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The Construction of Orthogonal Eigenvectors 
for Tight Clusters by Use of Submatrices 

Beresford N. Parlett * 

January 18, 1996 

Abstract 

The goal is to compute eigenvectors of a symmetric tridiagonal 
matrix T that are orthogonal to working accuracy. Consider a cluster 
of m very close eigenvalues that are reasonably weD separated from 
the remaining spectrum. We show here that there are m principal 
submatrices of T such that only the nearest neighbors overlap and 
each submatrix has a simple, isolated eigenvalue in the convex hull 
of the cluster with eigenvector having small entries in the first and 
last positions. This eigenvector is padded with zero entries, above 
and below, to make it conform to T. The set of vectors, one from 
each submatrix, forms a good basis for the invariant subspace. Each 
basis vector may be modified, if necessary, by its nearest neighbors to 
produce an orthonormal basis. 

The only communication that may be needed, in such situations, 
is between nearest neighbors. 

We give a good bound on the dot product of nearest neighbors. A 
variety of examples illustrate the theory. 

The ideas in this paper were presented at the ENUMATH meeting at 
CNRS, Paris, in September 1995 and at the ILAY workshop at Cerfacs in 

October, 1995. 

•Mathematics Department and Computer Science Division, EECS Department, Uni- 
versity of California, Berkeley, CA 94720, USA. Supported by ONR, Contract N000014- 
90-J-1372. 
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1    Introduction 

'Inverse Iteration gives a very satisfactory solution to the 
problem as far as reasonably well separated eigenvalues are con- 
cerned. The problem of determining reliably full digital infor- 
mation in the subspace spanned by eigenvectors corresponding 
to coincident or pathologically close eigenvalues has never been 
satisfactorily solved.' 

J. H. Wilkinson 
(from 'The Algebraic Eigenvalue Problem', 1965, 

Chapter 5, p. 344.) 

This quotation is over 30 years old and yet most experts would agree that 

its claim is still true in 1995. 
Our goal is to build up an orthonormal basis for the invariant subspace 

associated with a reasonably isolated cluster of very close eigenvalues of a 
symmetric tridiagonal matrix T. This is achieved by the QR algorithm and 
it is only the relatively high cost of accumulating all the plane rotations that 
drives the search for other techniques. Certain codes (e. g., xstein) currently 
used in LAPACK, and other libraries such as NAG and IMSL and ESSL, 
decline in both efficiency and quality of output as eigenvalues get closer to 
each other. The reason is that these codes are based on inverse iteration and 
it is extremely difficult to choose automatically suitable right hand sides to 
ensure both the spanning property (accuracy) and orthogonality. 

One way out of the difficulty is to discard an appropriate set of rows from 
the top and bottom of T and to work with the remaining submatrix to obtain 
a basis vector. The well known test matrix W£ that is discussed in Section 5 
has its largest two eigenvalues equal to single (and double) precision. In this 
easy case it suffices to compute the eigenvectors of the submatrices in rows 
1 to 19 and 3 to 21, append zero entries at the bottom of one and the top of 
the other, and finally deliver the internal and external bisectors of these two 
vectors. Even the tiny entries are computed to high relative accuracy. 

The guiding principle behind this approach is that an eigenvector associ- 
ated with a simple, isolated eigenvalue is easy to compute. So, for a cluster 
of m close eigenvalues, the task is to find m different submatrices of T each 
of which has an isolated eigenvalue in the convex hull of the cluster. That is 
not enough. The eigenvector of any internal submatrix must have small en- 



tries in its first and last positions. It is not obvious that these specifications 
can always be met and the goal of this paper is to provide the theory that 
supports our use of submatrices. 

It turns out that the case of close pairs is fundamental. The general case 
may be reduced to considering a number of pairs. A surprising outcome of 
these investigations is that the difficulty of computing an accurate orthogonal 
basis is not properly measured by the gap between eigenvalues. The support 
of the vectors (the positions holding nonnegligible values) plays an important 
role. Strictly speaking zero entries in eigenvectors are extremely rare and, 
when they do occur, they are isolated. Since we ignore isolated zero entries 
we might conclude that the support of all the eigenvectors we seek is the full 
index set. To take such a pedantic view would be to miss an important fact 
about many, but not all, n x n tridiagonal matrices as n grows: the active 
part of the eigenvector is confined to a small part of the domain, perhaps 
only 30 or 40 consecutive positions. The remaining entries carry a tiny bit 
of noise. Consequently we use the term support somewhat informally. If the 
support of two eigenvectors is disjoint then they are orthogonal however close 
the associated eigenvalues may be. 

Closely related to the idea of support is the concept of the overlap of two 

vectors x and y; 

0verlap{x'y):=\\x\\-M' 
the cosine between the vectors of absolute values. Our two main results are: 
1. Each normalized vector x produced from an appropriate submatrix by 
appending zeros has // := x*Tx in the cluster interval and 

||(T - fil)x\\ = 0(cluster  length) 

2. Any two normalized vectors x and y from overlapping submatrices satisfy 

M                   / feinster length\ 
x,y) = O         

\v      gap      ) 

where gap is the separation of the cluster from the remaining spectra of the 

two submatrices. 
Submatrices only overlap their nearest neighbors. Physicists would say 

that the overlap matrix is tridiagonal and close to the identity.   However 



the subspace spanned by these subvectors is more accurate than indicated 
by the residual norms of the subvectors separately. That is the content of 
Section 9. What Results 1 and 2 show is that the subvectors yield a sparse, 

nearly orthogonal basis for a good subspace. 
The results developed here are pure matrix theory, there is no reference 

to machine precision. They depend strongly on the tridiagonal from. 
The first result is somewhat surprising because experience with the Lan- 

czos algorithm had suggested that the best that could be guaranteed for any 
vector x obtained from a submatrix was \\(T-fiI)x\\ = 0{y/cluster length) 

and that is not strong enough for our purposes. 
Tight clusters of close eigenvalues are not the only spectral distributions 

to pose challenges to numerical analysts. Consider eigenvalues that form a 
geometric progression. This case is not troublesome if the eigenvalues are 
computed to high relative relative accuracy. A different problem is posed 
by small perturbations of the identity matrix /. How large must the per- 
turbation be before the user will not accept the columns of I as suitable 
eigenvectors? Shifting by I and scaling by the largest remaining entry makes 
the perturbations seem important and the shifted and scaled eigenvalues 
seem well separated. One would then compute a set of eigenvectors very 
different from the columns of I. It would seem that only the user can choose 
between the two and we shall not pursue this question here. 

We begin our analysis in Section 6 by introducing the envelope of a cluster 
and showing how it guarantees Result 1 with a constant bounded by y/nß 
but normally much smaller. The envelope also reveals good choices for sub- 
matrices. Then we take a different approach to show how the submatrix 
indices affect the constants behind the 0{cluster length). Our results make 
heavy use of detailed properties of tridiagonal matrices and that material is 

gathered in Section 3 and Section 10. 
The reader is urged to read Section 2 on notation. 

2    Notation 

ßl ßl • ßn-l 
T = tridiag \   a\ a2 • • ocn 

ßl ß2 • ßn-1 



Eigenvalues:        Ai < A2 < ... < An. (1) 

Normalized eigenvectors:        Si, s2,..., sn. (2) 

When ßi^0,i = l,...,n-l then T is unreduced. In that case the inequal- 

ities in (1) are strict. 
The principal submatrix of T in rows j,j + 1,..., k is denoted by either 

Tj:k or, simply, by (j : k). The eigenvalues of a submatrix (j : k) are called 

Ritz values or R-values: 

ef <e£-h <...<oj*j+1. (3) 
The normalized eigenvector of 0/:* is s}:k. The mth entry is sf *(m). The 

natural way to index the entries of sf is from j to k, not from 1 to k - j + 1. 
In this way sf * is embedded in a vector conformable to T and we consider 
entries in positions 1 : j - 1 and k + 1 : n as zero. Sometimes we write fy '3 as 

0}j). To simplify further we write 9U) for 0Jj) when 6>,ü) lies in [A_,A+], our 
cluster. 

The characteristic polynomial of Tj:k, or (j : A:), is defined by 

x
i:k(T):=det(Tl-Ti:k). 

We write Xj f°r X1'3- m general column vectors are denoted by lower case Ro- 
man letters in boldface type: v,z,..., and individual entries are v(j), z(l),.... 
The size of the identity matrix / is given by the context and its columns are 

e, = (0,... 0,1,0..., 0)',    1 in position i. 

3    Eigenvectors and Error Estimates 

The unreduced n x n matrix T is uniquely determined (up to signs) by 
its spectrum {Ai,...,An} and (n - 1) appropriate extra items. This extra 
information may take various forms: the spectrum of submatrix (1 : n — 1) 
or (2 : n), or the squares of the top (or bottom) entries of the normalized 
eigenvectors. See [4] or [2]. 

Consequently there are numerous expressions for the eigenvectors of T 

and we give some of them here. 
Here we assume that T is unreduced: /?,• ^ 0, i = 1,..., n — 1. 



Perhaps the oldest formulae for the unnormalized eigenvector for A are 

(. öa £v±    X^-HA) v (4) 
V'        Ä       '      ÄÄ    '""ßlß2..-ßn-J    ' 

f   X2:"(A)        X3:w(A) X":n(A)     V (5) 

The catch to using these formulae is that they can overflow very easily and 
they may sometimes be extremely sensitive to tiny changes in A. 

There are attractive formulae for the magnitudes of the entries of nor- 
malized eigenvectors «x,..., sn. For each i = 1,2,..., n, and x = X '" 

*(l)*(n)xU) = ßi.-.ßn-i (6) 

*(1)Y(A0 = X2:n(A,), (7) 

*(n)Y(A,-) = /^(A,), (8) 

*.-(i)V(A,-) = X^'-^AO^-^AO- (9) 

All these formulae come from a result in [4] that 

ac#(A,-/-r) = s,-**x'(A,-) 

where adj(M) is the classical adjugate of M. 
These results raise the question of how to find the correct signs of the 

entries and that leads to the next few observations. 
Given any unreduced f there is a unique A = diag(±l,±l,.. ■, ±1) such 

that T = ATA has positive off-diagonal entries. Observe that 

Ts = sX <=* f (As) = (As)A. 

