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What Hadamard Missed 

Beresford N. Parlett * 

March 19, 1996 

Abstract 

Consider the task of finding all the eigenvalues of a dense matrix. 
We show how Hadamard's procedure (1891) can be organized into 
Aitken's if-table (1925) and how the if-table may be transformed into 
Rutishauser's gd-array (1953) with the help of the Lanczos algorithm. 
We show how the qd algorithm can be interpreted as defining the 
LR algorithm (1958). Finally we show how the original qd algorithm 
may be transformed into the shifted differential qd algorithm dqds 
developed by Fernando and Parlett (1993/94). The Lanczos algorithm 
takes a dense matrix into tridiagonal form and then dqds is a fast and 
accurate procedure for extracting the eigenvalues. 

This paper evolved from talks given at UC, Berkeley, in October 1992, at 

the Symposium on Scientific Modelling, Charleston, Illinois and at the Mass. 
Inst. for Tech., both in October 1995. 

"Mathematics Department and Computer Science Division, EECS Department, Uni- 
versity of California, Berkeley, CA 94720, USA. Supported by ONR, Contract. N000014- 
90-J-1372. 



1     Introduction 

The story to be told here is not strictly a contribution to the history of 
mathematics. It might be described, using a fashionable adjective, as virtual 
history. With the benefit of hindsight we trace the transformations of an idea 
from its original pre-computing form into a powerful and elegant algorithm 
that is ideally suited for implementation on a 'parallel' computing system 
that can keep many processors busy at the same time. 

Our tale begins with the doctoral dissertation of the illustrious French 
mathematician Jacques Hadamard in 1891. His solution to the problem, 
described in the next section, yields a lousy algorithm. Our title intends no 
disparagement of that great man; neither he nor any of his contemporaries 
would have dreamt of evaluating the determinants he so cleverly introduced. 
Hadamard 'missed' the subsequent evolution of his idea because he saw no 
need for it. 

It is exciting, and a little intimidating to realize how much our notion of 
the 'solution' to a problem has changed in one century. The story is 'virtual' 
history because the next two investigators, A. C. Aitken and H. Rutishauser, 
were not directly influenced by Hadamard's dissertation. However they could 
have been! Aitken rediscovered Hadamard's idea for himself (about 1925) 
and. driven by the existence of computing machines, though hand driven 
and mechanical, saw the weakness in the formal solution. 

What prompted our choice of title is the intriguing fact that a certain 
well known quadratic identity among Hankel determinants, (7) in Section 4, 
that Aitken used to good effect was stated in Hadamard's dissertation, see [8. 
p. 20, formula (14)], and used in the analysis but not exploited to compute 
the determinants with minimal effort. 

At this point we acknowledge our debt to Peter Henrici who began our 
story in [9]. Unfortunately he died before the recent investigations that 
have brought Rutishauser's quotient-difference (qd) algorithm back into the 
limelight after its eclipse in the 1960s by the QR algorithm. 

After describing the LR algorithm and mentioning QR we present new 
forms of LR and qd that will bring them back onto center stage for both 
sequential and parallel computation. 

These sections serve to round out the study we began in [13]. 



2     The Task 

Consider a square invertible complex matrix B; B € CNxN. The eigenvalues 
{A,-} are labelled in decreasing order by magnitude 

0< L< \XN\ < IAJV-II < ... < |Ai|. (1) 

The basic goal is to compute 5's spectrum from the entries of B. 
In order to invoke Hadamard's thesis the basic goal is mapped into a 

slightly more general problem. Given B and any two (column) vectors u and 
v in CA' one may define a rational function / by 

f(z)   :=   u'ilN-zB)-^ (2) 
CO 

=    ^aiZ\    H<|Aar\ (3) 
i=0 

where the row vector u* is the conjugate transpose of u, IN is the identitv 
matrix in CNxN, and z € C. 

Note that (2) holds for all z e C, z ± \fx, j = 1,.. ., JV while (3) holds 
only in a neighborhood of the origin. In principle one may compute as many 
of the Taylor coefficients as desired from the formula 

at = u*Biv,    i = 0,1,2,... (4) 

The poles of / are the {Aj-1} and, when they are simple we have the simplest 
partial fraction representation, 

/w = Zr^v (5) 
3 = 1 J 

To avoid distracting technical complications we assume throughout that the 
eigenvalues are simple. 

