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An efficient implementation of non symmetric 
Lanczos algorithm 

David Day * 

Abstract. Lanczos vectors computed in finite precision arithmetic by the three- 
term recurrence tend to lose their mutual biorthogonality. One either accepts this 
loss and takes more steps or re-biorthogonalizes the Lanczos vectors at each step. 
For the symmetric case, there is a compromise approach. This compromise, known 
as maintaining semi-orthogonality, minimizes the cost of re-orthogonalization. This 
paper extends the compromise to the two-sided Lanczos algorithm, and justifies the 
new algorithm. 

The compromise is called maintaining semi-duality. An advantage of maintaining 
semi-duality is that the computed tridiagonal is a perturbation of a matrix that is 
exactly similar to the appropriate projection of the given matrix onto the computed 
subspaees. Another benefit is that the simple two-sided Gram-Schmidt procedure is 
a viable way to correct for loss of duality. 

Some numerical experiments show that our Lanczos code is significantly more 
efficient than Arnoldi's method. 

Keywords. Lanczos algorithm, breakdown, sparse eigenvalue problems, biorthog- 
onalization methods. 

AMS Subject Classification. 65F15. 

1     Introduction 

For non-Hermitian matrices approximate eigenvalues from the (2-sided) Lanczos pro- 
cess are much more accurate (for the same elapsed time and starting vectors) than 
those from the Arnoldi method. Consequently it is important to implement the Lanc- 
zos algorithm as well as possible. This paper summarizes the analysis in [7] and claims 
to show the best (or nearly best) way to do it. 

This article shows that it is not necessary to re-biorthogonalize the Lanczos vec- 
tors at every step in order to approximate the behavior of the algorithm in exact 
arithmetic. A property of the computed Lanczos vectors called semi-duality may 
be imposed (defined in §3) and suffices for keeping close to the exact algorithm at 
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minimal cost. Semi-duality is less expensive to maintain than duality, and equally 
effective. Having stated our contribution we resume the introduction. 

Krylov subspace methods determine a useful basis for the Krylov subspace 

JC'(q,B) = spMq,Bq,...,Bl-1q). 

The eigenvalues of certain projections of B onto Kl(q,B) serve as approximations to 
eigenvalues of B. The eigenvalues of projections of B are often called Ritz values. 
They are not Raleigh-Ritz approximations, except in the Hermitian case, but we do 
not have a better name for them. 

The most popular Krylov subspace method for non-Hermitian matrices is the 
Arnoldi algorithm [26]. An orthonormal basis of IC'(q,B) is computed. The orthogo- 
nal projection of B onto Kl{q.B) is represented by an i-hy—i Hessenberg matrix. 

The non-Hermitian or two-sided Lanczos algorithm is another Krylov subspace 
method. Given two starting vectors p* = p* and q = qu the two-sided Lanczos 
algorithm computes at the same time a basis for the right Krylov subspace, K,l(q,B), 
and a dual basis for the left Krylov subspace 

AC!(p"\ B) = span(p*, ...,p*B 2 —IN 

The Lanczos algorithm computes the partial reduction of B to tridiagonal form. 
In exact arithmetic the Hermitian Lanczos algorithm determines a matrix of or- 

thogonal vectors, Q, while the two-sided Lanczos algorithm determines two matrices 
P and Q such that P'Q is diagonal. This relation among the Lanczos vectors is often 
called biorthogonality [15]. 

Lanczos vectors computed in finite precision arithmetic by the three-term recur- 
rence tend to lose their mutual biorthogonality. Two ways to compensate for this 
phenomenon are known; Lanczos with full re-bi-orthogonalization (LanFRB) [4] and 
acceptance of the loss of biorthogonality which forces more steps to be taken [6. 10]. 
For the Hermitian case, a compromise is known [11, IS, 19, 27, 28]. This compromise, 
known as maintaining semi-orthogonality, minimizes the number of reorthogonaliza- 
tions. This article extends the compromise to the two-sided Lanczos algorithm, and 
justifies the new algorithm. 

There are known cases when the simple recurrence takes extreme amounts of time 
[10]. On the other hand LanFRB is expensive for a long run. The compromise we 
present in this article is better than either of the two extremes. 

Better approximations to eigenvalues of B tend to be computed from a single 
Krylov subspace of dimension one hundred than from four Krylov subspaces of di- 
mension twenty five. To take advantage of this property, we want to use large Krylov 
subspaces. The amount of data transfer ( from memory to the computational unit ) 
required in Lanczos with full rebiorthogonalization when n is large is significant. In 
this respect, the compromise is at least twice as fast as maintaining full biorthogo- 
nalitv. Usually it is much faster. 



The state of the art in Lanczos methods is to select from one of four algorithms. 
The user first selects either the three-term recurrence, or LanFRB. This choice is a 
trade-off between the low cost per step of the three-term recurrence and the limited 
number Lanczos steps taken by LanFRB. Then the user selects an implementation 
with or without Look-Ahead [10, 21, 20]. Look-Ahead enhances stability while in- 
creasing cost modestly. This article does not consider implementations with the 
Look-Ahead feature. 

The word re-orthogonalization in the Hermitian case is ugly enough but the anal- 
ogous term rebiorthogonalization goes too far (nine syllables). So we seek a term with 
fewer syllables. In Functional Analysis row vectors represent linear functionals and 
the property p*q:= Sij (Kronecker's delta) says that the ordered sets {p^,...,p*} and 
{q1....,qJ} are a pair of dual bases for fCl(q,B) and JCl(p*,B). So we use the term 
dual instead of biorthogonal. Consequently we speak of maintaining duality, local 
duality, and semi-duality (introduced in §3). 

1.1     Summary 

Our results extend earlier work done in the Hermitian case [27, 28], but new issues 
arise in the non-Hermitian case. In exact arithmetic the Lanczos algorithm determines 
a tridiagonal-diagonal pencil (T, Q) such that Q_1T is similar to the projection of B 
onto the spans of the Krylov subspaces. See Definition 2.1. The diagonal elements 
of Q are defined to be the inner products of consecutive pairs of normalized Lanczos 
vectors. In exact arithmetic the algorithm breaks down if Q = diag(a,';) is singular. 
In finite precision arithmetic breakdowns are rare, but near breakdowns are not. It 
is tempting to require that |u,-| > y/e, where e is the round off unit, but our rather 
lengthy analysis shows that the algorithm is still viable provided that |LJ,| > je. Below 
that level the accuracy of the Ritz values does not generally improve if the recurrence 
continues. 

The remainder of this work is organized as follows. Section 2 contains a discussion 
of what is known about solving eigenvalue problems using the two-sided Lanczos pro- 
cess. The basic properties of the Lanczos algorithm are reviewed, the implementation 
of the three term recurrences is outlined, convergence theory is discussed, and our 
practical experience with implementations of the three term recurrence is summa- 
rized. 

