
AFIT/DS/ENG/96-05

Formal Transformations

from Graphically-Based Object-Oriented Representations

to Theory-Based Specifications

DISSERTATION
Scott Allan DeLoach

Major, USAF

AFIT/DS/ENG/96-05

D=TIC 0ALTTY INSPETED 3

Approved for public release; distribution unlimited

19960718 116

The views expressed in this dissertation are those of the author and do not reflect the official policy

or position of the Department of Defense or the U. S. Government.

AFIT/DS/ENG/96-05

Formal Transformations from Graphically-Based Object-Oriented Representations

to Theory-Based Specifications

DISSERTATION

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Scott Allan DeLoach, B.S., M.S.

Major, USAF

June, 1996

Approved for public release; distribution unlimited

ii

AFIT/DS/ENG/96-05

Formal Transformations from Graphically-Based Object-Oriented Representations

to Theory-Based Specifications

Scott Allan DeLoach, B.S., M.S.

Major, USAF

Approved:

T C Hartrum, Chairman

Paul D. Bailor

Mark E. Oxley T

Dean'4 prese, 0

Robert A. Calico, Jr

Dean, Graduate School of Engineering

Acknowledgements

I would like to thank my advisor, Dr. Thomas Hartrum, for his guidance and assistance

during this research effort. I would also like to thank my committee members, Lieutenant Colonel

Paul Bailor and Dr. Mark Oxley, for their advice and suggestions.

I would also like to thank my fellow graduate students, Captain Frank Young and Captain

Robert Graham, for their discussions concerning both my research, that helped focus my efforts,

as well as life in general, that kept me from getting "tunnel vision".

I also wish to thank my wife, Amy. Mere words are not enough to express the debt of gratitude

and respect I have for her. She took on much more than her share of the burden to enable me to

complete this effort. To my children, Vanessa, Lauren, Zachary, and Jordan, you are a constant

reminder that my title of "daddy" will always be more important than "Major" or "Doctor". I

love you all!

Finally, and most importantly, I thank the one who gave me the vision to pursue this goal

and the strength to achieve it, my Lord and Saviour Jesus Christ.

Scott Allan DeLoach

iv

Table of Contents

Page

Acknowledgements. iv

List of Figures. xiii

List of Tables xix

List of Abbreviations. xx

Abstract xxi

I. Introduction 1-1

1.1 Purpose. 1-1

1.2 Overview 1-3

1.3 Related Work 1-5

1.3.1 Formal Specification Incorporation Methodologies 1-5

1.3.2 Formal Specification Languages 1-7

1.3.3 Transformation Systems. 1-12

1.4 Assumptions 1-15

1.5 Contributions. 1-16

1.6 Summary. 1-17

IL. Software Development and Specification Acquisition Framework 2-1

2.1 Overview 2-1

2.1.1 Software Development Framework 2-1

2.1.2 Specification Acquisition Mechanism 2-2

2.2 Domain Engineering. 2-5

2.2.1 Overview. 2-5

2.2.2 Implementation 2-6

v

Page

2.3 Specification Generation 2-8

2.4 Specification Structuring. 2-11

2.5 Summary. 2-12

III. Theories and Specifications 3-1

3.1 Introduction. 3-1

3.2 Algebraic Specification. 3-2

3.2.1 The Category of Signatures. 3-3

3.2.2 The Category of Specifications. 3-5

3.3 Functors. 3-12

3.4 Summary. 3-13

IV. Theoretical Foundations. 4-1

4.1 Introduction. 4-1

4.2 Classes. 4-1

4.2.1 Internal Class Consistency 4-3

4.3 Categorical Setting 4-4

4.3.1 Object Instances. 4-8

4.4 Inheritance. 4-11

4.4.1 Multiple Inheritance. 4-14

4.5 Summary 4-15

V. Formal Object Modeling Technique Semantics 5-1

5.1 Introduction. 5-1

5.2 Translation Requirements. 5-1

5.3 Object Model 5-2

5.3.1 Overview of Rumbaugh's Object Model 5-2

5.3.2 The Restricted OMT Object Model. 5-3

5.3.3 Object Model Semantics. 5-4

vi

Page

5.4 Dynamic Model 5-7

5.4.1 Overview of Rumbaugh's Dynamic Model 5-7

5.4.2 Dynamic Model Translation Problems 5-10

5.4.3 The Restricted OMT Dynamic Model 5-11

5.4.4 Dynamic Model Semantics 5-13

5.5 Functional Model 5-16

5.5.1 Overview of Rumbaugh's Functional Model 5-16

5.5.2 Functional Model Translation Problems 5-19

5.5.3 The Restricted OMT Functional Model 5-24

5.5.4 Functional Model Semantics 5-26

5.6 Summary ... 5-29

VI. A Theory-Based Object Model 6-1

6.1 Introduction 6-1

6.2 Classes 6-2

6.2.1 Sorts 6-3

6.2.2 Attributes 6-3

6.2.3 Methods 6-3

6.2.4 Events 6-5

6.2.5 Operations 6-5

6.2.6 Axioms 6-7

6.2.7 State 6-7

6.2.8 Class Set 6-9

6.2.9 Object-Valued Attributes 6-12

6.2.10 Abstract Classes 6-13

6.3 Inheritance .. 6-14

6.3.1 Implications of the Substitution Property 6-15

6.3.2 Multiple Inheritance 6-15

vii

Page

6.3.3 Subclasses and Class Sort Subsorts 6-17

6.3.4 Behavioral Inheritance 6-19

6.4 Associations 6-28

6.4.1 Multiplicity 6-32

6.4.2 Qualified Associations 6-32

6.5 Aggregation. 6-34

6.5.1 Specification of Components. 6-37

6.5.2 Qualified Aggregates. 6-39

6.5.3 Specification of Behavior 6-40

6.6 Communication 6-48

6.6.1 Communication Between Aggregate and Components 6-55

6.7 Summary. 6-57

VII. Translation to Theory-Based Specification. 7-1

7.1 Introduction. 7-1

7.2 Object Model Translations 7-2

7.2.1 Class Translation. 7-3

7.2.2 Class Sets 7-12

7.2.3 Aggregates. 7-14

7.2.4 Association Translation. 7-20

7.3 Dynamic Model Translations 7-29

7.3.1 States. 7-29

7.3.2 Transitions. 7-32

7.4 Functional Model Translation. 7-38

7.4.1 Processes 7-38

7.4.2 Dataflows 7-42

7.4.3 Datastores. 7-42

7.5 Additional Translations 7-43

viii

Page

7.5.1 Constraints 7-43

7.5.2 Operations 7-43

7.5.3 Imports 7-44

7.6 Translation Correctness 7-45

7.6.1 Object Model Correctness 7-46

7.6.2 Object Model Correctness Theorem 7-50

7.6.3 Dynamic Model Correctness 7-51

7.6.4 Dynamic Model Correctness Theorem 7-53

7.6.5 Functional Model Correctness 7-54

7.6.6 Functional Model Correctness Theorem 7-58

7.6.7 Communication Correctness Theorem 7-58

7.7 Summary 7-60

VIII. Feasibility Demonstration 8-1

8.1 Overview 8-1

8.2 Pump Domain 8-1

8.2.1 Pump Domain Object Model 8-1

8.2.2 Pump Domain Dynamic Model 8-6

8.2.3 Pump MANUAL.TEXT 8-12

8.3 Faculty Student Database Domain 8-12

8.3.1 Faculty Student Database Domain Object Model 8-13

8.3.2 Faculty Student Database Domain Functional Model 8-15

8.3.3 Faculty Student Database MANUAL.TEXT 8-17

8.4 Summary 8-19

IX. Conclusions and Recommendations 9-1

9.1 Summary of Contributions 9-2

9.2 Conclusions and Results 9-3

ix

Page

9.3 Future Work. 9-4

9.4 Reflections on the Parallel Successive Refinement Approach. 9-7

9.5 Summary. 9-8

Appendix A. Generic OMT Abstract Syntax Tree A-i

A.1 Introduction. A-i

A.2 Object Modeling Technique Representation Assumptions. A-i

A.3 Glass Objects A-3

A.3.i Attribute Objects A-6

A.3.2 Operation Objects. A-7

A.4 Association Objects. A-7

A.5 Dynamic Model Objects A-8

A.6 Functional Model Objects. A-10

A.7 Generic OMT AST Completeness A-12

A.7.1 Object Model A-12

A.7.2 Dynamic Model. A-12

A.7.3 Functional Model. A-14

A.8 Conclusions A-15

Appendix B. 0-SLANG...B-i

B.i Introduction. B-i

B.2 Background. B-i

B.3 0-SLANG Syntax. B-i

B.3.i 0-SLANG Grammar B-2

BA4 0-SLANG Semantics. B-9

B.4.i Classes B-9

B.4.2 Class Sets B-9

B.4.3 Communication. B-10

x

Page

B.4.4 Links B-li

B.4.5 Associations B-il

B.4.6 Aggregates B-12

B.4.7 Inheritance B-14

B.5 Summary. B-23

Appendix C. Generic OMT and 0-SLANG ASTs C-i

CA1 Introduction C-i

C.2 Generic OMT Abstract Syntax Tree. C-2

C.3 0-SLANG Abstract Syntax Tree C-3

Appendix D. Demonstration System. D-1

D.1 Introduction. D-1

D.2 ObjectMaker D-2

D.2.1 Manual Text File D-4

D.3 OMT Parser. D-4

DA4 ObjectMaker OMT AST to GOMT AST Transformation D-5

D.5 GOMT AST to 0-SLANG Transformation D-7

D.6 Summary. D-8

Appendix E. Additional Theories. E-1

Appendix F. Translation Correctness F-i

F.i Object Model Correctness Proof. F-i

F.2 Dynamic Model Correctness Proof. F-33

F.3 Functional Model Correctness Proof F-39

FA4 Summary F-45

xi

Page

Appendix G. Feasibility Demonstration 0-SLANG Output..................G-i

G.1 PUMP 0-SLANG. G-1

G.2 Faculty Student Database - Faculty Workload Functional Model . . . G-1i

G.3 Faculty Student Database 0-SLANG. G-14

Bibliography. BIB-i

Vita VITA-i

xii

List of Figures

Figure Page

2.1. Software Development Framework 2-1

2.2. Parallel Refinement Specification Acquisition Mechanism. 2-3

2.3. Rocket Object Domain Model. 2-8

2.4. Specific Rocket Object Model. 2-11

3.1. Ring Signature. 3-3

3.2. Integer Ring Signature. 3-5

3.3. Signature Morphisms: RING - RINGINT.............................. 3-5

3.4. Ring Specification 3-6

3.5. Cone Diagram. 3-9

3.6. Colimit Diagram. 3-9

3.7. Specification Colimit Example 3-11

3.8. Example Colimit Diagram. 3-11

4.1. Object Reduct Framework 4-5

4.2. Example 1 Class Type Definitions 4-6

4.3. Dmod 4-7

4.4. Cmod 4-7

4.5. Behavioral Equivalence of Objects. 4-10

4.6. Multiple Inheritance Colimit. 4-15

4.7. Inconsistent Multiple Inheritance 4-16

5.1. Typical Object Model. 5-3

5.2. Relationship Multiplicities 5-4

5.3. Account Dynamic Model. 5-8

5.4. Concurrent State Diagram 5-9

5.5. SubState Diagram. 5-10

xiii

Figure Page

5.6. Invalid Substate Diagram 5-11

5.7. Inheritance of Dynamic Behavior - Concurrent Diagram 5-11

5.8. Unfolding Substates into a Single Statechart 5-14

5.9. Composition of Single Statechart from Concurrent Diagram 5-15

5.10. Composition of Single Statechart from Concurrent Diagram 5-15

5.11. High-Level and Nested Data Flow Diagrams 5-17

5.12. Data Flows 5-18

5.13. Data Stores 5-18

5.14. A Nondeterministic Functional Model 5-22

5.15. Placing Control in Dynamic Model 5-23

5.16. Non-Deterministic Precedence 5-27

6.1. Object Class 6-6

6.2. Account Dynamic Model 6-9

6.3. SLANG Class Set Specification 6-10

6.4. O-SLANG Class Set Specification 6-10

6.5. Colimit of Accounts 6-11

6.6. Object-Valued Attribute Example 6-13

6.7. Savings Class 6-16

6.8. Savings Account Dynamic Model 6-17

6.9. Subclass State Extension 6-17

6.10. Checking Class 6-18

6.11. Checking Account Dynamic Model 6-19

6.12. Colimit of Accounts 6-19

6.13. Combined Account Signature 6-20

6.14. Combined Account Class Axioms 6-21

6.15. Combined Account Class Axioms (Continued) 6-22

6.16. Superclass Dynamic Behavior 6-23

xiv

Figure Page

6.17. Inheritance of Dynamic Behavior - State Extension 6-23

6.18. Inheritance of Dynamic Behavior - Illegal 6-24

6.19. Inheritance of Dynamic Behavior - SubState Statechart 6-25

6.20. Inheritance of Dynamic Behavior - Concurrent Statechart 6-26

6.21. Customer Class 6-30

6.22. Customer Account Link 6-31

6.23. Cust-Acct Association 6-31

6.24. Association Multiplicity Axioms 6-32

6.25. Association Qualifier 6-33

6.26. Qualified Customer Account Link 6-33

6.27. Qualified Cust-Acct Association 6-34

6.28. Aggregation Composition 6-36

6.29. Aggregation Specification 6-36

6.30. Aggregate Specification 6-37

6.31. Object-Valued Attribute Example 6-38

6.32. Aggregate Qualifier 6-39

6.33. Qualified Customer Class 6-41

6.34. Qualified Customer Class Set 6-42

6.35. Bank Aggregate Functional Model 6-43

6.36. Full Aggregate Specification 6-44

6.37. Automobile Aggregate Functional Model 6-46

6.38. Automobile Aggregate Specification 6-47

6.39. Event Theory 6-49

6.40. Account Class with Communications 6-51

6.41. Communicating Bank Aggregate Class 6-52

6.42. Bank Aggregate with Archive 6-52

6.43. Broadcast Theory 6-53

xv

Figure Page

6.44. Unification of Multiple Broadcast Classes 6-54

6.45. Aggregate Using a Broadcast Theory 6-54

6.46. Aggregate Using a Broadcast Theory With Multiple Generators 6-55

6.47. Engine-Warning Event Theory 6-56

6.48. Use of Sort Axiom in Aggregate Specification 6-57

7.1. OMT Translation Composition 7-46

7.2. Datafiow Definitions 7-55

8.1. Pump Domain Object Model 8-2

8.2. Display Class Dynamic Model 8-6

8.3. Clutch Class Dynamic Model 8-8

8.4. Motor Class Dynamic Model 8-9

8.5. Gun Class Dynamic Model 8-9

8.6. Holster Class Dynamic Model 8-10

8.7. Pump Class Dynamic Model 8-11

8.8. Pump MANUAL.TEXT File 8-12

8.9. Faculty-Student Database Object Model 8-13

8.10. Update-Teaches Functional Model 8-16

8.11. Update-Teaches Functional Model Level 2 8-16

8.12. Count-Times-Taught Functional Model 8-18

8.13. Faculty Student Database MANUAL.TEXT File 8-18

9.1. Parallel Refinement Specification Acquisition Mechanism 9-5

A.1. Top Level GOMT Abstract Syntax Tree A-3

A.2. GOMT Class Abstract Syntax Tree A-4

A.3. Connection Abstract Syntax Tree A-5

A.4. GOMT Attribute Abstract Syntax Tree A-6

A.5. GOMT Operation Abstract Syntax Tree A-7

xvi

Figure Page

A.6. GOMT Association Abstract Syntax Tree A-8

A.7. GOMT State Abstract Syntax Tree. A-9

A.8. GOMT Transition Abstract Syntax Tree A-10

A.9. G0MT Functional Model Abstract Syntax Tree A-11

A.10. OMT Split/ Synchronization. A-14

A.11. Generic OMT Split/ Synchronization. A-14

B.1. 0-SLANG Abstract Syntax Tree (Part I). B-3

B.2. 0-SLANG Abstract Syntax Tree (Part II) B-3

B.3. 0-SLANG Features Sublist B-4

B.4. 0-SLANG Abstract Syntax Tree (Part III) B-4

B.5. Object Class. B-10

B.6. Underlying SLANG Specification. B-il

B.7. 0-SLANG Class Set Specification B-12

B.8. SLANG Class Set Specification B-12

B.9. Event Theory. B-12

B.10. 0-SLANG Link Specification. B-13

B.11. SLANG Link Specification. B-13

B.12. 0-SLANG Association Specification B-14

B.13. SLANG Association Specification B-14

B.14. 0-SLANG Aggregation Specification B-15

B.15. Aggregation Composition. B-15

B.16. SLANG Aggregation Specification B-15

B.17. 0-SLANG Person Superclass. B-16

B.18. 0-SLANG Student Subclass B-16

B.19. SLANG Person Superclass. B-17

B.20. SLANG Student Subclass B-18

B.21. 0-SLANG Faculty Subclass B-19

xvii

Figure Page

B.22. SLANG Faculty Subclass B-20

B.23. 0-SLANG TA Subclass. B-21

B.24. SLANG Faculty Student Colimit. B-24

B.25. SLANG TA Subclass. B-25

D.1. ObjectMaker to GOMT Transformation System D-2

D.2. ObjectMaker Window D-3

D.3. MANUAL.TEXT Example. D-5

G.1. Faculty Workload Functional Model G-12

G.2. Calculate-Faculty-Workload Functional Model. G-12

G.3. Calculate- Student-Load Functional Model G-13

G.4. Calculate- Course-Load Functional Model G-13

xviii

List of Tables

Table Page

1.1. Formal Methods Incorporation Strategies. 1-8

6.1. Method/Attribute Inheritance Rules. 6-14

7.1. Valid Dataflows. 7-57

B. 1. 0-SLANG Constructs B-2

C. 1. Abstract Syntax Tree Notation C-1

xix

List of Abbreviations

Abbreviation Page

OMT Object Modeling Technique 1-3

AST Abstract Syntax Tree 1-4

ATL Abstract Target Language 2-2

GOMT Generic Object Modeling Technique 7-1

xx

AFIT/DS/ENG/96-05

Abstract

Formal software specification has long been touted as a way to increase the quality and

reliability of software; however, it remains an intricate, manually intensive activity. An alter-

native to using formal specifications is to use graphically-based, semi-formal specifications such

as those used in many object-oriented specification methodologies. While semi-formal specifica-

tions are generally easier to develop and understand, they lack the rigor and precision of formal

specification techniques. The basic premise of this investigation is that formal software specifi-

cations can be constructed using correctness preserving transformations from graphically-based

object-oriented representations. In this investigation, object-oriented specifications defined using

Rumbaugh's Object Modeling Technique (OMT) were translated into algebraic specifications. To

ensure the correct translation of graphically-based OMT specifications into their algebraic counter-

parts, a formal semantics for interpreting OMT specifications was derived and an algebraic model of

object-orientation was developed. This model defines how object-oriented concepts are represented

algebraically using an object-oriented algebraic specification language O-SLANG. O-SLANG com-

bines basic algebraic specification constructs with category theory operations to capture internal

object class structure as well as relationships between classes. Next, formal transformations from

OMT specifications to O-SLANG specifications were defined and the feasibility of automating these

transformations was demonstrated by the development of a proof-of-concept system.

xxi

Formal Transformations from Graphically-Based Object-Oriented Representations

to Theory-Based Specifications

L Introduction

1.1 Purpose

The insertion of traditional engineering methods has been suggested as the only way to trans-

form software development from an art into an engineering discipline (26, 8). One approach to

inserting this engineering discipline is the transformational programming paradigm where software

is developed and maintained at the formal specification level and provably correct code is auto-

matically derived from the specification (42). This paradigm is inherently knowledge-based and

requires two types of software engineering knowledge: design knowledge and domain knowledge.

Design knowledge incorporates the domain independent knowledge required to produce software

including knowledge of architectures, algorithms, and data structures. Domain knowledge, on the

other hand, captures knowledge about objects in the problem domain. In the transformational

programming paradigm, software engineers use domain knowledge to derive system specifications

from domain models and then use design knowledge to produce the code. Thus, software engi-

neering evolves from the art of programming to the development of the domain models and design

knowledge necessary to derive provably correct software (68:634).

Use of algebraic theories to represent software engineering knowledge has gained momentum

during the last decade. Some of the most promising work is using theory-based specifications

to drive software synthesis systems. A notable example of such a synthesis system, the Kestrel

Interactive Development System (KIDS) (86), has yielded some exciting results. KIDS has been

used to derive dozens of algorithms including a transportation scheduling algorithm for over 15,000

movements that was 78 percent faster and had 75 percent fewer delays than the best previously

1-1

known algorithms (87). A follow-on effort to KIDS, Specware (55), supports a systematic approach

to the composition of theory-based specifications followed by their stepwise refinement into code.

The basic synthesis steps are to 1) develop a domain theory for the problem to be solved, 2) create

a specification describing the problem in the language of its domain theory, 3) apply specification

refinements to construct a program-based model of the problem specification, 4) apply program

optimizations, and 5) compile the program (86).

While systems such as KIDS and Specware have been making progress in software synthesis

research (steps 3 and 4 above), research in the acquisition of formal specifications (steps 1 and

2) has not been keeping pace. Formal software specification has long been touted as a way to

increase the quality and reliability of software; however, it remains an intricate, manually intensive

activity. Besides driving software synthesis systems as described above, justifications for using

formal software specifications also include clarifying customer requirements, avoiding ambiguities

and contradictions, and the ability to rigorously verify certain properties (29:74). In fact, experience

in the use of formal methods suggests that the cost of using formal methods is no greater, and

possibly even less, than using traditional software development methods (44:17). Yet, to date,

formal methods are not widely accepted. Fraser suggests several reasons for this lack of acceptance

and use (29:75,76):

1. Lack of research directed at developing practical methods and tools for incorporating for-

mal methods into the software life-cycle. Most formal methods research is based on formal

languages and inference rules.

2. Little expertise among practicing software developers in the mathematical and logical concepts

and notations used in most formal specification languages.

3. Unsuitability of formal notation for communicating with end users since they are even less

likely than the developer to be trained in formal mathematical and logical concepts.

4. Tendency of formal notations to inhibit creativity in a poorly defined problem areas.

1-2

5. Unwillingness of management to make a sizeable investment in what they consider to be an

unproven technology.

So, what is the solution? Fraser suggests that a Computer-Assisted Parallel Successive Refine-

ment methodology is the answer. In a computer-assisted parallel successive refinement method, the

designers use both semi-formal (graphical) and formal representations to produce the specification

by successively performing refinements to both representations in parallel (29:83). This method-

ology directly addresses items 1, 3, and 4 above and aids in resolving problems associated with 2

and 5. Both users and software personnel unaccustomed to formal specifications have access to the

semi-formal, graphical representation while the formal representation, and its associated benefits,

is maintained. The formal representation is used by knowledgeable software personnel and auto-

mated tools to check for ambiguities and contradictions and aid in transforming the specification

into code. Unfortunately, Fraser reports that there has been no work in this area (29:83).

1.2 Overview

The basic premise of this investigation is that formal software specifications can be constructed

using a computer-assisted parallel successive refinement approach incorporating correctness preserv-

ing transformations to automatically translate between graphically-based object-oriented represen-

tations and their corresponding formal representation. There are two obvious starting points for

this investigation: object-oriented representations and formal representations.

Because a standard set of definitions does not yet exist for many terms and concepts in object-

orientation, a specific object-oriented model was selected before continuing the investigation. There

are several proposed object-oriented methodologies in use today (1, 4, 11, 13, 15, 19, 20, 21, 72,

73, 84, 98, 103). Rumbaugh's Object Modeling Technique (OMT) (83) was chosen for its breadth

of coverage, availability of tools, and usefulness in domain analysis and modeling. Rumbaugh uses

three distinct views to describe a domain: (1) the object model describes structural relationships

1-3

between domain objects, (2) the dynamic model describes interactions between domain objects,

and (3) the functional model describes how processes in the domain transform data. To enable

automated translation of these models into a formal representation, a formal semantics for each

model was developed. Then, an abstract syntax tree (AST) representation of a generic OMT

specification was developed that captures the three OMT models in a single unifying structure.

Theory-based algebraic specification is concerned with (1) modeling system behavior using

algebras (a collection of values and operations on those values) and axioms that characterize algebra

behavior, and (2) composition of larger specifications from smaller specifications. Composition

of specifications is accomplished via specification building operations defined by category theory

constructs (88). In algebraic specifications, the structure of a specification is defined in terms of

sorts, abstract collections of values, and operations over those sorts. This structure is called a

signature. A signature describes the structure of a solution; however, a signature does not specify

semantics. To specify semantics, the definition of a signature is extended with axioms defining

the intended semantics of signature operations. A signature with associated axioms is called a

specification.

Algebraic specifications are used in this investigation to define a theory-based model of object-

orientation. Formal definitions for classes and objects were defined within this model. General class

relationships were investigated resulting in the definition of formal techniques for the construction of

valid inheritance, aggregation, and association relationships. An object-oriented algebraic specifica-

tion language, O-SLANG, was developed that incorporates the category theory operations necessary

to define relationships between object classes. Finally, formal translations were defined that map

generic OMT specifications into O-SLANG algebraic specifications.

The feasibility of translating graphically-based OMT models into algebraic specifications was

demonstrated by the development of an automated transformation system. The prototype system

1-4

uses a commercial OMT modeling tool as the front end to a rule-based transformation system that

generates O-SLANG based on the formal translations.

Related work is described in the next section while Section 1.4 defines the basic assumptions

upon which this investigation is based, Section 1.5 describes the contributions of the investigation,

and Section 1.6 outlines the sequence of presentation for the rest of this document.

1.3 Related Work

This section describes research related to my investigation. Section 1.3.1 describes proposed

methods for incorporating formal specifications into current software development practices, Sec-

tion 1.3.2 presents some formal specification languages used to describe object-oriented systems,

and Section 1.3.3 describes existing transformation systems.

1.3.1 Formal Specification Incorporation Methodologies. Several authors have proposed

techniques for incorporating formal methods into existing software development practices. Fraser

et. al. created a framework for analyzing these methods (29). They categorize the methods by

the formalization process and the formalization support of each of the methods. The formalization

process can be defined as either being direct, where software developers move directly from informal

(natural language) specifications to formal specifications without going through any semi-formal

activity, and transitional, where the transformation from informal to formal specifications uses an

intermediate semi-formal specification. Within the transitional process, Fraser defines two subtypes:

sequential and parallel successive refinement. In a sequential transitional approach, the semi-

formal specifications are fully defined and then transformed into a formal specification. In the

parallel successive refinement approach, the semi-formal and formal specifications are produced

simultaneously, going through equivalent successive refinements. Formalization support is also

divided into two categories: unassisted, where all work is done manually, and computer assisted

1-5

where computer-based heuristics or knowledge-based transformation tools assist the developer. I

briefly discuss a number of methodologies and then show how they fit into Fraser's framework.

Andrews and Gibbons describe a methodology where Structured Analysis is used to build a

hierarchical system structure chart. This structure chart is then translated manually into VDM.

Once in VDM, the structure chart is used to guide the decomposition of operations and data

refinements (29).

Babin, Lustman, and Shoval propose a computer assisted method based on the ADISSA

method, which is an extension of Structured System Analysis. In ADISSA, the system architecture

is described via a set of transactions that model system events and user requests. Flow of control is

modeled by a finite state machine. The method uses a ruled-based transformation system to help

transform the semi-formal specification into a formal specification (10).

Conger et. al. developed a manual procedure for taking Structured Analysis data flow

diagrams and transforming them into VDM. First, hierarchical data flow diagrams are developed

using Structured Analysis heuristics. The data flow diagrams are then used to guide the developer

in partitioning and stepwise refining of the VDM specifications. A VDM specification is produced

for each data transformation process in the data flow diagram set (22).

Fraser, Kumar, and Vaishnavi propose an interactive, rule-based transformation system to

translate Structured Analysis specifications into VDM specifications. The method is based on

data flow diagrams and decision tables produced via Structured Analysis. The bottom level data

flow transformation processes are defined by decision tables which are then transformed by the

rule-based system (28).

Kemmerer describes a process which integrates traditional software development with de-

velopment using formal methods. In this process, the formal methods are annotations to the

semi-formal design and are developed directly from lower-level natural language descriptions (52).

1-6

Kung has developed Process Interface Modules which are formal descriptions of the commu-

nication and synchronization among processes. Basically, the system is initially developed using

entity relationship diagrams to describe the static parts of the system and data flow diagrams to

model the dynamic parts of the system. This set of diagrams is then manually transformed into

Process Interface Modules to provide formal proof-based checking of the semi-formal design (57).

Miriyala and Harandi have developed an automated tool to help interactively create formal

specifications directly from informal requirements specified in a natural language subset. The

tool develops a problem structure tree directly from the informal specification and uses domain

independent knowledge and analogy with past developments to guide the refinement of the tree

(74).

Wing proposes a very vague method where informal requirements are transformed into a

formal specification through a series of iterative interviews with the user. She proposes neither a

semi-formal method to communicate with the user nor a specific formal specification language to

work toward (102).

Table 1.1 classifies the methodologies discussed above according to Fraser's framework. As

shown, and as reiterated by Fraser, the lower right hand corner, computer assisted, parallel suc-

cessive refinement methodologies, has seen no research to date. According to Fraser, work in

developing techniques and methodologies for this area is needed because of the promise of the

approach (29:84).

1.3.2 Formal Specification Languages.

1.3.2.1 Z Extensions. There have been a number of Z extensions designed to make

Z specifications easier to understand. Many of these extensions are object-oriented. Although most

of the object-oriented Z extensions provide techniques for structuring the Z specification using the

common object-oriented concepts, they do not attempt to provide an improvement in specification

1-7

p u * .iiiiiiiiiiiiiij

Table 1.1 Formal Methods Incorporation Strategies

development methodology. A number of Z extensions are discussed below. However, to avoid

repetition, only the unique features of each language are discussed.

MooZ. MooZ is an object-oriented extension of Z. A MooZ specification is

defined as a set of MooZ class specifications which are semantically described as records. These

classes are then used to define data types or generic templates from which to instantiate objects.

MooZ classes support parameterization and multiple inheritance. Attributes determine the state

of an object and these attributes may be visible or hidden. Operations that manipulate these state

attributes are handled at the individual object level; however, operations such as create or destroy,

which do not reference state variables, are handled by the class. Operations and attributes are

implemented via functions that are defined in the Z axiomatic style (62).

Object-Z. Object-Z is another object-oriented extension to Z. Like MooZ de-

scribed above, Object-Z uses a class definition which includes attributes and operations which are

defined using Z axiomatic definitions. One unique aspect of Object-Z is its use of a history in-

variant. The history invariant uses linear temporal logic to further restrict valid object behavior

1-8

by defining legal sequences of operation calls (17). Object-Z also includes referential semantics

which allows the declaration of references (pointers) to objects. These semantics are particularly

useful in creating aggregates where one might define an object as a variable, or even define a set of

objects. Object-Z also provides a promotion operation which allows the operation of an aggregate

component to be promoted to an operation of the aggregate class (82:114).

Z++. Z++ is another object-oriented extension based on Z. However, Z++

is unique in that its semantics is based on algebra and category theory. In Z++, classes form a

category with Z+± class refinements defined as the arrows. The formal algebraic and categorical

basis makes it possible to prove specific properties about Z+± specifications (60:28). To keep Z+±

consistent with the Z community, a model-based theory has been developed to enable reasoning

using either algebraic or model-based semantics (58). While Z++ semantics are based on algebra

and category theory operations, Z+± does not use category theory operations to build new specifi-

cations or compose new specifications from existing specifications. Z++ must be written manually.

Category theory is only used to prove correctness of specification structure.

1.3.2.2 OBJ, OOZE, and FOOPS. Despite its name and its use of the term

"objects", OBJ3 is not an object-oriented language; however, it has been extended to include

object-oriented concepts and does have many interesting aspects. Actually, OBJ3 is not simply

a language, but a system which includes a functional programming language, environment, and

interpreter for algebraic specifications (40). OBJ3 includes three types of components: objects,

theories, and, views. Objects are not objects in the object-oriented sense, but are actually purely

functional executable code modules. Theories, on the other hand, are similar to the concept of

theories as defined in Section 3.2 in relation to algebraic specifications. Views are used in OBJ3

to relate how objects (modules) satisfy axioms of a particular theory and are defined as theory

morphisms (38:436). Although OBJ3 uses theories, it was developed to perform code-level reuse

by composing existing code and not for transformational derivation of code from specifications.

1-9

OBJ3 is based on order-sorted algebras which is an extension of many-sorted algebras (39).

Basically, an order-sorted algebra is a many-sorted algebra with a partial order defined on the sorts.

According to Goguen, order-sorted algebras are used to allow sorts to be of two different types (40:4).

For example, a natural number is an integer, an integer is a rational number, and a rational number

is a real number. This gives a subsort partial ordering of natural < integer < rational < real.

This allows the definition of total functions on subsorts that otherwise would be defined as partial

functions.

As a final note, and to make a clear distinction between OBJ3 and object-oriented languages,

Goguen states that OBJ3 objects do not have states (40:37) which is a critical aspect of object-

orientation. Although it provides many of the same operations necessary for class inheritance and

parameterization, without providing state it can only produce functional specifications.

OOZE (Object-Oriented Z Extension) (6, 7) and FOOPS (Functional Object-Oriented Pro-

gramming System) (37) are object-oriented specification languages based on OBJ3. Because OOZE

is a syntactic variant of FOOPS and has the same semantics (5:181), I only discuss FOOPS here.

FOOPS is an algebraic, object-oriented specification language based on OBJ3. It provides classes

(possibly parameterized), objects, inheritance, attributes, and methods. Objects are the instances

of a class, and each class may have a number of objects. Each object has a unique identifier, a set

of observable attributes, and a set of methods which change the state of an object (38:441).

1.3.2.3 Larch. Larch is a two-tiered algebraic specification language based on

multi-sorted first-order logic with equality (43:8). Each specification has two parts, a language

specific specification written in one of a number of Larch interface languages (LIL), and a language

independent part written in the Larch Shared Language (LSL). Larch is not intended to be object-

oriented although object-oriented designs have been mapped into Larch (65). LSL specification

entities, called traits, define a set of operations over a set of sorts.

1-10

LSL traits can be parameterized on sorts and sorts are defined by their use in defining opera-

tions. Larch is designed to be used to prove semantic properties about specifications and not to be

transformable into code or to be executable; therefore, Larch provides an implies section of a trait

to make explicit claims about theory containment (i.e., what theorems are logical consequences of

the trait assertions). These claims must be proved by the author and are useful in error detection

and reader understanding.

The Larch interface languages are used to define the mapping between an actual programming

language and an LSL trait. Whereas the traits are used to define the functional aspects of the

operations, an interface specification provides the programming language interface to the trait and

models state as represented in the programming language. Usually this state modeling involves

specifying the state before and after each operation.

1.3.2.4 Slang. Slang is an algebraic specification language where specifications are

theory presentations using higher order logic extended with category operations such as products,

coproducts, quotients, and subsorts (54). System-level specifications are developed by building

diagrams which can be used to express parameterization, instantiation, importation, and refinement

(50). Specification building operations include translation, colimit, and importation, each of which

defines a morphism (or in the case of a colimit, morphisms) between a source specification and a

target specification. Translation copies a specification while renaming some or all of the sorts or

operations. The colimit operation takes the colimit of a number of specifications and morphisms

between them, combining them over any "shared" sorts and operations, into a single specification.

Importation involves including another specification - sorts, operations, and axioms - into a new

specification where additional sorts, operations, and axioms can be defined.

Diagrams are critical to specification development in Slang. In Slang, diagrams are "a multi-

directed graph whose nodes are labeled with specifications and whose arcs are labeled with mor-

phisms" (54:18). In a diagram definition, the arcs define the morphisms between the specifications.

1-11

Cocone-morphisms are created by a colimit operation while import-morphisms and translation-

morphisms are created via the import and translate operations respectively.

The colimit, import, and translate operations available in Slang are similar to the constructs

used in OBJ3 to construct specifications while the ability to refine specifications, using interpre-

tations built into Slang provides an even more powerful framework for deriving correct programs

directly from the specifications. An interpretation from specification B to specification A provides

a mechanism for constructing a model of A from models of B. Thus if we have a model for spec-

ification B and can construct an interpretation from B to a A, we can create a model for A as

well.

1.3.3 Transformation Systems.

1.3.3.1 Bourdeau and Cheng. Bourdeau and Cheng (14) have developed formal

semantics for an extended version of the OMT object model notation using the Larch specification

language (43) to describe modular algebraic specifications. The object model itself is a specification

which simply "includes" the object classes and associations derived from the object diagram.

Classes and associations are defined using a set of semi-formal rules. According to these rules,

each class defines a Larch specification called a trait. Within a class trait, sorts are introduced to

represent objects in the class as well as the state of an object in the class. A special state evaluation

function is added to map a given object to a value in the state sort. For each attribute in the class,

a function is defined which takes an object value and returns the value associated with the object.

Relational aspects of the object model such as association, aggregation, and inheritance are

defined as predicates. Each component in an aggregate relation defines a has-part predicate that,

given two objects, determines if the two objects are in the relation. Likewise, each association

defines a predicate R in an association trait that determines if two objects are related via the

1-12

association. Aggregate and association multiplicities are defined as axioms over the appropriate

predicates.

Inheritance is modeled by defining a simulates operation that takes an object of the subtype

and produces an object of the supertype, thus implementing Bourdeau and Cheng's interpretation

of the substitution property. For their definition of inheritance, Bourdeau and Cheng assume that

a subclass object D must be substitutable for its superclass object C at any point in the object's

lifetime. To satisfy this notion of inheritance, Bourdeau and Cheng define constraints on the

simulates operation that requires all states in the subclass to map some state in the superclass and

that for all attributes defined in the superclass, the values of those attributes in the subclass are

allowable values in the superclass.

Once a specification for an object model is derived, Bourdeau and Cheng use OMT instance

models (diagrams which show how a particular set of objects relate to each other) to define a set of

algebras. They define the semantics of the object model as the complete set of instance diagrams

that are consistent with the object model specification.

1.3.3.2 Rafsanjani and Colwill. Rafsanjani and Colwill have defined a mapping

from Object-Z to C++ in the context of an abstract object model (81). They define their mapping

informally without thought toward automation and their approach is based on empirical cases and

is not theoretically well founded (i.e., there is no proof that the C++ implementation does in fact

correctly represent the specification). Their mapping is purely structural. There is no attempt to

transform the semantics of the specification into code. This is left as a "creative" exercise for the

programmer.

Although the goals of their research differ from this investigation, their work has some inter-

esting aspects. First is the use of an object model to capture features common to both languages.

The object model allows them to relate concepts between the two languages and define a mapping.

Although Object-Z operations are mapped to virtual C++ functions which allow the inheriting

1-13

class to modify the functions defined in the parent class, Rafsanjani and Colwill view inheritance

strictly, allowing only for extension or restriction. Unfortunately, this view of inheritance is only

enforced by the good will of the programmer. Object-Z predicates are used to represent restrictions

on attributes and state spaces as well to define operation pre- and post-conditions. Rafsanjani and

Colwill map these predicates to C++ functions which are invoked before and after each operation

to ensure the predicates remain true.

1.3.3.3 KIDS. The Kestrel Interactive Development System (KIDS) is a proto-

type system that provides semi-automatic derivation of programs from algebraic specifications.

KIDS maps program specifications to algorithm theories to instantiate a functional program and

then uses high-level optimization operations to produce an efficient and correct-by-construction

program (with respect to the initial specification) (53). Operations provided by KIDS include

algorithm design, deductive inference, context independent and context dependent simplification,

partial evaluation, finite differencing, and compilation. KIDS is based on the use of algebraic

theories and category theory operations. Theories are used in KIDS to encapsulate knowledge

about problems in general, knowledge about the problem being solved, general knowledge about

the application domain, and general programming knowledge. Category theory concepts and op-

erations such as pushouts, colimits, and morphisms are used to combine and refine these theories

into efficient programs.

The basic steps in deriving a program in KIDS are 1) to develop (or reuse) a domain theory

for the problem to be solved, 2) create a specification that describes the problem to be solved in the

language of its domain theory, 3) apply a design tactic which forms an interpretation of the problem

specification in general algorithm theory and instantiates a program, 4) apply optimizations to the

program, and 5) compile the program (86:1025). Application of this approach has yielded some

impressive results. KIDS has been used to derive dozens of algorithms including real-world systems.

KIDS has produced a transportation scheduling algorithm for over 15,000 individual movements

1-14

that was 78 percent faster and produced 75 percent fewer delays than the best algorithms previously

known (87:66). KIDS has shown that not only is transformational program derivation possible, but

it can produce more efficient and more reliable software.

1.3.3.4 Specware. Specware (55) is a transformational program derivation system

based on Slang (54) and KIDS. Specware extends the concepts used in KIDS by allowing the

developer to build diagrams of specifications to build up a domain theory and eventually a system

specification. Basically, Specware provides the automated tool support for developing specifications

in the Slang specification language described above. When completed, Specware will incorporate

facilities to provide algorithm design and optimization, data type refinement, integration of reactive

system components, and code generation.

1.4 Assumptions

Because this research involves the use of specifications entered by an unknown user, two

assumptions are made concerning the specifications entered.

Assumption 1.1 Initial Specification Consistency. All specifications, as entered by the user, are

correct and consistent.

If a specification is not internally consistent, then valid models of those specifications do

not exist (32:3-13); therefore, internal consistency is a requirement for formal software synthesis.

Unfortunately, Church and Turing independently showed that in general, proving that a set of first

order axioms are inconsistent is not possible (18:45). Therefore, in this research, I assume that

user provided specifications are consistent and only show that further specification composition

operations (inheritance, aggregation, etc.) maintain that consistency.

Assumption 1.2 Restricted Use. All OMT models developed by the user are developed in accor-

dance with the restricted models as defined in Chapter V.

1-15

As defined by Rumbaugh, OMT has numerous ways to specify the same features using formal

and informal techniques. In this investigation, specification using informal techniques are inade-

quate for automatic translation while the ability to specify the same functionality using multiple

techniques ultimately leads to consistency questions. Therefore, Chapter V defines a restricted

version of OMT's three models and limits how they are used.

1.5 Contributions

Based on these assumptions, the contributions of this research include:

1. Development of an algebraic, category theory based specification language with built-in con-

structs for object-oriented concepts such as classes, inheritance, aggregation, association, and

global event communication.

2. Formalization of basic object-oriented concepts using algebraic and category theory con-

structs.

3. Formalization of a generally accepted notion of class inheritance and a sufficiency criteria for

proving adherence to that formalization.

4. Formalization of the semantics of the object, dynamic, and functional OMT models.

5. Formalization of event-based communications paths within an OMT domain specification.

6. Formalization of translations from graphically-based object-oriented representations to alge-

braic specifications.

7. Elevation of the level of abstraction at which formal specifications are developed.

8. Development of techniques to ensure consistency of object-oriented specification composition.

9. Elevation of the acceptance of formal specifications and methods.

1-16

1.6 Summary

This chapter is an introduction to the goals and objectives of my investigation and a brief

overview of related research. The remainder of this dissertation is organized as follows:

" Chapter II presents a framework for the parallel acquisition of theory-based specifications

using graphically-based object-oriented concepts.

" Chapter III discusses basic algebraic specification construction techniques within a category

theory setting.

" Chapter IV establishes the foundations for a theory-based model of object-orientation.

" Chapter V defines the formal semantics for the OMT object, dynamic, and functional models.

" Chapter VI introduces a theory-based model of object-orientation based on the OMT object,

dynamic, and functional models.

" Chapter VII describes the formal translations from a generic OMT specification to a theory-

based specification.

" Chapter VIII demonstrates the feasibility of automated specification translation by producing

two theory-based domain specifications using an automated proof-of-concept system.

" Chapter IX contains the conclusions from this investigation and provides recommendations

for future research.

1-17

II. Software Development and Specification Acquisition Framework

2.1 Overview

This chapter defines a theory-based Specification Acquisition Mechanism based on an object-

oriented user interface and theory-based specifications. The basic concept is to allow system de-

velopers to graphically specify domain, architecture, and system-level details in an object-oriented

fashion and automatically convert them into theory-based algebraic specifications. Section 2.1.1

describes the basic software development framework into which the theory-based Specification Ac-

quisition Mechanism fits while Section 2.1.2 presents an overview of the Specification Acquisition

Mechanism itself. Sections 2.2, 2.3, and 2.4 further define specific subsystems of the Specification

Acquisition Mechanism.

2.1.1 Software Development Framework. A framework for the development of software

using semi-automated software synthesis from theory-based system specifications is shown in Fig-

ure 2.1.

A CQasy ,

7 SPEC IICAT ION T - -B ,dS v r pci onDESI
GN

GEN RA IO &d

Library of TLibraa of

Figure 2.1 Software Development Framework

The central theme behind the proposed software development framework is the synthesis of soft-

ware from theory-based specifications. Functional specifications are developed and combined with

architecture theories in the Specification Acquisition Mechanism to create theory-based system

2-1

specifications. These specifications are then fed into the Design Refinement Mechanism where the

sorts, operations, and architectures are refined and mapped to an intermediate abstract target lan-

guage (ATL) representation. This ATL is then converted into compilable source code and optimized

in the Generation & Optimization Mechanism. This research focuses mainly on the Specification

Acquisition Mechanism and the Library of Class Theories. The Design Refinement and Genera-

tion & Optimization mechanisms are only discussed informally in this chapter and left for future

research. This research focuses on one approach to the Specification Acquisition Mechanism.

2.1.2 Specification Acquisition Mechanism. The basic functions and data flows of the

proposed Specification Acquisition Mechanism are shown in Figure 2.2. There are three phases to

acquiring a theory-based system specification using this mechanism: Domain Engineering, Speci-

fication Generation, and Specification Structuring. Each phase of specification acquisition has an

associated theory-based subsystem that accesses the Theory Library. However, to simplify specifi-

cation acquisition, the domain engineer or system analyst uses a graphically-based object-oriented

interface. For the purposes of researching and prototyping, I have chosen to base my object-

oriented approach on the Rumbaugh's OMT. OMT was chosen due to its popularity, breadth of

coverage, and availability of tools. I do not claim that OMT is the best, or even better than other

object-oriented methods or techniques.

The Specification Acquisition Mechanism is designed to help produce consistent theory-based

domain models which are then refined into functional system specifications. (I use the term "func-

tional specification" here to describe the definition of the system functions. It does not imply a

shift from an object-oriented to a functional view of the system.) A domain model is the "spe-

cific representation of appropriate aspects of an application domain" (48) and may take on various

forms including domain taxonomies, generic architectures, and domain specific languages (80). In

this mechanism, a domain model is captured via definition of the basic objects, operations, and

communication paths in the domain. Object-oriented constructs such as inheritance and aggre-

2-2

arelfi nem t Specification A rcition echiiiiiiiiiiiiiii!!i.

Composition fiiiiiiiiiiii~il Generation/Refinement" Matching
Subsystem Ji: .i:;:: :: :Subsystem Subsystem

Figure 2.2 Parallel Refinement Specification Acquisition Mechanism

gation are used to model generalization and specialization of domain objects as well as how they

are composed into other domain objects. The domain model thus defines a language from which

systems are specified. A functional specification is developed by refining a domain model through

selection of applicable domain objects, instantiation of domain object parameters, and definition of

specific communications paths between system objects. Once the system function is fully specified,

the system specification is completed by determining how to decompose the system into separate

processes and how those processes communicate.

Domain models are created by domain engineers using knowledge from domain experts and

stored in the Theory Library. Domain models consist of a set of class theories, which describe

the objects, operations, and communications paths of a domain. Individual class theories may

describe the attributes, methods, states, and events of a group of similar objects in a domain or

the relationships and communication paths between objects.

2-3

Class theories from a given domain are refined by users and system analysts to create func-

tional specifications which are also stored in the Theory Library. Functional specifications have the

same syntactic form as class theories but are tailored toward the requirements of a specific problem.

Intuitively, functional specifications are models of a domain class theory.

Architecture theories describe the structure of systems in terms of processes and inter-process

communications and are also stored in the Theory Library. Generally, while class theories are

domain specific, architecture theories are domain independent-they are defined solely in terms of

processes and inter-process communication.

Once a functional specification has been completed, the system analyst selects (or develops)

a corresponding architecture theory from the theory library. The architecture theory's process pa-

rameters are then instantiated with class theories from the functional specification to form a system

specification. For example, the system analyst may instantiate an architecture theory with three

processes running in parallel with refined versions of a propulsion device class theory, airframe class

theory, and a fuel-tank class theory from a rocket system domain to create a rocket system speci-

fication. In essence, a system specification is a model of a generic architecture theory instantiated

with domain specific class theories.

Although the domain engineer or system analyst is producing theory-based models and spec-

ifications, interaction with the system is through a conceptually simpler object-oriented interface.

Ideally, this interface consists of a graphical user interface with which the engineer or analyst

specifies domain object classes, associations, and architectures to define the domain or architecture

structure. Object attributes and operation semantics are then specified algebraically or graphically.

Structures representing behavior, such as state charts and data flow diagrams, are automatically

translated into equivalent algebraic definitions.

As the engineer or analyst interacts with the object-oriented user interface, commands and

data are translated to the theory-based subsystems where the actual composition occurs and proofs

2-4

of consistency and correctness are performed. For example, a domain engineer may create a new

class that inherits from an existing class. As the domain engineer creates the new class, attributes,

and methods, the Specification Acquisition Mechanism carries out proof obligations to show that

the composition specified by the domain engineer satisfies appropriate composition rules defined

by the theory-based object model in Chapter VI.

After the domain engineer creates a domain model and proves the correctness of its composi-

tion, a system analyst uses it to produce a functional specification. Again, the system analyst works

with an object-oriented representation of the system while the operations and proofs are carried out

on the theory-based specification. When complete, the functional specification is combined with

an architecture theory to define a theory-based system specification which is fed into a correctness

preserving Design Refinement Mechanism which derives code satisfying the specification. Since the

domain and architecture models are stored in the Theory Library, maintenance is performed by

modifying the class and architecture theories and re-deriving the system specification and software.

2.2 Domain Engineering

Domain engineering is the process of developing domain models for use in constructing ap-

plications within the domain. This section presents a basic overview of domain engineering in

Section 2.2.1 followed by how the Specification Acquisition Mechanism proposed in this research

implements domain engineering in Section 2.2.2.

2.2.1 Overview. The term domain analysis was first used by Neighbors to describe "the

activity of identifying the objects and operations of a class of similar systems in a particular problem

domain" (78); however, since that time the definition of domain analysis has been expanded and

applied to more than just identifying objects and operations in a given domain. The size of a

domain may vary from very large and complex to very simple. The domain "avionics" is fairly

large and complex while the domain "basic logic operators" is straight forward and comparatively

2-5

small. Most domain analysis approaches are based on application area domains. An application

area domain is a domain where the applications define the domain (e.g., stack packages, basic logic

operators, etc.) (97). This is the definition used in this research. While many definitions abound

((51, 9, 77, 79, 97)), perhaps the simplest and most straight-forward definition is the process where

"domain knowledge is studied and formalized" (96).

The goal of domain analysis is to capture knowledge in order to reuse it in developing new

systems. After the domain knowledge is gathered, it is stored in a domain model for use in new

software development efforts to increase the productivity and quality of new systems. As such, do-

main analysis is just part of an overall process called domain engineering which "includes domain

analysis and subsequent construction of components, methods, and tools that address the prob-

lems of system/subsystem development through the application of domain analysis products" (51).

Domain engineering has three steps: (1) domain analysis, (2) infrastructure specification, and (3)

infrastructure implementation (9). (An infrastructure is domain knowledge along with information

on how to find and use that knowledge).

A domain model is used to represent domain knowledge and is defined as the "specific rep-

resentation of appropriate aspects of an application domain" (48). A domain model may take

on various forms including domain taxonomies, generic architectures, and domain specific lan-

guages (80). Domain models are the end product of domain analysis and contain all the knowledge

gathered during domain analysis including software architectures. Software architectures consist of

"the components, connections, constraints, and configurations of components and constraints that

specify the high-level design for a system" (93). Basically, the architecture is a blueprint for com-

posing applications given well-defined domain-specific components. Specification of generic domain

software architectures is critical to the automatic generation of domain-specific applications.

2.2.2 Implementation. As shown in Figure 2.2, domain engineering is the first phase

in system specification acquisition and is the main focus of this research. Domain knowledge

2-6

is input through an object-oriented user interface, translated to theory-based specifications, and

stored in the Theory Library by the Domain Theory Composition Subsystem. This component

translates graphically oriented OMT specifications, augmented with first-order logic axioms, into

theory-based class theories. A particular domain analysis methodology is not specified for use with

the subsystem; however, the chosen methodology should be compatible with capturing domain

knowledge in an object-oriented setting.

The heart of the translation process from OMT to class theories is a Theory-Based Object

Model as defined in Chapter VI. This model defines object-oriented concepts in a formal framework

based on algebraic specifications and category theory, thus providing a powerful ability to reason

about the resulting specifications. Due to the undecidability of first-order axiom consistency, axioms

entered into the subsystem are assumed consistent; however, composition rules are used to ensure

inconsistencies are not introduced during the composition process. It is also in this subsystem that

completeness proofs are performed. These proofs show that the effect of each operation on a given

object is completely defined by the domain engineer.

The output of the Domain Theory Composition Subsystem is a theory-based domain model.

An example of the object-oriented view of a domain model for a simulated rocket is shown in

Figure 2.3. The simulated rocket domain consists of three types of components: airframes, fuel

tanks, and propulsion devices. Characteristics of all airframes and propulsion devices are defined in

the Airframe and Propulsion Device classes. Characteristics of particular airframes and propulsion

devices are defined in specializations of those object classes. The relationship between a fuel tank

and a propulsion device is defined in the Feeds association. The basic structure of a simulated

rocket object is described by the aggregation of, and multiplicities defined by the airframe, fuel

tank, and propulsion device components; however, this structure does not define the process-based

architecture. This domain model is refined and implemented in a number of ways. The system

analyst may define the system as a single process, as multiple processes (one for each object class),

2-7

or any combination in between. These decisions are made during the specification generation

and structuring phases described below. Only the functionality of basic domain objects and their

specializations are defined during the domain engineering phase.

Rocket

Typeam Prop Typeion

*Airframe

Figure 2.3 Rocket Object Domain Model

2.3 Specification Generation

Specification generation transforms domain models into specifications defining the functional-

ity of a particular system in the domain. Functional specifications developed through the Specifica-

tion Generation/Refinement Subsystem have the same theory-based syntax as the domain model's

class theories. The basic result of specification generation is to create a system specification based

on the domain model and then to restrict the number of models satisfying the specification. Specific

generation/refinement operations include:

1. parameter instantiation

2-8

2. specialization selection

3. multiplicity restriction

4. initialization definition

5. communication path definition

6. constraint restriction

Parameter instantiation is the selection of values for predefined class parameters. These pa-

rameters can be single values or ranges of values. In either case, parameter instantiation results

in the addition of axioms to the class definition that restrict object behavior. Specialization Selec-

tion allows the system analyst to select a particular class specialization. Because a domain theory

models the entire application domain, it includes various class specializations in order to capture

important variations in structure and behavior. Specialization selection simplifies and restricts

the system specification by removing unwanted specializations. Multiplicity Restriction allows the

system analyst to explicitly decide how many objects are allowed in aggregates and associations.

Often, domain engineers define few restrictions on object class relationships (i.e., they allow "zero

or more" objects in any given relationship). While this generalizes the domain model, actual sys-

tems within the domain are more restrictive. Multiplicity restriction simplifies the specification by

placing additional constraints on aggregate and association multiplicities. Initialization Definition

allows the system analyst to state specifically how objects are initialized. For instance, while a

domain model may state that a one-to-one association exists between two classes, initialization

defintion allows the system analyst to specify which objects from the two classes are associated. A

similar situation exists for aggregates. Often, the question of whether an aggregate creates its com-

ponents upon initialization or they are created separately is left unspecified in the domain model.

Initialization defintion allows the system specifier to specify these requirements. Communication

Path Definition allows the system developer to specify exactly which objects require communica-

tion. In the domain model, the domain engineer is concerned with specifying the classes of objects

that may communicate, not which specific objects actually do communicate. In many cases, even

though an object can communicate with all objects in a given class, it may only need to commu-

2-9

nicate with one specific object from that class. These constraints are added via communication

path definition. The last generation operation, constraint restriction is a generic refinement opera-

tion. Constraint restriction allows the system analyst to place further constraints on class behavior

through the introduction of axioms. These axioms are used to place restrictions on attributes or

define restrictions across aggregate components or associations.

The specialization of the Rocket Domain Model, shown in Figure 2.3, to the Rocket Object

Model, shown in Figure 2.4 is a simple example of the first four generation/refinement operations.

First, the system analyst selects one Jet Engine class from the Jet Engines available in the do-

main model. After selecting a Jet Engine, the system analyst removes all other Propulsion Devices

(jet and rocket engines) and restricts the 1+ multiplicity constraint between the Rocket and the

Propulsion Device to be exactly two. Because the system being designed has exactly one Fuel

Tank for each Jet Engine, the system analyst must also restrict the multiplicity constraint between

the rocket and Fuel Tanks from zero-or-more (.) to exactly two and restricts the Feed association

between the Fuel Tank and Jet Engine to one-to-one instead of many-to-many. The system ana-

lyst might then select the 4 aggregation symbol (an extension to Rumbaugh's OMT notation) to

specify that the rocket object creates its component objects upon creation. To complete the Fuel

Tank specialization, the system analyst also provides Fuel Tank parameters. Finally, the system

analyst selects a specialization from the Airframe class and completes any remaining Rocket-level

constraints by providing bindings for any Rocket class parameters.

Further system-level functional constraints are captured in the system specification through

constraint restriction. Communication path definition is not included in this example due to the

complexity of inter-object communication (Section 6.6); however, if a Fuel Tank is required to

communicate with its Jet Engine, the system analyst may specify that the Fuel Tank communicate

only with the Jet Engine to which it is associated via the Feeds association.

2-10

Airframe Fuel Tank JtEgn

Figure 2.4 Specific Rocket Object Model

2.,4 Specification Structuring

Specification structuring allows the system analyst to define the structure of the application

in terms of process and inter-process communications. This phase is used to decompose specifi-

cations into simpler, less complex specifications, or, to build up larger specifications from smaller

specifications.

An Architecture is a collection of objects (in this case, class theories) along with a relation over

the objects defining object composition (e.g., parallel, sequential, etc.). Formally, an Architecture

Theory defines a collection of objects, a set of relations over those objects that define the syntax

of object composition, and a collection of axioms over the objects and relations that define the

semantics of the architecture. An architecture theory consists of a structuring specification, which

describes how the processes are composed (e.g., sequential, parallel, etc.) and a diagram that

specifies how to construct the final system specification. Thus an architecture defines the objects

of interest and the composition rules for these objects(32).

In the Specification Acquisition Mechanism, an architecture theory is a parameterized spec-

ification that defines the structure of an application in terms of processes and communication

channels between the processes. The parameters of the architecture theory are class theories, each

2-11

of which becomes a process in the system. The architecture theory also includes a diagram defining

exactly how the architecture theory is to be parameterized and how the final system specification

is composed. For example, a parallel architecture theory is defined as a set of class theories, the

parallel process composition operator,

- - : process, process --> process

and a satisfaction relation, j=, which defines the relationship between class specifications and their

models (32:6-3).

The Architecture Matching Subsystem is used to bind architecture theories to functional spec-

ifications. The system analyst selects class theories from the functional specification and matches

them to processes in a predefined architecture theory. Each class theory (or group of class theo-

ries) in the functional specification must correspond to a process while all communication between

class theories or class theory groups must correspond to a communication channel in the selected

architecture theory. This is an example of an imposed architecture (32:2-8). In this research, I as-

sume the existence of architecture theories and the ability to create them using graphically oriented

techniques, and instead focus on the acquisition of class theories in the form of domain models.

2.5 Summary

This chapter has presented an overview of a theory-based specification acquisition system set

in a software development framework. The software development framework uses three components

to synthesize software: (1) a Specification Acquisition Mechanism to help develop theory-based

system specifications, (2) a Design Refinement Mechanism which uses algorithmic, architectural,

and data structure refinements to the system specification to produce an implementation in an

abstract target language, and (3) a Generation & Optimization Mechanism which converts the

abstract program into an optimized program in a compilable target language.

2-12

The Specification Acquisition Mechanism is used to develop large-scale theory-based system

specifications. First, a domain engineer develops a domain model using an object-oriented inter-

face to the Domain Theory Composition Subsystem. Then, a system analyst refines the domain

model into a functional specification by removing unneeded domain model components and adding

problem specific constraints. Finally, the functional specification is combined with an architecture

theory to produce the complete theory-based system specification.

The presentation of the proposed Specification Acquisition System in this chapter has been

informal. Subsequent chapters present a formal definition of the Domain Theory Composition

Subsystem. More specifically, the remaining chapters define a mathematically sound foundation

for a theory-based model of object-orientation and the translation from a graphically based object-

oriented domain model to a theory-based domain model.

2-13

Ill. Theories and Specifications

3.1 Introduction

The software development framework presented in Chapter II is predicated on the use of for-

mal, mathematically-based software specifications. There are two types of specifications commonly

used to describe behavior in a formal specification: operational and definitional. An operational

specification is basically a "recipe" for an implementation that satisfies the specification require-

ments while a definitional specification describes behavior by listing the properties that an imple-

mentation must have (43:5). Definitional specifications have several advantages over operational

specifications: they are (1) generally shorter and clearer, (2) easier to modularize and combine

together, and (3) easier to reason about. This last advantage, the ability to reason about them, is

the key reason they are used in automated systems.

It is generally recognized that creating correct, understandable formal specifications is dif-

ficult, if not impossible, without the use of some structuring technique or methodology (33, 16).

Algebraic theories provide the advantages of definitional specifications and the desired structuring

techniques. Algebraic theories are defined in terms of a collection of values called sorts, a set of

operations defined over the sorts, and a set of axioms defining the semantics of the sorts and opera-

tions. The structuring of algebraic theories is provided by category theory operations and provides

an elegant way in which to combine smaller algebraic theories into larger, more complex theories.