Consequently it is possible to normalize any symmetric T so that it becomes 
a direct sum of unreduced tridiagonals each of which has positive off-diagonal 
entries. From now on we assume that ß, > 0, i = 1,..., n — 1. 

These Ts are oscillation matrices, a term coined by Krein and Gantmacher 
[1]. The number of sign changes among consecutive entries of the eigenvector 
S{ is n - i. Recall that we label eigenvalues so that 

Aj < A2 < ... < An. 



For example, for the second difference SINE matrix (1, -2,1), the eigenvalues 
lie in —4 < A,- < 0 and the fundamental mode is given by sn, associated with 
the rightmost eigenvalue. We use right and left rather than large or small in 
order to be translation invariant. For some people it is unnatural to say that 
-1 is larger than -2 because they think of magnitudes when the word large 
is used. 

The correct signs may be attached to magnitudes when certain informa- 
tion is available. A warning is in order here. Although the characteristic 
polynomial is defined by x(T) = det (TI - T) most people compute with 
T — TI. For example, the pivots in Gaussian elimination are usually com- 
puted from the recurrence 

di+1 = (Q,-+I - r) - ßf/di 

and so 
x^(r) = (-iyd1...dJ. 

If r = A,- (4) may be rewritten as 

A/'Vft/VA/'" \fiiJ     VA- 

However, in practice T^ A,. 
We turn now to approximations and how to assess them. Let 

Ti:k8>:k = si:k0jlk,    K*|| = l, 

define an eigenvector of a submatrix. Consider sf as an approximate eigen- 
vector of T and append zeros to sf' to make it conform. Now drop the 
subscript / and observe that 

(T-e^I)s^k   =   ej-1ßj-1s
j:k{j) + ek+1ßks

j*(k) (10) 

||(r-ö**/y*||    =    (ßUs^Uy + ßls^ikyf2. (11) 

Paige's Persistence Theorem.  Write 0t-    for 6]:j. For any j, 1 < j < n, 
and any i, 1 < i' < j, the closed interval 

[0W - ßjUi,  0W + ßjLJi] 



contains at least one Ritz value öij+l^ for each I = 1,2, ...,n — j.   Here 

«.■ = \*?U)\. 
Proof. By partitioning T one sees that 

So, by a standard theorem, see Chap. 4 in [4], there is a d[3+l) such that 

ie° - oW\ < || (r1^* - <s>P/i+/) ( ^ ) || = Ä.Wl, 

D 
Frequently the bound ßjU{ is a severe overestimate.   Whenever 6^ is 

isolated from the other Ritz values 9[j+t^ then one defines 

gap{i;j, I) = gap{i) := mm\6{
k
j+l) - 0\j)\. 

Gap Theorem. For I = 1, 2,..., n - j there is a ^+') such that 

\e{J+l)-e\3)\<{ß^figap(i-j,i). 

See [4, Chap. 11]. 
This is a huge improvement over ßjU{ in most cases. 

The Average-/? Result 

Lemma 1 For i = 1,2,... ,n, 

(ßi-...-ßn-i)i/{n-i)<m\xi-xk\ 

Proof. For each i, 1 <i <n 

si(l)si(n)x'(\i) = ß1.....ßn_1 

and 

x'(A,-)=n(A'-A*)- 

l/(n-l) 



Since the geometric mean is majorized by the arithmetic mean 

\si(l)si(n)\<l-{sKl) + sl("))<2- 

Hence 1 

/^•...•/Sn-l^IxUOI 
and 

(A .... • (W«-" < ix'(A,)r/,"-,,/2"<"-" < ix'(Ai)i
,'l"-,)- 

D 
as claimed. 

Quantities of the form ß3/gap will be 0(1) on average and they occur in 
our analysis. Speaking loosely we may say that the average ß is bounded by 

the average distance of any eigenvalue from all the others. 

4    On First and Last Entries 
Let A_ and A+ be two adjacent eigenvalues of T well separated from the 

remaining spectrum. Let 

Ts± = s±\±,    ||a±|| = l- 

From (6) in Section 3, 

3±{l)s±(n)x'M = ßi-'-ßn-i 

Thus 

J+(l)a+(")    =    X'(A-) 
s_(l)5_(n) x'(A+) 

_ (A-^n^-A,)   / n" means A # A 
- (A+-A_)n;(A+-A,) VT / 

=   -1 + (A+-A_) ET^TTA-- 

=   -1 + 0 

A+ - Aj 

A+ - A. ' 

#ap 



where gap = min, |A+ - Aj|. So, when A+ - A_ < gap, 

Ml) s-{n) 
s+{n) 

If |s+(l)| > |s-(l)| then the support of s+ is concentrated in the top of an 
n-vector whereas the support of s_ is concentrated in the lower section. Thus 
the supports may be nearly disjoint, however close A_ and A+ may be. When 

|s+(l)| * IM1)! then s+ and s- have the same suPPort and Jt is easier to 

approximate the bisectors (s+ ± s_)/v2- 

+ 5    An Example: W2i 

l      l      • 

W = W&= tridiag |   10        9        • • 
1 1 • 

1 
9        10 

1 

This matrix, and its companion W£, were designed by Wilkinson, see Ch. 6 
in [6], to illustrate some subtle points concerning the computation of eigen- 
vectors. Although the eigenvalues of W are distinct in exact arithmetic there 
are several pairs that are equal to single precision (c = 1.2 x 10-7). However 
the smaller eigenvalue pairs are not so close and the only negative eigenvalue 
is well separated from the rest. Table 1 gives selected eigenvalues. Note that 
the W£ is persymmetric: invariant under reversal. 

'If we separate W21 into a direct sum by putting ßu = 0 then we 
obtain independent orthogonal vectors which span the subspace 
corresponding to the pathologically close pair of eigenvalues A2o 
and A2i to a very high accuracy. It is therefore quite possible that 
such a decomposition is always permissible, and what is needed is 
some reliable method of deciding when and where to decompose.' 

J. H. Wilkinson 
(from 'The Algebraic Eigenvalue Problem', 1965, 

Chapter 5, p. 330.) 

This quotation shows that Wilkinson considered the possibility of using 
disjoint submatrices to obtain orthogonal basis vectors.   Our investigations 
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A2i 10.746194182903393.. 

A20 10.746194182903322.. 

Al3 6.0002340.. 

A12 6.0002175.. 

A3 0.9475.. 

A2 0.2538.. 

A! -1.1254.. 

Table 1: Selected Eigenvalues of W^ 

show that this idea only works in extreme, and easy, cases. What we illustrate 
here is that the submatrices must be allowed to overlap. 

In a nice recent study, see [7], Ye has turned Wilkinson's idea into some 
theorems relating a pair of eigenvalues of T to an eigenvalue of a certain 
submatrix and an eigenvalue of the complementary submatrix. However he 
does not give results on the related eigenvectors and that is our concern. 

The largest pair: A2o and A2i (equal to single precision at value A) 
We drop the last 2 rows and approximate the Ritz vector z+ by solving 

(W1:19-A/)z+ = el7i,    ||*+|| = 1- 

We drop the first 2 rows and approximate the Ritz vector z_ by solving 

(W*2i _ A/)z_ = e2l72i,    ||*-|| = 1. 

We insert zero entries to make z_ and z+ conform to W. It turns out that 

z+-z. = 1.22 x 10"13 !,  71 = -8-33 x 10"7,     721 = -8.33 x 10~7. 

Thus z_, and z+ pass both requirements for good eigenvectors, orthogonal- 
ity and small residuals.   However an equally valid basis for the dominant 
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invariant 2-space is {(z+ - z.)ly/2, (z+ + *-)/v^}, the bisectors. It is 
gratifying that this computed basis delivers the exact eigenvectors correct to 

single precision, even the smallest entries. 
The results from dropping three rows instead of two were indistinguish- 

able from the ones above. In fact this case is so easy that one can use 
submatrices (1 : j) and (22 - j : 21) for j = 14,...,20, for satisfactory 

results. 

The pair near 6: A12 and A13 
The shift invariant measure of a symmetric matrix is its spread defined as 

Amar - Amin. In this case 

spread(W)   =   A2i — Aj = 11.87, 

interval width   =   A13 — Ax2 = 11.66 • e - spread. 

The two best choices are (1 : 15), (7 : 21) and (1 : 17), (5 : 21). The outputs 
from the two choices are are barely distinguishable in single precision. The 
Ritz value /i for (1 : 17) and (5 : 21) is not exactly at the mean but, in single 

precision, appears to be so: 

H = 6.000226. 

Approximate the corresponding Ritz vectors by solving 

(W1:17 - fil)z+ = e676,    (W5-21 - \il)z- = e157is 

in single precision to find 

\\(W1:17 - iiI)z+\\ = \\(W5:21 - fil)z.\\ = 1.4 x 10~5 = 10 • e • spread 

and 
z+ -z_ = 2.1 x 10"5 = 8.4-n-e. 

Section 9 shows how the subspace span {z_,z+} is slightly more accurate 
than indicated by the residual norms for z_ and z+ separately. 

In several ways {z.,z+} is a satisfactory basis but the pair of bisectors 
Uz+ - z_)/\/2, {z+ + z_)/\/2} is even better. Just as for the pair A2o, A2i 
the computed bisectors deliver the exact eigenvectors to single precision, even 
the smallest entries were correct to 6 decimals.   Figure 1 shows z_ and 
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z+ while Figure 2 shows the bisectors. An unorthodox representation has 
been used in order to emphasize the small entries. Instead of v(i) we plot 
(-1/ log10 \v(i)\) sign(u(i)) and the vector is normalized so that the maximum 
value is 1. To show the distortion we also plot (z+ + z_)/\/2 in the standard 
manner at the top of Figure 2. 

A careful look at z_ and z+ shows that Wilkinson's idea of using dis- 
joint submatrices could not be satisfactory: entries 2+(12),..., z+(15) and 
2_(5), • • •, 2_(8) are not negligible. However {z_, z+} is the most sparse ba- 
sis of the invariant subspace for Ai2, A13. So there is no basis in which half the 
entries in each vector are negligible, in contrast to the case for A2o, A2i. The 
overlap of the submatrices is needed to obtain the middle entries accurately. 

