in figures 62 through 

65. Above these points in the wavenumber-frequency plane, the membrane shell model 

diverges. The bending shell model, however, remains within 4 dB of the elasticity solution over 

the entire range of wavenumbers and frequencies considered. 
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The next branch of wave propagation, faintly visible in the 4500-Hz region, has a cutoff 

frequency associated with it. As described earlier for the 3.00-inch cylinder, this second branch 

is causing the longitudinal displacement to undergo one wavelength of variation with respect to 

the circumference of the cylinder. The predominantly longitudinal displacement does couple 

into the radial displacement, thereby causing an effect on the pressure field in the inner 

fluid. The value of the damping selected for the cylinder has diminished the sharpness of this 

branch. 

Figures 66 through 71 contain the simulations for circumferential order number n = 2. As in 

the case for the cylinder considered in the previous section, the membrane shell model will not 

support a cutoff frequency for the first branch of wave propagation (figures 66 and 72). This is 

due to the assumption that neglects bending stiffness terms, which are inherent in a membrane 

formulation. Figures 73 through 75 are comparisons across wavenumber, and once again we see 

the divergence of the membrane shell model and the close agreement between the bending shell 

and elasticity solutions. 

To summarize, the membrane shell model generally falls within 4 dB of the elasticity model 

for the n = 0 circumferential order number in the region ±150rad/m and 0 to 5000 Hz. If it is 

necessary to obtain a simulation with an error of less than 4 dB, the elasticity model should be 

used. Furthermore, the elasticity model (not the shell models) should also be used for the 

determination of the first radial natural frequency of this cylinder/fluid combination. For the 

higher circumferential order numbers, it should be remembered that the membrane model will not 

support a cutoff frequency for the first branch of wave propagation. The bending shell model 

will be within 4 dB of the elasticity solution. If an error of less than 4 dB is required, the 

elasticity model should be used. 

92 



TR 11,067 

600.00 
MAGNITUDE 

12 

s 400.00 7 

200.00 
P^^^ 

3 

m 

> 

0.00 

-200.00 

-400.00 

-600.00 

ttife'- 
||ffi&l^i>-;.;^vsepM^ 

-2 

-7 

-11 

-16 
1000.00      2000.00      3000.00 4000.00      5000.00 

FREQUENCY (Hz) 

Figure 46.   Pressure Transfer Surface With Magnitude = lOLogCF/rJ/F^)2 at rx = 0.1 in. 
for Membrane Shell Model, Where n = 0 and Diameter = 0.670 in. (Color Image) 
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Figure 47.   Pressure Transfer Surface With Magnitude = 10Log(PjfrJ/P,,)2 at rt = 0.1 in. 
for Membrane Shell Model, Where n = 0 and Diameter = 0.670 in. (Wire Frame Surface) 
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Figure 48.   Pressure Transfer Surface With Magnitude = lOLogCP/rjj/PJ2 at rx = 0.1 in. 
for Bending Shell Model, Where n = 0 and Diameter = 0.670 in. (Color Image) 
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Figure 49.   Pressure Transfer Surface With Magnitude = lOLogCP/r^/P,,)2 at rx = 0.1 in. 
for Bending Shell Model, Where n = 0 and Diameter = 0.670 in. (Wire Frame Surface) 
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Figure 50.   Pressure Transfer Surface With Magnitude = 10Log(P/rj)/Po)2 at rx = 0.1 in. 
for Elasticity Model, Where n = 0 and Diameter = 0.670 in. (Color Image) 

BREATHING WAVE ^____^         iM^Qxr^ 

lilllllliiiftlfcfe*     jo 

^^Bül    ^5° 

"V^l 

Figure 51.   Pressure Transfer Surface With Magnitude = 10Log(P/r1)/Po)2 at rx = 0.1 in. 
for Elasticity Model, Where n - 0 and Diameter = 0.670 in. (Wire Frame Surface) 
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Figure 53.   Model Comparison for Figures 46,48, and 50 When 
Magnitude = WLogiP^/P,,)1 at rx = 0.1 in. With n = 0, 

Diameter = 0.670 in., and/= 200 Hz 
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Figure 54.   Model Comparison for Figures 46,48, and 50 When 
Magnitude = lOLogiPtfrJ/P,,)2 at rx = 0.1 in. With n = 0, 
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Figure 56.   Pressure Transfer Surface With Magnitude = 10Log(PJrJ/P^2 at r{ = 0.1 in. 
for Membrane Shell Model, Where n = 1 and Diameter = 0.670 in. (Color Image) 

Figure 57.   Pressure Transfer Surface With Magnitude = 10Log(P/r1/)/Po)2 at rx= 0.1 in. 
for Membrane Shell Model, Where n = 1 and Diameter 0.670 in. (Wire Frame Surface) 
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Figure 58.   Pressure Transfer Surface With Magnitude = 10Log(Fj(r,)/Po)2 at rx = 0.1 in. 
for Bending Shell Model, Where n = 1 and Diameter = 0.670 in. (Color Image) 

Figure 59.   Pressure Transfer Surface With Magnitude = 10Log(P/(r1)/Po)2 at rx = 0.1 in. 
for Bending Shell Model, Where n = 1 and Diameter = 0.670 in. (Wire Frame Surface) 
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Figure 60.   Pressure Transfer Surface With Magnitude = 10 LogiP^/P^2 at rt = 0.1 in. 
for Elasticity Model, Where n = 1 and Diameter = 0.670 in. (Color Image) 

Figure 61.   Pressure Transfer Surface With Magnitude = 10Log(P jfr^/Pg)2 at rx = 0.1 in. 
for Elasticity Model, Where n - 1 and Diameter = 0.670 in. (Wire Frame Surface) 
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Figure 66.   Pressure Transfer Surface With Magnitude = lOLogOP/rj)//^)2 at rt = 0.1 in. 
for Membrane Shell Model, Where n = 2 and Diameter = 0.670 in. (Color Image) 

Figure 67.   Pressure Transfer Surface With Magnitude = 10Log(Plfr1)/Po)2 at rx- 0.1 in. 
for Membrane Shell Model, Where n - 2 and Diameter = 0.670 in. (Wire Frame Surface) 
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Figure 68.   Pressure Transfer Surface With Magnitude = lOLog^/r^/P,,)2 at rx = 0.1 in. 
for Bending Shell Model, Where n = 2 and Diameter = 0.670 in. (Color Image) 

Figure 69.   Pressure Transfer Surface With Magnitude = 10Log(PJ(r1J/Fo)2 at rx = 0.1 in. 
for Bending Shell Model, Where n = 2 and Diameter = 0.670 in. (Wire Frame Surface) 
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Figure 70.   Pressure Transfer Surface With Magnitude = 10Log(P/r1,)/Po)2 at r, = 0.1 in. 
for Elasticity Model, Where n = 2 and Diameter = 0.670 in. (Color Image) 

Figure 71.   Pressure Transfer Surface With Magnitude = WhogiP^ri)/P0)2 at rl = 0.1 in. 
for Elasticity Model, Where n - 2 and Diameter = 0.670 in. (Wire Frame Surface) 
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Inner Fluid Pressure Field Evanescence 

From this point on, unless otherwise noted, the elasticity model will be used for the 

simulations conducted in the exploration of the cylinder/fluid dynamic behavior. 

Let us consider the effect of the propagating region and the nonpropagating region on the 

magnitude of the pressure field that exists in the inner fluid as a function of radial position. For 

wavenumbers less than co/c^, the pressure field propagates as shown by equation (67). For 

wavenumbers greater than co/c-, the pressure field becomes increasingly evanescent, with 

increasing wavenumber and decreasing radial position r, as shown by equation (71). 

The simulation for the inner fluid pressure field at rl = 1.1 inches is shown in figures 76 and 

77. The simulation of this pressure field at rx = 0.01 inch is shown in figures 78 and 79. In 

figures 80, 81, and 82, comparison of the pressure field is made for these two radial positions at 

three different frequencies. Attenuation of the pressure field, which is apparent in all the figures, 

is on the order of 12 dB at 100 rad/m. 

Comparison of the images in figures 76 and 78 reveals a decrease in breathing wave resonant 

peak level with increasing wavenumber. The breathing wave pressure is locally generated at the 

cylinder/fluid boundary. Because the breathing wave phase velocity is an order of magnitude 

slower than the inner fluid propagation velocity, the magnitude of the pressure will suffer 

increasing attenuation away from the surface of generation as the breathing wave diverges in 

wavenumber (compare figures 80 and 81). 

Similar behavior is observed with the extensional wave. However, since the phase velocity 

of the extensional wave is greater than the breathing wave, similar attenuation does not occur 

until a higher frequency is reached. In figure 82 (4500 Hz), the extensional wave has undergone 

approximately the same attenuation (12 dB) as the breathing wave has undergone in figure 81 (12 

dB) at 900 Hz. 
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Figure 76.   Pressure Transfer Surface With Magnitude = lOLog^fr,)/^)2 at rx = 1.1 in. 
Where n = 0 and Diameter = 3.00 in. for Field Decay Comparison (Color Image) 

Figure 77.   Pressure Transfer Surface With Magnitude = lOLog^frJ/^)2 at rx = 1.1 in. 
Where n = 0 and Diameter = 3.00 in. for Field Decay Comparison (Wire Frame Surface) 
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Figure 78.   Pressure Transfer Surface With Magnitude = 10Log(Fj(rj)/Po)2 at rx = 0.01 in. 
Where n = 0 and Diameter = 3.00 in. for Field Decay Comparison (Color Image) 

Figure 79.   Pressure Transfer Surface With Magnitude = lOLogiPJr^/P,,)2 at ry = 0.01 in. 
Where n - 0 and Diameter = 3.00 in. for Field Decay Comparison (Wire Frame Surface) 
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Magnitude = lOLogCP/r^/P,,)2 at Various rx With n = 0, 

Diameter = 3.00 in., and/= 4500 Hz 

119 



TR 11,067 

Inner Fluid Density Variation 

In this section, we shall explore the effects of a change in inner fluid density on the attenuation 

of the inner fluid pressure field. The plane wave velocity or dilatational velocity of the inner 

fluid will remain fixed at 1500 m/sec. Simulations performed with an inner fluid density of 500, 

1000, and 2000 kg/m3 are displayed in figures 83, 84 and 85. 