That done, we move on to the tricky issue of when to "re-bi-orthognalize!' or 
correct the Lanczos vectors to restore duality. The candidate Lanczos vectors are 
computed by the three term recurrence, but at certain steps, the loss of duality of 
the candidate Lanczos vectors to the previous Lanczos vectors is "too large", and 
then we correct them to obtain the final Lanczos vectors. To obtain a competitive 
algorithm, correction steps are implemented just like a step of the Lanczos algorithm 
with full re-bi-orthogonalization (LanFRB). Since the duality of the Lanczos vectors 
is not maintained to full precision, this process must be justified. The viability of the 



two sided Gram-Schmidt process is established in §3. 
In §4 the properties of the Lanczos algorithm with correction are developed. In 

§4.4 we show how to monitor the loss of duality among the computed Lanczos vectors 
without significantly increasing the cost of the algorithm. For efficiency the correction 
steps must be invoked as rarely as possible consistent with maintaining accuracy in 
the approximations. 

In §5 we prove that an added advantage of maintaining semi-duality is that the 
computed pencil (T, Q) is a perturbation of a pencil that is exactly equivalent to the 
projection of the operator onto the computed subspaces. The norm of the perturba- 
tion is as small as the data warrants. §6 illustrates some of our results with some 
challenging numerical examples. 

2    Two-Sided Lanczos 

The two-sided Lanczos algorithm is based on the partial reduction of a matrix B 
to tridiagonal form. The Lanczos algorithm starts from an arbitrary pair of vectors 
p* = p* and q — q\. After j successful steps, the matrices P* and Qj are produced. 
The rows of P* span the Krylov subspace )Cj(p*,B) and the columns of Q3 span 
KL](q, B). The matrix T3 = P*BQ3 is tridiagonal; Q3 = P*Q3 is diagonal. 

Early implementations scale the Lanczos vectors so that Q = I [1, 35], but more 
recently the advantages of maintaining unit length of all the Lanczos vectors has 
gained acceptance [4, 10. 21], and this is what we do. A useful result of our work is 
that 0 can become nearly singular, cond(fi) = 0(e), without spoiling of the algorithm. 

The eigenvalues of an oblique projection of B are used to approximate the eigen- 
values of B. 

Definition 2.1 Let Q3 = [qi, ...qj] have full rank, let P* = [px, ...pj]* also have full 
rank. If P*Q3 is invertible then 

u3 = Q3Q-1P;, 

is a projector (U2
3 = U3). It is not orthogonal (IT* ^ U3). We say that Il3 is an 

oblique projector onto Range(Qj). It is also an oblique projector onto the dual space 
{u*U3 : u e G7'} = Range(Pj)*. Thus U3BU3 is a projection of B onto the pair 
Range(Qj) and Range (Pj)*. 

Assuming that Qn and P* exist (that is the algorithm does not break down) 
the representation of B with respect to the basis {qi,-..,qn} is Q~lBQn. Un = I, 
which implies that Q'1 = Q~lP* and Q~lBQn = Q~lTn. The tridiagonal Q~lT3 

represents Tl3BI\3 in the dual bases {qi,.-.,q3} and {uj^lp\,....tu~lp*}. Similarly the 
representation corresponding to P* and Q3Q~l is T3Q~X. 



2.1     The Three Term Recurrences 

The Lanczos vectors satisfy a pair of three-term recurrences 

(2.2) ßl+ip*+l = p\B - %* - ^PU, 
U>i U)i-i 

and 

(2.3) ft+i7i+i = BQI ~ Qi ft-i • 

The coefficients are chosen so that the right hand side of (2.2) annihilates qx, ...,ql 

and the right hand side of (2.3) is annihilated by p*, ...,p*. The ßs and 7s come from 
the normalizing convention. The recurrence stops if ßj+iujj+ijj+i = 0. With 

Tj := tridiag     «i, 
fou2,     •••     ,ßjU j 

,OLj 

72w2,    •••   ,7i^j 

equations (2.2) and (2.3) may be written in compact form 

(2.4) P;B-Tiü?P; = ejßi+ip)+» 

and 

(2.5) BQj - Q3Vt-% = qJ+il3+ie), 

where e} = (0,..., 0,1)*. 

2.2      Ritz Triplet Convergence 

The eigenvalues of B are approximated using the eigenvalues of the pair (Tj, Q,j) for 

increasing j. From the eigen-triplet (uf'*, 9\j\ v[j'), 

u^T^eWu^Slj   and  TjV^ = QjV^\ 

form the Ritz triplet (x\j)\ 6\j), y\j)) given by 

(2.6) xp = upP;  and Jf] = Q^. 

Ritz triplets approximate eigen-triplets of B. When no confusion will arise we omit 
the super-script (j). 

The expression x*x (2.5)x^ reduces to 

x*Byt = 9lx*yl. 



In words, 6i is the generalized Rayliegh quotient corresponding to x* = u*P* and 
Vi = QjVi- See §11 of [17] for a discussion of generalized Rayliegh quotients. 

We now list what is known about the approximations derived from the first j steps 
of the algorithm. 

Multiply (2.5) by vl and substitute (2.6) to obtain 

(2-7) By, - yl6l = qj+lßj+lVi(j). 

The remarkable property of (2.7) is that the right hand side can be computed without 
forming yt. Even in exact arithmetic \\yt\\2 can be smaller than \\vi\\2. Thus a small 
value of \vi(j)\ is a necessary though not sufficient indication that 9i be close to an 
eigenvalue of B. 

The perturbation theory for the eigenvalue problem is more complicated than in 
the Hermitian case. The Lanczos algorithm eventually yields approximate eigentriples 
(x*,6,y) where ||Ä*j|2 — I — \\y\\2 such that the corresponding residuals \\x*(B — 0I)\\2 
and || (B — 0I)y\\2 are small. Such triples exactly solve a nearby eigenvalue problem 
[13]. The good thing is that the eigenvalues of QjJTj for which the residual norms 
are small persist as approximate eigenvalues of ^lk

lTk for k > j [13]. 
The residual norm \\(B — 6tI)yi\\2 is a pessimistic estimate of the accuracy of #;, 

and a good estimate of the accuracy of y{. The accuracy of generalized Rayleigh 
quotients is proportional to the product of the residual norms. To be precise, if 
{x*,6l,yi) approximates an eigentriple of B that is well separated (see Theorem 2.1 
in §5 of [30]), then the accuracy of 6, is proportional to 

Wx^B-ej^WiB-ej)^. 

This product divided by 
gap(6,

nTJ) = min|0j - 6k\ 

is a realistic backward error estimate for 9Z [3]. 
One sided algorithms, and in particular the Arnoldi algorithm, do not enjoy this 

property. 
To factor the exact shrinkage, ||:r||2/||u||2 and ||y||2/|K'||2, into the error estimates 

to obtain asymptotic error bounds, one must first compute the Ritz triplets. For 
an n-by-n real operator, B, after j Lanczos steps the number of real floating point 
operations (flops) required to compute the matrices of left and right eigenvectors for 
m Ritz values is 8nmj. This is often more flops than are required for the Lanczos 
run. 

