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Abstract 

Suppose that one knows a very accurate approximation a to an 
eigenvalue A of a symmetric tridiagonal matrix T. A good way to ap- 
proximate the eigenvector x is to discard an appropriate equation, say 
the rth, from the system (T — aI)x = 0 and then to solve the resulting 
underdetermined system in any of several stable ways. However the 
output x can be completely inaccurate if r is chosen poorly and in the 
absence of a quick and reliable way to choose r this method has lain 
neglected for over 35 years. 

We show how double triangular factorization (down and up), which 
is closely related to 'twisted factorization', gives us directly the redun- 
dancy of each equation and so reveals the set of good choices for r. 

The results extend to band matrices and the applications go be- 
yond eigenvector computation to determinant evaluation and solution 
of well conditioned systems. 
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1    Introduction 

The task that started these investigations is the computation of eigenvectors 
of a symmetric tridiagonal matrix (entry (i,j) vanishes if |i - j\ > 1) once 
the eigenvalues are in hand. This is not a new problem and there are good 
programs available in libraries such as LAPACK and NAG. Nevertheless the 
experts do not consider the situation satisfactory, see [9]; the complexity of 
the programs seems out of proportion to the difficulty of the task and the 
adaptation of the current versions of inverse iteration to parallel mode is 
frustrating. 

Let us briefly sketch the situation. Given an accurate approximation a 
to an eigenvalue A of an n x n symmetric tridiagonal matrix T one considers 
the solution x to the system of equations 

(T-aI)x = b (1) 

where b is to be chosen wisely. Since a ^ A the best choice for b is the 
eigenvector we seek but this is not an option. Next best is to choose for b 
a column r of the identity matrix I = (e1; e2,..., en). As will become clear 
in Section 3 choosing b = eT is equivalent to omitting Equation r from the 
system (1). The value r = n was proposed by Wallace Givens in 1954, see 
[5], but no fixed value of r, independent of a and T, will do. 

Here is a quotation from Wilkinson concerning the computation of an 
eigenvector uk, in Chap. 5, Section 50, below Equation (50.3) of [18]: 

'Hence if the largest component of uk is the rth, then it is the 
rth equation which should be omitted when computing uk. This 
result is instructive but not particularly useful, since we will not 
know a priori the position of the largest component of «*•' 

Ipsen, in a very readable survey attributes the idea of omitting one equa- 
tion of the system to Wilkinson, see Section 7 of [9], but we suspect that 
this method was routinely taught in mathematics classes before Wilkinson 
was born, see [8], [2], and [14]. He was born in 1919 and [8] was published 
in 1921. 

Wilkinson abandoned the hunt for a good value of r and used 6 = PLe 
where T - al = PLU denotes triangular factorization with partial pivoting 
and e = £"=i ±e,-, see [17]. However even this choice fails if some eigenvalues 



axe equal to working accuracy and he resorted to 'tweaking' the computed 
eigenvalues in such cases. 

In private communication to one of us Wilkinson declared that he would 
prefer 6 = er to 6 = PLe if only he knew a quick, reliable way to choose r 
so that the rth entry of the wanted vector is above average, not necessarily 
the greatest. 

The current LAPACK codes, see [4], do not use Wilkinson's choice; in- 
stead b is chosen 'at random' from an appropriate distribution but this makes 
it difficult to obtain orthogonal eigenvectors for close eigenvalues. The case 
for this approach is made in [10]. 

In this paper we present a new way to choose r that depends strongly on T 
and a. However it is not free; the cost is essentially n extra divisions. It turns 
out that our method produces further information, beyond the right value 
of r, that helps us avoid the computation of completely negligible entries in 
the wanted eigenvector. In this way the overhead for finding the right value 
of r pays for itself as n becomes large. See Figure 4 after reading Section 3. 

Our method uses two complete triangular factorizations, one starts from 
the top and the other from the bottom. This idea, of itself, is not new and 
forms the basis of 'twisted LDU\ What has not been noticed before is that 
by combining both sets of 'pivots' one finds the redundancy measure of each 
row. Then one is in a good position to choose r. Twisted factorization, 
in contrast, stops the eliminations when they meet at some predetermined 
interior row. By completing the up and down factorizations at a total cost 
of 2n divisions we have full information on all possible twisted factorizations 
each of which costs n divisions. A few historical remarks on twisted LDU 
are given at the end of Section 3. 