In figure 86, comparisons are made at k = 0 rad/m. The decrease in inner fluid density has 

lowered the first radial resonance of the cylinder/fluid combination. Figures 87 through 89 are 

comparisons of the effect of the change in density across wavenumber at three different 

frequencies. In figure 87, we see that a decrease of inner fluid density has increased the phase 

velocity of the breathing wave. Breathing wave phase velocity from figure 87 at 300 Hz is 

provided in table 6. 

Table 6.   Effect of Inner Fluid Density on Breathing Wave Phase Velocity From Figure 87 

Inner Fluid Density 
(kg/m3) 

Breathing Wave 
Phase Velocity 

(m/sec) 

500 130 

1000 91 

2000 66 
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Figure 83.   Pressure Transfer Surface With Magnitude = 10Log(P/rly)/Po)2 at rx = 0.01 in. 
for Pi = 500 kg/m3, n - 0, and Diameter = 3.00 in. (Color Image) 
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Figure 84.   Pressure Transfer Surface With Magnitude = 10Log(P/r!)/Po)2 at rv = 0.01 in. 
for Pi = 1000 kg/m3, n = 0, and Diameter = 3.00 in. (Color Image) 
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Figure 85.   Pressure Transfer Surface With Magnitude = lOLogCF/r^/P,,)2 at rt = 0.01 in. 
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Figure 86.  Effect of Inner Fluid Density When Magnitude = lOLogCP/r^/P,,)2 

at rx = 0.01 in. for n = 0, Diameter = 3.00 in., and k = 0 rad/m 
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Figure 89.   Effect of Inner Fluid Density When Magnitude = lOLogCP/r^/P,,)2 at 
rx = 0.01 in. for n = 0, Diameter = 3.00 in., and/= 4500 Hz 

126 



TR 11,067 

High-Frequency Response 

Elasticity and Bending Shell Model Comparison. In previous sections, we have compared 

the shell models with the elasticity model up to 5000 Hz, accompanied by a limited comparison 

up to 15 kHz at k = 0. In this section, we will compare the bending shell model (figures 90 and 

91) with the elasticity model (figures 92 and 93) over the range ±200rad/m and 10 to 60,000 

Hz.    These simulations have been performed with the data listed in tables 2, 4, and 5. 

The first radial resonance can be clearly observed in the k = 0 cut displayed in figure 94. As 

was observed previously in figure 22, the bending shell model considerably overpredicts the first 

radial resonance of the cylinder because of the fluid loading. Both models exhibit deep nulls at 

20,704 and 47,214 Hz, which are due to the J0 nature of the inner fluid field, the propagation 

velocity of the inner fluid, and the dimensions of the cylinder. This behavior will be examined in 

the next section. 

The remaining resonances seen in figure 94 (elasticity model) occur as a dilatational wave 

propagates through the thickness of the cylinder wall. These resonances correspond to the 1/2, 

1, and 3/2 wavelengths existing across the cylinder wall thickness. This will be explored in a 

later section for an air-loaded (rather than a water-loaded) cylinder with a variation of wall 

thickness and Young's modulus. 

The assumptions made in shell theory result in an inadequate model for investigating the high- 

frequency response of the cylinder/fluid combination chosen here. For the heavy fluid loading 

present in this combination, it is necessary to use the elasticity formulation to properly model the 

dynamics of the system, even at 3000 Hz, which is only moderately high frequency. 
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Figure 90.  Pressure Transfer Surface Up to 60 kHz When Magnitude = lOLogOP/r^/P,,)2 at 
rx = 1.1 in. for Bending Shell Model, Where n = 0 and Diameter = 3.00 in. (Color Image) 

Figure 91.  Pressure Transfer Surface Up to 60 kHz When Magnitude = 10Log(P/rj)/Po)2 at 
rx = 1.1 in. for Bending Shell Model, Where n = 0 and Diameter = 3.00 in. 

(Wire Frame Surface) 
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Figure 92.  Pressure Transfer Surface Up to 60 kHz When Magnitude = 10Log(PJ{r1)//
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Figure 93.  Pressure Transfer Surface Up to 60 kHz When Magnitude = 10Log(jP (rjj/PJ2 at 
rv - 1.1 in. for Elasticity Model, Where n - 0 and Diameter = 3.00 in. 

(Wire Frame Surface) 
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Inner Fluid Pressure Field Nulls.    In this section, we shall consider the cause of the nulls 

evident in figure 94.    For n = 0 and 

CO        ,2 
->k . 
c 

(the case of propagating wavenumbers), the inner fluid field is defined in terms of the / Bessel 

function as given by equation (66). The nulls in frequency observed in figure 94 correspond to 

the roots of J o (%n) .    The argument of / , 

ICO        ,2 
'"l   \--k   ' (324) 

ci 

is rearranged in order to solve for the frequency /„ corresponding to the roots Xn of /   at k = 0 

and r{ as follows: 

/„ = 
c.   \r 2 

(325) 
r 

Table 7 lists the frequencies /„ (calculated with equation (325)) that correspond to the first two 

roots of Jo for three different values of radial position rx.   A simulation of the inner fluid pressure 

Table 7.   Null Frequencies Corresponding to the First Two Roots of /„ 

Root (n) n 

/«at 
Tj = 1.1 in. 

(Hz) 

/«at 
/■j = 0.55 in. 

(Hz) 

/«at 
r,  = 0.01 in. 

(Hz) 

1 2.4048 20,545 
(20,704) 

41,092 
(41,056) 

2,259,000 

2 5.5201 47,161 
(47,214) 

94,326 5,187,000 
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field is shown in figures 95 and 96 evaluated at rx = 0.55 inch. In a similar manner, the pressure 

field in the inner fluid at rx = 0.01 inch is computed and displayed in figures 97 and 

98. Comparison of the three radial positions from figures 92, 95, and 97 is made in figure 99 at k 

= 0. In figure 99, the very dramatic effect of radial location r, on the pressure field in the inner 

fluid can be observed. The nulls listed in table 7 for rx = 0.01 inch occur at frequencies that 

extend beyond the 60-kHz range of the figure and are therefore unobservable. The three nulls 

observable in figure 99 are listed in table 7 in parentheses beneath the value calculated from 

equation (325).    The agreement is within 1 percent. 

The null frequencies/„ (equation (325)) will decrease if the inner fluid propagation velocity is 

decreased. Such will be the case in the next section, where air is substituted for water to 

decrease the effect of the fluid on the structure in order to explore the second, third, and fourth 

resonances in figure 94. 
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Figure 95.   Pressure Transfer Surface Up to 60 kHz When Magnitude = WLogiPJry)/P0)2 

at rx = 0.55 in. With n = 0 and Diameter = 3.00 in. (Color Image) 

Figure 96.   Pressure Transfer Surface Up to 60 kHz When Magnitude = 10Log(P/r1)/Po)2 

at rj = 0.55 in. With n = 0 and Diameter = 3.00 in. (Wire Frame Surface) 
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Figure 97.   Pressure Transfer Surface Up to 60 kHz When Magnitude = lOLogCP/rJ/P,,)2 

at rx = 0.01 in. With n = 0 and Diameter = 3.00 in. (Color Image) 

Figure 98.   Pressure Transfer Surface Up to 60 kHz When Magnitude = 10Log(Fl(r1)/Fo)2 

at rx = 0.01 in. With n = 0 and Diameter = 3.00 in. (Wire Frame Surface) 
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Cylinder With Inner and Outer Fluids of Air—Wall Thickness Variation. In this 

section, we will examine the three resonances above the first radial resonance of the cylinder, as 

seen in figure 99. The wall thickness will be varied and the effect of this variation on the 

resonances will be examined. The simulations in this section and the one immediately following 

will be performed with a change in the inner and outer fluid properties from water to air, as shown 

in tables 8 and 9. As noted earlier, air was chosen in order to reduce the fluid's effect on the 

cylinder. Although sharp nulls and peaks occur at lower frequency due to the decrease in ct 

(discussed in the last section), this behavior is not strong enough to affect the location of the 

resonances under consideration. 

Table 8.   Outer Fluid Properties for Wall Thickness Variation (Air) 

Property Definition 

P, - 1-2^ m3 Density 

c   = 343.0— 
■^               sec 

Velocity of Sound 

Table 9. Inner Fluid Properties for Wall Thickness Variation (Air) 

Property Definition 

p, = '^ rrr 
Density 

c = 343.0— 1               sec 
Velocity of Sound 

Simulations for the radial stress irr are shown in figures 100 and 101 for cylinders of two 

different wall thicknesses. A comparison of these two figures is shown in figure 102 at 

k = 0.    The wall thickness was increased from 0.3 to 0.6 inch in figure 101 so that additional 
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resonances would be present in the 60-kHz frequency range. From table 1, we see that the 

dilatational phase velocity for the cylinder material is ct = 447.51 m/s. For each resonance 

frequency observed in figures 100 and 101, the corresponding wavelength L is calculated using 

L-f- 
and is provided in tables 10 and 11. The resonances correspond to dilatational wave propagation 

through the thickness of the cylinder, with standing waves existing in the thickness 

direction. Mode shapes of L/2, L, and 3L/2 correspond to the three resonances of figure 101, 

while only the L/2 mode shape corresponds to the resonance in figure 100. Doubling the 

thickness of the cylinder doubles the wavelength of the first mode and halves the frequency, 

which is observed with the first resonance, as shown in tables 10 and 11. 