Fortunately a realistic lower bound on the shrinkage is available if the duality of 
the computed Lanczos vectors is maintained. In this case y = Q3v satisfies P*y = 
CljV. Also since the Lanczos vectors are normalized to have unit Euclidean length, 
ll-P/lb < Vl- Combine these two equations to find 

p;ii2iu,„ ^ \\p;yh _ mjvh 2>  M^IMl2> 
\ß V7 V7 



Similarly if x* = u*P*, then ||x*||2 > ||u*fy||2/^. 

2.3    Practical Experience 

Without careful observation, there is no science. This section discusses surprising 
behavior that has been consistently observed in large scale scientific computations 
using the non-Hermitian Lanczos algorithm [10]. In the case pi = q\, 

• The sequence {|wi|}i>o tends to be decreasing, sometimes precipitously. 

• Even when \ujj\ has declined to nearly lOne, approximate eigenvalues, eigenvec- 
tors, and solutions to linear systems continue to converge. 

• Even when \LüJ\ has declined to nearly lOne, (Tj,Q.j) is almost always graded so 
that the growth factor 

(2.8) $j = maxiWTjtlfWoo, WSlfTjWJßBh 

is of order unity, say less than 10. 

As usual, e denotes the machine precision. The scalar $j measures the relative 
size of the intermediate quantities introduced during the Lanczos algorithm. It is 
essential to distinguish 

IIQ711|2 = 1/minion I 
J i 

from $j. The quantity H^/1^ can be large, nearly e_1, without necessarily effect- 
ing the accuracy of the eigenvalues and eigenvectors. The error in computing the 
eigenvalues of Qj1^ is, among other things, proportional to Hfi"1!^!. But in the 
rare case that $, is large, the Lanczos algorithm is unstable due to the introduction 
of large intermediate quantities. The approximate eigenvalues suffer perturbations 
like e$j||S||2. In this case, Look-Ahead Lanczos is recommended [10, 20]. When 
$j = 0(1) , we expect our approximations to be as accurate as the data warrants. 

3    The Viability Of The Two-Sided Gram-Schmidt 
Process 

This section studies the central problem of how to maintain adequate duality between 
the two sequences of Lanczos vectors {p\, ...,p*} and {qi, ...,qj} at a reasonable ex- 
pense. It will help to recall the corresponding technical problem in the symmetric 
case when pr = qu i = 1,..., j. See [22, 19, 27, 28]. Suppose that the three-term recur- 
rence, in finite precision arithmetic, returns a unit vector q'j+l that is not orthogonal 
to the previous qu i.e. Q]q'j+\ is not negligible. The Gram-Schmidt process replaces 
q'j+1 by a normalized version of (Ij - QjQ*)q'J+1-   This procedure is appropriate if 
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Q'jQj = Ij, but can actually makes things worse if Qj's columns are not orthogonal. 
The interesting question here is how much can \\Ij - Q*Q-j\\2 be permitted to grow 
and yet guarantee that (Ij - QjQ*)q'J+1 is orthogonal to range(Qj) to within working 
accuracy. 

Our problem is similar but more complicated. The formal two sided Gram- 
Schmidt operator is Ij - Qjtt^P* where % = dmg(P*Qj). How large can we permit 

\\Ij - PjQ3Q]l\\2 to grow and yet get what we want by applying Ij - Qjfl^P* to 
(Pi+i)" and q'J+11 

The answer in the symmetric case is that semi-orthogonality suffices. More pre- 
cisely, if 

(3-1) ||Q,Vn||i<>/i 

holds for i = l,...,j - 1 then if ||<5^-+1||i  < y/e we may take qj+1 = q'j+1, but if 
\/e< ll<5j?j+il|i < 100V? then 

?j+i = (h - QjQjWj+i 

satisfies 

\\Q]qJ+ih < ioo(i - i)e < v^ 
provided lOOjy/e < 1; a mild constraint on the length of Lanczos runs. For example, in 
single precision it is dangerous to make runs of over 100 steps. If \\Q"q'J+l ||a > lOO^/e. 
we compute fc to replace qr and then recompute q'j+1. This requires an extra matrix- 
vector multiplication. 

We shall give a similar condition in the two-sided case: semi-duality suffices. How- 
ever the definition of semi-duality is not as simple as in the symmetric case and we 
postpone it until more notation has been developed. An added benefit from maintain- 
ing semi-duality is that the computed tridiagonal-diagonal pair of Lanczos matrices 
{Tj, üj) is equivalent, to within roundoff error, to the true "projection*' of 5, namely 
(P'BQj.PjQj). More precisely we will show that the no-breakdown condition 

(3.2) min |u;,-| > lOje, 

and the semi-duality condition 

(3-3) m^(ii(p;+1rg,-ia-|-1/2iioo,n ia-r1/2i??;+1iii) < ^ 

suffice to ensure the preservation of (TjMj) described in the previous sentence (see 
Theorem 5.13). It is necessary to strengthen the condition (3.3) somewhat to guar- 
antee the viability of two-sided Gram-Schmidt (GS) when (3.2) is nearly an equality. 
Note that in the symmetric case 0, = I} and (3.3) reduces to (3.1) as claimed. 

The superscript ' in p't+l and q't+l indicates that these are the candidate Lanczos 
vectors computed by the three term recurrence, but not necessarily the actual ?'+ lth 
Lanczos vectors. 



3.1    Analysis of GS 

We are going to derive a matrix, M, whose norm is the "right" factor by which duality 
is enhanced in GS. Recall from §2.1 that at the end of step j the Lanczos algorithm 
has computed dual matrices of Lanczos vectors P* and Q3, candidate Lanczos vec- 
tors (Pj-+i)* and q'j+1, and uJ+i denotes the computed value of the inner product 
(p'j+i)*q'j+i- We assume UJ3+]_ ^ 0. Due to the loss of duality, P*Q3 ^ Qj and off 
diagonal entries of P]Q3 could be as large as 1 if the three term recurrence is not 
modified. 

Suppose that ||P,*<^+1||2 and \\(p3+i)*Qj\\2 are too big (criterion to be discussed 
later). GS yields new candidates (pj+i)* and q3+i satisfying 

üw* = (^ira-wlp;)> 

and 
qj+1 = (i3 - Q3n-lp;)q'J+l. 

Now we examine the new duality situation. 

(pj+1yQi = (Pj-+1)*(/i - Q&fPPQi = 

(P'^YQ^-QJ'PJQJ), 

and 
p*q3+l = p*{i3-Q3Q-lp;)q'3+l    = 

{iJ-p;QJnj1)p;q'j+1. 