Section 2 discusses the 'obvious' solution to the problem and shows its 
shortcomings. The new method is implicit in Theorem 1 which is established 
in Section 3 along with Theorem 2 which presents accurate ways to compute 
the determinant. Section 4 shows how the quantities introduced in Theo- 
rem 1 reveal the 'envelope' of an eigenvector when the tridiagonal is normal. 
Section 5 extends the results to cover breakdown in triangular factorization 
and zero entries in eigenvectors. Section 6 extends the results of Section 3 to 
block tridiagonal matrices. Application of these ideas and error analysis will 
be given elsewhere. 

The reader is expected to know the LDU theorem concerning existence 



and uniqueness of triangular factorization and the expressions for the pivots, 
as the diagonal entries of D are often called. In this representation both L 
and U have l's on the diagonal. In practice, when division is slow, people 
often use (LD)D-1(DU) instead of LDU but the distinction is not important 
in this paper. 

The main notational issue is the representation of submatrices. 
In MATLAB notation the submatrix of M in rows i through j and columns k 
through / is given by M(i :j,k:l). This is clear but sometimes too obtrusive. 
We use Mi:j to denote the principal submatrix M(i : j,i : j). For column 
vectors we prefer simple lower case Latin letters as, y,... in bold face type, 
with entries x(l), x(2),..., x(n). For subvectors we use either x(i : j) or xi:j. 
Finally we try to use lower case Greek letters a,ß,... for scalars although 
matrix entries will be written as M(i,j) or Mij. 

One notational innovation is to use + to indicate a process taking rows 
in increasing order and - to indicate the process going in decreasing order, 
e. g. LDU is written as L+D+U+ while UDL is written as U-D-L-. 

As usual ||v|| = ||v||2 = y/i^, while Hi;^ = max,- \v(i)\. The dimension, 
or order, of ex or of any column of the identity matrix / = (el5 e2,..., en) is 
given by the context. 

Theorem 1 was presented at the SIAM conference on Parallel Processing 
in San Francisco, California in February 1995 by two of us (KVF and BNP). 
Previous work that used a different method to compute the z^ of Theorem 1, 
a technique more prone to overflow, was presented ( by KVF and BNP) at 
the Householder XII conference at Lake Arrowhead, California in June 1993, 
and the SIAM Applied Linear Algebra meeting in Snowbird, Utah in June 
1994. 

2     A Classical Analysis 

In case a pure mathematician should, by chance, read this material it seems 
wise to begin by explaining that the problem discussed here is not as trivial 
as it may appear at first. It is the computer's limited precision that causes 
the difficulties. 

Anyone who has mastered an introductory course in matrix theory and 



who has absorbed the significance of the tridiagonal form J (with nonzero 
values adjacent to the diagonal) might reason as follows. 

Lemma 1 An eigenvector of an unreduced tridiagonal matrix J cannot have 
a 0 in the first or last component. 

Proof. Consider the equation for an eigenvector x (^ 0) associated with an 
eigenvalue A, 

(J-XI)x = 0. (2) 

Suppose that x(l) = 0. Then the first equation in (2) dictates that x(2) = 
(A — Jii)x(\)l J\2 = 0 as well, since J12 =^ 0. Now the second equation dictates 
that a;(3) is a linear combination of x(l) and x(2) and also vanishes. Pro- 
ceeding with the remaining equations, in order, it appears that every entry 
of x must vanish in contradiction to the assumption that x is an eigenvector. 
So the assumption that x(l) = 0 is not tenable. By similar reasoning but 
taking the equations in reverse order it is untenable that x(n) = 0. D 

The preceding argument also shows one way to compute an eigenvector of 
J. It is valid to set x(l) = 1 and to use the first equation of (2) to determine 
x(2), and the second to determine x(3), using x(l) and x(2). Proceeding 
as before the rth equation may be used to determine x(r + 1) and thus x 
may be obtained without actually making use of the nth equation which, 
says the mathematician, will be satisfied automatically since the system (2) 
is singular. 

It would be equally valid to begin with x(n) = 1 and to take the equations 
in reverse order to compute x(n — 1),..., x(2), x(l) in turn without using the 
first equation in (2). When normalized in the same way x and x will yield 
the same eigenvector. Note that the problem has been solved without the 
bother of computing a triangular factorization. 