Table 10.   Thickness Resonance Table for hx = 0.3 in. From Figure 100 

Thickness 
Resonance 
Frequency 
Number (/) 

fti 

(Hz) 

L 

(m) 
h{IL h{IL Nominal 

1 30,264 0.01478 0.52 1 
2 

Table 11.   Thickness Resonance Table for hy = 0.6 in. From Figure 101 

Thickness 
Resonance 
Frequency 
Number (/) 

fti 

(Hz) 

L 

(m) 
hxIL /Zj/L Nominal 

1 15,198 0.02940 0.52 1 
2 

2 30,532 0.01465 1.04 1 

3 45,221 0.00989 1.54 3 
2 

137 



TR 11,067 

MAGNITUDE 
200.00 üBMWHH^^t'.!:'''::. ,-..        '                     '                     '                    !                     ' ~ 8 

? 
100.00 

■ Jiti ■ «fill \ -3 

-15 

W 
m s 
p 

> 
< 

0.00 

-100.00 

Al ft* 
*'* t 
SS&.   * 

.~ 

-26 

-37 

-49 
1 

-200.00 -60 1 
20000.00                  40000.00 60000.00 

FREQUENCY (Hz) 

Figure 100.   Radial Stress Transfer Surface Up to 60 kHz When 

Magnitude = 10Log(vclfi)/^o)2 at rx = 1.21 in. With hx = 0.3 in., n = 0, 
and Diameter = 3.00 in. (Color Image) 
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Figure 101.   Radial Stress Transfer Surface Up to 60 kHz When 
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cl^i)/^o)2 at rt = 1.21 in. With hx = 0.6 in., n = 0, 

and Diameter = 3.00 in. (Color Image) 

138 



TR 11,067 

MAGNITUDE 
20 

0 

■60 

hi = 0.3 in. 

hi = 0.6 in. 

2x10 4x10 
FREQUENCY (Hz) 

¥" 
6x10 

Figure 102.   Effect of Variation of Wall Thickness on the Cylinder Response for 
Figures 100 and 101 When Magnitude = 10hog(xrr

cl(ri)/Po)2 at rx = 1.21 in. 
With n = 0, Diameter = 3.00 in., and k = 0 rad/m 
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Cylinder With Inner and Outer Fluids of Air—Young's Modulus Variation. In this 

section, we compare the cylinder/fluid combination of the previous section to a cylinder with a 

factor-of-10 increase in Young's modulus. Figure 103 is a simulation for a cylinder with a 

Young's modulus of 1 x 109 Pa in contact with fluids of air, and figure 104 is the cylinder (with a 

Young's modulus of 1 x 108 Pa) that we have been studying previously. 

The first thickness resonance, which was at 15,198 Hz (table 11), has increased to 48,330 Hz 

(figure 103). This increase in frequency corresponds to an increase in the dilatational velocity 

for the cylinder (table 12). The ratio of dilatational velocities for the two moduli is 3.16 

(= TIT)).    The corresponding ratio of the first thickness resonance frequencies is 3.18. 

Table 12.   Young's Modulus and Dilatational Phase Velocity 

Young's 
Modulus 

(Pa) 

Phase Velocity (q) 
(m/sec) 

lxlO8 447.51 

lxlO9 1,414.9 

The first radial resonance has increased from 1,417 to 4,232 Hz, as seen in figure 105. The 

ratio of this frequency increase is 2.99, corresponding to a square root of modulus 

dependence. From shell theory, a simple approximation for the first radial resonance without 

fluid loading is 

fr   = 2%a, 
P,   1 

(326) 

where a is equal to the mean radius of the cylinder. This equation portrays the basic 

relationship between the parameters for the first radial resonance. For the nonfluid-loaded case 

or the lightly fluid-loaded case under consideration here, equation (326) performs well in 

estimating the first radial resonance frequency.    Table 13 lists the frequencies calculated from 
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equation (326) and the values taken from figure 105. 

Table 13.   Comparison of First Radial Resonance Frequency fr 

Young's 
Modulus 

(Pa) 

lxlO8 

lxlO9 

First Radial Resonance (fr) 
Equation (326) 

(Hz) 

U93 

4,405 

First Radial Resonance (fr) 
Figure 105 

(Hz) 

M17 

4,232 
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Figure 103.   Radial Stress Transfer Surface Up to 60 kHz When 

Magnitude = lOLog^/Vi)/^)2 at rx = 1.21 in. With E, = 1 x 109Pa, hx = 0.6 in., 

n - 0, and Diameter = 3.00 in. (Color Image) 
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Figure 104.   Radial Stress Transfer Surface Up to 60 kHz When 

Magnitude = l0hog(xrr
cl(ry)/Po)2 at ri = 121 in- With E\ = l x 108Pa, hx = 0.6 in., 
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Figure 105.   Effect of Variation of Young's Modulus on the Cylinder Response for 

Figures 103 and 104 When Magnitude = 10Log(Trr
cl(>i)/Po)2 at rx = 1.21 in. 
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Cylinder With Inner and Outer Fluids of Water—Wall Thickness Variation. In figures 

106 and 107, the pressure is calculated in the inner fluid at rx = 0.01 inch so that the simulations 

will be free of fluid nulls across the frequency range under consideration. The thickness 

resonances are clearly visible in both figures and correspond to cylinder wall thicknesses of 0.3 

and 0.6 inch, respectively.    Comparison of the responses is made at k = 0 rad/m in figure 108. 

The thickness resonance frequencies are provided in table 14 for the simulations performed 

earlier with air (figures 100 and 101) and with water (figures 106 and 107). The first thickness 

resonance is severely affected by the presence of the fluid (water) in the simulation of figure 

106. As the cylinder wall thickness is increased to 0.6 inch, the first and third thickness 

resonance frequencies are not as severely affected; however, the second thickness resonance 

frequency is reduced by 50 percent. 

Table 14.   Thickness Resonance Table for Air and Water With hx = 0.3 and 0.6 in. 

Thickness 
Resonance 
Frequency 
Number (i) 

fti 
Air 

hx = 0.3 in. 

(Hz) 

fti 
Water 

hx = 0.3 in. 

(Hz) 

fti 
Air 

hx - 0.6 in. 

(Hz) 

fti 
Water 

hx = 0.6 in. 

(Hz) 

1 30,264 18,241 15,198 13,490 

2 — 30,850 30,532 20,235 

3 — 43,812 45,221 41,818 

Cylinder wall thickness variation also affects the first radial resonance, moving the frequency 

from 2816 Hz at hx = 0.3 inch to 1936 Hz at hx = 0.6 inch. The next section, which describes the 

last high-frequency results, will examine a branch of wave propagation occurring near this 

resonance. 
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Figure 107.   Pressure Transfer Surface Up to 60 kHz When Magnitude = lOLogtP/rjj/P,,)2 

at rx = 0.01 in. With ht = 0.6 in., n = 0, and Diameter = 3.00 in. (Color Image) 
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Cylinder With Inner and Outer Fluids of Water—Stress and Displacements. In this 

last and final section on high-frequency results, we shall examine the longitudinal and radial 

displacement fields that correspond to the radial stress field at rx = 1.21 inches. For these 

simulations, we return to the original data for the cylinders and fluid listed in tables 2, 4, and 5, 

where the fluids have the properties of water and the cylinder thickness is 0.3 inch. The radial 

stress is evaluated and displayed in figures 109 and 110, and the longitudinal displacement 

corresponding to this stress simulation is shown in figures 111 and 112. In a similar fashion, the 

radial displacement field is displayed in figures 113 and 114. Cuts through the displacement 

surfaces have been made in both wavenumber and frequency and are displayed in figures 115 

through 118. 

In figure 115, the longitudinal and radial displacements are compared at 2000 Hz. The 

predominant displacement for the breathing wave is radial, and it can be observed in the figure 

that the radial displacement is greater than the longitudinal displacement in the region of the 

breathing wave resonance peak at ±170 rad/m. This dominance of the radial displacement at 

the breathing wave resonance can be observed in figures 117 and 118 at 50 and 100 rad/m, 

respectively. 

The deformation due to the extensional wave is predominantly longitudinal. Therefore, the 

longitudinal displacement will be greater than the radial displacement in the region of the 

extensional wave resonance peak. Figures 117 and 118 illustrate the dominance of longitudinal 

displacement at the extensional wave resonance. 

The last feature in the wavenumber-frequency plane that has not been discussed is the branch 

of wave propagation associated with the fluids. Figure 119 displays this region well; it is a wire 

frame representation of figure 13, which is a zoomed-in view of figure 110. The phase velocity 

of the dilatational wave (also known as the P-wave (primary or pressure wave)) for an infinite 

media of either inner or outer fluid is listed in table 1 as 1,500 m/sec. Close examination of the 

stress field indicates that there is an increase in energy associated with the fluid dilatation wave 

velocity. The fluid branch is sharply resonant with very narrow extent in wavenumber. The 

cylinder/fluid combination considered here supports this branch at the fluid P-wave phase velocity 
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up to the vicinity of the first radial resonance of the cylinder. At the first radial resonance (2816 

Hz), this branch becomes dispersive, with the phase and group velocities slowing, as shown in 

table 15. The width in wavenumber of the resonant peak increases and a null in the transmitted 

stress field develops at the P-wave phase velocity of the fluid (1500 m/sec). Above the first 

radial resonance of the cylinder, the fluid P-wave is labeled as "MODIFIED FLUID P-WAVE" in 

the figures that follow. The effect of this fluid/structure interaction is strong longitudinal 

displacement in the cylinder, as evidenced by figures 115 through 118. 