Categories are an abstract mathematical construct consisting of category objects and category

arrows. In general, category objects are the objects in the category of interest while category arrows

define a mapping from the internal structure of one category object to another. In this research, the

category objects of interest are algebraic specifications and the category arrows are specification

morphisms. In this category, Spec, specification morphisms map the sorts and operations of one

algebraic specification into the sorts and operations of a second algebraic specification such that

the axioms in the first specification are theorems in the second specification. Thus, in essence, a

3-1

specification morphism defines an embedding of functionality from the first algebraic specification

in the second specification.

Use of algebraic specification for specification of data types was pioneered in the mid 1970s

by Goguen et al., Liskov, and Zilles (16, 66). Extension of these concepts to objects and object-

orientation was initially presented by Goguen and Meseguer (38) and is an increasingly common

representation technique in the formalization of object-orientation (7, 14, 65, 27, 69).

3.2 Algebraic Specification

In this section, I define the important aspects of algebraic specifications and how to combine

them using category theory operations to create new, more complex specifications. As described

above, category theory is an abstract mathematical theory used to describe the external structure

of various mathematical systems. Before showing its use in relation to algebraic specifications, I

give a formal defintion (89).

Definition 3.2.1 Category. A category C is comprised of

1. a collection of things called C-objects;

2. a collection of things called C-arrows;

3. operations assigning to each C-arrow f a C-object dom f (the domain of f) and a C-object
cod f (the "codomain" of f). If a = dom f and b = cod f this is displayed as

f : a--b or a-4 b

4. an operation, "o", called composition, assigning to each pair (g, f) of C-arrows with dom g
= cod f, a C-arrow g o f :domf --* cod g, the composite of f and g such that the Associative
Law holds: Given the configuration

f g h
a -* b * C -*+ d

of C-objects and C-arrows, then

ho(gof) = (hog)of.

5. an assignment to each C-object, b, a C-arrow, idb : b -* b, called the identity arrow on b,
such that the Identity Law holds: For any C-arrows f : a --* b and g : b -4 c

3-2

idbof =f and goidb =g.

3.2.1 The Category of Signatures. In algebraic specifications, the structure of a spec-

ification is defined in terms of an abstract collection of values, called sorts, and operations over

those sorts. This structure is called a signature (88). A signature describes the structure that

an implementation must have to satisfy the associated specification; however, a signature does not

specify the semantics of the specification. The semantics are added later via axiomatic definitions.

Definition 3.2.2 Signature. A signature E = (S, £), consists of a set S of sorts and a set Q

of operation symbols defined over S. Associated with each operation symbol is a sequence of sorts

called its rank. For example, f : s1, S2, .. ., sn --+ s indicates that f is the name of an n-ary function,

taking arguments of sorts S1, S2,.. ., s, and producing a result of sort s. A nullary operation symbol,

c: -*s, is called a constant of sort s.

An example of a signature is shown in Figure 3.1. In the signature RING there is one sort,

ANY, and five operations defined on the sort.

signature RING is
sorts ANY
operations

plus ANY x ANY -ANY
times ANY x ANY -ANY

inv ANY - ANY
zero : ANY
one : -*ANY

end

Figure 3.1 Ring Signature

In my research, a signature defines the structure needed to describe object classes (attributes

and operations) in a formal way. Signatures provide the ability to define the internal structure

of a specification; however, they do not provide a method to reason about relationships between

specifications. To create theory-based algebraic specifications that parallel object-oriented speci-

3-3

fications, specification refinements on theories similar to those used in object-oriented approaches

(inheritance, aggregation, etc.), must be available. There must be a well-defined theory about how

to reason about the external structure of these specifications (i.e., how they relate to one another).

As might be expected, signatures (as the "C-objects") with the correct "C-arrows" form a

category which is of great interest in this research. For signatures, the C-arrows are called signature

morphisms (88). Signatures and their associated signature morphism form the category, Sign.

Definition 3.2.3 Signature Morphism. Given two signatures E = (S, Q) and E' = (S', Q'),

a signature morphism a : E --* E' is a pair of functions (as : S --* S', ao : Q --* '), mapping

sorts to sorts and operations to operations such that the sort map is compatible with the ranks

of the operations, i.e., for all operation symbols f : S1, 82, .. . ,s, --* s in £, the operation symbol

a(f) : oS(sl), o-s(s2),..., O-s(sn) --* as(s) is in W'. The composition of two signature morphisms,

obtained by composing the functions comprising the signature morphisms, is also a signature mor-

phism. The identity signature morphism on a signature maps each sort and each operation onto

itself. Signatures and signature morphisms form a category, Sign, where the signatures are the

C-objects and the signature morphisms are the C-arrows.

Given the signature RING (Figure 3.1) and RINGINT (Figure 3.2), a signature morphism

a :RING--RINGINT, is shown in Figure 3.3. As required by Definition 3.2.3, a consists of two

functions, as and aq as shown. as maps the sort ANY to Integer while aO maps each operation

to an operation with a compatible rank.

Signature morphisms map sorts and operations from one signature into another and allow

the restriction of sorts as well as the restriction of the domain and range of operations. However,

to build up more complex signatures, introduction of new sorts and operations into a signature is

required. This is accomplished via a signature extension (32).

3-4

spec RINGINT is
sorts Integer
operations

+ Integer x Integer -* Integer
x Integer x Integer -4 Integer

- Integer -* Integer
0 : Integer
1 -* Integer

end

Figure 3.2 Integer Ring Signature

as = {ANY - Integer}
aQ = {plus - +, times -* x, inv - -,zero H-4 0, one '-* 1}

Figure 3.3 Signature Morphisms: RING - RINGINT

Definition 3.2.4 Extension. A signature E2 = (S2, Q2) extends a signature El = (Si, Qi) if

S1 C S2 and fl, C Q2.

Signature morphisms are used to rename and refine sorts and to restrict the domain and

range of operations, while extensions are used to add new sorts and operations to signatures. These

operations allow the definition of entirely new signatures and the growth of complex signatures from

existing signatures.

3.2.2 The Category of Specifications. The basic definitions required to develop the cate-

gory of signatures and signature morphisms were presented in Section 3.2.1; however, the semantics

required for software specifications have yet to be introduced. To model these semantics, the defi-

nition of a signature is extended with axioms which define the intended semantics of the signature

operations. A signature with associated axioms is called a specification (88).

Definition 3.2.5 Specification. A specification SP is a pair (E, f) consisting of a signature

= (S, Q) and a collection 4 of E-sentences (axioms).

3-5

Although a specification includes semantics, it does not implement a program nor does it

define a particular implementation. A specification only defines the semantics required of a valid

implementation. In fact, for most specifications, there are a number of implementations that satisfy

the specification. Implementations that satisfy all axioms of a specification are called models of the

specification (88). To formally define a model, I first define a E-algebra (88).

Definition 3.2.6 E-algebra or E-model. Given a signature E = (S, Q), a E-algebra A =

(As, FA) consists of two families:

1. a collection of sets, called the carriers of the algebra, As = {A, s E S}; and

2. a collection of total functions, FA = {fA I f E Q} such that if the rank of f is s1 , s2,..., sn --*

s, then fA is a function from A81 x A, 2 x... x A,, to A,. The symbol x indicates the Cartesian
product of sets here.

Definition 3.2.7 Model. A model of a specification SP = (E, 4) is a E-algebra, M, such that M

satisfies each E-sentence (axiom) in 4. The collection of all such models M is denoted by Mod[SP].

The sub-category of Mod(E) induced by Mod[SP] is also denoted by Mod[SP].

spec RING is

sorts ANY
operations

plus ANY x ANY -*ANY
times: ANY x ANY -- ANY
inv : ANY - ANY
zero : - ANY
one : - ANY

axioms
Va, b, c E ANY

a plus (b plus c) = (a plus b) plus c
a plus b = b plus a
a plus zero = a
a plus (inv a) = zero
a times (b times c) = (a times b) times c
a times one = a
one times a = a
a times (b plus c) = (a times b) plus (a times c)
(a plus b) times c = (a times c) plus (b times c)

end

Figure 3.4 Ring Specification

3-6

An example of a specification is shown in Figure 3.4. This specification is the original RING

signature of Figure 3.1 enhanced with the axioms that define the semantics of the operations. Valid

models of this specification include the set of all integers, Z, with addition and multiplication as

well as the set of integers modulo 2, Z2 = {O, 1}, with the inverse operation (-) defined to be the

identity operation.

As signatures have signature morphisms, specifications have specification morphisms. Speci-

fication morphisms are signature morphisms that ensure that the axioms in the source specification

are theorems (are provable from the axioms) in the target specification. Showing that the axioms

of the source specification are theorems in the target specification is a proof obligation that must

be shown for each specification morphism. Specifications and specification morphisms enable the

creation and modification of specifications that correspond to valid signatures within the category

Sign. Before formally defining specification morphism, I must first define a reduct (88).

Definition 3.2.8 Reduct. Given a signature morphism or : E -+ E' and a E'-algebra A', the

o-reduct of A', denoted A' 1,, is the E-algebra A = (As, FA) defined as follows (with E = (S, Q)):

As = A,(,) for s E S, and for fA = (0u(f))A', for f E

A reduct defines a new E-algebra (or E-model) from an existing E'-algebra. It accomplishes

this by selecting a set or function for each sort or operation in E based on the signature morphism

from E to E'. Thus if we have a signature, E', and a E'-model, we can create a E-model for a

second signature, E, by defining a signature morphism between them and taking the reduct based

on that signature morphism. A reduct is now used to extend the concept of a signature morphism

to form a specification morphism (88).

Definition 3.2.9 Specification Morphism. A specification morphism from a specification

SP = (E,) to a specification S' = (E', b') is a signature morphism a : E --+ E' such that for

every model M E Mod[SF'], ME Mod[SP]. The specification morphism is also denoted by the

same symbol, o : E -- E .

3-7

I now turn to the definition of theories and theory presentations. Basically a theory is the

set of all theorems that logically follow from a given set of axioms (89). A theory presentation is a

specification whose axioms are sufficient to prove all the theorems in a desired theory but nothing

more. Put succinctly, a theory presentation is a finite representation of a possibly infinite theory.

To formally define a theory and theory presentation I must first define logical consequence and

closure (89).

Definition 3.2.10 Logical Consequence. Given a signature E, a E-sentence is said to be a

logical consequence of the E-sentences V, ... ,- -,n, written V,... , Vn W, if each E-algebra that

satisfies the sentences 1, . n also satisfies W.

Definition 3.2.11 Closure, Closed. Given a signature F, the closure 4' of a set of E-sentences

D is the set of all E-sentences which are the logical consequence of 4, i.e., = I P = W}. A set

of E-sentences 4 is said to be closed if and only if - = T.

Definition 3.2.12 Theory, presentation. A theory T is a pair (E,') consisting of a signature

E and a closed set of E-sentences, T. A specification (E, f) is said to be a presentation for a theory

(FJ). A model of a theory is defined just as for specifications; the collection of all models of a

theory T is denoted Mod[T]. Theory morphisms are defined analogous to specification morphisms.

Specification morphisms complete the basic toolset required for defining and refining speci-

fications. This toolset can now be extended to allow the combination, or composition, of existing

specifications to create new specifications. Often two specifications that were originally extensions

from the same ancestor need to be combined. Therefore, the desired combined specification consists

of the unique parts of two specifications and some "shared part" that is common to both specifica-

tions (the part defined in the shared ancestor specification). This combining operation is called a

colimit (89). The colimit operation creates a new specification from a set of existing specifications.

This new specification has all the sorts and operations of the original set of specifications without

3-8

duplicating the "shared" sorts and operators. To formally define a colimit, I must first define a

cone (89).

Definition 3.2.13 Cone. Given a diagram D in a category C and a C-object c, a cone from the

vertex c to the base D is a collection of C-arrows {fi : c -+ di I di E DI, one for each object di in

the diagram D, such that for any arrow g : di--dj in D, the diagram shown in Figure 3.5 commutes

i.e., go f A .

C

fif/9\
d i -d i

Figure 3.5 Cone Diagram

Definition 3.2.14 Colimit. A colimit for a diagram D in a category C is a C-object c along with

a cone {fi : di - cI di E D} from D to c such that for any other cone {ff : di -- c' I di E D}

from D to a vertex c', there is a unique C-arrow f : c --* c' such that for every object di in D, the

diagram shown in Figure 3.6 commutes; i.e., f o fi = fe'.
d

fiI f \iz

----------------------- C'

Figure 3.6 Colimit Diagram

Conceptually, the colimit of a set of specifications is the "shared union" of those specifications

based on the morphisms between the specifications. These morphisms define equivalence classes of

sorts and operations. For example, if a morphism for specification A to specification B maps sort

c to sort 3, then a and 3 are in the same equivalence class and thus is a single sort in the colimit

3-9

specification of A, B, and the morphism between them. Therefore, the colimit operation creates

a new specification, the colimit specification, and a cocone morphism from each specification to

the colimit specification. These cocone morphisms satisfy the condition that the translation of any

sort or operation along any set of morphisms in the diagram leading to the colimit specification

are equivalent (54:23). An example of the colimit operation is shown in Figures 3.7 and 3.8. Given

the BIN-REL, REFLEXIVE, and TRANSITIVE specifications in Figure 3.7, the "colimit specification"

would be the PRE-ORDER specification as shown in the diagram in Figure 3.8. Notice that the

sorts E, X, and T belong to the same equivalence class in PRE-ORDER. Likewise, the operations .,

=, and < also form an equivalence class in PRE-ORDER. Thus PRE-ORDER defines a specification

with one sort, {E, X, T} and one operation, {., =, <}, which is both transitive and reflexive.

The specification BIN-REL defines the "shared" parts of the colimit but adds nothing to the final

specification.

A category in which the colimit of all possible C-objects and C-arrows exists is called co-

complete. As shown by Goguen and Burstall (33, 34), the category Sign and Spec are both

cocomplete; therefore, the colimit operation may be used freely within the category Spec to define

the construction of complex theories from a group of simpler theories.

Using morphisms, extensions, and colimits as a basic toolset, there are a number of ways that

specifications can be constructed: (88, 37)

" Build a specification from a signature and a set of axioms;

" Form the union of a collection of specifications;

" Translate a specification via a signature morphism;

" Hide some details of a specification while preserving its models;

* Constrain the models of a specification to be minimal;

" Parameterize a specification; and

" Implement a specification using features provided by others.

Many of these methods are useful in translating object-oriented specification development into

theory-based specification development. For instance, object-oriented inheritance looks very similar

3-10

spec BIN-REL is
sorts E
operations

* : E, E -- Boolean
end

spec REFLEXIVE is

sorts X
operations

= : X, X -+ Boolean
axioms

Vx X

end

spec TRANSITIVE is

sorts T
operations

< : T, T -- Boolean
axioms

Vx, y,z E T
(x <y A y < z) = x < z

end

spec PRE-ORDER is

sorts {E, X, T}
operations

{, =, <}: {E, X, T}, {E, X, T} -+ Boolean
axioms

Vx, y, z E {E, X, T}
x {., =, <} X
(X {.=, <} y A y {.,=,<}z) x {.=, <} z

end

Figure 3.7 Specification Colimit Example

Bin.Rel

Reflexive Transitive

C

Pre-Order

Figure 3.8 Example Colimit Diagram

3-11

to an extension to a colimit specification where the diagram of the colimit specification consists

of the superclasses of the target specification. Detailed formal semantics of these object-oriented

specification refinement concepts is discussed in Chapter IV.

3.3 Functors

Sections 3.2.1 and 3.2.2 defined the basic categories and construction techniques used to

build large-scale software specifications. In this section, I extend these concepts further to define

models of specifications and how they are related to the construction techniques used to create

their specifications. Before describing this relationship, I define the concept of a functor which

maps c-Objects and c-Arrows from one category to another in such a way that the identity and

composition properties are preserved (71).

Definition 3.3.1 Given two categories A and B, a functor T : A --* B is a pair of functions, an

object function and a mapping function. The object function assigns to each object X of category

A an object T(X) of B; the mapping function assigns to each arrow f : X --* Y of category A an

arrow T(f) : T(X) --* 3T(Y) of category B. These functions satisfy the two requirements:

'T(1x) = l:T(X) for each identity 1x of A (3.1)
o(g - f) = 9'(g) o T3(f) for each composite g o f defined in A

Basically a functor is a morphism of categories. Actually, I have already presented two

functors in Section 3.2.2: the reduct functor that maps models of one specification (in the category

Mod[Xi]) into models of a second specification (in the category Mod[X2]) and the models functor

that maps specifications in the category Spec to their category of models, Mod[X], in Cat, the

category of all sufficiently small categories. An example of the use of the reduct and models functors

is given in Chapter IV.

3-12

3.4 Summary

This chapter presented the basic mathematical structure upon which the theoretical foun-

dations of a theory-based object model is based. The chapter started by presenting the abstract

mathematical concept of a category, which is a set of c-Objects and a set of c-Arrows with specific

properties. Then a signature was introduced and defined to be comprised of a set of sorts and a

set of operations over those sorts. When combined with signature morphisms, signatures form the

category of Sign. The signatures and the category Sign were then extended to specifications and

the category Spec by including axioms to define the signature semantics. E-algebras, or models,

were then introduced and defined as a set of functions and sets that implement the semantics of

a given specification. Finally, functors were formally defined and two examples given: the models

functor that creates models of a specification and the reduct functor that creates models of one

specification from models of another specification.

The mathematical foundations laid in this chapter are used in the remaining chapters to

formally define object-oriented concepts. Specifically, the next two chapters use the elements in-

troduced in this chapter to define some basic properties of formally composed theory-based object-

oriented systems as well as domain model composition techniques.

3-13

IV. Theoretical Foundations

4.1 Introduction

This chapter discusses the theoretical foundations for a theory-based model of object-

orientation. To date, the informal definitions of objects, classes, and inheritance have not been

agreed on much less their formal definitions. This chapter formally defines basic object-oriented

concepts such as objects, classes, and inheritance using algebraic specifications in a category the-

ory setting. Algebraic specifications capture the internal structure and semantics of the individual

classes while category theory operations define the relationships between class specifications. This

chapter presents a general theoretical setting in order to remain applicable to many views of object

orientation.

Section 4.2 formally defines object classes as theory presentations and discusses the definition

and implications of internal class consistency. Section 4.3 defines the category theory setting for

class theories, models of class theories, and object instances. Finally, Section 4.4 formally defines

inheritance based on a generally accepted notion of object-oriented inheritance and extends that

definition to multiple inheritance.

4.2 Classes

The building block of object-orientation is the concept of an object class, A class is the

blueprint from which instances of the class, called objects, are created. There are two notions of a

class: a class type and a class set. A class type defines the structure of a group of similar objects

as well as their response to external stimuli. A class type is generally defined by two components:

attributes and operations. Attributes are observable characteristics of objects and may vary over

the life of the object. Although an object's attribute values are generally visible to other objects,

modification of those attribute values may only be performed by the object itself. Attribute value

modification is usually performed in response to some external stimulus, usually in the form of a

4-1

message or event being received by the object. Receipt of a message or event causes an operation to

occur which in turn may modify the object's attribute values or cause additional messages or events

to be generated. Thus a class type defines a set of operations which are used to view attribute

values as well as respond to messages or events. These operations define the external interface of

all objects in the class. All objects that conform to the class type definition are in the class set.

Given the fact that class types define a set of operations over a similar collection of objects,

class type definitions may be modelled naturally as specifications, or theory presentations. Sorts

are used to describe collections of data values used in the specification and include a distinguished

sort, the class sort. The class sort is the set of all possible object names in the class and provides

a reference to specific objects within a system. However, individual objects are not explicitly

represented in specifications - specifications only define the structure and behavior of objects in

the class. Objects themselves are implementation artifacts and are discussed in detail in Section

4.3.1. Attributes are defined implicitly by operations which return specific data values associated

with a given object. The semantics of operations, as well as invariants between class attribute

values, are defined using first order predicate logic axioms. In general, axioms define operations by

describing their effects on attribute values or by composing other operations. I now formally define

a class type.

Definition 4.2.1 Object Class Type - A class type, C, is a signature, E = (S, Q) and a set of

axioms, , over E (i.e., a theory presentation, or specification) where

S denotes a set of sorts including the class sort
Q denotes a set of operations over S
, denotes a set of axioms over E

A basic assumption for a class C, is that the effect of each operation in Q is completely

defined over its domain by P. That is, each function, f : A -4 B in Q, is required to have a

provably functional relation between A and B. This requirement is not as restrictive as it initially

appears. If the result of an operation does not make sense in a given object state (i.e., divide by

zero, etc.), the effect of the operation can still be defined. In most cases, if an object is in an

4-2

inappropriate state prior to operation invocation or the operation parameters are invalid, there is

no change in the object. This behavior is axiomatized via appropriate preconditions. For example,

given an integer object with a divide operation that divides the integer by a supplied parameter,

the divide operation only makes sense when the parameter is non-zero. Thus axioms describing the

desired behavior are:

parameter 5 0 ==' value(divide(integer,parameter)) = integer / parameter
parameter = 0 = value(divide(integer,parameter)) = integer

The assumption that all operations are completely defined over their domain is critical in defining

the effects of inheritance in Section 4.4.

4.2.1 Internal Class Consistency. It is impossible to show that a given class type is

correctly defined without the existence of formal requirements documents. Since class type definition

is based on operations and axioms defined by imperfect humans, the best that can be achieved is to

show the class type definition is internally consistent; however, Church and Turing independently

showed that, in general, proving that a set of first order equations is inconsistent is not possible

(18:45). Therefore, in this research, I assume that user provided specifications are consistent and

only attempt to show that further specification composition operations (inheritance, aggregation,

etc.) maintain that consistency.

Lano and Haughton present three conditions for internal class consistency.

1. E (c E C) I INVc(c)
2. V (c E C,o E operations(C)) Prec(o) A INVc(c) 9 (c' E C) I o(c) = c' A Invc(c')
3. V (c,c' E C,o E operations(C)) Prec(o) AINVc(c) Ac' = o(c) Invc(c') (4.1)

where INVc(x) are the invariant constraints of a class C applied to an object x, operations(C) are

the operations declared in the class C, and Prec (o) are the explicit preconditions of the operation

o as defined in the class C.

The first condition states that a model of the class type must exist. Specifications are not

necessarily implementable. I can easily declare inconsistent axioms as shown below.

4-3

x<O=,x=x+l
x=x-1

Assuming the normal semantics of + and - over a total order, no model exists where x = x - 1

and x = x + 1 are both true simultaneously. Therefore, by assuming internal class consistency, I

also assume that models exist for all user provided specifications. This assumption is important in

the discussion of Section 4.3.

The second condition requires that the preconditions defined for each operation are stronger

than the preconditions necessary for the operation to work correctly while the last condition ensures

that all operations preserve the class invariant (i.e., applying an operation to an object in a valid

state results in an object in a valid state). Actually, this last condition is redundant since the second

condition requires that given a valid object, an operation must result in a valid object. Therefore,

conditions one and two provide a complete definition of internal class consistency.

For example, if the divide operation is defined by

divide(x, y) = x/y

internal consistency is violated. The axiom defines no precondition; however, the operation in-

vocation divide(1,0), results in an invalid state since 1/0 is undefined. The correct definition of

divide requires an appropriately strong precondition. Internal consistency does allow the explicit

precondition to be stronger than the actual condition. Again, if the divide definition was rewritten

as

y > 0 = divide(x,y) = x / y
y : 0 =- divide(x,y) = x

internal consistency is maintained even though the explicit precondition, y > 0, is stronger than

the required precondition, y 0 0.

4.3 Categorical Setting

Figure 4.1 shows the category theory setting for the definition of classes and objects. C and D

represent class types defined within the category Spec with a specification morphism, a : C -* D.

4-4

The model functor Mod: Spec -- Cat maps each specification in Spec to a category of models

in Cat (where Cat is the category of all sufficiently small categories). Thus given the class type

D, Mod[D], represents the category of all models of the class type specification D. As discussed

in Section 4.2.1, because I assume that specifications are internally consistent, valid models of each

specification exist. An implementation of a class type D is defined as some model m E Mod[D].

Spec G f

where

MC8 astfo] fmdli o[] and[D

Figure 4.1 Object Reduct Framework

The specification morphism a : Cibilit requird a reduct functor, denoted D from Mod[D]

to Mod[C] defined as

c fs S, Co D (y) andVf E Q, fC = V()D
where

C = (S, Q) with 4),
C is a set from of model in Mod[C], and
fc is a function from that same model in Mod[C].

Therefore, if class type compatibility is required between C and D, as implied by o,, compatible

models of C and D may be obtained by constructing a model of C from a model of D using the

reduct functor. (Here, class type compatibility means that if C and D have common sorts and

operations as defined by a, their models must have common sets and functions.) Example 4.3.1

illustrates the effects of the reduct functor on models of C and D.

4-5

Example 4.3.1 Let C and D be class types as defined in Figure 4.2 where the notation D, 8 < Cc,8

denotes that the class sort of D is a subsort of the class sort of C (i.e., D,8 C Cc,). Then, let

Cmod and Dmod represent particular models of C and D in the categories Mod[C] and Mod[D].

As shown in Figure 4.3, Dmod consists of four sets (S1 for C. 8, S 2 for D, 8 , S3 for sort A, and S4

for sort B) and four functions (f, for a, f2 for 3, f 3 for mi, and f4 for m 2).

The reduct functor Dmod 1, defines the model Cmod from the model Dmod by selecting those

sets and functions from Dmod that correspond to sorts and operations that exist in both C and D

as defined by the morphism o. Therefore, if Dmod consists of the four sets and four functions

described above, Cmod consists of two sets (Si for Cc8 and S 3 for sort A, and two functions (f,

for a and f3 for mi) as shown in Figure 4.4.

class C is

class sort Cc8
sorts A
attributes

a : Cc,8 --* A
operations

m, : Cc8 7 A -+ Ccs

axioms
axioms omitted

end-class

class D is

class sort DcS < CcS
sorts A, B
attributes

a Cc, - A
c,: 8 -4 B

operations
mi : Ccs A -Cs

M 2 : Dc8, B - a De
axioms

axioms omitted
end-class

a = {CS '-* Cc,A -4 A,a - a, m, - m,}

Figure 4.2 Example 1 Class Type Definitions

4-6

SiS
ccs c

Figure 4.4 Cmod

4-7

4.3.1 Object Instances. As discussed earlier, objects are not explicitly part of the class

type specification but are actually implementation artifacts. Thus objects are entities that behave

according to a given implementation of a class type. In the categorical setting described above, a

formal definition of an object instance can be given.

Definition 4.3.1 Object Instance - An object, o, is a tuple, o = (77, CT, 7r) where ' is a unique

name from the set in the class type model representing the class sort, CT is the class type model,

and 7r is a set of variables indexed on attributes defined in the class type, {al, a2, ...an}. An object

is a member of a class, C if 77 is in the class type model set representing Cc,.

The unique name of the object, 7, is assigned at object creation and does not change over the life of

the object, while 7r represents the current state of the object and may be modified. The class type

model, CT, defines how a given object is interpreted and generally does not change. However, as

discussed in Section 4.4, because an object of a subclass is a member of the superclass as well, an

object may be reduced to its superclass representation in which case the class type model becomes

the superclass type model. When an object name is passed as a parameter to a class operation,

the values upon which operations act are the values of the variables in 7r.

Attributes are implicitly defined in the class type through the definition of attribute viewer

operations. These attribute viewers are actually projection functions and return a single attribute

value from 7r. An attribute viewer, a, defined in a class type, C, is an operation from the class

sort of C, C,,, to a second sort, S,, which includes all valid attribute values (i.e., a : Ccs*Sa).

Therefore, in an object instance of class C, a variable in 7r indexed on attribute a must take on

values in Sa. Formally, ir is defined as

r= {aa : Sa I a E attributes(C)}

where attributes(C) is the set of all attributes implicitly defined by attribute viewer operations

from the class type C.

4-8

Because the reduct functor creates models of one class from another, an object-reduct function

may be defined to create objects in one class from objects in another. The effect of the object-

reduction function mirrors the effect of the reduct functor and is defined similarly.

Definition 4.3.2 Object-Reduct Function - Given a specification morphism, a : C -4 D,

between two class types and D,, C C., the object-reduct function, denoted _ j reduces object

instances of class D to instances of class C as follows:

obc.r = obD.77

obc.CT = obD I (4.2)
obc.ir = {a I a, E obD.7r A a E attributes(C)}

Therefore, when a specification morphism exists between two class types, objects of one type

can be created from objects of the other as shown in Theorem IV.1.

Theorem IV.1 Given a specification morphism, a : C -* D, between two internally consistent

class types such that D,, C C,,, the object-reduct function, as defined in Definition 4.3.2, exists.

Proof: Because C and D are defined consistently the category of models for each specification

(Mod[C] and Mod[D]) exists and a induces the reduct functor - I: Mod[D]-*Mod[C].

1. Since D, 8 C C_,, the object name of each object in D exists in C and thus obc.71 = obD.7

2. obC.CT is defined by the reduct functor - 1,.

3. Since all attributes defined in C are mapped to attributes in D by a, there exists a corre-

sponding variable in obD.r for each attribute variable in obcar.

Example 4.3.2 illustrates the desired effect of the object-reduct function on object instances.

Example 4.3.2 Given the class type definitions of C and D and models Cmod and Dmod as

defined in Example 4.3.1, the objects obc and obD can be defined over Cmod and Dmod. If obD

is the tuple (77,Dmod, {a1 ,a 2}), where al is a value in set S3 and a2 is a value in set S4, then

obc = (77, Cmod, {a,}) where a, is a value in set S3 and Cmod = Dmod I.

4-9

Because functions and sets are copied from models of one class to create models of another, the

functions must provide the same behavior on objects of both classes. This behavioral equivalence

is shown by the commutative diagram in Figure 4.5. Theorem IV.2 states that this diagram does

in fact commute.

f (d)

Figure 4.5 Behavioral Equivalence of Objects

Theorem IV.2 If o C --* D is a specification morphism between two internally consistent spec-

ifications and fc is a function in the model of C created from the function a(f)D in the model

of D via the reduct functor induced by o such that fc = o(f)D, then for all objects, d E D,

fc(d I) = o'(f)D(d) 1,.

Proof: Assume without loss of generality that the attributes a, ... an E attributes(D I) and that

a, ... aq E attributes(D) such that attributes(D I) _ attributes(D). Also, assume that if d I =

(7, D, a, ... aq) then U(f)D(d) = (77, D, b1 ... bq). Note: If d = (7, D, a, ... aq) then d = (7, D I,

a, ... an).

Then, if d = (9,D, al ... aq),

O'(f)D(d) Ia = 0'(f)D((q, D, al'...a)) I
= (7,D, bi...bq))) I

= (,,D I1,b...bn)))

- fc((77, D 1,,,al...an))

- fc(d I)

4-10

44 Inheritance

Class inheritance plays an important role in object-orientation; however, the correct use of

inheritance is not uniformly agreed upon. Many languages provide "ad-hoc" inheritance that allows

a subclass to redefine or even remove attributes or operations inherited from its superclass. However,

most authors see the necessity to restrict the amount of modification freedom in a subclass. In

this research, I require a generalization-specialization inheritance relationship. There are two types

of inheritance that satisfy the generalization-specialization relationship: extension and restriction.

In an extension, a subclass simply adds new attributes or operations, whereas in a restriction a

subclass constrains attribute values from a superclass. To allow a subclass to be freely substituted

for its superclass in any situation and to make reasoning about the class's properties easier, I require

that a subclass only extend the features of its superclass. Liskov defines these desired effects as the

"substitution property" (67):

If for each object ol of type S there is an object 02 of type T such that for all programs P
defined in terms of T the behavior of P is unchanged when ol is substituted for 02, then S is
a subtype of T.

Bourdeau and Cheng (14) interpret the substitution property to mean that an object of class S may

be substituted for an object of class T at any point in time. This effectively means that the object

of class S may be in any valid state prior to its substitution for a class T object. This interpretation

requires that a subclass object must always be in a state that directly maps to a state defined in

its superclass and only allows the addition of substates and concurrent states within the subclass.

I find Bourdeau and Cheng's interpretation too restrictive and interpret the substitution property

to mean that a subclass object, when created and stimulated only within an environment created

for its superclass, behaves as a superclass object. My interpretation allows a subclass object to

respond to new messages or events that take it into new states that do not exist in its superclass;

however, when starting in the initial states as defined in the superclass and only responding to

messages or events inherited from the superclass, the subclass object must behave exactly as an

object from its superclass and may not enter a state defined only in the subclass.

4-11

To hold to this notion of generalization-specialization there are two requirements: (1) the

substitution property holds and (2) class consistency is maintained. The only way to ensure the

substitution property holds in all cases is to ensure that the effects of all superclass operations

performed on an object are equivalent in the subclass and the superclass. Before showing how the

substitution property and class consistency are preserved, object-equivalence must be defined.

Definition 4.4.1 Object-Equivalence - Two objects, cl and c2, of a class type C are equivalent

over C if and only if the value of all attributes defined in C are equal in cl and c2, or,

cl =-c c2 <* V (a) (a E attributes(C) =* a(cl) = a(c2))

Now I can present a formal definition of the substitution property. In this definition, o' is the

operation in class D inherited from class C.

V (d) d E D A o E operations(C) = 3 (c) c E C A (c =-c d =: o(c) =-c o(d)) (4.3)

An acceptable definition of inheritance would then provide a mapping from the sorts, op-

erations, and attributes in the superclass to those in the subclass that preserve the semantics of

the superclass. This is the basic definition of a specification morphism and provides us a formal

definition of inheritance.

Definition 4.4.2 Inheritance - A class D is said to inherit from a class C, denoted D < C, if

there exists a specification morphism from C to D and the class sort of D is a subsort of the class

sort of C (i.e., Dc8 CCJ.

This definition states that all sorts and operations from class C are embedded in class D, that

a new sort, the class sort of D, is defined as a subsort of the class sort of C, and that the axioms in

C are theorems in D. While Definition 4.4.2 provides a concise, mathematically precise definition of

inheritance, its ability to ensure the preservation of class consistency and the substitution property

as stated in Equations 4.1 and 4.3 must be shown.

4-12

Before proving that Definition 4.4.2 preserves the substitution property, two lemmas must be

proved. The first lemma shows that an object and its reduct are object-equivalent and the second

states that given a specification morphism between two classes, an object in the subclass is also an

object in the superclass.

Lemma 4.4.1 Given a specification morphism, o : C -+ D, V (d) d E D A c = d I = c =-c d.

Proof: By Definition 4.3.2, d 1, .7r = {aa I aa E d.-r A a E attributes(C)} thus it is obvious that

Va E attributes(C) if c = d I then a(c) = a(d I) and by Definition 4.4.1, c Mc d. El

Lemma 4.4.2 If there exists a specification morphism between two classes ' : C --* D and D, 8 C

Cc, then for every object d E D there exists some c E C such that d =-C c.

Proof: By the definition of a specification morphism, o : C --* D, a reduct functor, - I, creates

models of C from models of D. The object-reduct function as defined in Definition 4.3.2 takes

objects defined over D and creates objects defined over C with identical attribute values for all

attributes in C. Therefore, V (d) d E D =v 3 (c) c E C A c = d 1, and by Lemma 4.4.1, c --c d. El

Now it is possible to show that inheritance, as defined in Definition 4.4.2, does in fact preserve

the substitution property and thus is a valid definition for this model.

Theorem IV.3 Given a specification morphism, o : C -* D, between two internally consistent

classes C and D, D, 8 C C,,, and that the model of C, Cmod is created via the reduct functor

induced by o, from the model of D, Dmod, then substitution property holds.

Proof:

1. By Lemma 4.4.2, for all objects in D there exists an object in C such that c = d l.

2. If Cmod is constructed from Dmod using the reduct functor, then for all objects o E

operations(C) there exists some fc E Cmod such that 9(f)D E Dmod and fc = 9(f)D.

4-13

3. Then, by Theorem IV.2 V (d) 3 (c) such that d E D A c E C then c = d I f(c) = f(d 1,

) = f(d) ,, or f(c) -c (f)D(d).

4.4.1 Multiple Inheritance. Multiple inheritance requires a slight modification to the

notion of inheritance as defined in Definition 4.4.2. The set of superclasses must first be combined

and then used to "inherit from".

Definition 4.4.3 Multiple Inheritance - A class D multiply inherits from a collection of classes

{C1 .. CnI if there exists a specification morphism from the colimit of {C1 .. Cn} to D such that

the class sort of D is a subsort of each of the class sorts of {C 1 .. Cn}.

The colimit operation allows the combination of any number of classes, along shared parts, to

create a single specification with all the sorts, operations, and axioms of the original classes. This

colimit specification can then be extend with the definition of the new class sort, attributes, and

operations.

This definition ensures that the subclass D inherits (in the sense of Definition 4.4.2) from

each superclass in {C1 .. Cn}. The proof is shown in Theorem IV.4 below.

Theorem IV.4 Given a specification morphism from the colimit of {Ci .. Cn} to D such that the

class sort of D is a subsort of each of the class sorts of fC1 .. Cn}, the substitution property holds

between D and each of its superclasses {C .. C,}.

Proof: In the category Spec, all cocone morphisms from any Cj E {C 1 .. Cn} to the colimit

specification composed with the extension from the colimit specification to D is a specification

morphism from Cj to D as shown in Figure 4.6. Thus multiple inheritance implies a specification

morphism between each Cj and D and thus by Theorem IV.3, the substitution property holds. El

4-14

c, C2 cn

C C C

Ext o C Colimit

\Ext

D

Figure 4.6 Multiple Inheritance Colimit

It is important to note that Definition 4.4.3 only ensures valid inheritance when all operations

are fully defined in each specification {C 1 .. C,}. Failure to ensure fully defined operations may

result in an inconsistent colimit specification.

Consider the example shown in Figure 4.7. A class E is created by multiply inheriting from

D' and D" which both are subclasses of an superclass C where the operation m is not fully defined.

While everything works syntactically, the resulting class is inconsistent due to the axioms defined

in D' and D".

x(e) 0 - x(m(e)) = x(e) + 1

x(e) _ 0 =' x(m(e)) = x(e) + 2

Both D' and D" are valid subclasses of C yet they modified the behavior of a m in such a way

that the resulting multiply inherited operation definition is inconsistent. Thus class consistency

conditions do not hold.

4.5 Summary

This section establishes the mathematical foundation for a formal theory-based model of

object-oriented concepts for the system defined in Chapter II and shown in Figure 2.2. These

4-15

class C is
import Integer
class sort C
attributes

x: C -4 Integer
operations

axioms
V (c: C) x(c) < 0 ~-x(m(c)) =x(c) - 1

end-class

class D' is
class sort D' < C
axioms

V (d: D) x(d) ! 0 = . x(m(d)) = x(d) + 1
end-class

class D" is
class sort D" < C
axioms

V (d: D) x(d) ! 0 = - x(m(d)) =x(d) + 2
end-class

class E is
import Integer
class sort E < D', D"
attributes

x : E -* Integer
operations

m :E--E
axioms

V (e: E) x(e) < 0 x(m(e)) = x(e) - 1;
V (e: E) x(e) 0 x(m(e)) = x(e) + 1;
V (e: E) x(e) ! 0 =x(m(e)) = x(e) + 2

end-class

Figure 4.7 Inconsistent Multiple Inheritance

4-16

foundations are general in nature and are applicable to a number methodologies within the object-

oriented paradigm.

First, classes were defined as theory presentations or specifications within the category Spec

while the models of each class, defined by the Mod functor, form a category within the category

Cat. Models of a class were associated with an implementation of the class and a mathematically

sound method for creating compatible models of a class was defined. This method is based on the

existence of a specification morphism between classes and thus the existence of a reduct functor

that creates models of one specification from models of another. The theoretical concept of an

object instance was then introduced along with an object "reduct" function based on the reduct

functor. These concepts were used to show the desired effect of inheritance.

Finally, a formal definition of inheritance was presented based on the "substitution property".

This formal definition of inheritance was then shown to preserve the substitution property in

Theorem IV.3. These results were then extended to multiple inheritance. The next two chapters

build on the mathematical foundations presented in this chapter by defining a theory-based object

model and its semantics that incorporates the concepts of classes, objects, and inheritance defined

in this chapter.

4-17

V. Formal Object Modeling Technique Semantics

5.1 Introduction

This chapter present a formal semantics for a restricted version of Rumbaugh's OMT. These

restrictions are imposed on each of the three OMT models-object, dynamic, and functional- to

ensure automatic translation from graphical notation to algebraic specifications. The semantics of

the restricted OMT models are arrived at by defining a formal semantics for each of Rumbaugh's

models. Section 5.2 describes the basic requirements placed on a graphically based diagram in

order to ensure automated translation. Section 5.3 describes the restrictions and formal semantics

for the object model while Sections 5.4 and 5.5 describe the restrictions and formal semantics for

the dynamic and functional models.

5.2 Translation Requirements

Translation of graphically based models into algebraic specifications in the category Spec

requires that the two criteria be met. First, all entities in the model must correspond to components

of an algebraic specification or be defined using category theory constructs. This means that all

important features of the model must be representable as specifications, functions, sorts, first-order

axioms defined over those sorts and functions, or category theory operations between specifications.

For instance, in a data flow diagram, a process translates to a function while data flows between

processes are defined by sorts.

The second requirement is that all models be deterministic, that is, there must be a single

valid interpretation of the model. Again, in a data flow diagram, the usual interpretation is that

the processes and data flows within the diagram only define possible data flow paths, and does

not imply any specific sequence of control. While the flow of data through the system may be

obvious to a user based on the types of data involved and certain naming conventions, the normal

interpretation of data flow diagrams does not provide the degree of determinism necessary to use

5-1

them in an automated system without modifying the semantics or adding additional information.

Therefore, the translation requirements for any graphically based model are given below.

I. All model entities must be represented by pure functions, sorts,
first-order axioms, or category theory constructs.

II. Model semantics must be deterministic.

5.3 Object Model

This section discusses the semantics defined for the OMT object model and the problems

encountered in translating it into algebraic specifications. Section 5.3.1 presents a brief overview

of the OMT object model, Section 5.3.2 describes proposed restrictions to the OMT object model,

and Section 5.3.3 derives the semantics of the restricted object model from the formal OMT object

model semantics defined by Bourdeau and Cheng (14).

5.3.1 Overview of Rumbaugh's Object Model. The OMT object model defines the struc-

ture of a domain based on classes of objects and the relationships between them. A class defines

the structure of a similar set of objects. This structure is defined by attributes, which are data that

describe various aspects of an object, and operations that describe how an object behaves. Relation-

ships between objects fall into one of three categories: associations, aggregation, and inheritance.

Associations are general relationships between two or more classes. Aggregation describes a "part-

of" relationship between an object and a subobject which is used to make up the aggregate object.

Inheritance describes a "generalization-specialization" relationship between two classes of objects

where if A is a subclass of B then objects of class A are objects of class B as well.

Figure 5.1 shows an example of a typical OMT object model domain, a rocket. The OMT

diagram shows six object classes: Rocket, Airframe, FuelTank, PropulsionDevice, JetEngine, and

RocketEngine. The lines drawn between object classes represent relationships between them. The

on the line from the Rocket to the Airframe, FuelTank, and PropulsionDevice denotes an aggre-

5-2

Rocket

1 +

Propulsion
Device

Airframe____ thrust : real

flow-tate : real

Feeds
Fuel Tank Jet Engine Rocket Engine

ocIght: r-a
eepaalty: real

Figure 5.1 Typical Object Model

gation relationship. That is, a Rocket consists of an Airframe, FuelTank, and a PropulsionDevice.

The A symbol between the PropulsionDevice class and the JetEngine and RocketEngine classes

denotes inheritance. Thus an object that is a member of the JetEngine or RocketEngine class is also

a member of the PropulsionDevice class. Finally, the line between the FuelTank and the JetEngine

denotes an association that relates members of the FuelTank class to members of the JetEngine

class. The text below the class name in object class rectangles defines attributes. Thus a FuelTank

object has two attributes, weight and capacity, each of which is a real datatype. The endpoints of

an association/aggregation line denotes a particular multiplicity in the association and aggregation

relationships as show in Figure 5.2. These multiplicities define the number of relationships in which

a particular object may participate. In Figure 5.2, each object at the other end of the relationship

may be in a relationship with exactly one, zero or more, zero or one, one or more, or a numerically

specified number of objects of the type Class.

5.3.2 The Restricted OMT Object Model. The only problem inherent in Rumbaugh's

definition of the object model, as described in Section 5.3.1, is the ability of the user to define

operations. This capability allows users to define operations that have no relation to the dynamic

5-3

Class Exaclty one

Class Zero or more

Class Zero or One

1+ Class One or more

1-2 4 Class Numerically Specified

Figure 5.2 Relationship Multiplicities

or functional model and, therefore, has the potential to introduce inconsistencies. In this research,

I take the approach that all operations are defined as either a process in the functional model or

an action in the dynamic model. Therefore, the only restriction to the OMT object model is to

disallow the introduction of operations.

Assumption V.1 All class methods and operations are introduced in the OMT dynamic or func-

tional model.

5.3.3 Object Model Semantics. Relatively little exists describing the formal semantics of

object models. Some generic data base work (31) describes structural aspects of object-oriented

systems but they fail to provide a complete semantics for an OMT-type object diagram. Bourdeau

and Cheng (14) have developed a formal semantics for an extended version of the OMT object

model notation. They use the Larch specification language (43) to describe modular algebraic

specifications based on the OMT object model. In this section I formally define the semantics of

the OMT object model based on the semantics proposed by Bourdeau and Cheng. (Note: the

following rules are a subset of those defined by Bourdeau and Cheng in (14). Many of their rules

deal with OMT object model extensions, such as state, which are part of the basic OMT dynamic

or functional models and are omitted here.)

5-4

The object model itself is a specification which simply includes the object classes and associ-

ations derived from the object diagram. Classes and associations are defined as follows.

Definition 5.3.1 A Restricted OMT Object Model, OM, is a set of specifications determined

by Definitions 5.3.2 through 5.3.5.

Definition 5.3.2 An Object Class C in an object model 0 defines a specification where

(OM-1) The class C is denoted by a sort of the same name.

(OM-2) For each attribute, a, in class C of type D, there is a function signature

a:C--+D

(OM-3) If D in rule (OM-2) references a separate class specification, then the specification for D
is included (imported) into the specification of class C.

The rules above define the structural aspect of object classes only. Relational aspects such

as association, aggregation, and inheritance are defined below. The next three definitions define

additional rules which, when used on aggregate classes, associations, and subclasses fully defines

the object model.

Definition 5.3.3 An Aggregate, with components D1 ...Dk defines a specification D using rules

OM-1 - OM-3 where

(OM-4) For each component D1...Dk, the aggregate relation is denoted by a predicate has-part
which relates class D to Dn. If the component has a role name in the aggregation, the role
name is used in place of has-part.

has-part : D, Dn -4 Boolean

(OM-5) Axioms defining the multiplicity constraints of the aggregation are added to D.

Thus rules OM-4 and OM-5 define predicates in the aggregate class definition that relate a

given aggregate object to its components. Bourdeau and Cheng also provide a detailed method-

ology for defining multiplicity axioms; however, in this research I use equivalent axioms defined

in Section 6.4.1. The next relation defined by Bourdeau and Cheng is the subtype relation which

implements inheritance.

5-5

Definition 5.3.4 Let D be a subtype of class C. Then a specification is defined for both C and

D using rules OM-1 - OM-5 and where

(OM-6) The subtype relation is defined by an operation named simulates in D relating class D to
C.

simulates: D --* C

In essence, the simulates operation takes an object of the subtype and produces an object of

the supertype, thus implementing Bourdeau and Cheng's interpretation of the substitution property.

As discussed in Section 4.3, I use a slightly different interpretation of the substitution property

than do Bourdeau and Cheng. Basically, they assume that a subtype object D must always be

substitutable for its supertype object C, while I interpret the property to mean that if, from object

creation, an object from class D is restricted only to operations defined on class C then the object

is indistinguishable from an object of class C. Bourdeau and Cheng define the following constraint

that the simulates operation must satisfy:

V (d : D) a E attributes(d) = a(d) = a(simulates(d)) (5.1)

Bourdeau and Cheng's constraint restricts subtype objects further than my interpretation,

which formalized is:

V (d : D) a E attributes(D) A o E operations(D) A a(d) = a(simulates(d)) (52)
=- a(o'(simulates(d))) = a(simulates(o(d)))

where o' is the inherited operation in D derived from operation o in C. Equation 5.2 incorporates

the intent of Equation 5.1 given my interpretation of the substitution property.

Definition 5.3.5 An Association, R, relating objects from classes D1 ...Dk defines a specification

A using rules OM-1 - OM-3 and where

(OM-7) The association R is denoted by a predicate of the same name in specification A:

R: D1...Dk --+ Boolean

(OM-8) Axioms defining the multiplicity constraints of R are added to A.

5-6

In effect, rules (OM-7) and (OM-8) state that for an association, a new specification is created

with a boolean predicate of the same name which defines which objects of the two associated classes

are related.

5.4 Dynamic Model

This section discusses the semantics of the OMT dynamic model and the problems encoun-

tered in translating it into algebraic specifications. Section 5.4.1 presents a brief overview of the

dynamic model, Section 5.4.2 discusses the problems in translating the dynamic model into al-

gebraic specifications, Section 5.4.3 defines restrictions to the dynamic model to counter those

problems, and Section 5.4.4 derives the semantics of the restricted dynamic model from the formal

semantics of Harel's statecharts (45).

5.4.1 Overview of Rumbaugh's Dynamic Model. The concept of state is vital to object-

orientation. State, as defined by Rumbaugh, is an abstraction of an object's attribute values and is

represented in his model via a statechart. A typical statechart is shown in Figure 5.3. Statecharts

have five parts: states, transitions, events, guards, and actions. The state of a system "summarizes

the information concerning past input and that is needed to determine the behavior of the system

on subsequent inputs" (47:13). Therefore, a system typically resides in a state between inputs and

may change state based on additional input. Transitions are the changes of state based on given

input and the current state. Transition labels define the input event, guard, and actions associated

with a transition as shown below.

event [guard-condition] / action,.. .actionn

Events are the instantaneous transmittal of information from one object to another. In statecharts,

communication is assumed to occur as global broadcasts. If an object generates an event, it is

received by all other objects who have a transition labeled with the same event name. Besides the

receipt of the event itself, additional information may be transmitted via event parameterization.

5-7

It is assumed that if there is no explicit transition from a state S upon receipt of an event, E, then

if event E is received while in state S, no actions occur. Guard Conditions allow a system to check

that, upon receipt of an event, certain conditions hold before a transition takes place. Actions

are the behavior initiated by some transition. Actions include computation of data, modification

of object attributes, or broadcasting of additional events. Although Harel and Rumbaugh allow

statecharts to place actions inside states (the equivalent of a Moore machine from finite automata)

as well as on transitions, for convenience, in this research I limit all actions to transitions (a Mealy

machine). This does not represent a semantic restriction as the equivalence of Mealy and Moore

machines is well known (47:43). A special type of action is a send action. A send action specifies

that an event is to be broadcast to the system. A typical send action might be:

send(event-name(parameter list))

In this case the event-name is broadcast to all receiving objects along with all data passed via the

parameter list. Other actions become operations on the current object.

withdrawal(a,x) [bal(a) >= x]/debit(a,x)

deposit(a,x) [x + bal(a) < 0]
deposit(a,x) [x + bal(a) >= O]/credit(a,x) /credit(a,x)

deposit(a,x)/credit(a,x)

Figure 5.3 Account Dynamic Model

Statecharts often allow for concurrent states or substates. Concurrent state diagrams are

used when the attributes of a class type may be partitioned into subsets. The state of an object

becomes a tuple consisting of the object state in each concurrent state diagram. An example of

a concurrent state diagram is shown in Figure 5.4. In this example, events el, e2, and e3 cause

the first component of the object state to change while events e4, e5, and e6 cause the second

5-8

component of the object state to change. The events in the concurrent diagrams do not have to be

distinct while the effects of those events on object attributes are. For example, assume the object

state of an object whose dynamic model is represented by Figure 5.4 is (1, 4). If the following string

of events, (el, e4, e5, e2), is received, the object ends up in state (3,6) by the following transitions.

(1,4) -l (2,4) - (2, 5) - (2, 6) - (3,6)

5e4/m4

e2/m2 e3/m3 1 4 e5/m5

6/m5 6

Figure 5.4 Concurrent State Diagram

In a non-concurrent statechart, an object must be in a single state; however, within a state,

substates may exist that refine the state allowing the object to change its substate while remaining

in the superstate as shown in Figure 5.5. Such substates "inherit" the transitions of their super-

state. In the theory-based object model, substates are handled similarly to concurrent states - by

adding additional substate attributes whose values are only meaningful when the object is in the

appropriate superstate. Thus, the object in Figure 5.5 must always be in a superstate 1, 2, or 3;

however, while in state 2, the events e4, e5, and e6 allow the object to change it substate and re-

main in state 2. Once an e2 event is received, the superstate transitions to state 3 and the substate

attribute value is no longer meaningful. The object will not change state even if an e4, e5, or e6

event is received.

5-9

ee3
Figure 5.5 SubState Diagram

5.4.2 Dynamic Model Translation Problems. This section discusses problems inherent in

translating the dynamic model, as specified by Rumbaugh, into algebraic theories and describes the

incompatibility of the dynamic model with the translation requirements described in Section 5.2.

There is little problem associated with translating individual statecharts into sorts, functions,

and first-order axioms in algebraic specifications. Each statechart, substatechart, and component

of concurrent statecharts defines an attribute function. The states within each diagram define a

sort where the values in the sort are the states in the diagram. Each state also defines a nullary

function for each individual state or substate. Events and actions translate into functions. Axioms

are used to define the effects of transitions on state attributes and actions. Additional axioms may

also be generated to show that receipt of events with no defined transitions from a given state result

in no changes. Actions are modelled as either functions representing operations on the object or as

events to be broadcast to the system. Use of the categorical constructs of morphisms and colimits

allows specification of event transmission.

Even though translation seems straightforward, some inconsistencies may occur when inher-

itance is taken into account. For instance, substates may be used to refine a superclass state as

long as the superclass events defining transitions from the superstate are not used in the substate

diagram. Attempting to override an exit transition from the superstate results in inconsistencies as

shown in Figure 5.6. Rumbaugh interprets this statechart to mean that when an object is in state

2b and event e2 occurs, the substate transition overrides the superstate transition and the state

5-10

moves to 2c; however, this violates the substitution property since the subclass object no longer

behaves as a superclass object.

2

el 2a

Figure 5.6 Invalid Substate Diagram

Figure 5.7 shows a valid concurrent state diagram. This diagram is valid since the states and

events of the two concurrent subdiagrams are distinct. However, not all concurrent dynamic models

satisfy this consistency condition. Concurrent state diagrams are only valid when the attributes of

the class are partitionable and the actions in a concurrent subdiagram affect only the attributes in

a single partition. When this condition is violated, inconsistencies between diagrams may result.

Therefore, when a concurrent statechart is introduced in a subclass to refine the dynamic model,

the actions associated with transitions in the concurrent component must affect only the subclass

attributes. This requires that the actions in the concurrent component be operations defined in the

subclass and that those actions modify only subclass attributes.

25

l4/m4

e2lm2 e3/rn3 4 e5/m5

e6Ir 6

Figure 5.7 Inheritance of Dynamic Behavior - Concurrent Diagram

5.4.3 The Restricted OMT Dynamic Model. With the exception of substate transition

overriding, there are no inconsistencies with statecharts as used by Rumbaugh; however, for sim-

plicity, I limit the dynamic model to a Mealy machine representation where all actions must occur

5-11

on transitions as discussed in Section 5.4.1. I also assume that if the user specifies guard conditions

for a set of transitions on event e from state s, then the guards for that set of transitions are con-

sistent and complete. This may require the user to define transitions that "do nothing"; however,

this assumption ensures that a complete and consistent set of axioms can be generated from the

dynamic model without resorting to considerable reasoning about the validity of the guard condi-

tions. I also assume that all guard conditions are written in O-SLANG syntax and are based only

on the parameters passed to the object by the event and the object's attribute values. The user

may specify multiple actions on a transition; however, since non-send actions represent operation

invocations and there is no sequence implied by the order of actions, multiple non-send actions

occur in parallel. If two actions have a specific sequence, the user can easily create an operation

that implements this sequential behavior; therefore, in general, only one non-send action is specified

per transition. My restrictions to Rumbaugh's dynamic model are shown below.

1. Assumption V.2 All actions must occur on transitions between states.

2. Assumption V.3 All guard conditions must be written in valid O-SLANG syntax using only

event parameters, object attributes, and constants.

3. Assumption V.4 Guard conditions for a set of transitions for a single event are consistent

and complete.

4. Assumption V.5 Only one non-send action may be specified per transition.

5. Assumption V.6 Events on transitions leading from a superstate may not be used in sub-

states (i.e., no overriding superstate transitions).

6. Assumption V.7 Concurrent statecharts must partition the attributes affected by methods

in different concurrent sections into disjoint sets.

5-12

5.4.4 Dynamic Model Semantics. In this section I formally define the semantics of the

restricted dynamic model. As expected, the semantics of dynamic model statecharts are based the

standard automata definition (47:43).

Definition 5.4.1 A Mealy machine is a six-tuple M = (Q, E, A, 6, A, qo) where

" Q is a finite set of states.

" E is a input alphabet.

" A is the output alphabet.

" 8 is the transition function mapping Q x E -- Q.

" A is a mapping from Q -- A giving the output for each transition.

" qo G Q, is the initial state.

The mapping from the Mealy machine to a statechart is straightforward and given in the

definition of a statechart below.

Definition 5.4.2 A dynamic model Statechart is a six-tuple M = (Q, E, A, 6, A, qo) where

" Q is the set of states in the statechart.

" E is the set of input events.

" A is the set of output events and actions.

" 6 is the transition function mapping Q x E --+ Q based on transition arrows and guard condi-

tions.

" A is a mapping from Q --* A giving the output for each transition based on transition arrows

and guard conditions.

" qo E Q, is the initial state.

5-13

Substates and concurrent states are a simple translation into this ordinary automata (45)

due to Rumbaugh's simplification of statecharts and the additional restrictions of Section 5.4.3.

Substates are "unfolded" into their superstate by transferring incoming superstate transitions to

the initial state of the substate statechart and adding outgoing superstate transitions to each

substate as shown in Figure 5.8.

2

ee5

Figure 5.8 Unfolding Substates into a Single Statechart

Concurrent state diagrams, such as shown in Figure 5.4, are translated by creating a state for

each combination of concurrent state values and adding the appropriate transitions. The translation

of Figure 5.4 is shown in Figure 5.9. In this example, the events and operations of the two concurrent

subdiagrams are disjoint. Although operations must be disjoint, events may be shared. If events

el and e4 in Figure 5.4 are equivalent (i.e., they have the same name), then the translation to a

single-level, non-concurrent diagram is shown in Figure 5.10. In this example, state (1, 5) is not

included since event el now transitions the state directly from (1,4) to (2,5). The composition of

operations ml and m4 is not problematic since in the restricted dynamic model they are required

to modify a disjoint sets of attributes.

5-14

e3/m3

e4/m4 e4/m4 e4/m4

el/m1 5
1,5 5 e3/m3 3,

e6/m6 e6/m6 e6/m6

e5/rn5 e5/m5 e5/m5

IF e3/m 3 6

Figure 5.9 Composition of Single Statechart from Concurrent Diagram

e3/m3

25e2/m23,

e6/m6 e6/m6 e6/m6

el5e5/m5

el/m1 Q e3/m3 '-'

Figure 5.10 Composition of Single Stateehart from Concurrent Diagram

5-15

5.5 Functional Model

This section discusses the OMT functional model and the problems encountered in attempting

to translate it into algebraic specifications. Section 5.5.1 presents an overview of the OMT functional

model, Section 5.5.2 discusses the problems encountered in trying to translate the OMT functional

model, Section 5.5.3 describes my proposed restrictions to functional model, and Section 5.5.4

derives the semantics of the restricted functional model from the semantics of generalized data flow

diagrams.

5.5.1 Overview of Rumbaugh's Functional Model. The OMT functional model is defined

using standard data flow diagrams describing the computations that a system must perform. The

functional model is intended to be used in conjunction with the object and dynamic models to

complete the system definition. Whereas the object model defines system components and the

dynamic model defines system control, the functional model defines what computations occur in

the system. The functional model describes what outputs are derived from inputs, but not how,

or in what order, this transformation is accomplished. The "how" is an implementation question

while the "order" of the computations is defined in the dynamic model.

As stated above, the functional model uses data flow diagrams to describe what computations

occur in the system and the relationship of inputs to outputs. Data flow diagrams consist of four

basic entities: processes, data flows, data stores, and actors. Processes transform input data values

into output data values and are represented by ovals in the data flow diagram. Rumbaugh states

that "the lowest-level processes are pure functions without side effects" (83:124) while higher-level

processes may have side effects such as modifying data stores or other external objects. In general,

high-level processes represent non-side affecting operations or actions defined in the dynamic model.

Each process may be decomposed into subprocesses which take the inputs to its higher-level process

and provide a more detailed description of the transformations necessary to produce the high-level

outputs. These "nested" data flow diagrams require that all higher-level process input data flows

5-16

be present in the nested data flow diagram and that the outputs of the higher-level process be

computed by processes in the nested data flow diagram. Eventually, all nested data flow diagrams

terminate with purely functional processes.

diagrams formal spec

diagrams transform formal spec
export diagram AST

data file AST

parse files

Figure 5.11 High-Level and Nested Data Flow Diagrams

In the functional model, data flows are denoted by lines drawn between processes and repre-

sent data values input to, or output from a process. Arrows indicate the direction the data flows.

A data flow from one process to another specifies that the data is output by the first process and

input to the second process. Often, data flows are "forked" to denote copying the data value and

sending it to more than one process as shown in Figure 5.12. When a data flow represents an

aggregate data type, the data flow may "split" into its various components. Likewise, aggregate

components may be composed into an aggregate value by merging two or more data flows into a

single data flow.

Data stores are passive objects in the system used to store data and are represented by parallel

lines. Data stores are usually objects, object classes, or associations defined in the object model.