The proof of Lemma 1 actually shows a little more than was claimed. 
For an upper Hessenberg matrix ((i,j) entry vanishes if i > j + 1) that is 
unreduced (entries (i -f l,i) do not vanish) x(n) cannot vanish and for an 
unreduced lower Hessenberg matrix x(l) cannot vanish. 

The method described above was proposed by W. Givens in 1954, see [5]. 
It often gives good results when realized on a computer but, at other times, 
delivers vectors pointing in completely wrong directions. 



The preceding analysis is valid in exact arithmetic but is inapplicable to 
computer work for the following reasons. First, it is rare that an eigenvalue 
of a tridiagonal (or any other) matrix is representable in limited precision. 
Consequently the systems such as (2) that are to be solved are not singular 
and, in (2), the unused equation will not be satisfied automatically even if the 
solutions of the other equations, in turn, were obtained exactly. The second 
weakness is that, in a computer, the sequence 1, x(2),..., can overflow. This 
is a possibility that pure mathematicians do not have to worry about. 

It turns out that, for isolated eigenvalues, Givens' method gives an excel- 
lent approximate eigenvector whenever the first or last entry of the wanted 
eigenvector is above average in magnitude. Conversely it gives disastrous re- 
sults when those extreme entries are tiny. Wilkinson gives a striking example 
in Section 52, Chap. 5 of [18]. 

The purpose of this section was to show that the 'obvious' method for 
computing eigenvectors is not adequate for finite precision arithmetic. 

3    Diagonal of the Inverse 

In basic courses in matrix theory one is taught to solve a system of equations 
by computing a row echelon form. If the system is singular at least one 
row of the echelon form vanishes and the corresponding row of the original 
system is redundant. The homogeneous system is solved by assigning any 
values to the 'free' variables and backsolving for the rest of them. In general 
a discarded row is not unique; it need only be a linear combination of the 
remaining ones. 

In practice our system is nearly, but not quite, singular and a natural 
modification of the standard procedure is to seek a row that is most nearly 
redundant and then ignore it while determining a solution x to the remaining 
homogeneous system. This solution x will not satisfy the omitted (rth) 
equation. In other words, faced with the fact that Mx = 0 admits only the 
trivial solution one finds a suitable r and solves, instead, Mx = eT8r where 
8r is the 'defect' or residual of the rth equation. 

This is what is meant by 'omitting the rth equation'. 
In general it is difficult to find r and to solve the reduced homogeneous 

system. Fortunately when M is tridiagonal the omission of row r splits the 
system into two separate parts. For a modest cost the residual Sj, for every 



choice of j, can be computed and that gives an excellent basis for choosing 
the right r. 

Theorem 1 (Double Factorization) Let J be a tridiagonal nxn complex 
matrix that permits triangular factorization in both increasing and decreasing 
order of rows: 

L+D+U+ = J = U-D-L-. (3) 

For each k, 1 < k < n, define 7* and z^ by 

JzW = eklk,    *<*>(*) = 1. (4) 

Then 

7fc = D+(k) + D.(k) - Jkk. (5) 

Proof. In what follows MATLAB notation will be used for submatrices that 
are not square and a more condensed representation otherwise. In addition, 
if terms that involve out of range indices are dropped then the analysis that 
follows covers the extreme cases k = 1 and k = n as well. For brevity write 
z for zW. 

Omit the kth equation from (4) and what remains is two homogeneous 
systems. Next use the appropriate triangular factorization (3) to write these 
systems as 

£ij*-i£)i;*-i£/+(l ; k - 1,1 : k)z(l :k)    =   0, (6) 

U^+1:nDk_+1:nL.(k + 1 : n, Jb : n)z(k : n)   =   0. (7) 

By the assumption that the LDU and UDL factorizations exist the matrices 
L1*-1, D^k-\ C/^+1:'1, Dk_+1:n must be invertible. Premultiply (6) and (7) by 
the appropriate inverses to find 

U+(l : Jb-1,1 :k)z(l : k)   =   0, (8) 

L-(k + l :n,k : n)z(k : n)   =   0. (9) 

The last equation in (8) shows that 

l-z(k-l) + Uk
+_ltkz(k) = 0. (10) 

The first equation in (9) shows that 

Lk+hkz(k) + l-z(k +1) = 0. (11) 



Recall that z(k) = 1 and substitute, from (10) and (11), the values for z(k-l) 
and z(k + 1) into the kth. equation of (4) to find, for k = 2,..., n - 1, 

Ik   =   -Jk,k-iU£_ltk + Jktk-Jktk+1Lj;+ltk (12) 