Table 15.   Fluid P-Wave Phase and Group Velocity Versus Frequency From Figure 13 

Frequency 

(Hz) 

Phase Velocity 

(m/sec) 

Group Velocity ±75 

(m/sec) 

1,000 1,500 1,500 

2,000 1,500 1,500 

2,500 1,500 1,500 

2,796 1,460 1,192 

3,001 1,426 1,082 

3,202 1,416 1,276 

3,500 1,393 1,185 

4,000 1,296 872 

4,501 1,204 768 

4,990 1,185 — 

A contrast to the previous case of dense fluids (water) is shown in the simulation of figure 

100, where the same cylinder was immersed in fluids of low density (air). In this case, the fluid 

P-wave phase velocity is unaltered by the first radial resonance of the cylinder. The P-wave 

phase velocity of air is 343 m/sec (tables 8 and 9) and remains nondispersive throughout the 

wavenumber-frequency range of the simulation (figure 100). 
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Figure 110.   Radial Stress Transfer Surface Up to 60 kHz When 

Magnitude = 10Log(T#7.cl(rL)/Po)2 at rx = 1.21 in. With n = 0 and 
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Figure 117.   Cylinder Displacement Comparison for Figures 111 and 113 When 

Magnitude = 10Log(Z/Po)2 for Values of X = wc
cl(ri) and wc

cl(>i) at rx = 1.21 in. 
With n = 0, Diameter = 3.00 in., and k = 50 rad/m 

154 



TR 11,067 

-260 

-280 

-300 

-320 

-340 

-360 

-380 

-400 

-420 

i r 
MAGNITUDE 

BREATHING WAVE 

i r 

WAVE 

C\ wc   (ri) Longitudinal 

Bc
clfi) Radial 

MODIFIED FLUID P-WAVE 

_l L_ _l L_ 

2x10 4x10 
FREQUENCY (Hz) 

6x10 

Figure 118.   Cylinder Displacement Comparison for Figures 111 and 113 When 
Magnitude = 10Log(X/Po)2 for Values of X = H>C

C
VI) and HC

C1
(>J at rx = 1.21 in. 

With n = 0, Diameter = 3.00 in., and k = 100 rad/m 

155 



TR 11,067 

Tt\wff(T\T\         ^X\ MODIFIED FLUID P-WAVE 

IIIISliiffiAW 
IPffln^    ff    ; 

1                  "lö 

Figure 119.  Radial Stress Transfer Surface With Magnitude = lOLogix^fr^/Pj1 

at rx = 1.21 in. With n = 0 and Diameter = 3.00 in. 
(Wire Frame Surface of Figure 13) 
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SINGLE-LAYER CYLINDER SIMULATIONS—LONGITUDINAL SHEAR 
STRESS EXCITATION 

Up to this point, the type of excitation applied to the cylinder has been a pressure normal to 

the cylinder surface. In this section, the normal pressure excitation will be replaced with a 

longitudinal shear stress excitation, once again applied uniformly over the outer surface of the 

cylinder.    The cylinder and fluid properties are taken from tables 2, 4 and 5. 

Figures 120 and 121 depict the simulation for the n = 0 excitation. The major branch of 

wave propagation excited is the extensional wave. The phase velocity of the extensional wave is 

roughly 300 m/sec, and it is nondispersive over the range of the simulation. The breathing wave 

is faintly visible in figure 121. In the earlier normal pressure simulation of figure 20, we 

observed a high-level breathing wave and a low-level extensional wave; however, the 

longitudinal excitation creates a high-level extensional wave and a low-level breathing wave. 

The fluid P-wave discussed in the previous section is visible in the n = 0 simulation. This 

branch has the same phase and group velocities listed in table 15. 

The simulation for circumferential order number n = 1 is shown in figures 122 and 123, and 

the simulation for n = 2 is shown in figures 124 and 125. In both cases, the second and third 

branches produce higher level responses than does the first branch. The reason for this is that 

the longitudinal shear stress excitation imparts energy more directly into the longitudinal and 

circumferential motions of the cylinder than into the radial motion. 

Figure 126 is a comparison of n = 0, 1, and 2 at 50 Hz. The major feature at n = 0 is the 

extensional wave, exhibiting sharp roll-off in wavenumber and a resonance amplitude of 

approximately 20 dB. At 500 Hz, in figure 127, the extensional wave amplitude has dropped to 

approximately 12 dB and the roll-off in wavenumber is less precipitous. The fluid P-wave is 

indicated on figure 128 at 2000 Hz (the extensional wave of the cylinder is also observed in this 

region). In figure 129 at 5000 Hz, the P-wave has become modified by the cylinder, the width of 

the resonant peak has increased, and the wave has become dispersive. The amplitude of the 

extensional wave has decreased in level. 
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In each of the comparisons (figures 126 through 129), the n = 0 excitation creates the largest 

amplitude pressure in the inner fluid. The n = 1 and 2 pressure fields will exhibit strong 

variation in amplitude with radial position. Simulations of this behavior have not been included 

in this report. 
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Figure 125.   Pressure Transfer Surface With Magnitude = lOLogiP^/P^2 at rt = 0.75 in. 
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161 



TR 11,067 

MAGNITUDE 50 Hz 
40 i i i 

ra = 0 

« = 1 

n = 2 

20 
  EXTEND 

0 

-20 

1U1NAL WAV 11,                        ^ 

J \ 

j\ 
:\ 

-40 

-60 

-80 

100 

-120 

-140 

r    \ \ 
'■I      ' 

/ 
S'/ 

1                                             \'X 

^\ 

I i          i          i 1 1 

-200 0 
WAVENUMBER (rad/m) 

200 

Figure 126.   Comparison of Longitudinal Shear Stress Excitation for Figures 120,122, and 
124 When Magnitude = lOLogCP/rjj/P.,)2 at rl = 0.75 in. for Various n 

With Diameter = 3.00 in. and/= 50 Hz 

162 



TR 11,067 

80 

60 

40 

20 

0 

-20 

-40 

-60 

-80 

100 

MAGNITUDE 500 Hz 
1 1                                 1                                 1 1 

n -0 

EXTENSIONAL WAVE . 

\ 

      n — i 

 n = 2 

\ 
V \ 

, */"-'"• '..\ 
'■' N 

/           \J       v\ 

•*V 

1 \          1          1 1           1           1 1 

■200 0 
WAVENUMBER (rad/m) 

200 

Figure 127.   Comparison of Longitudinal Shear Stress Excitation for Figures 120,122, and 
124 When Magnitude = lOLogCP/r^/P^)2 at rx = 0.75 in. for Various n 

With Diameter = 3.00 in. and/= 500 Hz 

163 



TR 11,067 

MAGNITUDE 2000 Hz 
80 

■80 

100 

i r 

FLUID P-WAVE 

EXTENSION AL WAVE 

n = 0 

n = l 

n = 2 

■200 0 
WAVENUMBER (rad/m) 

200 
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SINGLE-LAYER CYLINDER SIMULATIONS—CIRCUMFERENTIAL SHEAR 

STRESS EXCITATION 

In this section, the response of the cylinder to a circumferential shear stress excitation is 

considered.    The properties for the cylinder and fluids are the same as those used in the previous 

section and are taken from tables 2,4 and 5.    Because there is no circumferential displacement in 

an n = 0 excitation, we will only consider the n = 1 and n = 2 circumferential order numbers in 

this section. 

In figures 130 and 131, which depict the simulation for the n = 1 circumferential shear stress 

excitation, the first three branches of wave propagation are evident. The first branch gives rise to 

wave propagation that places the cylinder in the characteristic rx plane-bending motion. The 

second and third branches have cutoff frequencies associated with them. Pressure is developed 

in the inner fluid by Poisson coupling into a radial displacement. 

Figures 132 and 133 display the n = 2 simulation for circumferential shear stress 

excitation. Two branches of wave propagation are evident in the simulation, both exhibiting 

cutoff frequencies. 

Figures 134 through 137 are comparisons of the n = 1 and n = 2 responses at various 

frequencies. For all frequencies and wavenumbers, the n = 1 excitation produces a larger 

amplitude pressure field in the inner fluid. The pressure field developed by both the n = 1 and 

n = 2 excitations is strongly dependent on radial position. 

166 



TR 11,067 

MAGNITUDE 
WHBHBE^^^^^ä 10 

200.00 BBSfflgv -2 

^^^^HBpp^* ' *'^"*^^^^^^^ 
-13 

m 
S 
P 

> 
< 

0.00 

-200.00 
^^^^^Hitt|^^> ,,f>.>; 

-25 

-37 

-48 

-60 
1000.00      2000.00      3000.00 4000.00      5000.00 

FREQUENCY (Hz) 

Figure 130.   Pressure Transfer Surface With Magnitude = lOLogCP/r^/Pe)2 at rx = 0.75 in. 
for n = 1 and Diameter = 3.00 in. (Color Image) 

Figure 131.   Pressure Transfer Surface With Magnitude = 10Log(P,(>i)/Pe)2 at rx = 0.75 in. 
for n = 1 and Diameter = 3.00 in. (Wire Frame Surface) 
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TWO-LAYER CYLINDER SIMULATIONS 

Thus far we have considered simulations of a cylinder composed of a single homogeneous 

layer of material in contact with fluids on the inner and outer surfaces. In this section, we will 

employ the full model developed in this report for the two-layer cylinder with fluids. The 

system matrix is given by equation (150), with elements given by equations (151) through 

(319). Material properties and dimensions for the two-layer cylinder are shown in table 

16. The first or inner cylinder has material properties similar to hard plastic, such as 

polycarbonate. The outer cylinder (cylinder 2) has material properties similar to those of 

urethane or the rubber used for automobile tires. The inner fluid properties are consistent with 

air and are listed in table 17. The outer fluid material properties are those of water and are given 

in table 18. 