These remarks do not contradict the fact the Wilkinson constructed W^ 
so that each pair of eigenvectors could be built out of two small vectors u 

and v. Here 

{W1:1° - X12I)u = 0,    {W1:n - Xl3I)v = 0. 

Where W1:11, which is not symmetric, differs from W1:U by replacing entry 
(11,10) by 2. The eigenvectors for A12 and A13 are 

(u(l),...,u(10),       0,       -u(l0),...,-u(l))\ 

(u(l),...,i;(10),   v(ll),   t;(10),...,u(l))*. 

Wilkinson's idea of using (1:11) and (12:21) (with ßu = 0) will not work here 
because u{l : 10) ^ v(7 : 10) to working accuracy in contrast to the case of 

A2o, A21. 
Inverse iteration, even with well chosen right hand sides, gives poor re- 

sults unless the Gram-Schmidt process is used heavily. The output from the 
LAPACK code sstein was not as accurate as our bisectors. 

The following sections show that well chosen submatrices yield good bases 
in all cases when the cluster is reasonably isolated from the remaining spec- 

trum. 
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6    The Envelope of the Invariant Subspace 

Let {A,, A,+1,..., Xi+m-i} be a set of eigenvalues of T well separated from 
the rest of the spectrum. Let 

Tzi = Zi\i,    ||*i||2 = l, 

and define 1 := [A/, A/+m_i] and 

Sj = span{zi,... ,z/+m_i}. 

The envelope vector of Sj is £j given by 

S(j) = Sxij) := max{u(j) : t> € Sj, ||«||2 = 1}- 

The extremal vectors y(1\y(n) in Sj are characterized by 

y{j)(j) = S(j),    \\vU)h = h    i = landn. 

We consider the case m = 2 (close pairs) here although some of the results 
may be extended to larger clusters. The subvectors that are useful in com- 
puting an orthogonal basis for Sj may be understood as approximations to 
these extremal vectors. A little more notation is needed before the results of 
this section can be described. By Lemma 2 (proved below) 

£(l) = (z,(l)2 + Wl)2)1/2 

and y^ may be expressed as 

y(i> - zi cos f + zi+i sm</>,     tany> = —r—-, 

and ip plays an important role in this section. We may assume that zj(l) > 0, 
2j+i(l) > 0. The Rayleigh quotient of y(1) is 

Pi = y(1) ■ Ty{1) = A, cos2 if + Xl+i sin2 <p. (12) 

The residual of y(1) and the residual norm are 

Ty{1)-y{1)pi   =   zi cos (p (\i-pi) + zl+1 sin tp(\i+i-pi), 

tf:=\\TyW-ywpi\\2   =   (A;-^)2cosV + (A/+1-^)2sinV 

=    (sin2^-^=^y,    by (12). (13) 
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defining the residual norm v\ which occurs throughout this section. 
Our goal is to find an index ;', 1 < j < n, such that the eigenvector s1:j, 

Ti:jsi-.j _ si:^
1:J, 0Xii € X, satisfies ßj\s1:j(j)\ = 0(A,+1-A,). The connection 

of such j to the envelope vector £ is given by the principal results of this 
section which we summarize first. 

For each j such that T1:j has an eigenvalue 0ly' € J, Theorem 1 shows 

that 

ß>1:''(j)|£0' + i] sin2<^> 
A/+i - A/ 

+ (*ly'-ft)s 
1/2 

"l, 

provided that (A,+1 - \i)/gap < 1, where 

<?ap = min{A,+2 - 6lij,91:i - A,^}. (14) 

For VK2^ and the dominant pair A2o,A2i one finds £(1) = £(21) « 0.78 and 
5(2) = £(20) « 0.58. Thus j = 19 or 20 is a good choice. 

If T1:j does not have an eigenvalue in 2 then, by Lemma 6, T3+2:n has an 
eigenvalue in J and 

ßJ+1y
+2--n(j + 2)\s(j + i) sin 2t/> 

A M-l A, 
+ (01+2m ~ Pn)' 

1/2 

where y{n) = z/ cos^ - zt+1 sin 0, pn = y(n) ■ Ty(n). 

Note that ||5||2 = y/2 and the average value of £'s entries is AM. Theo- 

rem 1 tells us to locate 5's maximal entries to get small values of ßj \s1:j(j)\. 

It turns out that the vector 0 
, for suitable j, is a cheap approximation 

to y(1).  Throughout this section we abbrevaiate xV'J by Xj- For any j that 
keeps \91:j - /?i|/(A;+1 - A;) small, Lemma 8 says 

whereas 

s(i)(i + l)   = 

x.M +^^!l + 0 V+l Ai 

ß,---ßi     2  lßx---ßi \\    gap 

x,-(öly>ü)(i)/(A"-ft), *<i. 
0, i > j. 

£(i), 
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Note that 6vj only occurs in the second (and small) term in yw(i + 1), not 
the dominant first term. The difference between s(j) and y(1> depends on the 
two ratios, (A,+1 - \i)/gap and \91:' - />i|/(A,+i - A,). In the same vein we 
show (following Lemma 7) that, for the appropriate j values, 

s«(l) = 5(1) i + o(Xt+1"Xl 
i
 + U\gap(9^) 

if 5(1) is not too small, 

where gap(61:j) = min \B - 61:j\ over all eigenvalues 0 of T1:J other than 0U\ 

and is slightly different from gap defined in (14). 
Indeed very good approximations to the eigenvectors Z\ and zt+1 are given 

by the internal and the external bisectors of y(1) and y(n). The extremal 
vectors y^ and y(n) are not quite orthogonal: 

yW • yW « (A/+1 - A;)   J2 (^-M_1. 

Proofs 
To establish all these results in a simple way a sequence of lemmata will 
prove useful. Recall that Sj = span{zi,..., z;+m-i }• 

Lemma 2 

l+m-l 

£{i? = E *ü)2- 
i=l 

Proof: 

S(j)2    =   maxt;(j)2 

=     m-yX \   I     E    Zi^{ )     :  H7"  = 1 

/l+m-l l+m-l \ /+ro-l 

<   max     £  7,2 •   E  ^')2    =   E  ^')2' 
7   V ,=/ t=; /        t=/ 

Equality is attained when 7 is a multiple of (zi{j), ■■■, zi+m-i(j)). D 
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Corollary 1 

v ii2 = E E *<ü>2 - EE*)'= E 1 = "«- 
/+m—1     n Z+m-1 n    l+m—1   

*<ü)'- EE*)'= : 

,2 Lemma 3  Witö px = j/(1) • Ty W = A, cos2 tp + A/+i sin2 y>, f/ien /or any (, 

HO2  ■-=  \\Ty(1) - y(1H\\2 

=    (A/-02cos2^ + (A;+1-02sinV 

=    vl + {t-Pi)3, 
A/+1 - A;\ 

v i    =    sin 2y? 

Proof. 

„(f)   =   (A/ - /h + /?! - 02 cosV + (A;+i - P\ + Pi - 02 sinV 
=   v\ + 2(pi - i)\\\ cos2 v? + A/+i sin2 <p - pi] + (pi - 0* 

= »i + iPi-t)2. 

D 

Lemma 4 For any polynomial x of degree d with an isolated zero 6 

x(0 = K - *)x W |i + 2^y • I,    ^)    J + ° {gap{6)) ] 

where gap(6) equals to the separation of 8 from the rest of x's zeros. Also 

0ap(ö)x"(ö) 

X'(*) 
<2(<*-l). 

Proof. A Taylor series expansion of x around 0 yields 

1 
6 X(0 = o + tf - *)*'(*) + i(f - efx"{6) +1({ - ö)3x'"(/?) 
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for some 77 in the convex hull of ( and 6. There is a simple expression 
for x"(6)/x'{9) if we denote the zeros of \ bY 6u...,6d and 6 = 6j. By 
logarithmic differentiation, 

whence 

X"(gj) 

M: =2E^r<^-')- 
fc*j 

'   Öi-Öfc 

D 

Remark. For evenly spaced zeros the upper bound is 2 ln(d-1) not 2(d-1). 

Lemma 5 For each j, 1 < j < n, either xly_1 has a zero in [A/,A/+1] or 
^•?+1:n /ia5 a zero m [A/,A/+i]. 

Proof. The characteristic polynomial of the submatrix of T obtained by delet- 
ing row and column j is xly'-1(A)xJ'+1:n(A). By Cauchy's interlace theorem 
one of these polynomials (at least) has a zero in [A;, AI+1] for i = 1,..., n — 1. 
It can be shown that if (and only if) both polynomials have a zero in [A,-, A,+1] 
then it is either A,- or At+i. n 

Now we can establish the principal result of this section. 

Theorem 1 With the notation developed in this section, if Xj has a zero 01:J 

in (A/, A/+i) then 

ßi\su)U)\W + i) = 
g(l) 

sW(l) 
(sin2^^±^)2 + (^-,ir 

1 1/2 

1 + 0 
/A;+i - A; 
\gap(0^} 

Proof. By Lemma 2 and (4) in Section 3 

£(j + l)2    =    z,(j + l)2 + zl+1(j + l)2, 
=   [*/(l)2X;(Ai)a + zl+1(l)

2
Xj(Xl+l)

2} /(Ä • • • ß3f 

L 
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Square Lemma 4, for x1:j = Xj and its zero ^ 

1 + 0 

l:j\2 +   x'(^')Vi(l)2(Am-ö1:J) 1 + 0 
gap{6*>) 

and 

•     (h(l)a(A,-ö^)a + iJ+1(l)
2(A/+1-ö^)2]1/2 

By Lemma 3, 

A---ft£(i + i) = \x'iißlii)\e{\)u{e^) 1 + 0 

i+orAf+i~A; 1 + u W*ly). 