=   (Jkk ~ Jk,k-iU£_ltk) - Jk,k + (Jkk ~ Jk,k+iLk+lk) 

=   D+(k)-Jkk + D.(k), ' (13) 

as claimed. For k = 1 note that D+(l) = J1A and 7l = Z?_(l). For k = n 
note that D_(rr) = Jnn and 7n = D+(n). Thus (5) holds for k = 1 an k = n 
as well as for k = 2,..., n — 1. □ 

Corollary 1 Let J satisfy the Hypotheses of Theorem 1. Either J is singular 
and then D+(n) = £>_(1) = 7n = 7l = 0 and both z^ and z<n> are in J's 
null space, or 

diagiJ-1)-1 + diag(J) = D+ + £L . (14) 

Proof. By the assumption of (3) the only D values that can vanish are D+(n) 
and I>_(1). Also D+(l) = Ju and D_(n) = Jnn so that, when J is singular 

7n = 0 - Jnn + £>_(n) = 0,    7l = D+(l) - Jn + 0 = 0, 

and so Jz^ = Jz^ = 0. 

If J is invertible then -yk must be nonzero for all k = 1,... ,n (to avoid 
giving a nontrivial solution to Jx = 0) and multiplication of (4) by -yk

xJ'1 

yields 

7*-1 = 7*-V*)(*0 = eltfzM = etJ-*ek. (15) 

Thus 

7fc = r r_n    ,    * = l,...,n. 

D 
Equation (14) is a striking property of invertible tridiagonals and gave us 

the title for this section. 

In applications it is useful to have several different expressions for 7i in 
addition to (13). 



Corollary 2   With the notation of the Theorem 1, for 1 < k < n, 

r D+(k)-jk,k + D.(k), 

Ik = < 

-Lt,k-lJk-l,k + Jk,k - Jk+hkUkk+i, 

-Jk,k-iU£_hk + Jk,k ~ Jk,k+iLk+i,ki 

D+(k) ~ UkM1Jk+i,k, 

For k = 1 and k = n omit terms with invalid indices. 

Proof. The first and third expression are just (5) and (12). The others come 
from rewriting (12) as 

Ik = -Jk,k-iJk-i,k/D+(k - 1) + Jkik - JkMlJk+ilk/D+(k + 1)        (16) 

and using Jk,k+i  =  Ukk+1D-(k + 1) = D+{k)U^k+l etc.    and ZL(fc)  = 
Jkk - Jk,k+iJk+i,k/D-(k + 1), etc. D 

When J is nearly singular one is most interested in the values of k that 
yield minimal {■jk] values. 

The middle formula in Corollary 2 is of most interest to us because of the 
following result which shows that no divisions are needed to find z^ once k 
is known. . 

Corollary 3   With the notation of the Theorem 1 and a given value of k, so 
that z = z^k\ Jz = ejt7fc, then 

ZU)   =   -U?;j+1z(j + l),    j = k-l,...,l, 

z(i)   =   -Lli_xz(i -1),    » = Ar + l,,...,n. 

Proof. These equations are (8) and (9) in expanded form. D 

Another reward for computing both factorizations is a wide choice of 
expressions for det J. 
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Theorem 2 Assume the hypothesis of Theorem 1.  Then for k = 1,... , n, 

f D+(l) ■ ■ ■ D+(k - \)lkD.{k + !)•■• D_(„) 

<fei J = < 

and 

D+(l) ■ ■ ■ D+(k - 2) det 

Ik 

D+(k-l)    Jfc_u 

J*,fc_a       £>_(*) 
2?_(lb + l)-.-D_(n) 

7fc+1      IL(fc + l)" 

Proof. Apply Cramer's rule for the kth. entry of z^ where Jz^ = e^k- 
The numerator is a determinant whose kth. column is e^k- Expand it by 
column k to find 

1 = *<*)(*) = lk det Jvk~l det Jk+Vn/det J. 

Since J = L+D+U+ = U-D..L- it follows that 

det J1*-1 = D+(l) ■ ■ ■ D+(k - 1),    det Jk+1:n = D.{k + !)■■■ D.(n). 