Now we can formulate Hadamard's thesis problem. Given the Taylor 
coefficients (a0, ai,a2, • • •) of a meromorphic function / find all its poles. 
The generalization from rational / to meromorphic / requires no new ideas 
and we are content to restrict attention to the form (2). In 1884 König, see 
[10], in Germany, had shown how to find A1; when |Axj > |A2|, namely 

 > Ax   ,    n —► oo. 
O-n+l 



Of course lA^1! is the radius of convergence of (3) but, by analytic continu- 
ation, the sequence (a;) determines / everywhere except at its poles. 

Six years after König's result was published in 1884 there was still no 
formula for extracting the larger poles from (a,-) and this was the task that 
Hadamard selected. 

Even a century later students in a complex variable course complain if 
asked how to compute Aj1. The clue is to define g(z) = (1 — Xiz)f(z), find 
the Taylor coefficients of g and apply König's result. 

3    Hadamard's Solution 

By extending Bernoulli's method for approximating zeros of a polynomial 
using recurrences Hadamard found the key that unlocked the door that leads 
to the larger poles of /, namely certain Hankel determinants built out of the 
coefficients (a,-). Define, for nonnegative integers k and n, 

HI    :=    det 

Ho 

an an+l 
an+l        ßn+2 

Q-n+k-1 

1,   H^ := an. 

O-n+k 

0-n+2k-2 

(6) 

Please note the different roles of k and n. 
He then expanded (5) in powers of z in order to obtain expressions for 

each a,- in terms of the {Xj} and then substituted the new expressions in an 
expansion of (6). This yields 

Theorem 1  As n —> oo. with f of the form (5), 

HI = constant • (Aj • • • \k)n 1 + 0 

The original proof is in [8] but an easier one is given in [9]. 

Corollary 1  For large enough n, H^ ^ 0. 



Corollary 2 For suitable k (i. e. |Afc| > |AA+i|^ 

Hn+1 

~j]~        ► AiA2 • • • Afc,    n —► oo. 

Corollary 3 If \Xk-i\ > \\k\ > \Xk+i\ then 

zrn+l       tin 

Corollary 4 If f has exactly N poles (counting multiplicities), then 

HN+I 
= 0?   an n- 

We mention, in passing, that when |Afc_i| = |Ajt| = \\k+i\ the situation is not 
hopeless, merely more complicated. Certain combinations of neighboring q£ 
converge to the coefficients of a polynomial whose zeros are the eigenvalues 
with modulus \\k\. If any \k is multiple Theorem 1 needs to be modified, see 
[7]- 

Hadamard left the problem at this point and the remarks we make below 
are in no sense, to be construed as criticism. In the mathematics of his day 
there was no question of implementing the process implied by Corollary 3. 
He had shown exactly how the poles are determined by the coefficients of the 
Taylor series, a problem of some subtlety whose solution had eluded earlier 
researchers such as König. 

The fact remains that Hadamard's formulae are useless for computation 
in finite precision arithmetic. It is not simply the labor required to compute 
many determinants. In general the poles (A^)-1, j > 1, are very sensitive 
to small changes in the coefficients (cn). In other words one must know 
the (an) correct to many decimals in order to determine some of the larger 
poles to just one or two decimals. Incidentally there is no need to evaluate 
a determinant from its definition as a signed sum of products of entries. By 
computing a triangular factorization any kxk determinant may be found in 
approximately k3/3 scalar multiplications. 

The rest of the story shows how both the (H%) and the (on) may be 
replaced by other quantities that determine the spectrum of B in a less 
sensitive manner. 



4    Aitken's Scheme 

During the 1920s Aitken worked on the problem of finding all the zeros of a 
polynomial by generalizing Bernoulli's method , see [1], and was led to study 
the Hankel determinants. He discovered a relation which allows the recursive 
calculation of the //"£ from the a,-. This is most easily shown by arranging 
the H% in the following table: 

1 
1 f/? 
1 H] m 
1 H? H) m 
1 m m HI   H° 

(H - Table) 

1   H\   H\   Hi   H\   H° 

Note that H™ = an and so the first two columns are known. 
In the case under consideration f(z) has only Ar poles and so the iJ-table 

has only Ar + 1 columns. 
The ratios of successive elements in the kth. column of the H-table con- 

verge to the product of the largest k eigenvalues by Corollary 2, provided that 
|Ait| > |Afc+i|. By Corollary 1 the //"-table ultimately exists, i. e. H% ^ 0, 
k < N, n large enough. However it is possible for an early term to vanish 
and this would prevent the recursive computation of the table from previous 
terms. This possibility will be ignored here. 