5-17

data ,location

(a) Copy (b) Split or Decompose

Figure 5.12 Data Flows

Data flows into a data store represent modifications to the stored data while data flows out of

a data store represent data retrieved from the data store. Data flows with hollow-tipped arrows

represent the dynamic creation of a new object. Such arrows flow from a process to a data store

and are unique to the OMT functional model. Figure 5.13 shows the use of data stores in a data

flow diagram. In Figure 5.13 the Bank-Accounts data store is the set, or class, of accounts in a

bank. The get-account process chooses an account based on an account number entered by a user.

The selected account then becomes a data store and is manipulated by the deposit process.

accountsacon
Bank-Accounts get-account Account

balance balance

amount
Customer deposit

Figure 5.13 Data Stores

Actors are objects outside the system that provide input to or consume the output of data

flow diagrams. Actors are not actually part of the system and are not modeled further in OMT.

Actors are represented by rectangles and their inclusion in the functional model simply provides

the context for the computations defined within.

5-18

Rumbaugh also allows for control flows within the functional model. Control flows are boolean

values that affect whether a process is performed and are not input values to the process. Control

flows are denoted by dashed lines between processes. According to Rumbaugh, control flows "can

occasionally be useful, but they duplicate information in the dynamic model and should be used

sparingly" (83:129).

5.5.2 Functional Model Translation Problems. This section discusses problems inherent

in translating the functional model, as specified by Rumbaugh, into algebraic specifications. Some

of these problems are caused by translation requirements discussed in Section 5.2 while some are

problems inherent to data flow diagrams in general.

The first problem is the representation of actors. Since actors are only used to set the context

of the functional model and do not affect computations or data flows involved in the model, actor

objects can be ignored as long as all system inputs and outputs are accounted for. Therefore, in

the ensuing discussion of the functional model, I assume that actors are unimportant to translating

the functional model and may be excluded.

The second problem is Rumbaugh's use of the functional model. While he states that high-

level processes should equate to operations in the object model or actions in the dynamic model,

he tends to a take a system-level view when developing his functional model and, as a result, his

processes are unrelated to the object or dynamic models. This system-level use forces the specifier

to backtrack and attempt to determine exactly where these new processes should reside. However,

if I stick to his original statement that processes represent operations and actions and use the

functional model only to decompose non-side affecting operations (i.e., queries) and previously

defined actions, this problem disappears and the three models become integrated. While many of

the operations and actions of basic object classes are simple enough to write axiomatic definitions,

operations and actions of aggregate objects tend to require more thought and decomposition. Thus,

5-19

in this research, I assume that only non-side affecting operations or previously defined actions are

decomposed using functional models and that these are generally used at the aggregate level.

Next, problems associated with translation requirement I, that all entities in the model must

be represented by pure functions, sorts, and first order axioms, are addressed. Initially, it seems

that processes may simply be represented by functions, data flows by sorts and variables in first

order axioms, and data stores by specific values in the sorts. However, the first problem with this

simplistic approach is the requirement to use pure functions to represent processes. While Rum-

baugh states that the lowest-level processes are pure functions, higher-level processes are allowed to

cause side affects (i.e., modify other objects, classes of objects, or associations) within the system.

Since algebraic specifications require pure functions at all levels, the question is how to represent

side effects in pure functions. Functions in algebraic specifications may emulate side affects by

requiring the object of interest to be input to and output from the function. If I assume processes

only affect the objects, object classes, or associations within the aggregate for which they are being

designed, all processes may be defined as pure functions. Because process side effects may only

affect the current aggregate object, if the aggregate object is passed as an input parameter to a

function and returned as an output parameter, then the process is a pure function.

The second problem related to translation requirement I involves the use of data stores. Since

data stores represent objects, object classes, or associations within the aggregate object, passing

the aggregate object as an input parameter to each process allows each processes access to any

object within the aggregate. The process may modify or send events to aggregate components as

specified and return their modified values upon completion. Actually, if a particular process only

accesses or modifies a single component within the aggregate, only that particular component need

be passed as a parameter. In effect, the process in question becomes an operation on the component

it accesses or modifies.

5-20

The final, and most difficult, set of problems is related to translation requirement II, that

all functional models be completely deterministic. Unfortunately, Rumbaugh himself states that

the functional model does not uniquely specify results of side-effecting processes and shows only

possible data paths. Basically what Rumbaugh is saying is that just because certain processes and

data paths are shown in the functional model, not all processes or data flows are necessarily used

to compute the high-level process outputs. For instance, Figure 5.14 shows a functional model for

a process update data. The data flow diagram at the bottom depicts the decomposition. The data

modifications is input to process A which computes two outputs x and y. These outputs become

inputs to processes B and C respectively. Process B retrieves a data value d from the Data store

and updates Data store with data d as well. Process C, on the other hand, simply updates Data

store with a data value d. As Rumbaugh states, this diagram only shows us possible data flows and

processes used to implement update data. Do B and C both execute and update different aspects

of Data store and does the order of their execution matter? Or, does either B or C execute (based

on a decision made in A) and update Data store? Obviously, the diagram does not provide enough

information to decide, and therefore cannot be deterministically translated into a set of functions

and axioms that implement update data.

Since all processes are required to be pure functions, process A must output both x and Y

everytime it is called, thus requiring some control feature to determine when B or C is executed.

One solution is to require the sorts for both x and y to provide a "distinguished" value, such as

undefined, for A to output indicating which process should execute. An alternative solution is

to require A to output explicit control flow information. Both of these choices are particularly

uninspiring. Impregnating sorts with distinguished values to control execution is unacceptable

as it inhibits reuse and is theoretically impure . This example only requires the definition of a

single distinguished value; however, in more complex control situations, additional distinguished

values might be added to the point where reuse of specifications in different contexts might become

unmanageable due to conflicting sort values. Use of control flows is also unacceptable since control

5-21

modifications
(:: update data

moiiations

B C

d ~d

Datastore

Figure 5.14 A Nondeterministic Functional Model

5-22

flow is defined in the dynamic model. Use of additional control flows in the functional model leads

to confusion and almost certainly inconsistent specifications. A better approach is to place all

control flow information in the dynamic model using additional states and transitions as shown in

Figure 5.15, or to define these decisions using axiomatic process definition. Either solution removes

such conditional execution and thus produces a deterministic functional model.

even tlpt-dt(modifications)
1a 2

Figure 5.15 Placing Control in Dynamic Model

The final problem with the functional model is a problem with data flow diagrams in general:

How are sequencing, iteration, and conditional execution represented? In Rumbaugh's functional

model this is not a problem since he allows the functional model to represent "possible paths".

However, as pointed out above, to translate the functional model into algebraic specifications, it

must be deterministic. Therefore, the sequencing/iteration/conditional execution problem is the

same problem discussed above and requires the same solution: specify all control in the dynamic

model or directly using axioms. Sequencing, iteration, and conditional execution can all be handled

by either method.

5-23

5.5.3 The Restricted OMT Functional Model. To deterministically translate the func-

tional model into algebraic specifications, certain restrictions were suggested in Section 5.5.2. These

suggestions are embodied in the following rules and ensure translation requirements I and II are

met.

1. Assumption V.8 Only non-side affecting operations (i.e., queries) or actions (side affecting

operations) defined in the dynamic model are decomposed using functional models.

2. Assumption V.9 Processes only affect the objects, object classes, or associations within the

class (aggregate) for which it is being designed.

3. Assumption V.10 Data stores must be class sets or associations while data flows are indi-

vidual objects and links. If a data store is a class set, the name of the data store is assumed

to be "c-CLASS" or a role name (where "c" is the name of the class). If the data store is an

association, the name of the data store is assumed to be "c-ASSOC".

4. Assumption V.11 All processes are pure functions. All data stores accessed must be input

as parameters to the process.

5. Assumption V.12 All processes must be either 1) a method, or 2) a purely functional op-

eration:

(a) All processes implementing dynamic model actions are assumed to be side affecting and

take an object (and possibly other parameters) as input and return the modified object as

output.

(b) All processes/subprocesses that access or modify data stores must input the appropriate

class set or association.

(c) All processes/subprocesses that modify data stores may output only a single data store

and thus become "leaf" process in the functional model.

5-24

6. Assumption V.13 All retrievals from data stores are performed by a "leaf" process that

accesses only a single data store. This retrieval occurs before modifications to data stores may

occur.

7. Assumption V.14 By convention, data flows to or from a data store are label with <class-

name : class-set-sort> or <association-name : association-sort>.

8. Assumption V.15 There is no explicit ordering of updates to the same data store. All

sequencing requirements must be specified in the dynamic model only.

9. Assumption V.16 All subprocesses execute and produce all outputs whenever the higher-

level process is executed.

10. Assumption V.17 Conditions, loops, and sequencing requirements are specified in the dy-

namic model only. Sequencing in the functional model is derived solely from data dependen-

cies.

11. Assumption V.18 All uniquely named data flows into or out of a process are individual

inputs or outputs of the process and completely define the input and output parameters of the

process. Data flows from a single process with identical names and types are considered a

single output and may be used as inputs to multiple processes or data stores.

12. Assumption V.19 Data flows are represented as name: type and are assumed to be unique.

If two identically named data flows are outputs from the same process, they are assumed to

be a single output.

13. Assumption V.20 Composition and decomposition of aggregate values is performed by user-

defined processes. Forking and joining of data flows is not supported.

14. Assumption V.21 Copying of data may be performed by a specific process or by outputting

multiple copies of a data flow from a single process. Copying by splitting data flows is not

supported.

5-25

5.5.4 Functional Model Semantics. In this section I formally define the semantics of the

restricted OMT functional model. A few formal definitions of data flow diagram semantics have

been proposed. Adler (2) and Tao (92) propose graph-based semantics with a relation defining

the precedence, or "is used to compute", relationship that exists between data flows. Vazquez (94)

defines semantics of data flow diagrams by sentences over a E-term algebra, where E is an algebraic

signature defining the basic constructs of data flow diagrams including some very simplistic control

structures. Since control is not included in the restricted functional model, I choose to model the

semantics of data flow diagrams using the approach of Tao and Kung. Tao and Kung formally

define data flow diagrams as a directed graph with a precedence relation over the data flows as

defined below.

Definition 5.5.1 A Data Flow Diagram is a quadruple D = (C, F, K, R) where

* C = P U S U E is a nonempty finite set of components consisting of pairwise disjoint sets: P,
the set of processes; S the set of data stores; and E the set of external entities.

" F C (P x P) U (P x S) U (S x P) U (P x E) U (E x P) is the set of data flows; each with a
unique name.

" K C P U S is the set of subsystem components, and C - K the environment.

* R C F x F is a precedence relation between elements of F.

This definition defines a data flow diagram as a directed graph with a set of components

(processes and data stores) within the environment (the system) being modelled as well as outside

the environment (actors) to set the diagram "context". Each data flow is assumed to have a unique

name and transfer data directly from one component to another (i.e., no splitting or forking).

Because general data flow diagrams do not require all paths to be executed, certain data flow

inputs to a process may not be used to compute all outputs of the process. Thus Tao and Kung

define a precedence relation to describe exactly which inputs are required to produce which outputs

as defined below.

Definition 5.5.2 The Precedence Relation of a data flow diagram, D, denoted RD, is the
transitive closure of the union of the precedence relations for all components c E K, or RD =

(UIEK R,) + where R, denotes the precedence relation for the component c and + is the transitive
closure. Rc is defined as:

5-26

" If c E P then R, is the empty set {} if P E C - K; otherwise, P is a mapping from I(c) to
O(c) such that (di, dj) E R, if and only if di is used by P to produce dj.

" If c E S then Rc is the empty set {} if S E C - K; otherwise, di E 1(c) and dj E O(c),
(di, dj) E Rc if and only if di and dj contain some data item in common.

* If c E E then R, is the empty set {}.

where 1(c) and O(c) are the input to and outputs from component C.

The precedence relation defines precisely which data flows must be defined prior to the com-

putation of other data flows. The relation is defined over the components in the environment. Just

because a data flow is an input to a process does not mean it is used to compute a particular

output of the same process. That information lies solely in the internal semantics of the process.

For example, assume we have a process, ProduceReports that produces two reports, a summary

report and an error report, as shown in Figure 5.16. In this case, the summary report is generated

as long as there are valid or invalid accounts input to the process whereas the error report is only

generated when there are invalid accounts input to the process. In this case, RProduceReports -

{(invalid-accounts, error-report)}, since neither valid or invalid accounts are required to produce

a summary report; however, an invalid account is required to produce an error report.

valid-accounts invalid-accounts

ProduceReports
summary-report error-report

Figure 5.16 Non-Deterministic Precedence

Therefore, to define the precedence relation, the analyst must know the functionality of each

process. That is, he or she must know which output data is dependent upon which input data.

Although the precedence relation captures the data flow relationships, it does not provide control

information. For instance, in Figure 5.14, it is still not known whether process B or C executes, or

in what order the input and output to the data store occur.

5-27

Given the restrictions placed on general data flow diagrams in the restricted OMT functional

model in Section 5.5.3, the semantics of data flow diagrams as defined by Tao and Kung can be

refined to define the semantics of the restricted OMT functional model.

Definition 5.5.3 A Restricted OMT Functional Model is a quadruple D = (C, F, K, R)
where

" C = P U S U E is a nonempty finite set of components consisting of pairwise disjoint sets:
P, the set of processes; S the set of data stores; and E = {Extern} where Extern represents
any entity external to the object being defined.

" F C (P x P) U (P x S) U (S x P) U (P x E) U (E x P) is the set of data flows; each with a
unique name.

" K = P U S is the set of subsystem components.

* R C F x F is a precedence relation between elements of F.

Because the functional model restrictions require all inputs to precede all outputs, and for all

data store reads to precede data store writes, the precedence relation becomes computable directly

from C and F and requires no analyst intervention.

Definition 5.5.4 The Precedence Relation for a restricted OMT functional model, D, denoted
RD, is the transitive closure union of the precedence relations for all components c E K, or RD =

(UCEK R,)+ where R, denotes the precedence relation for the component c and + is the transitive
closure. R, is defined as:

" If c E P then R = {(di, dj) di E I(c) A dj E O(c)}.

• Ifc E S then R = {(di, dj) di E I(c) A dj E O(c)}.

" RExtern {}.

Thus, for the restricted functional model, the precedence relation simply defines which data

flows must be computed before others based on their graph location. With these semantics, struc-

tural aspects of the restricted functional model are completely defined. For a subdiagram that

defines a higher-level process, this defines the semantics of the higher-level process in terms of

lower-level processes. The internal functionality of these low-level processes are defined axiomati-

cally.

5-28

5.6 Summary

This report describes the OMT object model as used by Rumbaugh as well as problems

encountered when attempting translate it into algebraic specifications. Restrictions and exact

interpretations of the object model, dynamic model, and functional model entities are presented

which allow the object model to be deterministically translated into algebraic specifications. The

formal semantics of the restricted object model are represented by Bourdeau and Cheng's algebraic

specification, the semantics of the restricted dynamic model are derived from the semantics of

statecharts as defined by Harel, while the semantics of the restricted functional model are derived

from generalized data flow diagram semantics.

The semantics defined in this chapter are used in Chapter VI to help define the theory-based

model. Their main use, however, is in Chapter VII where they are used to show that the translations

defined in that chapter preserve the semantics of the individual models.

5-29

VI. A Theory-Based Object Model

6.1 Introduction

This chapter defines a theory-based object model based on Rumbaugh's semi-formal Object

Modeling Technique (OMT) (83). The theory-based object model is described using algebraic

specifications to define object classes while relationships between classes are defined via category

theory operations within the category Spec. The algebraic theory language used to capture the

internal class structure as well as the relationships between classes is O-SLANG, an object-oriented

derivative of Slang (54). A complete description of O-SLANG is contained in Appendix B.

This theory-based object model is designed to faithfully capture the essence of an object-

oriented specification in a formal framework and to provide the capability to reason about the

resulting specification. This framework is based on a formal definition of generally accepted object-

oriented concepts. Section 6.2 presents the basic concepts of object classes including attributes,

methods, events, operations, and states and how they are captured in an algebraic specification.

The next three sections discuss relationships between objects using algebraic class specifications and

category theory concepts: Section 6.3 defines the mechanism and effects of inheritance, Section 6.4

presents the concept of links and associations, and Section 6.5 discusses a unique specification, the

aggregate class. The final section, Section 6.6, explains how event theories and category theory

operation are used to create communication paths in a domain model based on events defined in

the dynamic model.

There are four basic premises upon which the theory-based object model is based.

1. The model is designed to capture information necessary for domain modeling. Domain mod-

eling is concerned with capturing general object classes and operations within a domain.

System specifications are derived from domain models by selecting the specific number and

types of object classes as well as providing detailed system level requirements as discussed in

Chapter II.

6-1

2. The two central concepts of object-orientation are object classes and the relationships between

them. These relationships include association, generalization-specialization, and aggregation.

3. The model assumes consistent user defined class specifications. The model only ensures that

this consistency is maintained when composing specifications.

4. All three Rumbaugh models map into classes using a restricted notion of Rumbaugh semantics

as defined in Chapter V. For instance, Rumbaugh's object model is used to define classes

and their relationships. There is a dynamic model for each class which defines how the class

responds to incoming events and a functional model to define how aggregate actions are

transformed into component actions.

6.2 Classes

The building block of object-orientation is the object class. There are two types of classes:

abstract and concrete. A concrete class is a blueprint from which instances of the class, called

objects, are created. An abstract class is a class with no direct instances but whose descendents do

have direct instances (83:61) and are discussed in detail in Section 6.2.10. Concrete classes have two

parts: a class type and a class set. Class sets are discussed in Section 6.2.8. A class type defines the

structure of an object and its response to external stimuli based its current state. A class type also

has two components: attributes and operations. An attribute is an observable characteristic of an

object and may either be constant or change over time. Attribute values do not necessarily uniquely

define individual objects - two distinct objects may have identical attribute values. Although an

object's attribute values are generally accessible to other objects, modifications of those values may

only be done by the object itself, thus providing greater reuse potential. Objects communicate

via message passing or through global events. In message passing, one object sends a message

to another object. The message is then processed by the receiving object, possibly causing it to

change state or to send additional messages. In an event driven system, objects generate events

6-2

which are broadcast globally and "captured" by other objects in the system. In general, the object

generating an event does not know its destination nor does the receiving object know its source.

In the theory-based object model, I define an object class type as a theory presentation as

defined in Definition 4.2.1. For a given class C, S represents the sorts in the class including a class

sort and any other sorts referenced in the theory while Q is a set of theory operations and are used

to represent attributes, operations, methods, and events. Each of these is discussed in detail below.

6.2.1 Sorts. Sorts are collections of values. Sorts may represent conventional data types

such as integers, reals, or strings, or they may be abstract, representing such things as people,

places, or ideas. The theory-based object model has two distinguished sort types: class sorts and

state sorts. A class sort is the set of all possible object names in the class. Each object within the

class has a unique name from the class sort. Objects themselves are not explicitly represented in

a class type or specification: they are maintained external to the class type. By defining the class

sort as a set of object names, objects may be referenced without having to maintain multiple copies

of the object. A second set of sorts in a class type are the state sorts. Elements of a state sort are

the individual class states as defined in the dynamic model.

6.2.2 Attributes. Attributes are visible operations that take an object name and return

the value of a particular characteristic associated with that object. Attribute operations provide

information about an object; they do not modify the object in any way. State attributes return

values in the state sort representing the current state of an object. There is generally one state

attribute per state sort. Multiple state sorts and attributes are used to define concurrent states

and substates. A more complete discussion of state sorts and state attributes can be found in

Section 6.2.7.

6.2.3 Methods. Methods are non-visible operations that modify an object's attribute

values and are defined by actions in the dynamic model or functions in the functional model. In

6-3

the theory-based object model, a method is not visible to external objects. Communication between

objects is handled strictly by events. A method may modify none, some, or all of an object's non-

state attribute values while event operations may only modify state attributes. Formal parameters

of a method consist of an object name followed by other additional parameters. The return value

of a method is the name of the object. Although the name is unchanged, returning the name

of the object allows the nesting of method and attribute calls. Generally, the effect of a method

on an object is defined by its effect on each of the non-state attributes of the object. Since the

method returns the name of the object passed to it, a method invocation may be "embedded" in

an attribute invocation allowing the effect of the method on the attribute to be precisely specified

as shown below.

attribute-name(method-name(object-name)) = new-value-of-attribute

In a concrete class, it is assumed that the effect of each method is completely defined for all

possible object states and input parameters.

Assumption VI.1 In a concrete class, the effect of each method on each normal attribute in the

class is completely defined for all states and input parameters.

If the general result of a method applied to an object in a particular state cannot be computed or

doesn't make sense (i.e., divide by zero, etc.), the effect of the method must still be defined. In

most cases, if an object is in an inappropriate state prior to the method invocation or parameters

passed to the method are invalid, there is simply no effect on the object. These preconditions are

specified easily through the use of implication. For instance, for an integer, a divide method only

makes sense when the divisor parameter is non-zero. Axioms describing the desired behavior are

easily specified an shown below.

parameter y 0 = value(divide(integer, parameter)) = integer/parameter

parameter = 0 =- value(divide(integer, parameter)) = integer

6-4

This assumption plays an important role in defining the effects of inheritance in Section 6.3.

Each class type has a create method used to create valid objects of the class type. This

method is only used to create objects and assign initial values to attributes.

6.2.4 Events. Events are the visible operations that allow objects to communicate. Event

operations are derived from the dynamic model and are only allowed to directly modify the state

attributes of a class as shown in Figure 6.1. As a side effect, events may cause the other actions to

be initiated. These actions might include the invocation of one or more methods or the generation

of events to be sent to other objects. Each class type has a default new event which triggers the

create method and initializes the object's state attributes. Event operations are discussed in more

detail in Sections 6.3 and 6.6.

Figure 6.1 shows an example of a theory-based representation of an object class type in 0-

SLANG. The operations date, bal, and acct-state are attributes, create-acct, credit and debit are

methods, and new-acct, deposit and withdrawal are events.

6.2.5 Operations. Theory-based object model Operations are visible operations that do

not meet the criteria of an attribute, method, or an event. These operations are generally used to

compute derived attributes, but are not restricted to this purpose; however, operations may not

modify any of an object's attribute values.

A common example of a non-derived attribute operation is attr-equal. The attr-equal operation

determines if two objects from a class are equal based on the non-state attribute's values. This

operation is especially useful in specifying method invocation after receipt of a particular event. In

this case, attr-equal specifies that the effect of a method on the non-state attributes is equivalent

to the effect of an event on an object. In Figure 6.1, the axiom

acct-state(a) = ok => acct-state(deposit(a, x)) = ok A attr-equal(deposit(a, x), credit(a, x))

6-5

class AGOT is
import Amnt, Date
class sort Acct
sorts Acct-State
operations

attr-equal : Acct, Acct -*Boolean

attributes
date :Acct - Date
bal : Acct --+ Amnt

state-attributes
acct-state :Acct --* Acct-State

methods
create-acct. : Date --+ Acct
credit, debit :Acct, Amnnt - Acct

states
ok, overdrawn:- Acct-State

events
new-acct : Date -~Acct

deposit, withdrawal : Acct, Amnt -~ Acct
axioms

% state uniqueness and invariant axioms
ok # overdrawn;
V (a: Acct) acct-state(a) = ok * bal(a) > 0;
V (a: Acct) acct-state(a) = overdrawn = . bal(a) < 0;

% operation definitions
V (a,al: Acct) attr-equal(a, al) ~-date(a) = date(al) A bal(a) =bal(al);

% method definitions
V (d: Date) date (create-acct (d)) =d A bal(create-acct(d)) = 0;
V (a: Acct, x: Amnnt) bal(credit(a,x)) = bal(a) + x

A date (credit (a,x)) = date(a) A rate (credit (a,x)) = rate(a)
A int-date (credit (a,x)) = int-date(a) A check- cost (credit (a,x)) = check-cost(a);

% event definitions
V (d: Date) acct-state(new-acct(d))=ok A attr-equal(new-acct(d), create-acct(d))
V (a: Acct, x: Amnt) acct-state(a)=ok

. acct-state (deposit (a,x)) =ok A attr-equal(deposit(a,x), credit(a,x));
V (a: Acct, x: Amnt) acct-state(a) =overdrawn A bal(a) + x > 0

=: acct-state(deposit(a,x))=ok A attr-equal(deposit(a,x), credit(a,x));
V (a: Acct, x: Amnt) acct-state(a) =overdrawn A bal(a) + x < 0

= - acct-state(deposit (a,x)) =overdrawn A attr-equal (deposit (a,x), credit(a,x));
V (a: Acct, x: Amnt) acct-state(a)=ok A bal(a) > x

=:: acct-state(withdrawal(a,x))=ok A attr-equal(withdrawal(a,x), debit(a,x));
V (a: Acct, x: Amnt) acct-state(a)=ok A bal(a) < x

=:'. acct-state(withdrawal(a,x)) =overdrawn A attr-equal(withdrawal(a,x), debit(a,x));

V (a: Acct, x: Amut) acct-state(a) =overdrawn
* acct-state(withdrawal(a,x))=overdrawn A attr-equal(withdrawal(a,x), a)

end-class

Figure 6.1 Object Glass

6-6

states that if an account is in the ok state and a deposit event is received, the object stays in the

ok state and that the effect of the deposit event on non-state attributes is equivalent to the effect

of the credit method on the same object.

6.2.6 Axioms. Class axioms are first-order logic statements that must be true for any

object of the class. They are used in class specifications to define the semantics of class operations

as well as invariants between class attributes. In general, axioms define methods and events by

describing their effects on attributes or through composition of other operations.

6.2.7 State. State is vital to object-orientation. As defined by Rumbaugh, state is an ab-

straction of an object's attribute values and is represented by a statechart in the dynamic model. A

brief overview and the semantics of statecharts are presented in Section 5.4. To explicitly represent

state in the theory-based object model, each class type has at least one state sort representing this

abstraction of attribute values, a state attribute (one for each state sort) which returns an element

from its associated state sort, a set of states (nullary operations) which are elements in a state

sort, and a set of state invariants that describe constraints on class attributes that must hold true

while in a given state. State attributes are only modified by events as defined by transitions in the

class dynamic model. In Figure 6.1, the class state sort is Acct-State, the class state attribute is

acct-state, the state constants are ok and overdrawn, and the state invariants are

acct-state(a) = ok bal(a) _ 0;

acct-state(a) = overdrawn = bal(a) < 0;

These axioms state that when the balance of an account is greater than or equal to zero, the account

must be in the ok state; however, when the balance of the account becomes less than zero, the state

must become overdrawn. Although not a state invariant, the axiom

ok 5 overdrawn

6-7

is critical to the correct interpretation of the specification. It ensures that there are two distinct

states ok and overdrawn. Without this axiom, a valid specification model might have a single

element in the state sort, equivalent to both ok and overdrawn. Notice that the specification does

not restrict the class state sort to only these values. Limiting the class state sort to these values

would not permit valid extensions of the class state by subclasses as discussed in Section 6.3.4.1.

The effect of these states on the behavior of the class as shown in Figure 6.2 and is represented by

the axioms of the form

acct-state(a) = ok A bal(a) < x = acct-state(withdrawal(a, x)) = overdrawn

This particular axiom requires that withdrawals be made only when the account is in the ok state

prior to the withdrawal event and that if the account is overdrawn as a result of a withdrawal,

the new state of the account becomes overdrawn. Acct state transitions and method invocations

defined in the dynamic model are defined by the following axioms.

acct-state(a) = ok = acct-state(deposit(a,x)) = ok A attr-equal(deposit(a, x), credit(a,x));

acct-state(a) = overdrawn A bal(a) + x > 0 acct-state(deposit(a, x)) = ok

Aattr-equal (deposit (a, x), credit(a, x));

acct-state(a) = overdrawn A bal(a) + x < 0 . acct-state(deposit(a, x)) = overdrawn

Aattr-equal(deposit(a, x), credit(a, x));

acct-state(a) = ok A bal(a) > x =; acct-state(withdrawal(a, x)) = ok

Aattr-equal(withdrawal (a, x), debit(a, x));

acct-state(a) = ok A bal(a) < x acct-state(withdrawal(a, x)) = overdrawn

Aattr-equal (withdrawal (a, x), debit(a, x));

acct-state(a) = overdrawn = . acct-state(withdrawal(a,x)) = overdrawn

Aattr-equal(withdrawal (a, x), a)

These axioms require that the account state become overdrawn when a withdrawal is performed

that makes the account balance less than zero and that the account state may only change back to

ok when a deposit is made making the balance greater than or equal to zero.

Dynamic model statecharts allow concurrent states and substates. Concurrent statecharts are

used when the attributes of a class type are partitionable into subsets as discussed in Section 5.4.1.

6-8

withdrawal(a,x) [bal(a) >= x]/debit(a,x)

new-acct(d) withdrawal(a,x) [bal(a) < x

deposit(a,x) [x + bal(a) < 0]

eposit(ax) [x + bal(a) >= O]/credit(a,x) Icedt(a,x)

deposit(a,x)/credit(a,x)

Figure 6.2 Account Dynamic Model

Formally, concurrent states are represented by multiple state attributes, one for each concurrent

statechart. Substates are handled similarly to concurrent states - by adding additional substate

attributes which are valid only when the class state attribute is in the appropriate state. Additional

examples of using and specifying concurrent and substates are described in Section 6.3.4.1.

6.2.8 Class Set. The Acct class as defined in Figure 6.1 only specifies a template for

creating new objects of the Acct class. However, Rumbaugh's informal model implies the ability to

collectively manage a set of objects in a class. To provide this capability, a class set is created for

each class defined (both abstract and concrete).

Definition 6.2.1 Class Set - A class set is a class whose class sort is a set of objects from a

previously defined object class, C. A class set includes a "class event" definition for each event in

C such that the reception of a class event by a class set object sends the corresponding event in C

to each object of type C contained in the class set object. If the class C is a subclass of D1 ...Dn

then the class set of C is a subclass of the class sets of D1 ...Dn.

The class set creates a class type whose class sort is a set of objects and some basic operations

on that set. Using the specifications of TRIV and SET as defined in Appendix E and basic category

theory operations, the class set can be derived automatically as shown in Figure 6.3. The equivalent

O-SLANG specification is shown in Figure 6.4.

6-9

spec ACCT- CLASS- COLMMIT is
colimit of diagram

nodes TRIV, ACCT, SET
arcs TRIV -*ACCT : E --- Acct}

TRIV -*SET: {
end-diagram

spec ACT-CLASS-SET is
translate ACOT-CLASS-COLIMIT
by {Set ---+ Acct-Glass, E --+ Acct}

spec AcCT-CLASS is
import ACCT-GLASS-SET
sort Acct-Class
operations

new-acct-class : .Acct-Class

withdrawal : Acct-Class, Amnt --+ Acct-Class
deposit : Acct-Glass, Amnt -* Acct-Class

axioms
new-acct-classo = empty-set;
V (a: Acct, ac: Acct-Class, x: Amnt) a E ac .* deposit(a,x) E deposit(ac,x);
V (a: Acct, ac: Acct-Class, x: Amut) a E ac * withdrawal(a,x) E withdrawal(ac,x)

end-class

Figure 6.3 SLANG Class Set Specification

class AcCT-CLASS is
contained-class ACCT
class sort Acct-Glass
events

new-acct-class : *Acct-Class

withdrawal : Acct-Class, Amnt --+ Acct-Class
deposit : Acct-Class, Amnt --+ Acct-Class

axioms
new-acct-classo = empty-set;
V (a: Acct, ac: Acct-Class, x: Amnt) a E ac * deposit(a,x) E deposit(ac,x);
V (a: Acct, ac: Acct-Class, x: Amnt) a E ac 4* withdrawal(a,x) E withdrawal(ac,x)

end-class

Figure 6.4 0-SLANG Class Set Specification

6-10

The specification ACCT-CLASS-COLIMIT creates a new specification using the sort Ein the

specification SET as a formal parameter and instantiating it using the specification TRIV, unifying

sort E in SET with the class sort Acct from the ACCT class. The diagram for this operation is

shown in Figure 6.5.

Triv i Srt

{E -- Acct} C

Acct - c m- Act-Class-Colimit

Acct-Class-Set

Acct-Class

Figure 6.5 Colimit of Accounts

The colimit of TRIV, SET, and ACCT results in an intermediate specification with a set of

account objects named Set. To eliminate ambiguity, the intermediate specification is translated in

the ACCT-CLASS-SETspecification such that the sort Settranslates to Acct-Class and the sort Eis

translated to Acct. The renaming of E eliminates the sort name equivalence class {E, Acct} created

by the colimit operation while the renaming of Set creates the class sort of the final specification

A CCT- CLASS.

ACCT-CLASS imports the ACCT-CLASS-SET specification (and with it the ACCT class

type definition) in order to add additional "class" events. These class events mirror the individual

6-11

"object" events defined in the class type specification. Class set specifications simply distribute

the event invocation to each object currently contained in the class set. Additional operations for

selecting individual objects from the class set based on class attributes may also be specified by the

designer using an aggregate or association qualifier. Use of qualifiers is discussed in Section 6.4.2

and 6.5.2.

6.2.9 Object-Valued Attributes. As discussed in Section 6.2, each object within the class

has a unique name which allows other objects (including itself) to reference it. Object-Valued

attributes are the mechanism used to reference external objects from within a class type definition

and are the key to formally modeling association and aggregation. An object-valued attribute is a

class attribute whose sort type is a set of object names (a class set sort). Object-valued attributes

behave like normal class attributes. Formally, they are specification operations that take an object

name and return an external object name or set of names.

The effects of methods on object-valued attributes are defined similarly to normal attributes.

However, instead of directly specifying a new value for the object-valued attribute, an event from

the object-valued attribute's class is sent to the object named by the object-valued attribute.

An example of using an object-valued attribute is shown in Figure 6.6. In this example,

Producer is a class of objects which produce items to be stored in a buffer. Buffer is a class of

simple buffer objects with get and put operations. The attribute buffer-obj is an object-valued

attribute which holds the name of the specific buffer object in which the producer object stores its

items. Once the producer and buffer are initialized, each produce-item event invokes the produce

method which causes the item produced by the producer to be put into the buffer referenced by

the buffer object-valued attribute as defined by the following axiom.

buf f er-obj (produce(p, i)) = put(buf f er-obj(p), i)

The put event is made available by importing the Buffer class type specification directly into

the Producer specification. It is important to note that all modifications of objects referenced

6-12

by object-valued attributes are accomplished by sending events to the objects instead of directly

invoking methods since events ensure the object is in the appropriate state before a method is

invoked. A direct method invocation could result in errors or inconsistencies in the referenced

object.

class PRODUCER is
imports Buffer, Item
class sort Producer
sorts Producer-State
operations

attr-equal: Producer, Producer --- Boolean
attributes

buffer-obj Producer -- Buffer
methods

create-producer : Buffer --* Producer
produce : Producer, Item --- Producer

events
new-producer Buffer --+ Producer
produce-item Producer, Item --+ Producer

axioms
% operation definitions
V (p,pl: Producer) attr-equal(p, pl) = buffer-obj(p) - buffer-obj(pl);

% event definitions
V (b: Buffer) attr-equal(new-producer(b), create-producer(b));
V (i: Item, p: Producer) attr-equal(produce-item(p,i), produce(p,i));

% method definitions
V (b: Buffer) buffer-obj(create-producer(b)) = b;
V (i: Item, p: Producer) buffer-obj(produce(p,i)) = put(buffer-obj(p),i)

end-class

Figure 6.6 Object-Valued Attribute Example

6.2.10 Abstract Classes. Abstract classes and concrete classes are defined in the same

manner with one exception. Because abstract classes are not instantiable, they are not required to

fully define operations and thus Assumption VI.1 does not hold. Basically this allows specification

operations (methods or operations) to be defined without fully defining their effect on every at-

tribute. Only characteristics that must hold true in all subclasses need be specified. If an operation

is not completely defined, it is called an abstract operation. Abstract classes are generally used to

abstract out common elements of subclasses without having to fully define them.

6-13

6.3 Inheritance

In this research, inheritance holds to the substitution property as presented in Section 4.4.

Simple inheritance is modelled using specifications morphisms between class specifications as de-

fined in Definition 4.4.2 while multiple inheritance is defined in Defintion 4.4.3.

As discussed in Section 4.2.1, showing that a group of first order axioms are consistent is

generally not possible; however, since by Assumption 1.1 user defined specifications are consistent,

I can develop rules to ensure this consistency is not violated when inheritance is applied. Because

methods and events are defined in terms of their affect on attributes, these rules are developed

based on the effect of methods and events on attributes. Table 6.1 shows the rules for methods and

normal attributes. Basically this tables shows that in a subclass, new axioms may not be generated

that define how a method defined in the superclass affects an attribute defined in the superclass.

Table 6.1 Method/Attribute Inheritance Rules

Validity of axiomatic definition
Method defined in Attribute defined in in subclass of

effect of method on attribute

Superclass Superclass Invalid
Superclass Subclass Valid
Subclass Superclass Valid
Subclass Subclass Valid

Because, by Assumption VI.1, superclass methods are completely defined over superclass

attributes, additional axioms are not needed and can only lead to inconsistencies in the subclass.

Notice that the other three combinations are valid. In fact, the other three combinations are

required to ensure that methods introduced in the subclass and superclass are completely defined

over attributes introduced in both the superclass and subclass. These same rules hold for events and

state attributes as well; however, additional rules for substates and concurrent states are developed

in Section 6.3.4.1.

An example of single inheritance using a subclass of the ACCT class, SACCT - a savings

account class, is shown in Figure 6.7. The import statement includes all the sorts, operations,

6-14

and axioms declared in the ACCT class directly into the new class while the class sort declaration

SAcct < Acct states that SAcct is a subsort of Acct, and as such, all operations and axioms

that apply to an Acct object apply to a SAcct object as well. The dynamic model for SACCT is

shown in Figure 6.8. The import operation defines a specification morphism between ACCT and

SACCT while the subsort declaration completes the requirements of Definition 4.4.2 for inheritance.

Therefore, SACCT is a valid subclass of ACCT, the substitution property holds, and internal class

consistency is preserved.

6.3.1 Implications of the Substitution Property. Since my interpretation of the substitu-

tion property defined in Equation 4.3 implies that a subclass D must only act like its superclass

in an environment design specifically for the superclass, it is possible for a subclass to have states

in which it does not behave like its superclass. The substitution property only requires that these

new states not be reachable via events available to the superclass. Consider the example shown in

Figure 6.9. The statechart in Figure 6.9(b) extends the statechart in Figure 6.9(a) by adding a new

state. A subclass object behaves like an object from its superclass as long as event e4 sending the

object from state 3 to state 4 is not received. Once in state 4, the subclass no longer behaves like a

member of the superclass. While definitely not wrong, this effect may not satisfy one's intuition of

what is expected in a subclass - superclass relationship. The more restrictive interpretation given

by Bourdeau and Cheng (14), as discussed in Section 4.4, forces a subclass object to reside only in

states defined in the superclass object and thus would not allow state 4 to be added in the subclass.

6.3.2 Multiple Inheritance. Multiple inheritance is defined in Definition 4.4.2. To create

an account that combines the features of a savings account with those of a checking account,

CACCT (Figures 6.10 and 6.11), the colimit of classes ACCT, SACCT, CACCT, and morphisms

from ACCT to SACCT and CA CCT is computed as shown in Figure 6.12, where an arrow labeled

with an "i" represents an import morphism and a "c" represents a morphism formed by the colimit

operation. A simple extension of the colimit specification with the class sort definition

6-15

class SAcCT is
import Acct, Rate
class sort SAcct < Acct
operations

attr-equal : SAcct, SAcct -~ Boolean
attributes

rate :SAcct -~ Rate
mnt-date : SAcct --+ Date

methods
create-sacct :Date --+ SAcct
set-rate :SAcct, Date, Rate --+ SAcct
comp-int: SAcct, Date --+ SAcct

events
new-sacct Date -4 SAcct
rate-change : SAcct, Date, Rate -+ SAect
compute-interest : SAcct, Date --+ SAcct

axioms V (d: Date, r: Rate, a, al: SAcct)
% operation definitions
V (a,al: SAcct) attr-equal(a, al) =t. rate(a) =rate(al) A int-date(a) =int-date(al);

% create method definition
V (d: Date) date (create-sacct (d)) = date (create-acct (d)) A bal(create-sacct(d)) = bal(create-acct(d))

A acct-state(create-sacct(d)) = acct-state(create-acct(d)) A int-date(create-sacct(d)) = d
A rate (create-sacct (d)) = 0;

% credit method definitions
V (s: SAcct, a: Amnt) rate (credit (s, a)) =rate(s) A int-date (credit (s, a)) = mnt-date(s);

% debit method definitions
V (s: SAcct, a: Amnt) rate(debit(s,a)) =rate(s) A int-date(debit(s,a)) = int-date(s);

% set-rate method definitions
V (d: Date, r: Rate, a: SAcct) rate (set-rate (a,d,r)) = r A int-date(set-rate(a,d,r)) = d

A bal(set-rate(a,d,r)) = bal(a) A date (set-rate (a,d,r)) = date(a);
% comp-int method definitions
V (d: Date, a: SAcct) rate(comp-int(a,d)) =rate(a) A int-date(comp-int(a,d)) = d

A bal(a) 0 *bal(comp-int(a,d)) = bal(a) + rate(a) * ((d - int-date(a))/days-per-year(d))
A bal(a) <0 *bal(comp-int(a,d)) = bal(a) A date(comp-int(a,d)) = date(a);

%new event definition
V (d: Date) acct-state(new-sacct(d)) = ok A attr-equal(new-sacct(d), create- sacct (d));

% rate-change event definitions
V (d: Date, r: Rate, a: SAcct) acct-state(a) = ok * acct-state(rate-change(a,d,r)) = ok

A attr-equal(rate-change(a,d,r) ,set-rate(comp-int(a,d) ,d,r));
V (d: Date, r: Rate, a: SAcct) acct-state(a) = overdrawn

acct-state(rate-change(a,d,r)) = overdrawn
A attr-equal(rate-change(a,d,r),set-rate(comp-int(a,d),d,r));

% compute- interest event definitions
V (d: Date, a: SAcct) acct-state(a) = ok * acct-st ate (compute-interest (a, d)) = ok

A attr-equal(compute-interest(a,d) ,comp-int(a,d));
V (d: Date, a: SAcct) acct-state(a) = overdrawn . acct-state(compute-interest(a,d)) =overdrawn

A attr-equal(compute-interest(a,d) ,a)
end-class

Figure 6.7 Savings Glass

6-16

withdrawal(a,x) [bal(a) >= x]/debit(a,x)

compute-interest(a,d) rate-change(a,d,r)
/int(a,d) /set-rate(a,d,r)

rae.hng.adr\O withdrawal(a,x) [bal(a) < x]/.l"

/set-rate(a,d,r)
deposit(a,x)[x+bal(a)<0]deposit(ax) [bal(a) >=]/credit(a,x) /ced(,)

/cr(

deposit(a,x)/credit(a,x)

Figure 6.8 Savings Account Dynamic Model

(a) Superclass state model

(b) Subclass state model

Figure 6.9 Subclass State Extension

Comb-Acct < SAcct, CAcct

yields the desired class where Comb-Acct is a subclass of both SAcct and CAcct. Figures 6.13, 6.14,

and 6.15 show the "long" version of the combined specification with all the attributes, methods,

and events inherited by the Comb-Acct class.

6.3.3 Subclasses and Class Sort Subsorts. The subclass - superclass relationship corre-

sponds to the subsort - supersort relationship of the class sort. Since a subclass has all the features

of the superclass and subclass object can be substituted for superclass objects, it subclass objects

are in fact, members of the superclass. Since there is a one-to-one correspondence between objects

in a class and names in the class sort, an object in a subclass must have a name in the subsort as

well as in the class sort.

The O-SLANG subsort operator < defines a subset relationship among sorts such that for two

sorts, A and B in specification S, A < B = A' C B' where A' and B' are sets representing A

6-17

class CACC'r is
import Acct class sort GAcct < Acct
operations

attr-equal: CAcct, CAcct --+ Boolean
attributes

check-cost CAcct -*Amnt

methods
create-cacct :Date -*CAcct

set-check-cost :GAcct, Amnt --+ GAcct
events

new-caect :Date -C Acct
change-check-cost GAcct, Amnt --* GAcct
write-check :CAcct, Amnt -+ CAcct

axioms V (a: CAcct, x: Amut)
% operation definitions
attr-equal(a, al) = check-cost(a) = check-cost(al);

% create method definition
date (create-cacct (d)) = date (create-acct (d));
bal (create- cacct (d)) = bal(create-aect(d));
acct-state (create- cacct (d)) = acct-state(create-acct(d));
check-cost (create- cacct (d)) = 0;

% credit method definitions
V (c: GAcct, a: Arnnt) check- cost (credit (c, a)) =check-cost(c);

% debit method definitions
V (c: GAcct, a: Amnt) check-cost (debit (c,a)) =check-cost(c);

% set-check-cost method definition
V (a: CAcct, x: Amnt) check-cost(set-check-cost(a, x)) = x
%new event definition
V (d: Date) acct-st ate (new-cacct (d)) = ok A attr-equal(new-cacct(d), create-acct(d));

% write- ch eck- cost event definition
V (a: CAcct, x: Amnt) acct-state(a) = ok A bal(a) > x

= . acct-state(write-check(a,x)) = ok A attr-equal(write-check(a,x), debit(a,x);
V (a: GAcct, x: Amut) acct-state(a) = ok A bal(a) < x

acct-state(write-check(a,x)) = overdrawn A attr-equal(write-check(a,x), debit(a,x);
V (a: CAcct, x: Amnt) acct-state(a) = overdrawn

= . acct-state(write-check(a,x)) = overdrawn A attr-equal(write-check(a,x), debit (a,x);
% set-check-cost method definition
V (a: CAcct, x: Amnt) acct-state(a) = ok

= acct-st ate (write-check (a,x)) = ok A attr-equal(change-check-cost (a,x), set-check- cost (a,x))
V (a: CAcct, x: Amnt) acct-state(a) = overdrawn

. acct-state(write-check(a,x)) = overdrawn A attr-equal(change-check-cost (a,x), set-check-cost (a,x))
end-class

Figure 6.10 Checking Glass

6-18

withdrawal(a,x) [bal(a) >=- x]/debit(a,x) write-check(a,x) c e-check-cost(a,x)

[bal(a) < x+check-cost(a)] /set-check-cost(a,x)
change-check-cost(a x) /debiilt (a x check-cost(a))

/set-check-cost(a,x) tx C s~)

new-cacct(d withdrawal(a,x) [bal(a) < x

write-check(a,x) deposit(a,x) [x + bal(a) < 01
[bal(a) >=- x+check-cost(a)] \a
/debit(a,x+check-cost(a)) deposit(a,x) [x + bal(a) >=- 0]

/tredit(ax)
deposit(a,x)/credit(a,x) write-check(a,x)/debit(a,x,+check-cost(a))

Figure 6.11 Checking Account Dynamic Model

Acct

SAcWt CAcct

C

Comb-Acct

Figure 6.12 Colimit of Accounts

and B in a model of S. Thus, if a class D is a subclass of a class C, then the class sort of D, D0 8,

is a subsort of the class sort of class C, Cc8 , or D'8 C 8 .

6.3.4 Behavioral Inheritance. There are two methods of behavioral specification in OMT:

the dynamic model and the functional model. Dynamic behavior is specified by a statechart for

each class while functional behavior is specified at the system, or aggregate level by data flow

diagrams. Section 6.3.4.1 defines the effects of inheritance on the dynamic model while Section

6.3.4.2 describes the effects of inheritance of functional behavior.

6.3.4.1 Dynamic Inheritance. Because the effect of a method or event is based

on the object's state and must be equivalent to the effect of a method or event on a superclass

object, modification of inherited dynamic behavior must conform to certain rules. Since each class

has possibly multiple "state", "substate", or "concurrent state" attributes (as described in Section

6-19

class COMB-AGOT is
import SAcct, CAcct
class sort Comb-Acct < SAcct, CAcct
sorts Acct-State
operations

attr-equal: Comb-Acct, Comb-Acct -*Boolean

attributes
date: Gomb-Acct -* Date
bal: Comb-Acct -*Amnt

rate: Comb-Acct -fRate

mnt-date : Comb-Acct --* Date
check-cost : Comb-Acct -~Amnt

state-attributes
acct-state : Gomb-Acet -*Acct-State

methods
create-acct :Date -~Comb-Acct

create-sacct :Date -*Coxnb-Acct

create-cacct :Date -*Comb-Acct

create-comb-acct : Date --* Comb-Acct
credit: Comb-Acct, Amnt -* omb-Acct
debit: Gomb-Acct, Amnt -* omb-Acct
set-rate : Comb-Acct, Date, Rate --+ Comb-Acct
int : Comb-Acct, Date -4 Gomb-Acct
set-check-cost : Gomb-Acct, Amut --+ Comb-Acct
write-check : Comb-Acct, Amnt --+ Comb-Acct

states
ok : --+ Acct-State
overdrawn:- Acct-State

events
new-acct :Date -* omb-Acct
new-sacct :Date -*Comb-Acct

new-cacct :Date -~Comb-Acct

new-comb-acct : Date --+ Comb-Acct
deposit : Comb-Acct, Amnt -4 Comb-Acct
withdrawal: Comb-Acct, Amnt --+ Comb-Acct
rate-change: Comb-Acct, Date, Rate -~Comb-Acct

compute-interest :Comb-Acct, Date -*Comb-Acct

change-check-cost :Comb-Acct, Amnt --* Comb-Acct
write-check : Comb-Acct, Amnt -* Comb-Acct

Figure 6.13 Combined Account Signature

6-20

axioms
% state uniqueness and invariant axioms
ok :A overdrawn;
V (a: Acct) acct-state(a) ok A - bal(a) > 0;
V (a: Acct) acct-state(a) =overdrawn , bal(a) < 0;

% operation definitions
V (a,al: Acct) attr-equal(a, al) . date(a) =date(al) A bal(a) = bal(al);
V (a,al: SAcct) attr-equal(a, al) =~rate(a) rate(al) A int-date(a) = int-date(al);
V (a,al: CAcct) attr-equal(a, al) check-cost(a) = check-cost(al);

% create-acct method definition
V (d: Date) date (create-acct (d)) =d A bal(create-acct(d)) = 0;

% create-sacct method definition
V (d: Date) date (create-sacct (d)) =date (create-acct (d))

wedge bal(create-sacct(d)) = bal(create-acct(d)) wedge rate (create-sacct (d)) = 0
wedge int-date(create-sacct(d)) d;

% create-cacct method definition
V (d: Date) date (create-cacct (d)) =date (create-acct (d))

A bal(create-cacct(d)) = bal(create-acct(d)) A check-cost (create- cacct (d)) = 0;
% create- co mb- cacct method definition
V (d: Date) date (create-comb-acct (d)) = date (create-acct (d))

wedge bal(create-comb-acct(d)) = bal(create-acct(d)) wedge rate (create-comb- acct (d)) =0

wedge int-date (create- comb-acct (d)) = d A check-cost(create-comb-acct(d)) = 0;
% credit method definition
V (a: Acct, x: Amut) bal(credit(a,x)) = bal(a) + x

A date (credit (a,x)) = date(a) A rate (credit (a,x)) = rate(a)
A int- date (credit (a,x)) =int-date(a) A check-cost (credit (a,x)) = check-cost(a);

% debit method definitions
V (a: Acct, x: Amnnt) bal(debit(a,x)) = bal(a) - x

A date (debit (a,x)) = date(a) A rate (debit (a,x)) = rate(a)
A int-date (debit (a,x)) = int-date(a) A check-cost (debit (a,x)) = check-cost(a);

% set-rate method definitions
V (a: Acct, d: Date, r: Rate) rate (set-rate (a, d,r)) = r
A int- date (set-rate (a, d,r)) = d A bal(set-rate(a,d,r)) = bal(a)
A date (set-rate (a, d,r)) =date(a);

% comp-int method definitions
V (a: Acct, d: Date) rate(comp-int(a,d)) = rate(a)

A int-date(comp-int(a,d)) = d A date(comp-int(a,d)) = date(a);
V (a: Acct, d: Date) bal(a) :5 0 ~-bal(comp-int(a,d)) = bal(a);
V (a: Acct, d: Date) bal(a) : 0 bal(comp-int(a,d)) = bal(a)

+ rate(a) * ((d - int- date (a)) /days-per-year (d));
% set-check-cost method definition
V (a: Acct, x: Amnt) check-cost(set-check-cost(a, x)) = x

A bal(set-check-cost(a,x)) = bal(a) A data(set-check-cost(a,x) = date(a)

Figure 6.14 Combined Account Glass Axioms

6-21

%new event definition
V (d: Date) acct-state(new-acct(d)) A o A attr-equal(new-acct(d), create-acct(d));
V (d: Date) acct-st ate (new-sacct (d)) A o A attr-equal(new-sacct(d), create-sacct(d));
V (d: Date) acct-st ate (new-cacct (d)) =ok A attr-equal(new-cacct(d), create-cacct(d));
V (d: Date) acct-state(new-comb-acct(d)) =ok A attr-equal(new-comb-acct(d), create-comb-acct(d));

% deposit event definition
V (a: Acct, x: Amnt) acct-state(a) = ok acct-state(deposit(a,x)) = ok

A attr-equal(deposit(a,x), credit(a,x));
V (a: Acct, x: Amnt) acct-state(a) = overdrawn A bal(a) + x > 0

acct-state(deposit(a,x)) = ok A attr-equal(deposit(a,x), credit(a,x));
V (a: Acct, x: Amnt) acct-state(a) = overdrawn A bal(a) + x < 0

acct-state(deposit(a,x)) = overdrawn A attr-equal (deposit (a,x), credit(a,x));
% withdrawal event definition
V (a: Acct, x: Amnt) acct-state(a) = ok A bal(a) > x

acct-state(withdrawal(a,x)) = ok A attr-equal(withdrawal(a,x), debit(a,x));
V (a: Acct, x: Amut) acct-state(a) = ok A bal(a) < x

=,, acct-state(withdrawal(a,x)) = overdrawn A attr-equal(withdrawal(a,x), debit(a,x));
V (a: Acct, x: Amnt) acct-state(a) = overdrawn

. acct-state(withdrawal(a,x)) = overdrawn A attr-equal(withdrawal(a,x), a);
% rate-change event definitions
V (a: Acct, d: Date, r: Rate) acct-state(a) = ok

= acct-state(rate-change(a,d,r)) = ok A attr-equal(rate-change(a,d,r) ,set-rate(comp-int (a,d) ,d,r));
V (a: Acct, d: Date, r: Rate) acct-state(a) = overdrawn

= . acct-state(rate-change(a,d,r)) = overdrawn
A attr-equal(rate-change(a,d,r) ,set-rate(comp-int (a,d) ,d,r));

% compute- interest event definitions
V (a: Acct, d: Date) acct-state(a) = ok

= acct-state(compute-interest(a,d)) = ok A attr-equal(compute-interest(a,d) ,comp-int(a,d));
V (a: Acct, d: Date) acct-state(a) = overdrawn

= . acct-state(compute-interest (a,d)) = overdrawn A attr-equal(compute-interest (a,d) ,a);
% write- check- cost event definition
V (a: Acct, x: Amnnt) acct-state(a) = ok

A bal(a) ! x . acct-state(write-check(a,x)) = ok
A attr-equal(write-check(a,x), debit(a,x));

V (a: Acct, x: Amut) acct-state(a) = ok
A bal(a) < x = acct-state(write-check(a,x)) = overdrawn
A attr-equal(write-check(a,x), debit(a,x));

V (a: Acct, x: Amnt) acct-state(a) = overdrawn
=t acct-st ate (write-check (a,x)) = overdrawn A attr-equal(write-check(a,x), debit(a,x));

% set-check-cost method definition
V (a: Acct, x: Amnt) acct-state(a) = ok

= acct-st ate (write-check (a,x)) = ok A attr-equal(change- check- cost (a,x), set-check-cost (a,x))
V (a: Acct, x: Amnt) acct-state(a) = overdrawn

- acct-state(write-check(a,x)) = overdrawn
A attr-equal(change-check-cost (a,x), set-check- cost (a,x))

end- class

Figure 6.15 Combined Account Class Axioms (Continued)

6-22

6.2) that explicitly capture its defining statecharts, the requirements of the substitution property

(Equation 4.3) apply to dynamic behavior and are captured in the specification morphism require-

ment for inheritance. Figures 6.16 through 6.20 show examples of how a Rumbaugh statechart

may, and may not be modified.

Figure 6.16 Superclass Dynamic Behavior

Figure 6.16 shows the statechart for a superclass, C. This statechart translates into the

following axioms.

state(o) =1 . state(el(o)) = 2
state(o) = 1 . state(e2(o)) = 1
state(o) = 1 = state(e3(o)) = 1
state(o) = 2 state(el(o)) = 2
state(o) = 2 =s atate(e2(o)) = 3
state(o) = 2 =i state(e3(o)) = 2
state(o) = 3 state(el(o)) = 3

state(o) = 3 state(e2(o)) = 3
state(o) = 3 state(e3(o)) = 2

Figure 6.17 Inheritance of Dynamic Behavior - State Extension

To be valid, the subclass statechart must translate into a set of axioms that incorporate the

axioms of its superclass (i.e., the axioms from the superclass must be theorems in the subclass).

Figure 6.17 shows the statechart for a valid subclass, Cb, of the superclass C. This statechart

translates to the following axioms. (NOTE: From this point forward in this section, axioms defining

no change are omitted for brevity.)

6-23

state(o) = I => state(el(o)) = 2

state(o) = 2 state(e2(o)) = 3

state(o) = 3 = state(e3(o)) = 2

state(o) = 3 state(e4(o)) = 4

state(o) = 4 = state(e5(o)) = 3

To determine if Cb is a valid subclass of C, the axioms of C must appear as theorems in Cb and

the internal class consistency conditions must hold. Clearly, the axioms of C are theorems in Cb

since each axiom in C appears as an axiom in Cb. Note that, as shown in Figure 4.7, it is possible

to add axioms that are inconsistent. However, in this case, there are no inconsistent axioms and

thus Cb is a valid subclass of C.

Figure 6.18 Inheritance of Dynamic Behavior - Illegal

Figure 6.18 shows the statechart for an invalid subclass, C,, of the superclass C. This state-

chart translates to the following axioms:

state(o) = 1 = state(el(o)) = 2

state(o) = 2 state(e2(o)) = 3

state(o) = 3 state(e3(o)) = 1

Clearly class C, is not a valid subclass of C since the axioms of C are not theorems in C,. For

valid inheritance, there must be a specification morphism from the superclass to the subclass such

that the axioms in the superclass are theorems in the subclass. If such a morphism existed in this

case, the following axioms must both true in C,:

state(o) = 3 ' state(e3(o)) = 2(fromC,)

state(o) = 3 state(e3(o)) = 1(fromC)

6-24

Obviously, the two axioms are conflicting unless state 1 and state 2 are equivalent. However, as part

of the translation process, axioms are generated which specify the uniqueness of states. Therefore

the axioms of C are not theorems in C, and, therefore, C, is not a valid subclass of C. To ensure

class consistency, extension of the statechart may not allow new transitions from a state defined

in the superclass using events defined in the superclass. This rule is analogous to not allowing

superclass methods to modify superclass attributes as shown in Table 6.1.

el 4 2 3

Figure 6.19 Inheritance of Dynamic Behavior - SubState Statechart

Figure 6.19 shows the statechart for a valid subclass, Cd, of the superclass C this time refined

using substates. This statechart translates to the following axioms:

state(o) = 1 state(el(o)) = 2 A substate2(el(o)) = 2a

state(o) = 3 state(e3(o)) = 2 A substate2(e3(o)) = 2a

state(o) = 2 state(e2(o)) = 3

state(o) = 2 A substate2(o) = 2a state(e4(o)) = 2 A substate2(e4(o)) = 2b

state(o) = 2 A substate2(o) = 2b state(e5(o)) = 2 A substate2(e5(o)) = 2c

state(o) = 2 A substate2(o) = 2c state(e6(o)) = 2 A substate2(e6(o)) = 2a

Although the post-conditions describing the effect of events el and e3 have changed in Cd, the

axioms from C can be derived from those in Cd; thus the axioms of C are theorems in Cd. Since

there are no inconsistent axioms, the internal class consistency conditions hold and Cd is a valid

subclass of C. It is important to note that the only time a substate attribute affects the behavior

of an object is when the object is in state 2 and that if event e2 is applied any time the state of a

Cd object is in state 2, regardless of the substate, the state transitions to 3 as required by C.

In general, substates can be used freely to refine a superclass statechart as long as superclass

events which cause transitions from the superstate are not used within the substate statechart (i.e.,

6-25

the superstate exit transition is not overridden). Attempting to override an exiting transition from

the superstate results in inconsistent axioms as shown by the axioms below which are the result of

replacing event e6 by e2 in Figure 6.19.

state(o) = 2 =* state(e2(o)) 3
state(o) = 2 A substate2(o) = 2c =: state(e2(o)) = 2 A substate2(e4(o)) = 2a

Obviously, both axioms cannot be true since state(e2(o)) cannot be both 2 and 3 simultaneously.

Note that this interpretation of the statechart does not satisfy the intent of such a statechart as

defined by Rumbaugh (83:97). According to Rumbaugh, the intent of such a statechart would be

to override the effect of event e2 when in state 2c; however, if the axioms implemented Rumbaugh

intended semantics, the statechart would violate the substitution property.

.2

e4

A 4

6

Figure 6.20 Inheritance of Dynamic Behavior - Concurrent Statechart

Figure 6.20 shows the statechart for a valid subclass, Ce, of the superclass C, this time refined

using concurrent states. This statechart translates to the following axioms.

state(o) = 1 state(el(o)) = 2

state(o) = 2 * state(e2(o)) = 3
state(o) = 3 = state(e3(o)) = 2
conc-state(o) = 4 c eonc-state(e4(o)) = 5
conc-state(o) = 5 eonc-state(e5(o)) = 6

conc-state(o) = 6 conc-state(e6(o)) = 4

In this example, Ce, as defined by Figure 6.20, is a valid subclass since only new states and

events are used in the concurrent statechart. However, not all concurrent statecharts satisfy class

consistency conditions. Concurrent statecharts are intended to be used when the attributes of a

6-26

class are partitionable into distinct subsets. If class attributes are paritionable, then the actions of

each concurrent component may only affect attributes in a single partition. When this is not the

case, inconsistencies between the statechart components may result. Therefore, when the dynamic

model is extended in a subclass by a concurrent statechart, the actions of the concurrent statechart

component must modify only the attributes defined in the subclass. This implies that only methods

defined in the subclass may be used in a subclass concurrent statechart component and that those

methods may not modify attributes defined in the superclass.