The second expression comes from the twisted factorization of J: 

■)l:k-2 

D J = L1*-1   O 
o      uk:n 

D™ 

Dl+1:n 

u™-1 O 
O Lk:n 

where 
"£>+(*-1)   Jk-hk 

Jk,k-i £>_(*) 

From the first expression for det J it follows that 

D = 

1kD-(k + l) = >yk+1D+(k), 

which gives the ratio of consecutive 7's. D 

When there is severe cancellation in computing 7* from any of the formu- 
lae in Corollary 2 then it may be possible to take extra care in the evaluation 
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of det D and win back a few bits of precision. If warranted the idea may be 
taken further to use 

det tridiag 
D+(k-l)   Jfc_M 0 

Jk,k-\ Jk,k Jk,k+1 
0 Jk+1,k    D-(k+l) 

for the sensitive part of the computation. These details are of great practical 
importance when «7 is close to singular as occurs in iterative methods for 
finding eigenvalues. 

Remark 1 An attentive reader may be puzzled that Corollary 3 cannot 
generate an isolated 0 entry in z'*'. If z(j) vanishes (because J(j,j + 1) = 0) 
then all entries z(l), I < j < k, must vanish too. This is appropriate since the 
matrix is reduced when JJJ+I = 0. Yet there exist eigenvectors of unreduced 
tridiagonals with isolated entries that vanish; such entries are the nodes of 
the eigenvector. The explanation is that the hypothesis (13) does indeed rule 
out isolated zero entries. Section 5 extends the results of Theorem 1 to cover 
these important cases. There we see that hypothesis (3) in theorem 1 is not 
essential. 

Remark 2 Corollaries 2 and 3 show that we need only retain the nontrivial 
entries of JL_ and U+ in the factorization process in order to obtain all the 
7-values, and for any given r, to solve for z^ with no more divisions. 

Remark 3 For large n there will be many products in the calculation of 
z(l) or z(n) for a given r. In general one is concerned about possible overflow 
but here r is selected so that z(r) should be a maximal, or nearly maximal, 
entry of z and so no overflow can occur. Underflow, if it occurs, is harmless 
here and should be flushed to 0. 

Remark 4 From (4) we see that the FP vector z^ is annihilated exactly 
by J — er7re*, a rank one perturbation. 

Let us summarize this section in the form of a high level algorithm. 

Null Vector Approximation. 
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Input: J, nearly singular, n x n, tridiagonal 

1. Factor J down and up to compute 7 = (71,... ,7„) using a convenient 
formula from Corollary 2. 

2. Find min,-|7,-|, perturbing zero values appropriately. Compute the index 
set C := {j : |T,-| < ft min,-17;| }. Choose fi so that 1 < fi < 2. 

3. Select a suitable r from C and compute z(r) using Corollary 3. It is 
also possible to take an appropriate linear combination of two or more 
z(i), j € C. 

Output: r and z^r\ 

We do not claim that z<r), which we call the FP vector, is always an 
adequate approximation to a null vector of J. However it is always useful. We 
do not discuss the calculation of orthogonal vectors for clustered eigenvalues 
here, see [13]. It seems to be wise, when eigenvalues are real, to forbid the 
same r to adjacent eigenvalues. 

There are several possibilities for replacing zero values of 7* in Step 2. 
Theorem 2 gives one way and Remark 4 suggests that we set 7* = macheps ■ 
Jkk- 

Estimates of the accuracy of z(r) as an approximate null vector may be 
given in different contexts: the nonsymmetric case, the real symmetric case, 
the general linear eigenvalue problem, and the bidiagonal singular vector 
case. We do not wish to submerge the ideas in this paper with such results 
but see the corollary to Theorem 3 in Section 4. 

As mentioned in the introduction twisted LDU starts elimination from 
the top and the bottom and stops at some selected interior row k. Henrici 
(1963) used twisted LDU implicitly in deriving optimal Gersgorin bounds, in 
[7], for unreduced real tridiagonals with some complex eigenvalues. D. Ker- 
shaw (1970), in [11], obtained nice bounds on (J-l)rT/JTT using twisted LDU. 
Babuska (1972) wanted a specific entry in J_1fc for any 6 and his formula 
(5.29) on page 62 of [1] is one instance of our formula (5). Fischer et. al. 
(1974), in [6], discuss a twisted Toeplitz factorization of Buneman and at- 
tribute the adjective 'twisted' to Strang [15]. Dongarra et. al. (1979), in 
the LINPACK codes use twisted LDU meeting in the middle for improved 
efficiency and the practice has been taken up in parallel computation, see 
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[16]. They call it the BABE algorithm (Begin, or Burn, At Both Ends), see 
[3]. 