The relation which Aitken found for himself [2], but which had been 
known to Hadamard, is 

(Hn
ky - HF'Hp1 + Hn

k-lHn
k:l = 0. (7) 

This is best remembered by taking any H% as Ö and labelling its nearest 
neighbors in the //"-table topographically as N, S, W, and E. With such a 
stencil (7) can be written as 

O2 = NS-W E. (8) 

This formula can be used in two different ways: 
(a) Start with the first two columns and work from left to right in the H- 
table, adding one column at a time by repeated use of E = (N S — 02)/W. 



(b) If the first two diagonals are known one can compute the lower diagonals 
successively working along the new diagonal from left to right, using S = 
(02-WE)/N. 

Now (b) has the difficulty of finding the first two diagonals and, although 
he showed how to do this for a polynomial whose coefficients are given, Aitken 
in [2] favored method (a). 

For the computation of eigenvalues the generation of the if-table by (a) or 
(b), though feasible, still leaves a lot to be desired. With (a) it is necessary to 
compute an = if" = y*Anx for as many n as necessary to obtain convergence 
of H?+1/H? to the desired degree of accuracy. With (b) there is the necessity 
of computing a{ for i = 0,1,..., 2N-2 and then the determinants H°k and H\ 
for k = 1, 2,..., N. If Gaussian elimination were used then, whilst calculating 
H% and Hl

N, all other Hf and H} (i = 1, 2,... N- 1), being leading principal 
minors, could be found. This technique, however, would not permit the use 
of interchanges in the Gaussian elimination and so extra precision would 
be required to ensure adequate accuracy. (In all, 27V3 multiplications are 
needed for the a{ and |iV3 double precision multiplications for the H? and 
H}.) Thus both (a) and (b) demand a formidable amount of computation 
before the remainder of the H-table can be found. 

Since Hadamard knew the quadratic relation (7) he could easily have 
anticipated all of Aitken's results but, as we have stressed, the motivation 
was lacking. 

It was Rutishauser's achievement to produce a related table which is 
numerically preferable. 

5     The qd Algorithm 

What changes could be made in the //-scheme which might reduce the 
amount of initial computation? There is one natural observation: the H£ 
themselves are of less interest than the 

fjn+l tin 
n _   nk       nk-\ 

since for JAx| > |A2| > ... |Ajv|, as n —► oo 

9* — A*. 



As Henrici says in [9]: 'It is remarkable that in the computation of the q%, 
the determinants H^ do not have to be used if a set of auxiliary quanti- 
ties is introduced.' Their introduction is presented as a 'fait accompli' by 
Rutishauser in [14]. Certainly this set of quantities arises naturally from 
the continued fraction expansion of f(z) (see [9, p. 36]) but this author feels 
that a motivation for the choice of the auxiliary quantities, called e£, can 
be made in the present context. This is our 'virtual' history. We show how 
Rutishauser might have derived qd from Aitken's H-table. 

The key is to recast the basic recursion relation (8) so that it shows 
explicitly the connection between q% and <?£+1. To do this clearly, consider 
a typical portion of the if-table obtained by placing the following stencil on 
the table so that D is on H^ 

■    ■    A 
■   B   C D    ■    ■ 
■    ■    E F   G   ■ 

H    1    ■ 

Then 
AF 

Qk = ?*B+1 
CH 

CD'    "** EF' 

To include all these elements two applications of (8) are needed, centered at 
C and F respectively, namely 

C2 = AE - BD,    F2 = DH - EG. 

Now turn first terms on the right hand sides into q% and <?£+1 respectively, 
obtaining 

CF_AF_£^F      CF _ CH     CG 

DE ~ CD     CE      DE~ EF~ ~DF' ^' 

Reference to the stencil shows that BF/CE and CG/DF are of the same 
form and naturally ask to be named. If CG/DF (= H^H^+1/H^H^+1) is 
called el then BF/CE will be e^J. Transposing the second terms on the 
right hand sides of (9) gives the following simple relation between the q and 
the e, 

?fc+Cfc=??+1 + e^1
1. (10) 



The quadratic relation (8) has become a linear relation (10). 
Another relation between the q and the e is required to determine all the 