The factor Qj1 in the middle is alarming because we expect some u)l to become quite 
small and we fear that off diagonal entries may rise too close to 1. This feature is 
absent in the symmetric case. However the situation is better than it appears. 

We can obtain a more balanced expression for the duality of the new vectors 
(pj+i)* and qj+i by writing 

Qj = |r2i|
1/2sign(Sli)jQi|

1/2. 

Then modified expressions for the duality, namely 

{p3+lyQ3\Q3\-
1'2 = WWYQJVJ - Q-lP*Q3)\Q3\-

112 = 

(3.4) (p^r^r^sign^*)   (sign(^) - \Q3\-
ll2P*Q3\Q3\-

1'2) 

and 
\Q3\-

li2p;qHl = 



(3.5) (sign(fy) - |fijr
1/2^^l^l"1/2)sign(Q*)   \ü3\-

l'2P*q']+l 

show that the balanced "reducing factor" after applying GS is ||Mj|| where 

(3.6) Mj = sign(fy) - \Ü3\-
l'2P*QJ\ü]\-

112. 

We get no benefit from the cost of GS unless ||Af |j is much less than one. 
We choose to measure duality using 

IH^r^Villi  and   ib^Q^r^iu 
and define the effectiveness of GS using the balanced connection matrix M3. Note 
that H^Jd = Halloo. 

To illustrate the advantage of a balanced connection matrix, we applied LanFRB 
to the matrix, B, that arises from the finite difference discretization (five point stencil) 
of the partial differential operator 

L[u](x) = -Au + oOV-(ux) - 12ÖU 

on a regular 31-by—31 grid over the unit square with zero boundary values [34]. 
Though the eigenvalue problem for B is ill posed (because the coefficients 50 and 125 
are enormous compared to the grid size) this example is relevant because breakdown 
occurs at step 56, and at the previous step 

|w55|«le-13        and        W^T^ « llpHj. 

Figures 1 and 2 display the absolute values of the entries of the unbalanced connection 
matrix, Ib5-£l^ Pg5Q55, and the balanced connection matrix, M55, on a semi-log scale. 

Recall that (pj+i)* and q3+x are obtained from (p'J+i)* and q'J+l by GS. If 

(3.7) n^+i)*^i^r1/2iioo< 

then, by (3.4), 

\Mj\ 

|(pJ+1)*QJ|fiJ|-
1/2||00 < e. 

If 

C\ R) ll!0.|_1/2p*/i'     li   < 
M3\\l 

then, by (3.5), 
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Row Indices 
Column Indices 

Figure 1: I55 - Ü^P^Q55 (unbalanced op.); \\hn - ^55 ^Aslli ~ le - 4 

Row Indices 
Column Indices 

Figure 2: M55 (balanced op.); ||M55||i « 2e - 11 
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The sequence 

(3-9) (maX(||(^+J*Qj|ni|-
1/2||eoJ||fii|-^i';g5+1||1))i>1 

tends to increase with j gradually until the last term is too big. At that step a 
correction step is made: (q'j+1 —> qJ+i). This change reduces the latest term in (3.9) 
to e. Hence semi-log graphs of (3.9) look sawtoothed. 

We use this perspective on GS to find the "right" definition of semi-duality. For 
overall efficiency we want to minimize the total number of corrections and particularly 
avoid unnecessary corrections near the end of a Lanczos run. So we seek the weakest 
conditions that give adequate levels of duality. To this end we explicitly ensure that 

(3.10) ^(Mp'j+irQAtoA-^lUmi^ 

Condition (3.10) takes no account of LCJ+I and if \UJJ+1 | is too small it is essential not 
to accept (Pj+1)* and q'j+1. So, in addition to (3.10) we must take account of possible 
growth in p:/j+i||i. To analyze this note that the nonzero part of the rightmost 
column of Mj+i is 

C)-^2P'r/     i, ,.     1-1/2 

Since 
\\n-1/2P~qi+1\u,<J+1\-V% < IIM^. 

a necessary condition for (3.10) to hold at step j + 2 without correction is that 

II   |0 -1 — 1/2 p~ni       || 
CiM) II   l-'jl ri Vj + llll        ||   |0 1-1/2 p-        /       II     / 
^•n^  1...     |i/2      IM^+il        PJ+1qJ+2h < 

WM^iu     || \nJ+1r/2p;+lq'j+2\u<e. 
The square root of (3.11) yields 

Ml   IO-l_1/2P"V       II    I!   IO-       |-l/2p*     „'       ||   \l/2  <•  ,1/2|, , |l/4 III   l^jl -rj?j + ll|l|l   l"j + l| ^j + i?j+2||lj <  (■        K + l|        : 

and this is guaranteed by 

(3.12) max(|| ^^PJq'^U \^x\-1,2P-+^M < e1/2k+i|1/4- 

The similar argument applied to (pj+1)' yields our definition of semi-duality. 

Definition 3.13  Semi-duality holds at step j + 1 if for i < j, 

max Mb'*   0-\ü-\~1/2\\ II \0\~1/2P*n'    II  ^   <   f
xl2 I,.     I1/4 
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4      The Lanczos Algorithm With Correction 

In this section, we present a practical and efficient implementation of the Lanczos 
algorithm with correction (LanCor hereafter). Several implementation details are ad- 
dressed and relevant properties of the computed quantities are established. Extensive 
work from [7] on how to implement the Lanczos recurrences is summarized in §4.1. 
In §4.2 we discuss how to correct the duality loss and what effect this has on the 
computed quantities. An efficient implementation of correction steps called retroac- 
tive correction is discussed and justified in §4.3. In §4.4 we will show how to compute 
(p'j+i)*Qj and PJq'j+i without accessing P* and Qj and using only O(j) floating point 
operations and storage per step. The Lanczos algorithm with correction is given in 
§4.5. 

4.1     Implementing The Three Term Recurrences 

A prerequisite to the analyses of later sections is an understanding of how nearly dual 
consecutive pairs of left and right Lanczos vectors can be. We say that local duality 
holds at step j if, 

(4.1) max(|P*9«-il> \p*-iQi\) < 4e- 
Ki<] 

In [7] it is proved that local duality is maintained to within a (theoretically necessary 
but generally unrealistic) factor of n by the implementation of the three term recur- 
rences below called LanLD. LanLD stands for the Lanczos algorithm maintaining 
local duality. 

LanLD Algorithm 

Start: px =p/||p||2,gi = q/\\qh,uJo = l,/?i = 7i = 0,wi = p\q\. 