In terms of statecharts, then, the substitution property requires that superclass dynamic

model be included, as is, into all subclass dynamic models. Additions to the superclass statechart,

including substates and concurrent states, that do not violate class consistency conditions are the

only allowable extensions that satisfy the substitution property.

6.3.4.2 Functional Inheritance. The second type of behavioral inheritance involves

inheritance of the functional model. In general, functions define how data is transformed in the

system without regard to when these transformations take place (83). Functions defined in the

functional model correspond to actions defined in the dynamic model and are generally modeled

at the aggregate level. Inheritance from an abstract class often allows the subclass the freedom to

define the actions specified in its dynamic model. In the case of an abstract operation, there is

no functional definition or constraints put on the function of the operation in the abstract class;

therefore, specialization of such an operation in a concrete class must include its complete functional

definition.

In the case of inheritance from concrete classes, the functional behavior (as defined by meth-

ods) is completely defined in the superclass. This greatly restricts the ability to specialize these

functions in subclasses; however, this is not a problem since overriding of function behavior is not

allowed by the definition of inheritance and overriding for other reasons (efficiency, etc.) is purely

a design issue and not important in domain modeling. Therefore, the only real way to functionally

6-27

specialize a subclass is to add new functions in the subclass or to specify the effects of existing

superclass functions on new subclass attributes. These new functions would be derived from new

actions defined in the dynamic model and only need axiomatic definition in the functional model.

New data flow diagrams may be developed to further define the actions, or, if simple enough, ax-

ioms may be written directly to define the action as a method. For example, the dynamic model for

the savings account class (Figure 6.8) identifies two new actions: int and set-rate. The definition

of these actions are relatively simple and defined without the need for a new data flow diagram,

as shown in Figure 6.7. More complex actions might require new data flow diagrams which would

generate additional methods to help compute the defined actions.

Introducing new attributes in a subclass requires the extending existing superclass methods

definitions to include their effect on the subclass attributes. As long as the requirements specified

in Table 6.1 are followed, class consistency is maintained.

6.4 Associations

Rumbaugh defines a link as a physical or conceptual connection between object instances

while an association is a group of links with a common structure and semantics (83). The rela-

tionship between associations and links is similar to the relationship between classes and objects.

In this model, a link defines what object classes may be connected along with any link attributes,

operations, or qualifiers. Link attributes and link operations are attributes and operations that do

not belong to any one of the objects involved in a link, but exist only when there is a link between

objects. An association qualifier is an attribute that is used to select an associated object based

on the value of the qualifier. Often, a qualifier is used to reduce a one-to-many association to a

one-to-one association based on the qualifier value.

In this model, associations are represented generically, as a specification that defines a sets

of individual links. A link defines a specification that uses object-valued attributes to reference

6-28

individual objects from two or more classes. Links may also define link attributes, operations, or

qualifiers in a manner identical to object classes. Basically, a link is a class whose class-set is an

association.

Definition 6.4.1 Link A link is an object class type with two or more object-valued attributes.

An example of a link specification between a class of customers (Figure 6.21) and the ACCT

class is shown in Figure 6.22. To improve reusability and maintainability, integration of account

numbers or references directly into the associated classes is not desired. Therefore, a link specifica-

tion, CA-Link, is created to associate customers with their accounts. The CA-Link link specification

has two object-valued attributes, customer and acct, and a method to create new instances of the

association. Thus, the CA-Link link specification can relate objects from the two classes without

embedding internal references into the classes themselves. Although the names of the object-valued

attributes and sorts correspond to the CUSTOMER and ACCT classes, the link specification does

not formally tie the classes together. This relationship is actually formalized in an aggregate spec-

ification as defined in Section 6.5.

An associations is a set of links and is represented as such in this model.

Definition 6.4.2 Association An association is the class set of a link specification.

An association between the ACCT class and the CUSTOMER class is shown in Figure 6.23.

The CA-LINK class has two object-valued attributes, customer and account, and a method to

create new instances of the association. The CUST-ACCT class defines a set of CA-Link objects

while its axioms define the multiplicity relationships between accounts and customers. In this case,

there is exactly one customer per account while each customer may have one or more accounts.

Associations with more than two classes are handled in a similar manner by simply adding additional

object-valued attributes.

6-29

class CUSTOMER is

import Name, Address, Cust-No
class sort Customer
operations

attr-equal : Customer, Customer -* Boolean
attributes

name : Customer -- Name
address : Customer -* Address
cust-no: Customer -- Cust-No

methods
create-customer : Name, Address, Cust-No --* Customer
update : Customer, Name, Address, Cust-No -4 Customer

events
new-customer : Name, Address, Cust-No -* Customer
update-customer : Customer, Name, Address --* Customer

axioms
% operation definition
V (c,cl: Customer) attr-equal(c,cl) -=* name(c) = name(cl)

A address(c) = address(cl) A cust-no(c) = cust-no(cl);
% create method definition
V (n: Name, a: Address, cn: Cust-No)

name(create-customer(n,a,cn)) = n A address(create-customer(n,a,cn)) = a
A cust-no(create-customer(n,a,cn)) = cn;

% update method definition
V (c: Customer, n: Name, a: Address, cn: Cust-No)

name(update(c,n,a,cn)) = n A address(update(c,n,a,cn)) = a
A cust-no(update(c,n,a,cn)) = cn;

% new event definition
V (n: Name, a: Address, cn: Cust-No)

attr-equal(new-customer(n,a,cn), create-customer(n,a,cn));
% update-customer event definition
V (c: Customer, n: Name, a: Address, cn: Cust-No)

attr-equal(update-customer(c,n,a,cn), update(c,n,a,cn))
end-class

Figure 6.21 Customer Class

6-30

link CA-LINK is
class sort CA-Link
sorts Customer, Account
operations

attr-equal : CA-Link, CA-Link --+ Boolean
attributes

customer : CA-Link --* Customer
account : CA-Link --* Account

methods
create-ca-link : Customer, Account -4 CA-Link

events
new-ca-link : Customer, Account -- CA-Link

axioms

% operation definition
V (c,cl: Customer)

attr-equal(c,cl) t* customer(c) - customer(cl) A account(c) - account(cl);
% create method definition
V (c: Customer, a: Account)

customer(create-ca-link(c,a)) = c A account (create-ca-link(c,a)) - a;
% new event definition
V (c: Customer, a: Account)

attr-equal(new-ca-link(c,a), create-ca-link(c,a))
end-link

Figure 6.22 Customer Account Link

association CUST-AcCT is

link-class CA-Link
class sort Cust-Acct
sorts Accounts, Customers
methods

image : Cust-Acct, Customer --+ Accounts
image : Cust-Acct, Account --* Customers

events
new-cust-acct : -- Cust-Acct

axioms
% multiplicity axioms
V (ca: Cust-Acct, c: Customer) size(image(ca, c)) 1;
V (ca: Cust-Acct, a: Account) size(image(ca, a)) = 1;

% new event definition
new-cust-accto = empty-set;
... definition of image operations ...

end-association

Figure 6.23 Cust-Acct Association

6-31

6.4.1 Multiplicity. For binary associations, there are five categories of association mul-

tiplicities: exactly one, many, optional, one or more, or numerically specified. Since multiplicities

are based on the number of links of an association in which any given object may participate in, an

image operation is defined for each class in the association. Basically, in a binary association, the

image operation returns a set of objects with which a particular object is associated and is used to

define multiplicity constraints as shown in Figure 6.24.

exactly one - size(image(a,o)) = 1
many ' size(image(a,o)) > 0
optional ' size(image(a,o)) = 1 V size(image(a,o)) - 0
one or more -* size(image(a,o)) > 1
numerically specified -* size(image(a,o)) x
numerically specified F-+ size(image(a,o)) x A size(image(a,o)) y y

Figure 6.24 Association Multiplicity Axioms

True ternary associations are relatively rare; however, they can be modeled using an asso-

ciation class. The only differences between binary and ternary associations are the number of

object-valued attributes and the signature of the image operation. In a ternary association, the

image operation returns a set of object tuples associated with a given object. Since the output is

a set of tuples, the same multiplicity axioms shown in Figure 6.24 apply to ternary association as

well.

6.4.2 Qualified Associations. Qualifiers are special attributes used to reduce the multi-

plicity of a binary association, generally from one-to-many to one-to-one. A qualifier distinguishes

among a set, or class, of objects. For instance, a customer at a bank may own many accounts.

This is a one-to-many association. However, if the owns association is modeled with an account

number qualifier as shown in Figure 6.25, the association becomes one-to-one since each account

has a unique account number.

In the theory-based object model, qualifiers are modeled as link attributes with a qualified

image operation that selects associated objects based on an object and a qualifier. Again, the

6-32

Cusomer a Aount

Figure 6.25 Association Qualifier

multiplicity axioms defined in Figure 6.24 can be used to restrict the qualified association using the

qualified image operation.

An example of a qualified account association is shown in Figures 6.26 and 6.27. The CA-

Link specification includes the qualifier acct-no as an link attribute. Therefore, to create a new

link, a customer, account, and account number must be provided. The Cust-Acct association is

modified by adding the acct-no qualifier to the customer image operation. Thus, as stated by the

axiom size(image(ca, c,n)) = 1, the multiplicity of the association is changed from one-to-many to

one-to-one.

link CA-LINK is
class sort CA-Link
sorts Customer, Account, Acct-No
operations

attr-equal : CA-Link, CA-Link -- Boolean
attributes

customer : CA-Link --- Customer
account: CA-Link - Account
acct-no: CA-Link -* Acct-No

methods
create-ca-link : Customer, Account --- CA-Link

events
new-ca-link : Customer, Account, Acct-No -- CA-Link

axioms
% operation definition
V (c,cl: Customer)

attr-equal(c,cl) -t* customer(c) = customer(cl) A account(c) = account(cl)
acct-no(c) = acct-no(cl);

% create method definition
V (c: Customer, a: Account, n: Acct-No)

customer(create-ca-link(c,a,n)) = c A account(create-ca-link(c,a,n)) a
acct-no(new-ca-link(c,a,n)) = n;

% new event definition
V (c: Customer, a: Account)

attr-equal(new-ca-link(c,a), create-ca-link(c,a))
end-link

Figure 6.26 Qualified Customer Account Link

6-33

association CUST-AcCT is
link-class CA-Link
class sort Cust-Acct
sorts Accounts, Customers
methods

image Cust-Acct, Customer, Acct-No -- Accounts
image : Cust-Acct, Customer --+ Accounts
image Cust-Acct, Account -4 Customers

events
new-cust-acct -* Cust-Acct

axioms
% multiplicity axioms
V (ca: Cust-Acct, c: Customer, an: Acct-No) size(image(ca,c,an)) = 1;
V (ca: Cust-Acct, a: Account) size(image(ca,a)) = 1;

% new event definition
new-cust-acctO = empty-set;
... definition of image operations ...

end-association

Figure 6.27 Qualified Cust-Acct Association

6.5 Aggregation

Aggregation is another concept central to object-orientation. Aggregation is a relationship

between two classes where one class, the aggregate, represents the entire assembly and the other

class, the component, is "part-of" the assembly. Aggregate class behavior is defined by its com-

ponents and the associations and constraints between them. Without aggregate objects, a system

composed of multiple subsystems cannot be modeled. Components may or may not exist apart

from an aggregate and may be members of several aggregates. Aggregates may have fixed, vari-

able, or a recursive structure (83:59). In a fixed aggregate, the type and number of components

are always the same. For example, a car has one body, four wheels, one engine, etc. In a variable

aggregate, the type of components in the aggregate are fixed but the number of components vary.

For instance, in the banking example, a bank may consist of a number of employees, customers,

and bank accounts. While each bank has employees, customers, and accounts, the number of each

component varies with time and between banks. Finally, in the recursive aggregate, components

may be defined as aggregates made up of additional components of the same type. For example,

in a computer program, the program is made up of one or more program blocks. Program blocks

6-34

consist of statements. Statements may be simple or complex, where complex statements consist of

at least one program block.

Not only do aggregate classes allow the modeling of systems from components, but they also

provide a convenient context in which to place constraints between components. For example,

although the object-valued attributes in CA-Link are named customer and account (Figure 6.23),

they are unified with the CUSTOMER and ACCT classes. Unification of these sorts with the ap-

propriate class sorts requires a higher-level specification that describes how classes and associations

interact. This higher-level specification is an aggregate class. Once again, object-valued attributes

describe this relationship between aggregate classes and their components. I now formally define

an aggregate using the colimit operation and object-valued attributes.

Definition 6.5.1 Aggregate - A class C is an aggregate of a collection of component classes,

(D 1 ..Dn), if there exists a specification morphism from the colimit of (D 1 ..Dn) to C such that C

has at least one corresponding object-valued attribute for each class sort in (D..Dn).

An aggregate class combines a number of classes via the colimit operation to specify system

or subsystem level functionality. The colimit operation also unifies sorts and operations defined in

separate classes and associations.

To create system-level aggregates, the colimit of all classes and associations within the system

is taken. In the bank account example, the CUSTOMER, ACCT, and CUST-ACCT classes are

combined to form an aggregate system. To integrate the components into an aggregate, the sorts

from CUST and CUST-ACCT and the sorts from ACCT and CUST-ACCT are unified via specifi-

cation morphisms that define their equivalence as shown in Figure 6.28. The actual specification of

the aggregation colimit is shown in Figures 6.29 and 6.30. The SET specification is used to unify

sorts while the INTEGER specification (Appendix E) is included to ensure only a single copy of

integers is included. Because each class imports the SET specification (Appendix E) which in turn

imports the INTEGER specification, failure to include the INTEGER specification in the colimit

6-35

would create a unique copy of INTEGER for each class in the aggregate. Three copies of the SET

specification are included in the colimit operation since each class is defined as a unique set and

cannot be unified with the other class sets or associations defined in the colimit.

Integer

Set Set Set
{E - CA-Link,

{E -. Acct, Set - Cust-Acct} {E -+ Customer,
Set - Acct-Class} Set - Cust-Class}

{E - Account, {E -* Customer,
Set - Accounts) Set -* Customers}

Acct-Class Cust-Acct Cust-Class

c C C

Bank

Figure 6.28 Aggregation Composition

aggregate BANK-AGGREGATE is

nodes INTEGER, SET-i: SET, SET-2: SET, SET-3: SET,
ACCT-CLASS, CUST-CLASS, CUST-ACCT

arcs SET-1 -- ACCT-CLASS: {E --+ Acct, SET -+ Acct-Class},
SET-1 - CUST-ACCT: {E - Account, SET - Accounts},
SET-2 -- CUST-CLASS: {E -* Customer, SET - Cust-Class},
SET-2 -- CUST-ACCT: {E - Customer, SET -- Customers},
SET-3 - CUST-ACCT: {E - CA-Link, SET --- Cust-Acct},
INTEGER - SET-1 : {},
INTEGER - SET-2: {}
INTEGER -* SET-3: {}

end-aggregate

Figure 6.29 Aggregation Specification

Once the BANK-AGGREGATE specification is computed, the CUST-ACCT association ac-

tually associates the CUSTOMER class to the ACCT class. New operations and axioms can be

6-36

class BANK is
import BANK-AGGREGATE
class sort Bank
attributes

acct-obj Bank -- Acct-Class
cust-obj: Bank - Cust-Class
cust-acct-assoc : Bank --* Cust-Acct

methods
aggregate methods defined here

events
aggregate events defined here

axioms
definition of aggregate methods in terms of components here
size(a) > 1;
size(c) > 1;
size(ca) > 1

end-class

Figure 6.30 Aggregate Specification

added to an extension of colimit specification, the BANK class type specification (Figure 6.30), to

describe aggregate-level interfaces and aggregate behavior based on component events and methods.

6.5.1 Specification of Components. As stated above, components have either a fixed,

variable, or recursive structure. All three structures use object-valued attributes to reference other

objects and define the aggregate. The difference between them lies in the types of objects that

are referenced and the operations and axioms defined over object-valued attributes. In a fixed

configuration, once an aggregate references a particular object, that reference may not be changed.

The ability of an aggregate object to change the object references of its object-valued attributes is

determined by whether a method exists (other than the initialization method) to modify the object-

valued attribute. If no methods modify any object-valued attributes then the aggregate is fixed. If

methods do modify the object-valued attributes, then the aggregate is variable. An example of a

fixed configuration aggregate is the PRODUCER class as defined in Figure 6.6. In this example, the

component, buffer, is defined at initialization and cannot be changed. Although axioms defining the

effect of the method produce on the attribute buffer-obj appears to modify the value of buffer-obj,

they, in fact, do not. The axioms simply send events to the buffer object which modify its internal

6-37

state. An example of a variable version of the PRODUCER class is shown in Figure 6.31. In this

example, the method change-buf changes the object reference value of buffer-obj.

class PRODUCER is

imports Buffer, Item
class sort Producer
sorts Producer-State
operations

attr-equal: Producer, Producer -* Boolean
attributes

buffer-obj : Producer --* Buffer
methods

create-producer : Buffer -* Producer
produce : Producer, Item -* Producer
change-buf : Producer, Buffer -- Producer

events
new-producer Buffer - Producer
produce-item: Producer, Item -+ Producer
change-buffer: Producer, Buffer --+ Producer

axioms
% operation definitions
V (p,pl: Producer) attr-equal(p, pl) = buffer-obj(p) - buffer-obj(pl);

% event definitions
V (b: Buffer) attr-equal(new-producer(b), create-producer(b));
V (i: Item, p: Producer) attr-equal(produce-item(p,i), produce(p,i));
V (p: Producer, b: Buffer) attr-equal(change-buffer(p,b), change-buf(p,b));

% method definitions
V (b: Buffer) buffer-obj(create-producer(b)) = b;
V (i: Item, p: Producer) buffer-obj(produce(p,i)) = put(buffer-obj(p),i);
V (b: Buffer, p: Producer) buffer-obj(change-buf(p,b)) = b

end-class

Figure 6.31 Object-Valued Attribute Example

A recursive structure is also easily represented using object-valued attributes. In this case, an

object-valued attribute is defined in the class type that references its own class sort. For example, a

machine may consist of a number of assemblies. Assemblies can be composed from individual parts

and other subassemblies, which in turn can be composed of parts and subassemblies, etc. In this

case, the machine class type has one object-valued attribute, assembly-set-obj, which references

a set of assembly objects. The assembly class type definition has two object-valued attributes:

a parts-set-obj which references a set of parts, and an assembly-set-obj, which references a set of

assembly objects. There are no inconsistencies with a recursive aggregate as long as the references

6-38

are not cyclic. Cyclic references are easily avoided via axiomatic specification as defined below for

some class X.

operations
non-cyclic : X, X --+ boolean

axioms
V(x, y X)non-cyclic(x, x-obj(x)); (a) (6.1)
V(x, y X)non-cyclic(x, y) x x 0 y; (b)
V(x, y X)non-cyclic(x, y) = non-cyclic(x, x-obj(y)); (c)

These axioms define a non-cyclic operation which determines if a cycle exists in a self-

referencing class type X. Axiom (a) states the invariant condition that all objects within class

X must be non-cyclic over the self-referencing object-valued attribute x-obj while axioms (b) and

(c) recursively define the operation over all objects within the aggregate.

6.5.2 Qualified Aggregates. Because aggregation is a form of association, qualifiers may

be specified between aggregates and their components. Aggregate qualifiers are a special case of

association qualifiers and are defined as special attributes used to reduce the multiplicity of an

aggregation. Just as in associations, a qualifier is used to distinguish among a set, or class, of

objects. For instance, a bank may have many customers; however, if the aggregation is modeled

with a customer number qualifier as shown in Figure 6.32, the aggregation becomes one-to-one

since each customer has a unique customer number.

Bank

Oust-no

Account Customer

Figure 6.32 Aggregate Qualifier

6-39

In the theory-based object model, qualifiers are modeled as an attribute of the qualified class

with a qualified image operation defined in its class set. This image operation is similar to those

for qualified associations that select components from a class set based on the qualifier. Again, the

multiplicity axioms of Figure 6.24 are used to restrict the qualified aggregate using the qualified

image operation.

An example of a qualified bank - customer aggregation is shown in Figures 6.33 and 6.34. The

CUSTOMER class type definition includes the qualifier cust-no as a normal attribute. Therefore, to

create a new customer, a name, address, and customer number must be provided. The Cust-Class

class set is modified by adding an image operation with the cust-no qualifier. The update-customer

class event is used in conjunction with the image operation to perform the update-customer event

on a single customer as designated via the cust-no (e.g., update-customer(image(customer-class,

cust-no), new-name, new-address)). Thus, as stated by the axiom size(image(cc, n)) = 1, the

aggregate multiplicity is changed from one-to-many to one-to-one.

6.5.3 Specification of Behavior. Once an aggregate is created via a colimit operation,

further specification is required to make the aggregate behave in an integrated manner. First, new

aggregate level functions are defined to enable the aggregate to respond to external events. Then,

constraints between aggregate components are specified to ensure that the aggregates do not behave

in an unsuitable or unexpected manner, and finally, local event communication paths are defined.

The definition of new functions and constraints is discussed in this section while communication

between objects is discussed in Section 6.6.

6.5.3.1 Specification of Functionality. In an aggregate, components work together

to provide the desired functionality. This desire to define functionality across components leads

naturally to the use of the functional model. The functional model is used to specify the results of

a computation without defining where or how they are computed and is used to define actions gen-

6-40

class CUSTOMER is
import Name, Address, Cust-No
class sort Customer
operations

attr-equal : Customer, Customer -- Boolean
attributes

name: Customer --+ Name
address : Customer -* Address
cust-no: Customer -* Cust-No

methods
create-customer : Name, Address, Cust-No -* Customer
update : Customer, Name, Address, Cust-No -4 Customer

events
new-customer : Name, Address, Cust-No --* Customer
update-customer : Customer, Name, Address --+ Customer

axioms
% operation definition
V (c,cl: Customer) attr-equal(c,cl) * name(c) = name(cl)

A address(c) = address(cl) A cust-no(c) = cust-no(cl);
% create method definition
V (n: Name, a: Address, en: Cust-No)

name(create-customer(n,a,cn)) = n A address(create-customer(n,a,cn)) = a
A cust-no(create-customer(n,a,cn)) = cn;

% update method definition
V (c: Customer, n: Name, a: Address, cn: Cust-No)

name(update(c,n,a,cn)) = n A address(update(c,n,a,cn)) = a
A cust-no(update(c,n,a,cn)) = cn;

% new event definition
V (n: Name, a: Address, cn: Cust-No)

attr-equal(new-customer(n,a,cn), create-customer(n,a,cn));
% update-customer event definition
V (c: Customer, n: Name, a: Address, cn: Cust-No)

attr-equal(update-customer(c,n,a,cn), update(c,n,a,cn))
end-class

Figure 6.33 Qualified Customer Class

6-41

class CUsT-CLASS is
contained-class CUST
class sort Cust-Class
operations

attr-equal: Cust-Class, Cust-Class -- Boolean
methods

image : Cust-Glass, Cust-No -- Cust-Class
events

new-cust-class : -- Acct-Class
update-customer: Cust-Class, Name, Address -- Cust-Class

axioms V (c: Cust, n: Name, a: address, cc: Cust-Class)
V (cc: Cust-Class, n: Name) size(image(cc,n)) = 1;
new-cust-class = empty-set;
V (c: Cust, cc: Cust-Class, n: Name, a: Address)

c E cc € update-customer(c,n,a) E update-customer(cc,n,a);
... definition of image operations ...

end-class

Figure 6.34 Qualified Customer Class Set

erated by the dynamic model (83:123). Processes defined in the functional model are implemented

using events and attributes defined in the aggregate components.

An example of defining the functional behavior of an aggregate using the functional model

is shown in Figure 6.35 with the full specification shown in Figure 6.36. The Bank aggregate

actually defines three new events (start-account, make-deposit, and make-withdrawal) and a derived

attribute balance. The functional model defines the method implementing the start-account event,

add-account as shown in Figure 6.35. The make-deposit and make-withdrawal events map directly

to component events and do not require a functional decomposition.

Figure 6.35 shows the functional model for the add-account action. The left-hand side is

the top-level diagram while the right-hand side shows the decomposition of add-account. The

add-account process adds an account for an established customer. The following axiom defines add-

account in terms of its subprocesses and data flows and is translated directly from the functional

model using the restricted functional model semantics described in Section 5.5.

6-42

new-me ct no - cs- Cc upte-t-so

account ust- a t u-ct

acot-no-/ - \ac utac

addoer. -cuntudae Cust-Act-Assoc

account

tacctl

Acct-ObJ

Figure 6.35 Bank Aggregate Functional Model

add-account(b, customer, acct-no) = bl
A acct = new-acct(date) %% assume date is built in
A acct-obj(bl) = update-accts(acct-obj(b),acct)
A cust-acct = new-cust-acct(customer, acct, acct-no)
A cust-acct(bl) = update-cust-acct(cust-acct(b),cust-acct);

The add-account method has three parameters, the bank object (b) plus an account number and an

existing customer object as defined in the functional model, and returns the modified bank object

(bl). The add-account method is defined by its subprocesses. First, a new account is created by

invoking the new-account event which is then passed to the update-accts process which stores the

new account in the account class. Then, the new account is passed as a parameter to the new-

cust-acct event which returns a cust-acct link which relates the customer, the account number, and

the new account. Finally, the new cust-acct link is passed to the update-cust-acct process which

stores it in the cust-acct association. The subprocesses in Figure 6.35 are not defined here. The

new-account and new-cust-acct processes are the events defined in the account class and cust-acct

association respectively and are already available via the aggregate. The update-accts and update-

cust-acct processes either already exist as part of the account class and cust-acct association or

may be defined in this specification.

6-43

class BANK is
import BANK-AGGREGATE
class sort Bank
operations

balance : Bank, Acct-No -*Amnt

attr-equal : Bank, Bank -+Boolean

attributes
acct-obj :Bank -*Acct-Class

cust-obj :Bank -* ust-Class
cust-acct-assoc : Bank --+ Cust-Acct

methods
create-bank:- Bank
add-account: Bank, Customer, Acct-No -~Bank

update-accts :Acct-Class, Acct --* Acct-Class
update-cust-acct : Cust-Acct, Cust-Acct-Link --+ Cust-Acet

events
new-bank:- Bank
start-account : Bank, Customer, Acct-No --f Bank
make-deposit, make-withdrawal : Bank, Acct-No, Amnt -4 Bank

axioms % invariants
V (a: Acct-Class, c: Cust-Class) size(a) > 0 A size(c) > 0;
V (c: Cust-Acct-Class, b: Bank, a: Acct-No) size(c) : 0 A balance(b,a) 0;

% definition of operations
V (b,bl: Bank) attr-equal(b,bl) * acct-obj(b) =acct-obj(bl)

A cust-obj(b) = cust-obj(bl) A cust-acct-assoc(b) = cust-acct-assoc(bl);
V (b: Bank, a: Address, an: Acct-No, c: Customer) size(image(acct-obj(b),c,an)) =1

= - singleton(a) =image(acct-obj(b),c,an) A balance(b,an) = bal(a);
% definition of methods

acct-obj (create-banko) = create- acct-class 0
cust-obj (create-bank 0) = create-cust-class 0;
cust-acct-assoc(create-bank0) = create-cust-acct0;
V (b, bi: Bank, an: Acct-No, c: Customer)

add-account(b, c, an) = bi
A acct = new-acct(date) %% date built in
A acct-obj(bl) = update-accts(acct-obj(b), acct)
A cust-acct = new-cust-acct(cust, acct, acct-no)
A cust-acct(bl) = update-cust-acct(cust-acct(b), cust-acct);

% definition of events
attr-equal(new-banko, create-banko);
V (b:Bank, an:Acct-No, c:Customer) attr-equal(start-account(b,c,an) ,add-account(b,c,an));
V (b: Bank, an: Acct-No, c: Customer, am: Amount) size(image(acct-obj(b),c,an)) = 1

~attr-equal(image(cust-acct-assoc(make-deposit(b,an,am),c,an))
deposit (image(cust-acct-assoc(b),c,an) ,am));

V (b: Bank, an: Acct-No, c: Customer, am: Amount)
size (image (acct-obj (b),c,an)) = 1 A balance(b,an) > x

~attr-equal(image(cust-acct-assoc(make-withdrawal(b,an,am))),
withdrawal(image(cust-acct-assoc(b) ,c,an) ,am))

end-class

Figure 6.36 Full Aggregate Specification

6-44

Both the make-deposit and make-withdrawal events mirror events defined in the ACCT class

and thus invoke those events directly. However, because the bank aggregate has the requirement

to ensure an account does not overdraw its available cash, a precondition is placed on the make-

withdrawal event.

size(image(acct-obj(b), c, an)) = 1 A balance(b, an) > x
=- attr-equal (image (cust-acct-assoc(make-withdrawal (b, an, am))),

withdrawal (image (cust-acct-assoc(b), c, an), am))

Because the A CCT class allowed an account to be overdrawn exactly once, a precondition overriding

the ACCT withdrawal precondition was added. This is a case of restricting the behavior of the

aggregate.

The derived attribute balance is different from the attributes defined in Section 6.2 in that

it takes additional parameters. The additional parameter is due to the fact that balance is not an

attribute of a bank, but of an account. The parameter acct-no is required to uniquely identify a

specific account. The axiom below defines the balance attribute.

size(image(acct-obj(b), c, an)) = 1
= . singleton(a) = image(acct-obj(b), c, an) A balance(b, an) = bal(a)

Because the image function returns a set of accounts, a few axiomatic gymnastics are required

to define the operation. While this additional complexity seems unnecessary, use of sets with

object-valued attributes provides the most flexible approach to building domain models and can be

simplified in the functional specification generated by Specification Generation/Refinement System

as defined in Chapter II.

6.5.3.2 Specification of Constraints Between Components. In an aggregate, compo-

nent behavior must often be constrained if the aggregate is to act in an integrated fashion. For

instance, in an automobile there is an engine, transmission, and four wheels; however, they do not

6-45

act independently. When the engine is running and the transmission is engaged, there is a exact

relationship that exists between the engine speed, transmission state, and the wheel rotation speed.

This relationship is a constraint between the automobile components. Generally, these relationships

are expressed by axioms defined over component attributes. Because the aggregate is the colimit of

its components, the aggregate may access components directly and define axioms relating various

component attributes.

Automobile

4

Engine Transmission Drives 2 Wheel

RPM. Convemion-Factor RPM. wheel

whee12

Connected

Figure 6.37 Automobile Aggregate Functional Model

A simplified automobile object model is shown in Figure 6.37. The object model contains

one engine with an RPMs attribute, one transmission with a Conversion-Factor attribute, and four

wheels, each with an RPMs attribute. Two relationships exist between these objects, Drives, that

relates the transmission to exactly two wheels, and Connected that relates two wheels (probably

by an axle). Obviously, there are a number of constraints implicit in the object model that must

be made explicit in the aggregate. First, as discussed above, the RPMs of the engine, Conversion-

Factor of the transmission, and RPMs of the wheels are all related. Also, the wheels driven by the

transmission must be "connected", and all "connected" wheels should have the same RPMs. These

constraints can be specified in the aggregate specification shown in Figure 6.38. The axiom

V(e : Engine, t : Transmission, d : Drives)

e E engine-obj(a) A t E transmission-obj(a) A d E drives-assoc(a)
rpm(wheel-obj(d)) = rpm(e) * conversion-factor(t)

6-46

class AUTOMOBILE is
import AUTOMOBILE-AGGREGATE
class sort Automobile
operations

attr-equal: Automobile, Automobile --+ Boolean
attributes

engine-obj :Automobile --+ Engine-Glass
transmission-obj Automobile - Transmission-Class
wheels-obj :Automobile -+ Wheels-Glass
drives-assoc : Automobile --* Drives
connected-assoc : Automobile -* Gonnected

methods
create-automobile : *Automobile

events
new-automobile : -* Automobile

axioms
% invariants

V (cc: engine-class) size(ec) = 1;
V (tc: transmission-class) size(tc) = 1;
V (wc: wheels-obj) size(wc) = 4;
V (d: drives-assoc) size(d) =2;
V (c: connected-assoc) size(c) =2;

% constraints
V (e: Engine, t: Transmission, d: Drives)

e E engine-obj(a) A t E transmission-obj(a) A d E drives-assoc(a)
. rpm(wheel-obj(d)) =rpm(e) * conversion-factor(t);

V (c: Gonnected) c E connected-assoc(a)) = . rpm(wheell(c)) =rpm(wheel2(c));

% definition of attr-equal
V (a,al: Automobile)

attr-equal(a,al) * engine-obj(a) =engine-obj(al)
A transmission-obj(a) =transmission-obj(al)
A wheels-obj (a) = wheels-obj (al)
A drives-assoc(a) = drives-assoc(al)
A connected-assoc(a) =connected-assoc(al);

% definition of create- automobile
t = new-transmissiono
A wi new-wheel() A w2 = new-wheelQ) A w3 = new-wheelO) A w4 = new-wheelO)
A transmission-obj (create-automobileQ) =insert(t, new-transmission-classo)
A drives-assoc(create-automobileo) =

insert (new-drives-link(t ,w2) ,insert(new-drives-link(t ,wl) ,new-drivesQ))
A connected-assoc(create-automobileQ) =

insert (new-connected-link(wl ,w2) ,insert(new-connected-link(w3,w4) ,new-connectedo))
A engine-obi (create-automobileo) = insert (new-engineQ, new-engine-classQ);

% definition of new-automobile
attr-equal(new-automobileQ, create-automobileo)

end-class

Figure 6.38 Automobile Aggregate Specification

6-47

defines the relationship between the RPMs of the wheels driven by the transmission, the transmis-

sion conversion-factor and the engine RPMs. While written in set notation, the invariants state

that the size of the engine and transmission class sets is only one; therefore, the axiom uniquely

identifies the engine, transmission, and each wheel driven by the transmission. The axiom

V(c: Connected)c E connected-assoc(a)) = rpm(wheell(c)) = rpm(wheel2(c));

ensures that the two wheels connected in a "connected" link have the same RPMs values. The final

constraint, that the two wheels driven by the transmission be connected, is specified implicitly in

the specification of the create-automobile method. Because the create-automobile method creates

its components when invoked, the relationships of the wheels can be controlled directly. After the

wheel objects (wl, w2, w3, and w4) are created, links are created for, and inserted into, the drives

and connected associations as defined below.

A drives-assoc(create-automobileO) =
insert(new-drives-link(t, w2), insert(new-drives-link(t, wl), new-drives0))

A connected-assoc(create-automobileO) =
insert(new-connected-link(wl, w2), insert(new-connected-link(w3, w4), new-connectedo))

Because wheels wl and w2 are associated with the transmission via the drives association in the

first line, they are also associated together via the connected association in the second line. Thus,

the constraint is satisfied whenever an automobile aggregate object is created.

6.6 Communication

At this point the theory-based object model is sufficient for describing classes, their relation-

ships, and their composition into aggregate classes; however, object communication has not yet

been addressed. For example, suppose the banking system described earlier has an ARCHIVE

object which logs each transaction as it occurs. Obviously, the ARCHIVE object must be told

when a transaction takes place. This communication is accomplished in one of three ways. The

simplest method is to force the BANK aggregate to be responsible for directly invoking events in

6-48

each object to accomplish the archival function and passing the appropriate information to each

object. While simple in this example, as aggregate complexity and object interaction increases, an

enormous burden is placed on the aggregate.

A second solution is to make each object responsible for handling its own communications.

Each object directly communicates with other objects by maintaining internal object-valued at-

tributes and invoking their events directly. Unfortunately, if each object is required to know each

object with which it may communicate, reusability is lost since those objects may not exist in a

different system.

The third, and preferred, method is a combination of the above techniques. In this method,

each object is aware of only a certain set of events that it generates or receives. From an object's

perspective, these events are generated and broadcast to the entire system and received from the

system. In this technique, each event is defined in a separate event theory as shown in Figure 6.39.

event ARCHIVE-WITHDRAWAL is
class sort Archive
sorts Acct, Amnt
events

archive-withdrawal : Archive, Acct, Amnt -- Archive
end-class

Figure 6.39 Event Theory

An event theory consists of a class sort, parameter sorts, and an event signature that are

mapped via signature morphisms to sorts and events in the generating and receiving classes. The

event theory class sort represents the class sort of any class whose objects can receive the associated

event. Because events are actually sent to individual objects represented by object-valued attributes

as defined in Section 6.2.9, an event may only be sent to one object in the event theory class sort.

Therefore, if the event theory class sort is mapped to the class sort of class X then communication

occurs with a single object from class X. However, if the event theory class sort is mapped to the

class sort of the class set of type X (i.e., X-CLASS), then communication may occur with a set of

objects of class X. The other sorts defined in an event theory class are the sorts of other parameters

6-49

of the event. The final part of an event theory is the event signature itself. This signature is mapped

to an event in the receiving classes with compatible parameters as defined in the event theory. Once

the event and sorts are mapped to the required class specifications under signature morphisms, the

colimit of the classes, the event theory, and the morphisms unify the event and sorts such that any

invocation of the event in the generating class is an invocation of the actual event in the receiving

class.

Figure 6.40 shows how an event theory would be incorporated into the original ACCT class.

The ARCHIVE-WITHDRAWAL event theory specification is imported into the ACCT class and an

object-valued attribute, archive-obj, is added to reference the archival object. The axioms defining

the effect of the withdrawal event are modified to reflect the communication with the ARCHIVE

object as shown below.

V(a : Acct, x : Amnt)acct-state(a) = ok A bal(a) x . acct-state(withdrawal(a, x)) = ok

A archive-obj(withdrawal(a, x)) = archive-withdrawal(archive-obj (a), a, x)
A attr-equal(withdrawal(a, x), debit(a, x));

V(a : Acct, x : Amnt)acct-state(a) = ok A bal(a) < x =- acct-state(withdrawal(a, x)) = overdrawn
A archive-obj(withdrawal (a, x)) = archive-withdrawal(archive-obj(a), a, x)
A attr-equal(withdrawal (a, x), debit(a, x));

Basically, the axioms state that when a withdrawal event is received, the value of the archive-obj is

modified by the archive-withdrawal event defined in the event theory specification. Thus the ACCT

object knows it communicates with some other object or objects; however, it does not know who

they are. With whom an object communicates (or, for that matter, if the object communicates

at all) is determined at the aggregate-level where the actual connections between communicating

components are made. In this example, for instance, there could be zero, one, or many archival

objects.

Figure 6.41 shows a modified BANK aggregate that includes the ARCHIVE- WITHDRAWAL

event theory and an ARCHIVE-CLASS specification. The colimit operation includes morphisms

from ARCHIVE-WITHDRAWAL to ACCT-CLASS and ARCHIVE-CLASS that unify the sorts

6-50

Class AGOT is
import Amnt, Date, Archive-Withdrawal
class sort Acct
sorts Acct-State
operations

attr-equal : Acct, Acct --+ Boolean
attributes

date :Acct --+ Date
bal : Acct -*Amnt

archive-obj Acct --+ Archive
state-attributes

acct-state Acct -4 Acct-State
methods

create-acct Date, Archive -*Acct

credit, debit :Acct, Amut -~Acct

states
ok, overdrawn:- Acct-State

events
new-acct : Date, Archive --* Acct
deposit, withdrawal : Acct, Amnt -* Acct

axioms
ok 0 overdrawn;
V (a: Acct) acct-state(a) = ok = . bal(a) > 0;
V (a: Acct) acct-state(a) = overdrawn . bal(a) < 0;

% operation definitions
V (a,al: Acct) attr-equal(a,al)

= date (a) =date (al) A bal(a)=bal(al) A archive-obj(a)=archive-obj(al);
% method definitions
V (d: Date, o: Archive) date (create-acct (d,o)) =d A bal(create-acct(d,o)) = 0

A archive-obj(create-acct(d,o)) = ;
V (a: Acct, x: Amnt) bal(credit(a,x)) = bal(a) + x A date(credit(a,x)) =date(a)

A rate (credit (a,x)) =rate(a) A int-date (credit (a,x)) = int-date(a)
A check-cost (credit (a,x)) =check-cost(a);

% event definitions
V (d: Date) acct-state(new-acct(d,o)) = ok A attr-equal(new-acct(d,o), create-acct(d,o));
V (a: Acct, x: Amnt) acct-state(a) = ok acct-state (deposit (a,x)) = ok

A attr-equal(deposit(a,x), credit(a,x));
V (a: Acct, x: Amut) acct-state(a) = overdrawn A bal(a) + x > 0 . acct-state (deposit (a,x)) =ok

A attr-equal(deposit(a,x), credit(a,x));
V (a: Acct, x: Amnt) acct-state(a) = overdrawn A bal(a) + x < 0

= acct-state (deposit (a,x)) = overdrawn A attr-equal (deposit (a,x), credit(a,x));
V (a: Acct, x: Amnt) acct-state(a) = ok A bal(a) : x =* acct-state(withdrawal(a,x)) = ok

A attr-equal(withdrawal(a,x), debit(a,x))
A archive-obj (withdrawal(a,x)) =archive-withdrawal(archive-obj (a) ,a,x);

V (a: Acct, x: Amnt) acct-state(a) = ok A bal(a) < x = acct-state(withdrawal(a,x)) = overdrawn
A attr-equal(withdrawal(a,x), debit(a,x))
A archive-obj (withdrawal(a,x)) = archive-withdrawal(archive-obj (a) ,a,x);

V (a: Acct, x: Amnt) acct-state(a) = overdrawn = acct-state(withdrawal(a,x)) = overdrawn
A attr-equal(withdrawal(a,x), a)

end-class

Figure 6.40 Account Glass with Communications

6-51

and event signature in ACCT-CLASS with the sorts and event signature of ARCHIVE-CLASS.

This unification creates the communication path between account objects and archive objects.

When an account object invokes the archive-withdrawal event, it is actually invoking the archive-

withdrawal event of the archive class object. The simplified BANK composition diagram is shown

in Figure 6.42. The INTEGER and SET specifications and the associated morphisms shown in

Figure 6.28 are left out for simplicity, but still apply.

aggregate BANK-AGGREGATE is

nodes INTEGER, SET-i: SET, SET-2: SET, ACCT-CLASS,
CUST-CLASS, CUST-ACCT, ARCHIVE-WITHDRAWAL, ARCHIVE-CLASS

arcs SET-1 -- ACCT-CLASS: {E -* Acct, SET --* Acct-Class},
SET-1 -* CUST-ACCT : {E -* Account, SET --+ Acct-Class},
SET-2 -* CUST-CLASS: {E -* Customer, SET C Cust-Class},
SET-2 - CUST-ACCT: {E - Customer, SET -C Customers},
SET-3 -* CUST-ACCT : {E -- CA-Link, SET - Cust-Acct},
INTEGER - SET-1 : {},
INTEGER -* SET-2 :},
INTEGER -* SET-3 :},
INTEGER -* ARCHIVE-CLASS:
ARCHIVE-WITHDRAWAL - ACCT-CLASS: {},
ARCHIVE-WITHDRAWAL - ARCHIVE-CLASS: {}

end-aggregate

Figure 6.41 Communicating Bank Aggregate Class

Archive-Withdrawal

\ c

Archive-Class Acct-Class Cust-Acct Cust-Class

C C C

Bank

Figure 6.42 Bank Aggregate with Archive

Communicating with objects from multiple classes requires the addition of another level of

specification which "broadcasts" the communication event to all interested object classes. The

6-52

class sort of a broadcast theory is called a broadcast sort and represents the object with which the

sending object communicates. The broadcast theory then defines an object-valued attribute for

each receiving class. Figure 6.43 shows an example of the ARCHIVE- WITHDRAWAL-MULTevent

theory modified to communicate with two classes. In this case, the ARCHIVE- WITHDRAWAL

theory is used to unify the ARCHIVE- WITHDRAWAL-MULT with the ACCOUNT class as well

as the other two classes. An example of the required colimit specification is shown in Figure 6.44

while the diagram of the specification (showing only the morphisms between event and broadcast

theories) is shown in Figure 6.45.

event ARCHIVE-WITHDRAWAL-MULT is

class sort Archive
sorts Amnt, Acct, X, Y
attribute

x-obj: Archive -4 X
y-obj: Archive -- Y

events
archive-withdrawal: Archive, Acct, Amnt -- Archive
archive-withdrawal: X, Acct, Amnt -- X
archive-withdrawal: Y, Acct, Amnt - Y

axioms
V (a: Archive, ac: Acct, am: Amnt)

x-obj(archive-withdrawal(a,ac,am)) = axchive-withdrawal(x-obj(a),ac,am)
A y-obj(archive-withdrawal(a,ac,am)) = archive-withdrawal(y-obj(a),ac,am)

end-class

Figure 6.43 Broadcast Theory

Multiple receiver classes add a layer of specification; however, multiple sending classes is

handled very simply. The only additional construct required is a morphism from each sending class

to the event theory mapping the appropriate object-valued attribute in the sending class to the class

sort of the event theory and the event signature in the sending class to the event signature in the

event theory. A diagram showing the effect of a second class sending the same archive-withdrawal

event is shown in Figure 6.46.

A question requiring further research is how to specify exactly which objects in communicating

classes actually communicate. In the banking example using a single archival object, the problem

is straightforward. Send the events to the only instance of the class. Determining which classes

6-53

aggregate BANK-AGGREGATE is
nodes INTEGER, SET-i: SET, SET-2: SET, ACCT-CLASS, CUST-CLASS,

ARCHIVE-WITHDRAWAL-i: ARCHIVE-WITHDRAWAL, CUST-ACCT,
ARCHIVE-WITHDRAWAL-2: ARCHIVE-WITHDRAWAL, ARCHIVE-CLASS,
ARCHIVE-WITHDRAWAL-3: ARCHIVE-WITHDRAWAL, PRINTER-CLASS

arcs SET-1 -* ACCT-CLASS : {E --* Acct, SET --* Acct-Class},
SET-1 - CUST-ACCT : {E - Account, SET --+ Acct-Class},
SET-2 -4 CUST-CLASS: {E -* Customer, SET --+ Cust-Class},
SET-2 -- CUST-ACCT : {E -- Customer, SET -4 Customers},
SET-3 -4 CUST-ACCT: {E -* CA-Link, SET --+ Cust-Acct},
INTEGER -- SET-1 : {},
INTEGER --+ SET-2:
INTEGER -* SET-3:
INTEGER --+ ARCHIVE-CLASS: {},
ARCHIVE-WITHDRAWAL-1 -4 ACCT-CLASS: {},
ARCHIVE-WITHDRAWAL-1 -- ARCHIVE-WITHDRAWAL-MULT: {}
ARCHIVE-WITHDRAWAL-2 -- ARCHIVE-CLASS: {},
ARCHIVE-WITHDRAWAL-2 -- ARCHIVE-WITHDRAWAL-MULT: {Archive -X},
ARCHIVE-WITHDRAWAL-3 -- PRINTER-CLASS: {},
ARCHIVE-WITHDRAWAL-3 - ARCHIVE-WITHDRAWAL-MULT: {Archive -- Y}

end-aggregate

Figure 6.44 Unification of Multiple Broadcast Classes

Archive-Withdrawa-Mult

Archive- Archive- Archive-
Withdrawal Withdrawal Withdrawal

Printer-Class Archive-Class Acct-Class Cust-Acct Cust-Class

c c / C c c

Bank

Figure 6.45 Aggregate Using a Broadcast Theory

6-54

Archive-Withdrawa-Mult

Archive- Archive- Archive-
Withdrawal Withdrawal Withdrawal

S cc

Printer-Class c Archive-Class Acct-Classl c Acct-Class2 Cust-Acct Cust-Class

C C C

Bank

Figure 6.46 Aggregate Using a Broadcast Theory With Multiple Generators

communicate is much simpler and is defined in the dynamic model based on event name equivalence.

If there is only one instance of a receiving class, then this model completely describes which objects

communicate; all instances of the account class communicate with the archive object and the printer

object. However, if certain accounts must send their archive events to certain archive or printer

objects, then the model breaks down. An extension to the OMT model is required; however, that

extension is not defined in this research. Because the theory-based object model is used for domain

modeling, describing what classes may communicate is acceptable. Determining exactly which

objects communicate is dealt with in the System Generation/Refinement Subsystem as defined in

Chapter II.

6.6.1 Communication Between Aggregate and Components. Communication between

components is handled at the aggregate level as described above. However, when the communication

is between the aggregate and one of its components, the unification of object-valued attributes and

class sorts via event theories does not work. Consider the example where a component sends an

event that is received by its aggregate. An event theory can be created; however, because the class

sort of the aggregate is not created until after the colimit is computed, the object-valued attribute

from the event theory and the aggregate class sort cannot be unified in the colimit operation. There

are two solutions to this problem.

6-55

The first, and simplest solution is to perform the unification at the next higher level aggre-

gate or domain-level specification. This is the solution implemented in the translation defined in

Chapter VII. Since each class is a component of an overall domain model class, the unification is

performed at that level.

The second solution requires the use of a sort axiom that equivalences two or more sorts as

shown below:

sort-axiom sortl = sort2

Using the automobile example discussed above, assume the Engine generates an engine-warning

event that is received by the Automobile aggregate. The event theory for such an event is shown

in Figure 6.47. This event theory is included into the Engine class type definition and, by the

colimit operation, the Automobile aggregate. To enable the Automobile aggregate to receive the

engine-warning event, it uses a sort-axiom to equivalence the Automobile sort of the aggregate with

the Controller sort from the event theory as shown in Figure 6.48. Use of the sort axiom unifies

the Automobile sort and the Controller sort and thus the signatures of the engine-warning events

defined in the event theory and the Automobile aggregate are equivalent.

event ENGINE-WARNING is
class sort Controller
events

engine-warning : Controller, Integer --* Controller
end-class

Figure 6.47 Engine-Warning Event Theory

Communications from the aggregate to the components, or subcomponents, is much simpler.

Since the aggregate includes all the sorts, operations, and axioms of all of its components and

subcomponents via the colimit operations, it can directly reference those components by the object-

valued attributes declared either in itself (in the case of components) or in its components (for

subcomponents). Because an aggregate is aware of its configuration, determining the correct object-

valued attribute to use is not a problem.

6-56

class AUTOMOBILE is
import AUTOMOBILE-AGGREGATE
class sort Automobile
sort-axiom Automobile = Controller
operations

attr-equal: Automobile, Automobile --+ Boolean
attributes

engine-obj Automobile -- Engine-Class
transmission-obj : Automobile -+ Transmission-Class
wheels-obj : Automobile -- Wheels-Class
drives-assoc : Automobile --+ Drives
connected-assoc : Automobile -- Connected

methods
create-automobile : Automobile

events
new-automobile - Automobile
engine-warning Automobile, Integer --+ Automobile

axioms
axioms omitted

end-class

Figure 6.48 Use of Sort Axiom in Aggregate Specification

6.7 Summary

This chapter presented a theory-based object model based on the restricted semantics pre-

sented in Chapter V of the Rumbaugh OMT object-oriented specification methodology. It defined

the basic constructs necessary to capture an object-oriented specification as well as some basic re-

lationships that must hold between specific types of object classes. These basic relationships form

the laws of object composition and define the relationships between classes based on inheritance,

association, and aggregation.

An object class is defined as a theory presentation with operations that represent attributes,

methods, events, operations, and states while class inheritance is specified through the use of the

import block and subsorting in a class specification. Links are defined generically as a class of objects

that relate two or more objects from other classes. While link specifications are not exactly the same

as a class specification, links may define attributes and operations. Associations are defined simply

as a set of link objects. A unique type of specification is introduced to define an aggregate class. An

aggregate specification defines a diagram of class specifications and the morphisms in the category

6-57

Spec. The classes in an aggregate specification consist of the aggregate's component classes and

their associations. Finally, event theories and category theory operation are used to formally define

the communication paths between classes in a domain model based on events specified in the

dynamic model.

The next chapter builds on the information in this chapter by formally defining the trans-

formations required to map graphically-based OMT domain models into the formal theory-based

object model described in this chapter.

6-58

VII. Translation to Theory-Based Specification

7.1 Introduction

In the previous chapter, a theory-based model of object-orientation was defined based on con-

cepts from Rumbaugh's OMT. This chapter defines the transformation rules to correctly translate

a Rumbaugh OMT specification into its theory-based representation based on the theory-based

object model. However, because there is no standard representation for OMT specifications other

than their graphically-based diagrams, a generic OMT (GOMT) abstract syntax tree is used (as

defined in Appendix A) to capture the components of the OMT diagrams in a more computation-

ally familiar form. This GOMT AST was developed to ensure independence from any particular

front-end tool. As defined in Appendix D, the demonstration system developed during this research

translates the output of a commercial OMT-based tool into the GOMT before it is translated into

O-SLANG to ensure isolation of tool-dependent concerns from the actual transformations. Thus,

the transformations in this chapter define translations from a OMT specification captured in a

GOMT AST into an O-SLANG abstract syntax tree. These transformation rules are described us-

ing first order algebraic axioms defined over the GOMT and O-SLANG abstract syntax trees using

the notation and names defined in Appendix C.

The correctness of these transformations is established in Section 7.6 by showing that the

formal semantics of each model (as defined in Chapter V) is preserved by the transformations

defined in Sections 7.2, 7.3, and 7.4. This preservation of semantics is proved by defining a mapping

from the theory-based representation in O-SLANG to the formal semantics and then showing that

the semantics of an OMT specification is equivalent before and after its translation to O-SLANG.

In this chapter I use the convention that calligraphic uppercase letters such as A and C refer

to associations and classes from the GOMT AST while outlined letter A and C refer to equivalent

associations and classes in the O-SLANG AST (i.e., C is the GOMT class corresponding to the

O-SLANG class C). Dot notation is used to refer to both subobjects and attributes of objects in the

7-1

ASTs. For example C.Name would refer to the name attribute of class C while C.Class-Sort is

the class-sort subobject which itself has the two attributes class-sort-id and inherited-sort-id. The

distinction between attributes and subobjects are clear from context and the GOMT and O-SLANG

AST definitions.

Axioms defined in this chapter are written as quoted strings of characters. In an axiom, all

uppercase strings denote actual characters in the string while object and attribute names denote

placeholders for the associated values of those objects and attributes. For example, the axiom

"SIZE(c.Name-OBJ(X)) = 1"

defines a string where the value of c.Name is inserted. Thus if c.Name = STUDENT, the axiom

becomes

"SIZE(STUDENT-OBJ(X)) = 1"

Within axioms, I also use pattern matching placeholders, "..." to match an arbitrary sequence of

characters in an axiom. Thus a test

if ax ="... SIZE(IMAGE(A,X)) = 1..."

returns true if the string of characters "SIZE(IMAGE(A, X)) = 1" is a substring of ax.

Many objects in the GOMT and O-SLANG ASTs define sets or sequences of objects. When

forming a set or sequence, general set former notation is used. The set S = {x I P(x)} denotes

the set S where xES only if P(x) is true. Sequences are formed in the same manner using square

brackets [x I P(x)] instead of curly braces. Standard set and sequence operations are used, with

11 representing the concatenation of two sequences.

7.2 Object Model Translations

A GOMT object model representation consists of two kinds of entities: classes and asso-

ciations. This section discusses the translations of each of these in relation to the OMT object

model.

7-2

7.2.1 Class Translation. The object model of a GOMT Class, C, consists of the following

items

" name

" set of superclass names

* set of component connections

" set of attributes

With the exception of the class name, all items are optional. The following transformations convert

a GOMT class, C, into an O-SLANG specification, C.

7.2.1.1 Class Specification. If there are any abstract operations in C then C generates

an abstract class, Cabstraat. If there are no abstract operations in C, C generates a concrete class,

Cconcrete. The name of C defines the name of C as well as the name of its class sort. All other

transformations on C are made without regard to whether C is abstract or concrete.

C E GOMT-DomainTheory.GOMT-Class
A (V (o) o E C.GOMT-Op =' o.is-abstract = false)

3 2 (Concrete) Concrete E O-Slang-DomainTheory

A C.Concrete.Name = C.Name

A Concrete .class-sort.classsort-id = C.Name (OMT-1)

C E GOMT-DomainTheory.GOMT-Class
A (2 (o) o E C.GOMT-Op A o.is-abstract = true)

: 3 (CAbstract) CAbstract E O-Slang-DomainTheory

A CAbstract.Name = C.Name

A CAbstract.class-sort.classsort-id = C.Name (OMT-2)

From this point forward in the translation rules, it is assumed that C is the O-SLANG class

generated from C by Rules OMT-1 or OMT-2 and that C may represent either an abstract class or

a concrete class.

7.2.1.2 Superclasses. The classes C inherits from are defined by a set of superclass

names. In O-SLANG this requires importing each superclass and defining the class sort of C to be

a subset of each of the superclass class sorts. This is accomplished by placing each superclass name

7-3

in the import block of C and stating that the class sort of C is a subsort of each of its superclass

class sorts as shown below (where s,...s, are superclass names in C.superclass).

class-sort C.Name < s ...s,

This translation is defined in Rules OMT-3 and OMT-4

s E C.Superclass s E C.Import (OMT-3)

s E C.Superclass * s E C.class-sort.inherited-sort-id (OMT-4)

7.2.1.3 Components. If C has component connections it is an aggregate object and

requires the creation of an aggregate class. This aggregate class is then imported into C as defined

in Section 7.2.3. A component of C consists of the following items.

" name

* qualifier (with a name and a datatype)

* role

* multiplicity

Besides generating an aggregate class, each component connection, c, in class C defines an

attribute in C that takes the class sort of C as input and returns a set of component objects. As

defined in Section 6.5, a component, c, becomes an object-valued attribute referencing a set of

objects of class c.Name. If the role attribute is defined, then the name of the attribute becomes

the role name given. If the role attribute is not defined, the component name appended with the

string "-OBJ" is used to define the object-valued attribute.

c.Name-OBJ: C.Name -- c.Name-Class

or

c.role: C.Name - c.Name-Class

The formal specification of this transformation is

7-4

c E C.Connection . (attr-name(c), [C.Name], [c.Name-CLASS]) E C.Attribute) (OMT-5)

where the function attr-name is defined below.

defined?(c.role) =. attr-name(c) = c.Role (7.1)
undefined?(c.role) = -attr-name(c) = c.Name-OBJ

A component qualifier is used to discriminate between components in a set. According to

Section 6.5.2, a qualifier becomes an attribute of the component. This requirement is specified

formally in Rule OMT-6. In this rule, c is a qualified component whose O-SLANG class specification

is Cq and whose class set is Cqs.

c E C.Connection A c.Name = C .Name A c.Name-CLASS = Cq, .Name

A defined?(c.Qualifier) .

((c.Qualifier.Name, [c.Name], [type(c.Qualifier)]) E Cq .Attribute

A (IMAGE, [Cqs .Name, c.Qualifier.Name], [Cq, .Name]) E Cq, .Operation

A "IMAGE(C, Q) = {X I X E C A c.Qualifier.Name(C) = Q}" E C,,.Axiom) (OMT-6)

where the function type is defined as

defined?(c.datatype) > type(c) = c.Datatype (7.2)
undefined?(c.datatype) : type(c) = c.Name

According to Section 6.5, a class, C, with components also includes an attribute for each

association whose components are all components (or subcomponents) of C. Assuming there exists

such an association, A, the attribute takes the form show below. Because of the intricacies of

determining exactly when this is applicable, the actual rule for this transformation is defined in

Rule OMT-30.

KName-ASSOC: C.Name --+ kName

The component class named c.Name and its class set named c.Name-CLASS are both assumed

to exist. As discussed above, an object with components generates an aggregate specification. This

aggregate specification includes the definition of all lower-level components and must be imported

into C. This requirement is defined formally in Rule OMT-7.

7-5

(3 (c) c E C.Connection) =4 C.Name-AGGREGATE E C.Import (OMT-7)

The multiplicity of a component defines how many of each component may be part of the

aggregate class C. As defined by Rumbaugh, these multiplicities include:

" One

" Many

" Plus (with an integer)

" Optional

" Specified (with a set of Spec-Ranges which have one or two integers indicating the range of
multiplicities)

where a multiplicity of One allows only one component, a multiplicity of Many allows zero or

more components, Plus allows the user to specify a minimum number of components, Optional

allows exactly zero or one component, and Specified allows the user to specify the exact number or

range of components allowed to be part of the aggregate. Therefore, as defined in Section 6.4.1,

the multiplicity of component c defines an O-SLANG axiom specifying the allowable number of

components that may be part of C. Generally, the axioms defined by the first four multiplicities

(One, Many, Plus, and Optional) are simple and are given in O-SLANG syntax below.

One '-* SIZE(attr-name(c)(0)) = 1
Many -* SIZE(attr-name(c)(0)) > 0

Plus '-* SIZE(attr-name(c)(O)) _ c.Plus.integer

Optional -* SIZE(attr-name(c)(0)) = 0 V SIZE(attr-name(c) (0)) = 1

However, if the component is qualified, the multiplicity is defined on the qualified image operation

defined in the component class by Rule OMT-6. The format of the qualified multiplicity axiom is

show below.