Ik and e£ from the 1i (= «n+i/on). It follows directly from the definitions 
of the q and e. A simple derivation comes from observing that 

CH El CI DI CG 
EF FH F2 GH DF 

Ik ek        — nn      - pn 

Qk+T.     ek 

In other words 

"  (n: 

The qd Scheme 

Formula (10) shows that e£ is the difference of the quotients q^+1 and <?£ 
modified by e^+j. This indicates a little why Rutishauser named the following 
triangular table of <?'s and e's the Quotient-Difference Scheme. Typical cases 
of (10) and (11) are shown pictorially in Figure 1 and explain why E. Stiefel 
named them the rhombus rules. (10) yields rhombi centered on ^-columns, 
(11) yields rhombi centered on e-columns. 

By alternate application of the rules the table may be generated, in theory, 
form either 
(a) the first g-column moving right, or 
(b) the first diagonal moving down. 
Now, however, method (a) is quite impractical since rule (10) shows that 

ei — 9i 9i • 

For |Ai| >  |A2|,   ?" —»■ ^i> as n —>• oo.   As n increases e" becomes the 
difference of two almost equal numbers and, for computation with a fixed 
number of digits for each number, it will have fewer and fewer significant 
figures. Thus (ej+1/e") and hence q% will have little or no accuracy. Briefly, 
one says that method (a) is 'unstable'. Method (b), on the other hand, uses 
(10) in the form 

nn+1 — nn 4- pn *>n+1 

Hk     — % + ek+i — ek-i 

which is ultimately completely safe when e£+1 and e^+J —> 0. 
The danger in method (b) is that in the early stages, for small n, large 

values of e£+J may occur which will cause loss of significant digits in the g£+1. 



?i 
(o) 

,(°) 

9i 
(i) <1(? 

,(°) 

= (!) 

,(2) 

= (3) 

Figure 1: The go? table 

However with the qd scheme there is no alternative but to use (b), the so 
called progressive method. Rutishauser in [16] has analyzed the effect of one 
small q^+1 and the resulting large value of e£+1 (in using (11)). He observed 
that only negative powers of e£+1 occur in diagonal n + 3 and below. Thus 
the disturbance affects only the next two diagonals and he proposed some 
auxiliary modifications to be made in calculating some of the elements in 
diagonals n + 1 and n + 2. For diagonal n + 3 and below the straightforward 
application of the rhombus rules is again sufficient. The recently discovered 
differential form of qd, see Section 8, goes a long way towards avoiding the 
need for these modifications. 
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6     Calculation of the First Diagonal 

At this point it is worth observing that 

?i = 
H[ ■n+l u*B ra+l V 

H? u*Bnv 

and so the descent of column 1 of the qd scheme corresponds to the well 
known power method [17]. 

How can the first diagonal of the qd scheme be found indirectly? The 
answer is, surprisingly, by use of Lanczos method of 'minimized iterations', 
see [11], with initial vectors u and v (from the definition of f(z) in Section 2). 
Thus, as Henrici points out, the qd scheme links the power method to the 
method of Lanczos. 

The reader is referred to [11] and [9] for proofs and details of the algo- 
rithm. It produces a tridiagonal matrix J similar to B and of the form (for 
A'= 5) 

ßi    oc2     1 
J = /?2      «3        1 

ßz     <*4       1 

By the LDU theorem [3, p. 20], J (or J + si) may be written as the product 
LR 

L 

1 
ei 1 

e-2 1 
e3 1 

e4 

R 
q-i l 

qz l 
94 l 

95 

Is is easily verified that for k = 1, 2,. . . Ar, 

ak   =    ?jt + efc_;i,    e0 = 0, 

ßk   =    <7fcefc, eN = 0. 

Henrici shows [9, p. 33] that these qk and ek are the elements of the first 
diagonal of the qd scheme.  In fact he shows that the nth diagonal can be 
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obtained in the same way by using Lanczos method with initial vectors Bnu 
and v. 

u*Bn+1v 
a, = = ?i u*Bnv 

as it should. 
When |Ai| > |A2| > ...|A^| then q£ —>• A^, e% —> 0, as n —► oo. 

When there are eigenvalues with the same modulus then the corresponding 
q and e columns may not converge. Fortunately this does not impair the 
usefulness of the algorithm. Discussion of what to do in this case is most 
simply presented in connection with the LR transformation and will appear 
in the next section. 