Iterate: For i=l,MaxStep 

1- r* = p\B - 3^pU     st = Bqt - q^^ 

2. »j e {p*sl,r*ql} 

3. r; := r? - %pl     st := sz - qi% 

4. a[ = r*qi,        a\ = p*Si /* these are small corrections to Q, */ 

5- r* :=r*-^pj;     st ■= Sl - q^ 

6. ß+i = ||r*||2,     7i+i = \\si\\2 

7. Check for invariant subspace. See equations (4.3) and (4.4). 

8. p*+l = r*/ßl+u     qi+1 = s2/7l+i 

9. ul+l = p*+1qi+i 
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10. Check for breakdown: \tOi+i\ < 10(i + l)e 

11. Check for convergence periodically ( see §2.2 ) 

Remark 1.  The meaning of step 2 is that at can be assigned either of the values 
p*sl or r*qj, it does not matter which. 
Remark 2. Local duality is maintained by steps 4 and 5. 

The properties of the quantities computed by LanLD are summarized as follows. 
We assume that the no breakdown condition holds, 

(4.2) min jc^l > 10je, 

that the no invariant subspace conditions hold: for 1 < i < j, 

(4.3) A+i > max(v^($i + 1 + ip)\\B\\2, \alM\), 

and 

(4.4) 7f+1 > max(^($! + 1 + ^)||B||2, KMD- 

Here $; is the growth factor defined (2.8), and the constant ip accounts for the 
rounding error introduced when the operator B is applied. 

In this section, we add two more error bounds to our model of the computed 
quantities which are proved to be realistic in [7]. First, the Lanczos vectors satisfy 
the perturbed three-term recurrences 

(4-5)                         ßj+1p*J+1 = V)B - a-^V] ~ ^VU ' /J- 

and 

(4-6) Qj+ilj+i = Bq3 - q3 
J- - ft-i^-^- - gv 

where the matrices F3 = [/i,..., fj] and G3 = [gi,..., g3] are such that 

(4.7) maxdli^lla, HGjUa) < e(^- + 1)||B||2. 

Second the tiny refinements to the trailing bits of each a, to maintain local duality, 

(4-8) D\ = diag(a$=i   and  D] = diagMLi 

satisfy 

(4.9) max(l|^||2,||JD;||2)<e($J + l)||i?||2. 
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4.2    Properties Of The Computed Quantities 

Recall from §3 that the loss of duality of the candidate Lanczos vectors to the previous 
Lanczos vectors is corrected using a version of the Gram-Schmidt process. Our model 
of the properties of the quantities computed by LanCor is obtained by amending the 
model for LanLD to account for correction steps. 

To correct the loss of duality of the (i + l)st Lanczos vectors to the previous 
Lanczos vectors at the end of a Lanczos step we first compute 

(4-10) *,- = (PJ+irOi-i,     Vl = Pllql+v 

Next we "re-bi-orthogonalize" or correct the candidate Lanczos vectors; 

(4.11) (pJ-+i)* = ((p;-+ir-<nr-1i^-i. 

and 

(4.12) qj+1 = q'j+l - Qi-^iVi- 

Let Xj denote the set of all indices i up to and including j at which correction 
steps are taken, let e; denote the ith column of the j x j identity matrix, and let 

(4.13) A, = D\ + £ ßi+MW, 0),    T, = D] + £ ( ^ ) ej7i+1. 

Recall that Dj and Dj are defined in equation (4.8). 
For the purpose of illustration T40 + T40 corresponding to a model problem dis- 

cussed in [24] is displayed on a semi-log scale in figure 3. 
The governing equations for LanCor are 

(4.14) P*B = {T3 + Ajnjip; + ejßj+1p*j+1 + F/, 

and 

(4.15) BQj = Q3n-\T3 + Tj) + qj+aj+iej + Gr 

The matrices Tj (for upper) and Aj (for lower) are upper and lower triangular matri- 
ces of spikes, one spike for each correction step. Local duality, (4.1), equation (4.16), 
and 

(4.16) maxiWAjQJ1'2^ |^71/2T,||2) < yft{^ + 1)||S||2. 

are also realistic for LanCor [7]. 
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The matrix of spikes T + Upsilon 

Column Index 
Row Index 

Figure 3: T40 + T 40 -r  J- 40 

4.3    Retroactive Correction 

In this section we show how to implement a correction step. As in the symmetric 
case, correction steps are taken in pairs so that the duality of the current Lanczos 
vectors deteriorates slowly. As we purge the (j + l)st candidate Lanczos vectors 
of their components along the previous Lanczos vectors, we retroactively purge the 
jth Lanczos vectors of their components along the first j - 1 Lanczos vectors. We 
implement the correction step so that each Lanczos vector is transferred from slow 
storage to fast storage and back again only once. Following [23] we call this retroactive 
correction. We apply the two-sided modified Gram-Schmidt algorithm to both the 
last two pairs of Lanczos vectors. Retroactive correction is implemented as follows. 

Retroactive Correction Algorithm 

Iterate: For i = l...j — 1, 

1. pJ+i :=PJ+i -Pi(ur*(Q*Pj+i)) 

2. pj :=pj -Pi(e)r*(QiPj)) 

3-  q3+i := ?j+i - qi(^i\p*qj+1)) 

4.  qi := qj - q^;1 {p*qd)) 

Recover local duality 

1. pj+i :=pj+i -Pj{uJ*{qjPj+i)) 
2. qj+1 := qj+1 - q3(uj-\p)q3+l)) 
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It is important to not normalize p3 and qi after a retroactive correction step. Retroac- 
tive correction changes the relations among the computed quantities. Nonethe- 
less, a careful analysis shows that as long as semi-duality is maintained the prop- 
erties (4.1), (4.16), (4.9), and (4.16) are also realistic for LanCor with retroactive 

correction [7]. 

4.4    Monitoring The Loss Of Duality 
 i/o, —1 /2 i 

We must correct for the loss of duality when either p*+1Qj|% | or |^ \P3qj+i 

increases to v^K^il- TO compute these vectors at each step is about as costly as 
correcting the loss of duality at each step. The same problem arises in the symmetric 
case. Compromise symmetric Lanczos algorithms avoid this costly step by updating 
a recurrence estimating the loss of orthogonality at each step [11, 18, 19, 23, 27, 28]. 
In this section we extend the partial reorthogonalization algorithm (PRO) from the 

symmetric Lanczos algorithm [27, 28]. 
The sequence of vectors (p*+1Qi) and {P*ql+i) satisfy a three-term recurrence 

which we now derive. Let uitj = p*qj. In this notation, u)t = uiti. 
Suppose that a correction step is not taken at step j (i.e. in computing the (j + l)st 

Lanczos vectors). Multiplying equation (4.5) by Qj and substituting p* (4.15), we 

have 

(4.17) —P*i-yQj + "iJ+iTj+ie; + tfpi ~ fjQj- 
UJj-i 

Similarly multiplying (4.6) by P* on the left and substituting in (4.14) qv we have 

(4.18) - ^P/fc-i + Ci^+i^+ij + FTqj - P*gr 
UJj-l 

To further reduce equations (4.17) and (4.18), we first need to discuss some ad- 
ditional relations among the computed quantities. First we show that the correction 

terms 
p'jQj^Tj   and  Ajüj'PJqj 

negligibly effect the loss of duality among the computed Lanczos vectors. For this 
reason, these matrices are not used to estimate the loss of duality, and are not stored. 
Since j is not a correction step equation (4.13) implies that 

AJQ~1p*qjeJ = D^ej = e^oty 
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Substitute the definition of semi-duality,   (3.3), and equation (4.16) to find 

IIA^J1 ( P*-M ) ||2 < \\^~ll%\P~-[2PUq3h < (*j + l)e\\B\\2. 