One '-* SIZE(IMAGE(attr-name(c)(O),q)) = 1

Many -* SIZE(IMAGE(attr-name(c)(O),q)) > 0
Plus -* SIZE(IMAGE(attr-name(c)(0),q)) _ c.Plus.integer

Optional -* SIZE(IMAGE(attr-name(c)(O), q)) = 0 V SIZE (IMAGE(attr-name(c)(O), q)) = 1

7-6

These requirements are formalized in the following axioms.

c E C.Connection A c.Mult = One

((undefined?(c.Qualifier) = - "SIZE(attr-name(c)(X)) = 1" E C.Axiom)

(def ined?(c.Qualif ier)

#- "SIZE(IMAGE(attr-name(c)(X), Q)) = 1" E C.Axiom)) (OMT-8)

c E C.Connection A c.Mult = Many =:

((undefined? (c.Qualifier) - "SIZE (attr-name (c) (X)) >! 0" E C.Axiom)

(defined? (c.Qualifier)

- "SIZE(IMAGE(attr-name(c) (X), Q)) >! 0" E C.Axiom)) (OMT-9)

c E C.Connection A c.Mult = Plus

((nde fined? (c. Qnalif ier)

= - "SIZE(attr-name(c)(X)) > c.Plus.integer" E C.Axiom)

(defined? (c. Qualifier)

=> "SIZE(IMAGE(attr-name(c) (X), Q)) >: c.Plus.integer" E C Axiom)) (OMT-1O)

c E C.Connection A c.Mult = Optional*

((undef ined?(c.Qualif ier)

= "SIZE(attr-name(c)(X)) = 0 V SIZE(attr-name(c)(X)) = 1" E C.Axiom)

(defined? (c. Qualifier)

S"SIZE (IMAGE(att r-name (c) (X), Q)) = 0
V SIZE(IMAGE(attr-name(c) (X), Q)) = 1" E C.Axiom)) (OMT-11)

Generating the axiom for a Specified multiplicity is more complex. It may be used to specify

either an exact number, a range of numbers, or a combination of both. Each Specified multiplicity

may have a number of specified ranges. For each specified range, s, if only one value (value 1) is

specified in an unqualified Specified multiplicity then the subaxiom

SIZE(attr-name(c) (0)) = s.Valuel

is generated as part of the overall specified axiom. However, if two values (value 1 and value2) are

specified, then the multiplicity defines a range as shown in the following subaxiom.

SIZE(attr-name(c) (0)) ! s.Valuel A SIZE(attr-name(c) (0)) <5s.Value2

7-7

Because a user may specify multiple Specified values or ranges, the axioms generated for each

Specified multiplicity must be disjuncted to create a single axiom defining the possible multiplicities

of a component c as shown below.

c E C.Connection A c.Mult = Specified

((undefined?(c.Qualifier)

OR({ax I s E c.Mult A

(defined?(s.value2) = ax = "SIZE(attr-name(c)(X)) > s.valuel

A SIZE(attr-name(c)(X)) < s.value2")

A (undefined?(s.value2) ax = "SIZE(attr-name(c)(X)) = s.valuel")})

E C.Axiom)

(defined? (c.Qualifier)

OR({ax I s E c.Mult A

(defined?(s.value2) - ax = "SIZE(IMAGE(attr-name(c)(X), Q)) >_ s.valuel

A SIZE(IMAGE(attr-name(c)(X), Q)) < s.value2")

A (undefined?(s.value2)

=> ax = "SIZE (IMAGE(attr-name(c) (X), Q)) = s.valuel")})

E C.Axiom)) (OMT-12)

where OR is a function that returns a single axiom that is the logical disjunction of all axioms in

the input set.

7.2.1.4 Attributes. Each attribute, a, in C is either a normal or derived attribute.

Each attribute in the GOMT AST consists of the following items.

" name

" datatype (optional)

" expression (optional)

Each normal attribute, anorm, in C defines an attribute declaration in C of the form:

&norm.Name: C.Name --+ type(a)

where type is the function defined in Equation 7.2.

An expression of a normal attribute is interpreted as the initial value computation for that

the attribute. Therefore, each normal attribute expression defines an axiom in the axiomblock of

C of the form

7-8

ce....Name(CREATE-C.Name(parameters)) = aexpression

where CREATE-C.Name(parameters) is the create object function automatically created when

C is defined. Parameters of the create function are defined by the dynamic or functional model as

defined in Rule OMT-75 or OMT-85. If no dynamic model exists and create is not specified in the

functional model then it is assumed there are no parameters to the create function. If the create

function is specified in the dynamic model, then the parameter number and types defined in the

dynamic model are used.

The formal transformations required for normal attributes are shown in Rule OMT-13.

a E C.NormAttr

((a.Name, [C.Name], [type(a)]) E C.Attribute

A defined? (a.expression)
"a.Name(CREATE-C.Name(C.Name, create-domain(C)))

= a.expression" E C.Axiom) (OMT-13)

where the function create-domain is defined as

(3 (r, a) r E C.Transition A a E 7.Action A a.Name = CREATE-C.Name)
= create-domain(C) = domain(a)

-(B (,r, a) r E C.Transition A a E r.Action A a.Name = CREATE-C.Name) (7.3)
=* create-domain(C) = 0

and the function domain is defined as the following sequence.

domain(a) = [type(p) I p E a.Parameter] (7.4)

Because a derived attribute calculates its valued based on normal attributes, each derived

attribute, Oderived, in C defines an operation declaration in C of the form

aderived.Name: C.Name --* type(a)

where again, type is defined in Equation 7.2. The user may define the value of a derived attribute

in one of two ways: via a functional model decomposition or by providing an expression in the

attribute definition. A functional model defines a set of axioms as described in Section 7.4. If the

user provides an expression, the expression becomes an axiom in the axiom block of C, . These

7-9

expressions are assumed to have the correct O-SLANG syntax and semantics to compute the derived

attribute value. The axiom generated is shown below.

aderived.Name(C.Name) = aderived.expression

The formal transformations required for derived attributes are specified in Rule OMT-14

where create-domain is defined as in Equation 7.3.

a E C.DerivedAttr =* (a.Name, [C.Name], [type(a)]) E C.Operation

A (defined? (c.expression) = . "a.Name(C.Name) = m.expression" E C.Axiom)(OMT-14)

7.2.1.5 Operations. Operations are transformed in the functional model as defined

in Section 7.4 or via special operation definitions as defined in Section 7.5. The only exception to

these rules is the operation attr-equal. The attr-equal operation determines if two objects of the

same class have identical non-state attribute values. Therefore, if a class, C, has normal attributes,

it must have an attr-equal operation. The signature of the operation is shown below.

attr-equal : C.Name, C.Name -+ Boolean

Assuming C has normal attributes a,... an, the axiom defining the attr-equal operation takes the

form

attr-equal(cl, c 2) = ai(cl) = a, (cl) A ... A an (cl) = an (cl)

Formally, the transformations that create the attr-equal operation and its definition are

7-10

(3 (a) a E C.NormAttr) * (ATTR-EQUAL, [C.Name, C.Name], [Boolean]) E C.Operation

A "ATTR-EQUAL(Oi, 02) = attr-compare(C)" E C.Axiom (OMT-15)

where the function attr-compare is defined as the logical conjunction of equations between two

attributes of two objects, 01 and 02 as defined below in Equation 7.5. The AND function is

defined similar to the OR function as the conjunction of a set of axioms.

attr-compare(C) = AND({"a(01) = a(02)" I a E C.NormAttr}) (7.5)

7.2.1.6 Methods. Because of my approach to using OMT in this research, methods

are defined either in the dynamic or functional models; however, if there is no dynamic model and

a create process is not defined in the functional model, a default create method must be defined.

A default create method takes no inputs and produces a value of the class sort of of C as shown

below.

CREATE-C.Name :--* C.Name

The default definition of the create method is shown below.

SIZE(C.Transition) = 0 A (V (p) p E processes(C) p.Name $ CREATE-C.Name)

- (CREATE-C.Name, H, [C.Name]) E C.Method (OMT-16)

In Rule OMT-16, the function processes returns the set of all subprocesses of a class or a process

in a class as defined below.

processes(x) = {p I p E Process(x)
V pi E processes(x) A p E Process(p) (7.6)

The default values of normal attributes are used to create the definition of create. For each

normal attribute, a, in C with a defined default value expression, the following axiom is generated

as defined in Rule OMT-13.

a.Name(CREATE-C.NameO) = a.expression

7-11

7.2.1.7 Events. When a default create process must be created as defined above, a

corresponding new event must also be created to invoke the create method. This new event has the

exact same domain and range as the create method

NEW-C.Name :--+ C.Name

and its only axiom "invokes" the create method as shown below.

ATTR-EQUAL(NEW-C.NameO, CREATE-C.NameO)

These two definitions are captured in the following transformation rules.

SIZE (C.Transition = 0) A (V (p) p E processes(C) p.Name 0 CREATE-C.Name)
=z ((NEW-C.Name, H, [C.Name]) E C.Event (OMT-17)

SIZE (C.Transition = 0) A (V (p) p E processes(C) p.Name A CREATE-C.Name)
=t "ATTR-EQUAL(NEW-C.Name O , CREATE-C.NameO)" E C.Axiom) (OMT-18)

where processes is defined in Equation 7.6.

7.2.2 Class Sets. Each class C generates a second specification called the class set, C,

that defines a set of objects of type C. The name C defines the name of C as well as the name of the

class sort of C,. The string "-CLASS" is simply appended to the name of the class set specification

and class sort. To explicitly state that C, defines a set of objects of type C, a contained-in name is

defined as the name of the defining class. The formal specification of the transformation is shown

in Rule OMT-19.

C E GOMT-DomainTheory.Class - 3 (C8) C8 E O-Slang-DomainTheory

A C,.Name = C.Name-CLASS

A C8 .class-sort.classsort-id = C.Name- CLASS
A C8 .contained-in = C.Name (OMT-19)

7.2.2.1 Class Set Superclasses. The set of superclass names of C defines the classes

from which C inherits. As defined in Definition 6.2.1, the class set of the superclasses of C must

7-12

also be imported into the class set of C. This is accomplished by placing each superclass name in

the import block of C8 as defined in Rule OMT-20.

s E C.Superclass * s-CLASS E C.Import (OMT-20)

7.2.2.2 Class Set Event. Each event in class C defines a class event in C8 . These

class events have the same signature as the events from class C with the class sort of C replaced

by the class sort of C8 . The formal transformation is shown below where the function rest returns

all items in a sequence but the first item.

e = (name, domain, range) E C.Event

(name, [C.Name-CLASS] 11 rest(domain), [C.Name-CLASS] 1 rest(range))

E C .Event (OMT-21)

The purpose of class-level events are to distribute the object-level event to each object in the

class set. Thus for each event in C8 , an axiom is added via the following transformation.

e = (name, domain, range) E C.Event =>

"V (C: c.Name, CC: c.Name-CLASS) C E CC

e.Name(C, parameters(e)) E e.Name(CC, parameters(e))" E C.Axiom (OMT-22)

where parameters is defined as

parameters(e) = [unique(x) I x E rest(e.domain)] (7.7)

and unique is a function that returns a unique symbol name based on the input symbol.

In Section 6.2.4, the Theory-Based Object Model requires each class to define a new event

that causes the creation of a new object. Because the class sort of a class set is a set, a new class

set object is simply an empty set. This requirements is captured by defining a new event

NEW-C.Name-CLASS :--* C .Name-CLASS

with the axiom defining a new class set to be empty.

NEW-C.Name-CLASSO = EMPTY-SET

7-13

Formally, these definitions are captured by the following transformation rule.

C, C O-Slang-DomainTheory
(NEW-C.Name-CLASS, 0, [C.Name-CLASS]) E C8 .Event
A "NEW-C.Name-CLASSO = EMPTY-SET" E C8 .Axiom (OMT-23)

7.2.3 Aggregates. As discussed in Section 7.2.1, each class C with components defines an

aggregate class CA. This aggregate class has a special form that defines the colimit of a diagram.

In this section C denotes the GOMT class that generates C, the class specification, and CA, the

aggregate specification in O-SLANG. When generating the aggregate class, the name of CA is

defined by simply appended the string "-AGGREGATE" to the name of the C. Rule OMT-24

formally defines this translation requirement.

c E C.Connection z. 3 (CA) CA E O-Slang-DomainTheory
A CA.Name = C.Name-AGGREGATE (OMT-24)

The diagram of specifications and specification morphisms is defined by a set of nodes (spec-

ifications) and a set of arcs (specification morphisms). These nodes correspond to all classes, data

types, associations, and event theories referenced by a class, or any of its superclasses or compo-

nents. A specification is in the node set of CA if it is one of the following.

1. A specification imported in C.

2. A component of C.

3. The class set specification of a component of C.

4. The aggregate specification of a component of C.

5. Any specification imported by nodes in CA.

6. An association specification whose connections are all nodes in CA.

7. Any specification imported by components of two or more nodes of CA.

8. A unique TRIV specification is added to the node set for each connection in an association
specification CA.Node.

9. An event theory defining the communication between nodes in CA.

10. A broadcast theory defining the communication between multiple nodes in CA.

7-14

The first seven of these transformations are defined next. Item 8, the creation of a unique

TRIV specification, is created as part of Rule OMT-38 while the event and broadcast nodes and

arcs are more complex and are defined in Section 7.2.3.1. The formal transformation rules for

determining the set of nodes in an aggregate are expressed in Rules OMT-25 through OMT-39.

s E C.Import - (s,s) E CA.Node (OMT-25)

s G C.Comnection =~(s.Name, s.Name) E CA .Node (OMT-26)

s E C.Connection ~(s.Name-CLASS, s.Name-CLASS) E CA.Node (OMT-27)

s E C.Connection A s.Name = C'.Name A (B (c) c E C'.Connection)

=- (C'.Name-AGGREGATE, C' .Name-AGGREGATE) E CA .Node (OMT-28)

(x, s.Name) E CA.Node A sl E s.Import => (.4, si) E CA.Node (OMT-29)

A E GOMT-DomainTheory.Assoc A (V (c) c E A.Connection (x, c.Name) eCA .Node

=> ((A.Name, A.Name) E CA.Node)

(A.Name-ASSOC, [C.Name], [A.Name]) E C.Attribute) (OMT-30)

(z, si.Name) , (Y, s2.Name) E CA.Node A x E imports(si) A x E imports(s2)

=> (x, x) E CA.Node (OMT-31)

where the function imports recursively defines the set of all imports of a given class as shown below.

def ined?(c.Node) =- imports(c) = IsI s E imports(x) V (x, s.Name) E c.Node}
def ined?(c.Import) - imports(c) = IsI E c.Import V (s E imports(x) A x E c.IMPort)}

(7.8)

The morphisms between nodes of C define the set of arcs in C and are critical to correctly

defining the colimit of the diagram. An arc is in the arc set of C if for inj, in2 in the node set of CA

one of the following holds.

1. ni is directly or indirectly imported by in2

2. nj is a component of in 2

3. in1 is superclass of in2

4. in2 = n 1-CLASS

5. nj = n2 -AGGREGATE

6. i 1 = n 2-LINK

7-15

7. n 2 is a connection of n1 , an association

8. nj is an event theory received by n 2 (or a subcomponent of n 2)

9. nj is an event theory sent by a component of n2

Once the nodes of an aggregate are known, the arcs may be computed. Once again, the first

seven items above are straightforward and discussed below, while defining the arcs between event

and broadcast theories is more complicated and is discussed separately in Section 7.2.3.1. The first

seven transformations may be expressed formally as shown below. In these transformations, nl

and n2 are classes in the O-SLANG Domain Theory whose names, nj.Name and n2 .Name, are in

the node set of aggregate CA and Cn, and Cn2 represent the GOMT classes that generated classes

nj and n2 . The transformations to define the set of arcs for an aggregate CA are shown below.

(x, ni.Name), (y, n2.Name) E CA.Node

A ni.Name E imports(n2) =: ((x, ni.Name), (y, n2.Name), {}) E CA.Arc (OMT-32)

ni.Name E imports(n2)

* ((ni.Name, ni.Name), (n2.Name, n 2.Name),{}) E CA.Arc (OMT-33)

ni.Name E n2.ClassSort.Inherited-Sort-Id

=> ((ni.Name, ni.Name), (n2.Name, n2.Name), {}) E CA.Arc

A ((ni.Name-CLASS, n .Name-CLASS),

(n 2.Name-CLASS, n2 .Name-CLASS), {}) E CA.Arc (OMT-34)

n2.Name = ni.Name-CLASS

=> ((ni Name, ni.Name), (n2.Name, n2.ame), {}) e CA.Arc (OMT-35)

n1 .Name = n 2.Name-AGGREGATE

((ni.Name, ni.Name), (n2.Name, n2 .Name), {}) E CA.Arc (OMT-36)

hi.Name = n2 .Name-LINK

: ((ni.Name, ni.Name), (n2.Name, n2.Name), {}) E CA.Arc (OMT-37)

c E Cai.Connection A c.Name = n2.Name A TRIV = (unique(TRIV), TRIV)

((defined? (n2.role)

(TRIV, (ni.Name-LINK, ni.Name-LINK), {E -* n2.role}) E CA.Arc)

A (undefined? (n2.role)

=> (TRIV, (ni.Name-LINK, ni.Name-LINK), {E -4 attr-name(n2)}) E CA.Arc)

A (TRIV, (n2.Name, n2.Name), {E -* n2.Name}) E CA.Arc
A TRIV E CA.Node) (OMT-38)

7-16

7.2.3.1 Communication Theories in Aggregates. When discussing event and broad-

cast theories, it is often difficult to determine exactly when to include them in aggregate nodes and

arcs. If there is only one class that receives an event, the problem is not difficult. Event theories

become nodes in an aggregate when (1) a class which is a node in the aggregate imports the event

theory (the class sends the event), or (2) when the nodes of an aggregate include both a sending

class and a receiving class. The formal transformation rules of this simple case are shown below

e E O-Slang-DomainTheory.Event A size(receives(e)) = 1

A (ni,ni), (n2,n2) E CA.Node A ni E comp-sends(e) A n2 E comp-receives(e)
((e.Name, e.Name) E CA.Node

A ((e.Name, e.Name), (ni, nj), {}) E CA.Arc
A ((e.Name, e.Name), (n2, n2), {domain-map(e, n2)}) E CA.Arc) (OMT-39)

where domain-map is the mapping of sorts in the domain of the equivalent event signatures in cl

to the sorts of the domain of event signature in c2 as defined below (the function index is the index

of the sort symbol within a sequence - the domain-ident of the event)

domain-map(cl,c2) = {"al -* a2" I al E ei.domain-ident A a2 E e2.domain-ident
A index(al, el.domain-ident) = index(a2, e2.domain-ident) (7.9)
A(ei E ci.Event A e2 E c2 .Event A el.Name = e2.Name)}

and receives, sends, comp-receives, and comp-sends are functions that define a set of classes who

send/receive a given event or who have components who send/receive a given event.

receives(e) = {c.Name I c E GOMT-DomainTheory.Class
A t E c.Transition A e.Name = t.Name} (7.10)

sends(e) = {c.Name I c E GOMT-DomainTheory.Class
A t E c.Transition A a E t.Action A e.Name = a.Action.Name} (7.11)

comp-receives(e) = {c.Name I x E receives(e) A (x E components-of (c) V x = c.Name)} (7.12)

comp-sends(e) = {c.Name I x E sends(e) A (x E components-of (c) V x = c.Name)} (7.13)

The function components-of defines a set consisting of the names of all classes which are components

or sub-components of a given class as defined below.

7-17

components-of (c) = {x.Name I x E c.Connection
V (x E components-of (y.Name) A y E components-of (c))} (7.14)

When there is more than a single class that receives an event, the computation of aggregate

nodes and arcs becomes more difficult. As described in Section 6.6, a broadcast theory is defined to

send an event to multiple classes. Determining where to place this broadcast theory is the problem.

According to the Theory-Based Object Model, the broadcast theory should be placed in the lowest-

level aggregate in the domain theory that includes (possibly as components or subcomponents of

nodes in the aggregate) all of the sending classes and all of the receiving classes.

When the appropriate aggregate has been found, a broadcast theory is created as defined

in Section 6.6. The broadcast theory imports the appropriate event theory and creates a unique

event theory for each receiving class. An import arc is defined between each sending class and a

single event theory, which in turn has an import arc between it and the broadcast theory. While

the sending classes may share a single copy of an event theory specification in order to link to the

broadcast theory, each receiving class must have a unique event theory specification that is mapped

to the event in the broadcast theory for that particular receiving class. The transformations are

defined formally below. Rule OMT-40 defines the broadcast theory while Rule OMT-41 defines the

appropriate nodes and arcs in the aggregate.

7-18

e E O-Slang-DomainTheory.Event A size (receives (e)) > 1

A event E e.Event

A (c E receives(e) : c E components-of (CA))

A (c E sends (e) #- c E components-of (CA))

A -(3 (a) a E components-of (CA) A defined? (a.Node)

A (c E receives(e) - c E components-of (CA))

A (c E sends(e) * c E components-of (CA)))

CF CE e -Slang-DomainTheory
A CE.Name = e.Name-MULT

A CE .Class-Sort.Class-Sort-Id = e.Name-SORT

A e.Name E CZ.Import

A (c E receives(e) =*

((e.Name, [c.Name] 11domain(event), [c.Name]) E CE.Event

A (c.Name-OBJ, [e.Name], [c.Name]) E CE.Attribute

A "c.Name-OB J(e. Name (e. Class-Sort. Class-Sort-Id, domain(event))

=e.Name(C.Name-OBJ(e.Class-Sort.Class-Sort-Id), domain(event)))

E CE.Axiom)) (OMT-40)

ee O-Slang-DomainTheory.Event A size (receives (e)) > 1

A emult E O-Slang-DomainTheory.Event A e.Name-MULT =emult.Name

A (c E receives(e) = c E components-of (CA))

A (c E sends(e) c E components-of (CA))

A -i(3 (a) a E components-of (CA) A defined? (a.Node)

A (c E receives(e) = c E components-of (CA))

A (c E sends(e) - c E components-of (CA)))

=> (emult.Name, emult.Name) E CA .Node

A (c E (comp-receives(e) fl {n I (n, x) E CA.Node})

A ev E c.Event A ev.Name = e.Name

=> (x =unique(e.Name) A (x, e.Name) E CpA.Node

A ((x, e.Name), (c.Name, c.Name), domain-map(e, c)) E CA.Arc

A ((x, e.Name) , (emult.Name, emult .Name) , domain-ma p(e, emult))

E C.A.Arc)) (OMT-41)

7.2.3.2 Domain Theory Aggregate. To ensure that all classes, associations, and

events are unified in the domain theory, an overall domain theory aggregate is created that combines

all top-level classes into a single specification. This is accomplished by creating a top-level aggregate

with all top-level classes as nodes. Then, Rules OMT-25 through OMT-41 add additional nodes

(associations, common imports, and event and broadcast theories) to the aggregate and compute

7-19

the necessary arcs. The top-level classes are those classes that are not components of any other

class as defined by Equation 7.15. The function top-level takes a GOMT domain theory and returns

a set of nodes.

top-level(DT) = {(c, c) I c E DT.Class} \ {(c,c) I c.Name E k.Connection A k E DT.Class} (7.15)

Thus, for each GOMT domain theory, a top-level aggregate is automatically created with an

initial set of top-level nodes as defined in Rule OMT-42.

3 (CA) CA E O-Slang-DomainTheory
A CA.Name = DOMAIN-THEORY

A CA.Node = top-level(GOMT-DomainTheory) (OMT-42)

7.2.4 Association Translation. A GOMT association, A, consists of the following items

" name

" set of class connections

" set of attributes

" set of operation definitions

Each GOMT association, A, defines two O-SLANG specifications, a link specification, AL,

and an association specification A where the association specification defines a set of link objects

similar to a class set specification. The name of A defines the names and class sorts of A and AL.

The formal rules for this transformation are shown below.

A E GOMT-DomainTheory.Assoc . AL E O-Slang-DomainTheory
A AL.Name = A.Name-LINK

A AL.Class-Sort.ClassSort-Id = .A.Name-LINK (OMT-43)

A E GOMT-DomainTheory.Assoc = A E O-Slang-DomainTheory

A A.Name = A.Name

A A.Class-Sort.ClassSort-Id = A.Name

A A.Link-Class = A.Name-LINK (OMT-44)

The association specification defines a set of links along with the association multiplicity

defined by the association connections. Associations do not have attributes or operations. GOMT

7-20

operations and attributes are used to define the link attributes and operations only. Therefore, the

definition of the association relies solely on its set of class connections. These connections have four

components.

* name

* qualifier (with a name and a datatype)

" role

* multiplicity

In order to reference sets of objects from the associated classes, each connection, c, in class

A defines a sort in A that is unified with the class set sort of the associated class. The formal

transformation of a connection to a sort in an association is defined in Rule OMT-45.

c E A.Connection * c.Name-CLASS E A.Sort (OMT-45)

In order to constrain the multiplicity of the objects based the number of links in the as-

sociation, there must be a way to determine the number of links a given object participates in.

As defined in Section 6.4.1, this corresponds to the image operation. Assuming the association is

a simple (no qualifier) binary association, the signature for the two image operations defined by

components, cl and c2 , is shown below.

IMAGE: A.Name, cl.Name -* c2.Name-CLASS
IMAGE: A.Name, c2.Name -- cl.Name-CLASS

Both operations take an association object (a set of links) and an object from one of the two

associated classes and returns the set of objects that are associated with the input object by links

in the association. Assuming two classes cl and c2 are in a simple binary association Assoc, the

image operation is defined as follows.

V(S : Assoc, x : cl.Name, y : c2.Name)

1 E S A attr-name(ci)(l) = x A attr-name(c2)Q) = y)
y E image(S,x)

7-21

The formal translations are defined below

C1, C2 E A.Connection A undefined?(ci.Qualifier) A undefined? (c2.Qualifier)
A (IMAGE, [A.Name, cl.Name], [c2.Name-CLASS]) E A-Operation
(IMAGE, [A.Name, C2.Name], [cl.Name-CLASS]) E AOperation

A "V(ASSOC: kName) (X E cl.Name A Y E C2.Name

A LINK E ASSOC A attr-name(cl)(LINK) = X
A attr-name(c2) (LINK) = Y)

- Y E IMAGE(ASSOC, X) A X E IMAGE(ASSOC, Y)" E AAxiom (OMT-46)

In order to reference objects from the associated classes, each connection, c, in class A defines

a sort in AL that is unified with the class sort of the associated class. The formal transformation

of a connection to a sort in an association is defined in Rule OMT-47.

c E A.Connection : c.Name E AL.Sort (OMT-47)

A connection qualifier is used to discriminate between links in an association. According

to Section 6.4.2, a qualifier becomes an attribute of the link class. This requirement is specified

formally in Rule OMT-48.

cl, c2 E A.Connection A defined? (ci.Qualifier)
(ci.Qualifier.Name, [C2.Name], [type(cl.Qualifier)]) E A.Attribute (OMT-48)

This qualified attribute is used to define a different image operation in the association spec-

ification. In this image operation, the qualifier is used as an additional parameter. Assuming

component cl had a qualifier attached to it (which becomes an attribute of component c2 by

Rule OMT-48), the following image operation would be generated.

IMAGE: A.Name, ci.Name, type(c .Qualifier) --* C2.Name-CLASS

This image operation is defined formally below.

7-22

C1, C2 E A.Conriection A def ined?(c, -Qualifier) A undefined? (C2 .Qualif ier)
A (IMAGE, [&.Name, cl.Name, type(ci.Qualifier)], [C2.Name-CLASS) E A.Operation
(IMAGE, [A.Name, C2 .Name], [ci.Name-CLASS]) E &.Operation
A "V(ASSOC: A.Name)(X E cl.Name A Y E C2 .Name A Z E type (ci. Qualifier)

(A LINK E ASSOC A attr-name (cl) (LINK) = X
A attr-name(C2) (LINK) = Y) A ci.Qualif ier.Name(LINK) = Z

<* Y E IMAGE(ASSOC, X, Z) A X E IMAGE(ASSOC, Y)" E A.Axiom, (OMT-49)

The multiplicity of a component defines how many of each component may be referred to by

links in the association class A and thus generates multiplicity axioms over the image operations

defined above. These multiplicity axioms are very similar to the aggregate multiplicity axioms

defined in Section 7.2.1. According to the Theory-Based Object Model, for binary associations

there are five types of multiplicities: one, many, optional, plus, or numerically specified. The

axioms generated by these multiplicities for simple binary associations are shown below.

One -* SIZE (IMAGE(A,O)) = 1
Many 4SIZE (IMAGE(A, 0)) > 0
Plus -*SIZE(IMAGE(A, 0)) > c.Plus.integer

Optional -*SIZE(IMAGE(A, 0)) = 0 V SIZE(IMAGE(A, 0)) = I
Specified '-4 SIZE(IMAGE(A, 0)) = c.Specified.Spec-Range.valuel
Specified '--* SIZE(IMAGE(A, 0)) : c.Specified.Spec-Range.valuel

A SIZE(IMAGE(A, 0)) :5 c.Specified.Spec-Range.value2

The formal association multiplicity transformations for simple associations are defined below.

7-23

c E A-Connectioni A undefined? (c.Qualif ier) A c.Mult =One

=; "X E c.Name = SIZE(IMAGE(A, X)) = 1" E kAxiom (OMT-50)

c E A. Connection A undefined? (c. Qualif ier) A c. Mult = Many
=* "X E c.Name =* SIZE(IMAGE(A,X)) >! 0" E A Axiom (OMT-51)

c E A.Connection A undefined? (c.Qualifier) A c.Mult =Plus
"X E c.Name * SIZE(IMAGE(A,X)) ! c.Plus.integer" E k Axiom (OMT-52)

c G A.Connecjtion A undef ined?(c.Qualifier) A c.Mult =Optional

"X E c.Name

- (SIZE(IMAGE(A, X)) = 0 V SIZE(IMAGE(A, X)) = 1)" E A.Axiom (OMT-53)

c E A.Connection A undef ined?(c.Qualifier) A c.Mult = Specified

OR({ax I s E c.Mult A
(defined? (s.value2) =* ax ="X E c.Name =*- (SIZE(IMAGE(A,X)) > s.valuel

A SIZE(IMAGE(A,X))! s.value2)")
A (undefined? (s.value2)

=~ax = "XE c.Name =- SIZE(IMAGE(A, X)) = s.valuel")})

E A.Axiom (OMT-54)

The formal association multiplicity transformations for qualified associations are defined below.

7-24

c E A.Connection A def ined?(c.Qualifier) A c.Mult = One

~"V (X : .Name, Z :type (c.Qualifier)) SIZE (IMAGE(A, X, Z)) = 1"
E kAxiom (OMT-55)

c E A.Connection A defined? (c. Qualifier) A c.Mult = Many

=4. "V (X :c.Name, Z :type (c.Qualifier)) SIZE(IMAGE(A, X, Z)) 0"

E A.Axiom (OMT-56)

c E A.Connection A def ined?(c.Qualifier) A c.Mult = Plus
"V (X: c.Name, Z: type (c.Qualifier))

SIZE(IMAGE(A,X, Z)) : c.Plus.integer" E A-Axiom (OMT-57)

c E A.Connection A defined? (c.Qualif ier) A c.Mult = Optional .

"V (X :c.Name, Z :type(c.Qualif ier))
SIZE(IMAGE(A, X, Z)) = 0 V SIZE(IMAGE(A, X, Z)) 1" E kAxiom (OMT-58)

c E A.Connection A defined? (c. Qualifier) A c.Mult = Specified z
"V (X: c.Name, Z: type(c.Qualifier))" 11 OR({ax 1 8 E c.Mult

A (defined? (s.value2) = -ax =

"SIZE(IMAGE(A, X, Z)) >: s.valuel A SIZE(IMAGE(A, X, Z)) :5 s.value2")

A (undefined? (s.value2) =: * ax =

"SIZE(IMAGE(A, X, Z)) = s.valuel")}) E K Axiom (OMT-59)

where OR is a function that returns the logical disjunction of all axioms in the input set.

Section 6.4 requires each association to define a new event to create a new association. There

is no create method in an association since an association has no attributes. Because the class sort

of an association is a set, the new event returns an empty set. This requirement is captured by

defining a new event

NEW-K.Name: --f KName

with the axiom defining a new class set to be empty.

NEW-k Nameo = EMPTY-SET

Formally, these definitions are captured by the following transformation rule.

7-25

A E O-Slang-DomainTheory

(NEW-AName, [, [A.Name]) E A.Event

A "NEW-A.Nameo = EMPTY-SET" E AAxiom (OMT-60)

7.2.4.1 Link Classes. A link class, AL, defines an object with object valued at-

tributes referencing each object in a given link. A link may also contain additional attributes,

operations, methods, and events. The formal transformation for each item in A is defined below.

Connections. Because an association relates two or more classes, A must have

at least two connections. These connections define which classes belong to the association. A

connection consists of the following items:

" name

" qualifier (with a name and a datatype)

" role

* multiplicity

The multiplicity of a component defines axioms in the association class A and are not used

in the link class definition. To reference objects from the associated classes, each connection, c, in

class A defines an object valued attribute in AL that takes the class sort of AL as input and returns

the reference to an object from class c.Name. This attribute declaration is generally of the form:

c.Name-OBJ : AL.Name --* c.Name

However, if the user has defined a role name for the connection, the role name is used as the

attribute name as shown below.

c.role : AL.Name -- c.Name

Using the attr-name function defined in Equation 7.1, the formal transformation of a connec-

tion to an object valued attribute in a link is defined in Rule OMT-61.

a E A.Connection > (attr-name(a), [A.Name-LINK], [a]) E AL.Attribute) (OMT-61)

7-26

Attributes. Additional link attributes may be entered directly into the object

model and are transformed exactly like class attributes as defined in Rules OMT-13 and OMT-14

except that C -* A and C F- AL.

Operations. User-defined link operations may also be entered directly into the

object model. These operations are transformed exactly like class operations as defined in Section

7.5 (Rules OMT-89 - OMT-91) except that C '-* A and C -* AL.

Create Method/New Event. The only method created automatically for a link

is the create method similar to the create method defined for classes in Rule OMT-16. However,

to create a link, all object references must be provided to the create method. Therefore, the link

create method has the signature

CREATE-linkname: component,..., componentn - linkname

while the new event has a similar signature.

NEW-linkname : componentl,..., componentn -- linkname

Then, for each component in the link, an axiom of the form

componenti (CREATE-linkname(xi, ... , x,)) = xi

is added to the axiom block of the link class, while the axiom causing the new event to invoke the

create method

ATTR-EQUAL(NEW-A.Name(xi ... Xn), CREATE-A.Name(xi ... xn)

is also generated and placed in the link class attribute block. The formal definition of the link create

operation and new event is shown below, followed by the definition for the attr-equal operation.

7-27

A E GOMT-DomainTheory

(CREATE-C.Name, link-domain, [A.Name]) E AL.Met hod
A (NEW-C.Name, link-domain, [A.Name]) E &L.Event (OMT-62)

A E GOMT-DomainTheory =:
"ATTR-EQUAL(CREATE-C.Name(link-domain), CREATE-C .Name(link-domain))"

E AL..Axiom (OMT-63)

A E GOMT-DomainTheory =
(ATTR-EQUAL, [A.Name, A.Name], [Boolean]) E Aii.Operation

A "ATTR-EQUAL(0i, 02) = link-compare(A)" E AL. .Axiom (OMT-64)

where link-domain is defined as the sequence of parameters

link-domain(c) = [d I c E A.Connection
A (def ined?(c.role) =: d = c.role) (7.16)
A (undef ined?(c.role) - d = c.name)]

and link-compare is defined as the pairwise comparison of all link attributes and component at-

tributes of ALt as shown below.

link-compare(C) = AND({"a(Oi) = a(02)" Ia E C.NormAttr} (.7
U {"attr-name(c)(Oi) = attr-name(c) (02)" I c E C.Connection}) (7)

The axiom that defines a link create method is simple since object references for each com-

ponent must be provided. This axiom takes the form

attr-name(xi)(CREATE-A.Name(xi, ...Xn)) = x

where xi represents a parameter in the parameter string of create and attr-name(xi) is the object

valued attribute name in the link class corresponding to that component. Formally, the creation of

the set of axioms is given by Rule OMT-65.

c E A.Connection A index (create-domain(C), z) = index (A.Connection, c.Name)
=> "c.Name (CREATE-C. Name (link-create-domain(C))) = z" E C.Axiom (OMT-65)

The function index is the index of a symbol within a sequence (the domain-ident of the event) and

the function link-create- domain is defined as

7-28

create-domain(a) = [unique(x.Name) I x E a.Connection] (7.18)

and unique is a function that returns a unique symbol name based on the input symbol.

7.3 Dynamic Model Translations

The dynamic model of a GOMT Class C defines the dynamic behavior of a class in the form

of a statechart. The dynamic model defines the allowable states that an object may be in and its

behavior while in that state. Objects transition from one state to the next based on the receipt

of events from external objects. After receiving an event, an object may react by changing state,

invoking a method, or sending additional events. The dynamic model consists of the following

items in the GOMT AST.

" set of states

" set of transitions

The dynamic model may or may not exist for a given class. The transformations defined in the

dynamic model are assumed to occur after C is converted to an O-SLANG specification, C, based

on the object model. The transformations for states and transitions are defined below.

7.3.1 States. Each state in C has three possible attributes:

" name

" invariant axioms

" set of substates

If the dynamic model is defined in a class C then four types of declarations are added to C. However,

before adding these declarations, the set of states must be partitioned into n partitions such that

1) there is exactly one initial state in each partition, 2) each state is reachable from the start state,

and 3) there are no transitions between partitions. If n > 2 then there are n distinct concurrent

subdiagrams for class C.

1. First, for each partition i E 1...n, a sort declaration as shown below is created.

7-29

C.Name-STATE-i

2. Second a state attribute of the form

C.Name-STATE-i: C.Name --- C.Name-STATE-i

is created for each partition i E 1...n.

3. Then, each state in partition i E 1...n, u generates a nullary operation (constant) in the states
block of C of the form

o'.Name :--- C.Name-STATE-i

4. Finally, for each pair of states in partition i E 1...n, o and U2 , the axiom

ai.Name 0 oa2.Name

is added to the axioms of C.

Each state, o,, may also contain substates. If a state contains substates then four additional

declarations, similar to the ones defined above, are generated for state u. Again however, before the

declarations can be added, the concurrent state partitions for the subdiagram must be computed.

To determine these concurrent partitions, the set of substates of o is separated into n partitions

such that 1) there is exactly one initial state each each partition, 2) each state is reachable from

the start state, and 3) there are no transitions between partitions. Again, n > 2 indicates that

there are n distinct concurrent substate diagrams for state a.

1. First, for each partition i e 1...n, a sort declaration as shown below is created.

o.Name-SUBSTATE-i

2. Second, for each partition i E 1.. .n, a state attribute of the form

a.Name-SUBSTATE-i: C.Name -+ o'.Name-SUBSTATE-i

is created.

3. Then, each state b, in each partition i E 1...n of state a-, generates a nullary operation
(constant) in the states block of C.

'i.Name :-* a.Name-SUBSTATE-i

7-30

4. Finally, for each pair of states in partition i E 1...n, 01 and 02, the axiom

V).Name 5 02 .Name

is added to the axioms of C.

Formal definition of these transformations starts with the computation of the set of concurrent

state partitions. For a given state, s, its partition of concurrent state sets, 7r8 , is given by the

following recursive definition.

base(s) = {(SI, 82) I (D (r, SI, 82) r E C.Transition A (s = Si Vs = S2) A r.fromstate = si

Air.fromstate 0 Initial-State-Marker A r.ToState = 82) (7.19)
V ((s1, Sm) E base A (sm, s2) E base)}

7r, = {s I (s, sm) E base V (sm, s) E base}

Then the set of all partitions, IIc, is defined as below. Since fIc is defined as a set, there is only

one partition, 7rc for each partition of concurrent states in C. (II is also computable on states that

have substates.)

fic = {irs I s E C.State} (7.20)

Once the partitioning of states is complete, the four O-SLANG declarations described above

are defined. The first transformations create declarations for a sort and state attribute for each

partition as shown in Rule OMT-66 and OMT-67.

i E Tic : C.Name-STATE-i E C.Sort (OMT-66)

i E Hc (C.Name-STATE-i, [C.Name], [C.Name-STATE-i]) E C.StateAttr (OMT-67)

The third transformation creates a nullary operation declaration for each state in the partition

as shown in Rule OMT-68.

i E Ic > (s E iri = (s.Name, H, [C.Name-STATE-i]) E C.State) (OMT-68)

And finally, to ensure each state created by Rule OMT-68 is unique, Rule OMT-69 defines

the appropriate state uniqueness axioms.

7-31

i E Hc A S1, 82 E 7ri A si 0 S2 =8 "8 0 82" E C.Axiom (OMT-69)

Once a class's base states are defined, the substates, as discussed above, can be translated.

Therefore, for any given superstate, a, with H, as defined in Equation 7.20, the following rules

translate the substates of o,.

a states(C) A (3 (s) s E u.State)

i E II ,

o-.Name-SUBSTATE-i E C.Sort (OMT-70)

A (u.Name-SUBSTATE-i, [C.Name], [.Name-SUBSTATE-i]) E C.StateAttr (OMT-71)

A s E 7i - (s.Name, 0, [u.Name-SUBSTATE-i]) E C.State (OMT-72)

A 81,82 E 7i A s 0 82 => "s : 82" E C.Axiom (OMT-73)

where states is the set of all states of C as defined below.

states(C) = {s I s E C.State V (8 E si.State A s1 E states(C))} (7.21)

7.3.2 Transitions. In the dynamic model, transitions are used to represent incoming

events and actions taken by the object. Transitions translate into events, methods, axioms, and

event theories in the O-SLANG AST and consist of six components.

" name

" set of parameters (name and datatype)

" set of guard conditions defined via axioms

" set of actions

" from-state

" to-state

As defined in Section 6.2.3, actions are used to specify methods or events sent to other objects.

In the GOMT AST, actions are decomposed into three components.

* name

" sequence of parameters (each with a name and datatype)

7-32

* set of actions

If the action name is SEND the object is to send the parameterized event specified by the sub-

action. This is the only valid use of sub-actions. If the action name is not SEND then the action

defines a method in C. Therefore, a transition defines a receive event along with possibly multiple

methods and send events. The relationship between these events and methods are defined by a

transition axiom.

Each transition, r, in class C defines an incoming event signature in the event block of C.

Each parameter, p, in -.parameter becomes a parameter in the event as defined below.

7.Name: C.Name,pi...pn -- C.Name

The translation into the O-SLANG AST is

T E C.Transition e (.Name, [C.Name] 11 domain(-), [C.Name]) E C.Event (OMT-74)

where domain is defined as in Equation 7.4.

Each non-SEND action, s, in T defines a signature in the method block of C and each param-

eter, p, in s.parameter becomes a parameter of the method as shown below.

s.Name: C.Name,pi...p, -* C.Name

This transformation is captured formally in Rule OMT-75.

r E C.Transition A s E -r.Action A T.Name : SEND
* (s.Name, [C.Name] I domain(s.Parameter), [C.Name]) E C.Method (OMT-75)

Each subaction, 8, in r defines an outgoing event in C as well as an event theory specification

that is used later in an aggregate specification to unify C with the receiving object's class speci-

fication. The event theory defines an event sort and signature and is imported into C; therefore,

instead of creating a signature for the outgoing event, the event theory name (which is the event

name, s.Name) is added to the import block of C. An event theory is shown below

7-33

event s.Action.Name is

class-sort s.Action.Name-SORT

sorts P1 -..., pn

events s.Action.Name : s.Action.Name-SORT,pl...pn -- s.Action.Name-SORT

end-event

where P ... Pn denote the parameters of the outgoing event. Formally, this transformation is

r E C.Transition A s E r.Action A s.Name = SEND

CE E O-Slang-DomainTheory (OMT-76)

A CE.Name = s.Action.Name (OMT-77)

A CE.Classsort.Class-Sort-Id = s.Action.Name-SORT (OMT-78)

A (s.Action.Name, [s.Action.Name-SORT] 11 domain(s.Action.Parameter),
[s.Action.Name-SORT]) E CE.Event (OMT-79)

A s.Action.Name E C.Import (OMT-80)

where domain is again defined in Equation 7.4.

Before sending an event, the sending object must know where to send it. Section 6.6 requires

each event have an object-valued attribute of the form

s.Name-OBJ: C.Name -* s.Name-SORT

to define where an event is sent. This declaration is generated and placed in the attribute block of

C. Formally, this translation is shown in Rule OMT-81 (the sort s.Name-SORT is defined in the

imported event theory in Rule OMT-78 above).

r E C.Transition A s E r.Action A s.Name = SEND

=,, (s.Action.Name-OB J, [C.Name], [s.Action.Name-SORT]) E C.Attribute (OMT-81)

Each transition defines an axiom that causes the object, upon receipt of an incoming event in

the appropriate state, to state change as well as invoke methods and send events. This axiom has

7-34

five parts: current state, guard condition, new state, method invocations, and sending of events.

These parts are merged into a single axiom of the form:

old-state A guard-condition = new-state A method-invocations A event-sends

Using functions to define the individual aspects of the axiom (i.e., old-state, guard-condition, new-

state, method-invocations, and event-sends), Rule OMT-82 defines the axiom for each event except

the initial new event.

r E C.Transition A r.FromState : Initial-State-Marker
.e "old-state(r.FromState) A guard-condition(r) = new-state(r)

A method-invocations(r) A event-sends(r)" E C.Axiom (OMT-82)

-r E C.Transition A r.FromState = Initial-State-Marker = "new-state(T)
A method-invocations(r) A event-sends(-)" E C.Axiom (OMT-83)

The functions old-state, guard-condition, new-state, method-invocations and event-sends are

defined below.

Old-State Because the from-state is a mandatory part of a transition, an old-state is always

generated. If the r.from-state is a top-level state then the old-state part of the axiom is

simply

C.Name-STATE(o) = T-.from-state

However, if the from-state is a substate of another state then the superstate must be in the

correct state as well, as shown below.

C.Name-STATE(o) = superstate(r, from-state)

A superstate(r, from-state)-SUBSTATE(o) = r.from-state

In this example, superstate is a function that determines the superstate of a substate. Obvi-

ously, there can be many levels of substates so that an arbitrary number of superstates may

be included in the old state part of the axiom.

7-35

Formally, the definition of the old-state function is shown in Rule 7.22. The definition of

old-state is recursive and relies on the partitioning of states defined above in Equation 7.19.

(3 (s, si) s E states(C) A o = s1 .Name A si E s.State) A a E lri
. old-state(a) = "old-state(s) A s.Name-SUBSTATE-i(C.Name) = o" (722)

(s E states(C) = * = s1 .Name A si 0 s.State) A u E iri
=. old-state(a) = C.Name-STATE(C.Name) = a"

where states is defined in Equation 7.21 above.

Guard-Condition The guard condition part of the transition axiom is optional. If the guard

condition does exists, it is assumed that the guard condition is an axiom written in O-SLANG

syntax based on the object's attribute values and incoming parameter values only. Thus if

the guard condition exists, it requires no translation.

defined?(r.Axiom) - guard-condition(r) = r.Axiom
undefined?(r.Axiom) = - guard-condition(r) = "true" (7.23)

New-State Because a transition always has a to-state, the new state part of the transition axiom

is defined by T.to-state and takes the form

C.Name-STATE(r.Name(o, p ... p,,)) = r.tostate

or, if the state is a substate,

superstate(r, tostate)-SUBSTATE(r.Name(o, p ... p,,)) = r.tostate

where Pi...Pn denote the parameters of the incoming event. If the transition occurs in a

substate diagram, the values of superstate attributes do not change. Formally, the definition

of new-state is

(3 (s, si) s E states(C) A r.ToState = sI.Name A si E s.State) A r.ToState E 7ri

= new-state(r) = "s.Name-SUBSTATE-i(r.Name(C.Name, domain(T)) = r.ToState"
(s E states(C) - r.ToState = si.Name A Si 0 s.State) A T.ToState E 7ri

new-state(r) = C.Name-STATE(C.Name,domain(r)) = r.ToState"
(7.24)

where domain is defined in Equation 7.4.

7-36

Method-Invocations A non-SEND action, a, specifies that a method is invoked as the result of

the event receipt. As defined in the Section 6.2.5, the form used to specify method invocation

is

attr-equal(r.Name(o, pi .. .p.), r.Action.Name(o, Pal.. .Pa2))

where Pi.. .Pn denote the parameters of the incoming event and Pal.. Pa2 denote the parameters

of the method. The formal definition of the method-invocations function is shown below.

method-invocations(r) = AND({inv I s E r.Action A s.Name 0 SEND
A inv = "ATTR-EQUAL(-.Name(C.Name, domain(-)), (7.25)

s.Name(C.Name, domain(s)))"} U { "true" })

The AND function in Equation 7.25 denotes the logical conjunction of all axioms in the input

set. The true axiom ensures that there is at least one axiom returned from method-invocations

thus ensuring that Rule OMT-82 is well formed.

Event-Sends SEND actions represent the sending of a subaction event to the object whose ref-

erence is stored in the appropriate object-valued attribute. Therefore, a SEND action with

sub-action, s, generates the axiom

s.Name-OBJ(r.Name(o, pi ...pn)) = s.Name(s.Name-OBJ(o), pi ...P,2)

where P, ...p,, denote the parameters of the incoming event and Pal ... Pa2 denote the parameters

of the outgoing event. Event-Sends is formally defined in Equation 7.26.

event-sends(r) = AND({snd I s E .Action A s.Name = SEND
A snd = "s.Action.Name-OBJ(.Name(C.Name, domain())) =

s.Action.Name(s.Action.Name-OBJ(X), domain(s.Action)))"} (7.26)
U {"true"})

Once the valid transitions have been transformed and all incoming events and states defined

in C, invalid transitions can be computed. Because the theory-based object model assumes there

is no reaction to an event that occurs in a state with no explicitly defined transition for that event,

axioms explicitly stating this assumption must be generated. These axioms are of the form

old-state . same-state

which is formally generated by Rule OMT-84.

7-37

s E C.State A e E CEvent

A -'(3 (r) r E C.Transition A r.Name = e.Name A r.FromState = s.Name)

. "old-state(o) - same-state(e, s)" E C.Axiom (OMT-84)

where old-state is defined as before in Equation 7.22 and same-state is defined below in Equa-

tion 7.27.

(3 (s, si) s E states(C) A a = s 1 .Name A si E s.State) A a E iri
- same-state(e, c) = "s.Name-SUBSTATE-i(e.Name(event-domain(e)) = c"

(s E states(C) -- o, = si.Name A si 0 s.State) A a E ri(7.27)

- same-state(e, o-) = C.Name-STATE(event-domain(e)) = o-"

and event-domain is defined as

event-domain(e) = [unique(x) I x E e.Domain-Ident]

and unique is a function that returns a unique symbol name.

7.4 Functional Model Translation

The OMT functional model is depicted as a basic dataflow diagram and defines a set of

processes and the datafiow between them. In the GOMT AST, a class C functional model consists

of the following components.

" set of processes (with subprocesses)

* set of dataflows

" set of datastores

The functional model may or may not exist in a given class. If it does, it is assumed that the

following transformations are performed after C is converted to an O-SLANG specification, C, based

on the object model. The translation of each of the above components is discussed below.

7.4.1 Processes. As defined in the GOMT AST, processes have the following components.

" name

" set of input data flows (name and datatype)

" set of output data flows (name and datatype)

7-38

e set of subprocesses

As interpretted by the theory-based object model, processes define purely functional methods

or operations that take data of the type defined by the input datafiows and produce data of the

type of defined by the output data flows as defined in Section 5.5. If the output datafiow, o, of a

process, p, or any of its subprocesses, is to a datastore, then the process modifies the object, or

subobjects, of which it is a part and defines a method. If a dataflow is to/from a datastore, the

name of the object-valued attribute referencing the datastore becomes the parameter name (i.e.,

the datastore is input to the method) instead of the dataflow datatype. If any subprocesses of p

have dataflows that are input from datastores, those datastores must be also be part of the method

input parameters. A method signature for a process p is defined as

p.Name : C.Name, flowtype(ii)...flowtype(i,) --+ C.Name

where il...in are the input dataflows and flowtype is a function that returns the datastore object-

valued attribute or dataflow type depending on whether the datafiow is from a datastore. Formally,

the transformation of processes that represent methods is defined in Rule OMT-85.

(p E processes(C) A size(datastores-modified(C,p)) > 1

* (p.Name, [C.Name] I data flow-domain(p), [C.Name]) E C.Method)

A (p E processes(C) A size(datastores-modified(C,p)) = 1
(p.Name, [datastore-sort(C,p)] I data flow-domain(p),

[datastore-sort(C,p)]) E C.Method) (OMT-85)

where processes is defined in Equation 7.6 and the function datastores-modified defines the set of

all datastores modified by a process and is defined as

p E processes(C)
datastores-modified(C,p) (7.28)
= {d I d E C.Datastore A f E d.InFlows A o E all-outflows(p) A f = o}

where all-outflows is a function that produces the set of all output dataflows from p or any of its

subprocesses

7-39

all-out flows(p) = If If E p.OutFlows} U {all-outflows(pi)lpi E processes(p)} (7.29)

and dataflow-domain is a function that returns the sequence of input datafiow types as define below.

dataf low-domain(p) = [f lowtype(f) I f E p.InFlows] (7.30)

The function flowtype used in Equation 7.30 returns the datastore name or the datafiow type as

defined below.

(d E C.Datastore A fi E d.InFlows A fi = f = - f lowtype(f) =d.Name)

A ((-i3 (d, f, fl) d E C.Datastore A fi E d.InFlows A f, f) .(7.31)
(defined? (f.type) = . flowtype(f) =f.type

A undefined?(f.type) = . type(f) =f.Name))

The function datastores-sort returns either the class sort of C, the name of the datastore accessed

by p, or an empty string if no datastores are accessed as defined below.

(size(datastores-modified(C,p)) = 1 A d E datastores-modified(C,p)
=:. data store-sort(C,p) = d.Name)
A (size(datastores-modified(C,p)) > 1

= - datastore-sort(C,p) = C.Name)
A (size (datastores-modified(C, p)) = 0 ~(7.32)

(size(datastores-accesgsed(C,p)) > 1
= * datastore-sort(C,p) = C.Name)
A (size (datastores-acce ssed(C, p)) = 1 A d E datastores-accessed(C,p)

. datastore-sort(C,p) = d.Name)
A (size (datastores-acces sed(C, p)) = 0 .- datastore- sort (C,p A")

where datastores- accessed is a function that returns all datastores accessed by a process and is

defined as

p E processes(C) ~
datastores-accessed(C,p) (7.33)

= {d Id E C.Datastore A f E d.Out~lows A o E all-in! lows(p) A f = o}

where the function all-inflows is defined in Equation 7.34.

all-in! lows(p) = I{f If E p.InFlows V (f E all-in flows(pi) A Pi E processes(p))} (7.34)

If there are no output dataflows from process p or its subprocesses that are sent to datastores,

then process p defines an operation signature. Again, if any input datafiows of any subprocesses

7-40

of p is from a datastore, that datastore must also be included in the operation input parameters.

If there are multiple subprocess dataflow that access datastores, then the format of the operation

signature is shown below.

p.Name: C.Name, type(ii) ... type(in) -- ol.type ...om.type

If there is only one subprocess dataflow, Osub that accesses a datastore then the following operation

signature is used.

p.Name: datasore-sort(C,p),ttype(ii)...type(i") -* ol.type...om.type

where datastore-sort is defined in Equation 7.32 and ol.type...om.type are the output datafiow

datatypes. The formal transformation is shown below.

p e processes(C) A size(datastores-modified(C,p)) = 0
=. (p.Name, [datastore-sort(C,p)] 11 data! low-domain(p), [C.Name])

E C.Operation (OMT-86)

If a process has subprocesses, then those subprocesses and their associated datafiows define

the composition of the process. This composition is defined axiomatically for each process, p, with

subprocesses the following axiom is created.

p.Name(proc-domain(p)) = proc-range(p) A implementing-axioms(p)

where proc-domain(p) and proc-range(p) are functions defining domain and range variables while

implementing-axioms(p) is a function that creates a sub-axiom for each subprocess, pi, of p as

shown below.

proc-range(pl) = p.Name(proc-domain(p))

The functions proc-domain(p) and proc-range(p) generate signatures that are compatible with

the operation and method signatures defined above; however, they insert variable names instead of

datatypes according to the following rules.

7-41

(size (datastores-modified(C, p)) > 0 =,, proc-domain(p) = C.Name, ii.Name ... in.Name)
A (size (datastores-modified(C, p)) = 0 #-

(size (datastores-accessed(C, p)) > 1 =* proc-domain(p) = C.Name, ii .Name. .. .i,.Name)
A (size (datastores-accessed(C, p)) = 1

Sproc-domain(p) = datasore-sort(C, p), i1 .Name. ...in .Name))
(7.35)

where ili is the set of all input flow names in p.InFlows.

(size(datasto'res-modif ied(C,p)) = 1 = proc-rarige(p) = datastore-sort(C,p))
A (size (datastores-modified(C, p)) > 0 ~proc-range(p) = C.Name) (7.36)
A (size (datastores-modified(C, p)) = 0 ~.proc-ran ge(p) = ol.Name ... On.Name)

where 01 ... n is the set of all input flow names in p.Outflows.

Therefore, The formal transformation of the axiomatic definition of a process p with subpro-

cesses is

p E processes(C) A defined? (p.Process)

~"p.Name(proc-domain(C, p)) = proc-ran ge(C, p) A implementing-axioms(p)"

E C.Axiom (OMT-87)

where implementing- axioms is defined as

implementing-axioms(p) = AND({ "proc-ran ge(pi) = p1 .Name(proc-domain(pi))" (.7
1 Pi E processes(p)} 7.7

where AND denotes the logical conjunction of all input axioms.

74.2 Dat aflows. Datafiows are not translated directly into components of an 0-SLANG

specification. They are used in defining the method/operation signature and subprocess axioms for

GOMT processes. Datafiows correspond to the inputs and outputs of methods and operations.

7.4.3 Datastores. Datastores are not translated directly into components of an 0-SLANG

specification. They are used in defining the method/operation signature and subprocess axioms

for GOMT processes. Datastores represent object classes and associations within an aggregate

specification and are accessed via object-valued attributes referencing those classes and associations.

7-42

7.5 Additional Translations

Additional information may supplied as part of the GOMT Class, C. In this research this

additional information consists of the following items:

* set of axiomatic constraints

e set of operation definitions

Each of these items may or may not exist in a given class. These transformations are performed

after C is converted to an O-SLANG specification, C, based on the object model, functional model,

and dynamic model.

7.5.1 Constraints. Constraints are user supplied O-SLANG axioms that constrain the

behavior of various components of the class. Therefore, each constraint in C is translated directly

to axioms in the axiom block of C as shown below.

c E C.Axiom * c E C.Axiom (OMT-88)

7.5.2 Operations. Operations in the GOMT AST can represent three different O-SLANG

constructs: 1) a newly defined O-SLANG method, 2) a newly defined O-SLANG operation, or 3) the

method definition of an action in the dynamic model. A GOMT Operation consists of the following

items.

" name

* set of parameters (with a name and datatype)

" result

" definition

" boolean denoting whether it is abstract

An operation result is its output datatype. If the operation has no defined result, the operation

is a method and the output datatype is the class sort of C. Each GOMT operation, o, defines a

signature. If the result is the class sort of C or result is not defined, then the operation defines a

method signature, as shown below, which is added to the method block of C.

7-43

o.Name: C.Name,pi...p, -* C.Name

where pi.. .p are parameter datatypes from the parameter set of o. The formal definition of these

translations is given in Rule OMT-89 below.

o E C.GOMT-Op A (undefined?(o.Result) V o.Result = C.Name)
(o.Name, [C.Name] 11 domain(o), [C.Name]) E C.Method (OMT-89)

where domain is defined in Equation 7.4.

If the result of o is a datatype other than the class sort of C then o defines an operation whose

signature is placed in the operations block of C.

o.Name: C.Name,pi...pn -- o.result

This translation is shown formally in Rule OMT-90.

o E C.GOMT-Op A defined?(o.Result) A o.Result : C.Name
(o.Name, [C.Name] 11 domain(o), [o.Result]) E C.Operation (OMT-90)

The definition of an operation, o, is a set of user supplied axioms in O-SLANG syntax. It is

assumed that the axioms are syntactically valid and correctly define the operation. The axioms in

the definition of o translate directly into axioms in the axiom block of C as shown below.

c E C.GOMT-Op.Definition =- c E CAxiom (OMT-91)

7.5.3 Imports. The specification import statements are used to include external spec-

ifications in the definition of the current specification. These imported specifications may either

be aggregate specifications, superclass specifications, or specifications defining the sorts used for

attributes, parameters, qualifiers, or operation results. The following rule defines exactly which

specifications must be included in a class specification.

7-44

C E O-Slang-DomainTheory

C.Import = C.Import U (class-imports(C) \ imports(C)) (OMT-92)

where class-imports is a function that collects the references to all external specifications within

C. The function imports determines which specifications are already imported into C through

specifications already in C.Import by Rules OMT-3, OMT-7, OMT-20, and OMT-80. Therefore,

the set difference between class-imports(C) and imports(C) is a set of specification names that

must be included in C.Import. The definition of class-imports and imports are given below in

Equations 7.38 and 7.8.

class-imports(c) = {s I s E c.Operation.Domain - Ident
c.Operation.Range-Ident
c.Attribute.Range-Ident
c.Method.Domain-Ident (7.38)

II c.Method.Range-Ident
c.Event.Domain-Ident

11 c.Event.Range-Ident}

7.6 Translation Correctness

In this section, I show that the translation of the object, functional, and dynamic models as

defined in Section 7.2, Section 7.3, and Section 7.4 are correct with respect to the formal semantics

defined in Chapter V. I prove this by showing that the diagram in Figure 7.1 composes. That is

that for each OMT model, the mapping defined by the formal semantics, , is equivalent to the

composition of the translation of the GOMT model to O-SLANG by T followed by the mapping

from O-SLANG to the formal semantics, w as defined in Equation 7.39.

V(D: GOMT-DomainTheory) ,o(D) = w(r(D)) (7.39)

A second useful property to prove about r would be to show that the inverse transformation

T- 1 , results in a domain theory equivalent to the original (i.e. D =_T-1 (T(D))). While this would

7-45

Generic OMT
Domain Theory

(G) a

Semnics

O-Slang
Domain Theory (O

(0)

Figure 7.1 OMT Translation Composition

not help prove correctness, it would show the bijective nature of T as well as its completeness.