Table 16.   Two-Layer-Cylinder Properties—0.650-in. Diameter 

Cylinder #1 Property Cylinder #2 Property Definition 

9 N 
E. = 2.4x10 -^ 

m2 
7 N 

£9 = 1.5x10 ^r z                  m2 Young's Modulus 

Ci = 0.14 C2 = 0.20 Structural Loss Factor 

Pi = 2113^ 
mj p2 = 1000^ 

m3 Density 

Vj = 0.40 v2 = 0.45 Poisson's Ratio 

a = 0.160in. b = 0.260in. Inner Radius 

b = 0.260in. c = 0.325in. Outer Radius 

hx = O.lOOin. h2 = 0.065in. Thickness 

The model under consideration is composed of four distinct layers. The simulations will 

contain contributions of wave propagation and interaction from each of the four layers. The 

resulting composite system will produce branches of wave propagation that are related to the 
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dilatational and transverse waves of the media but do not necessarily propagate at the same 

velocity. The velocities listed in table 19 will serve as a guide for analyzing the responses that 

follow. The simulations for the two-layer cylinder will be displayed as color images using the 

red/yellow/green/blue color map as opposed to the red temperature color map that was previously 

used for the single-layer cylinder. 

Table 17.   Two-Layer-Cylinder Inner Fluid Properties (Air) 

Property Definition 

P, = ix>H m3 Density 

c = 343.0— 1               sec 
Velocity of Sound 

Table 18.   Two-Layer-Cylinder Outer Fluid Properties (Water) 

Property Definition 

ps = 1000.0^ Density 

c   = 1500.0— s                 sec 
Velocity of Sound 

Table 19.   Two-Layer-Cylinder/Fluid Phase Velocities 

Inner Fluid 
Phase Velocity 

(m/sec) 

Cylinder #1 
Phase Velocity 

(m/sec) 

Cylinder #2 
Phase Velocity 

(m/sec) 

Outer Fluid 
Phase Velocity 

(m/sec) 

Cl — 1,560.0 238.5 — 

ct 
— 636.9 71.9 — 

ce — 1,065.8 122.5 — 

Ci 343.0 — — — 

cs — — — 1,500.0 
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Radial Pressure Excitation 

The first series of simulations are for a radial pressure excitation applied to the outer surface 

of the cylinder, as shown in figure 1. The circumferential strain is the quantity calculated just 

below the outer surface at rl = 0.324 inch, and it is displayed as a color image using the red/ 

yellow/green/blue color map in figure 138 and as a wire frame surface in figure 

139.    Comparison of the amplitude in frequency is made in figure 140. 

The first radial resonance frequency occurs at 6210 Hz for this system. The P-wave in the 

inner fluid is faintly visible as a series of dots at a phase velocity of 343 m/sec in figure 

138. This wave is unaffected by the structure, which is consistent with the previous observation 

of what occurred when air was used as the fluid with the single-layer cylinder. The P-wave of 

the outer fluid experiences dispersion due to interaction with the cylinder above the radial 

resonance frequency. The other major branch of wave propagation evident in the simulation is 

an extensional wave for the composite cylinder. The phase velocity of this wave is shown in 

table 20; its value falls between those listed in table 19 for the individual layers. 

Table 20.   Extensional Wave Phase Velocity From Figure 138 

Frequency 

(Hz) 

Phase Velocity 

(m/sec) 

1,000 800 

2,000 800 

3,000 800 

4,000 800 

5,000 800 

6,000 800 

7,000 700 

7,500 663 

7,800 610 
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Figures 141 through 143 are simulations of the circumferential strain at rx = 0.259 inch, which 

is just below the outer radius of the inner cylinder. The effect of the inner fluid P-wave on the 

strain field is captured in the 6000-Hz curve in figure 143 (note the small bump at approximately 

100 rad/m). This P-wave produces a very narrow spike in wavenumber. The wavenumber 

interval chosen for the simulations is not small enough to capture the P-wave continuously, which 

is why it appears as a series of dots in the color images. Decreasing the wavenumber interval 

would lead to a corresponding increase in calculation time and was not considered important 

enough for the purposes of this report. 

The circumferential strain field is evaluated at rx = 0.250 inch (which is within the confines of 

the thickness of the inner cylinder), as shown in figures 144 through 146. In figures 147 through 

149, the circumferential strain field is evaluated at rx = 0.161 inch, which is just inside the inner 

radius of the inner cylinder. Comparison at k = 0 is made in figure 150 for the four radial 

locations previously mentioned, and the radial resonance can be clearly observed in all the 

curves. Figures 151 through 154 are comparisons at various frequencies for each of the four 

radial locations. Although the extensional wave in the cylinder and the P-wave in the outer fluid 

have been labeled only once in figures 153 and 154 (at rx - 0.32 inch) to prevent cluttering of the 

plots, they can also be seen at the radial locations shown on the other curves. The P-wave in the 

inner fluid is evident in figure 153. This wave produces a narrow spike in wavenumber, which 

was not captured by the calculation in the negative wavenumber region because the algorithms do 

not necessarily evaluate the equations at precisely the same wavenumber on both sides of zero. 

The attenuation of circumferential strain sensitivity is displayed in figure 155. The 

magnitude plotted in this figure is the difference in level between rx = 0.259 inch and rx - 0.324 

inch. The curves indicate the wavenumber-filtering property of the structure due to normal 

pressure excitation from just beneath the outer radius of the outer cylinder to just beneath the 

outer radius of the inner cylinder. 
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Figure 153.   Comparison of Circumferential Strain Distribution for Figures 138,141,144, 
and 147 When Magnitude = 10Log(£ee

a(>i)/f\>)2 at Various rx With i = 1 or 2, n = 0, 
Diameter = 0.650 in., and/= 6000 Hz 
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Diameter = 0.650 in., and/= 7500 Hz 
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Figure 155.   Attenuation of Circumferential Strain From Figures 138 and 141 
When Magnitude = (10Log(EeeC1(0.259)/Po)2 - 10Log(eeeC2(0.324)/Po)2) at Various/ 

With n - 0 and Diameter = 0.650 in. 
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Longitudinal and Radial Displacements. The longitudinal and radial displacements that 

correspond to the location rx = 0.259 inch (as discussed in the previous section) are now 

calculated. The simulation for longitudinal displacement is shown in figures 156 and 157; the 

simulation for radial displacement is presented in figures 158 and 159. Comparisons of these 

two surfaces are made at selected frequencies in figures 160 through 163. 

At 1000 Hz in figure 160 and 3000 Hz in figure 161, the extensional wave is the major branch 

of wave propagation. Moving up to 6000 Hz in figure 162 and 7500 Hz in figure 163, the inner 

and outer fluid P-waves become evident. Because the wavenumber increment used for the 

simulation is larger than the width in wavenumber of the inner fluid P-wave resonance, the inner 

fluid P-wave shows up intermittently in the simulations. 
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Figure 156.   Longitudinal Displacement Transfer Surface With 
Magnitude = 10Log(wc

clCi)/^o)2 at rx = 0.259 in. With n = 0 and 
Diameter = 0.650 in. (Color Image) 

Figure 157.  Longitudinal Displacement Transfer Surface With 
Magnitude = 10hog(w ^(r^/PJ2 at rt = 0.259 in. With n = 0 and 

Diameter = 0.650 in. (Wire Frame Surface) 
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Figure 158.   Radial Displacement Transfer Surface With Magnitude = 10Log(wc
cl(>i)//,o)2 

at rx = 0.259 in. With n = 0 and Diameter = 0.650 in. (Color Image) 

Figure 159.  Radial Displacement Transfer Surface With Magnitude = 10Log(Hc
cl(r1)/Po)2 

at rx = 0.259 in. With n = 0 and Diameter = 0.650 in. (Wire Frame Surface) 
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Figure 160.    Comparison of Displacement Distribution for Figures 156 and 158 When 
Magnitude = 10Log(X/Po)2 for Values of X = wc

cl(rx) and HC
CVI) at rY = 0.259 in. 

With n = 0, Diameter = 0.650 in., and/= 1000 Hz 
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Figure 161.   Comparison of Displacement Distribution for Figures 156 and 158 When 

Magnitude = 10Log(Z/Po)2 for Values of X = we
cl(rj and wc

cVi) at rx = 0.259 in. 
With n = 0, Diameter = 0.650 in., and/= 3000 Hz 
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MAGNITUDE 6000 Hz 
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Figure 162.    Comparison of Displacement Distribution for Figures 156 and 158 When 
Magnitude = 10Log(X/Po)2 for Values of X = wc

ci(rj and uc
cl(rx) at rx = 0.259 in. 

With n = 0, Diameter = 0.650 in., and/= 6000 Hz 
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Figure 163.   Comparison of Displacement Distribution for Figures 156 and 158 When 
Magnitude = 10Log(X/Po)2 for Values of X = wc

cl(ri) and uc
cl(ri) at rx = 0.259 in. 