The analysis of p*Qj£lj 1TJ is similar. 
Next we expand terms such as P*qf 

(4.19) p)Qj = {fiQj-u 0) + uje),   and  P;Qj = f 
Pi-Q

l9i ) + ^e,, 

By equation (4.19) and the definition of Tj, we have 

, a,- + a'-  , 
P-QJ(fi7%-^7—

i/) = u3 

a-,- + a' 
(4.20) (pJQj-i, 0) ^-^ - -^-^^J + 7,^4-1 - ajcj' 

and 

(T.n;1 - -J—Li)p;qj 

<«•>      =(w-^)(V j +ej-^jUj -eja). 

Since step j is not a correction step the last row of Tj and the last column of Aj are 
zero. That is why they do not appear. 

We also need the identities 

(4.22) p*_xQ3 = (p*_1Qj_2, 0,0) + Uj-ie*^ + c^-^e*, 

and 

(4.23) PiQj-i =\ ° l+Uj-iej-i+ujjj-iej. 
\ o  ) 

Finally substitute equations (4.22) and (4.20) into equation (4.17) and equa- 
tions (4.23) and (4.21) into equation (4.18) and the desired recurrences appear 

ßj+iPl+1Qj = (^Q^1,0)(QJ1TJ - %-I) 
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1jU3tt„* 
wi-i 

((^_1gJ_2,o,o) + ^_1Jep+ 

(4.24) 

and 

KJ+i7j+i + a$ - a})e* + 0(e(*j + 1)||5||2) 

/^+l7j+1 = (T^-1 - £/) ( V-M 
w, 

w7_i 0 

U     o 

\ 
+ Ujj-iej 

J 
+ 

(4.25) ej(ßj+1uj+1J + a\ - a*) + ü(e($3 + 1)\\B\\2) 

4.4.1     An Implementation of the Monitoring Algorithm 

LanCor is similar to LanLD, but with additional work done (if necessary) between 
LanLD iterations to maintain semiduality. The perturbed recurrences (4.24), (4.25) 
are invoked to compute ßJ+1p*+1Q3 and P*qJ+1jJ+i after ßj+l and 7i+i are computed 
as in step 6 of LanLD. The decision whether or not to correct duality loss is then made 
as determined in §3.1. In this section we show how to implement the recurrences to 
obtain accurate estimates of the duality loss. 

In LanCor extended local duality is maintained. At each step, j, we explicitly 
'dualize' the candidate j + 1th Lanczos vectors the j - 1th Lanczos vectors and then 
the jth. Lanczos vectors (local duality). 

P*q3+i is estimated by h3+i. Initially h2 and h3 are exact, and for j > 2, 

(4.26) 
Ctj 

Äj+i7;+i = (T^j1 - -±I) 
tO-j 

h-i 
h ■3-1 

0 
0 ^7-1 

ej-2öj 
(r) 

To account for the perturbation of the three term recurrences by correction steps, 
ediagl^J1!}! is added to the right hand side above if the loss of the duality of q3-\ 
and q3 was corrected. The j - 1 and j entries of the estimate, hj+u are assigned the 
exact values p*_xqj+i, and p*q3+i. Maintaining extended local duality sweeps the a- 

term from the jth entry to the j - 2th entry, hence the e3-2ay above. The estimate 
of p*+1Q3 is computed by the similar recurrence. 
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4.5     The Implementation Of LanCor 

In this section we summarize the implementation of LanCor, the Lanczos algorithm 
maintaining semi-duality. 

LanCor Algorithm 

Start: Pl =p/\\p\\2,qi = q/\\qh,Uo = l,ßi = 7i = 0,Wi = p\qi- 

Iterate: For i=l,MaxStep 

l.r*=p;B-^pU,     8i = Bqi-qi.^ 

2. on = r*qt 

3- r* = ri-%Ph     si = si-qifi 

4. Maintain extended local duality (see §4.4.1) 

5. a\ = r*qu a\ =p*isi 
I r 

7. 8l+1 = ||r*||2,     7i+i = ||si||2 

8. Check for invariant subspace. See equations (4.3) and (4.4). 

9. p*+1 = r*/ßl+u     ql+l = Si/ii+i 

10. Ui+i = p*+1qi+i 

11. Check for breakdown: |O;J+1| < lOze 

12. Monitor duality loss ( see §4.4.1 ) 

13. Correct duality loss only if necessary ( see §4.3 ) 

14. Check for convergence after a correction step only ( see §2.2 ) 

5     Preserved Quantities 

The Lanczos algorithm with correction (LanCor) applied to an operator B after j suc- 
cessful steps yields matrices P* and Q3 of Lanczos vectors and the reduced tridiagonal- 
diagonal pencil (7),fij). In this section we compare the computed quantities to the 
corresponding exact quantities determined by B, the row span of P* and the column 
span of Qj. We say that a computed quantity is preserved when it is as close to the 
corresponding exact quantity as the data warrants. 

Our main result is that semi-duality suffices to preserve (Tj,Qj). See §5.3. 
The analysis is more complicated than in the symmetric case. We must avoid 

perturbations that are proportional to HfiJ1!^ = l/min^^ |o>,j. 
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5.1 Exact Projections 

The operator 

(5.i) n, = Q3{P;Q3)-
1
P; 

is the oblique projection corresponding the computed Lanczos vectors. The pro- 
jection of B onto the spaces spanned by the Lanczos vectors is the matrix YljBUj. 
See Definition 2.1. The Lanczos vectors are dual if and only if P*Qj is diagonal and 
nonsingular. 

We recover exactly dual bases corresponding to the computed Lanczos vectors by 
use of the LDU factorization of P3*Q3; 

(5.2) P*Q3 = LjfljUj. 

Recall that Qj =di&g(P*Qj). If Clj is nonsingular then substitute (5.2) into (5.1) to 
obtain 

(5.3) Uj = Q3U~l Clj1 LfP*. 

The rows of 

(5.4) P; = L-'P; 

and the columns of 

(5.5) Qj = QjU-1 

are dual since 
P;Q3 = Lfp;QjU^ = Cij. 

Two-sided Gram-Schmidt applied to P* and Qj yields P* and Qj. Next define Tj by 

(5.6) tj = P;BQJ. 