Unfortunately, the early design decision to have only a single axiom block per O-SLANG specification

eliminates this possibility. Because a user may enter free-form axioms to define operations and

class constraints, the ability to determine where O-SLANG axioms were generated (i.e., manually

or automatically from the functional or dynamic model) is impaired. A fairly simple modification

to the O-SLANG syntax and AST (along with the associated transformations) could solve this

problem allowing T to be bijective. However, due to time constraints, these modifications were not

implemented in this research.

7. 6.1 Object Model Correctness. In this section, I show that the translation of the GOMT

object model as defined in Section 7.2 is correct with respect to the object model semantics defined

in Section 5.3.3. I start by defining a mapping W from the GOMT object model to the formal

semantics of the restricted OMT object model as defined in Section 5.3.

Given the formal semantics defined in Section 5.3, an object model 0 consists of a set of

specifications, S where a specification may consist of five items:

1. Name. The name of S - a single symbol.

7-46

2. Imports. The imports of S are a set of specification names.

3. Sorts. The sorts of S are a set of symbols.

4. Operations. Operations of S are defined as a tuple, (name, domain, range), where domain

and range are a sequence of sorts.

5. Axioms. The axioms are a set of first-order logical statements defined over the sorts and

operations defined in S, or in the specifications imported by S. I assume all axioms are in

O-SLANG syntax.

For the definition of p, r, and w, I assume that only the object model is defined and that

no methods or operations are defined manually by the user. I also assume that all associations

are binary and that there are no qualified associations or aggregates. The binary association

assumption is made to simplify the mappings and proofs although the results can be extended to

include higher-order association as well. Qualified associations and aggregations are not included

since they were not included in the object model semantics as defined by Bourdeau and Cheng (14)

and, while interesting, add little to the semantics. Finally, I assume that all attributes are defined

with explicit datatypes. While not necessary, it simplifies the mapping definitions and the proof.

Definition 7.6.1 o. The mapping V from the object model of a class, C, in a GOMT domain

theory to an object model, OM, is defined in Equations 7.40 through 7.55. In these equations the

function comp-pred (Equation 7.56) defines the the predicate name by returning either HAS-PART

or c.Role depending on whether c.Role is defined and mult-subaxiom (Equation 7.57) defines the

sub-axioms of each range in a Specified multiplicity.

C E GOMT-DomainTheory.GOMT-Class A C.Name = n (740)
4* Sc E OM A Sc.Name = n A n E Sc.Sorts

a E C.Attribute *(.
(a.Name, [C.Name], [a.datatype]) E Sc.Operations A a.datatype E Sc.Imports (7.41)

c E C.Connection 4 (comp-pred(c), [C.Name, c.Name], [Boolean]) E Sc.Operations (7.42)

7-47

c E C.Connection A c.Mult = One (743
"X E c.Name =. SIZE({Y I comp-pred(c) (X, Y)}) 1" E Sc.Axioms) (.3

c E C.Connection A c.Mult = Many *(.4
"X E c.Name =:, SIZE({Y I comp-pred(c)(X,Y)}) >0" G Sc.Axioms) (.4

c E C.Connection A c.Mult = Plus - 7.5
"X E c.Name . SIZE({Y I comp-pred(c)(X,Y)}) c.Plus.integer" E Sc.Axioms) (.5

c E C.Connection A c.Mult = Optional *
"X E c.Name '- (SIZE({Y I comp-pred(c) (X, Y)}) 0 (7.46)

V SIZE({Y I comp-pred(c)(X,Y)}) = 1)" E Sc.Axioms)

c E C.Connection A c.Mult = Specified A sort = c.Name A pred = comp-pred(c)
A s E c.Mult A vi = s.valuel A V2 = s.value2 4-
(ax E Sc.Axioms A mult-subaxiom(sort, pred, V1, V2) E: ax (.7
A ax = OR({mult-subaxiom(sort, pred, XI, X2) I c E C.Connection(7)

A c.Mult = Specified A sort = c.Name A pred = comp-pred(c)
A 8 E c.Mult A vi = s.valuel A V2 = s.value2

c E C.Superclass -# (simulates, [C.Name], [c]) E Sc.Operations A c E Sc.Imports (7.48)

A E GOMT-DomainTheory.Assoc A A.Name = n t* (7.49)
SA E OM A SA.Name = n A n E SA.Sorts

dom = [c.Name I c E A.Connectionl 4*(.0
((C.Name, dom, [Boolean]) E SA.Operations A c E dom #. c E SA.Imports) (70

c E A-Connection A c.Mult = One, (751
"X E c.Name =: SIZE({Y I SA.Name(X, Y)}1) =1" E SA.Axioms (.1

c E A.Connection A c.Mult = Many * (.2
"X E c.Name :: SIZE({Y ISA.Name(X,Y)}) 0" E SA.Axioms (.2

c E A-Connection A c.Mult = Plus -*(.3
"XE c.Name . SIZE({Y I SA.Name(X, Y)}) c.Plus.integer" E SA.Axioms (.3

c E A.Connection A c.Mult = Optional *
"X E e.Name . (SIZE({Y I SA.Name(X,Y)}) =0 (7.54)

V SIZE({Y I SA.Name(X, Y)}) = 1)" E SA.Axioms

c E C.Connection A c.Mult = Specified A sort = c.Name A pred = C.Name
A s E c.Mult A vi = s.valuel A V2 = s.value2 4*
(ax E Sc.Axioms A mult-subaxiom(sort, predvi, V2) E: ax (.5
A ax = OR({mult-subaxiom(sort, pred, x1, X2) I c E C.Connection (.5

A c.Mult = Specified A sort = c.Name A pred = C.Name
A 8 E c.Mult A vi =s.valuel A V2 = s.value2

defined? (c.Role) .comp-pred(c) = c.Role (.6
undefined? (c.Role) .comp-pred(c) = HAS-PART (.6

mult-subaxiom(sort, pred, V1, V2) =ax

A (defined? (V2) <- ax = "X E sort =: . (SIZE({Y I pred(X,Y)}) ! vj
A SIZE({T I pred(X,Y)})! V2)") (7.57)

A (undefined?(V2) -* ax = "XE sort .- (SIZE({ Y I pred(X, Y)}) = vj)")

7-48

Definition 7.6.2 w. The mapping w from an 0-SLANG class, C, to an object model, OM', is

defined in Equations 7.58 through 7.74. In these equations the function om-pred (Equation 7.75)

converts the component attribute name in 0-SLANG to the appropriate predicate name in OM and

the function sort-of (Equation 7.76) finds the class sort of the class referenced by an object-valued

attribute.

C E O-Slang-DomainTheory. Class A C.Name = n4*(7.58)
Sc E OM' A Sc.Name = n A n E Sc.Sorts

a E C.Attribute A a.Range-Ident(1) A x-CLASS A a.Range-Ident(1);A x-ASSOC (759
a E Sc.Operations A a.Range-Ident(1) E Sc.Imports (.9

a E C.Operation A a.Range-Ident = [C.Name] A a.Name h ATTR-EQUAL * (7.60)
a E SC.Operations A (i E a.Range-Ident =: i E Sc.Imports)

c E Cattribute A c.Range-Ident = [name-CLASS] -t 7.1
(om-pred(c.Name), [C.Name, name], [Boolean]) G Sc.Operations (.1

"SIZE(name(X)) = 1" E C.Axiom - 7.2
"X sort-of (name) .* SIZE({Y I om-pred(name) (X, Y)}) 1" E Sc.Axioms) (.2

"SIZE(name(X)) > 0" E C.Axiom *(.3
"XE sort-of (name) - SIZE({Y I om-pred(name) (X, Y)}) 0" E Sc.Axioms) (.3

"SIZE(name(X)) > x" C: C.Axiom A x 0 0 4*(.4
"X E sort-of (name) =;> SIZE({Y I om-pred(name) (X, Y)}) x" E Sc.Axioms) (.4

"SIZE(name(X)) = 1 V SIZE(name(X)) = 0" E C.Axiom <*
"X E sort-of (name) =. "(SIZE ({Y Iom-pred(name) (X, Y)}) = 0 (7.65)

V SIZE({Y I om-pred(name)(X,Y)}) = 1)" E Sc.Axioms)

a E A.Axioms
A ("(SIZE(name(X)) >! n A SIZE(name(X))5 mi)" F_ a

V ("SIZE(name(X)) = n" E: a A n > 1))
4* (ax E SA.Axioms

A (("(SIZE(name(X)) : n A SIZE(name(X))5 m i)" E: a) (.6
.~("X E sort-of (name) = . (SIZE ({Y I oin-pred(name) (X, Y)}> n (.6

A SIZE({Y I om-pred(name) (X, Y)}1) 5 in)" E: ax))
A ("SIZE(name(X)) = n" r a)

4~"X E sort-of (name)
=* (SIZE({Y I oin-pred(name)(X,Y)})) = n" C: ax)) E SA.Axioms

c E C.Class-Sort.Inherited-Sort-Id (.7
- (simulates, [C.Name], [c]) E Sc.Operations A c E Sc.Imports (.7

A E O-Slang-DoinainTheory.Association A A.Name = n <*(.8
SA E OM A SA-Name = n A n E SA.Sorts (.8

dom, = [a.Domain-Ident(2) Ia E A.Operation A a.Naine = IMAGE] (769
((C.Naine, dom, [Boolean]) E SA.Operations A c E dom . c E SA.Imports) (.9

"X E sort =* SIZE(IMAGE(A, X)) = 1" E A.Axioms 4*(770
"X E sort => SIZE({Y I SA.Naine(X, Y)}) = 1" G SA.Axioms (.0

7-49

"X E sort =. SIZE(IMAGE(A, X)) > 0" E A.Axioms (7.71)
"X E sort - SIZE({Y I SA.Name(X,Y)}) 0" E SA.Axioms

"X E sort SIZE(IMAGE(A, X)) > x" E A.Axioms t* (7.72)
"X E sort e SIZE({Y I SA.Name(X,Y)}) > x" C SA.Axioms

"X E sort =- (SIZE(IMAGE(A, X)) = 0 V SIZE(IMAGE(A, X)) = 1)" E &Axioms ¢
"X E sort . (SIZE({Y I SA.Name(X, Y)}) = 0 (7.73)

V SIZE({Y I SA.Name(X, Y)}) = 1)" E SA.Axioms

a E A.Axioms
A ("X E sort A (SIZE(IMAGE(A, X)) n A SIZE(IMAGE(A, X)) :i m)" E a

V ("X E sort A SIZE(IMAGE(A,X)) = n" E a A n > 1))
< (ax E SA.Axioms

A (("X E sort A (SIZE(IMAGE(A,X)) >_ n A SIZE(IMAGE(A,X)) m)" E- a) (7.74)
4* ("X E sort A (SIZE({Y I SA.Name(X, Y)}) _ n

A SIZE({Y ISA.Name(X,Y)}) _ m)" F- ax))
A ("X E sort A (SIZE(IMAGE(A, X)) = n" E a)

- * "X E sort A (SIZE({Y I SA.Name(X, Y)})) = n" C ax)) E SA.Axioms

The function om-pred is defined in Equation 7.75 below. Basically, if the component attribute

name has a -OBJ ending, there was no role name assigned to the component and thus the default

HAS-PART predicate name is used. If the attribute name does not have an -OBJ ending, then the

attribute name is the role name and no transformation is made.

c = component-OBJ <- om-pred(c) = HAS-PART
c A component-OBJ * om-pred(c) = c (7.75)

The function sort-of finds the class sort of the class referenced by an object-valued attribute

since by OMT-5, aggregate components in a GOMT class generate object-valued attributes that

are named either by the class name or role. The definition of sort-of is given in Equation 7.76.

a E C.Attribute A a.Name = c A [sort-CLASS] = a.Range-Ident =- sort-of (c) = sort (7.76)

7.6.2 Object Model Correctness Theorem. In this section, Theorem VII.1 establishes the

correctness of the object model translation with respect to the object model semantics established

in Section 5.3.3.

7-50

Theorem VII.1 Given a valid GOMT domain theory class C with a well defined object model, the

translation to O-SLANG as defined by r in Section 7.2 preserves the semantics of the object model

as defined in Definition 5.3.1.

Proof. See Appendix F

7.6.3 Dynamic Model Correctness. In this section, I show that the translation of the

GOMT dynamic model as defined in Section 7.3 is correct with respect to the dynamic model

semantics defined in Section 5.4. I start by defining a mapping V from the GOMT dynamic model

to the formal semantics of the restricted OMT dynamic model.

For the definition of V, r, and w, I assume that substates and concurrent states have already

been translated into this simple automata as discussed in Section 5.4.4. With this assumption, o

is defined as

Definition 7.6.3 V. The mapping V from the dynamic model of a class, C, in a GOMT domain

theory to a statechart, M = (Q, E, A, 6, A, qo) is defined as

Q = {s.Name I s E C.State}

= {t.Name I t E C.Transition}

A = {msig(t.Action) I t E C.Transition A t.Action.Name 0 SEND}

U {esig(t.Action.Action) I t E C.Transition A t.Action.Name = SEND}

t.ToState if 3 (t G C.Transition) such that t.FromState = q
6 (q, a) = A t.Name = a A t.Axiom holds

q otherwise

sig(t.Action) if 3 (t E C.Transition) such that defined?(t.Action)
Aq)A t.Name = a A t.Axiom holds

A A t.FromState = q
{} otherwise

qo = Initial-State

7-51

where the function msig defines the functional signature of a method action as defined in Equa-

tion 7.77.

msig(a) = (a.Name, [C.Name] 11domairi(a.Parameter), [C.Name]) (7.77)

The function esig defines the functional signature of an event send action as defined in Equation 7.78.

esig(a) =(a.Name, [a.Name-SORT] 11domain (a.Parameter), [a.Name-SORTI) (7.78)

The function sig defines the signature of each method or event send action as defined in Equa-

tion 7.78.

sig(a) = Is I t E a A undefined? (t. Action) = . s = msig(t)

A defined? (t.Action) #. s = esig(t.Action)} (7.79)

Definition 7.6.4 w. The mapping w from an 0-SLANG class, C, to a statechart, M'

(Q', El, A~', 61, A', qo') is defined as

Q'= {s.Name I s E C.State} U I{Initial -St ate -Marker}

E'= {e.Name Ie E (C.Evemt}

= {m Im E C.Method A e G C.Event A a E C.Axiom

A a = "C.Name-STATE(x) = q... = C.Name-STATE(u(...)) 2

A "ATTR-EQUAL(e.Name(...), m.Name(...))"c: a}

U {e I e.Name E C.Import A CIE E 0-Slang-DomainTheory

A QE.Name = e.Name A e E CE.-Event}

7-52

q2 if ax E C.Axiom
A ax = "C.Name-STATE(x) = q A guard

=>. C.Name -STATE (o-.) =2

A guard holds
q2 if q = Initial -State-Marker A ax E C.Axiom.

A ax = "C.Name-STATE(NEW-C.Name(...) q2*

A guard holds
q otherwise

action-set(ax) if ax E C.Axiom
A ax = "C.Name-STATE(x) = q
A guard =: C.Name-STATE(o-(..)) = 2*

A~q, u)A guard holds
A'q)= action-set(ax) if q=Iiil-teMakrAax E C.Axiom = .. ,

A guard holds
{} otherwise

q = Initial-State

where E is the boolean-valued subsequence operator and .. matches zero or more characters in

axiom.

action-set(a) = {m, m E C.Method A "ATTR-EQUAL(o(...), m.Name(...))" E: al
U {e I e.Name E C.Import A CE E 0-Slarig-DomainTheory

A CE.Name = e.Name A e E QE.Event}
"e.Name-OBJ(o-(...)) = e.Name(e.Name-OBJ(x) ...)" E: a} (7.80)

7'.6.4 Dynamic Model Correctness Theorem. In this section, Theorem VII.2 establishes

the correctness of the dynamic model translation with respect to the dynamic model semantics

established in Section 5.4.4.

Theorem V11.2 Given a valid GOMT domain theory class C with a defined dynamic model, the

translation to 0-SLANG as defined by r in Section 7.3 preserves the semantics of the dynamic model

as defined in Definition 5.4.2.

Proof. See Appendix F

7-53

7.6.5 Functional Model Correctness. In this section, I show that the translation of the

GOMT functional model, as defined in Section 7.4, is correct with respect to the functional model

semantics defined in Section 5.5.4. I start by defining a mapping W from the GOMT functional

model to the formal semantics of the restricted OMT functional model.

For the definition of p, r, and w, I assume that all methods and operations are defined either

as 1) actions from the GOMT dynamic model, or 2) processes from the OMT functional model.

Furthermore, I assume that all actions defined in the dynamic model have a process definition in the

functional model and that derived attributes (which result in operations) are not defined. While

these assumptions are not critical to the result of the proof, it eliminates clutter caused by the

definition of "default" functional models for methods and operations without explicit functional

models. These assumptions imply that the required object "create" process is included as part of

the functional model and is not created automatically by the default rule OMT-16.

Definition 7.6.5 'p. The mapping 'p from the functional model of a class, C, in a GOMT domain

theory to a dataflow diagram, D = (C, F, K, R) is defined as

C = {c.Name I c E (proc(C) U C.DataStore U {Extern})}

F = dfmerge(C.DataFow)

K = {c.Name I c E (proc(C) U C.DataStore)}

R {(x, y) I (x, y E dfmerge(C.DataFlow) A x.Target = y.Source A x.Target $ Extern)
V ((x,z) RA (zy) E R)}

where the function proc defines the set of all processes and subprocesses within the class C as defined

below.

proc(c) = 1p I p E c.Process V (pi E proc(c) A p E pi.Process)} (7.81)

7-54

and the function dfmerge modifies all subprocess datafiows where it appears in the subdiagram

that the source or target of the datafiow is external, when in fact the source or target is a process

from a higher level diagram. In the functional model of Figure 7.2 the output c from process P14

defines a datafiow with an external target; however, in actuality, P14 produces output c for the

higher-level process P1 whose target is process P3. The function dfmerge is defined below.

a
P1 c = <C,C,P1, P3>

P3 b

a

a P11 e P12 9 P14 c=<C, C, P1 4, Exern>

Figure 7.2 Datafiow Definitions

di E d A d1 .Tar get $Extern A di. Source :A Extern -di E dfmerge(d)
di E d A d1 .Tar get -Extern A -(3 (d2) d2 E d A (di.Name, di.Type) = (d2.Name, d2.Type)

A d2.Target :A Extern) : di E dfmerge (d)
di E d A d.Source =Extern A i(D (d2) d2 E d A (di.Name, di.Type) = (d2 .Name, d2 .Type)

A d2 .Source :A Extern) =.1 di E dfmerge(d)

di, d2 G d A (di.Name, di.Type) =(d2.Name, d2.Type) A di.Source = Extern A d2.Source 0 Extern

. (di .Name, d1 .Type,d43.Source, di.Target) E dfmerge(d)
di, d2 E d A (di.Name, di.Type) =(d 2.Name, d2.Ttjpe) A di.Tar get = Extern A d2.Tar get :A Extern

* (di .Name, d1 .Type, d1 .Source, d2 .Tar get) E dfmerge(d) (7.82)

Definition 7.6.6 w. The mapping w from an 0-SLANG class, C, to a datafiow diagram, D'

(C', F', K',RI') is defined as

7-55

C' = {c.Name I c E C.Method V c.Name E datastores(C)

V (c E C.Operation A c.Name h IMAGE A c.Name A ATTR-EQUAL)}

U {Extern}

F' = df merge({f I f E dataf lows-of (a) A a E C.Axiom})

K' = C' \ {Extern}

R' = (x, y) I (x, y E df merge(ffI a E C.Axiom, A! fE dataf lows-of (a)})

A x.Tar get =y.Source A x.Tar get 0 Extern)

V ((x, z) E 1'A (z, y) G R')}

datastores(c) = {d I ax E c.Axiom

V (ax = "m(x), ...) = d A ... cl(xi) = m2(d(x), ...)..."

V ax = "m(d(x), ...) = ... j A ... i = 2(d(x), ...)...")}(.3

The function dataflows-of defines the seven valid mappings from 0-SLANG functional axioms

generated by Rule OMT-87 as shown in Table 7.1. In the comment region of Table 7.1, illegal

means that a datAflow from the listed source to the listed target is illegal in standard dataflow

diagrams. The comment constrained means that the particular combination of source and target

are illegal by restriction of the functional model as described in Section 5.5.3.

data! lows-of (a) =

{a 0 "m(ii ... in) = ol ... o,... A r, ... rn = sp(d, ... dn)..." ~dataf lows-of (a) = {
a = "m(ii ... in) = ol ...*on... A ri ... r, = sp(di ... dn)..." ~dataf lows-of (a) =

Ix I t E top-level (a) A OPI, OP2 E operations(a)

A p, E opi.dom, A P2 E 0p2.-dom Ao E opi.ran

A (P3 E t.dom, x =(P3, itype (P3, t), Extern, t.Name))

A (P3 E t.ran =~x =(P3, otype(P3, t), t.Name, Extern))

A (plo datastores (C) A pi E t.dom ~x =(pi, itype(pi, opi), Extern, opi.Name))

A (p'o datastores(C) A pi E p2.ran =~x =(pi, itype(pi, OP1), OP2.Name, opi.Namne))

A (o 0 datastores(C) A o E t.ran = x = (o, ot ype(o, opi), opi.Name, Extern))

A (pi E datastores(C) =:> x = (dsname(pi),dstype(pi), pi, opi.Name))

A (o E datastores(C) = . x = (dstype(o), dstype(o), opi.Name, o))} (7.84)

7-56

Table 7.1 Valid Datafiows

Source Target Comment
1 Extern Top Level Process
2 Extern Subprocess
3 Extern Datastore Illegal
4 Extern Extern Illegal
5 Top Level Process Top Level Process Illegal
6 Top Level Process Subprocess Illegal
7 Top Level Process Datastore Constrained
8 Top Level Process Extern
9 Subprocess Top Level Process Illegal

10 Subprocess Subprocess
11 Subprocess Datastore
12 Subprocess Extern
13 Datastore Top Level Process Constrained
14 Datastore Subprocess
15 Datastore Datastore Illegal
16 Datastore Extern Illegal

where the functions top-level and operations return the tuple (name, dom, ran) for each method

or operation used in the axiom. The function top-level returns only the signature of the method

being defined while the function operations returns a set consisting of the signature of each of the

methods/operations used to define the "top-level" operation.

The function itype takes an input parameter and operation/method name and returns the

appropriate domain sort from the operation or method signature defined in C. The otype function

provides the same functionality for an output parameter.

(3 (op) op E (C.Operation U C.Method) A op.Name = f.Name
A x = op.Domain-Ident(index(pi, f.dom)))

• itype(pi, f) = x (7.85)

(D (op) op G (C.Operation U C.Method) A op.Name = f.Name
A y = op.Range-Ident (index(p2, f.ran)))

otype(p, f) = y (7.86)

The function dsname returns the name of the class or association associated with the data-

store. It is performed by finding the appropriate object-valued attribute declaration that references

the class set or association as defined below.

7-57

(3 (a) a E C.Attribute A a.Name = d

A (a.Range-Ident(1) = name-CLASS V a.Range-Ident(1)-ASSOC = name))

4* dsname(d) = name (7.87)

The function dstype returns the class set or association class sort. It is performed by finding

the appropriate object-valued attribute declaration that references the class set or association as

defined below.

(3 (a) a E C.Attribute A a.Name = d A type = a.Range-Ident(1)

A (type = x-CLASS V type-ASSOC = a.Name))
,#, dstype(d) = type (7.88)

7.6.6 Functional Model Correctness Theorem. In this section, Theorem VII.3 establishes

the correctness of the functional model translation with respect to the functional model semantics

established in Section 5.5.4.

Theorem VII.3 Given a valid GOMT domain theory class C with a defined functional model, the

translation to O-SLANG as defined by r in Section 7.4 preserves the semantics of the functional

model as defined in Definition 5.5.1.

Proof. See Appendix F

7.6.7 Communication Correctness Theorem. In this section, Theorem VII.4 establishes

the correctness of the use of event theories and broadcast theories to establish the global broad-

cast communications model used by Rumbaugh. In essence, the broadcast communications model

assumes that all events are broadcast to the system and are received by all objects whose dynamic

model have the capability of receiving that event. Events are distinguished by their names. If class

A sends an event E and class B receives an event E, by definition, there must be a communications

path from A to B for event E.

7-58

Section 6.6 describes the use of event and broadcast theories to implement the global broadcast

communications used in OMT. These theories are created by Rules OMT-40, OMT-76, OMT-77,

OMT-78, and OMT-79 while their integration into aggregate diagrams is defined by Rules OMT-41

and OMT-80. The validity of these transformations with respect to the global broadcast commu-

nications model is shown in Theorem VII.4.

Theorem VII.4 For each event E in a GOMT domain theory, there exists a valid communication

path from each sending class A to each receiving class B in the O-SLANG domain theory aggregate.

Proof. To be a valid communications path from class A to class B for event E, there must be

an operation eA in A and eB in B such that eA and eB are in the same equivalence class in the

domain theory aggregate which implies that the associated sorts in the domain and range of eA

and eB are also in equivalence classes. These requirements are satisfied by unifying the operation

signatures and sorts via the aggregate colimit operation. There are two unique cases to consider:

a single receiving class and multiple receiving classes. Each of these will be handled separately.

* If a set of classes A1 ... An sends event E to a class B then Rules OMT-76 - OMT-79 create

an event theory ET which is imported into each class A E A1 ... An by Rule OMT-80. This

importation of ET defines an identity morphism mapping each operation and sort of ET into

A (n, in Rule OMT-39). If there is only one sending class (i.e., n = 1) then the morphism

from ET to B (n2 in Rule OMT-39), as defined by Rule OMT-39, causes the operations and

sorts in ET, A, and B to be unified via the colimit operation in the aggregate class.

If, however, there are more than a single sending class (i.e., n > 1), then by the definition of

comp-sends and comp-receives in Equations 7.12 and 7.13, Rule OMT-39 defines morphisms

from ET to each object in the aggregate that sends (A1 ... An) or receives (B), or whose

components sends or receives, event E. Since these morphisms are formed at each appropriate

level of aggregation, the required unification of the event operation and sorts is accomplished

as described above in some aggregate. In addition, since Rule OMT-42 creates a top-level

7-59

domain theory aggregate for each domain, the events in all sending classes of E are eventually

unified with the appropriate operations and sorts of all other sending and receiving classes in

the domain theory.

* If a set of classes A1 ... A, sends event E to a set of classes B1 ... Bm then Rules OMT-

76 - OMT-79 create an event theory ET which is imported into each class A E A1 ... A,

by Rule OMT-80. When the lowest-level aggregate class is found whose components or

subcomponents contain all sending and receiving classes (i.e., A1 ... A, plus B1 ... Bin),

Rule OMT-40 creates a broadcast theory BT and Rule OMT-41 defines the appropriate

morphisms in the aggregate diagram such that the E event signatures in sending classes B1

... Bm are mapped to the appropriate operation in BT and all receive event signatures in

receiving classes A1 ... A, are mapped to their unique event in BT defined by Rule OMT-

40. Then the axioms defined in the broadcast theory ensure any that event received from a

sending class Bi is translated into events received by each receiving class A, ... An. Finally,

the colimit operation creates operation and sort equivalence classes based on the defined

morphisms completing the unification process.

7.7 Summary

This chapter presented the transformation rules necessary to translate a GOMT AST into a

valid O-SLANG AST. The rules were specified in accordance with the various OMT models: the

object model, the dynamic model, and the functional model. Theorems were presented that show

that the transformation rules defined in this chapter preserve the semantics of the restricted OMT

models as defined in Chapter V. These rules are the basis of an automated transformation system

described in Appendix D and are used in the next chapter to transform two graphically-based OMT

specifications into formal theory-based domain models.

7-60

VIII. Feasibility Demonstration

8.1 Overview

This chapter demonstrates the feasibility of automatically translating graphically-based

object-oriented specifications into theory-based domain specifications. The theories in this chapter

were generated automatically by the prototype demonstration system described in Appendix D.

An overview of each specification is given, followed by a description of its translation into theories.

8.2 Pump Domain

The Pump domain defines a specification for a simple gasoline pump and is a modified version

of the case study found in (21). Each pump may have multiple hand guns, pump motors, and

displays. Since I am modeling a domain, and not a system specification, the exact number of each

item is not important. The domain object model is presented in Section 8.2.1, the dynamic model

is discussed in Section 8.2.2, and the additional textual input is described in Section 8.2.3. There

is no functional model in the pump domain. The complete O-SLANG specification of the domain

model is shown in Appendix G.

8.2.1 Pump Domain Object Model. The Pump domain object model is shown in Fig-

ure 8.1. Basically, the specification models a type of pump, or more precisely, two types of pumps

- sophisticated and regular - that are subtypes of a basic pump class. Each object in a pump

class has a Pump-ID attribute and consists of zero or more Gun-Holster-Assemblies, Clutch-Motor-

Assemblies, and Displays. Each Gun-Holster-Assembly object consists of a Gun object and a Holster

object. While both the Gun and Holster classes appear to be simple classes with no attributes, a

peek forward at their dynamic models (Figures 8.5 and 8.6) shows that their dynamic models are

non-trivial and thus they are valid objects in the domain (i.e., they have state attributes). Likewise,

a Clutch-Motor-Assembly object has exactly two components, Motor and Clutch, which also are

defined by their dynamic models.

8-1

[cSopisticateda]
Svolume-s8elect:vouMe= 0

Pomp am ount-select: am aunrt= 0

pFu 8 p- id l Regular

GuTHolster-Assem bly aCalh- Mt lor-Ass em bly Dt M ,Cost : am.n= 0~
Q! I voLum a:voLume= 0

Sppg: :amo00t=Ceost/VOILuM e
[grade

Figure 8.1 Pump Domain Object Model

The Display class has a more typical appearance than the Gun, Holster, Motor, or Clutch

classes in that it has four attributes: cost, volume, ppg, and grade. The underscore in front of the

ppg attribute denotes that it is a derived attribute (the usual derived attribute character "/" could

not be captured appropriately by the tool) and its value for a given object is equal to the object's

cost attribute value divided by the object's volume attribute value.

Each class in the object model generates a class and class set specification. Since this trans-

lation is the same for each class, I only present one such translation in detail, the Display class.

The O-SLANG translations for the remainder of the classes are shown in Appendix G. The Display

class specification, as generated strictly from the object model, is shown below. The specification

itself, along with the class sort, is created by Rule OMT-1. The normal attributes cost, volume,

and grade are translated into functions over the class sort as defined by Rule OMT-13 while the

derived attribute ppg is defined by the user supplied axiom and is generated by Rule OMT-14. Since

8-2

there are normal attributes defined for the Display class, Rule OMT-15 requires that an attr-equal

operation be defined. The axiom is also automatically generated based on the normal attributes of

the specification. Finally, the specification names grade, amount, and volume are included in the

imports block of the specification by Rule OMT-92.

class DISPLAY is

class-sort DISPLAY

import GRADE, AMOUNT, VOLUME

operations ATTR-EQUAL : DISPLAY, DISPLAY -- BOOLEAN

attributes

COST: DISPLAY -- AMOUNT

VOLUME : DISPLAY -- VOLUME

PPG: DISPLAY -- AMOUNT

GRADE : DISPLAY -* GRADE

axioms
ATTR-EQUAL(D1, D2) <=> (GRADE(D1) = GRADE(D2)

& VOLUME(D1) = VOLUME(D2)

& COST(D1) = COST(D2));
PPG(D) = COST(D)/VOLUME(D)

end-class

Rule OMT-19 requires there be a class set specification for each class specification in a domain

theory. The class set for the Display class is shown below. The class name, class sort name, and

contained class name are all defined by Rule OMT-19 based on the Display class. Although not

defined in the object model, Rule OMT-21 requires that each event defined in the basic class be

defined in the class set over the class set sort. This class set event distributes the event to all

objects in the class set as defined by the axiom generated by Rule OMT-22. Since the class set is

simply a set of objects, the new event is defined by Rule OMT-23 to be simply an empty set.

class DISPLAY-CLASS is
class-sort DISPLAY-CLASS

contained-class DISPLAY

events

RESET-DISPLAY : DISPLAY-CLASS -- DISPLAY-CLASS
PULSE: DISPLAY-CLASS - DISPLAY-CLASS
NEW-DISPLAY-CLASS: -- DISPLAY-CLASS

axioms
NEW-DISPLAY-CLASSO = EMPTY-SET;

fa (D: DISPLAY, DC : DISPLAY-CLASS) in(D, DC) <=> in(PULSE(D),PULSE(DC));
fa (D: DISPLAY, DC: DISPLAY-CLASS) in(D, DC)

<=> in(RESET-DISPLAY(D), RESET-DISPLAY(DC));

end-class

8-3

The Pump, Clutch-Motor-Assembly, and Gun-Holster-Assembly classes are aggregate classes,

and as such have a slightly different translation. Again I only show the translation details of one

class, the Gun-Holster-Assembly aggregate class, while the rest are documented in Appendix G.

Because the Gun-Holster-Assembly class is an aggregate class, Rule OMT-24 requires the creation

of an "aggregate" specification which defines a diagram in the category Spec. This diagram

specification, Gun-Holster-Assembly-Aggregate, consists of a set of nodes (specifications) defined

by Rules OMT-25 through OMT-39. In this case, the nodes consist of the event theories sent

or received by components of the Gun-Holster-Assembly as well as the component specifications

themselves. The arcs are based on the nodes in the diagram and are defined by Rules OMT-32

through OMT-38.

aggregate GUN-HOLSTER-ASSEMBLY-AGGREGATE is

nodes RELEASE-HOLSTER-SWITCH, FREE-CLUTCH, ENGAGE-CLUTCH,

CLOSE-HOLSTER-SWITCH, DISABLE-PUMP, START-TIMER, GUN-CLASS,
GUN, HOLSTER-CLASS, HOLSTER

arcs RELEASE-HOLSTER-SWITCH - HOLSTER:

{RELEASE-HOLSTER-SWITCH-SORT -* HOLSTER},
CLOSE-HOLSTER-SWITCH - HOLSTER:

{CLOSE-HOLSTER-SWITCH-SORT - HOLSTER},
GUN -- GUN-CLASS: {},
HOLSTER - HOLSTER-CLASS: fl,
RELEASE-HOLSTER-SWITCH - GUN: fl,
FREE-CLUTCH -- GUN: {},

ENGAGE-CLUTCH -* GUN:
CLOSE-HOLSTER-SWITCH -- GUN:

DISABLE-PUMP -- GUN :
START-TIMER - GUN: {}

end-aggregate

Once the aggregate specification is complete, it is imported into the Gun-Holster-Assembly

specification as defined by Rule OMT-7. This effectively imports every specification that is part of

the diagram defined by the aggregate specification into the Gun-Holster-Assembly. This specifica-

tion is the same as a normal class specification as defined above for the Display class with a couple

of extensions. First, in order to reference its components, an object-valued attribute is created for

each aggregate component (or set of components) as defined by Rule OMT-5. These object-valued

attributes are the Gun-Obj and Holster-Obj attributes. Second, the multiplicities of the component

8-4

must be axiomatized as defined by Rules OMT-8 through OMT-12. In this case, there is exactly

one of each component and thus the axiom is of the form SIZE(HOLSTER-OBJ(G)) 1.

class GUN-HOLSTER-ASSEMBLY is

class-sort GUN-HOLSTER-ASSEMBLY
import GUN-HOLSTER-ASSEMBLY-AGGREGATE

attributes

GUN-OBJ: GUN-HOLSTER-ASSEMBLY -* GUN-CLASS
HOLSTER-OBJ: GUN-HOLSTER-ASSEMBLY -* HOLSTER-CLASS

methodsCREATE-GUN-HOLSTER-ASSEMBLY: -- GUN-HOLSTER-ASSEMBLY
eventsNEW-GUN-HOLSTER-ASSEMBLY: -* GUN-HOLSTER-ASSEMBLY

axioms
ATTR-EQUAL(G1, G2) <=> (HOLSTER-OBJ(G1) = HOLSTER-OBJ(G2)

& GUN-OBJ(G1) = GUN-OBJ(G2));

ATTR-EQUAL(NEW-GUN-HOLSTER-ASSEMBLYO, CREATE-GUN-HOLSTER-ASSEMBLY());

SIZE(HOLSTER-OBJ(G)) = 1;
SIZE(GUN-OBJ(G)) = 1

end-class

There are two cases of inheritance in the Pump domain object model. I concentrate on the

Sophisticated pump class as it is the most interesting. The Sophisticated pump class specification is

shown below and looks exactly like a typical class specification with a couple of extensions. First,

the subclass specification (Sophisticated) imports the superclass specification (Pump) as defined

by Rule OMT-3 while the class sort of the subclass (Sophisticate) is defined as a subsort of the

superclass class sort as defined by Rule OMT-4.

class SOPHISTICATED is

class-sort SOPHISTICATED < PUMP

import PUMP
operations ATTR-EQUAL : SOPHISTICATED, SOPHISTICATED -- BOOLEAN

attributes

VOLUME-SELECT: SOPHISTICATED - VOLUME
AMOUNT-SELECT: SOPHISTICATED -- AMOUNT

methods

CREATE-SOPHISTICATED: -- SOPHISTICATED

events
NEW-SOPHISTICATED: -- SOPHISTICATED

axioms

ATTR-EQUAL(S1, S2) <=> (PUMP.ATTR-EQUAL(S1, S2)

& AMOUNT-SELECT(S1) = AMOUNT-SELECT(S2)

" VOLUME-SELECT(S1) = VOLUME-SELECT(S2));
AMOUNT-SELECT(CREATE-SOPHISTICATED(S)) = 0;
VOL UME-SELECT(CREATE-SOPHISTICATED(S)) = 0;
ATTR-EQUAL(NEW-SOPHISTICATED O , CREATE-SOPHISTICATED())

end-class

8-5

The only other extension required for a subclass is that its class set must import the class set

of the superclass as defined by Rule OMT-20 as shown below.

class SOPHISTICATED-CLASS is

class-sort SOPHISTICATED-CLASS

contained-class SOPHISTICATED

import PUMP-CLASS

events NEW-SOPHISTICATED-CLASS: -- SOPHISTICATED-CLASS

axioms NEW-SOPHISTICATED-CLASS0 = EMPTY-SET

end-class

8.2.2 Pump Domain Dynamic Model. The unique aspects of the dynamic model for

each class are described below, starting with those of the Display class as shown in Figure 8.2.

Besides the initial state, there are exactly two states: zero-display and increment-display. The

transition new-display/create-display corresponds to the "new" event and "create" method discussed

in Section 6.2.4. The transitions between states are relatively simple and each consists of an event

with an associated action.

pulse/update-display

zero-displa increment-display
new-display/create-display

reset-display/zero- out-display

Figure 8.2 Display Class Dynamic Model

The axioms derived from the Display class dynamic model are shown below.

8-6

ZERO-DISPLAY <> INCREMENT-DISPLAY; (8.1)

(DISPLAY-STATE(NEW-DISPLAY(D)) = ZERO-DISPLAY

& ATTR-EQUAL(NEW-DISPLAY(D), CREATE-DISPLAY(D))); (8.2)

(DISPLAY-STATE(D) = ZERO-DISPLAY) =>
(DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY

& ATTR-EQUAL(PULSE(D), UPDATE-DISPLAY(D))); (8.3)

(DISPLAY-STATE(D) = INCREMENT-DISPLAY) =>
(DISPLAY-STATE(RESET-DISPLAY(D)) = ZERO-DISPLAY

& ATTR-EQUAL(RESET-DISPLAY(D), ZERO-OUT-DISPLAY(D))); (8.4)

(DISPLAY-STATE(D) = INCREMENT-DISPLAY) =>

(DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY

& ATTR-EQUAL(PULSE(D), UPDATE-DISPLAY(D))); (8.5)

DISPLAY-STATE(D) = ZERO-DISPLAY =>
DISPLAY-STATE(RESET-DISPLAY(D)) = ZERO-DISPLAY; (8.6)

DISPLAY-STATE(D) = ZERO-DISPLAY =>
DISPLAY-STATE(PULSE(D)) = ZERO-DISPLAY; (8.7)

DISPLAY-STATE(D) = INCREMENT-DISPLAY =>
DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY; (8.8)

Equation 8.1 ensures that the two states defined in Figure 8.2 are unique, and is created by

Rule OMT-69. Equations 8.3, 8.4, and 8.5 are defined by the three transition arrows in the graphical

representation of the dynamic model as shown in Figure 8.2. These three axioms are created by

Rule OMT-82 where the guard-condition and event-sends parts of the axiom are trivially true since

they are not defined in Figure 8.2. The final three axioms, Equations 8.6, 8.7, and 8.8 are created

by Rule OMT-84 that ensures no other transitions may be added to the model.

The Clutch dynamic model is shown in Figure 8.3. The creation of the O-SLANG axioms that

define Clutch dynamic model is very similar to the Display dynamic model with the exception of

a send action on the transition from clutch-free to clutch-engaged. The axiom generated by this

transition is shown in Equation 8.9 while the full definition of the Clutch dynamic model is shown

in Appendix G.

(CLUTCH-STATE(C) = CLUTCH-FREE) =>

(CLUTCH-STATE(ENGAGE-CLUTCH(C)) = CLUTCH-ENGAGED
& START-FUEL-OBJ(ENGAGE-CLUTCH(C))

START-FUEL(START-FUEL-OBJ(C))); (8.9)

8-7

new- clutch/create- clutch free-clutch engage-clutch/send(start-fuel)

clutch-disabled J" ree I clutch-engaged)

disable-clutch free-clutch

Figure 8.3 Clutch Class Dynamic Model

Equation 8.9 uses the start-fuel-obj object-valued attribute and start-fuel event defined by

Rules OMT-81 and OMT-77 through OMT-80 to "send" the event engage-clutch.

The Motor class dynamic model is shown in Figure 8.4. Its translation is similar to that of

the Clutch class above and its O-SLANG representation is shown in Appendix G.

The Gun dynamic model is shown in Figure 8.5. It is similar to the dynamic model presented

above except for the replace-gun transition from state gun-enabled to gun-disabled that sends three

different events. The axioms generated by the replace-gun transition are shown in below.

(GUN-STATE(G) = GUN-ENABLED) =>
(GUN-STATE(REPLACE-GUN(G)) = GUN-DISABLED
& START-TIMER-OBJ(REPLACE-GUN(G))

= START-TIMER(START-TIMER-OBJ(G))
" DISABLE-PUMP-OBJ(REPLACE-GUN(G))

= DISABLE-PUMP(DISABLE-PUMP-OBJ(G))
" CLOSE-HOLSTER-SWITCH-OBJ(REPLACE-GUN(G))

- CLOSE-HOLSTER-SWITCH(CLOSE-HOLSTER-SWITCH-OBJ(G))); (8.10)

8-8

start- pump- motorsend(free- clutch)

0 1motor-disabled Imotor-running
new- motorlcreate- motor-

stop- motorlsend(disable- clutchi)

Figure 8.4 Motor Class Dynamic Model

gun-disabled gun-enabled

remove- gunlsend(release- holster- switch

release triggerlsend(free- clutch)

new-unlceategundepress-tiggerlsend(engage-clutch) ut- off- supplysend(free- clutch)

~1~ Kgun-on

Figure 8.5 Gun Glass Dynamic Model

8-9

This example shows clearly the use of a separate object-valued attribute for each event sent, even

though those events might actually be sent to the same object. This ambiguity is acceptable since

O-SLANG is only representing a domain model at this point.

The Holster class dynamic model shown in Figure 8.6 is relatively simple and similar to the dy-

namic models discussed above. No further clarification of its translation (as shown in Appendix G)

is required.

release-holster-switch

0 >4 holster-wait 'I'holster-working)
new-holster/create-hoister

close-holster-switch

Figure 8.6 Holster Class Dynamic Model

The Pump dynamic model (Figure 8.7) introduces two new transition features: parameters

and guards. Actually, both of these features are incorporated into the enable-pump transition

from state pump-disabled to pump-enabled. The parameter x of type pump-id is received by the

pump object with the enable-pump event. If the pump is in the disabled-pump state and the guard

condition x = pump-id is true, then the transition takes place. Again, this transition is converted

to O-SLANG by Rule OMT-82 and is shown below.

8-10

enable-epump(x:pump-id)[x <> pump-id]
//\

enbl-pmxpup-dlx <>pm-d / '__

I pump-disabled r pump-enabled

disable-pump

new-pump(pump-id)lcreate-pump(pump-id)

I RW I

Figure 8.7 Pump Class Dynamic Model

(PUMP-STATE(P) = PUMP-DISABLED & (X = PUMP-ID(P)))
=> (PUMP-STATE(ENABLE-PUMP(P, X)) = PUMP-ENABLED

& RESET-DISPLAY-OBJ(ENABLE-PUMP(P, X))
= RESET-DISPLAY(RESET-DISPLAY-OBJ(P))

& START-PUMP-MOTOR-OBJ(ENABLE-PUMP(P, X))

= START-PUMP-MOTOR(START-PUMP-MOTOR-OBJ(P))); (8.11)

Equation 8.11 inserts the guard condition (X = PUMP-ID(P)) before the implication to en-

sure the condition holds before forcing the events start-pump-motor and reset-display to be sent.

As defined by Assumption V.4, the user is responsible for ensuring the completeness and consis-

tency of guard conditions used in a dynamic model; therefore, the enable-pump transition from

pump-disabled to pump-disabled with a guard condition of (X <> PUMP-ID(P)) is added. The

transition is shown below in O-SLANG syntax.

(PUMP-STATE(P) = PUMP-DISABLED & (X <> PUMP-ID(P)))

=> (PUMP-STATE(ENABLE-PUMP(P, X)) = PUMP-DISABLED (8.12)

8-11

class-constraints: Display

display-state(d) = zero-display => cost(d) = 0 & volume(d) = 0;
display-state(d) = increment-display => cost(d) >= 0 & volume(d) >= 0;
cost(d) >= 0;
volume(d) >= 0

end class-constraints.

definition: update-display class = display;
grade(update-display(d)) = grade(d);
cost(update-display(d)) = cost(d) + 1;
volume(update-display(d)) = volume(d) + 1

end definition.

definition: zero-out-display class = display;
grade(zero-out-display(d)) = grade (d);
cost(zero-out-display(d)) = 0;
volume(zero-out-display(d)) = 0

end definition.

Figure 8.8 Pump MANUAL.TEXT File

8.2.3 Pump MANUAL. TEXT. The MANUAL. TEXT file as shown in Figure 8.8 is used

in the Pump domain model to define constraints on the Display class and to add the semantics

for two display operations: update-display and zero-out-display. Basically, the body of these three

declarations are O-SLANG axioms which are incorporated directly into the axiom block of the

Display class as shown in Appendix G.

8.3 Faculty Student Database Domain

The Faculty Student Database domain defines a specification for a simple school database.

The database consists of a set of records for students, faculty, courses, classes, sections and quarters

and are related by a set of associations. The domain object model is presented in Section 8.3.1,

the functional model is discussed in Section 8.3.2, and the additional textual input is defined in

Section 8.3.3. There is no dynamic model in the faculty student database domain. The O-SLANG

specification of the domain model is shown in Appendix G.

8-12

8.3.1 Faculty Student Database Domain Object Model. Figure 8.9 shows the object model

for the faculty student database domain model. Since the classes in the object model are relatively

straightforward, I do not discuss them in detail as they are translated exactly like the classes

of the Pump domain in Section 8.2.1. Their O-SLANG specifications are shown in Appendix G.

Instead I concentrate on the associations defined in the domain object model: member-of, advises,

teaching, taught-as, offering, scheduled-in, and teaches. The first six associations listed are basically

identical in that they are simple binary associations between two classes. The only difference in

their definitions is the multiplicity axioms used. The last association, teaches, is unique in that

it has two link attributes defined: times-taught and average-size. I first discuss the member-of

association as an example of the six simple binary relations followed by a detailed description of

the teaches relation.

Figure 8. aulySuen abs bec oe

asscitin:ain speciico n n asocaion s pcion. oThe likseiiato eie

F8-13

- Il

I14 d4-t
....... m...

Figure 8.9 Faculty-Student Database Object Model

As described in Section 6.4, the theory-based object model defines two specifications for each

association: a link specification and an association specification. The link specification defines

8-13

a class of objects with attribute-valued objects that reference particular objects involved in a

relationship as well as any link attributes or operations. The association specification, on the other

hand, is analogous to a class set specification and is used to the define the set of links and any

multiplicity constraints. The link specification for the member-of association is shown below.

link MEMBER-OF-LINK is

class-sort MEMBER-OF-LINK

sort STUDENT, A-CLASS
operations ATTR-EQUAL : MEMBER-OF-LINK, MEMBER-OF-LINK -. BOOLEAN

attributes

A-CLASS-OBJ: MEMBER-OF-LINK -- A-CLASS

STUDENT-OBJ: MEMBER-OF-LINK - STUDENT
methods CREATE-MEMBER-OF-LINK : A-CLASS, STUDENT -- MEMBER-OF-LINK

events NEW-MEMBER-OF-LINK: A-CLASS, STUDENT -* MEMBER-OF-LINK

axioms
ATTR-EQUAL(M1, M2) <=> (STUDENT-OBJ(M1) = STUDENT-OBJ(M2)

& A-CLASS-OBJ(M1) = A-CLASS-OBJ(M2));
STUDENT-OBJ(CREATE-MEMBER-OF-LINK(M, S, A)) = S;
A-CLASS-OBJ(CREATE-MEMBER-OF-LINK(M, S, A)) = A;

ATTR-EQUAL(NEW-MEMBER-OF-LINK(M, S, A), (CREATE-MEMBER-OF-LINK(M, S, A)))
end-link

Rule OMT-43 actually creates the specification and the class sort. The sorts student and a-class

are unified with the class sort of the associated classes in the appropriate aggregate layer and are

defined by Rule OMT-47. The attributes a-class-obj and' student-obj are object-valued attributes

that reference objects from their respective classes and are defined by Rule OMT-61. The attr-equal,

create, and new operations are defined the same as for simple classes in the object model.

The association specification for member-of is shown below. The basic specification, class

sort, and link class are defined in Rule OMT-44. The sorts student-class and a-class-class are to

be unified with the class set sorts of the associated classes and are defined by Rule OMT-45.

association MEMBER-OF is
class-sort MEMBER-OF

link-class MEMBER-OF-LINK
sort STUDENT-CLASS, A-CLASS-CLASS

operations

IMAGE: MEMBER-OF, STUDENT -- A-CLASS-CLASS
IMAGE: MEMBER-OF, A-CLASS -- STUDENT-CLASS

eventsNEW-MEMBER-OF :-- MEMBER-OF

axioms
NEW-MEMBER-OF 0 = EMPTY-SET;

fa (M: MEMBER-OF, S: STUDENT)SIZE(IMAGE(M, S)) - 1;
fa (M: MEMBER-OF, A : A-CLASS)SIZE(IMAGE(A, X)) >= 0

8-14

fa (S: MEMBER-OF, M: STUDENT, B: A-CLASS)

(ex(A: MEMBER-OF-LINK)in(A, S)
& MEMBER-OF-OBJ(A) = M & MEMBER-OF-OBJ(A) - B)

<=> in(B, image(S, M));

fa (S: MEMBER-OF, M: STUDENT, B: A-CLASS)

(ex(A: MEMBER-OF-LINK)in(A, S)

& MEMBER-OF-OBJ(A) = B & MEMBER-OF-OBJ(A) = M)

<=> in(M, image(S, B))

end-association

In order to constrain the multiplicities of objects in the association, an image operation is created

for each class in the association. Therefore, in the member-of association, Rule OMT-46 requires

the definition of two image operations, each returning the set of objects associated with a given

object as shown below.

fa (M: MEMBER-OF, S: STUDENT)SIZE(IMAGE(M, S)) = 1
fa (M: MEMBER-OF, A: A-CLASS)SIZE(IMAGE(A, X)) >= 0

The second multiplicity axiom shown is not actually included in the automatically generated 0-

SLANG in Appendix G since by definition, the size of any set is always greater than or equal to

zero.

8.3.2 Faculty Student Database Domain Functional Model. There are actually two func-

tional models for the Faculty Student Database domain. The first is the Faculty Workload functional

model found in Section G.2. The second, the Update-Teaches model, is shown in Figure 8.10 and

is further refined in Figure 8.11. Both models are translated into O-SLANG in the same manner;

however, since the Update-Teaches function has fewer subprocesses while incorporating more as-

pects of the OMT functional model, I discuss its functional model translation in detail here. The

O-SLANG for the Faculty-Workload function is defined in Appendix G.

The top-level diagram for the Update-Teaches function is shown in Figure 8.10. There are

three explicit inputs to the function: name, type, and num; however, by Rule OMT-85, the object

upon which the function works is also an input. Because, as shown in Figure 8.11, a subprocess of

8-15

e update-Teaches

Figure 8.10 Update-Teaches Functional Model

....... t.

bwt.-

Figure 8.11 Update-Teaches Functional Model Level 2

8-16

Update-Teaches (modify-teaches) modifies the Teaches association, Update-Teaches is a method as

shown below by its signature.

UPDATE-TEACHES : FACULTY-WORKLOAD, NUM, NAME, TYPE -* FACULTY-WORKLOAD

Update-Teaches is a method in the Faculty Workload class since the process modify-teaches,

a subprocess of Faculty Workload, modifies the Teaches association as shown in Figure 8.11. The

remaining operation signatures as defined by Rule OMT-85 or Rule OMT-86 are shown below.

GET-FACULTY: FACULTY-CLASS, NAME -- FACULTY

GET-COURSE: COURSE-CLASS, NUM, TYPE -* COURSE

GET-SECTIONS-TAUGHT: SECTION-CLASS, FACULTY -- SECTION-CLASS

GET-SECTIONS-OFFERED : SECTION-CLASS, COURSE -- SECTION-CLASS

COMPUTE-SECTION-UNION : SECTION-CLASS, SECTION-CLASS -- TIMES-TAUGHT

COUNT-TIMES-TAUGHT: SECTION-CLASS, COURSE, FACULTY - TIMES-TAUGHT

GET-TEACHES: TEACHES, FACULTY, COURSE -- TEACHES-LINK
MODIFY-TEACHES : TEACHES, TIMES-TAUGHT, TEACHES-LINK -* TEACHES

The implementing axiom for the method Update-Teaches as defined by Rule OMT-87 is

shown below. The parameters come directly from the functional model diagram with the exception

of the datastores (classes and associations). Datastore names are translated to their object-valued

attribute names. The operation Count- Times- Taught has a similar definition based on its functional

model as shown in Figure 8.12. The O-SLANG translation of the implementing axioms for Count-

Times-Taught is shown in Appendix G.

UPDATE-TEACHES(F, NUM, NAME, TYPE) = F1

" TEACHES-OBJ(F)
= MODIFY-TEACHES(TEACHES-OBJ(F), TIMES-TAUGHT, TEACHES-LINK)

& TEACHES-LINK = GET-TEACHES(TEACHES-OBJ(F), FACULTY, COURSE)
& TIMES-TAUGHT = COUNT-TIMES-TAUGHT(SECTION-OBJ(F), COURSE, FACULTY)
& COURSE = GET-COURSE(COURSE-OBJ(F), NUM, TYPE)
& FACULTY = GET-FACULTY(FACULTY-OBJ(F), NAME);

8.3.3 Faculty Student Database MANUAL. TEXT. The Faculty Student Database MAN-

UAL. TEXT file (Figure 8.13) is used to define super/subprocess relationships. In this example, the

"leaf" processes semantics are not included for simplicity; however, the process definitions would

be similar to update-display and zero-out-display shown in Figure 8.8.

8-17

8 ti ° ; ' "
eoi lasSs

SEtiti-~as

- -------- Course......
gt-sectiomr-4fare)

..........

Figure 8.12 Count-Times-Taught Functional Model

subprocess get-faculty < process calculate-faculty-workload.
subprocess calculate-course-load < process calculate-faculty-workload.
subprocess calculate-student-load < process calculate-faculty-workload.
subprocess calculate-workload < process calculate-faculty-workload.
subprocess get-sections < process calculate-course-load.
subprocess compute-credits < process calculate-course-load.
subprocess get-students-advised < process calculate-student-load.
subprocess count-students < process calculate-student-load.

subprocess get-faculty < process update-teaches.
subprocess get-course < process update-teaches.
subprocess count-times-taught < process update-teaches.
subprocess get-teaches < process update-teaches.
subprocess modify-teaches < process update-teaches.

subprocess get-sections-taught < process count-times-taught.
subprocess get-sections-offered < process count-times-taught.
subprocess compute-section-union < process count-times-taught.

Figure 8.13 Faculty Student Database MANUAL.TEXT File

8-18

8.4 Summary

This chapter presented two examples of the automated translation of graphically-based do-

main model specifications into O-SLANG using the translations defined in Chapter VII. The first

example, the Pump domain, was almost exclusively dynamic in nature and showed the feasibility

of automatically translating dynamic models into valid theory-based specifications. The second

example, the Student Faculty Database domain, was almost purely functional in nature and showed

the automatic translation of the restricted functional model for both methods and operations. This

section concentrated on instructive features from both domains; however, the complete O-SLANG

domain model is contained in Appendix G.

8-19

IX. Conclusions and Recommendations

The purpose of this research was to investigate the feasibility of a parallel refinement approach

to the acquisition of formal specifications based on graphically-based, object-oriented concepts and

theory-based algebraic specifications. This investigation focused on two main areas: a formal

mathematical framework of object-oriented concepts using theories within the category Spec, and

the automatic translation of graphically-based, object-oriented diagrams into this theory-based

framework.

The first phase in this investigation focused on establishing the formal mathematical frame-

work for the object-oriented paradigm within a categorical setting. First, classes were defined as

theory presentations or specifications within the category Spec while their models were equated

with an implementation of the class. The theoretical concept of an object instance was defined and

used to show the desired effect of inheritance. Both single and multiple inheritance were formally

defined using category theory operations on classes. This formal definition of inheritance was then

shown to preserve the "Substitution Property", a commonly proposed notion of what valid inher-

itance should be. Next, a theory-based object model defining concepts from Rumbaugh's OMT

notation in the formal mathematical framework was developed. Because OMT is a semi-formal

technique, a formal semantics for each OMT model was first defined.

Provably correct translations, with respect to the previously defined formal semantics, from

the restricted OMT models to a theory-based specification were then defined. These translations

map each concept in OMT into a specific representation within O-SLANG. To show the feasibility of

automating these translations, a proof of concept system was developed which took OMT models

created with a commercially available, graphically-based OMT drawing tool and automatically

translated them into a generic abstract syntax tree representation and then into O-SLANG.

9-1

9.1 Summary of Contributions

This section summarizes the contributions of this research as enumerated in Chapter I. The

first contribution is the formalization of basic object-oriented concepts using algebraic and category

theory constructs. While there has been prior work on the formalization of the individual aspects

of object-orientation (12, 14, 23, 38, 69, 94), this research is the first effort to formally define all

the important aspects of object-orientation (i.e., classes, inheritance, aggregation, association, and

communication) in a cohesive, computationally tractable framework that is applicable to semi-

automatic software synthesis (55, 86, 87).

The second contribution of this work is the formalization of a generally accepted notion of

class inheritance, the Substitution Property. While other attempts have been made to formalize

inheritance (12, 39), the use of category theory constructs to define valid inheritance leads naturally

to a computationally tractable sufficiency criteria for proving adherence to that formalization. In

fact, adherence to this formalization of inheritance, along with aggregation and association, provides

techniques for ensuring the consistency of object-oriented specifications based on the composition

process itself.

The next contribution of this effort is the formalization of the semantics of the object, dy-

namic, and functional OMT models. While Harel (45) defined the semantics of statecharts based on

traditional automata theory, formalization of communications paths within a domain specification

along with the object model and the functional models have seen little work. While the concept of

global, event-based communications is relatively simple, its formalization is not. However, use of

category theory concepts allows the specification of the capability of a class to communicate with

other classes. Building on the work of Bourdeau and Cheng (14), formalization of the object model

semantics was accomplished using specifications to define classes and boolean-valued predicates to

define the relationships between classes. The informal semantics of the functional model required

major restrictions before it could be automatically translated into a formal representation. The

9-2

work of Tao and Kung (92) on standard data flow diagrams was tailored to my restricted functional

model in order to complete the formalization of the OMT semantics.

The advances described above made possible the major contribution of this work, which is

defining, formalizing, and automating the translation of graphically-based, object-oriented specifi-

cations into algebraic specifications. This formalization and automation of specification translation

increases the level of abstraction at which formal specifications may be developed and thus holds

the potential to dramatically increase the acceptance of formal specifications and methods. With-

out raising the level of abstraction at which formal specifications can be developed, specification of

large, complex systems will remain too difficult for the average software developer, and the potential

of formal methods (e.g., automated software synthesis, etc.) will never be realized.

9.2 Conclusions and Results

Several specific conclusions can be drawn from this investigation.

1. The category Spec provides a formal foundation for the rigorous definition of object-oriented

concepts. Classes and associations are defined as theories. Single and multiple inheritance

can be formally modeled and correctly constructed using specification morphisms. Aggregate

objects may be effectively modeled and correctly constructed using colimits of component

classes and specification morphisms.

2. The semantics of the OMT models were formalized by restricting the informal and semi-

formal notation allowed in OMT. Formalization of these semantics allows the models to be

automatically translated into theories in the category Spec.

3. Translations from graphically-based OMT object, dynamic, and functional models were de-

veloped using a theory-based model of object-orientation. These translations were shown to

correctly translate the models into O-SLANG based on their restricted formal semantics.

9-3

4. A category theory-based algebraic specification language, O-SLANG, was developed based

on the functional algebraic specification language SLANG. O-SLANG allows object-oriented

models to be captured naturally using algebraic specifications. O-SLANG incorporates basic

object-oriented concepts such as classes, associations, and aggregates as well as basic category-

theory operations of specification morphisms, diagrams, and colimits.

5. The feasibility of creating an automated translation system was established through the de-

velopment of a proof-of-concept system using a commercial front-end graphics tool. This

proof-of-concept tool was used to automatically translate non-trivial dynamically and func-

tionally based OMT domain models into algebraic theories.

9.3 Future Work

This investigation has laid the foundation for the Specification Acquisition Mechanism defined

in Chapter II and shown again in Figure 9.1. However, to complete this vision, the results of this

investigation must be extended. Several areas requiring additional research are identified and

summarized below.