4    The Eigenvector Connection 
Suppose that J is a normal matrix as well as tridiagonal; 

J=VAV*,     V~1 = V, 

and 
A = diag{Xu ..., A„),    V = (vu ..., vn). 

Theorem 3 Let J = J — o~I satisfy the hypotheses of Theorem 1. Then 
Ik = "Yk(o~), for each k, and as a —► Xj, where Xj is an isolated eigenvalue 
ofJ, then 

M*)la 7
" 

*—im=\   Im 

for all k, 1 < k< n, such that Vj(k) =fi 0. 

Proof From (15), for each k 

7*-1    = e*k{J-aiyxek 

=   e*kV{K-aI)-YV*e 

•, • \ A. — a 

Sum for k = 1,..., n and use the orthogonality of V to find 

XX1 = (Ai-^/i + ^ft^lEM*)!2 
fc=i [     & \Äi ~~°7 k=i 
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Hence, as a —► Aj, an isolated eigenvalue, 

^—r   =   |M*)la + £M*)l2( 

—     M*)|', 
provided that |u,-(&)|2 > 0. □ 

Since 

X>.-(*)l2 = i - M*)l2 

convergence is more rapid the larger is |uj(fc)|. For a given a, much closer 
to Xj than to any other A,-, the vector with components (T^/Em^Tm1)1^» 
k = 1,... , n, provides a useful envelope of the eigenvector Vj. It is pleasing 
that there is no requirement that the 7fc be real; the appropriate quotients 
will be positive. 

The FP vector z defined by (4) is an alternative approximation to the 
eigenvector Vj of J. Its quality is indicated in the next result. 

Corollary 4 With the notation of Theorem 3 let Jz = (J - al)z = ek^k- 
Then 

(a) Rayleigh quotient(z) = a + 7;t/||z||2, 

(h) \\. _ CT _ 7fc/||z||2| < |7fc|/||z|| . min{!5 \lk\l(\\z\\gap)}, 

where gap = min{|Aj+1 - a\, \a - A^l}, 

(c) sml{vhz)<\lk\l(\\z\\gap). 

Proof. z*Jz/z*z = o- + z*eklk/\\z\\2, gives (a). Also ||Jz||/||z|| = |7fc|/||z|| 
and standard gap theorems, see Chapter 11 in [12], give (b) and (c). D 

Unfortunately, in finite precision arithmetic, we cannot let a —> Xj and 
so, in practice, a 7j may vanish in the same way that a divided difference 
may vanish even when the desired derivative does not. However we do not 
need more than a few bits of accuracy in 7j-, it is its exponent that counts. 

Figure 1 shows the 7-vector for different values of a and the true profile 
of a simple eigenvector, all on a log scale. 
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Theorem 4 An unreduced tridiagonal matrix is normal if, and only if, it is 
a translate of a Hermitian or skew-Hermitian matrix, possibly multiplied by 
a rotation factor e,e, i2 = — 1. 

The proof is left to the interested reader. 

5    Zero Pivots 

Triangular factorization is said to fail, or not exist, if a zero 'pivot', D+(j) 
or £>_(j) is encountered prematurely. The last pivot is allowed to vanish 
because it does not occur as a denominator in the computation. 

One of the attractions of an unreduced tridiagonal matrix is that the 
damage done by a zero pivot is localized. Indeed, if oo is added to the number 
system then triangular factorization cannot break down and the algorithm 
always maps J into unique triplets L, D, U. There is no need to spoil the 
inner loop with tests. It is no longer true that LDU = J but equality does 
hold for all entries except for those at or adjacent to any infinite pivot. 

It is possible to work with signed oo (affine geometry) or unsigned oo (the 
complex plane) and it will be easiest for our purposes to use the unsigned 
oo. Thus +1/0 = -1/0 = oo. 

If we allowed off diagonal entries to vanish, in which case J is said to be 
reduced, then we might encounter 

L(k + 1, k) = J(k + 1, k)/D(k) = 0/0 

and that would be a genuine breakdown. 
Let us examine what happens when D(k — 1) = 0. In turn 

L(k,k-1)   =   J(k,k-l)/D(k-l) = oo, 

• U(k-l,k)   =   .7(*-l,*)/£(*-l) = oo, 

D(k)   =   J(ktk)-L(k,k-l)J(k-l,k) = oo, 

L(k + l,k)   =   J(k + l,k)/D(k) = 0, 

• U(k,k + 1)   =   J(k,k + 1)/D(k) = 0, 

D(k + 1)   =   J(k + l,k + l)-L(k + l,k)J(k,k + l) 

=   J(fc + l,Jb + l). 
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Unless J(k + 1, k + 1) = 0 the factorization proceeds normally until the next 
zero pivot is encountered. We have placed an • against entries that are not 
computed when a simple LU factorization is used. Here U = DU in the 
finite case. 