With n = 0, Diameter = 0.650 in., and/= 7500 Hz 
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Longitudinal Shear Stress Excitation 

In this section, the two-layer cylinder is excited with a longitudinal shear stress 

excitation. The fluids are the same as those defined previously in tables 17 and 18. The 

circumferential strain sensitivity is evaluated at rx = 0.324 inch in figures 164 and 165. This 

radial location is just below the outer surface of the second cylinder. Cuts through the surface 

are made in figure 166 at various frequencies. The major branch of wave propagation in this 

simulation for the composite cylinder is the extensional wave whose amplitude decreases as 

frequency increases (see figure 166). 

At a depth of rx = 0.259 inch, just below the outer radius of the inner cylinder, the simulation 

for circumferential strain is presented in figures 167 and 168. Cuts through this surface at 

various frequencies are presented in figure 169. As was the case at rx = 0.324 inch, the 

extensional wave is the dominant branch of wave propagation, although the decrease in its 

amplitude with frequency is greater at rx - 0.259 inch than at rx = 0.324 inch. 

Comparisons of the circumferential strain at the two radial locations are made in figures 170 

through 174. Above the extensional wavenumber, there is significant attenuation of 

circumferential strain sensitivity. At ±300 rad/m, this sensitivity has been reduced by 

approximately 30 dB. The extensional wave resonance peak level, which decreases as rx 

decreases from 0.324 to 0.259 inch, can be observed in figures 171 through 174. 

The attenuation of circumferential strain sensitivity is displayed in figure 175. The 

magnitude plotted in this figure shows the difference in level between rx = 0.259 inch and 

rx = 0.324 inch. The curves reveal the wavenumber-filtering property of the structure due to 

longitudinal shear stress excitation from just beneath the outer radius of the outer cylinder to just 

beneath the outer radius of the inner cylinder. 

A comparison of figure 175 with figure 155 reveals the different amounts of filtering that the 

structure presents to the two forms of excitation (i.e., longitudinal shear stress and normal 

pressure excitation). 
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Figure 164.   Circumferential Strain Transfer Surface With 
Magnitude = lOhogie^fr^/P^2 at rx = 0.324 in. With n = 0 and 

Diameter = 0.650 in. (Color Image) 
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Figure 166.    Comparison of Circumferential Strain Distribution for Figure 164 
When Magnitude = 10Log(£ee

C2(>i)/^)2 at rx = 0.324 in. With n = 0 and Diameter = 0.650 in. 
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Figure 167.   Circumferential Strain Transfer Surface With 
Magnitude = 10Log(eee

clf^/^)2 at ri = 0-259 in. With n = 0 and 
Diameter = 0.650 in. (Color Image) 
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Figure 168.   Circumferential Strain Transfer Surface With 
Magnitude = lOLogCee^Vi)/^)2 at rx = 0.259 in. With n = 0 and 

Diameter = 0.650 in. (Wire Frame Surface) 
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Figure 169.    Comparison of Circumferential Strain Distribution for Figure 167 
When Magnitude = 10Log(eee

cl(>iÄ)2 at rt = 0.259 in. With n = 0 and Diameter = 0.650 in. 
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Figure 170.    Comparison of Circumferential Strain Distribution for Figures 164 and 167 
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Figure 171.   Comparison of Circumferential Strain Distribution for Figures 164 and 167 
When Magnitude = 10Log(eee

cW/^)2 at Various rx With i = 1 or 2, n = 0, 
Diameter = 0.650 in., and/= 1000 Hz 
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Figure 172.    Comparison of Circumferential Strain Distribution for Figures 164 and 167 
When Magnitude = 10Log(8ee

CW/^)2 at Various rx With i = 1 or 2, n = 0, 
Diameter = 0.650 in., and/= 3000 Hz 
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Figure 173.    Comparison of Circumferential Strain Distribution for Figures 164 and 167 
When Magnitude = 10Log(eee
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Figure 174.    Comparison of Circumferential Strain Distribution for Figures 164 and 167 
When Magnitude = 10Log(eee

cW/^)2 at Various rx With i = 1 or 2, n = 0, 
Diameter = 0.650 in., and/= 7500 Hz 
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Comparison of Radial Pressure and Longitudinal Shear Stress Excitations. Previously, 

we have examined the circumferential strain sensitivity to normal pressure, P0, and to 

longitudinal shear stress, Px. In this section, we will compare this sensitivity to P0 (figure 141) 

and Px (figure 167) at various frequencies. Figures 176 through 181 are cuts in frequency for 

this comparison. 

At 40 Hz (figure 176), the extensional wave, at low wavenumber, shows the circumferential 

strain sensitivity to longitudinal shear stress to be above the sensitivity to normal pressure by 

40 dB. As frequency increases, the magnitude of the extensional wave generated by the 

longitudinal shear stress excitation decreases, and at 6000 Hz the difference between the two 

responses in the region of the extensional wave is approximately 13 dB. 

In general, the figures show that the circumferential strain sensitivity to longitudinal shear 

stress is lower than the normal pressure sensitivity above 100 rad/m. The circumferential strain 

sensitivity to normal pressure, unlike longitudinal shear stress, is relatively flat, with increasing 

wavenumber above the cylinders extensional wave region. 
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Figure 176.   Comparison of Circumferential Strain Distribution for Figures 141 and 167 
When Magnitude = 10Log(eee

cl^i)/^,)2 With i = o or x, n = 0, 
Diameter = 0.650 in., and/= 40 Hz 
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Figure 177.   Comparison of Circumferential Strain Distribution for Figures 141 and 167 
When Magnitude = 10Log(8ee

cl(>1)//
,
I.)2 With i = oorjr,n = 0, 

Diameter = 0.650 in., and / = 500 Hz 
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Figure 178.   Comparison of Circumferential Strain Distribution for Figures 141 and 167 
When Magnitude = 10Log(eee
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Figure 179.    Comparison of Circumferential Strain Distribution for Figures 141 and 167 
When Magnitude = 10Log(eee

CV/'i)/i>i)2 With i = o or x, n = 0, 
Diameter = 0.650 in., and/= 3000 Hz 
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Figure 180.   Comparison of Circumferential Strain Distribution for Figures 141 and 167 
When Magnitude = 10Log(8ee

cl(^i)/^i)2 With i = o or x, n = 0, 
Diameter = 0.650 in., and/= 6000 Hz 
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Figure 181.    Comparison of Circumferential Strain Distribution for Figures 141 and 167 
When Magnitude = 10Log(eee

cl(>i)//>;)2 With i = o or x, n = 0, 
Diameter = 0.650 in., and/= 7500 Hz 
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CONCLUSIONS AND RECOMMENDATIONS 

An exact closed-form solution to the problem of forced harmonic excitation of a two-layer 

cylinder with inner and outer fluids has been derived. Results are presented for the dynamic 

response of a single-layer cylinder with inner and outer fluids of water and for a two-layer 

cylinder with air as the inner fluid and water as the outer fluid. 

Single-Layer Summary 

The elasticity model is compared to membrane and bending shell models developed 

previously. Comparisons among the models are made for a 3.00-inch-diameter cylinder and a 

0.670-inch-diameter cylinder. To summarize the results, for the 3.00-inch-diameter cylinder, the 

shell models are in good agreement with the elasticity model for the region extending to 1000 Hz 

and ±75 rad/m. Outside of this region, the difference increases beyond 5 dB, and the elasticity 

solution should be used. For the n = 0 case, the fluid loading influences the first radial natural 

frequency of the shell models so dramatically that the error (relative to the elasticity solution) is 

greater than a factor of three as evidenced by figure 22. For the n = 2 case, the membrane model 

should not be used at all because it misrepresents the behavior of the first branch (i.e., lack of 

cutoff frequency and appropriate branch structure). Although not shown in this report, similar 

behavior will occur with the membrane shell model for n > 2. 

For the 0.670-inch-diameter cylinder, the membrane shell models are generally within 4 dB of 

the elasticity model for the n = 0 circumferential order number in the region ±150 rad/m and 0 to 

5000 Hz. If it is necessary to obtain a simulation with an error of less than 4 dB, the elasticity 

model should be used. The shell models should not be used for the determination of the first 

radial natural frequency of this cylinder/fluid combination; the elasticity model should be 

used. For the higher circumferential order numbers, it should be remembered that although the 

membrane model will not support a cutoff frequency for the first branch of wave propagation, the 

bending shell model will be within 4 dB of the elasticity solution. If an error of less than 4 dB is 

required, the elasticity model should be used. 
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The pressure field in the inner fluid consists of propagating and nonpropagating 

regions. Below the wavenumber w/ch the pressure field propagates and is given by the J0 Bessel 

function of equation (67). Above w/ct the pressure field becomes increasingly evanescent, with 

increasing wavenumber and decreasing radial position r, and is given by equation (71). This 

behavior serves to attenuate breathing wave and extensional wave pressure levels (which are 

locally generated at the cylinder/fluid surface) as the measurement point moves toward the center 

of the cylinder (r = 0) or to a higher wavenumber. 

Decreasing the density of the inner fluid lowers the first radial resonance of the cylinder fluid 

combination. Decreasing the density also increases the phase velocity of the breathing 

wave. A factor of four decrease in inner fluid density almost doubles the breathing wave phase 

velocity from 66 to 130 m/sec. 

A comparison of shell and elasticity models at high frequencies (up to 60 kHz) shows that the 

shell models do not accurately resolve the behavior of the cylinder. For the cases considered 

here (which represent heavy fluid loading), the elasticity model accurately predicts the first radial 

natural frequency of the system (the shell models do not). Furthermore, in contrast to the shell 

model, the elasticity model reveals the specific dynamics associated with the thickness of the 

cylinder. Dilatation wave propagation creates standing waves across the thickness of the 

cylinder at frequencies (fti) corresponding to an integer number of half wavelengths for light fluid 

loading (air). Doubling the cylinder wall thickness halves the frequencies (tables 10 and 11), 

and increasing the Young's modulus increases the resonant frequencies, as expected (table 

13). For heavy fluid loading (water), the frequencies that result deviate from the integer- 

number-of-half-wavelengfh relationship observed when air is used as the inner and outer fluids 

(table 14). Nulls occur in the inner fluid pressure field due to the J0 nature of the field (the null 

frequency is given by equation (325) and is a function of the dilatational phase velocity of the 

inner fluid, the radial position rh and the wavenumber k). The first two null frequencies are 

tabulated in table 7 for the 3.00-inch cylinder with water as the internal fluid. 