1. The generic OMT AST developed to capture object-oriented concepts from the three basic

OMT models should be analyzed to determine its capability to capture object-oriented con-

cepts using other object-oriented modeling methodologies and techniques. A single generic

AST would allow any number of methodologies to be incorporated into an automated tool

such as the proof-of-concept tool developed in this investigation. While the generic OMT

AST was not developed with this more general purpose in mind, some object-oriented tech-

niques appear to be similar enough to OMT to allow their incorporation into the generic AST

(13, 19, 21, 84).

2. Investigation of the transformations required to develop problem-specific system specifications

from O-SLANG domain models should be undertaken. This is the Specification Generation

9-4

Specification Acquisition Mechanism

om iineefigSpeciication Generation/Reinmet a tc

ornainProblem
KnowedgeRequirements

Subsystem Subsystem Subsyse

Theory ibrary (Abstract Types)

Figure 9.1 Parallel Refinement Specification Acquisition Mechanism

phase shown in Figure 9.1. There has been some work in this area (49). Some possible

transformations might include the following.

(a) parameter instantiation

(b) specialization selection

(c) multiplicity restriction

(d) initialization definition

(e) communication path definition

(f) constraint restriction

3. Domain modeling literature often refers to providing a domain-specific language for developing

problem-specific system specifications. In this research, I assumed the transformations would

be accomplished using a generic object-oriented representation. However, domain-specific

graphically-based languages should be a topic for further research. Given a theory-based

domain model, the domain engineer should be able to define graphically-based icons for classes

of objects and associations within the domain that a user could then use to build a problem-

9-5

specific specification. Such a domain-specific language might even implicitly incorporate some

of the domain to problem-specific transformations discussed above. Some work has been done

in this area (56).

4. Matching theory-based, problem-specific functional specifications to architecture theories in

the Specification Structuring phase of Figure 9.1 requires additional research. While theory-

based architecture theories have been addressed (32), many problems associated with auto-

matically matching them to system specifications need further research. One such problem

closely associated with the object-oriented paradigm is the dynamic creation of objects, which

requires the ability to specify dynamically modifiable architectures.

5. The formal, automated translation of O-SLANG to SLANG should be developed. Assuming

the ability of SPECWARE or some other suitable transformation system to transform SLANG

to executable code, this would be the final link between graphically-based object-oriented

specifications and executable code.

6. The definition of a graphically-based object-oriented methodology or technique designed

specifically for formal transformation should be investigated. While many graphically-based

object-oriented methodologies have been proposed (13, 15, 19, 20, 21, 72, 73, 84), they all

have some degree of informality or ambiguity associated with them. Research starting from

the theory-based object model and attempting to develop graphically-based mechanisms for

defining those critical theory-based concepts might yield some unique, possibly more efficient

graphically-based specification techniques.

7. A graphically-based tool to work directly with the generic OMT AST should be developed.

Such a tool could enforce the assumptions made about the OMT model usage and would

simplify tool development. Also, such a tool would aid in the investigation of the generic

OMT AST as well as an object-oriented methodology/technique designed specifically for

translation to algebraic theories.

9-6

8. O-SLANG should be extended to add the necessary structuring devices to ensure a two-way

transformation from the GOMT AST to O-SLANG and back again. While it should not be

difficult to implement, it is critical to the flexibility of the Parallel Successive Refinement

Approach.

9.4 Reflections on the Parallel Successive Refinement Approach

A Parallel Successive Refinement Approach to specification acquisition was presented in Chap-

ter I and a Specification Acquisition Mechanism based on such an approach was introduced in

Chapter II. In a true parallel refinement approach, two versions of the specification are kept and

refined in parallel. In my Specification Acquisition Mechanism I proposed that two versions of the

same specification need not be kept assuming the specification representation could be automati-

cally generated. Upon completion of my research, I find I was correct. (Even though the two-way

translation is not yet complete, it appears clear that it is possible). Maintaining one specification,

with multiple representations, is much simpler than maintaining two specifications and ensures

consistency. Therefore, a better name for the methodology represented by the system in Figure 9.1

is a Multiple Representation Approach.

The Multiple Representation system proposed in Figure 9.1 shows specifications being stored

in "theory" form; however, the best long-term storage format has not been ascertained, if, in fact,

it makes a significant difference. While it appears evident that modifications to domain theories

should be made via the graphical user interface (which argues for storing domain theories in a

graphical format), the development of elicitor-harvester technology to help in selecting appropriate

domain theories from Theory Library might be more tractable if domain theories are stored in a

theory-based format. It is also possible that some intermediate format such as the GOMT AST

might also be the best choice.

9-7

In conclusion, it is my conviction that formal methods will never reach their true potential

unless a straightforward, cost-effective capability for developing large-scale system specifications

can be found. From the experience gained in this investigation, I believe a Multiple Representation

Approach is a viable, if not the best, approach to providing such a capability in the near future.

9.5 Summary

Given the results, contributions and conclusions presented in this and previous chapters, it

is obvious that the objectives of this investigation were successfully accomplished. Specifically, a

formal mathematical framework of object-oriented concepts within the category Spec was defined

and the automatic translation of graphically-based, object-oriented diagrams into this theory-based

framework was demonstrated. Additionally, several areas of future research were identified.

9-8

Appendix A. Generic OMT Abstract Syntax Tree

A.1 Introduction

This Appendix defines the generic model of object-orientation based on Rumbaugh's OMT

(83) that is used in my research. Section A.2 defines the features of OMT that are translated to

0-SLANG using a generic OMT (GOMT) AST representation. Section A.3 discusses the GOMT

AST objects derived from class defintions in the OMT object model, including attributes and oper-

ations, while Section A.4 defines the AST objects associated with OMT object model associations.

Section A.5 presents the objects of the GOMT AST derived from the OMT dynamic model while

Section A.6 discusses the GOMT AST objects defined from the OMT functional model. Complete-

ness of the GOMT in terms of Rumbaugh's OMT representation is discussed in Section A.7.

A GOMT AST is used to store domain models specified using OMT notation. In this research,

this specification, translation, and storage is performed using the demonstration tool described in

Appendix D. Using this tool, once a domain model is stored as a GOMT specification it can be

automatically translated into O-SLANG as defined in Chapter VII.

The notation used to present the GOMT AST structure follows the conventions of the OMT

object model with two extensions. First, rectangles represent classes of AST objects (which may

or may not have subobjects or attributes) while rectangles with rounded corners represent symbols

or numbers that define specific attributes associated with their parent AST objects. Second, AST

subobjects with multiplicities greater than one may either represent a set of AST subobjects or a

sequence of AST subobjects. Sets are denoted by braces ({ }) surrounding the AST object name

while sequences are denoted by brackets ([]).

A.2 Object Modeling Technique Representation Assumptions

An OMT specification has three basic components: an object model, a dynamic model, and a

functional model. However, these three models do not operate independently, although Rumbaugh

A-1

does not rigorously define their precise interaction. The OMT object model defines the structure

of a domain in terms of the object classes in the domain and the relationships between them. Each

object class is defined in terms of its attributes and operations while the relationships between them

are captured via associations, inheritance, and aggregation. The dynamic model captures the state-

based behavior of a class and is generally defined at the class level. The functional model describes

how a domain transforms data and is not concerned with the objects involved or transformation

timing.

Rumbaugh does not tie the three models together tightly; therefore, I made some assumptions

about the how the OMT models are used.

1. Assumption A.1 The object model is developed first and defines all object classes and as-

sociations present in a domain. Attributes are defined for each object class.

2. Assumption A.2 There is an implied domain-level aggregate class for each object model.

This domain-level object class is an aggregate composed of each object class and association

defined in the object model.

3. Assumption A.3 There is a dynamic model for each object class. This dynamic model de-

fines the states, events, actions, and communications for each object class. A purely functional

object class has one state and a unique event for each operation defined.

4. Assumption A.4 The dynamic model is represented as a Mealy state machine where all

actions occur on transitions between states. Non-state attributes values are not modified

simply by receiving an event; a specific action must be specified in response to a state transition

in order to modify an object's non-state attribute values.

5. Assumption A.5 Events not included in a dynamic model are assumed to have no affect on

the object.

A-2

6. Assumption A.6 Events with common names represent the same event between all dynamic

models in a given domain.

7. Assumption A.7 There is a functional model for each aggregate object class in the domain.

Aggregate functional models are used to define the effect of actions specified in the aggregate

dynamic model across all components of the aggregate. They may not define the effect of

aggregate actions on components outside the aggregate.

8. Assumption A.8 All primitive actions (those not defined by a functional model) are defined

axiomatically using first order logic in O-SLANG syntax. These definitions completely define

the effect of the operation on each object attribute.

Although OMT has three distinct models, it basically models object classes and their rela-

tionships. The dynamic and functional OMT models (making the above assumptions) serve only

to define the behavior of those object classes. Therefore, the GOMT AST defined in this Appendix

is based on a set of object classes and a set of associations between them. Figure A.1 shows the

top-level of the GOMT AST. Other relationships such as aggregation and inheritance are captured

naturally in the object class definitions.

GOMT-DomainTheory

1+
{GO6M-Class}

Figure A.1 Top Level GOMT Abstract Syntax Tree

A.3 Class Objects

The OMT object model captures the structure of a domain model by defining the' classes of

objects in the domain model in terms of their attributes and operations, as well as relationships

A-3

between object classes. Each class describes a group of objects with similar attributes and behavior.

Class relationship constructs include inheritance and aggregation as well as associations that may

exist between classes. As stated above, due to my assumptions about how OMT is used to define

domain models, an OMT class consists of object model class constructs as well as dynamic and

functional components. Figure A.2 shows the AST for the GOMT "Class". Basic attributes such

as the class name, attributes, and operation definitions are captured directly in the AST. Each of

the subobjects in the class AST is discussed below.

n ame isuperciass} [0.ih)AP)~u lGo aan!tbn) [Axiom]

(P 107 _$F =.1),s

Figure A.2 GOMT Class Abstract Syntax Tree

The name attribute is simply a symbol that stores the name of the class. Inheritance is

captured in the superclass attribute. The superclass attribute is just a set of symbols representing

the names of all superclasses.

Aggregation is captured by a set of connection objects as shown in Figure A.3. Connec-

tion objects are used to represent aggregates as well as associations (as discussed below). Each

connection links the current class to a component class. The name attribute is the name of the

component class. The qualifier subobject defines aggregate (or association) qualifiers and has an

associated name and a datatype. Each connection may also have a role name associated with it

as defined by the role attribute. The role is simply a name placed on one end of an aggregate or

association. Finally, the multiplicity of the component (or association) connection is defined by a

mult subobject. Each connection has a multiplicity and this multiplicity can be either one, many,

A-4

many ordered, one-or-more, optional (zero or one) or specified by a subset of non-negative integers.

These options are captured in a mult object. Subtypes of the multiplicity object - one, many, plus,

optional, and specified - capture these possibilities. The subtypes one, optional, and many have no

attributes. Their object type alone uniquely identifies the multiplicity. The plus subtype actually

captures more than the basic one-or-more multiplicity as defined by Rumbaugh and allows a more

general "n or more" multiplicity by allowing the user to insert any non-negative integer as the int

attribute. The specified multiplicity object is also very flexible. Each specified object has a set of

ranges defined by the value attributes. Each spec-range object may have either one or two values.

If only one value is specified, then exactly that value is taken as a valid multiplicity. If two values

are specified then the entire range between valuel and value2 (inclusive) is a valid range.

F onnection

name Qluehier role Lut

name datatype On Many Pt Optona Specified

Figure A.3 Connection Abstract Syntax Tree

Class-level constraints are captured via the class object's constraints subobject. This con-

straint object is actually a set of axiom objects defined below. In my research, the axiom objects

are first-order algebraic axioms; however, in general, the axiom object definition may be replaced

by any axiom notational style. Therefore, other notations such as Z's set-based syntax, could be

inserted as well.

A-5

Each class dynamic model is captured by the states and transitions objects. Each of these

objects are sets of subobjects that define the state or transition. Both state objects and transi-

tion objects are discussed in Section A.5. The class functional model is captured by the process,

datastore, and dataflow Each these objects are discussed in detail in A.6.

A.3.1 Attribute Objects. The AST for the GOMT Attribute object is shown in Figure A.4.

There are two types of attributes as defined by Rumbaugh: normal and derived. Normal attributes

are those attributes that have a name and a datatype and may take on any values in the datatype.

Unless constrained via class-level constraints, these attribute values are generally independent of

other attribute values. Derived attributes, on the other hand, derive their value from values of the

other class attributes. Therefore, there are two subtypes of an attribute object: derived-attr and

normal-attr. Although both have a similar structure-name, a set of axioms, and a datatype-the

interpretation of that structure is different. Actually, the name and the datatype attributes have

the same interpretation. It is in the set of axioms where the difference lies. The axioms of a derived

attribute define the value of the derived attribute based on other class attributes. In a normal

attribute, the axioms define only the initial value associated with the attribute. This set of axioms

may be a single value such as "12.3" or it may be a complex set of axioms based on other attribute

values set during object initialization.

D 1, 1 Tr NorfnatAttr

nae txoj aayenme Acim datatype

Figure A.4 GOMT Attribute Abstract Syntax Tree

A-6

A.3.2 Operation Objects. Figure A.5 shows the AST for the GOMT-Op object. An

operation object can fully define a class operation. The operation signature is defined by the name

attribute, parameter subobjects, and the result subobject. The parameter subobject is a set of

parameter objects with name and datatype attributes. The result subobject defines the datatype

returned by the operation (if required). The definition subobject is a set of axiom objects that

define the semantics of the operation. Finally, is-abstract is a boolean-valued attribute that states

whether the operation is fully defined or not.

GOMT-Op

naeGarmtr] Rsl Definition (i-btrc

datatyp [Axiomn]

Figure A.5 GOMT Operation Abstract Syntax Tree

A.4 Association Objects

The AST for an Assoc (association) object is shown in Figure A.6. Every association has a

name and at least two connections (object classes). The connection object is the same as defined

above in Section A.3 and defines the classes, roles, qualifiers, and multiplicities of each class in the

association. Associations may also have link attributes and link operations. These are the same

attributes and operations as defined in Sections A.3.1 and A.3.2.

A-7

name {Connection) {Ajbu GOMT-op}

Figure A.6 GOMT Association Abstract Syntax Tree

A.5 Dynamic Model Objects

The OMT dynamic model captures the temporal behavior of object classes defined in the

object model. The basic concepts of the dynamic model include events, actions, and states. An

event is a one-way transmission from one object to another and may pass additional information.

An action is an operation performed by an object. This operation may modify the object state

or generate an event. A state is defined as an abstraction of attribute values of an object. The

dynamic model is represented using state charts and event flow diagrams. A statechart models

the transitions between states of a given object class. In the dynamic model, these transitions are

caused by the reception of a given event and result in an action being taken. In the dynamic model,

OMT allows actions to occur in a state or on transitions (i.e., a combined Mealy-Moore machine);

however, to simplify the translation process in this research, I have restricted the dynamic model

to a Mealy machine representation where all actions occur on transitions. This does not represent

a semantic restriction since the equivalence of Mealy and Moore machines is well known (47:44).

Guards (boolean expressions) may be added to transitions to prevent them from occurring unless

certain conditions are met. If the guard is true and the event for that transition is received, the

transition takes place. If the guard is false, then the transition does not take place even though

the required event is received.

For a given class, the dynamic model is captured as a set of states and transitions between

states. The ASTs for the state and transition objects are shown in Figures A.7 and A.8. Each state

A-8

object has a name attribute, possibly a set of axiom objects defining state invariants, and a set of

substate objects. Actually, Rumbaugh allows two special types of states: concurrent and substates.

Concurrent states are defined implicitly in a set of states. Concurrent states are partitions of a

set of states where there are no transitions from one partition to the other. The second special

type of state is a substate. Substates are a set of states that further define transitions while within

some other, higher-level state. Substates are defined by a set of state objects internal another state.

Thus states in a class AST are arranged hierarchically. That is, the state objects of a class may

not contain all the states and substates for the class. It only directly contains the top-level states.

Each substate is actually stored under its superstate object.

{State)}

Cname t ,,

Figure A.7 GOMT State Abstract Syntax Tree

While states are stored hierarchically, transition objects are stored as a single set under the

class object. This forces all states in a class to have unique names. A transition defines an arc from

one state to another based on the receipt of an event. The transition name attribute is the name

of the incoming event while the from-state and to-state attributes are the names of the two states

involved. Each transition may have parameters, a guard condition, and a set of actions that are

performed upon receipt of the named event. The parameter objects are a sequence of parameters

as defined in Section A.3.2, the guard condition is defined by a single axiom, and the actions are a

sequence of action objects defining the actions performed by the object upon receipt of the event.

Each action object has a name attribute, a sequence of parameter objects, and possibly another

action object. These subaction objects are only used when its parent action is a "send" action. A

A-9

"send" action is the OMT syntax for broadcasting an event, defined in the subaction object, to the

system. Subaction objects are only used with a "send" action.

nae ParameterI: AA:o 7jActon] rm-tt to-state

name ~datatype nm Prmtr

name datatype

Figure A.8 GOMT Transition Abstract Syntax Tree

A.6 Functional Model Objects

In OMT, the functional model is represented by a data flow diagram that shows how an

aggregate-level class implements functions using component events and methods within the aggre-

gate. Basically, there are three components in the restricted OMT functional model: processes,

data flows, and data stores. Processes translate data and may use subprocesses to accomplish their

function. Such higher-level processes are generally decomposed into subprocesses using nested data

flow diagrams. Data flows show how data is passed between processes and datastores. Besides

passing data from the output of one process to the input of the next process, data flows may be

(1) duplicated and passed to many processes, (2) decomposed into multiple components, or (3)

composed from a number of components into a single aggregate value. Data stores are passive

A-10

objects that store data for later use. Obvious data stores are the object class sets and associations.

A data store allows a process to create, update, and store data for later use.

The ASTs for the three functional components are shown in Figure A.9. The process and

datastore objects are very similar. Each has a name attribute and two sets of flow objects: data-

flows-in and data-flows-out. A flow object simply stores the name and type attributes of dataflow

object defined below. The process object is slightly different from the datastore object in that

the process object may also have subprocess process objects. This set of subprocesses define the

implementation of the process as defined in Section 5.5.

The third functional object is a dataflow object. A dataflow object has four attributes: name,

type, source, and target. The name of the dataflow object is the name of a dataflow arc between

two entities (processes or datastores) in the functional model while the type attribute represents

the datatype of the datafiow. The source and target attributes store the name of the process or

datastore where the datafiow originates and terminates. A dataflow with a blank source or target

attribute denotes an off-page connector. In the case of a top-level dataflow, an off-page connector

represents an input or output external to the domain. The actual source/target of an off-page

connector in a nested diagram is (or at least should be) the source/target of the "parent" dataflow

from the parent diagram.

dt-lows-in dt-lows-out

name1 flow} los

dt-lows-,]n data-flows-out

nam Cj;a {Fto4 nam tye suCe target

Figure A.9 GOMT Functional Model Abstract Syntax Tree

A-11

A.7 Generic OMT AST Completeness

This section discusses the completeness of the GOMT AST in terms of what it captures and

what it does not. Section A.7.1 discusses the completeness of the GOMT AST in terms of the

OMT object model, Section A.7.2 discusses the OMT dynamic model, and Section A.7.3 discusses

the OMT functional model.

A. 7.1 Object Model. The GOMT AST has the capability to capture all the basic features

of the OMT object model. The GOMT AST directly models the classes (concrete and abstract),

attributes (normal and derived), and operations (concrete and abstract). The GOMT AST also

captures the relationships defined in an OMT object model including inheritance, aggregation, and

association. More subtle features of OMT relationships such as discriminators, multiplicities, and

link attributes and operations are also captured.

There are a few, non-critical, OMT object model items not directly captured by the GOMT

AST. The first of these is operator propagation; however, the inability to directly model operator

propagation does not restrict the domain designer since the effect of operator propagation may

be explicitly expressed through the axiomatic definition of the operation. Derived classes and

associations are also not captured in the GOMT AST. According to Rumbaugh (83:75) derived

classes and associations are redundant and are completely determined by other objects; the only

reason for derived classes and associations is to aid understandability. Therefore, since the lack

of derived classes and associations does not restrict the domain designer's modeling ability, they

are not included in the GOMT AST. General association constraints are also not modeled directly

in the GOMT AST; however, the domain designer may capture these constraints as class-level

constraints (via first-order axioms) in the aggregate containing the association.

A.7.2 Dynamic Model. The OMT dynamic model consists of set of states and transitions

based on a Mealy-Moore state machine. The GOMT AST directly captures the set of states and

A-12

transitions between them; however, while the OMT dynamic model allows states to have internal

activities and actions, in the GOMT AST, I assume that all actions occur only on transitions

(i.e., a Mealy state machine). However a Mealy machine (where activities and actions occur only

on transitions) has been shown to be equivalent in expressive power to a Moore machine (where

activities and actions occur in a state). Thus any dynamic model captured in a Mealy-Moore

machine is translatable to a Mealy machine and may be captured by the GOMT AST. The OMT

dynamic model also allows for entry and exit actions that are performed on all transitions into or

out of a state. Although entry and exit actions simplify the diagram, they are easily placed on

appropriate incoming and outgoing transition with the same affect.

OMT also allows for substates and concurrent states. Substates are modeled directly in the

GOMT AST. Concurrent states are not explicitly denoted in the GOMT AST; however, the set of

concurrent states can be computed by partitioning all class states such that no states in distinct

partitions share a transition. Once again, although not captured directly in the GOMT AST, the

set of concurrent states are computable.

Two state transition features allowed in the OMT dynamic model that are not captured di-

rectly in the GOMT AST are control splitting and synchronization. In essence, control splitting

corresponds to transitioning to a state with concurrent substates, as shown in Figure A.10. Syn-

chronization of control corresponds to leaving a set of states after two or more events occur in any

order. In Figure A.10 event1 causes the state to change from state A to C, or more correctly to

the two concurrent states C1 and C2. When events event2 and event3 have both happened, in any

order, the state changes to state B. Without special split and synchronization operators, this same

control mechanism is implemented as shown in Figure A.11. The attributes synch2 and synch3

are used to determine when event 2 or 3 has been received. Then two separate transitions leave

state C guarded by the condition that the appropriate synchronization attribute has been set to

true. Simple enumeration of all possible combinations of state and synchronization variable values

A-13

Figure A.10 OMT Split/Synchronization

Figure A.11 Generic OMT Split/Synchronization

shows that, although Figure A.10 is more aesthetically pleasing, both Figures A.10 and A.11 have

the same semantic result. Therefore, although the GOMT AST does not include transition splits

or synchronizations, their effect is realizable by the user.

A. 7.3 Functional Model. The OMT functional model uses data flow diagrams consisting

of processes, dataflows, datastores, actors, and control flows. Actors and control flows are not

directly included in the GOMT AST. A functional model process transforms data and may be

further refined by subprocesses. Processes and subprocesses are stored directly in the GOMT AST.

Simple dataflows are also directly stored in the GOMT AST; however, the GOMT AST

does not capture some special dataflow notation included in OMT for convenience: duplication,

composition, and decomposition. Duplication allows the output of one process to flow into the

inputs of two or more processes. Composition takes multiple dataflows and composes their data into

an aggregate datatype. Decomposition accomplishes the inverse of composition-it allows aggregate

datatypes to broken into it component datatypes. Each of these operations can be modeled with

appropriately defined processes. Therefore, lack of direct inclusion in the GOMT AST does not

present modeling difficulties.

A-14

According to Rumbaugh, datastores are passive objects that store data and are defined in the

object model. Thus datastores are classes or associations and are directly modeled in the GOMT

AST.

Actors are active objects that drive OMT functional models by producing and consuming

the data used in the corresponding dataflow diagram. However, since actors represent entities

interacting with the domain being modeled, they are external to the domain and are not required

in order to specify the domain model. Therefore, actors are not modeled in the GOMT AST.

The last items of interest in the OMT dynamic model are control flows. However, according

to Rumbaugh, control flows are duplicative. Therefore, omitting control flows from the GOMT

AST eliminates a source of inconsistency and does not restrict the domain designer.

A.8 Conclusions

This Appendix presents the generic OMT abstract syntax tree definition that is used in my

research as the starting point for the translation from OMT to my theory-based object model.

The GOMT captures the essential details of OMT based on assumptions of how OMT is used.

Because OMT has a rich set of duplicative features, some of the non-essential features are not

directly modeled in the GOMT AST; however, OMT's modeling power has not been decreased.

Any domain modeled in Rumbaugh's OMT representation may be modeled in the generic OMT

AST without semantic compromise.

A-15

Appendix B. O-SLANG

B. 1 Introduction

This Appendix defines the syntax and semantics of the algebraic specification language 0-

SLANG. O-SLANG is an object-oriented extension of SLANG (54) and like SLANG incorporates

category theory operations directly and implicitly. The syntax of O-SLANG is defined by the

grammar and the corresponding O-SLANG AST as described in Section B.3. The semantics of

O-SLANG is defined by its translation to SLANG.

B.2 Background

O-SLANG is an extension of the SLANG specification language used in Specware (54, 55).

SLANG is based on first-order logic and category theory. A SLANG specification is a theory presen-

tation of a formal theory. Theories consist of a finite set of sorts, operations, and a set of axioms

closed under logical entailment. A specification is a set of sorts, operations, and a set of finite

axioms. Under logical entailment, a specification generates a theory that includes, as axioms, all

theorems that can be generated from the axioms in the specification. Specifications and specifica-

tion morphisms define the cocomplete category Spec. Diagrams in Spec consist of specifications

and specification morphisms and are used to define system structure. SLANG uses the category

theory colimit operation to combine smaller specifications into larger, more complex specifications.

O-SLANG uses the concepts from SLANG to capture object-oriented system specifications.

Sorts and operations are used to describe various internal object class features while category

theory concepts and operations are used to define the relationships between object classes.

B.3 O-SLANG Syntax

O-SLANG syntax is very similar to the core SLANG syntax with some additional language con-

structs. The Refine O-SLANG AST definition and grammar are shown in Section B.3.1. Whereas

B-1

core SLANG has only specification and diagram constructs to define a system, O-SLANG has numer-

ous object-oriented constructs that map into specifications and diagrams. Also, O-SLANG hides

much of the diagram construction except in the case of aggregation. A table of basic O-SLANG

constructs and their SLANG counterparts are shown in Table B.1.

1O-SLANG SLANG
Class Diagram & Specification
Abstract-Class Diagram & Specification
Event Specification
Link Specification
Association Diagram & Specification
Aggregate Diagram

Table B.1 O-SLANG Constructs

The top level O-SLANG abstract syntax tree is shown in Figure B.1. Figure B.1 defines

an O-SLANG Domain Theory as consisting of one or more O-SLANG specifications. O-SLANG

specifications represent either classes, abstract classes, events, links, associations, or aggregates.

Classes, events, links, and associations are all similar in that they share a similar specification

body.

Figure B.2 shows a further breakdown of classes, events, links, and associations. Actually

Figure B.2 is over generalized. While classes have all of the features shown, events, links, and

associations only have a subset of those as shown in Figure B.3.

Figure B.4 shows the abstract syntax tree for O-SLANG axioms. Although both O-SLANG

and SLANG are based on first order logic, their axiom syntax is different. SLANG uses a hard to

read "Lisp-like" prefix notation. To simplify use, O-SLANG uses standard infix notation. Although

they differ in appearance, the two axiom formats are semantically equivalent.

B.3.1 O-SLANG Grammar. This section defines the O-SLANG grammar. Words in bold

typeface indicate language key words; brackets indicate optional items; a bar, 1, represents the

B-2

0.5-

Ociak.

0.as7

Figure B.1 O-SLANG Ab0-strc ytxTre(atI

cu..s. ca..

s-, Blk -Bop k 5yBl

sw Attfib b~lhLike ce.se objects fhl

Figure B.2 0-SLANG Abstract Syntax Tree (Part II)

B-3~od

O Event Link Association

Class Sort Class Sort Class Sort
Import Import

Sort-Ref Sort-Ref Sort-Ref
Operation Operation
Attribute Attribute
Method Method

Event-Op
Constructor Constructor

Axiom Axiom Axiom
Theorem Theorem Theorem

Figure B.3 O-SLANG Features Sublist

prim-ax

Axiom
op-params

Relation LogicTerm

Sipl-iomop-er"eon

Identifier IdentName

Figure B.4 O-SLANG Abstract Syntax Tree (Part III)

choice operator; and the * and + operators indicate zero or one or more of the preceding items are

allowable.

O-Slang-DomainTheory -+ Spec+

Spec --+ class Class I abstract-class AbClass I event Event I link Link

I association Association I aggregate Aggregate

Class --* Id [Parameter [, Parameter]*] is ClassBody

AbClass --* Id [Parameter [, Parameter]*]] is AbclassBody

B-4

Event --* Id [Parameter [, Parameter]*]] is EventBody

Link --+ Id [Parameter [, Parameter]*]] is LinkBody

Association --* Id [Parameter [, Parameter]*]] is AssocBody

Aggregate -+ Id is nodes Node[,Node]* arcs Arc[,Arc]* end-aggregate

Node --+ [Id:] Id

Arc --+ Node - > Node [: { NodeMap[,NodeMap]* }]

NodeMap --+ Node - > Node I (OperationDecl) -> (OperationDecl))

Parameters - Id : Id

ClassBody -- class-sort ClassSort

contained-class Id[,Id]*

imports Id[,Id]*

sorts Id[,Id]*

sort-axioms SortAxiom[;SortAxiom]*

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-class

AbClassBody --+ class-sort ClassSort

contained-class Id[,Id]*

imports Id[,Id]*

sorts Id[,Id]*

sort-axioms SortAxiom[;SortAxiom]*

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-class

B-5

EventBody --+ class-sort ClassSort

imports Id[,Id]*

sorts Id[,Id]*

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-event

LinkBody - class-sort ClassSort

imports Id[,Id]*

sorts Id[,Id*
operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-link

AssocBody --+ class-sort ClassSort

link-class LinkClass

imports Id[,Id]*

sorts Id[,Id]*

sort-axioms SortAxiom[;SortAxiom]*

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-association

ClassSort --+ Id[,Id]* < Id[,Id]*

SortAxiom --+ Id[=Id]*

B-6

OperationBlock --* OperationDecl*

AttributeBlock --+ OperationDecl*

StateAttributeBlock -4 OperationDecl*

MethodBlock --+ OperationDecl*

StateBlock -*OperationDecl*

EventBlock -+OperationDecl*

Constructor - constructors I Id [, id]j* construct Id

AxiomBlock -4 AxiomDef [;AxiomDef]*

Axiom-Def -* Axiom IDefinitionBlock

TheoremsBlock --* Axiom[;Axiom]*

DefinitionBlock -4 definition of Id is Definition[; Definition]* end-definition

OperationDeci -* Id : OpSig

OpSig -~Id[,Id]* - > Id[,Id]*

Axiom -*Relation ILogicTerm

Relation --+ SimpleAxiom IRelTerm

SimpleAxiom --+ Primary IMathTerm

Primary -*Simpld I Tuple I Id (Axiom[,Axiom]*)(Axiom)

Simpleld -fsymbol

Tuple -~ < SimpId+ , >

LogicTerm --+ And-Term I Or-Term I Not-Term I If f-Term

I Implies-Term I Uquant-Term I Equant-Term

And-Term -4 Axiom & Relation

Or-Term --+ Axiom I Relation

B-7

Not-Term --* Relation

1ff-Term - Axiom <=> Relation

Implies-Term -*Axiom => Relation

Uquant-Term -*V (Relation[, Relation]*)Relation

Equant-Term 3*~ Relation[,Relation*)Relation

RelTerm --+ Equals-Term I NotEquals-Term I User-Term

LT-Term ILTE-Term I GT-Term I GTE-Term

Equals-Term -* Relation = SimpleAxiom

NotEquals-Term --* Relation <> SimpleAxiom

User-Term --* Relation Id SimpleAxiom

LT-Term --+ Relation < SimpleAxiom

LTE-Term -+ Relation <= SimpleAxiom,

GT-Term -~ Relation > SimpleAxiom

GTE-Term -+Relation >= SimpleAxiom

MathTerm -~Add-Term I Sub-Term I Mult-Term Div-Term

Add-Term ---* SimpleAxiom + Primary

Sub-Term -- SimpleAxiom - Primary

Mult-Term --* SimpleAxiom * Primary

Div-Term - SimpleAxiom / Primary

Simpld --+ integer Ireal I Id

Id -4 [symbol.] symbol

B-8

B-4 O-SLANG Semantics

The semantics of O-SLANG specifications are defined by the underlying SLANG translations.

Most of this translation is straightforward. Sorts in O-SLANG map to sorts in SLANG; operations,

attributes, methods, events, and states map to operations in SLANG; and imports, theorems, axioms,

and definitions in O-SLANG map to identical constructs in SLANG. More complex translations are

required for container classes, associations, and inherited classes. Actually, the container classes

and associations use the SLANG colimit operation and SET specification to build sets of objects as

defined in Chapter VII.

B.4.1 Classes. An example of an O-SLANG class is shown Figure B.5. The class sort,

sorts, operations, attributes, state-attributes, methods, states, and events define the signature of the

underlying SLANG specification (Figure B.6). All O-SLANG sorts, including the class sort, become

SLANG sorts while O-SLANG operations, attributes, state-attributes, methods, and events become

SLANG operations. O-SLANG states map to SLANG constants, or nullary operations. Translation

of the axioms from O-SLANG to SLANG is a straight-forward rewriting exercise. The axioms are

translated from infix notation to prefix notation. The import mechanism works identically in both

O-SLANG and SLANG and thus no translation is required. The sort axiom defined in Figure B.5

has no real purpose in this specification except to illustrate its use. The O-SLANG sort axiom only

allows the equivalencing of sorts and thus is a subset of the SLANG sort axiom construct.

B.4.2 Class Sets. In O-SLANG, whenever a class is defined, a "class set" class is automat-

ically created as shown in Figure B.7. Because the class set, denoted by a contained-class construct

in the class specification, is a class whose class sort is a set of objects, the underlying SLANG spec-

ification becomes more complicated. Figure B.8 shows the underlying SLANG specifications that

are generated by an O-SLANG class set specification.

B-9

class Acct is
import Amnnt, Date
class sort Acct
sorts Acct-State
sort-axioms Arnnt = Integer
operations

attr-equal :Acct, Act - Boolean
attributes

date :Acct - Date
bal : Acct - Amnnt

state-attributes
acct-state :Acct - Acct-State

methods
create-acct :Date - Act
credit, debit :Acct, Amnnt - Acct

states
ok, overdrawn :- Acct-State

events
new-aect :Date -fAcct

deposit, withdrawal :Acet, Amnnt - Acct
axioms

% state uniqueness and invariant axioms
ok $ overdrawn;
V (a: Acct) acct-state(a) =ole * bal(a) > 0;
V (a: Acct) acct-state(a) = overdrawn = . bal(a) < 0;

% operation definitions
V (a,al: Acct) attr-equal(a, al) date(a) = date(al) A bal~a) =bal~al);

% method definitions
V (d: Date) date(create-acct(d)) d A bal(create-acct(d)) = 0;
V (a: Acct, x: Amnnt) bal (credit (a,x)) = bal(a) + x
A date (credit (a,x)) = date(a) A rate (credit (a,x)) = rate(a)
A int-date(credit(a,x)) =int-date(a) A check-cost (credit (a,x)) = check-cost(a);

% event definitions
V (d: Date) acct-state(new-acct(d))=ok A attr-equal(new-acct(d), create-acct(d))
V (a: Acct, x: Amnnt) acct-state(a)=ok

=> acct-state(deposit(a,x))=ok A attr-equal(deposit(a,x), credit(a,x));
V (a: Acct, x: Amnnt) acet-state(a) =overdrawn A bal(a) + x > 0

* acct-state(deposit(a,x))=ok A attr-equal(deposit(a,x), credit(a,x));
V (a: Acct, x: Amnnt) acct-state(a) =overdrawn A bal(a) + x < 0

=> acct-state (deposit (a,x)) =overdrawn A attr- equal (deposit (a,x), credit(a,x));
V (a: Acct, x: Amnnt) acct-state(a)=ok A bal(a) > x

* acct-state (withdrawal (a,x)) =ok A attr-equal (withdrawal (a,x), debit(a,x));
V (a: Acct, x: Amnnt) acct-state(a)=ok A bal(a) < x

=> acct-state(withdrawal (a,x)) =overdrawn A attr-equal (withdrawal (a,x), debit(a,x));
V (a: Acct, x: Amnnt) acet-st ate(a) =overdrawn

#, acct-state (withdrawal (a,x)) =overdrawn A attr-equal (withdrawal (a,x), a)
end-class

Figure B.5 Object Class

The Acct- Class- Colimit specification creates a specification with a set of Acct objects. The

Acct-Class-Set specification Simply renames the set to Acct-Class. This renamed specification is

then included into the Aet-Class specification where the class operation and axioms defined in

the 0-SLANG class specification are translated into SLANG operations and axioms. The colimit

and renaming specification are automatically generated based on the class name specified in the

contained-class construct on the 0-SLANG specification.

B.4.3 Communication. An example of an 0-SLANG event theory is shown in Figure B.9.

This is translated as defined above for a class into a SLANG specification that defines a theory

B-10

spec Acct is
import Amnt, Date
sorts Acct, Acct-State
sort-axiom Amnt = Integer
op attr-equal : Acct, Acct -> Boolean
op date : Acct -> Date
op bal : Acct -> Amnt
op acct-state : Acct -> Acct-State
op create-acct : Date -> Acct
op credit, debit : Acct, Amnt -> Acct
const ok, overdrawn : Acct-State
op new-acct : Date -> Acct
op deposit, withdrawal : Acct, Amnt -> Acct

% state uniqueness and invariant axioms
axiom (not (equal ok overdrawn))
axiom (fa (a: Acct) (implies (equal (acct-state a) ok) (greater-than-or-equal (bal a) zero)))
axiom (fa (a: Acct) (implies (equal (acct-state a) overdrawn) (less-than (bal a) zero)))

% operation definitions
axiom (fa (a al: Acct) (implies (attr-equal a al) (and (equal (date a) (date al)) (equal (bal a) = (bal al))))

% method definitions
axiom (fa (d: Date) (and (equal (date (create-acct d)) d) (equal (bal (create-acct d)) zero)))
axiom (fa (a: Acct x: Amnt) (and (and (equal (bal (credit a x)) (plus (bal a) x)) (date (credit a x)) = (date a))

(and (equal (rate (credit a x)) (rate a))
(and (equal (int-date (credit a x)) (int-date a)) (equal (check-cost (credit a x)) (check-cost a))))))

% event definitions
axiom (fa (d: Date) (and (equal (acct-state (new-acct d)) ok) (attr-equal (new-acct d) (create-acct d))))
axiom (fa (a: Acct x: Amnt) (implies (equal (acct-state a) ok)

(and (equal (acct-state (deposit a x)) ok) (attr-equal (deposit a x) (credit a x)))))
axiom (fa (a: Acct x: Amnt) (implies (and (equal (acct-state a) overdrawn)

(greater-than-or-equal (plus (bal a) x) zero))
(and (equal (acct-state (deposit a x)) ok) (attr-equal (deposit a x) (credit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (and (equal (acct-state a) overdrawn) (less-than (plus (bal a) x) zero))
(and (equal (acct-state (deposit a x)) overdrawn) (attr-equal (deposit a x) (credit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (and (equal (acct-state a) ok) (greater-than-or-equal (bal a) x))
(and (equal (acct-state (withdrawal a x)) ok) (attr-equal (withdrawal a x) (debit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (and (equal (acct-state a) ok) (less-than (bal a) x))
(and (equal (acct-state (withdrawal a x)) overdrawn) (attr-equal (withdrawal a x) (debit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (equal (acct-state a) overdrawn)
(and (equal (acct-state (withdrawal a x)) overdrawn) (attr-equal (withdrawal a x) a))))

end-spec

Figure B.6 Underlying SLANG Specification

signature. This signature is used in a colimit operation (via an aggregate definition) to unify an

event in one class with an event in a second class.

B.4.4 Links. A link is used to define a general relationship between two classes. An

example of an O-SLANG link is shown in Figure B.10 with the SLANG equivalent specification shown

in Figure B.11. Because a link is created without knowing the actual classes it is associating, the

sorts X and Y do not have meaning until they are unified with a class sort in the aggregate colimit.

All sorts and operations are translated exactly like those of a class as described in Section B.4.1.

B.4.5 Associations. An association is a set of links and thus has a very similar translation

to that of a class set. However, instead of using just the class specifications related through the

B-11

class Acct-Class is
contained-class ACCT
class sort Acct-Class
events

new-acct-class : -- Acct-Class
withdrawal : Acct-Class, Amnt - Acct-Class
deposit : Acct-Class, Amnt - Acct-Class

axioms
new-acct-class 0 = empty-set;
V (a: Acct, ac: Acct-Class, x: Amnt) a E ac * deposit(a,x) E deposit(ac,x);
V (a: Acct, ac: Acct-Class, x: Amnt) a E ac 4 withdrawal(a,x) E withdrawal(ac,x)

end-class

Figure B.7 O-SLANG Class Set Specification

spec Acct-Class-Colimit is
colimit of diagram

nodes TRIV, ACCT, SET
arcs TRIV -> ACCT : {E -> Acct}

TRIV -> SET: {}
end-diagram

spec Acct-Class-Set is
translate ACCT-CLASS-COLIMIT
by {Set -> Acct-Class, E -> Acct}

spec Acct-Class is
import ACCT-CLASS-SET
op new-acct-class : -> Acct-Class
op withdrawal : Acct-Class, Amnt -> Acct-Class
op deposit : Acct-Class, Amnt -> Acct-Class
axiom (equal (new-acct-class) empty-set)
axiom (fa (a: Acct ac: Acct-Class x: Amnt) (iff (in a ac) (in (deposit a x) (deposit ac,x))))

axiom (fa (a: Acct ac: Acct-Class x: Amnt) (iff (in a ac) (in (withdrawal a x) (withdrawal ac x))))
end-spec

Figure B.8 SLANG Class Set Specification

link specification, the sets of the related classes must be used to allow for various OMT association

multiplicities (optional, many, ordered, etc.). This does not present a problem since every class

has an associated class set specification already defined. An example of an O-SLANG association

is shown in Figure B.12 with its SLANG counterparts shown in Figure B.13.

B.4.6 Aggregates. Aggregates are a unique type of O-SLANG specification. Aggregates

define a colimit operation over previously defined classes, associations, and events that make up

the aggregate specification. An aggregate specification does not have the ability to add attributes,

event Event is
class sort Event-Sort
sorts X, Y
events

event : Event-Sort, X, Y -- Event-Sort
end-class

Figure B.9 Event Theory

B-12

link XY-Link is
class sort XY-Link
sorts X, Y
operations

attr-equal : XY-Link, XY-Link -* Boolean
attributes

x-obj: XY-Link -* X
y-obj: XY-Link -* Y

methods
create-xy-link: X, Y -* XY-Link

events
new-xy-link: X, Y -- XY-Link

axioms
% operation definition
V (xl,x2: X) attr-equal(xl,x2) *. x-obj(xl) = x-obj(x2) A y-obj(x1) = y-obj(x2);

% create method definition
V (x: X, y: Y) x-obj(create-xy-link(x,y)) = x A y-obj(create-xy-link(x,y)) y;

% new event definition
V (x: X, y: Y) attr-equal(new-xy-link(x,y), create-xy-link(x,y))

end-link

Figure B.10 O-SLANG Link Specification

spec XY-Link is
sorts X, Y, XY-Link
op attr-equal : XY-Link, XY-Link -> Boolean
op x-obj: XY-Link -> X
op y-obj: XY-Link -> Y
op create-xy-link: X, Y -> XY-Link
op new-xy-link: X, Y -> XY-Link
axiom (fa (xl:X x2:X) (iff (attr-equal xl x2) (and (equal (x-obj xl) (x-obj x2)) (equal (y-obj xl) (y-obj x2)))))
axiom (fa (x:X y:Y) (and (equal (x-obj (create-xy-link x y)) x) (equal (y-obj (create-xy-link x y)))))
axiom (fa (x:X y:Y) (attr-equal (new-xy-link x y) (create-xy-link x y)))

end-spec

Figure B.11 SLANG Link Specification

methods, events, constraints, etc. These additions are made through an extension of the aggregate

specification using a class specification that imports the aggregate. The nodes of an aggregate are

the classes, associations, and events included in the aggregate while the arcs are the specification

morphisms between the nodes that define the relationships between the nodes. Besides simply

combining a number of class and association specifications into a single aggregate specification, the

colimit operation unifies sorts and operations defined in separate classes and associations.

An example of an O-SLANG aggregate is shown in Figure B.14. The diagram of the aggregate

is shown in Figure B.15. The SLANG version of the aggregate is shown in Figure B.16.

Once the colimit specification is specified, new operations and axioms are added to an exten-

sion of colimit specification. This extension is created by importing the colimit specification into a

class specification and adding new operations and axioms as defined in Section B.4.1.

B-13

association XY-Assoc is
link-class XY-Link
class sort XY-Assoc
sorts X-Set, Y-Set
methods

image XY-Assoc, Y - X-Set
image XY-Assoc, X - Y-Set

events
new-xy-assoc -- XY-Assoc

axioms
% multiplicity axioms
V (1: XY-Assoc, y: Y) size(image(l, y)) > 1;
V (1: XY-Assoc, x: X) size(image(l, x)) = 1;

% new event definition
new-xy-assoc 0 = empty-set;

% image definitions
V (xy:XY-Assoc, l:XY-Link, y:Y) (I E xy & y-obj(l) = y) = x-obj(l) E image(xy,y);
V (xy:XY-Assoc, :XY-Link, x:X) (I E xy & x-obj(l) = x) =- y-obj(l) E image(xy,x)

end-association

Figure B.12 O-SLANG Association Specification

spec XY-Assoc-Colimit is
colimit of diagram

nodes TRIV, XY-LINK, SET
arcs TRIV-> XY-LINK : {E -> XY-Link}

TRIV -> SET: {}
end-diagram

spec XY-Assoc-Set is
translate XY-ASSOC-COLIMIT
by {Set -> XY-Assoc, E -> XY-Link}

spec XY-Assoc is
import XY-ASSOC-SET, X-CLASS, Y-CLASS
op image : XY-Assoc, Y - X-Class
op image : XY-Assoc, X - Y-Class
op new-xy-assoc : - XY-Assoc
axiom (fa (:XY-Assoc y:Y) (greater-than-or-equal (size (image 1 y)) one))
axiom (fa (:XY-Assoc x:X) (equal (size (image I x)) one))
axiom (equal (new-xy-assoc) empty-set)
axiom (fa (xy:XY-Assoc :XY-Link y:Y) (iff (and (in I xy) (equal (y-obj 1) y)) (in (x-obj 1) (image xy y))))
axiom (fa (xy:XY-Assoc :XY-Link x:X) (iff (and (in I xy) (equal (x-obj 1) x)) (in (y-obj 1) (image xy x))))

end-spec

Figure B.13 SLANG Association Specification

B.4.7 Inheritance. To this point, translation of O-SLANG specifications to SLANG speci-

fications is relatively simple; however, inheritance is more complex. Because SLANG has a limited

subsorting feature and makes no allowance for multiple subsorting, subsorting, as defined in 0-

SLANG, is simulated in SLANG. This simulation requires defining a subsort predicate based on the

defined attributes and copying each superclass attribute and operation into each subclass.

B.4.7.1 Single Inheritance. A typical example of O-SLANG single inheritance is

shown in Figures B.17 and B.18. Person is the supersort and Student is a subsort of Person. The

Student class defines only one new attribute, GPA. (For simplicity, no events have been defined for

B-14

aggregate XY-Aggregate is
nodes INTEGER, SET-i: SET, SET-2: SET, SET-a: SET,

X-CLASS, Y-CLASS, XY-Assoc
arcs SET-1 - X-CLASS : {E -- X, SET -* X-Class},

SET-1 - XY-Assoc: {E -- X SET -- X-Class},
5 SET-2 -* Y-CLASS: {E -- Y, SET -* Y-Class},

SET-2 -* XY-Assoc: {E -. Y, SET -* Y-Class},
SET-3 -- XY-Assoc: {E -* XY-Link, SET -* XY-Assoc},
INTEGER -- SET-1 : 11,
INTEGER -- SET-2: {}
INTEGER -* SET-3: {}

end-aggregate

Figure B.14 O-SLANG Aggregation Specification

Integer

Set Set Set

{E - X, {E -* XY-Link, {E - Y,
Set - X-Class} Set - XY-Assoc} Set - Y-Class}

fE - X,{E - Y,
Set -* X-Class} Set - Y-Class}

X-Class XY-Assoc Y-Class

c cc'

XY-Aggregate

Figure B.15 Aggregation Composition

spec XY-Aggregate is
colimit of diagram

nodes INTEGER, SET-i: SET, SET-2: SET, SET-3: SET,
X-CLASS, Y-CLASS, XY-Assoc

arcs SET-1 -t X-CLASS: {E -* X,
SET-1 -* XY-Assoc: {E -t X,
SET-1 -* X-CLASS: {SET -- X-Class},
SET-1 -* XY-Assoc : {SET -- X-Class},
SET-2 - Y-CLASS: {E -*Y,
SET-2 -* XY-Assoc: {E -*Y,

SET-2 -- Y-CLASS : {SET - Y-Class},
SET-2 -- XY-Assoc : {SET -- Y-Class},
SET-3 -- XY-Assoc: {E -- XY-Link, SET -- XY-Assoc},
INTEGER -* SET-1 : {J,
INTEGER -* SET-2: {J,
INTEGER -- SET-3: {}

end-diagram

Figure B.16 SLANG Aggregation Specification

B-15

the Person, Student, or Faculty classes defined below or in their SLANG counterparts. These would

be defined as usual and translated the same as the methods shown below.)

class Person is
import Date, Sex
class sort Person
attributes

name : Person - String
birthday : Person -p Date
ssan : Person - Integer

sex : Person -- Sexuality
methods

create-person String - Person
change-name Person, String - Person

events
axioms

ssan(p) > 0;
% create-person
name(create-person(n)) = n;
birthday(create-person(n)) = default-date;
ssan(create-person(n)) = 0;
sex(create-person(n)) = male;

% change-name
name(change-name(p,n)) = n;
birthday(change-name(p,n)) = birthday(p);
ssan(change-name(p,n)) = ssan(p);
sex(change-name(p,n)) = sex(p)

end-class

Figure B.17 O-SLANG Person Superclass

class Student is
import Person, Gpa
class sort Student < Person
attributes

gpa : Student -- Gpa
methods

create-student String -- Student
axioms

% create-student
name(create-student(n)) = name(create-person(n));
birthday(create-student(n)) = birthday(create-person(n));
ssan(create-student(n)) = ssan(create-person(n));
sex(create-student(n)) - sex(create-person(n));
gpa(create-student(n)) = 0

end-class

Figure B.18 O-SLANG Student Subclass

Inheritance, as defined in Section 4.4, requires that (1) all objects of a subclass be objects of

each of its superclasses, (2) that all operations defined on a superclass are defined on the subclass,

and (3) that the semantics of those operations are identical on attributes defined in the superclass.

In SLANG, subsorting is accomplished via sort axioms as shown below.

sort-axiom subsort = supersort I predicate

B-16

The sort axiom states that the subsort consists of all values from the supersort where the predicate

is true. Thus, given the right predicate definition, SLANG sort axioms can directly define simple

inheritance. Figures B.19 and B.20 show the SLANG translations of the Person and Student classes

defined above.

spec PERSON is
import DATE, SEX
sort Person, String
op name ' Person - > String
op birthday : Person - > date
op ssan : Person - > Integer
op sex : Person - > Sexuality
op create-person String - > Person
op change-name: Person, String - > Person
axiom (greater-than (ssan p) zero)
axiom (equal (name (create-person n)) n)
axiom (equal (birthday (create-person n)) default-date)
axiom (equal (ssan (create-person n)) zero)
axiom (equal (sex (create-person n)) male)
axiom (equal (name (change-name p n)) n)
axiom (equal (birthday (change-name p n)) (birthday p))
axiom (equal (ssan (change-name p n)) (ssan p))
axiom (equal (sex (change-name p n)) (sex p))

end-spec

Figure B.19 SLANG Person Superclass

The Person class translates to SLANG as described in Section B.4.1. It is in the Student class

that the inheritance simulation takes place. Because SLANG is very strongly typed, an operation

defined on a supersort is not automatically defined on its subsorts. SLANG does provide a built-in

inclusion function, relax, that maps elements of the subsort to their corresponding elements of the

supersort. Thus the axiom

(equal (name s) (name ((relax student?) s)))

or,

name(s) = name(relax(student?) (s))

states the name of a student, s, is equal to the name of an equivalent person in the supersort

denoted by ((relax student?) s). Thus the relax operator maps s from the student subsort to the

Person supersort by relaxing the student? predicate. Therefore, for each operation defined in the

Person class, an equivalent operation must be defined on the Student class. Axioms are used (as

shown above) to ensure that the semantics of the operations on superclass attributes are equivalent.

B-17

spec STUDENT is
import PERSON
sort Student, Gpa
sort-axiom Student = Person I student?
op name : Student - > String
op birthday : Student - > Date
op ssan : Student - > Integer
op sex: Student - > Sexuality
op gpa: Student - > Gpa
op create-student : String - > Student
op change-name : Student, String - > Student
op student? : Person - > Boolean
axiom (fa (p:person s:student)

(implies (equal p ((relax student?) s))
(equal (student? p)

(ex (r:gpa) (equal (gpa s) r)))))
axiom (equal (name s) (name ((relax student?) s)))
axiom (equal (birthday s) (birthday ((relax student?) s)))
axiom (equal (ssan s) (ssan ((relax student?) s)))
axiom (equal (sex s) (sex ((relax student?) s)))
axiom (equal (name (create-student n)) (name (create-person n)))
axiom (equal (birthday (create-student n))

(birthday (create-person n)))
axiom (equal (ssan (create-student n)) (ssan (create-person n)))
axiom (equal (sex (create-student n)) (sex (create-person n)))
axiom (equal (gpa (create-student n)) zero)
axiom (equal (name (change-name s n))

(name (change-name ((relax student?) s) n)))
axiom (equal (birthday (change-name s n))

(birthday (change-name ((relax student?) s) n)))
axiom (equal (ssan (change-name s n))

(ssan (change-name ((relax student?) s) n)))
axiom (equal (sex (change-name s n))

(sex (change-name ((relax student?) s) n)))
axiom (equal (gpa (change-name s n)) (gpa s))

end-spec

Figure B.20 SLANG Student Subclass

The predicate student? is defined by the signature and axiom shown below.

op student? : Person - > Boolean
axiom (fa (p:person s:student)

(implies (equal p ((relax student?) s))
(equal (student? p)

(ex (r:gpa) (equal (gpa s) r)))))

In conventional notation this would be as follows.

V (p:person s:student) p = relax(student?)(s)
=> student?(p) = (3 (r:gpa) gpa(s) = r)

Basically, the student? predicate states that for an object to be in the Student class, the attribute,

gpa, must be defined on that object. In general, the subclass predicate is defined by requiring

all attributes of the class to be defined on its objects. Thus SLANG allows us to determine if an

element of the supersort is a member of a subsort and to create an element of the supersort from

elements in the subsort; unfortunately, it does not provide a simple or elegant way to accomplish

B-18

these operations. Therefore, when translating a subclass definition, not only must the superclass

specification be imported, but an operation for each operation in the superclass must be created

and explicitly defined as equivalent to the superclass operation acting on a relaxed subsort element.

The translation of O-SLANG single inheritance satisfies the three requirements for inheritance

described above. First, because SLANG supports simple subsorting, all objects of a subclass are

objects of each of its superclasses, even though use of the relax operation is required. Second,

all operations of the superclass sort are defined on the subsort since they are explicitly redefined

(using the same names and parameters) on the subclass objects. Finally, the semantics of superclass

operations are identical on attributes defined in the superclass since the subclass operations are

equivalenced to the superclass operations over the superclass attributes. Therefore, the translation

described above fully specifies the semantics of O-SLANG single inheritance.

B.4.7.2 Multiple Inheritance. Now that I have defined the O-SLANG to SLANG

translation for single inheritance, I extend this translation to multiple inheritance. Unfortunately,

this extension is not straightforward. SLANG does not allow a sort to be a subsort of more than

one supersort; therefore, this requirement must be simulated. The requirements that all superclass

operations be defined on the subclass and that the semantics of the operations are equivalent over

superclass attributes are translated the same way as for single inheritance. To set up an example,

assume a Faculty class is defined as a subclass of Person as shown in Figure B.21 and B.22.

class Faculty is < Person
import Person, Academic-Rank
class sort Faculty
attributes

academic-rank: Faculty -* Academic-Rank
methods

create-faculty : String -* Faculty
axioms

% create-faculty
name(create-faculty(n)) = name(create-person(n));
birthday(create-faculty(n)) = birthday(create-person(n));
ssan(create-faculty(n)) = ssan(create-person(n));
sex(create-faculty(n)) = sex(create-person(n));
academic-rank(create-faculty(n)) = instructor

end-class

Figure B.21 O-SLANG Faculty Subclass

B-19

spec FACULTY is
import PERSON, ACADEMIC-RANK
sort Faculty
sort-axiom Faculty = Person I faculty?
op name : Faculty - > String
op birthday : Faculty - > Date
op ssan : Faculty - > Integer
op sex : Faculty - > Sexuality
op academic-rank: Faculty - > Academic-Rank
op create-faculty : String - > Faculty
op change-name: Faculty, String - > Faculty
op faculty? : Person - > Boolean
axiom (fa (p:person f:faculty)

(implies (equal p ((relax faculty?) f))
(equal (faculty? p)

(ex (r:Academic-Rank) (equal (academic-rank f) r)))))
axiom (equal (name f) (name ((relax faculty?) f)))
axiom (equal (birthday f) (birthday ((relax faculty?) f)))
axiom (equal (ssan f) (ssan ((relax faculty?) f)))
axiom (equal (sex f) (sex ((relax faculty?) f)))
axiom (equal (name (create-faculty n)) (name (create-person n)))
axiom (equal (birthday (create-faculty n))

(birthday (create-person n)))
axiom (equal (ssan (create-faculty n)) (ssan (create-person n)))
axiom (equal (sex (create-faculty n)) (sex (create-person n)))
axiom (equal (academic-rank (create-faculty n)) instructor)
axiom (equal (name (change-name f n))

(name (change-name ((relax faculty?) f) n)))
axiom (equal (birthday (change-name f n))

(birthday (change-name ((relax faculty?) f) n)))
axiom (equal (ssan (change-name f n))

(ssan (change-name ((relax faculty?) f) n)))
axiom (equal (sex (change-name f n))

(sex (change-name ((relax faculty?) f) n)))
axiom (equal (academic-rank (change-name f n)) (academic-rank f))

end-spec

Figure B.22 SLANG Faculty Subclass

What is desired is to create a teaching assistant class, TA, that is a subclass of both the

Student class and the Faculty class. The O-SLANG for such a class is shown in Figure B.23. By

importing both Student and Faculty classes and requiring that the TA class sort be a subsort of

both the Student and Faculty class sorts, multiple inheritance is achieved. The operations have been

imported and defined over both Student and Faculty, and thus are automatically defined over TA

objects since the TA objects are a subset of both the Student and Faculty objects. A new operation,

create-ta, is defined in accordance with the appropriate Student and Faculty create operations.

The translation of TA to SLANG is not quite as simple as for single inheritance. As defined

in the theory-based object model in Chapter VII, multiple inheritance is defined by the colimit of

the superclass specifications (with the shared part defined by common superclasses and any shared

data type specifications). Since both Student and Faculty are subclasses of the Person class, the

B-20

class TA is
Student, Faculty

class sort TA < Student, Faculty
methods

create-ta : String -- TA
axioms

% create-ta
name(create-ta(n)) = name(create-person(n));
birthday(create-ta(n)) = birthday(create-person(n));
ssan(create-ta(n)) = ssan(create-person(n));
sex(create-ta(n)) = sex(create-person(n));
gpa(create-ta(n)) = gpa(create-student(n));
academic-rank(create-ta(n)) = academic-rank(create-faculty(n))

end-class

Figure B.23 O-SLANG TA Subclass

diagram consisting of Person, Student, and Faculty (and the appropriate morphisms between them)

defines the colimit specification used to create the TA specification (Figure B.24).

Once the colimit specification has been created, it is imported into the TA SLANG specification

where it is extended by adding the class sort, TA, and constructing the subsort equivalences.

Because SLANG only supports a single subsort definition, the TA sort must be defined to be a

subsort of the lowest common supersort of all of the superclasses used to define the subclass. In

this example, since Student and Faculty are both subclasses of Person, TA is defined to be a subclass

of Person as well. If some of the superclasses are not descendants of a common superclass, the

object-class sort (the sort which includes all object names) is used. This situation is not discussed

further except to state that all object class sorts are, by definition, subsorts of the object-class sort.

The fact that TA is a subsort of both Person and Faculty classes is captured by the definition

of a subsort predicate ta? as defined below.

axiom (fa (t:ta) (ex (f:faculty) (equal ((relax ta?) t)

((relax faculty?) f))))

axiom (fa (t:ta) (ex (s:student) (equal ((relax ta?) t)

((relax student?) s))))

The first axiom states that the predicate for every object in the TA class there is an object

in the Faculty class such that if the ta? predicate and faculty? predicates are relaxed, they are the

same underlying Person. The second axiom does the same for the Student class.

B-21

The next set of axioms define ta-faculty and ta-student operations that, in essence, relax a TA

object into a Faculty or Student object. The definitional axiom states that if a relaxed TA object

is equal to a relaxed Faculty/Student object then the result of the ta-faculty/ta-Student operation

is the Faculty/Student object. These relaxation operations are used to define the equivalence of

attributes defined in each of the superclasses respectively.

op ta-faculty : Ta - > Faculty

axiom (implies (equal ((relax ta?) t) ((relax faculty?) f))

(equal (ta-faculty t) f))

op ta-student : Ta - > Student

axiom (implies (equal ((relax ta?) t) ((relax student?) s))

(equal (ta-student t) s))

The operations are copied from the superclasses as defined for single inheritance. The only

difference is that the definition of the subclass operations must be based on where the operation

is originally defined. Thus if the operation is defined in Person, the relax operation is used in the

definitions whereas if the operation is defined in Faculty, the ta-faculty relaxation operation is used

in the definition.