Note that Tj is not tridiagonal. The representation of n^IL, with respect to the 
bases &~jlP3* and Qj is ^tjlrT3. This matrix is equivalent to the pencil (T3,Cl3). This 
pencil is analogous to the orthogonal projection of the operator onto the span of the 
computed Lanczos vectors in the symmetric case. 

5.2 Conditions for Preservation 

Each computed Lanczos vector is the sum of the vector which exactly satisfies a 
three-term recurrence and another vector whose norm is proportional to the machine 
epsilon, e. See equations 4.5 and 4.6. This result is typical of Krylov subspace methods 
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[19]. This perturbation of the Lanczos vectors causes perturbations of the diagonal 
elements of Q by approximately e, and perturbations of the tridiagonal elements of T 
by approximately e||jB||. We show that exactly correcting the loss of duality among 
the computed Lanczos vectors does not change the pencil (T, Q) by significantly more 
than these amounts. We call this property the preservation of T and Q. The elements 
of T and Q are not in general determined to working (or full relative) precision. This 
implies that 2T2-1 and Q_1T are not determined to full absolute precision. 

This section addresses the problem of determining necessary and sufficient condi- 
tions for three properties of the computed quantities to hold. The three properties 
are (1) that W = P*Q admits an LDU factorization, (2) that the diagonal matrix 
D is approximately Q, and (3) that L and U are well conditioned. To be precise, we 
determine realistic sufficient conditions for any complex nxn matrix W with nonzero 
diagonal elements to admit an LDU factorization 

(5.7) W = LDU 

such that 

(5.8) Hdiag(W') - £>||2 < 2e, 

and such that 

(5.9) maxdlL"1!^, ||C/-1||2)<2. 

In our case W = P*Q. By equation (5.2) there holds D = Cl and (5.8) immediately 
implies the preservation of Q. The preservation of T is discussed in §5.3. 

Our results are given in the two theorems below. Theorem 5.10 gives necessary 
and sufficient conditions for conditions (5.7) and (5.8) to hold. Theorem 5.13 gives 
sufficient conditions for all three conditions to hold which are only slightly stronger 
than the hypotheses of Theorem 5.10 (i.e. the lower bound on \iv.j\ increases from 2 je 
to lOje). 

For any matrix C let triu'{C) denote the strictly upper triangular part of C. 

Theorem 5.10 Let W be an j x j complex matrix, let Q. = diag(TT) = diag(cJi). 
Suppose that e > 0. j > 2, (j — 2)e < 1, and that W satisfies the following hypotheses; 

(5.11) min \uot\ > 2(j - 2)e. 

(5.12) max(||fi-1/2trm'(W')||i, W^^triu'iW*)^) < fe. 

Then equations 5.7 and 5.8 hold. 
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Proof. [7] 
Remark. The second hypothesis, (5.12) is equivalent to the semi-duality condi- 
tion (3.3). 

One approach to proving Theorem 5.10 is to apply the perturbation theory for 
Gaussian elimination. Many papers have appeared on this subject recently [2, 32, 
33]. To guarantee condition (5.8), all of these general perturbation bounds require 
significantly stronger hypotheses than Theorem 5.10. 

Theorem 5.10 gives necessary and sufficient conditions for the preservation of fi 
(i.e. the condition (5.8)). By increasing the lower bound on \LüJ\ by a factor of 5, we 
will show that the computed quantities are preserved. Due to the difficulty of this 
task, we must be satisfied with un-achievable but realistic bounds. 

Theorem 5.13 Let W be an j x j complex matrix, let Q = diag(W) = diag(o>i). 
Suppose that e > 0, j > 2, (j — 2)e < 1, and Q is nonsingular. Suppose in addition 
that W satisfies the hypothesis (5.12), and that 

(5.14) min \uJi\ > lOje. 

Then equations 5.7 to 5.9 hold. 

Proof. [7] 
The idea of the proofs is to decompose W into the sequence of extensions 

(5.15) Wi+1 = 

We define the sequence {KJJ=1 corresponding to a norm ||.|| by 

(5.16) maxdl^iH, \\yi\\) = Kt. 

As in [16], we then extract the worst case information corresponding to {«j}^=1. 

5.3    Preservation of T 

The pencil computed by the three term recurrences can eventually become of larger 
order than the original matrix and clearly differs from the one that would be produced 
in exact arithmetic, but this can never happen if semi-duality holds. In this section, 
we show that if semi-duality is maintained then the computed pencil, (Tj, £lj) agrees 
with the exact oblique projection of the spans of the computed left and right Lanczos 
vectors to full absolute precision. 

Correcting the loss of duality of the (j + l)st Lanczos vectors to the previous 
Lanczos vectors replaces the vectors computed by the three term recursion with (ap- 
proximations of) pj+i and qj+i, where pj+\ denotes column j + 1 of Pk and q3+\ 
denotes column j + 1 of Qk. The corresponding elements elements of T and Q change 

23 



to (approximations of) the corresponding elements of the dense matrix f and the di- 
agonal matrix Cl. We want to know how large this perturbation is, and in particular 
when it is negligible. 

The following theorem established the preservation of T for LanCor. Recall that 
Theorem 5.10 establishes the preservation of fl The proof uses the properties of 
the computed quantities established in §4 and this section. The hypotheses of The- 
orem 5.13 are the no-breakdown and no-invariance conditions from §4.1, and the 
semi-duality condition: for 1 < i < j, 

(5.17) max(|||^r1/2^+i||i, |||ar1/2Q*Pi+i||i) < v^- 

Theorem 5.18 Let B be a complex n x n matrix, let P* and Qj be the matrices 
of Lanczos vectors computed by the Lanczos algorithm with correction. Let Tj de- 
note the computed tridiagonal, and let Tj be defined as in equation (5.6). Lf Qj = 
diag(P*Qj) satisfies the no-breakdown condition, (4-2), the no-invariant subspace con- 
ditions, (4-3) and (4-4), and semiduality holds (see 5.17 ), then for <$j defined in 
equation (2.8), there holds 

\\f3-TA\2 = ö{3{<$>] + \)e\\B\\2). 

Proof. [7] 

6     Numerical Experiments 

The Lanczos algorithm maintaining local duality only (LanLD), semi-duality (Lan- 
Cor), and full duality (LanFRB) have been applied to many tasks. We present the 
results for one representative example here. All computations were done in MATLAB 
on an IBM Power Workstation with machine precision e « 2   10~~16 = 2e — 16. 

6.1     The Tolosa Matrix 

We illustrate the properties of the Lanczos algorithm with correction (LanCor) using 
the Tolosa matrix, A, of order n = 2000 from the Harwell Boeing Sparse Matrix 
Collection. The computational task is to compute the largest eigenvalues of A to half 
precision. We choose to compute the 50 largest eigenvalues because this emphasizes 
the difference between LanLD and LanCor. A has 5184 nonzero entries and \\A\\i ?z 
le + 6.8. Since A averages less than 3 nonzeros per row, the inner products in the 
three term recurrences cost nearly as much as the matrix vector multiplications, in 
terms of floating point operations. 