When the product LDU is formed in the case given above then various 
strange expressions such as 0 • oo and oo + oo arise and we designate them 
by NaN (Not a Number). We discover that LDU = J except in row and 
column k. Note that D(k) = oo. 

It is important to our later results to show that when J is singular then 

D+(k) = oo   if, and only if,   D-(k) = oo, 

where the notation follows Section 3. 
It turns out that infinite pivots correspond to zero entries in eigenvectors 

and so have a legitimate role in the theory. 

Theorem 5 Let J be n x n, tridiagonal, unreduced, and singular. For each 
k, 1 < k < n, J1:fe_1 is singular if, and only if, Jk+1:n is singular. They are 
singular if, and only if, z{k) = 0 whenever Jz = 0. 

Proof. Write 

and partition Jz = 0 conformably. Thus 

Juk~1z+ + Jfc_1,fez(fc)efc_1 = 0, (17) 

eiJk+iMk) + Jk+lmz- = 0, (18) 

and z+(l) T^ 0, z+(n) ^ 0 by Lemma 1 in Section 2. 
If z(k) = 0 then (17) shows that z+(^ 0) is in J1:fc-a's null space and (18) 

shows that z-(^ 0) is in Jfc+1:n's null space. So both matrices are singular. 
Now consider the converse, z{k) ^ 0. Since J is unreduced rank(J) = 

n — 1 and its null space is one dimensional. So the system 

Jz = 0,    z(k) = 1, 

has a unique solution. Thus both (17) and (18) are inhomogeneous equations 
with unique solutions. Thus J1:fc_1 and Jk+1:n are invertible. D 
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Corollary 5 Let J be n x n, tridiagonal, unreduced, and singular. Let the 
triangular factorization algorithm applied to J in both increasing and decreas- 
ing order of rows yield unique matrices L+,D+,U+,U-,D-, and £_. Then, 
forj = l,2,...,n, 

D+(j) = 00    iff   Z?_(i) = oo. 

Proof. 

D+{j) = 00   «=►   D+(J-1) = 0 

Jly-1    singular 

Jj+1:n   singular (by Theorem 5) 

<=>   D-(j+ 1) = 0 

^=^   D-(j) = 00. 

D 
In Theorem 1 of Section 3 the value of fk was fixed by the condition 

z(k) = 1 imposed on the solution of Jz = ek^k. When J is singular there is 
a nonzero solution to Jz = 0 and the attempted normalization z(k) = 1 is 
valid, even if not wise, in all cases except when z(k) = 0. 

An appropriate signal that an infeasible normalization has been imposed 
is that 7* = NaN (Not a Number) and that is precisely what the formulae 
in Corollary 2 deliver whenever J is singular and D+(k) = D_(jk) = 00. In 
these cases, in exact arithmetic, D+(n) = 0 and 7„ = 0 as well as IL(l) = 0 
and 7x = 0. Thus in the search for a minimum value of |7_,| indices j that 
have 7j = NaN will never be selected. 

The good news is that by computing all the {7,-} it is known in advance 
whether or not the z^ has a zero entry. In the generic case, with no zeros, 
the algorithm given in Corollary 1 in Section 3 may be used free of any tests 
for invalid operations. In the exceptional case the following procedure may 
be used. 

Algorithm (vectors with zeros) 

zU) = i -%+i*k' + !)' *U + 1) # 0, 1 ■ 
'      I -(Jj+ij+2 z{j + 2)/Ji+1J),   otherwise        [,.7-*-l,...,l 
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z^-\ -(J,_1,,_2^-2)M_1,,),   otherwise       j ,*-* + *,■ ■•,« 

This algorithm will not touch any infinite values in U+ or L_. 
When J is not singular Theorem 1 continues to hold, if oo is allowed, in 

the following sense. 