/A/+i - Xi 
\gap{ew 

= |x;-(öly')|^(i)h2 + (öly'-/»i)2]1/2 

1 + 0/Am-A;' 

To relate S(j + 1) to the submatrix T1:j and 01:J's eigenvector aly, recall (6) 
in Section 3 

Substitute this expression into the equation above and cancel the nonzero 
derivative to obtain 

Al'ü)ü)|£ü + i)-^r(»"')[i + o(^) 
as claimed. D 

Lemma 6 For all j such that £(j + 1) is nearly maximal and \j has a zero 

in [A/,A/+i] 

S{\) i + ofA/+1~At 
i
 + U\gap(6^) 

gap(j)   =   mm{\i+2-01:i,01:j-\t-i),    T = r(01:j)    is given in (15). 

S^(l)2   =     £(l)2 + T^rr • rv (0ly') sign (*%')) 
L &U + 1) 
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Proof. To analyze sj in terms of T rather than T1:J note that 

»(*) 
(T-6^I)(  "0    j = ej+1foM(j) 

Use T = ZAZ' to obtain 

s0) \ =0')/ 
0 

= Z(A-9^l)-iZteJ+1ßjs^(j) 

and 

,ü)(i) = £ ^zk(l)zk(j + l) 

fc=i 
Afc - 01*' 

fau)U) 

is taken positive. The terms corresponding to k = 1,1 + 1 usually dominate 

the sum and it may be written 

,u)(1) = fMlM+il + ^.(D'wü + i) + A ftsü)(;)    (18) 

and 

= £ 
MM+i 

Afc - 01* 

The key fact is that the first two terms in (15) combine to give £(1)2. Use 

(15) to obtain 

zi{l)zi(j + l)      Z|+l(l)g|+l(j + 1) _ 

A; - 61» A,+1 - 6^ 

(*,(l)2x}(öly') + *«+i(l)2x;(«ly')) 1 + 0 
/A;+i - A;          

\gap{6^))\ A ■•"./?,- 

= £(1)2 
x;-(fl1:i) 
0 i • 

1 + 0 

Now (6) and Theorem 1 give 

ßi-'-ßi 

X'(6Vl) 

/A;+i - A; 

\gap{W) 

5(1) 

(16) 

= P(l)*%-)Ä| = ^n«'(Öly')- 1 + 0 
A/4-1 - A; 

(17) 

L 
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Multiply (15) by s^(l) and then use (16) to find 

,x'(0ly>(i)(i)s(j)(j) 

Now use (17) to simplify both terms 

,<*)(!)»   =   5(l)2[l  -^A'+1-A' 

1 + 0 
Af+i - A; 

gap(6^) 
+ TS^(l)s^U)ßj 

1 + 0 

+ 

\<W>(01:i), 

-^L-^ö^.r sign (*%•)) 

. , .. rsign (s(i)(j)) 
g(i)a+g(i)»/(^)   Ll

+1 

1 + 0 
/A(+i - A;" 

{gap(6^)/ 

/A/+i - A; 
1 + 0 

Kgap(9^)_ 

D 

For well chosen j the first term £(1)2 usually dominates the second. When 
£(1) is small then j must be large to ensure that 61:J lies in [A/,Aj+i] and it 
is possible that £(1)2 always dominates but we have not proved that yet. 

Note that 

(i) v (61*) ■ \T\ < Ew,w \*k{l)zk{j + 1)1 * (01:j) MPC?) < v (^3) /gapU) 
is assumed to be very small. 

(ii) £(j + 1) > AA    (above average, by choice of j). 

(iii) By Lemma 7, (i) and (ii), whenever 

£(l)£(j + 1) > 2v (91:j) /gapü) 

then 

/       v T sign (s{jHj))\ 
1 I r)f Af+1~A< 

1 + wU«p(öly')yj 

i.e. sW(l)«£(l). 
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In Figures 3 and 4 we show typical envelopes. 
Figure 3 shows snapshots of the envelope of a cluster of 108 close eigen- 

values, each differing from its neighbors by 0(e • spread), from a matrix of 
order n = 2053 supplied by George Fann, Pacific Northwest Laboratory, 
Richland, WA. The matrix arose in the application of the self-consistent field 
Hartree-Fock method for solving the nonlinear Schroedinger equation for Ze- 
olite ZSM-5. The top shows the first 50 entries in £ and the bottom shows 
entries 470-550. The cluster is completely determined by submatrix (1:515). 
The supports of all the eigenvectors belonging to this cluster lie in (1:515). 

Figure 4 shows the envelope of span(z12, zi3) for W2"i, see Section 5. The 

eigenvalues are close to 6. 
The 'humps' in most envelopes are unimodal but this case is an exception. 

As shown in Section 5 either peak (4 or 6, 16 or 18) will serve for choosing a 
submatrix. However it is vital to realize that indices 4 and 6 belong to the 

same hump. 

Extremal Vectors in Si 

Lemma 7 For any 9 € (A/, A/+i) 

{^'''ßi)}im1 = ^(/»o+^iVw+oaAw-Ao3), 
Pi   =   VW-Ty^\ 

.   n      A/+i - A; 
v\   =   smz</>- . 

Proof. From the beginning of this section 

y(a) = zi cos f + z/+isin<^,    v?e[0,7r/2], 

By (4) in Section 3 

Since cos v? = */(l)/£(l) and £(1) = y^l), 

y(1)(i + l) = x,(A;)cos2y + x«(Af+i)sinV 

y(D(l) ft ■••/?,■ 
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Expand Xi about any 0 € (A;, A,+1) and use Lemma 3 to find 

x,(A/)cosV   +   X.-(A/+i)sinV = Xi(ö)(cosV + sinV) 
+   X;-(^)[cos2 <p (A/ - 0) + sin2 y> (A;+1 - 0)] 

+   ^'(% W2 + 0 ((A,+i - A,)3) • 

The coefficient of x-(0) is just ^ - 0 and part of i/ (0)2 is (Pl - 6f. Thus the 
right side simplifies to 

x>(Pi) + lvh"(0) + o((\l+1-\if). 

as claimed. 

For comparison 

w"'Pi>   s(i)(i)    " \ 0, i>j. 

The closer is 01:j to px the closer is ( S
Q    ) to t/(1).   Let us consider the 

magnitude of y(1)(j + 1) which we approximate by 0. By (6) in Section 3 

ßx..-ß3      sU){l)sli)UW 

Hence, with 0 = 01:J in Lemma 7, 

y(1)(i + l)   =       Pi ~ glii 

y(D(l) ,0)(l)50)(i)^ 

i     ^       nx^1:j)  g*p(ßXli)x"jißXii) 
+    2gap{6^)'   /?!•••&   " X^1:J) 

+   higher order terms. 

By Theorem 1, for the best values of j, 

ß^\j)s{j +1)«v (01:O = K + (Pi - 01:J)2]1/2 • 

(18) 
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Recall that yW(l) = 5(1) and 5(1) < 5^(1) (but « if 5(1) is not small). 

Thus 

yW(i + l)   = 

1 
+    x 

„(0W) 

2 ■i.-^r^)-W + 1)M> 

5(1) 
+   higher order terms]   . . 

< £(i + i) 

;ü)(l) 

x rpx-öiy'   1 
1   •        ,„ -,   +r • 

"i 

where 

M2 = 

_ i/(ö1:J)       2    <7ap(01:j) 

< 2(j - 1). 

M2 + (19) 

gap(e^)x';(6^) 

The relation (19) tells us that it is essential that both ratios 

Pl - 61:J v\       _ (A;+1 - A,)sin2y> 
v{6^) gap(0^) "       2gap(6^) 

be small. 
Next consider y(1) • 2/(n). Recall that 

y(1) = Z( cos </? + zj+i sin y>,   t/(n) = Z; cos ^ - 2/+1 sin ^, 

where y> €  (0,TT/2).   This choice of sign for y{n) is deliberate and yields 
V> € (0,7r/2). Since Z; • Z/+i = 0 

yi1) . y(n) = cos ip cos y> — sin ip sin 9? = cos(?/> + V7)- 

By (6) in Section 3, 

zi(l)zi(n)X'(Xi) = ßi • • • Ä»-i = zz+i(l)*/+i(n)x'(Vn) 

where x = X1:n- Hence 

-zl+1{n)      -zi(\)      x'(A/) 
tan^   = 

zi(n) z/+i(l)    x'(Am) 

1 (At-Am)n?(A,-A,-) 
tan v?   (A/+i - A/) n"(A'+i _ A,-) 
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where f]" = TU=i,i*i,i+i- So 

// 
n(      A/+i ~■ A; \ 

I 1 H—\  _ \     ) 

1 — tan y • tfanV>   =   0 

=   1 + (A;+1 - A;) 53 (A, - A,)"1 + 0 ((A,+1 - A,)2) 
/A/+i - AA 

gap   =   min|A,-— A/|, i ^/,/+1. 

This establishes 

Lemma 8 

yW . y(n) = cos ip cos v? (1 — tan 9? ■ tanip) = 0 (   1 . 

7    The Submatrix Theorems 

We consider the case when a pair of adjacent eigenvalues, call them A_ and 
A+ are much closer together than they are to any other eigenvalues. 

We claim that there is a submatrix T1:j with two properties 

(a) It has a well isolated eigenvalue 6 in (A_,A+). 

(b) The normalized eigenvector s for 0 has the property that f       j is very 

close to the invariant subspace (under T) associated with A_ and A+. 

If we apply this property to the trailing submatrices Tk,n, for some k, we 

obtain another vector (       ) that is also very close to the desired invariant 

subspace for A±.   Thus (  S   j and (        j make an excellent basis for this 

subspace. 

The smaller is A+ - A_, the smaller is the dot product f        j • f        J. 

We now prepare to make precise the preceeding claims. 
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Paige's Persistence theorem (in Section 3) says that there is at least one 

Ritz value 0iJ+,) in the Ritz interval 

jii) := pü> _ ßjUu e<J) + ßjUil   u. = wti) = SU)U) . (20) 

for all/ = 1,2,..., n - j. When ßjua is relatively large, as happens when j 

is small, then ljj) may contain several eigenvalues. However as w,- decreases 

then l\3) becomes disjoint from all other 1$ and, as j increases, shrinks onto 

a single eigenvalue. 
Our interest now centers on those rare cases when l-3) is isolated from its 

neighbors and small and yet 2 eigenvalues get into l\3). How close can they 
be to each other? We will show that ßjU{ acts as a barrier in the sense that 

the two values, A_ and A+, satisfy 

A+ - A_ > Oißw). 

since . 
„0)  \ /   oO) 

So, if A+ - A_ is tiny then the vector f   Si     j has a small residual norm 

l|r(f)-(f)ai = ft- 
More notation is needed to state Theorem 2. 