The eigenvalue problem for A is known to be ill conditioned and A is known to 
possess multiple eigenvalues [25]. For theoretical purposes, we computed the eigen- 
values of A by the QR algorithm, and observed that the spectral radius of A is 
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approximately le -f 3.4. For this reason, the MATLAB function balanceQ was ap- 
plied to A to obtain a balanced matrix, B, diagonally similar to A. For this B there 
holds ||-B||i ~ ||-S||oo ~ le + 4.0. Since ||5||2 < ||£?||i||.B||oo, balancing yields a matrix 
whose Euclidean norm is within a factor of 4 of its spectral radius. QR applied to B 
computes three real eigenvalues, —12.098, —24.196, and —36.294, of multiplicity 382; 
the remaining eigenvalues are distinct and well separated. Though the eigenvalues of 
A and B are the same (barring underflow), the computed eigenvalues of A and B by 
QR (without balancing) agree to from full to half relative precision. We will compare 
the eigenvalues of B computed by the QR algorithm to the three implementations of 
the Lanczos algorithm, full re-bi-orthogonalization (LanFRB), LanCor, and Lanczos 
with only local duality (LanLD), and Arnoldi's method. 

We did not compare the Lanczos algorithm to the Implicitly Restarted Arnoldi 
Iteration [29, 14]. Arnoldi's method does establish a lower bound for the number of 
steps required by Implicitly Restarted Arnoldi Iteration. Implicit Restarts can be 
incorporated in the Lanczos algorithm as well as Arnoldi's method [12]. 

6.2    Results 

All three implementations of the Lanczos algorithm computed the requested 50 eigen- 
values to the same high accuracy. For Arnoldi's method, LanFRB, and LanLD the 
Ritz values are checked every 50 iterations. In each case -p\ — Qi IS the same ran- 
dom vector (normal distribution). LanFRB and LanCor have identical convergence 
properties; this is a consequence of the preservation of the pencil (T, Q) (see §5). 
The reward for maintaining semi-duality is that fewer Lanczos steps are required to 
complete the given task. In this case, LanFRB and LanCor required 400 steps and 
363 Lanczos steps, respectively, while LanLD and Arnoldi's method required 450 and 
400 respectively. 

No copies of converged eigenvalues appear among the Ritz values when semi- or 
full duality is maintained, but copies do appear among the Ritz values computed by 
LanLD. 

LanCor takes 16 correction steps to compute the requested eigenvalues, l/25th as 
many correction steps as LanFRB. The table below gives the last 9 steps at which 
the duality loss is corrected in LanCor and the number of converged Ritz values at 
that step. 

Correction step 
No. Eigenvalues 

238    264    283    295    310    323    333    347    363 
14      22      26      28      34      38      42      48      56 

For comparison we applied Arnoldi's method with Modified Gram-Schmidt or- 
thogonalization to this task and computed eigenvalues of B to the same accuracy 
[26]. The number of converged Ritz values near the end of the run are displayed 
below. 
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Arnoldi step 
No. Eigenvalues 

50    100    150    200    250    300    350    400 
0       0       0       6       16      30      48      70 

In this example Arnoldi's method, LanFRB, and LanCor yield approximate eigen- 
values of similar accuracy for a fixed number of steps; the differences in the number 
of steps is due to the convergence criteria. 

LanFRB, LanCor, and LanLD were each stable in the sense that 

Ifr'THj «35||5| 

even though min ss 9 2e-5 (see §2.3). 
The number of floating point operations (flops) in these Lanczos and Arnoldi runs 

are tabulated below. The flop count for applying the operator ( a sparse matrix vector 
multiplication in this case ) is given in the column OP below, the column EIG displays 
the flop count for solving the reduced eigenvalue problems by the QR algorithm for 
Arnoldi's method, or dqds, an algorithm that exploits the tridiagonal structure, for 
the Lanczos-based procedures [8]. (BI-)ORTH gives the flop count for maintaining 
the duality or orthogonality of the basis vectors, and the the column ALGO contains 
the remaining flop count. The number of steps required by each method is given in 
parenthesis below the algorithm name. 

Results for Balanced Tolosa 

FLOPS OP EIG (BI-) ALGO TOTAL 
(log10) ORTH 
Arnoldi 6.6 9.5 8.8 6.9 9.6 
(400) 
LanFRB 7.0 7.7 9.1 7.7 9.1 
(400) 
LanCor 7.0 7.8 8.1 7.8 8.4 
(363) 
LanLD 7.0 7.8 None 8.0 8.2 
(450) 

We were surprised at the large number of flops required by the QR algorithm in 
Arnoldi's method in this example. For comparison note that computing the eigenval- 
ues of B by the QR algorithm requires le + 11 flops. 

Maintaining semi-duality requires an order of magnitude fewer flops than full 
duality. Also LanCor has an order of magnitude fewer flops than Arnoldi's method. 

LanLD requires the fewest flops and takes the most steps. The low flop count is 
due to the less rigorous stopping criteria. The error introduced by accepting a Ritz 
value as an eigenvalue is estimated by the smaller of three quantities: the distance 
from the Ritz value to the nearest remaining Ritz value, the left, and the right un- 
normalized residuals. Recall from §2.2 that if v is an eigenvector of Q^T, then Qv is 

26 



Estimated (dash dot) and Exact (solid) 
10 

10 

10 

10 

^ 10' 

10 

10 

10 

10 
150     200 

Lanczos step 

Figure 4: Numerical duality for LanCor applied to Tolosa matrix 

used to approximate eigenvector of B, and reliable accuracy estimates must factor in 
the shrinkage HQt'lh/IMh- We observed shrinkage, i.e. HQ^Ib/IK'lb ~ -01, for all the 
Ritz vectors of interest in this example. For this reason the error estimates based on 
un-normalized Ritz vectors are 100 times too small. In LanLD the Lanczos vectors 
are not stored and so the shrinkage of the Ritz vectors is not available. Even if the 
Lanczos vectors are stored, forming the eigenvectors requires le + 8.6 real floating 
point operations (see §2.2). That is, if we demand reliability from LanLD similar to 
that of LanCor. the LanLD flop count will increase above the LanCor flop count. 

We conclude by illustrating the effectiveness of the duality monitoring algorithm 
of §4.4.1. Figure 4 compares the log10 of our estimate of 

max(|| \nt\-
1/2P*qt +i|U> Uil-^QlPi +ii, a: 

at each step (dash-dot line), i, to the exact value (solid line). Each spike indicates a 
correction step.  The dotted line across the top of the figure is the target threshold 
e^bl1/4 
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