Corollary 6 (of Theorem 2) If J is unreduced, tridiagonal, and oo is rep- 
resented then 

D+(k-l) = 0      implies       (J-1)** = 0 (7* = oo), 

D-(k) = 0       implies       (J_1)fc-u-i = 0 (7^-1 = 00). 

Proof. Use the twisted factorization in the proof of Theorem 2 that introduces 
the 2x2 matrix 

' D+(k-l)   Jk_hk 

Jk,k^ D.(k) 

Invert J and observe that there is a simple expression for the (k, k) and 
(k — 1, k — 1) entries: 

(J-1)** = (D-1)^ = D+(k - l)/det D . 

If J is unreduced and D+(k — 1) = 0 then det D = —Jk,k-\Jk-\,k 7^ 0. This 
establishes the first assertion. Similarly 

(J-1)k..1,k-1 = D-(k)/detn. 

D 

Figures 2 and 3 show a striking instance of Theorem 5 for the matrix 
W}x and the pair of eigenvalues close to 6. Each horizontal line of the figure 
corresponds to one value of k; eigenvalues of W1:fe_1 are marked by -f and 
eigenvalues of Wk+1:n are marked by o. Theorem 5 implies that if an eigen- 
vector has a zero entry in position k then a o and a + must coincide on the 
eigenvalue in line k. Indeed, in Figure 3 (an enlarged picture of Figure 2 near 
6), when k = 11 this is precisely what happens. For neighboring values of k 
the Ritz values are not particularly close to eigenvalues and after k = 11 the 
o is replaced by a + in the interval (A12, A13). If v is a normalized eigenvector 
with eigenvalue A then v(k)2 is proportional to the product of the distances 
of A from the + and o points on line k. 
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6    Block Tridiagonals 

If an arithmetic system lacks the symbol oo it is possible to extend Theorem 1 
by using blocks in the LDU factorization. If J is unreduced then there always 
exists a factorization 

L+D+U+ = J= U-D.L- 

if the D's are allowed to have 2x2 and lxl blocks along diagonal, no larger 
blocks are needed. However Theorem 1 extends beyond this case to band 
matrices and, to any block tridiagonal matrix. Thus D+ and D_ are direct 
sums of square blocks; L+ and U+ are conformable with D+, L_ and U- are 
conformable with D-. 

Theorem 6 Let J permit block triangular factorization in both increasing 
and decreasing order of indices 

L+D+U+ = J = U-D-L-. 

There is no requirement that the block structures of D+ and D- be con- 
formable. However for any corresponding blocks k and I such that D+(k) 
and D-(l) are conformable and m by m, define the m x m matrix T by 
equations 

/ Z+ \      / 0\ ( z+\ 
J 

\z- 
r 

\o) \z-) 
(19) 

If J.,. denotes the m x m block of J conformable with D+(k) and D-(l), then 

T = D+(k)-J.,. + D-{l). 

The proof is so similar to the proof of Theorem 1 that we omit it. We have 
allowed for the fact that D+ and D- need not have the same number of 
blocks. 

To use Theorem 6 to approximate an eigenvector suppose that J is nearly 
singular.  Compute all well defined V and find one with a minimal singular 

o 
value. Call it T- Let 

r v = uamin,    \\u\\ = \\v\\ = 1, 
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define the minimal singular triple (crmin, u, v) of T- Then, from (19) 

J(Zv) = 
( 0 \ 

u 

\0 ) 

If <7"mtn is small enough then Zv is a good initial approximation to an eigen- 
vector of J. 

It is not hard to verify that, for an unreduced even order J, if diag(J) = 0 
then diag(J~l) = 0. In this situation a block factorization with 2x2 blocks 
is needed to ensure that J = L+D+U+ = t/_D_X_. It then turns out that 

-D+ = D- = block diag(J) = block diag^J'1)'1 

where bdiag(M) is the block diagonal part of M. Now the set of Y matrices 
in Theorem 6 may give no guidance for computing an eigenvector. That is 
not quite true because we may infer that our eigenvalue approximation, 0, is 
not closer to one eigenvalue than to any other and that is useful information. 
In fact the unreduced J's with diag(J) = 0 have eigenvalues in ± pairs and 
any tiny ± pairs may be found efficiently by the method described in [13]. 
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Figure 1: Convergence of (-J      ,   n = 35 
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Figure 2: Ritz values for W£ near 6 
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Figure 3: Blow up of Figure 2 near 6 (read the x-axis as 6+x) 
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Figure 4: log 7; negligible eigenvector entries from 42 to 105 