Secular Equation 
For some j < n, write 

Tv.j      . \ 

•      ay+i        • ,        • = ßj or ßj+1. 

If C is not an eigenvalue of T1:j nor of Tj+2'n then 

det(T-(I)   =   det(Tv-j-CI)[aJ+l-C-ß]e)(T^-CI)-leJ 

-ß]+1e\(T»3M - arlei) • det[Ti+2M - (T\. 

Consequently the eigenvalues of T that are not eigenvalues of T1:J nor of 
Tj+2:n must satisfy the nonlinear secular equation 

a(X) := aj+1 - A - ß]e)(T^ - Xl^e, - ß]+1e[(Ti+2m - XI)'^ = 0. 
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The middle term will be written as 

where u;, = u^ = \s\j)(j)\ and 0Jj) € (A_, A+), and 

'Pit) 
e(j) - c ^(O'-^Eär2; (21) 

and the final term as 

^ici(rj+3.»-C/r1ei = Ti+a,n(0- (22) 

The following results bound the residual norm ßjJf'1 in terms of the sepa- 
ration of ö\j) from the other zeros of \j- Sometimes, these gaps are greater 

±- than separation of 0,    from eigenvalues A other than A 

Theorem 2 (Double Occupancy) Let Tn denote a symmetric unreduced 
tridiagonal matrix. Let A_ and A+ be two adjacent eigenvalues. The notation 
developed in this section is in force. Consider those indices j, 1 < j < n, 
that satisfy the hypothesis 

(H)    There is a single Ritz value 0\]) in the open interval (A_, A+)       and 
neither end point is a Ritz value. 
For such j test the condition for double occupancy of !(', in terms of (21) 
and (22): 

(DO)     0p}(A_) + ri+2,n(A_) < ai+1 - d\j) < WJ)(A+) + ri+2.n(A+). 

// (DO) does not hold (only one eigenvalue in 1\ ') then 

A+-A_ >ßjw\j). 
If (DO) holds (both eigenvalues in I^J then 

2ßJJ() > A+ - A_ > 2ßJcü<iJ)/VT+2G, 

where 

n     ntx     ,   ^      1 (WJ)(A+)-Wi)(A-)   ,  rj+a,n(A+)-rj+2|B(A-; 
G = G;(A_,A+) - - < j—j- + A+ _ A_ 
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Remark 1 Theorem 2 does not give lower bounds on A+ - A_ because G is 

a function of A_ and A+. 

Remark 2 Gj = \ {^j)'(vi) + ^,„(12)} for some values m and m in 

(A_,A+). Moreover V,0) and rj+2,„ are rational functions that are mono- 

tonic increasing between poles. By (H) (A_, A+) is between poles of ^ and 
also (A_,A+) is between poles of rj+2,n. Hence Gj > 0 on (A_,A+). Our 

interest is in those j for which Gj is smallest. 

Proof (of Theorem 2). Partition T - (I into a 3 x 3 structure with blocks 
1 : j,j + 1 : j + l,j +2 : n and then form the Schur complement a(() of entry 

(j + lj + l). Thus T - (I is congruent to 

rly' - (i e <7(0 ® ^'+2:n - C^ 

where 

-   ß]+1e\(Tj+2:n-(I)-W 

a = 0 is sometimes called the secular equation. 
Observe that T1:j ® Tj+2:n is the submatrix of T obtained by deleting 

row and column j + 1. By Cauchy's Interlace theorem the Ritz values from 
T1:j and Tj+2:n interlace the eigenvalues of T. By (H) (A_, A+) contains 6l 

and so cannot contain any Ritz value of T>+2:n. By Theorem 5 in [5] A± can 

only be Ritz values if both 0\i] and a Ritz value of P+2:n coincide at A±. 

Thus (H) rules out this possibility and so 

[A_, A+],   the closed interval, contains no Ritz values of T1+2:n.        (23) 

The set of indices j that satisfy (H) includes j = n - 1, by Cauchy's Interlace 
theorem and so is nonempty. When j is too small then it is a Ritz value of 

Tj+2:n that lies in (A_,A+) and not 0Jj). 
Let 0Jj), 1 < / < j denote the Ritz value in (A_, A+) and separate it from 

the other j-level Ritz values. Thus 
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where V?J)(C) is defined by (21). 
Recall that {s\j\l),... ,s\j)(j)) is a normalized Ritz vector for 0Jj) and 

u, = u\j) = |s{j)(i)|. The final term in a{() is r_,-+2l„(C) and is defined in (22). 
By (H) A_ and A+ are not eigenvalues of Tj. By (23) they are not eigen- 

values of 2j+2,n- Consequently A_ and A+ must satisfy the secular equation 

32. .(i)2 o2    V) 

a(\±) := a1+1 - A± - -g^— - ^0)(A±) - rj+2,»(A±) = 0. 
6l   - \± 

To simplify the analysis that follows write 

e = e\j\    U = u\j),    ß = ßj,    a = Qi+i,    ^/ = ^|J),    T = Tj+2,n. 

Next rewrite the above equations in terms of positive terms X+ — 0 and 6 - A_ 
to find 

(A+-0)2 + 2£(A+-0) = /?V, (24) 
(0-A_)2 + 2F(0-A_) = /3V, (25) 

where 

£ = E(X+) = [MK) + T(A+) + 6 - Q]/2, 

F = F(X-) = [a-6- tf,(A_) - r(A_)]/2, 

and 
E + F = [MK) - M*-) + T(x+) ~ T(A-)]/2- 

By Remark 2 both ipi and T are monotone increasing in (A_,A+) and so 

E + F>0. 

The quadratic x2 + 2£x - /32w2 = 0 has two real roots whose product is 
-ß2u>2. First we establish the case when (DO) does not hold. 

If E < 0 then the positive root is the larger (in magnitude) and must 
exceed ßu>. Hence 

A+ - 6 > ßu,   6 - A_ > 0 

together imply 
A+ - A_ > ßu. 
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Similarly, if F < 0, then 6 - A_ > ßu, X+ - 0 > 0,   and, again 

A+ - A_ > ßu, 

as claimed.   Differences smaller than ßu can occur only when both E = 
E(X+) > 0 and F = F(A_) > 0; that is Condition (VO) holds. This is the 
case considered in the remaining analysis. 

From (24) and (25) 

A+ - 6 = ßW/Wß2u2 + E2 + E}, (26) 

6 - X. = ßW/WßW + F* + F}. 

Thus \        \ 1 1 A+~A- = 
1 + X      . (27) 

ß2u2        y/ßhJ+E* + E     y/ßW + F2 + F 

To simplify this equation note that the function 

, x   .        Jx2 + ß2U. 
f(x) := (x + y/x^TßW)-1 = * s-r 

2L02 — X 

ß2LO 

is monotone decreasing and concave upward (/" > 0) for x > 0. By concavity 
and the positivity of E and F, 

f(E) + f(F) (E + F 
2 - J \    2 

in other words, from (27), 

A+-A_      f(E) + f(F} ^    /E + F\ (2g) 

2ß2uJ2 2 

To simplify this relation write 

E + F 1 

'\. _ \   \ 
G 

^—   =   i[ifo(A+)-iMA_) + T(A+)-r(A_)] 

A+-A. 
2 

where G = G(A_,A+) is given in the statement of the theorem. 
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Let r = \~l~ and multiply (28) by ßu to find 

ßu 
r   > 

1 

G2 

y/l + {rG)*+rG- 

>x±^\G 

=   y/1 + {rG)2 - rG. 

Add rG to each side, square and subtract r2G2 to find 

r2(l + 2G) > 1 

as claimed. '-' 

Remark 3 In the cases of interest to us ßu> is small and 

G«i(#(o) + T'(0)). 

The next task is to turn the inequalities of Theorem 2 into lower bounds on 
A+ — A_ by obtaining upper bounds on G. These bounds depend on the gap 
between e\j) and the other Ritz values of T1:j and Ti+2:n. 

Theorem 3 Let A_ and A+ be two consecutive eigenvalues of a symmetric 
unreduced tridiagonal matrix Tn. The notation developed in this section is in 
force. For each j, 1 < j < n, that satisfies the two hypotheses 

(H) There is a single Ritz value 0,     in the open interval (A_, A+) 
(GAP)      2ßjUi < gap{l),    where 

gap(l) = min {*{£ - 9^^ - 0®, \6? - 0^2>%   i = l,n - j - l}, 

w/ = Kü)(i)l 
then, 

either (A_, A+) £ l\j) := (0,{i) - ß^.,6^ + ßjUl), 
in which case A+ — A_ > ßju>i 

or(A_,A+)cJ;
(J), 

in which case , A+ — A_ > 2ß]uiij yM. + 2Tj, 
where 

Yi = (ß](l - uf) + ß2
+l)/2[gap(l) - ß^)2. 
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Remark 4  The observations at the end of Section 3 say that, on average, 
Yj is 0(1); the geometric mean oftheß's is less than the geometric mean of 

the gaps \6\ - 6i\, i ^ I. 

Proof. It is only necessary to bound the quantity G from Theorem 2 and the 
same notation will be adopted. 

For some n € (A_, A+), 

A+-A_ -    "'     "J^(0?]-vf 

=   ß](l-u>J)/1$\ (29) 

where H\j) = H\j){ri) is a weighted harmonic mean of {(ö}j) - n)2}.   Since 
the minimum value never exceeds any mean 

0)    -s   ~;„(ali) 

=   min{(ö[ä -n)\(6^- nf}. 

H?    >   mm(ey}-n) 

There are two cases. If (A_, A+) <JL l\l] then A+ - A_ > ßjUt for the same 
reasons given in Theorem 2. In the contrary case, one has 

^€[A_, A+]c2i 

Now (GAP) guarantees that 

minima -M- öS) > min{0/+1 - 6h0, - 0,_i} -ßu> ßu. 