The dilatational or P-wave phase velocity of the inner and outer fluids interacts with the 

cylinder.    For the 3.00-inch-diameter cylinder with fluids of water (figures 109 and 119), close 
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examination of the stress field indicates that there is an increase in energy associated with the fluid 

dilatation wave velocity; that is, the fluid branch becomes sharply resonant with a very narrow 

extent in wavenumber. The combination of cylinder and fluids considered here supports this 

branch at the fluid P-wave phase velocity up to the vicinity of the first radial resonance of the 

cylinder. At the radial resonance (2816 Hz), this branch becomes dispersive, with the phase and 

group velocities slowing, as shown in table 15. The width in wavenumber of the resonant peak 

increases and a null in the transmitted stress field develops at the P-wave phase velocity of the 

fluid (1,500 m/sec). Above the first radial resonance of the cylinder, the fluid P-wave is 

modified by the presence of the cylinder and becomes dispersive. 

In contrast to the previously discussed case of dense fluids (water) is the simulation shown in 

figure 100, where the 3.00-inch cylinder was immersed in fluids of low density (air). In this 

case, the fluid P-wave phase velocity is unaltered by the first radial resonance of the 

cylinder. The P-wave phase velocity of air is 343 m/sec (tables 8 and 9) and remains 

nondispersive throughout the wavenumber-frequency range of the simulation (figure 100). 

Normal pressure excitation (n - 0) applied to the cylinder creates a high-amplitude breathing 

wave and a low-amplitude extensional wave; however, the longitudinal shear stress excitation 

creates a high-amplitude extensional wave and a low-amplitude breathing wave. The amplitude 

of the extensional wave generated by the longitudinal shear stress excitation decreases with 

increasing frequency. The interaction of the fluid P-wave and the cylinder during longitudinal 

shear stress excitation {n = 0) parallels that of the radial pressure excitation (i.e., nondispersive 

behavior up to the first radial resonance frequency of the cylinder and dispersive behavior above 

the resonance frequency). 

The n - 1 circumferential order number excitation (normal pressure, longitudinal shear stress, 

and circumferential shear stress) generates a branch of wave propagation that causes the cylinder 

to undergo an rx plane-bending deformation, as depicted in figure 9. Cutoff frequencies are 

associated with the second and third branches of wave propagation for n = 1 and n = 2 for both 

longitudinal and circumferential shear stress excitations. 
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Two-Layer Summary 

The two-layer cylinder simulations (circumferential strain with normal pressure excitation) 

are performed with air as the inner fluid and water as the outer fluid. The first radial resonance 

frequency for the composite cylinder and fluids occurs at 6210 Hz. The P-wave of the inner 

fluid is nondispersive throughout the range of the simulations. The P-wave of the outer fluid is 

nondispersive up to the first radial resonance of the cylinder and then becomes dispersive. The 

extensional wave phase velocity for the two-layer cylinder is 800 m/sec, becoming dispersive 

above the cylinder radial resonance frequency of 6210 Hz. Figure 155 displays the attenuation 

of circumferential strain across the outer layer of the composite cylinder. 

A circumferential strain excitation (n = 0) applied to the composite cylinder produces an 

extensional wave whose amplitude is 20 dB larger at 1000 Hz and 5 dB larger at 7500 Hz than the 

extensional wave generated by the normal pressure excitation. The outer fluid P-wave is evident 

in the simulations using the circumferential shear stress excitation at approximately the same 

amplitude as for the normal pressure excitation. 

These results provide a small sampling of the problems that can be analyzed with the 

mathematical models developed in this report. It should be emphasized that the elasticity 

models represent the "truth" for the structures (subjected to harmonic forcing functions in space 

and time) presented here. There are no simplifying assumptions that discard information as in 

shell analysis. The elasticity models can be used for analyzing structures that range from the 

dimensions of a human hair to the largest cylinder that would be practical to manufacture or 

would occur in nature. Furthermore, the frequency range allowed by these models is 

exceedingly broad. In other words, the simulations presented here could be said to explore only 

the lower limit of what is possible to study with the elasticity models. The primary challenge 

becomes a numerical one, where the limitations occur in the ability to compute the Bessel 

functions, invert the system matrix, and maintain enough precision throughout the entire 

calculation to ensure a valid solution to the equations. 
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APPENDIX A 

BESSEL FUNCTIONS OF COMPLEX ARGUMENT, SERIES 
REPRESENTATION 

The inclusion of structural damping in the cylinder necessitates the evaluation of Bessel 

functions of complex argument. The series representation of these functions is then required. 

From Abramowitz and Stegun,1 equations (A-l) through (A-6) are used for complex argument z, 

where z ranges from 0 < z < 3 . The circumferential order number n appears in the equations as 

well. 

The Gamma2 function is given by 

T(n + K+1)  =  (n + K)\. (A-l) 

The Psi or Digamma function is 

M-l 

\|/(1)  = -y, yO)  = -Y+ £ k~\ n>2 . 
k= 1 

The value used for Euler's constant is y = 0.577215664901532860606512. 

The Bessel function of the first4 kind is 

'•w = i.§T2«rj^ir (A-3) 
k = 0 

(A-2) 

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, U.S. Government Printing Office, 
Washington, DC, June 1964. 

2. M. Abramowitz and I. A. Stegun, p. 255, equation (6.1.6). 
3. M. Abramowitz and I. A. Stegun, p. 258, equation (6.3.2). 
4. M. Abramowitz and I. A. Stegun, p. 360, equation (9.1.10). 

A-l 
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The Bessel function of the second5 kind over the range 0 < z < 3 is 

YAz)  = 
V J 

f n-\ 

1 
^k = 0 

(n-k-1) 
k\ ^)4+ita(^"(') n   V2 

n ,v 
-4IZ 

— Z(v(k+i)+y(n + k+i))k[{n + k)l 

k = 0 (A-4) 

The Hankel function6 of the first kind is given by 

r(l) 

K   ^   =JnW+iYn^- (A-5) 

The expression7 used for the modified Bessel function /„ over the range 0 < z < 3 is 

/„(*)  = 
\yk 

2)   ^ k\T(n + k+\) 
k = 0 

(A-6) 

The expression8 used for the modified Bessel function Kn over the range 0 < z < 3 is 

K (z) in V" 
id1 

f n-l 

I 
^■k = 0 

(n-k-l)\ 
k\ 

-iyY+(_l)-iln(ij/w(z) 

+ (-DHl| 

f      oo 

£ (\|/(£+l) +y(n + k+l)) 
Vfc = 0 

M^ 
£!(« + £)! 

(A-7) 

5. M. Abramowitz and I. A. Stegun, p. 360, equation (9.1.11). 
6. M. Abramowitz and I. A. Stegun, p. 358, equation (9.1.3). 
7. M. Abramowitz and I. A. Stegun, p. 375, equation (9.6.10). 
8. M. Abramowitz and I. A. Stegun, p. 375, equation (9.6.11). 
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For the argument range 3 < z < <*>, asymptotic expansions are used from Korn and Korn:9 

T   (r,\ 2 ( A    t   \ ™J        nlZ      K^i      D    /   >>    ■    f        Ml      Tl J»(Z)  = kXA"iz)COV--2-4)-B»{z)smlZ--2-4 (A-8) 

and 

y»w ,mA.W^x-25_-j + a.w „.,_-.-, (A-9) 

where 

KM 1     (An2-\) {An2-9)  |  {An2- 1) {An2-9) {An2-25) (An2-A9) 
2!(8z)2 4!(8z)4 *"" 

and 

B  (z)  = Anl ~ 1     (4n2 ~ !) (4n2 " 9) (4n2~ 25) + 
8z 3!(8z)3 

(A-10) 

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book 
Company, New York, pp. 868-869, equations (21.8-44) and (21.8.45). 

A-3/A-4 
Reverse Blank 



TR 11,067 

APPENDIX B 

DERIVATIVES OF BESSEL FUNCTIONS 

An expression for the first derivative of the Bessel functions needed for the evaluation of the 

displacement potentials is taken from Arpaci,1 and is seen here in equations (B-l) and (B-2): 

^-(Zn(ax)) = -aZn + 1(ax) +-Zn(ax), Z = J,Y,K,H{1) ,H{2) 

x (B-l) 

and 

— (In (ax))  = aln + 1( ax) + ?In (ax) . (B-2) 

The argument of the Bessel functions is composed of a (a constant) and x (a complex number). 