7    The LR Transformation 

In Section 6 it was shown that the elements q° and e° of the first diagonal of 
the qd scheme are obtained from the LR decomposition of a certain tridiag- 
onal matrix J, now to be called J0, whose nonzero elements in column i are 
1, a,-, /?,-. this implies that, for k — 1, 2,..., N, 

=   a ki 

„0   0 o0 
<lkek  =  Pife, 

eo = 0, 

ß°N = 0- 

(II 

The rhombus rules, (10) and (10), which yield the next diagonal have a very 
interesting interpretation. Recall from the previous section that 

L0 = 

1 

Ro = 

9? 1 

?2° 1 

?3°      1 

<?5° 

From (10) and (11) and the rules of matrix multiplication follow the result 

q\ + 4_a    =   q°k + el = {R0L0)kk = a\,   (say), 

vWk   =   9k+ie°k = (RoLQ)k,k+i = ßl,     (say). 

(13) 
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It is easily verified that RQLQ is a tridiagonal matrix of the same form as 
Jo and may be called Ji. Now comparison of (13) with (12) shows that the 
second diagonal of the qd scheme (q},ej) contains precisely the elements of 
the LR decomposition of RQL0 (= J\). Thus 

Jo is factorized into L0R0, 

The factors are multiplied in reverse order to give RQL0 = Ji, 

Ji is factorized into LiR\. 

Similarly the third diagonal of the qd scheme contains the elements of the 
LR decomposition of RxLi (= J2), and so on for all the diagonals. In fact, 
for each positive integer n, equations (12), with superscript n, define the 
elements aj1, ßf of a tridiagonal matrix Jn. The Jn may be read, as it were, 
'between the (diagonal) lines' of the qd scheme. Clearly Jn+1 = L~lJnLn 

and if the eigenvalues Xt of J0 (or the original A) have distinct moduli then, 
n —> oo, 

J„ —► Rao     (a triangular matrix with g^° = A*,). 

Thus the qd scheme implicitly defines a convergent sequence of tridiagonal 
matrices similar to J0. this was a brilliant insight by Rutishauser. 

For tridiagonal matrices which are symmetric positive definite the qd 
algorithm may be used since the danger (instability) mentioned in Section 4 
cannot occur. This technique is from three to six times as fast as the much 
used Sturm sequence method, see [6], See Rutishauser [16] for full details. 

Dense Matrices 

This interpretation of the qd scheme suggests a similar algorithm for full 
nonsingular matrix Bx. By the LDU theorem, [3, p. 20], Bx (or Bl+sl) may 
be factorized into the product of left triangular matrix Ja with l's on the 
diagonal and right triangular matrix R1. The LR transformation is defined 
by Rutishauser in [15] as follows. For k = 1,2,... 

Factorize Bk into LkRk, 
Form RkLk and call it Bk+\ ■ 

Clearly Bk+1 = L^ BkLk and it may be asked when this sequence {Bk} 
converges to a triangular matrix. 

The answer, see [15], is contained in the following 
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Theorem 2 If B\ = U diag(\i, ■ ■ ■, XN)U 
1 and 

(a) \\i\ > |A2| > • • • > |AJV|, 

(b) The leading principal minors of U and U-1 are nonzero, then liml?fc = 
Boo exists and is upper triangular with (Bco)u — A,-. 

If the |A,| are not distinct then, loosely speaking, Bk may be said to converge 
to block triangular form. More precisely suppose that |Aa| = |A2| = ••• = 
|AP| > |Ap+i|. Strictly speaking B^ may not exist but, k —► oo, Bk becomes 
reduced. The elements in the first p columns may not converge but the 
characteristic polynomial of the leading principal submatrix of order p does 
converge to the monic polynomial with roots Al5..., Ap. The complementary 
submatrix has eigenvalues which converge to Ap+1,..., A/v. If any of these 
eigenvalues have equal modulus then this submatrix will become reduced 
also. Thus as k —► oo the submatrix blocks which become isolated along 
the diagonal correspond to groups of eigenvalues of equal modulus. In the 
qd scheme, analogously, when successive q and e columns fail to converge, 
it turns out that certain polynomials, formed from the qs and e's in those 
columns and in the nth diagonal, do converge as n —► oo. 