Similarly, for some ( G (A_, A+) 

rj+2,n(A+) - 7j+2,n(A_)      _        / ,- 
 T ^T                            -     Tj+2,nl<J 

= ßUY, QÜ+2,n) _  > 

=   /3?+1/Wü+a'B), (30) 
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where ftO'+2-") = Hu+2'n)(() is a weighted harmonic mean of {(öji+2'n) - C)2} 

and so (GAP) yields 

ftü+2,n)    >   min(^+2'n) - C)2 

> 

> (mm\e\j+2'n)-0,\-ßuj)2 

> /?V. 

The definition of gap(l) is made so that 

7i\j) > (gap(l) - ßuj)2,   n^2^ > (gap(l) - ßu)2, 

and thus, using (29) and (30), 

2G    =    ^j)\ri) + r<J+2'n)'(C) 

ß2(l-u?) + ß2
+l 

~      (gap(l) - ßwf  ' 

:=   2r, 

and application of this inequality into the second inequality of Theorem 2 

establishes Theorem 3. n 

Remark 5 When we first established Theorems 2 and 3 we were concerned 
that the gap quantities involved Ritz values O)''3 etc. and not eigenvalues A;. 
However the study of some challenging examples has shown that, in fact, the 
gaps involving Ritz values do lead to an important extension. In examples 
with 100 or 200 eigenvalues in a cluster, each separated from its neighbor 
by about 10 or 20 ulps (units in the last place) combine to form a cluster 
of nonnegligible width (e. g. 1500 ulps). We find that for each submatrix, 
taken with its nearest neighbor, the gaps of Theorem 3 are vastly greater 
than quantities such as 0[3) - A,_i and A/+2 -ö[3\ In other words, Theorem 3 
can be applied, submatrix by submatrix, to clusters whose total width is 

greater than 0(e • spread). 
Recall that the envelope bound in Section 6 shows that there are j'-values 

for which our gap quantities Gj satisfy 

** " sUTTr < I 
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In fact each hump in an envelope contributes 1 to ||£||2, on average, and if 
the hump is spiky S(j + 1) « 1 while if four consecutive entries contribute 
to the hump then the greatest of the four exceeds 1/2. 

8    The Overlap Theorems 

We need expressions for the entries of the vectors constructed to span the 
invariant subspace corresponding to a close pair of eigenvalues A_ and A+ 

of T _ Ti:„     Recan that x':m(C) is tne characteristic polynomial of the 

submatrix T,:m. 
The index m (not unique) is determined so that T1:m has a well isolated 

Ritz value 61:m in (A_,A+) whose normalized Ritz vector a1:m has a small 

last entry. More precisely 

ßm\sl--m(m)\ = 0(X+-X-). 

Trailing submatrices are used to find a suitable index / (not unique) so that 
Tl:n has a well isolated Ritz value 0':n in (A_,A+) whose normalized Ritz 

vector sl:n has a small first entry. More precisely 

A_i|/B(/)| = 0(A+-A_). 

The spanning vectors are 

/ sUm \ (   0 

and the indices 1 < / < n, 1 < m < n, play a crucial role in the analysis. To 
avoid index troubles the entries in sl:n are labelled from I to n, not from 1 

to n — I + 1. 
There are cases in which m < / and then p and q are orthogonal because 

their supports are disjoint. So we turn to the other cases when 

1 < / < m < n. 

and study \p(j)q(J)\ for l < 3 < m- We wil1 show that p and q ,are neaxly 

orthogonal. There are formulae for the magnitudes of p(i) and q(i) 

p(if = Xi.i-i(ö)Xi+i.m(ö)/xi,m(ö),    i < "», 
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where 6 = 61:m is p's Ritz value. Similarly 

9(02 = X/,.-i(y)x.-+i,n(v)/X/,n(y)'    * > *> 

where ip = 9hn is g's Ritz value. 
It is readily verified that for tridiagonal matrices 

Xi(.>(C):=Xi,-i(C)x.+i,n(C) (31) 

is the characteristic polynomial of the submatrix of T1:n obtained by deleting 
row and column i. Hence, by Cauchy's Interlace theorem the Ritz values of 
T1:,_1 and T'+1:n together interlace (weakly) the Ritz values of T1:n. In 
particular, for each z, the open interval (A_, A+) contains either a Ritz value 
of T1:,_1 or a Ritz value of Ti+Un but not both. In an exceptional case the 
open interval is free of Ritz values just when Ritz values of T1::-1 and T,+1:n 

coincide at either A_ or A+ (but not both) and in that case p(i)q(i) = 0. 
We can simplify some expressions considerably by the following conven- 

tion: 

If a Ritz value 63'k <E [A_,A+] then the index i is omitted. Further 63+" 

denotes the smallest Ritz value of Tj:k exceeding A+ and d3l denotes the 
largest Ritz value of T3'k less than A_. 

We need a result from [3]. 

Theorem 4 With the notation developed above let Tsi — s,-A,-, s*sl = 1 
be an eigenvector equation. Let T^ denote the submatrix obtained from T 
by deleting row and column j; its spectrum is 6\J' < . < &n-\- Then for 

1 < i < n, 

I -\2   ^   Äl        " -1        Ui Ai '+1        Al si{J) <T—i—i r-j. r- 

The bound for i = 1 and i = n is obtained by omitting quotients with out-of- 

bounds indices. 

Proof. For tridiagonal matrices, see [4], 

,ti)(\.\ V\n-1(\. -ß{j)) 
S,U) " X'(A,)   n^w-(A.--A 
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By Cauchy's Interlace theorem 

So, for each k < i, the quotient i^- < 1 and, for each k > i, the quotient 

ei3)-\j   <  i.    As lit - il increases the quotients become close to 1.    By 

discarding all but the smallest two or three quotients the upper bound is 

obtained. m 
In what follows we shall apply Theorem 4 to submatrices such as^ T -m 

and TUn One of the principle concerns in the theorem proved below is the 
location of Ritz values such as 0^m or 6l^)n. By (31) 6^)m is either O?'1 

or 6j+1:m and we shall be concerned with both cases. Recall that only one 
of flj?"1 and 0i+1:n lies in (A+,A++) and the other exceeds A++, the next 

eigenvalue of T greater than A+. 
Figure 5 is worth contemplating before reading the Overlap theorem. It 

shows the intervals in which öjT1 and 6j
+
+1:n will lie as j varies. 

Theorem 5 (Overlap) Let T be n x n, symmetric, unreduced, and tridi- 
agonal.  Suppose that adjacent eigenvalues A_ and X+ of T are well enough 
separated from the remaining spectrum to yield the indices I and m and the 
vectors p and q described at the beginning of the section. 

For each j, I < j < m, 

i^)i<2,/<\£(^)3/4+°(^) 
where 

ß = min{/3j_i,/3j}, 

gap = mm{gap(l),gap(m)}, 

gap(l) = mm{9l-n-6l:n,e>;n-6l:n}, 
gap(m) — min{01:m - 0l:m,0+'m - 0 *m}. 

Proof. First confine attention to those j values such that 0ly_1 G (A_,A+). 
Consider the expression for p{j)2 in Theorem 4 using T1:m and extract the 
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three smallest terms in the product to find 

PUT < { 

el:m_0lO>m       gl:m _gl:j-l       fl+0)m-fl1:m .j.      ^l:j-l   <  ßl:m 
01:m_0l:m     '     01:m_gl:m 0l:ro_01:m   ) 

(32) 
0j:m_0l(i)m       0l:m_0l:j'-l        gl(j)m_gl:m 
01:m_gljm      "     gl:m_gl:m otherwise. 

Thus the middle term itself is bounded by (A+ - A_)/#ap(m). A smaller 
bound emerges by considering either a neighboring term from p(j)2 or the 
smallest term in q(j)2. Without loss of generality we suppose that the closest 
Ritz values outside (A_, A+) are on the right. By Cauchy's Interlace theorem 
the open interval (A+,A++) contains either 0+y-1 or 0^+1:n but not both. 

Case 1:     0+J_1 € (A+, A++). 
To obtain a bound better than A+ - A_ on |01:m - 01:J_11 consider 01:J x as 

an approximation to 6Um and apply the Gap theorem for Rayleigh quotients, 

see [4l. 
\\r_l 1 
i,j-l)J 

|öl:m_öly-l|   < min i A+  — A_, 
gap(m, 

(33) 

where 
IrW^WiT^-e^InVs 

s = 
,l:j-l 

UJi 1 = \s1^1U-i)\, 

and 
gap(m,j - 1) = min {^;m - 61:j-\ ö1^1 - öi:m} 

For future application note that 

gap(mj- 1) = gap{m) i + o( 
A+-A. 

V gap(m) 
(34) 

since 01:j_1 and 01:m lie in (A_,A+). To bound ||r|| we apply the Double 
Occupancy Theorem, proved above, not to T1:m but to T. Single occupancy 
guarantees that ||r|| < A+ — A_ and hence 

|gi'">-^-i|<(A+-A-)2 

gap(m) V gap{m) 
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so that \p(j)\ < (A+ - X-)/gap- This is already tighter than the bound to be 
established. Double occupancy yields a weaker bound: 

where 

|r||2<(l + 2GJ_1)(A+-A_)2 

/A+-A_\2 

(35) 

Gj-l      =     \{Tp'l:3-l(l*) + T'j+1..M} 1 + 0 
V gapi™) 

** = ^(A+ + A_; 

Moreover, from Remark 3 in Section 7 and (29), (30), 

2 
/      R:  ,       ^ ßi- 

AP)  < ßi 
e?1:n - \x 

In Case 1, %l>' > r' and putting (35) into (33) yields 

1 < ,—r nun < 1,(1 + 2Gj_i J 
gap(m) gap{m) gap(m) 

1 + 0 
A. 