An expression for the second derivative of the Bessel functions listed in equation (B-l) is 

derived by differentiating this equation again with respect to x, which requires the use of the prod- 

uct rule on the second term of the right-hand side of equation (B-l) and the following effect of the 

recursion relationships for Bessel functions: 

^(z„ + i(^))  = -<*ZM + 2(ax) +^±izM + 1(ax), Z = J,Y,K,H{1) ,H{2) 

(B-3) 

The final expression for the second derivative is 

^2Z
W«**) = ^;(Zn_2(ax) - (2Zn(ax) +Z„ + 2(ax))) 

Z — J, Y, K, H     , H (1)   „(2) 
?   "*•  ?  "? (B-4) 

1. V. S. Arpaci, Conduction Heat Transfer, Addison-Wesley Publishing Company, Reading, MA, p. 139, 
equation (3-139). 
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APPENDIX C 

OUTPUT QUANTITY EQUATIONS 

The equations necessary to compute the quantities chosen for the simulations are listed in this 

appendix. The system matrices, equations (85) and (150), are inverted for one excitation at a 

time (i.e., P0, Px, or Fe). The fluid displacement potential constant D is used with equations (67) 

and (71) to compute the magnitude of the pressure field in the inner fluid as 

—p— = <ü29PJn(8\ri) (C-l) 
o 

and 

PAr.) 
—p— = G>

2
P,G

/
„(*I'-I)- (C-2) 

The circumferential, longitudinal, and time dependence term cos(nQ)el(kx m) has been 

dropped from the equations given here. The values calculated are at a maximum amplitude; 

therefore cos (n0) e    x~      is equal to 1. 

The following equations are used to compute displacements, stresses, and strains in cylinder 2 

of the two-layer cylinder. If the cylinder of interest was the first-layer (rather than the second 

layer shown here), coefficients A^1, A2\B^1,B^1, C^1 and cj1   would be substituted for 
C2      C2      C1     C1      C2 C2 

Ai >A2 'Bi >B2 ' C\ and C2 in the equations. Quantities from the single-layer model are 

obtained by using coefficients AC
X\ AC

2\ B^, BC
2\ C^1 and cf1 resulting from system matrix 

(85). 

C-l 
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The magnitude of the radial displacement of a particle of cylinder material is given by 

equation (C-3) as 

C2 

O 

C2 C2 | 
Cl  ikJn+l(q2r1) + C2 ikYn + 1(q2ri)  I. (C-3) 

The magnitude of the longitudinal displacement of a particle of cylinder material is given by 

C2 
wc    (rl) AL

l
Z(ikJn(p2rl))+A2   (ikYn(p2rx)) + 

cf(-^+1(^1)-(
!v1K„+i(^i)J + 

Cl(    d 
Cr{-^Yn+M^-{ — )Yn+Mri) 

n+1 

(C-4) 

The radial stress in the cylinder is given by 

ci 
V <ri) ,C2 

2 7 A    2 \ 
+ 

A 
C2 

2 7 
(X2 + 2LL2) ^„(p^) + ^r,) - ^„(p^) 

^ 2     ^ 

V*2 

B 
C2 '2\i2n( 9 

-^-[Jn(Q2rl)-rlYrJn^2r0 -B 
C2 2[i0nf 9 

^„(^l)-'"l^2'-l) + 

Cf 2|i2/^/„ + ^i^) + Cf ^i^r^ x C^) j . 
(C-5) 
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The magnitude of the circumferential strain in the cylinder is given by 

C2 
eee (ri)      X2 

—p—=Ai 
+ 

B 
C2 n\d T ,       ,     nT . ^        C2f 

+ B2 

J V 

n \ d v ,       .     «„ .       . + 
J 

c C2fik(n+ 1) 
/« + i(

<?2ri)   +C2 
^C2(ik(n+ 1) 

^ >"! 
7« + 1^2rl)     • 

(C-6) 

Equations (C-l) through (C-6) have been normalized by P0.    If a different excitation was 
C\   ,C1   „Cl   „Cl   „Cl ,C1 or chosen    (i.e.,    Px    or    Pe),    the    coefficients    Ax,A\ ,B\\B\ , C\      and    C 

C2      C2     C2     C2      C2 C2 
Ax ,A2 ,BX ,B2 ,CX    and C2   resulting from the system matrix inversion would be different, 

and the appropriate excitation would be substituted for P0 in equations (C-l) through (C-6). 
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APPENDIX D 

TWO-LAYER MODEL VERIFICATION 

In this section, a verification of the two-layer elasticity model relative to the single-layer 

model is undertaken. The objective is to produce the same result for both models. First, let us 

consider the single-layer cylinder and fluids, whose material properties and dimensions are given 

in tables 2, 4, and 5 of the main text. The evaluation then amounts to the use of the two-layer 

model to analyze a cylinder that is physically identical to the single-layer cylinder. In reality, the 

two-layer cylinder is homogeneous; however, it is treated mathematically as a two-layer 

composite. The material properties and dimensions of the two-layer cylinder used for the 

comparison are listed in table D-l. The inner and outer fluids (tables D-2 and D-3) have 

properties consistent with those of tables 4 and 5. 

Table D-l.   Two-Layer-Cylinder Properties—3.00-in. Diameter for Model Comparison 

Cylinder #1 Property Cylinder #2 Property Definition 

E. = l.OxlO8^ 1                  m2 E, = l.OxlO8-^ 
m2 Young's Modulus 

Ci = 0.3 Ci = 0.3 Structural Loss Factor 

p, = 107(Ä 
m.i p, = 1070^ 

mJ Density 

Vj = 0.4 Vj = 0.4 Poisson's Ratio 

a = 1.200 in. b = 1.350 in. Inner Radius 

b = 1.350 in. c = 1.500 in. Outer Radius 

h1 = 0.15 in. h2 = 0.15 in. Thickness 

D-l 
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Table D-2.   Two-Layer-Cylinder Outer Fluid Properties (Water) for Model Comparison 

Property Definition 

ps = lOOOÄ Density 

c   = 1500.0— 5                 sec 
Speed of Sound 

Table D-3.   Two-Layer-Cylinder Inner Fluid Properties (Water) for Model Comparison 

Property Definition 

p. = 1000.0^ Density 

c = 1500.0— 1                 sec 
Speed of Sound 

Simulations are performed for the single- and two-layer models with a normal pressure 

excitation (n = 0). Figure D-l is the simulation for the two-layer model and figure D-2 is the 

simulation for the single-layer model. In figure D-3, a comparison of the two models is made at 

k = 0 rad/m. The curves in this figure overlay each other, which indicates agreement between 

the solutions. Figure D-l is subtracted from figure D-2 and the result is displayed in figure D-4, 

where the superscripts Ml and MX correspond to the two-layer and single-layer models, 

respectively. The agreement between solutions is less than 0.05 dB everywhere on the surface, 

except at very low frequencies and very high wavenumbers. These results confirm the validity 

of the two-layer cylinder model relative to the single-layer cylinder model. Figure D-l is also 

used on the cover of this report. 

Figures D-5 through D-8 compare the two models (as previously described) for 

circumferential order number n = 1, and figures D-9 through D-l2 compare the two models for 

circumferential order number n = 2. In both cases, the agreement between the models is 

extremely close; no measurable difference results until the low-frequency/high-wavenumber 

region is reached. 
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Figure D-l.   Pressure Transfer Surface With Magnitude = 10Log(Pi(rx)IP0)2 at rx = 1.1 in. 
for Elasticity Model, Where n = 0 and Diameter = 3.00 in. (Two-Layer Cylinder) 
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Figure D-2.   Pressure Transfer Surface With Magnitude = lOLogCP/rJ/P,,)2 at rt =1.1 in. 
for Elasticity Model, Where n = 0 and Diameter = 3.00 in. (Single-Layer Cylinder) 
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Figure D-3.   Comparison of Two-Layer and Single-Layer Elasticity Models With 
Magnitude = (lOLogCF/r^/P^2) at rY = 1.1 in., Where n = 0 and Diameter = 3.00 in. 

Figure D-4.   Relative Difference Between Two-Layer and Single-Layer Surfaces With 

Magnitude = (lOLog^Vi«2" 10Log(Pf
MWPo)2) at rx = 1.1 in. 

for Elasticity Model, Where n = 0 and Diameter = 3.00 in. 
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Figure D-5.   Pressure Transfer Surface With Magnitude = 10Log(P JrJ/PJ2 at rx = 1.1 in. 
for Elasticity Model, Where n = 1 and Diameter = 3.00 in. (Two-Layer Cylinder) 
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Figure D-6.   Pressure Transfer Surface With Magnitude = lOLogiPJrJ/PJ2 at rt =1.1 in. 
for Elasticity Model, Where n = 1 and Diameter = 3.00 in. (Single-Layer Cylinder) 
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Figure D-7.   Comparison of Two-Layer and Single-Layer Elasticity Models With 
Magnitude = (10Log(/\(>i)/Po)2) at rx = 1.1 in., Where n = 1 and Diameter = 3.00 in. 

Figure D-8.   Relative Difference Between Two-Layer and Single-Layer Surfaces With 

Magnitude = (lOLog^WO2 - 10Log(P;MWPo)2) at rx = 1.1 in. 
for Elasticity Model, Where n - 1 and Diameter = 3.00 in. 
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Figure D-9.   Pressure Transfer Surface With Magnitude = lOLogCP/rJ/P,,)2 at rx = 1.1 in. 
for Elasticity Model, Where n = 2 and Diameter = 3.00 in. (Two-Layer Cylinder) 
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Figure D-10.   Pressure Transfer Surface With Magnitude = lOLogCP/rJ/P,,)2 at rx =1.1 in. 
for Elasticity Model, Where n = 2 and Diameter = 3.00 in. (Single-Layer Cylinder) 
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Figure D-ll.   Comparison of Two-Layer and Single-Layer Elasticity Models With 
Magnitude = (10Log(Pi(r1)/Po)2) at rx = 1.1 in., Where n = 2 and Diameter = 3.00 in. 

Figure D-12.   Relative Difference Between Two-Layer and Single-Layer Surfaces With 
Ml, Magnitude = (l0hog(P f'^/P^ 10Log(P/

M1fi)/^o)2) at rx = 1.1 in. 
for Elasticity Model, Where n = 2 and Diameter = 3.00 in. 
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