In the important case of real matrices with complex conjugate pairs of 
eigenvalues, Bk may be expected to have along the diagonal, for large k, 
isolated 2x2 real submatrices which yield the eigenvalues very conveniently. 
This was the reason for stating in the previous section that the occurrence 
of eigenvalues of equal modulus does not impair the qd algorithm. 

Shifts of origin may be used with both the qd algorithm and the LR 
algorithm to hasten convergence. Thus for scalars o~j one defines 

Bj ~ ajl   —    LjRj, 

Bj+1    :=   RjLj + o-jl. 

A good strategy for choosing {o~j} is important in practice but that is not 
the focus of this paper. See [15] and [4] for more on shifts. 

One might think of the LR algorithm as the final transformation of 
Hadamard's scheme into a practical algorithm. However the search is not 
over yet. 

The possible element growth that can occur in LR prompted the search 
for more stable schemes. About 1960 J. G. F. Francis presented his QR 
algorithm applied to matrices in Hessenberg form and this has been the 
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method of choice for computing eigenvalues for over 30 years. It does not 
preserve bandwidth for nonsymmetric matrices. 

8    Differential qd 

The two rhombus rules that govern the ^d-array are invoked in alternating 
fashion to compute the next line of the array. Shifts a may be introduced 
and the result is Rutishauser's progressive qd algorithm. This may be written 
symbolically as 

qds : (q,e) ^-^ (q,e). 

The code is 

<?i = ?i + ea - a 

for j = l,2,...,7V-l 

ej = ej * (qj+i/qj) 

9j+i = Qj+i + ej+i — ej - a 

Here ejv = 0 and eyv = 0. 
In terms of the LR algorithm of the previous section, qds yields the fac- 

torization 

UL -al = LU. (14) 

Now we look at this triangular factorization again, in closer detail, to derive 
a differential algorithm that computes the same quantities with slightly more 
arithmetic effort than qds. 

Look at the reduction of UL -al toll at an intermediate step. Thus the 
array is 

0,    qk-i, 1 
0, qk, 1 

ekqk+i,   qic+i + efc+1 - <j,    1 
ek+iqk+2, 

The key is to write the new pivot qk as a sum of dk + ek, introducing a new 
array d. The next step in elimination is 

*,    1 

qk   =   dk + ek, 
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dk+1 + ek+1    =    qk+iJrek+1-a-qk+1ek/(dk + ek). 

The beautiful feature is that ek+i is removed from each side analytically 
without even being added to qk+\. Simplifying each side yields 

dk+1 = dk(qk+i/qk) - a. 

This gives the dqds algorithm (differential qd with shifts) introduced by Fer- 
nando and Parlett [4]. 

dqds       d\ — qi — a 

for k = 1,2,...,N- 1 

qk — dk + ek 

h = ek(qk+1/qk) 
c4+i = dk(qk+i/qk) - er 

qN — dN- 

Because of the repeated expression {qk+1/qk) the algorithm may be imple- 
mented with only one division in the inner loop. 

Should qk = 0 the algorithm will break down. Nevertheless in the ab- 
sence of such a breakdown, the algorithm enjoys a remarkable mixed stability 
property. When executed in finite precision it is only necessary to change 
appropriately the input (q, e) and the output (q, e) by 1, 2, or 3 units in the 
last place of each variable in order to have an exact dqds transformation. See 
[4] for the full story. 

One attractive consequence is that when q, e, q and e are positive then 
the eigenvalues of UL and UL agree to high accuracy, however small some 
of those eigenvalues may be. 

The additional variables {d3} seemed like a blemish at first but it turns 
out that they yield useful approximations to the smallest eigenvalue and so 
improve shift selection. 

9     The Implicit LR Algorithm 

The LR algorithm introduced by Rutishauser produces a sequence of matrices 
(BQ, B\, £?2, • •.) on the assumption that triangular factorization is permitted 
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at each step. Thus Bj = LjUj. For several reasons it would be preferable to 
discard the Bj in favor of the pairs Lj, Uj. In order to do that it is necessary 
to derive Lj+1, Uj+i from Lj, Uj without forming Bj+1 := UjLj explicitly. To 
avoid subscripts we write 

LÜ = B := UL. (15) 

Appeal to the two-sided Gram-Schmidt process shows that (15) implies the 
existence of unique matrices F, G such that 

L = GU,   U = LF,   FG = I. (16) 

The practical point is that when L and U are bidiagonal then F and G may 
be generated implicitly as the product of very simple matrices. Even when 
L and U are dense the F and G matrices may be generated as products of 
elementary matrices of the form (7 — xyr). 