(36) 

(37) 

A_ 

Now we must use the right hand term in (32), noting that 

gap{m) 
(38) 

0? 
QUm _ QV.tn 

9l:m   ^  ßW 01 

01:m _ QV.m Qlvm _ßl:m 

/A+ - A- 

V 9aP(m) 
(39) 

In the analysis to follow we shall drop the 1 from 1 + 2Gj-\ because it 
contributes only a higher order term to the bounds. Insert (36) into (38) and 
multiply by (39) to find 

|0l:m_0l:j-l|      ßW)™ _ Ql:m 

P\J)        < Qi.m _ Ql:m      '    Q\vm _ QV.m 

(A+-A_)    .   j IßU      (A+-A-) 
<    ~^H" mm 1   ' (op-1 -/i)3   Wim) 
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e'r1 - /* 
gap(m) 

(A+-A.) 
gap(m) 

V 9"P(m) . 
+ 0 (A+-A- 

V 0ap(m) . 

mm 

V 9"P{m) . 

gap{m)  ' ö^"1 - /z    #ap(m)2 

+ 0 p+-A- (40) 

Bound the min by the geometric mean to find 

gap(m)  gap(m)   \ gap(m) 

1/2 

1 + 0 /A+-A- 

V sM™) 
+ 0 P+-A- 

m 
(41) 

Since g(j)2 < 1 the claimed bound holds in Case 1. 

Case 2:      0{+lm € (A+, A++). 
The argument is similar to Case 1 but now it is q(j)2 that offsets a large 

value for Gj-\. In Case 2, r' > ip' and so (38) yields 

^2 (A+-A-)    .   / Iß)        A+-A_ 

The smallest term in q(j)2 gives 

ei+l:n _ ßl:n 

(6i+1:n - /02 gap{m) 

+ 0 
/A+-A- 

V #«p(m) 

<?(i)2  < 0!=n - ö/:n 

gap(l) 
i + 0'

A+-A- 
#ap(/) 

(42) 

Now take the product of (40) and (42) and bound min by the geometric mean 
to find 

A+-A_    .   K+l!W-/z        2ff A+-A_     1 
P(J)9^     <    5ap(m)mm1    yap(/)    ' Ö*1'» - / gav{m)gap{l) j 
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< 

1 + 0 

A V2 + 

A+-A- 

gap 

-A_       ß. 

+ 0 

(<- 

A+-A- 

gap 

-A_^1/2 

gap(m)    gap(l)    \ gap(m) 
+ 0 

A+-A-' 

gap   . 
1(43) 

We see that (43) is an instance of the bound claimed in the theorem. 
The analysis for j-values in which 0j+Un € (A_, A+) is the dual of what is 

given above. Attention concentrates on q(j)2 instead of p(j)2, gap(l) replaces 
gap(m) and the roles of ßj and ß_i are exchanged. By Cauchy's Interlace 
theorem either ö1*'"1 € (A_, A+) or 0'+l!n € (A_,A+) for each j, 1 < j < n, 

and so the proof is complete. D 

Remark. The analysis shows that the configuration of Ritz values has to be 
quite special to yield a value for \p(j)q(j)\ as large as 0((A+ - X-)/gap)3/4. 
If 9%j-\ in Case 1, or 0J

+
+1:", in Case 2, is close to A+ or to 61™ then the 

minima in (40) and (41) are 0({\+ - X-)/gap) and that same bound holds 
for \p(j)q(j)\. Since there is usually a little freedom in the choice of / and m 

we can expect that for j close to / and to m 

\PUMJ)\ = o 
A+-A_ 

gap 

It follows that 

Overlap(p,q) := |p| -191 = 0 
A+-A. 

gap 

3/4' 

9    Accuracy of Subspaces 

Consider the basis {p,q} produced by the use of submatrices. Here p's 
support is 1 : m, and g's support is / : n and /, m are chosen so that 
\ßmp{m)\ and \ßi-iq(l)\ are small. In addition ||p|| = ||g|| = 1. We consider 
how well span(p, q) approximates the invariant subspace for A_ and A+. 

Let 9Um = p*Tp be p's Rayleigh quotient and let 0hn = q*Tq be g's 

Rayleigh quotient. We have 

Tp = pev-m + em+ißmp(m),    Tq = q9hn + e^ßi-Ml). (44) 
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There is no loss in shifting T to the mean \L of the two Ritz values 01:m and 
ehn. Also let 

8 = 
Q\:m _ Ql:n 

There are two expressions for K = p*{T — pl)q- 

K   =   p*qS + q(m + l)ßmp(m) 

K   =    -p'q6 + p(l-l)ß,-iq{l). 

Also 

\p,q}*\p,<i} = 

91:m     K 
\p,q]"T\p,q]= (    „    alin 

1      p*q 
q'p      1 

K      9' 

Then 

Ä:=(r-/i/)[p,9]-[p,9]^    _^ 

By (44) and (45), 

R = [em+ißmp(m) - q/c, e/_i/?,_ig(/) -p/c] 

Recall the supports of p and q and use (45) to find 

R*R={   ß2
mP(rny-f + 2p*q6K, _2 

(45) 

p qK 

P'q**, ßf-M1)2 - «2 - 2p*g<5« y ' 

Since p and g are not orthogonal the proper measure of [p,g]'s residual is 

-1/21 

R 

Thus <r^ax is the largest zero of 

1      p*q 
p'q    i 

det R'R - a' 
1      p'q 

p'q    i 
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So 

[1 _ (p*g) V - [ß2
mP{mf + ßlxq{l)2 ~ ^ ~ 2* V«) V + const = °" 

o-max is majorized by the sum of the roots 

7)2 - 2r2 

1 - (P*<z)2 

Now (45) may be rewritten as 2/c = C + M, defining C and M in a natural 

way. Since 
2K

2
 = C

2
 + M

2
-\(C-M)

2 

we obtain 

*Lx    <    {ß2
mP(m)2(l-q(m + l)2) + ßliq(l)2(l-p(l-l)2) 

+   J[Mm)9(m+l)-Ä-i?('W-l)f}'[l + (p*?)2]-   (46) 

This is an easily computed bound. The closer is \q(m + 1)| to ||g||oo and 
\p(l - 1)| to HPIIOO the lower is the bound on <rmax. From standard gap 
theorems in [4] the sine of the error angle is less than <7max/#ap, where gap 
is the separation of [A_, A+] from the rest of the spectrum. 

The General Case 
Given are pup2, ■ ■ •,P# with the support of p} on (lj : rrij). Also p{ ■ Pj = 0 
if \i - j\ > 1 and ||p,|| = 1, j = 1, • • • ,#• By construction, 

Tp3 = pfr + e^x/ViPiCi) + emi+ißm,Pi(mi)>   9> = ^' (47) 

In order to simplify expressions it is convenient to shift T to the mean value 
fi of the Ritz values 6U..., 0#. Let 0, = /x + <5„ t = 1,..., #■ 

There are two expressions for /c,- := p*{T - fil)pi+i' 

_   f   P.+l • Pi *.' + Pi+l(m«' + l)^m,-Pi(^-)» (48) 
Ki~ \ Pi-Pi+i*.-+i + p.-(fc+i-^A.+i-iPi+iC^'+i)' 

because of the disjoint supports. 
Define 

n := (T - fiI)Pi - 5,-Pi - Ä,--iPi-i - «iPi+i (49) 
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where K0 = K# = 0. Let R= [ru...,r#]. By (47), 

n = eti-ißii-iPiiU) + em,+1ßmMmi) -Pi-iKi-i ~Pi+iKi- 

Again the disjoint supports show that 

Ti ■ ri+i   =   Vi-\ ■ Pi ««-l K< + Pi ■ Pi+i Kl + Pi+i ' Pf+2 «f Ä.-+1,      (50) 

»\ • ri+2    =    K,'Ki+l (51) 

and 

1\Tt-     =     /Jj-iPi^+iSm.-P.-K-)2 + «?-! + «? 
-2K,-_ipI-_i(/i - l)ßl,-lPi{li) - 2Kipi+l{mi + l)ßmMmi)- 

By (48), 

K] - 2Kipi+i{mi + l)ßmiPi{mi) 

=      [Ki - Pi+l(mi + l)ßm,Pi(mi)}2 ~ Pi+l(mi + l)2ßmMmi)2 

=    (Pi ■ Pi+i ti)2 ~ Pi+i(mi + l)2ßltp,{mi)2. 

Thus, for i = 1,2,... #, 

riri   =   (l-pi-iih-lftßl-iPiiU)2 

+    (l-p.-+i(m.- + l)2)^iPl-(m.-)2 (52) 

+   {Pi-i-Pi&i-i)2 + {Pi-Pi+i6i)2i 

with out of range terms set to zero when i — 1 and #. Let 

/ Pi 'Pi P2-P3 • P#-l  • P* 
I:= tridiag      1 1 • • 1 

\       P1P2 P2P3 • P#-i • P* 

Then the measure of the quality of Range [pl5... ,p#] as an invariant sub- 
space is given by crmax where CT^ax is the largest zero of 

det[WR-alJ]. (53) 

some terms in (48), (50), and (52) are much smaller than others. 
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Thus if w := cluster width 

(R*R)ii   =   (l-p>-i(U-l)2)ßf,-iPi(U)2 

+(i - w+iK- + i)2)flnMmi)2 + °^7/2) 
(Ä*Ä)w+i   =   0 + O(«;11/4) 

(R*R)ili+2     =     KiKi+i. 

Using this approximation it is straightforward to approximate the largest 
zero of (53) by bisection. The largest diagonal entry of R*R is a reasonable 

approximation to crmax. 

10    Counting Ritz Values 

In order to justify the selection of submatrices some background material is 
needed. Recall that 6'.{j)m denotes a Ritz value from T'<J>, the submatrix 
obtained by deleting row and column j from Tl:m. 

• Cauchy's Interlace theorem (true for symmetric matrices): 

Let 6® := 01(i)n. For each j = 1,..., n 

A,<oP<A,+1<ogr 

• Unreduced Tridiagonal Interlace theorem: For each j < n,i < j, and 
I < ; < n- j there is a Ritz value 6\:j+l in the closed interval [6)'\ 0-^]. 

For a proof see [3]. 

• The Window Count. 
Let J be any fixed closed interval on the real line. Let #r(j : k) be the 
number of Ritz values of Tj:k in 1. Then #j(; : k) is 'nearly' monotone 

increasing with k. More precisely, 

-1 < #IÜ ■ k + 1) - max #T{j : i) < 1,    for all k. 

This result is a direct corollary of the Tridiagonal Interlace Theorem. 

Lemma 9 (Window Count) Let 1 be the convex hull of a cluster of ad- 
jacent eigenvalues of unreduced, symmetric, tridiagonal T = T1:n. If the 
window count #r(l : j) is well defined for j = 2,..., n - 1 then 

#i(l : i - 1) + #I(J + 1 : n) = #iU • n) - h    j = 2,..., n + 1. 
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Proof. Since the end points of J are the extreme eigenvalues of the cluster 
there are exactly #j(l : n)-l abutting subintervals in J of the form [A,-, A,+i]. 
If the window count is well defined there are no zero pivots in the triangular 
factorization (up or down) with shifts at the end points of J. Hence no Ritz 
values of T1:j_1 or Tj+l:n fall at the end points of 1. By Cauchy's Interlace 
theorem (one can assign a Ritz value of T1^71 to each subinterval) there are 
either #r(l : n) - 1 or #r(l : n) Ritz values of T1®" in X, for each j. By 
the 'coincidence' property of tridiagonals there can only be #i(l : n) Ritz 
values in 1 if one of J's end points is a Ritz value and this is ruled out by 
the assumption on the window count. D 

11    Submatrix Selection 

At present we have no preferred method for choosing submatrices automat- 
ically.   Below we present two methods that have been satisfactory so far. 

Mid-Point Selection 
T and 2 are given. J is the convex hull of a cluster. Let # = #i(l : n). 
Define, for j = 0,1,..., #, 

7i = max{i:#i(l:z) = i}- (54) 

Define, for; = 1,...,#, 

m,= |U-i + /i)/2l. 

Note that 7# = n. Let Lx = —1. Take as initial submatrices 

(/J_2 + 2:mJ),    ; = 1,...,#. 

Justification. Since #j(l : i) is nearly monotone increasing in i the in- 
dices {lj} are strictly monotone increasing in j thanks to the max in their 
definition. Hence 

mi</j<7J + 2, j = 0,l,...,#. (55) 

Hence 
772j_2 < lj-2 < (?'-2 + 2. 
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Thus the supports of the submatrices are disjoint except, possibly, for nearest 

neighbors. 
Next we show that there are 'enough' Ritz values in each submatrix. Since 

J is not the convex hull of the Ritz values of the submatrix (/,-_2 + 2 : n)in J 
the window count lemma is not applicable. By Cauchy's Interlace theorem 

#r(/j_2 + 2 : n)-l < #iß-2 + 2 : mj) + #i(mi+2 : n) < #x(/;-2 + 2 : n) + l. 
(56) 

However Lemma 9 may be invoked twice to obtain 

#rK + 2 : n) = (# - 1) - #r(l : m,-) = # - j - 1, (57) 

and 
#rß-a + 2 : n) = (# - 1) - #r(l : 7,--a) = # - J + 1- (58) 

Use (57) and (58) in (56) to obtain 

3>#r(/i-2 + 2:mj)>l. (59) 

In the exceptional case that #r(Z,--2 + 2 : m,) > 1, for some ;', the support of 
the 7th submatrix may be reduced from either or both ends until the count 

is exactly 1. 
There is a dual algorithm using trailing submatrices that delivers mj5 

;' = 1,...,# + 1 such that 

ruj = min{i : #r(i : n) = # - j + 1} 

and mid-points /,-, j = 1,..., #, with lj = [(^ + mj+1)/2j.   This process 
yields more balanced submatrices 

(Ij-.mj),    j = l,...,# 

with the same bounds and disjoint support properties. 
We used a selection very close to {(/, : m,)} in 1989 before our analysis of 

close pairs was developed. The performance wasvery satisfactory but there 
is no reason why the mid-points in the ranges {/j_i + 1,... ,lj} should give 
the smallest coefficient of \1\ in the residual norm bounds. We want the 
index i in {lj-i + 1,..., lj} that gives a minimal, or small, value to the G,- of 

the Double Occupancy Theorem. 
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Selection by Pairs 
The previous results for close pairs of eigenvalues may be used in a system- 
atic way to produce appropriate submatrices for isolated clusters containing 
any number of eigenvalues. The goal here is to show the existence of the 
submatrices, not to produce an efficient algorithm. 

From Section 7 if #(1 : m) = 2 then there exist suitable indices p and 
v (by no means unique) such that #(l,i/) = 1 and #(//,m) = 1. Usually 
\L < v but that is not necessary in what follows. There are basis vectors with 
supports on (l,i/) and on (jt,m) whose residual norms are proportional to 
the separation of the two Ritz values that cause #(1 : m) = 2. 

Now suppose that 

#:=#(l,n) = #z(l,n)>2. 

Let h be maximal such that #(l,/i) = 1. For the submatrix (1 : h + 1) let 
the optimal indices (/x and v) be j2 and fcx. The Ritz vector (with Ritz value 
in 2) for submatrix (1 : ki) is the first basis vector. Set ji = 1. The Ritz 
vector for (j2 : h + 1) is not used but the index j2 will play a role. Check 

that 

#02:n) = #(l:n)-l. (60) 

If not, adjust j2 until (60) holds. Having peeled off a submatrix jx : h from 
the top and then discarded rows 1 : j'2 - 1 from T we proceed in the same 
way at the bottom of T. 

Let p be minimal such that #(p,n) = 1. For the submatrix (p - 1 : n) 
let the optimal indices be j# and fc#-i- The Ritz vector (with Ritz value in 
J) for submatrix (j#,n) is the final (#) basis vector. Set &# = n. The Ritz 
vector for submatrix (p - 1 : &#-i) is not used but A-#_i plays a role. Check 
that 

#(J2,*#-i) = #-2. (61) 

If not, adjust fc#_a until (61) holds. If # - 2 > 2 then repeat the proce- 
dure just described on (j2 : &#-i) to obtain two new submatrices (j2,k2), 
(j#-i, &#-i) and? possibly, a remaining submatrix with fewer Ritz values in 
J. Eventually one obtains # submatrices (;',- : &,-), i = 1,...,# each of 
which, by construction, has a simple Ritz value in 1. The associated Ritz 
vectors, with zeros appended to make n-vectors, constitute a good basis for 
J's invariant subspace. 
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Should it ever occur that ji+1 < fc,-_i we are at liberty to increase ji+i or 
decrease Jt,_i a little subject only to the constraint that #(;',• : h) = 1 for 

each i. Our goal is to have 

ki-i <  max entry in sMlhi < j.+i,   i = 2, ...,#- 1. 

Selection by Envelope 

A way to choose submatrices is suggested by Section 6. First find the envelope 
vector £ and then find # entries of £ that are local maxima. Suppose first 
that there is a unique set of such positions h,k2,. •., &#• For 1 < j < # the 

jth submatrix is 
(*,-_, + 1 : kj+1 - 1). (62) 

Usually the first and the last are (1 : k2 - 1) and (&#_! + 1 : n). However 
in general we must be more careful and define k0 and &#+i- Let the first 
nonnegligible entry of S be in position fc0 + 1 and let the last nonnegligible 
entry be in position fc#+i - 1. Now (62) also gives the submatrices for j = 1 

and j = #. 
In case the location of the ith summit is given by several indices then take 

Id to be that set and interpret kt + 1 as 1 + max h and kt - 1 as -1 + min kt. 
To quantify the adjective negligible we propose a threshold of macheps ■ \\S\\ 

= macheps ■ \f$. 
The approximation of £ is an implementation issue that will not be ad- 

dressed here. 

12    More Examples 

A Glued Wilkinson Matrix 
In Section 5 we studied W£. Here we use Wf5 but take 4 copies and connect 
them by an off-diagonal entry e which is called 'the glue' in the matrix W10o- 
In an obvious extension of our notation in Section 2 

/ e e e 

W10o = tridiag[   W+        W+        W+        W+ 
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If e is too small, like 10"3, then Wioo is too close to a direct sum of 4 matrices 
and calculation of orthogonal eigenvectors is not hard. If e is too large (> 2) 
then the eigenvalues are sufficiently well separated to be treated as isolated. 

We use 
e = 0.3 

and show the largest 8 computed eigenvalues in Table 2. Without the use of 
Gram-Schmidt orthogonalization inverse iteration gives neither small resid- 

uals nor adequate orthogonality. 

A93 12.577864 

^94 12.577870 

^95 12.577881 

^96 12.746191 

A97 12.746193 

^98 12.939114 

A99 12.939115 

A100 12.939117 

Table 2: Selected Eigenvalues of VV100 

Figures 6, 7 and 8 show the submatrix indices used and the basis vectors 
they yield. The vectors are plotted on a logarithmic scale with the correct 
sign attached. All entries less than 10"9 are treated as 0. The reason for 
using log scale is the to focus attention on the smaller entries. 

In this example the submatrices overlap by only one or two indices. The 
residual norms are the magnitudes of the first and last entries and are all less 
than macheps • spread. The dot products between vectors in each group are 
almost zero because the supports are almost disjoint. On the other hand the 
supports of the vectors x93 and x98 are identical and orthogonality comes 
from cancellation. These dot products are less than 30 • macheps. 

An Example from the Lanczos Algorithm 
The Lanczos Algorithm with no reorthogonalization was run in double pre- 



49 

cision on a diagonal matrix of order 205 

D = diag{l,2,...,200,400,400,400,400,600) 

with starting vector 
e = (l,l,...,l)*. 

The run stopped at step 87 and the resulting tridiagonal matrix T87 = T 
had 5 copies of 600, four copies of 400, and a single eigenvalue at 200, to 
single precision. 

Figure 9 shows the four vectors corresponding to the cluster at 400. All 
these calculations were in single precision. Note that the overlap of the 
supports is greater than in the glued Wilkinson matrix. However all nonzero 
products were about 10"14, much les than macheps. 

1:87 
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Figure 1: Vectors z+ and z_ for the pair near 6 on a log scale 
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Figure 2: Bisectors of z+ and z_ on a log scale 
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550 

Figure 3: Snapshot of Envelope (108 eigenvalues) 
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Figure 4: Envelope for AJ2, A13 from W£ 
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