Shifts may be introduced to accelerate convergence and the new equations 
are 

■-1 L = GU,    U-aL~l = LF,    FG = I. (17) 

It turns out that the presence of 7_1 does not greatly complicate the repre- 
sentation of F and G. For more information see [5]. 

This algorithm is attractive when B has narrow bandwidth and one can 
avoid reducing to tridiagonal form. 

10    Parallel Features 

The simplicity of the dqds algorithm facilitates its adaptation to modern 
computer architectures, particularly to systems with many arithmetic units. 
The algorithm sketched below is presented for its intellectual interest. It is 
very fast but is also unstable, [12]. Nevertheless the idea is worth knowing. 

Consider the dqds algorithm again and observe that if the dj,j = 1,. .. , N 
were all known then the new q and e values may be obtained in fully parallel 
form with each processor responsible for a given subset of array elements. 
Let v t denote the array obtained by pushing up, by one index, the entries 
of v and inserting 0 for the last position. As usual e(N) = e(Ar) = 0. 

Parallel dqds:       q = d + e, 

e = e*((gT)-<7). 
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The hard task is to compute d fast. This may be done in 2 log2 N time despite 
the fact that he recurrence seems intrinsically nonlinear and sequential; 

dk+i = qk+idk/(dk + ek) - a. (18) 

The form changes radically when dk is written as a quotient dk = fk/gk- 
Then (18) becomes 

fk+i _ fk(qk+i - r) - crekgk 

gk+i fk + ekgk 

or, in vector notation, 

fk+1 
gk+i 

Qk+i — c,    —crek 
1, ek 

fk) = Wk ( 
h 

gk k\ gk 

=  wkwk-, • • • w1 f 
qi 1 

a ^ 
(19) 

for k = 1,..., Ar — 1. Note that all Wj are known in advance, from q, e and 
<7, and we want all the partial products. 

With Ar, or N/2, processors this task can be accomplished in only 2 log2 N 
time! The technique is known as 'parallel prefix' among computer scientists. 
When a = 0 the Wj are lower triangular and the products are simplified. 

The idea of the algorithm is best understood by a diagram, see Figure 2. 
On the other hand it can be specified in a very short procedure. Let m = 
log2N and initialize an array Y to Yj — Wj, j = 1,...,N. Upon exit Yk 

holds WkWk^-'-Wj. 
In pseudo code we need only two lines. 

for j = 1°, 22,..., 27"-1,      [ for i - 2j, N, 2j in parallel Y(i) = Y{i) * Y(i - j) 
for j = 2m-2,2m~3,..., 2°, [ for i = 3j, N, 2j in parallel Y(i) = Y(i) * Y(i - j) 

The third variable, 2j in the for i expression is called the stride; i — 
2j, 4j, 6j,... , N. The first line of the algorithm is called going down the 
tree and the second line is called going up the tree. 
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12 3        4 5 6 7 8 

1       1-2 3      3-4 5      5-6 7      7- 

1       1-2 3       1-4 —^5      5-6 7      5-8 

1       1-2 3       1-4 5       5-6 7       l-l 

1       1-2 3       1-4 5       1-6 7       1-8 

1       1-2        1-3     1-4        1-5     1-6        1-7     1-8 

Figure 2: Parallel prefix 

11     Conclusion 

In the 1920s A. C. Aitken rediscovered much of the material in Hadamard's 
thesis and in addition, worried about speed versus accuracy when computing 
the H-table. We showed here (Section 5) that Rutishauser's qd-table can 
be seen as a reformulation of the H-table to give a more robust array. In 
fact Rutishauser's motivation came from continued fractions and not from 
Aitken's work. 

It is quite well known that the ^-algorithm enabled Rutishauser to dis- 
cover the LR algorithm. For tridiagonals LR may be viewed as a reformu- 
lation of qd and thus as a descendent of the i7-table. Instead of focusing 
on QR as a stable variation of LR, as in [13], we have chosen to present 
recent variants on qd and LR which seem preferable to the original ones. 
The new techniques preserve bandwidth and can afford to have a much more 
sophisticated shift strategy than QR. It remains to be seen whether they will 
displace QR. In any case they may be perceived as computationally desirable 
descendants of Hadamard's il-table. 
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