The translation of O-SLANG multiple inheritance satisfies the three requirements for inheri-

tance defined in Section B.4.7.1. First, by simulating multiple subsorting through the definition of

superclass relaxation operations, all objects of the subclass are objects of each of its superclasses.

Second, all operations of each superclass are defined on the subsort since they are explicitly redefined

(using the same names and parameters) on the subclass objects. Finally, the semantics of superclass

operations are identical on operations defined in the superclasses since the results of the subclass

operations are equivalenced to the superclass operations over the superclass attributes. Therefore,

the translation described above fully specifies the semantics of O-SLANG multiple inheritance.

B-22

B.5 Summary

This Appendix defined the interpretation of O-SLANG in SPECWARE'S SLANG, thus defin-

ing the syntax and semantics of O-SLANG. Although most O-SLANG features translate simply,

almost trivially, into SLANG, inheritance requires a slightly more untidy approach due to Slang's

restricted notion of subsorting. While the inheritance translation increases the level of translation

sophistication, the end results satisfy the requirements of the substitution property as defined in

Chapter IV.

B-23

spec FACULTY-STUDENT-COLIMIT is
colimit of

diagram nodes FACULTY, STUDENT, PERSON
arcs PERSON - > FACULTY:

{(FEMALE: SEXUALITY) - > (FEMALE: SEXUALITY),
(MALE: SEXUALITY) - > (MALE: SEXUALITY),
SEXUALITY - > SEXUALITY,
(YEAR: DATE - > INTEGER) - > (YEAR: DATE - > INTEGER),
(MONTH: DATE - > INTEGER) - > (MONTH: DATE - > INTEGER),
(DAY: DATE - > INTEGER) - > (DAY: DATE - > INTEGER),
(DEFAULT-DATE: DATE) - > (DEFAULT-DATE: DATE), DATE - > DATE,
(MAX: INTEGER, INTEGER - > INTEGER)

- > (MAX: INTEGER, INTEGER - > INTEGER),
(MIN: INTEGER, INTEGER - > INTEGER)

- > (MIN: INTEGER, INTEGER - > INTEGER),
(TIMES: INTEGER, INTEGER - > INTEGER)

- > (TIMES: INTEGER, INTEGER - > INTEGER),
(MINUS: INTEGER, INTEGER - > INTEGER)

- > (MINUS: INTEGER, INTEGER - > INTEGER),
(IPLUS: INTEGER, INTEGER - > INTEGER)

- > (IPLUS: INTEGER, INTEGER - > INTEGER),
(GREATER-THAN-OR-EQUAL: INTEGER, INTEGER - > BOOLEAN)

- > (GREATER-THAN-OR-EQUAL: INTEGER, INTEGER - > BOOLEAN),
(LESS-THAN-OR-EQUAL: INTEGER, INTEGER - > BOOLEAN)

- > (LESS-THAN-OR-EQUAL: INTEGER, INTEGER - > BOOLEAN),
(GREATER-THAN: INTEGER, INTEGER - > BOOLEAN)

- > (GREATER-THAN: INTEGER, INTEGER - > BOOLEAN),
(LESS-THAN: INTEGER, INTEGER - > BOOLEAN)

- > (LESS-THAN: INTEGER, INTEGER - > BOOLEAN),
(TEN: INTEGER) -> (TEN: INTEGER),
(NINE: INTEGER) -> (NINE: INTEGER),
(EIGHT: INTEGER) - > (EIGHT: INTEGER),
(SEVEN: INTEGER) - > (SEVEN: INTEGER),
(SIX: INTEGER) - > (SIX: INTEGER),
(FIVE: INTEGER) -> (FIVE: INTEGER),
(FOUR: INTEGER) -> (FOUR: INTEGER),
(THREE: INTEGER) - > (THREE: INTEGER),
(TWO: INTEGER) - > (TWO: INTEGER),
(ONE: INTEGER) - > (ONE: INTEGER),
(ZERO: INTEGER) - > (ZERO: INTEGER), INTEGER - > INTEGER,
PERSON - > PERSON, STRING - > STRING,
(CREATE-PERSON: STRING - > PERSON)

- > (CREATE-PERSON: STRING - > PERSON),
(CHANGE-NAME: PERSON, STRING - > PERSON)

- > (CHANGE-NAME: PERSON, STRING - > PERSON),
(SEX: PERSON - > SEXUALITY) - > (SEX: PERSON - > SEXUALITY),
(SSAN: PERSON - > INTEGER) - > (SSAN: PERSON - > INTEGER),
(BIRTHDAY: PERSON - > DATE) - > (BIRTHDAY: PERSON - > DATE),
(NAME: PERSON - > STRING) - > (NAME: PERSON - > STRING)},

PERSON - > STUDENT: import-morphism
end-diagram

Figure B.24 SLANG Faculty Student Colimit

B-24

spec TA is
import FACULTY-STUDENT-COLIMIT
sort Ta
sort-axiom Ta = Person I ta?
axiom (fa (t:ta) (ex (f:faculty) (equal ((relax ta?) t)

((relax faculty?) f))))
axiom (fa (t:ta) (ex (s:student) (equal ((relax ta?) t)

((relax student?) s))))
op ta-faculty : Ta - > Faculty
axiom (implies (equal ((relax ta?) t) ((relax faculty?) f))

(equal (ta-faculty t) f))
op ta-student : Ta - > Student
axiom (implies (equal ((relax ta?) t) ((relax student?) f))

(equal (ta-student t) f))
op name : Ta - > String
op birthday: Ta - > Date
op ssan : Ta - > Integer
op sex : Ta - > Sexuality
op academic-rank: Ta - > Academic-Rank
op gpa: Ta - > Gpa
op create-ta : String - > Ta
op change-name: TA, String - > TA
op ta? : Person - > Boolean
axiom (fa (p:person t:ta)

(implies (equal p ((relax ta?) t))
(equal (ta? p)

(and (faculty? p) (student? p)))))
axiom (fa (t:ta) (equal (name t) (name ((relax ta?) t))))
axiom (fa (t:ta) (equal (birthday t) (birthday ((relax ta?) t))))
axiom (fa (t:ta) (equal (ssan t) (ssan ((relax ta?) t))))
axiom (fa (t:ta) (equal (sex t) (sex ((relax ta?) t))))
axiom (fa (t:ta) (equal (academic-rank t)

(academic-rank (ta-faculty t))))
axiom (fa (t:ta) (equal (gpa t) (gpa (ta-student t))))
axiom (equal (name (create-ta n)) (name (create-person n)))
axiom (equal (birthday (create-ta n))

(birthday (create-person n)))
axiom (equal (ssan (create-ta n)) (ssan (create-person n)))
axiom (equal (sex (create-ta n)) (sex (create-person n)))
axiom (equal (gpa (create-ta n))

(gpa (create-student n)))
axiom (equal (academic-rank (create-ta n))

(academic-rank (create-faculty n)))
axiom (fa (t:ta) (equal (name (change-name t n))

(name (change-name ((relax ta?) t) n))))
axiom (fa (t:ta) (equal (birthday (change-name t n))

(birthday (change-name ((relax ta?) t) n))))
axiom (fa (t:ta) (equal (ssan (change-name t n))

(ssan (change-name ((relax ta?) t) n))))
axiom (fa (t:ta) (equal (sex (change-name t n))

(sex (change-name ((relax ta?) t) n))))
axiom (fa (t:ta) (equal (gpa (change-name t n))

(gpa (change-name (ta-student t) n))))
axiom (fa (t:ta) (equal academic-rank (change-name t n))

(academic-rank (change-name (ta-faculty t) n))))
end-spec

Figure B.25 SLANG TA Subclass

B-25

Appendix C. Generic OMT and O-SLANG ASTs

C.1 Introduction

This appendix contains the definition of the O-SLANG and GOMT abstract syntax trees. The

notation used is described in Table C.1.

Table C.1 Abstract Syntax Tree Notation

Notation Meaning
Tuple
Set
Sequence

I Logical OR
Mixed Case Object
Lower Case Low-level symbol/number

Generally, dot notation is used to traverse the tree. For example, if C is a class in a GOMT domain

theory, DT, then

C E DT.GOMT-Class

where DT.GOMT-Class is the set of all classes in the domain theory DT. Likewise, for some

connection c, by the GOMT AST definition below, c has four components. Assume c is defined as

shown below.

c.name = Pump

c.Qualifier = (Pump-Number, integer)

c.role = undefined

c.Mult = Many

Then the connection c defines a connection to the Pump class that has the qualifier Pump-

Number which is an integer. There is no role name assigned for this particular connection and the

multiplicity is defined as Many (zero or more).

C-1

C.2 Generic OMT Abstract Syntax Tree

GOMT-DomainTheory = <{GOMT-Class}, {Assoc}>

GOMT-Class = <name, {Superclass}, [Connection], {Attributel, {State},
{Transition}, {Axiom}, {GOMT-Op}, {Functional-Objj>

Assoc = <name, [Connection), {Attribute}, {GOMT-Op}>

Connection =<name, Qualifier, role, Mult>

Qualifier =<name, datatype>

Mult = One IMany I Plus I Optional I Specified

Plus =integer

Specified = {Spec-Range}

Spec-Range = <valuel, value2>

Attribute = DerivedAttr I NormalAttr

DerivedAttr =<name, {Axiom}, datatype>

NormalAttr = <name, {Axiom}, datatype>

State = <name, {Axiom}, {State}>

Transition = <name, [Parameter], Axiom, {Action}, FromState, ToState>

FromState = name

ToState = name

Action = <name, [Parameter], {Action}>

GOMT-Op = <name, [Parameter], Result, Definition>

Result =datatype

Parameter =<name, datatype>

Definition f Axiom}

Functional-Obj = Process I Datastore I Dataf low

Process = <name, [InFlows], [OutFlows], {Process}>

Datastore = <name, [InFlows], [OutFlows]>

C-2

InFlow = <name, type>

OutFlow = <name, type>

Dataf low = <name, type, source, target>

SuperClass = superclass

SubClass = subclass

C.3 0-SLANG Abstract Syntax Tree

O-Slang-DomainTheory = {Spec}

Spec =Class I AbClassI Event I Aggregate I Link I Association

Class =<name, ClassSort, {SortAxiom}, {Operation}, {Import}, {Sortj,
{Attribute}, {Method}, {StateAttr}, {Event}, {State}, {Axiom},
contained-in>

Ab~lass = <name, ClassSort, {SortAxiom}, {Operation}, {Import}, {Sort},
{Attribute}, {Method}, {StateAttr}, {Event}, {Statel,
{Axiom}, contained-in>

Event = <name, ClassSort, {SortAxiom}, {Operation}, {Import}, {Sort},
{Attribute}, {Method}, {StateAttr}, {Event}, {State}, {Axiom}>

Association = <name, ClassSort, {SortAxiom}, {Operation}, {Import},
{Sort}, {Attribute}, {Method}, {StateAttrj, {Event},
{State}, {Axiom}, link-class>

Link = <name, ClassSort, {SortAxiom}, {Operationl, {Import}, {Sort},
{Attribute}, {Methodl, {StateAttr}, {Event}, {State}, {Axiomj>

Aggregate = <name, {Node}, {Arc}>

ClassSort = <class-sort-id, {Inherited-Sort-Idl>

SortAxiom = sort-id

Import = class-ref

Sort = sort-id

Inherited-Sort-Id = sort-id

Operation = <name, [Domain-Ident], [Range-Ident]>

Attribute = <name, [Domain-Ident], [Range-Ident]>

C-3

StateAttr = <name, [Domain-Ident], [Range-Ident]>

Method =<name, [Domain-Ident], [Range-Ident]>

Event =<name, [Domain-Ident], [Range-Ident]>

State =<name, [Domain-Ident], [Range-Ident]>

Node =<name, class-ref>

Arc =<arc-from-node, arc-to-node, {NodeMap}>

NodeMap =<map-from, map-to, From~p, ToOp>

FromOp =<name, [Domain-Ident], [Range-Ident]>

ToOp = <name, [Domain-Ident], [Range-Ident]>

Domain-Ident =sort-id

Range-Ident =sort-id

C-4

Appendix D. Demonstration System

D.1 Introduction

This Appendix documents the implementation of a graphical, object-oriented user interface

used in the proof-of-concept demonstration of a parallel refinement specification acquisition system.

The goal of this demonstration is to show that Rumbaugh's Object Modeling Technique (OMT)

diagrams (83) can be automatically transformed into theory-based specifications consistent with

the original diagrams, not to demonstrate a complete parallel refinement environment. This Ap-

pendix informally presents the method used to obtain a generic OMT abstract syntax tree (AST)

representation.

To simplify implementation of the demonstration software, a commercially available object-

oriented drawing package, ObjectMaker 1, was used to implement the user interface. A diagram

of the demonstration system is shown in Figure D.1. Rumbaugh OMT diagrams are developed in

ObjectMaker and exported to external .TXT files. A .TEXT file allows the user to overcome some

shortcomings of ObjectMaker by manually entering data not handled properly by ObjectMaker.

These files are converted to a different format, via the program read.c, and merged into a single

OMT specification. This specification is parsed into a Refine2 AST using a parser developed in

Dialect 3 . Once in Refine, a rule-based conversion program transforms the ObjectMaker OMT AST

into the Generic OMT (GOMT) AST as defined in Appendix A.

A brief overview of ObjectMaker is presented in Section D.2 followed by a description of the

ObjectMaker specific OMT parser in Section D.3. Finally, the ObjectMaker OMT AST to GOMT

AST transformation program is discussed in section D.4.

'ObjectMaker is a registered trademark of Mark V Systems Limited Encino California2 Refine is a trademark of Reasoning Systems Inc. Palo Alto California
3Dialect is a trademark of Reasoning Systems Inc. Palo Alto California

D-1

XOEbtMaker

flestMaker ExpOfM

Figure D.1 ObjectMaker to GOMT Transformation Syste

D.2 ObjectMaker

ObjectMaker is a commercially available object-oriented drawing, code generation, and re-

engineering tool. It supports many object-oriented design techniques including Rumbaugh's OMT.

An example of an ObjectMaker window is shown in Figure D.2.

In ObjectMaker, OMT diagrams are created and stored in project repositories. Actually,

diagrams are stored separately; however, the information contained on the diagrams is stored in

repositories. Rumbaugh diagrams supported by ObjectMaker include the Dynamic Model, Event

Flow diagram, Event Trace diagram, Functional Model, and Object Model. With a few exceptions,

ObjectMaker allows the user to draw diagrams as described by Rumbaugh. Specific problems with

ObjectMaker are enumerated below.

1. Does not allow aggregate qualifiers.

2. Lacks an adequate device for inserting constraints at the class level.

3. Lacks the ability to define operation semantics.

4. Does not capture substate-superstate relationships.

5. Does not capture subprocess-superprocess relationships.

D-2

Sopttistcatad

volurie-select:vokiine= 0
PuLmp amroil-salact: amourt= 0

Regul.r

GtnHc~t~Assnb~Q~c~-zs~iy cma-disoay __________GmH ter-Ass b Clu -Motor-Ass 41+ 1-2,4 cost:amo ur=0
vo1UMe:vo1LM8= 0

2-0 2 :ammaI=vourne/ccst

GHA-CMA grade

Figure D.2 ObjectMaker Window

6. Does not provide links between classes and their dynamic and functional diagrams.

7. Intermittent problems in mapping diagrams to their repositories and exporting repositories

to text files.

The first five problems with ObjectMaker listed above involved the inability of ObjectMaker

to capture the entire Rumbaugh model. These problems were alleviated by using manual data entry

as described in Section D.2.1. Item six, lack of a link between object classes and their dynamic

and functional models, was overcome through a naming convention. Because ObjectMaker does

store the diagram on which particular dynamic and functional concepts reside, I required the first

word in the diagram name to be the name of the associated object class. This work around solved

the problem. The last item listed above, intermittent problems mapping and exporting data, is a

nuisance but not a fatal flaw. Inconsistencies between the diagrams and the repository occur quite

D-3

often, with no messages or explanations from ObjectMaker, requiring the user to completely rebuild

the repositories from scratch. Then, once the repository and the diagrams do match, exporting the

repositories is often incomplete due to errors; however, ObjectMaker does report these errors to

the user. Exiting ObjectMaker and re-exporting generally solves the problem.

D.2.1 Manual Text File. As stated above, to workaround the inability of ObjectMaker

to capture certain vital data, a manually created text file, MANUAL.TEXT, is used to augment

the .TXT files exported by ObjectMaker. An example MANUAL.TEXT file is shown in Figure

D.3. Five types of data may be entered in MANUAL.TEXT: aggregate qualifiers, class constraints,

method definitions, substate definitions, and subprocess definitions. Each of these is shown in Figure

D.3. The aggregate qualifier, substate definition, and subprocess definition simply state that a rela-

tionship exists between a qualifier/substate/subprocess and its associated aggregate/state/process.

The class-constraints allows the user to enter general class constraints via first-order axioms. These

constraints may be constraints on attribute values or state invariants. Method definitions define

the effect of a method on each attribute defined in its class. Once again, these definitions are in

the form of a set of first-order axioms. The first line in the definition defines the method's class.

The MANUAL.TEXT file is merged directly into the OMT specification which is parsed into

the ObjectMaker OMT AST. ObjectMaker does have the capability to manually enter some the

data found in MANUAL.TEXT; however, this manually entered data is lost whenever the repository

becomes inconsistent and has to be rebuilt.

D.3 OMT Parser

The ObjectMaker OMT parser is defined in Refine Dialect and is used to parse ObjectMaker

OMT specifications into a Refine AST. The ObjectMaker OMT AST mirrors the ObjectMaker

OMT specification language and was only intended as a convenient way to get the ObjectMaker

OMT specification into a Refine AST where it is more easily manipulated and transformed into the

D-4

aggregate: Pump has qualifier display-id to component Display.

class-constraints: Display
display-state(d) = zero-display => cost(d) = 0 & volume(d) = 0;
display-state(d) = increment-display => cost(d) >= 0 & volume(d) >= 0;
cost(d) >= 0;
volume(d) >= 0

end class-constraints.

definition: update-display
class = display;
update-display(d) = update-cost(update-volume(d))

end definition.

definition: update-volume
class = display;
grade(update-cost(d)) = grade(d);
volume(update-volume(d)) = volume(d) + 1;
cost(update-cost(d)) = cost(d)

end definition.

definition: update-cost
class = display;
grade(update-cost(d)) = grade(d);
volume(update-cost(d)) = volume(d);
cost(update-cost(d)) = cost(d) + 1

end definition.

definition: zero-out-display
class = display;
grade(update-cost(d)) = grade(d);
cost(zero-out-display(d)) = 0;
volume(zero-out-display(d)) = 0

end definition.

substate Locked < state Display-On
substate Running < state Display-On

subprocess update-volume < process update-display.
subprocess update-cost < process update-display.

Figure D.3 MANUAL.TEXT Example

GOMT AST. I decided not to attempt to parse the ObjectMaker OMT specification directly into

the GOMT AST due to the required complexity of the required parser. No semantic processing

is done on the ObjectMaker OMT specification after being parsed into the AST. All semantic

processing is done after the conversion to the GOMT AST described in the next section.

D.4 ObjectMaker OMT AST to GOMT AST Transformation

Transformation from the ObjectMaker OMT AST and the GOMT AST is accomplished

through a rule-based Refine program. This transformation program takes individual objects from

the ObjectMaker OMT AST and transforms them into the appropriate GOMT AST object. There

are four phases to the transformation process: (I) creation of class and association objects, (II)

D-5

creation of dynamic and functional objects for each class, (III) filling in attributes of objects defined

in phases two and three, and (IV) checking redundant information for consistency.

Because ObjectMaker exports its repositories in a series of flat files with redundant informa-

tion, the ObjectMaker OMT AST reflects that architecture; therefore, the transformation process

must be completed in steps. Since the basic objects in the GOMT AST are classes and associations,

these objects must be created before ObjectMaker OMT AST objects that are logically a part of

a class or association are transformed. Therefore, in the first transformation phase, only the root,

class, and association objects are allowed to be transformed. During the preorder traversal of the

ObjectMaker OMT AST, each object and association object encountered causes the appropriate

class or association object to be created in the GOMT AST. Any attributes, partitions, opera-

tions, constraints, or superclasses defined in the class object get transformed into the appropriate

attribute in the new class object. Likewise, any association classes, attributes, or operations are

also transformed into the new AST.

Once all the basic classes and associations have been created in the GOMT AST, the dynamic

model objects (state and transitions) and functional model objects (actors, processes, dataflows,

and datastores) are created and attached to their appropriate classes defined in phase I. It is in

this phase that the transformation system uses the diagram names to determine which class owns

the dynamic and functional model components. If the class specified by the diagram name has not

been created, error messages are generated.

After all the functional and dynamic model components have been transformed and attached

to their owning classes, the attributes specified in various ObjectMaker OMT AST objects are used

to fill in the existing class, association, functional, and dynamic objects. Information transformed

in this step includes association and aggregate role names, and qualifiers; operation parameters,

results, and axioms; substate and subprocess relationships; attribute datatype and initial value or

D-6

derivation axioms; and inheritance information. During phase III all duplicate data in the objects

being transformed is checked against the existing objects to ensure consistency.

Once phase III is completed, the entire GOMT AST is complete. The only phase left is con-

sistency checking. There is only one ObjectMaker OMT AST object that is completely redundant:

the generalization object. This object is used to ensure that all superclass - superclass relationships

have been captured.

Once phase IV is completed, the GOMT AST is complete. There is no semantic processing

for this tree. All semantic processing is done during or after transformation to the O-SLANG AST

as discussed in Chapter VII.

D.5 GOMT AST to O-SLANG Transformation

Once in the GOMT AST, a rule-based transformation program implementing the transfor-

mation rules defined in Chapter VII transforms the GOMT AST into an O-SLANG AST within the

Refine environment. This transformation process is much like the process for transforming the Ob-

jectMaker AST into the GOMT AST except it carries out the transformation in one phase. Once

in a valid O-SLANG AST, the Dialect pretty printer is used to produce a textual representation of

the O-SLANG AST.

The actual transformation is performed by creating the root node of the O-SLANG AST and

then automatically transforming each class and association, one at a time, within the GOMT AST.

The only sequencing done in the transformation is done to ensure that all component classes of an

aggregate are transformed before the aggregate itself is transformed.

In its current state, the GOMT to O-SLANG transformation system converts almost all of the

GOMT AST objects correctly into O-SLANG with the following exceptions.

1. Multiple Event Theories

D-7

2. Super/Substate Axiom Generation

3. Multiple Parameter Events

4. Association and Aggregate Qualifiers

These items were not implemented because I did not consider the time required to implement

and debug them useful. None of these items were omitted due to the inability to implement them.

D.6 Summary

This appendix documents the use of the object-oriented drawing tool ObjectMaker as a front

end for the user interface of a parallel refinement specification acquisition system. Data is exported

from ObjectMaker, merged with additional manually entered data, and parsed into an AST based

on the ObjectMaker output files. This AST is then transformed via a rule-based Refine program

into the GOMT AST which is used as the starting point for a formal transformation from OMT

to theory-based specifications. A conversion system for the GOMT to O-SLANG transformation,

based on the rules defined in Chapter VII, was developed and used to produce the demonstration

examples shown in Chapter VIII.

D-8

Appendix E. Additional Theories

Specification of TRIV

spec TRIV is
sorts E
end-spec

E-1

Specification Of SET

spec SET is
import INTEGER
sorts E, Set
constants

empty-set: Set
operations

in : E, Set --* boolean
empty? : Set --4boolean
insert : E, Set --+ Set
singleton : E --+ Set
union: Set, Set --+ Set
delete :E, Set -* Set
size : Set --* integer
subset : Set, Set --+ boolean

constructors {insert, empty-set} construct Set
constructors {union, singleton, empty-set} construct Set
axioms

unioni(x,y) = union(y,x);
union (x,union (y,z)) = union(union(x,y) z);
union (x,empty-set) = X
union(empty-set x) = x
union(x,x) = x

definition
in(x,insert(y,c)) x = y V in(x,c);
in(x,empty-set) =false;

end-definition
definition

theorem
empty? (insert (x,c)) =false;

empty? (empty-set) =true;

end-definition
definition

in(x,union(u,v)) 4* in(x,u) v in(x,v));
in(x,singleton(x)) = true;
in(x,empty-set) = false;
end-definition

definition
empty? (union (u,v)) 4* empty?(u) A empty?(v);
empty? (singleton(x)) = false;
empty? (empty-set) = true;
end-definition

E-2

definition of delete is
delete(x,empty-set) = empty-set;
delete(x,insert(x,s)) = s;
xl : x2 =. delete(xl,insert(x2,s)) = insert(x2,delete(xl,s));
end-definition

definition set-equal-def of equal is
s = t * (V (x:E) in(x,s) <* in(x,t));
end-definition

definition set-size-def of size is
size(empty-set) = 0;
in(e,s) = size(insert(e,s)) = size(s);
-, in(e,s) = size(insert(e,s)) = size(s) + 1;
in(e,s) =t size(delete(e,s)) = size(s) - 1;
-, in(e,s) = size(delete(e,s)) = size(s);
end-definition

definition subset-def of subset is
subset(sl,s2) = in(e,sl) => in(e,s2);
end-definition

end-spec

E-3

Specification Of INTEGER

spec INTEGER is
sorts Integer
operations

zero :- Integer
one :-4 Integer

< Integer, Integer -*Boolean

> Integer, Integer -+Boolean

< Integer, Integer -*Boolean

> Integer, Integer -*Boolean

+ Integer, Integer -*Integer

-Integer, Integer -*Integer

xInteger, Integer -*Integer

min Integer, Integer -*Integer

max Integer, Integer -*Integer

axioms
(zero < one);
(x < X);
(X - y) V (y < X);
(x < y) A (y :5 z)) =~(x < z);
(x < y) A (y :5 x)) ~(x =y)
(x > y) <= ((y + one) < x);
(x < y) <= ((x + one) y);
(- ((y + one) :5 x)) # (x < y);
(x > y) (y < X);
(x + y) -(y + X);
(x + (y + z)) =((x + y) + Z);
((x + y) + Z) =(x + (y + z));
(x + zero) x);
(x - x) zero);
((- X) -Y)=(z -(x +yM;
((x + y) =(x + z)) * (y =Z)

((y + X) =(z + x)) ~(y =Z)

((zero < x) A (zero < y)) => (zero < (x + y));
(y zero) . ((x x y) =zero);
(y = one) . ((x x y) = x);

(x < y) (min(x,y) =X)

(X > y) (min(x,y) =)
(x > y) => (max(x,y) =y)

(X > y) > (max(x,y) = x)
end-spec

E-4

Appendix F. Translation Correctness

In this Appendix, I prove Theorems VII.l, VII.2, and VII.3. These theorems show that the

transformation rules as defined in Chapter VII preserve the semantics of the the object model, the

dynamic model, and the functional model as defined Chapter V.

F.1 Object Model Correctness Proof

In this section, Theorem VII.1 is proved.

Proof. Preservation of the object model semantics by - is established by showing the equiv-

alence of two sets of object model semantics, OM and OM', created from a generic OMT domain

theory, G. OM is the object model semantics defined by transforming G by W while OM' is the

object model semantics defined by transforming G by r, into an O-SLANG domain theory 0, and

then by w. In this proof, I assume that G has a well defined object model in which C is a class and

A is an association.

I prove the theorem by showing that, given a valid generic OMT domain theory G, each

component (Name, Imports, Sorts, Operations, and Axioms) of each specification in OM exists in

OM' and that each component of each specification in OM' exists in OM. I start by proving that

the set of specifications in OM and OM' are equivalent and then complete the proof by showing

that each component within those specifications are equivalent.

1. In this section I show that the set of specifications in OM and OM' are equivalent by showing

for any specification in OM, there is a corresponding specification on OM' and vice versa.

S E OM = S E OM'. If Sc is some specification in OM, it must have been generated

by Equation 7.40 (S is a class specification Sc) or 7.49 (S is an association specification SA).

If S is a class then by Equation 7.40, there must exist a class C in G such that C.Name =

Sc.Name. Then by OMT-1 or OMT-2 there exists a class C in 0 such that C.Name =

F-1

C.Name = SC.Name that in turn, by Equation 7.58, generates a class S& in OM' such that

S&c.Name = C.Name = SC.Name.

If S is an association then by Equation 7.49 there must exist an association A in 9 such

that A.Name = SA.Name. Then by OMT-44 there exists an association A in (such that

A.Name = A.Name = SA.Name that in turn, by Equation 7.68, generates an association

SA in OM' such that SA.Name = C.Name = SA.Name.

S' E OM' = S E OM. If S' is some specification in OM', it must have been generated by

Equation 7.58 (S' is a class specification Se) or 7.68 (S' is an association specification SA).

If S ' is a class then by Equation 7.58 there must exist a class C in 0 such that C.Name =

S&C.Name. Then, since OMT-1 or OMT-2 are the only rules in 7 that create simple classes

in 0, there exists a class C in g such that C.Name = C.Name = S.Name that in turn, by

Equation 7.40, generates a class Sc in OM such that Sc.Name = C.Name = S'.Name.

If S ' is an association then by Equation 7.68 there must exist an association A in 0 such

that A.Name = SA.Name. Then, since OMT-44 is the only rule that creates associations

in 0, there exists an association A in g such that A.Name = A.Name = SA.Name that in

turn, by Equation 7.49, generates an association SA in OM such that SA.Name = C.Name

= SA.Name.

Therefore, since S E OM =* S' E OM', OM C OM' and since S' E OM' = S E OM.,

OM' C OM, therefore, the set of specifications in OM and OM' are equivalent. Now I show

that each item in associated specifications in OM and OM' are equivalent.

2. Imports

i E S.Imports =* i' E S'.Imports. Within each specification S E OM, there is a set of

imported specifications whose names are in S.Imports. In the definition of V, there are three

F-2

equations that map names into S.Imports: Equations 7.41, 7.48, and 7.50. Each of these

possibilities is analyzed below.

(a) If a specification name 8 E S.Imports is generated via Equation 7.41, then i represents

the datatype of an attribute and thus there exists an attribute a = (a.name,, axiom,

i) E C such that i is the datatype of a. If a is a normal attribute, OMT-13 generates

an attribute (a.Name, [C.Name], [i]) E C.Attribute and by Equation 7.59 in w, Range-

Ident(1) = i E Sc.Imports. If a is a derived attribute, OMT-14 generates an operation

(a.Name, [C.Name], [i]) E C.Operation and by Equation 7.60 in w, Range-Ident(1) =

i E S'.Imports.

(b) If i E Sc.Imports is generated by Equation 7.48, then by Equation 7.48 there exists

a c E C.Superclass such that c = i. Then, by OMT-4, i E C.Superclass generates

an i in C.class-sort.inherited-class-id that in turn, by Equation 7.67, inserts i into

S .Imports.

(c) If i E SA.Imports is generated by Equation 7.50, then i must be the name of a connection

in A. Then by OMT-46, if i is the name of some c in A.Connection there exists

an operation o = (IMAGE, [A.Name, c.Name], [x]) E A.Operation that in turn, by

Equation 7.69, places c.Range-Ident(2) = i in SA.Imports. Therefore, if i E S.Imports,

i E S'.Imports.

Therefore, since for each possible source of i in S (Equations 7.41, 7.48, and 7.50), if i

was generated by that equation then i G S.Imports = i E S'.Imports and S.Imports C

S'.Imports.

V E S'.Imports . i E S.Imports. If i E S'.Imports, there are four possible sources -

Equations 7.59, 7.60, 7.67, or 7.69. Each is analyzed below.

F-3

(a) If the source of i E S'.Imports is Equation 7.59, then there must be some attribute a

E C.Attribute such that a.Range-Ident = [i] and i is not a class set or association sort.

The only transformation capable of creating such an attribute in C from g is OMT-13.

Thus by OMT-13 there must be some a in C.Attribute such that i = type(a) and by

the assumption that all attributes have defined datatypes i = a.datatype. Therefore, by

Equation 7.41 in transformation W, a.datatype E S.Imports and thus i E S.Imports.

(b) If the source of i E S'.Imports is Equation 7.60, then there must be some operation

o E C.Operation such that i E o.Range-Ident. The only transformation that creates

such an operation in C from g is OMT-14. (Actually, OMT-15 and OMT-90 could also

create operations in C; however, OMT-15 creates the attr-equal operation and OMT-90

creates operations manually defined by the user that, by assumption, do not exist.) Thus

by OMT-14 there must be some a in C.Attribute such that i = = a.datatype and by

Equation 7.41 in W, a.datatype E S.Imports and thus i E S.Imports.

(c) If the source of i E S.Imports is Equation 7.67 then i must be a sort in C.Class-

Sort.Inherited-Sort-Id. Since OMT-4 is the only transformation that generates sorts in

C.Class-Sort.Inherited-Sort-Id, it must be the case that i is in C.Superclass and thus,

by V Equation 7.48, i E S.Imports.

(d) Finally, if the source of i E S'.Imports is Equation 7.69 then i must be o.Domain-

Ident(2) in some operation named IMAGE in K.Operation. Since OMT-46 is the only

transformation in r capable of placing an IMAGE operation in A.Operation and (OMT-

49 defines qualified operations that, by assumption, are not included in 9), i must be

the name of some connection, c, in A and thus i = c.Name. Then by Equation 7.50

s.Name E S.Imports and thus i E S.Imports.

Therefore, since for each possible source of i in S' (Equations 7.59, 7.60, 7.67, and 7.69), if

i was generated by that equation then i E S'.Imports i E S.Imports and S'.Imports C

F-4

S.Imports. Also, since I already established that S.Imports C S'.Imports, it must be the

case that S.Imports = S.Imports.

3. Sorts

s E S.Sorts = s' E S.Sorts. Within each specification S E OM, there is a set of sorts

defined by placing their names in S.Sorts. In the definition of V, there are two equations that

map names from g into S.Sorts: Equations 7.40 and 7.49. Since, as shown in Item 1 above

using Equations 7.40 and 7.49, any S E OM with name n #- 3 S' E OM' with name n and

by Equations 7.58 and 7.68 if n = S'.Name then n E S'.Sort. Therefore S.Sorts C S.Sorts.

s E S.Sorts #- s E S.Sorts. In the definition of w, there are two equations that map

from C into S'.Sorts: Equations 7.58 and 7.68. Since, as shown in Item 1 above using

Equations 7.58 and 7.68, if S' E OM' and S'.name = n then there exists an S E OM with

S.name = n as well. And since S was created by either Equation 7.58 or 7.68, this implies n

E S.Sort. Therefore S'.Sorts C S.Sorts and since S.Sorts C S'.Sorts, it must be true that

S.Sorts = S'.Sorts.

4. Operations

o E S.Operations =* 0' E S'.Operations. If o E S.Operations, there are four possible

sources of o as transformed from g: Equations 7.41, 7.42, 7.48, and 7.50. Each of these

possibilities is analyzed below.

(a) If the source of o E S.Operations is Equation 7.41 then o = (a.Name, [C.Name],

[a.Datatype]) for some a in C.Attribute. If this a is a normal attribute, then by OMT-

13 (a.Name, [C.Name], [a.Datatype]) E C.Attribute and by Equation 7.59, (a.Name,

[C.Name], [a.Datatype]) = (a.Name, [C.Name], [a.Datatype]) E S'.Operations.

F-5

If, however, a is a derived attribute, then by OMT-14 (a.Name, [C.Name], [a.Datatype])

E C.Operation and by Equation 7.60, (a.Name, [C.Name], [a.Datatypel) =(a.Name,

[C.Name], [a.Datatype]) E S' .Operations.

(b) If the source of o E S.Operations is Equation 7.42 then o = (HAS-PART, [C.Name,

c.Name], [Booleani]) or o = (c.Role, [C.Name, c.Name], [Boolean]) for some c E

C.Connection based on whether c.Role is defined.

i. If c.Role is defined, then by OMT-5, (c.Role, [C.Name], [c.Name-CLASS]) E

C.Attribute and by w Equation 7.61, (c.Role, [C.Name, c.Name], [Boolean])

(c.Role, [C.Name, c.Name], [Boolean]) = 0 E S'.Operations.

ii. If c.Role is not defined, then by OMT-5, (c.Name-OBJ, [C.Name], [c.Name-

CLASS]) E C.Attribute and by w' Equation 7.61, (HAS-PART, [C.Name, c.Name],

[Boolean]) =(HAS-PART, [C.Name, c.Name], [Boolean]) = o E S'.Operations.

(c) If the source of o E S.Operations is Equation 7.48 then o = (SIMULATES, [C.Name],

[c]) for some c E C.Superclass. Then by OMT-4, c E C.Superclass implies c E C.Class-

Sort.Inherited-Sort-Id and by Equation 7.67 in w, (SIMULATES, [C.Name], [c])=

(SIMULATES, [C.Name], [c]) = o E S'.Operations.

(d) If the source of o E S.O perations is Equation 7.50 then o = (A.Name, dom, [Boolean])

where dom = [c.Name I c E A.Connection]. By OMT-46, for each c E A-Connection,

there must be an operation (IMAGE, [A.Name, c.Name], [c2 .Name-CLASS]) E

A.Operation. Then, by w Equation 7.69, the second sort in each IMAGE operation

in A, Range-Ident(2) (which equals c.Name for some c E C.Connection) becomes part

of the domain, domn, of the operation (A.Name, dom, [Boolean]) = (A.Name, dom,

[Boolean])= o E S'.Operations.

F-6

Therefore, since for each possible source of o in S (Equations 7.41, 7.42, 7.48, and 7.50),

if o was generated by that equation then o E S.Operations = o' E S'.Operations and

S.Operations C S'.Operations.

o G S'.Operations #- o E S.Operations. If o E S'.Operations, there are five possible

sources - Equations 7.59, 7.60, 7.61, 7.67, or 7.69. Each is analyzed below.

(a) If the source of o E S'.Operations is Equation 7.59 then there must be some attribute

a E C.Attribute such that a = o = (o.Name, C.Name, o.Range-Ident). The only r

transformation that could create such an attribute in C is OMT-13. Thus by OMT-13

there must be some a' in C.Attribute such that a'.Name = o.Name and [a'.Datatype] =

o.Range-Ident. Therefore, by Equation 7.41 in transformation ', (a'.Name, [C.Name],

[a'.Datatype]) = (o.Name, [C.Name], o.Range-Ident) = o E S.Operations.

(b) If the source of o E S'.Operations is Equation 7.60 then o = (o.Name, [C.Name]

o.Range-Ident) E C.Operation and o.Name 5 ATTR-EQUAL. The only transfor-

mation that creates such an operation in C from g is OMT-14. Thus by OMT-14 there

must be some a =(a.Name, [C.Name], [a.Datatype]l) in C.Attribute such that a.Name

= o.Name and a.Datatype = o.Range-Ident. Then, by Equation 7.41 in 0, (a.Name,

[C.Name], [a.Datatype]) = (o.Name, [C.Name], o.Range-Ident) = o E S.Operations.

(c) If the source of o E S'.Operations is Equation 7.61 then o = (o.Name, [C.Name, name]

[Boolean]) E StC.Operations and, since Equation 7.61 is the only equation in w capable

of producing such an operation, there exists an attribute a E C.Attribute such that

a.Range-Ident = [name-CLASS] and, by the definition of om-pred, a.Name = xxx-

OBJ if o.Name = HAS-PART or a.Name = o.Name if o.Name 0 HAS-PART.

Since the only transformation that can create an attribute with this signature in C from

is OMT-5, there must exist some c E C.Connection such that c.Name = name and

F-7

attr-name(c) = a.Name. This means that if o.Name = HAS-PART then c.Role is

undefined, otherwise c.Role = a.Name = o.Name.

Thus by Equation 7.42 in ,o,

(comp-pred(c), [C.Name, c.Name], [Boolean]) = (o.Name, [S.Name, name], [Boolean])

= (o.Name, [S'.Name, name], [Boolean]) = o E Sc.Operations. Therefore, o E

S'.Operations =t o E S.Operations for operations in S' generated by Equation 7.61.

(d) If the source of o E S'.Operations is Equation 7.67 then o = (SIMULATES, [C.Namel,

[c]) and c must be a sort in C.Class-Sort.Inherited-Sort-Id. Since OMT-4 is the only

transformation that generates sorts in C.Class-Sort.Inherited-Sort-Id, it must be the

case that c is in C.Superclass and thus, by W Equation 7.48, (SIMULATES, [C.Name],

[c]) = (SIMULATES, [C.Name], [c]) = o E S.Operations.

(e) Finally, if the source of o E S'.Operations is Equation 7.69 then o = ([A.Name], dom,

[Boolean]) where each sort name, s E dom, must be o.Domain-Ident(2) in some oper-

ation named IMAGE in A.Operation. Since OMT-46 is the only transformation in -

capable of placing an IMAGE operation in A.Operation and (OMT-49 defines qualified

operations that, by assumption, are not included in 9), s must be the name of some

connection, c, in A and thus s = c.Name. Then by Equation 7.50, ([A.Name], dom,

[Boolean]) = ([A.Name], dom, [Boolean]) = o E S.Operations.

Therefore, since for each possible source of o in S' (Equations 7.59, 7.60, 7.61, 7.67, and

7.50), if o was generated by that equation then o E S'.Operations => o E S.Operations

and S'.Operations C S.Operations. Also, since I already established that S.Operations C

S'.Operations, it must be the case that S.Operations = S'.Operations.

5. Axioms

Initially, the number of transformations equations in W (7.43, 7.44, 7.45, 7.46, 7.47, 7.51,

7.52, 7.53, 7.54, and 7.55) along with the number of transformations equations in w (7.62,

F-8

7.63, 7.64, 7.65, 7.66, 7.70, 7.71, 7.72, 7.73, and 7.74) make it appear though proving that

the axioms generated by one equation are unique and can only be transformed into an exact

duplicate might be exhausting if not impossible; however, by making a few observations the

proof can be dramatically simplified.

First, note that the axioms generated by classes by equations 7.43- 7.47 and 7.62 - 7.66 are

unique from those generated for associations by equations 7.51 - 7.55 and 7.70 - 7.74. All

class axioms are based on a predicate in the class whose name is determined by the functions

comp-pred or om-pred. The resulting predicate name is either HAS-PART or the role name

of the component class. However, in an association, the name of the predicate is the name

of the association. Therefore, assuming unique names in the object model, p and w generate

unique axioms in Sc and SA.

Second, note that inside a given class or association, the axioms generated by separate rules

are unique with a few minor, non-critical exceptions. For example, in the set of equations

7.43- 7.47, Equation 7.43 generates the axiom

"X E c.Name = SIZE({Y I comp-pred(c)(X,Y)}) = 1"

that may also be generated by Equation 7.47. This is because the same OMT notation can be

represented in two ways in the generic OMT abstract syntax tree. This is not a problem since

both representations result in the same axioms being generated. Also, the axiom generated

by Equation 7.44 may also be generated by Equation 7.45 while the axiom generated by

Equation 7.46 may also be generated by Equation 7.47. In both these cases, there are two

distinct methods of representing the same semantics in the OMT object model; however, both

representations generate the exact same axiom. Since I am only concerned about preserving

the semantics of the object model, the internal representation in the generic OMT AST is of

no importance as long as the semantics are equivalent.

F-9

I first look at an axiom a in a class Sc followed by axioms in an association SA.

Aggregate Axioms.

a E S.Axiomns - a' E S'.Axioms. Since a is in a class, it must have been generated by

one of the Equations 7.43 - 7.47. Each possibility is discussed below.

(a) If a in Sc.Axioms is of the form generated by Equation 7.43 such that

a = "X E s => SIZE({Y I p(X, Y)}1) = 1"

then there exists a c E C.Connection such that (1) by Equation 7.43, c.Mult =One,

c.Name = s, and if p = HAS-PART then c.Role = undefined else c.Role = p, or (2)

by Equation 7.47 c.Mult =Specified, c.Name = , if p = HAS-PART then c.Role=

undefined else c.Role = p, and c.Specif ied ={1(1, undefined)}.

i. If c.Mult = One, then by OMT-8 there exists an axiom ax, C C.Axiom such that

axi = "SIZE(IMAGE(attr-name(c) (X), Q)) = 1"

where attr-name(c) =c.Role (if defined) or c.Name-CLASS.

ii. If c.Mult = Specified, then by OMT-12 there exists an axiom ax2 C C.Axiom such

that

aX2 = "SIZE(IMAGE(attr-name(c) (X), Q)) = s-valuel"

Thus it is obvious that ax, = aX2 = ax E C.Axiom. From here, there are two paths to

SC', via Equation 7.62 or 7.66.

i. Given ax, by Equation 7.62 there exists an axiom a, E S&'.Axioms such that

al1 = "X E sort-of (attr-name(c))
#-' SIZE({Y I om-pred(attr-name(c))(X,Y)}) = 1"

where if c.Role was defined then SOrt-of(attr-name(c)) = SOrt-of (c.Role) = c.Name

= S (by OMT-5) and om-pred(attr-name(c)) = om-pred(c.Role) = c.Role =p, or

if c.Role was not defined then sort-of (attr-name(c)) = sort-of (c.Name-OBJ)=

F-10

c.Name = s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c.Name-OBJ)=

HAS-PART = p. Thus a = a',.

ii. Given ax, by Equation 7.66 there exists an axioms a2 E S&'.Axioms such that

a2 ="X E sort-of (attr-name(c))
* SIZE({Y I om-pred(attr-name(c))(X,Y)}) = s.valuel"

where s.valuel =1, and if c.Role was defined, sort-of (attr-name(c)) =sort-

of (c.Role) = c.Name = (by OMT-5) and om-pred(attr-name(c)) =om-

pred(c.Role) = c.Role = p, or if c.Role was not defined then sort-of (attr-name(c))

= sort-of (c.Name-OBJ) c.Name =s (by OMT-5) and om-pred(attr-name(c))

= om-pred(c.Name-OBJ) =HAS-PART = p. Thus a = a'2.

Again it is clear that a, a2 a and thus any axiom in Sc generated by Equation 7.43

(or by Equation 7.47 in the form of Equation 7.43) also exists in SCI.

(b) If a in Sc.Axioms is of the form generated by Equation 7.44 such that

a = "X E s , SIZE({Y I p(X, Y)}1) > 0"

then there exists a c E C.Connectiori such that (1) by Equation 7.44, c.Mult = Many,

c.Name = s, and if p = HAS-PART then c.Role = undefined else c.Role = p, or

(2) by Equation 7.45, c.Mult = Plus, c.Name = s, if p = HAS-PART then c.Role=

undefined else c.Role =p, and c.Plus.Integer = 0.

i. If c.Mult = Many, then by OMT-9 there exists an axiom ax, E C.Axiom such that

axi = "SIZE (IMAGE(attr-name(c) (X), Q)) > 0"

where attr-name(c) = c.Role (if defined) or c.Name-CLASS.

ii. If c.Mult = Plus, then by OMT-10 there exists an axiom ax 2 E C.Axiom such that

aX2 ="SIZE(IMAGE(attr-name(c) (X), Q)) : c.Plus.Integer"

Thus it is obvious that ax, = aX2 = ax E C.Axiom. Then by Equation 7.63 there exists

an axiom a, E S&'.Axioms such that

F-il

a4 = XE sort-of f(attr-name (c))
=* SIZE({Y Iom-pred(attr-name(c))(X,Y)}) > 0"1

where if c.Role was defined then sort-of f(attr-name(c)) = sort-of (c.Role) = c.Name

s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c.Role) = c.Role = p, or if c.Role

was not defined then sort-of f(attr-name(c)) = sort-of (c.Name-OBJ) = c.Name = s

(by OMT-5) and om-pred(attr-name(c)) = om-pred(c.Name-OBJ) = HAS-PART

p. Thus a = ai.

Again it is clear that a, = a' a and thus any axiom in Sc generated by Equation 7.44

(or by Equation 7.45 in the same form) also exists in Se.

(c) If a in Sc.Axioms is of the form generated by Equation 7.45 such that

a = "X E s =* SIZE({Y I p(X, Y)}) > x"

then by Equation 7.45 there exists a c E C.Connection such that c.Mult = Plus, c.Name

= s, if p =HAS-PART then c.Role =undef ined else c.Role =p, c.Plus.Integer = x.

(Note: If x = 0 then a is of the form generated by Equation 7.44 that was previously

shown to be in OM'; therefore, in this section of the proof, I assume x > 0.)

Then by OMT-10 there exists an axiom ax E C.Axiom of the form

ax = "SIZE(IMAGE(attr-name(c) (X), Q)) ! c.Plus.Integer"

and by Equation 7.64 there exists an axiom a' E S&'.Axioms such that

a' = "X E sort-of f(attr-name (c))
. SIZE({Y I om-pred(attr-name(c))(X,Y)}) ! c.Plus.Integer"

where c.Plus.Integer = x, if c.Role was defined, sort-of (attr-name(c)) = sort-

of (c.Role) = c.Name = s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c.Role) =

c.Role = p, or if c.Role was not defined then sort-of f(attr-name(c)) = sort-of (c.Name-

OBJ) = c.Name = s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c.Name-

F-12

OBJ) = HAS-PART = p. Thus a = a' and thus any axiom in Sc generated by

Equation 7.45 also exists in S&.

(d) If a in Sc.Axioms is of the form generated by Equation 7.46 such that

a ="X E s : (SIZE({Y I p(X,Y)}) = 0 V SIZE({Y Ip(X,Y)}) = 1)"

then there exists a c G C.Connection such that (1) by Equation 7.46, c.Mult = Optional,

c.Name = s, and if p = HAS-PART then c.Role = undefined else c.Role = p, or (2)

by Equation 7.47, c.Mult = Specified, c.Name = s, if p = HAS-PART then c.Role =

undefined else c.Role = p, and c.Specified = {srl, sr2 }, sr1 = (0, undefined), and sr 2

- (1, undefined).

i. If c.Mult = Optional, then by OMT-11 there exists an axiom ax, E C.Axiom such

that

ax2 ="SIZE (IMAGE(attr-name(c) (X), Q)) = 0
V SIZE(IMAGE(attr-name(c)(X),Q)) = 1"

where attr-name(c) = c.Role (if defined) or c.Name-CLASS.

ii. If c.Mult = Specified, then by OMT-12 there exists an axiom ax2 E C.Axiom such

that

ax2 ="SIZE(IMAGE(attr-name(c)(X), Q)) = sri.valuel
V SIZE(IMAGE(attr-name(c) (X), Q)) = sr2.value2"

where s.valuel = 0 and s.value2 = 1.

Thus it is obvious that ax, = ax2 = ax E C.Axiom. From here, there are two paths to

S', via Equation 7.65 or 7.66.

i. Given ax, by Equation 7.65 there exists an axiom a' G SbC.Axioms such that

F-13

al = "X E sort-of f(attr-name(c))
~(SIZE({Y I om-fpred(attr-name(c))(X,Y)}) = 0

V SIZE({Y I om-pred(attr-name(c))(X,Y)}) = 1)"

where if c.Role was defined then sort-of (attr-name(c)) = sort-of (c.Role) = c.Name

=s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c.Role) =c.Role = p, or

if c.Role was not defined then so'rt-of (attr-name(c)) =sort-of (c.Name-OBJ) =

c.Name = s (by OMT-5) and om-pred(attr-name(c)) =om-pred(c.Name-OBJ) =

HAS-PART = p. Thus a = ai.

ii. Given ax, by Equation 7.66 there exists an axioms a2 SC'.Axioms such that

a2 "X E sort-of (attr-name (c))

=~(SIZE({Y I om-pred(attr-name(c))(X,Y)}) = s.valuel
V SIZE({Y I om-pred(attr-name(c))(X,Y)}) = s.value2)"

where s.valuel 0, s.value2 1, and if c.Role was defined, sort-of (attr-name(c))

=sort-of (c.Role) =c.Name =s (by OMT-5) and om-pred(attr-name(c)) = om-

pred(c.Role) = c.Role = p, or if c.Role was not defined then sort-of f(attr-name(c))

= sort-of (c.Name-OBJ) =c.Name = s (by OMT-5) and om-pred(attr-name(c))

=om-pred(c.Name-OBJ) HAS-PART = p. Thus a =a2.

Again it is clear that a' = a2 = a and thus any axiom in SC generated by Equation 7.46

also exists in SCI

(e) If a E Sc.Axioms consists of the logical disjunction of ni subaxioms of either of two

forms

"XE s =:> SIZE({Y I p(X, Y)}) = vi"

or

"XE s : (SIZE({Y I p(X, Y)}) ! vi V SIZE({Y I p(X, Y)}) :5V2)"

F-14

and assuming a is not of the form generated by Equations 7.43 or 7.46, then by Equa-

tion 7.47 there exists c E C.Connection such that c.Mult = Specified, c.Name = s,

and c.Role = p if p 5 HAS-PART.

Then for each subaxiom al ...an in a, there exists some s E c.Specified (where s is of

type SPEC-RANGE) such that s.valuel = v, and s.value2 = v2.

Then by OMT-12 there exists an axiom ax E C.Axiom where ax is the logical disjunction

of the set of subaxioms generated for each si E c.Specified such that

si ="SIZE(attr-name(c)(X)) = s.valuel"

or

si ="(SIZE (attr-name(c) (X)) > s.valuel
V SIZE(attr-name(c)(X)) _ s.value2)"

where attr-name(c) = c.Role, if defined, or c.Name otherwise.

Then by Equation 7.66 there exists an a' in SC.Axioms such that for each subaxiom of

ax of one of the forms given above for si there exists a subaxiom in a' of the form

"X E sort-of(attr-name(c))
=. SIZE({Y I om-pred(attr-name(c))(X,Y)}) = s.valuel"

or

"X E sort-of(attr-name(c)) =- (SIZE({Y I om-pred(attr-name(c))(X,Y)}) _ s.valuel
V SIZE({Y I om-pred(attr-name(c))(X,Y)}) < s.value2)"

where if c.Role is defined then sort-of(attr-name(c)) = sort-of (c.Role) = c.Name =

s and om-pred(attr-name(c)) = om-pred(c.Role) = c.Role = p. And, if c.Role is not

defined, then sort-of(attr-name(c)) = sort-of (c.Name-OBJ) = c.Name = s and om-

pred(attr-name(c)) = om-pred(c.Name-OBJ) = HAS-PART = p. Therefore, each

subaxiom in a' E SC.Axioms is of the form

"X E s - SIZE({Y I p(X,Y)}) = vi"

F-15

or

"X E s : (SIZE({Y I p(X, Y)) : vi V SIZE({Y I P(X, Y)}) ! V2)"

and thus for each subaxiom in a there exists an equivalent subaxiom in a' and thus a

a.

Therefore, since for each type of axiom in SC.Axioms there is an equivalent axiom in

S'.Axiom then SC.Axioms C S'.Axioms.

a E S'.Axioms #- a E S.Axioms. The six possible sources of axioms in SC' are analyzed

below.

(a) If a in S&'.Axioms is of the form generated by Equation 7.62 such that

a = "X E s #. SIZE({Y I p(X, Y)}) = 1"

then there exists an axiom, ax E C.Axiom of the form

ax ="SIZE (IMAGE(n(X), Q)) = 1"

generated by either Equation 7.62 or 7.66 where .sort-of (n) = s and om-pred(n) =p.

Given ax, there are two paths from C, OMT-8 or OMT-12.

i. If ax is generated by OMT-8 then

A. If c.Role is defined then there exists a c E C.Corimection such that

c.Mult = ONE
n = attr-name(c) = c.Role

s = sort-of (ni) = sort-(c.Role) = c.Name
p = om-pred(n) = om-pred(c.Role) = c.Role

comp-pred(c) = c.Role = p

Thus by Equation 7.43 there exists an axiom a'l E Sc.Axiom such that

a'1 = XE c.Name SIZE({YlIcomp-pred(c)(X,Y)})= 1"

= (W E s # SIZE({Y I p(X, Y)}) =1"

B. If c.Role is not defined then there exists a c E C.Connection such that

F-16

c.Mult = ONE

n = attr-name(c) = c.Name - OBJ

s = sort-of (n) = sort-(c.Name-OBJ) = c.Name

p = om-pred(n) = om-pred(c.Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.43 there exists an axiom a2 E Sc.Axiom such that

a'2 = "X E c.Name SIZE({Yicomp-pred(c)(X,Y)}) = 1"

- "X E s = SIZE({Y] p(X,Y)}) = 1"

Thus a, = a2 E Sc.Axioms = a E S.Axioms.

ii. If ax is generated by OMT-12

A. If c.Role is defined then there exists a c E C.Connection such that

c.Mult = Specified

c.Mult = { (1, undefined) }

n = attr-name(c) = c.Role

s = sort-of (n) = sort-(c.Role) = c.Name

p = om-pred(n) = om-pred(c.Role) = c.Role

comp-pred(c) = c.Role = p

Thus by Equation 7.47 there exists an axiom a' E Sc.Axiom such that

a' = X E c.Name = SIZE({Y] comp-pred(c)(X,Y)}) = x.valuel"

= "X E s = SIZE({Y I p(X,Y)}) = 1"

B. If c.Role is not defined then there exists a c E C.Connection such that

c.Mult = Specified
c.Mult = {(1, undefined)}

n = attr-name(c) = c.Name - OBJ

s = sort-of (n) = sort-(c.Name-OBJ) = c.Name

p = om-pred(n) = om-pred(c.Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.47 there exists an axiom a2 E Sc.Axiom such that

F-17

2a' = "X E c.Name = . SIZE({Y I comp-pred(c) (X, Y)}) = x.valuel"
= ("X E s . SIZE({Y I p(X, Y)}) = 1")

Thus a, = a2 E Sc.Axioms = a E S&'.Axioms.

Again it is clear that a, = a2 = a and thus any axiom in SC' generated by Equation 7.62

also exists in Sc.

(b) If a in S&'.Axioms is of the form generated by Equation 7.63 such that

a = "X E s = . SIZE ({Y I p(X, Y)}1) > 0"

then there exists an axiom, ax E C.Axiom of the form

ax ="SIZE(IMAGE(n(X), Q)) 0"

generated by Equation 7.63 where sort-of (n) = s and om-pred(m) = p.

Given ax, there are two paths from C, OMT-9 or OMT-10.

i. If ax is generated by OMT-9 then

A. If c.Role is defined then there exists a c E C.Connection such that

c.Mult = Many
n = attr-name(c) = c.Role

s = sort-of (n) = sort-(c.Role) = c.Name
p = om-pred(n) = om-pred(c.Role) = c.Role
comp-pred(c) = c.Role = p

Thus by Equation 7.44 there exists an axiom all E SC.Axiomn such that

a1I = "X Ec.Name SIZE({YlIcomp-pred(c)(X,Y)})> "
= "X E s =>. SIZE({Y I p(X, Y)}) > 0"

B. If c.Role is not defined then there exists a C E C.Connection such that

F- 18

c.Mult = Many
n =attr-name(c) = c.Name - OBJ
s =sort-of (n) = sort-(c.Name-OBJ) = c.Name

p =om-pred(n) = om-pred(c.Name-OBJ) = HAS-PART
comp-pred(c) = HAS-PART =p

Thus by Equation 7.44 there exists an axiom a2 E S0 .Axiom such that

a2 = "X Ec.Name > SIZE({YlIcomp-pred(c)(X,Y)})> "

= "X E a SIZE({YjIp(X, Y)})> 0"

Thus a, = a2 E Sc.Axioms = a E S&'.Axioms.

ii. If ax is generated by OMT-10

A. If c.Role is defined then there exists a c E C.Conmection such that

C.Mult = Plus
c.Plus.integer = 0
ni attr-name(c) = c.Role
s =sort-of (n) = sort-(c.Role) =c.Name

p =om-pred(n) = om-pred(c.Role) = c.Role

comp-pred(c) = c.Role = p

Thus by Equation 7.45 there exists an axiom a, E SC.Axiomn such that

a1 = "X E c.Name * SIZE ({Y I comp-pred(c) (X, Y)}) >: x. Plus.integer"
=C X E s * SIZE({Y I p(X,Y)}) > 0"

B. If c.Role is not defined then there exists a c E C.Connection such that

c.Mult = Plus
c.Plus.irtteger = 0
n = attr-name(c) = c.Name - OBJ
s = sort-of (n) = sort- (c.Name-OB J) = c.Name
p =om-pred(n) = om-pred(c.Name-OBJ) = HAS-PART
comp-pred(c) = HAS-PART = p

Thus by Equation 7.45 there exists an axiom a2 E S0 .Axiom such that

F-19

a'2 = "X E c.Name =: SIZE({Y] comp-pred(c)(X,Y)}) > c.Plus.integer"

= "X E s SIZE({Y]p(X,Y)}) > 0"

Thus a, = a2 E Sc.Axioms = a E S.Axioms.

Therefore, it is clear that a, = a2 = a and thus any axiom in SC generated by Equa-

tion 7.62 also exists in Sc.

(c) If a in Sc.Axioms is of the form generated by Equation 7.64 (assuming x > 0) such that

a ="X E s > SIZE({Y I p(X,Y)}) > x"

then there exists an axiom, ax E C.Axiom of the form

ax ="SIZE(IMAGE(n(X), Q)) > x"

generated by either Equation 7.64 where sort-of (n) = s and om-pred(n) = p.

Given ax, by OMT-10 there exists a c E C.Connection such that

i. If c.Role is defined then

c.Mult = Plus

c.Plus.integer = x

n = attr-name(c) = c.Role

s = sort-of (n) = sort-(c.Role) = c.Name

p = om-pred(n) = om-pred(c.Role) = c.Role

comp-pred(c) = c.Role = p

Thus by Equation 7.45 there exists an axiom a' E SC.Axiom such that

a = "X E c.Name =: SIZE({Y comp-pred(c)(X,Y)}) _ c.Plus.integer"

= E s SIZE({Y]p(X,Y)}) >x"

ii. If c.Role is not defined then

F-20

c.Mult = PLUS
c.Plus.integer =x
ni = attr-name(c) = c.Name - OBJ
s = sort-of (ni) = sort- (c.Name-OBJ) = c.Name

p = om-pred(n) = om-pred(c.Name-OBJ) = HAS-PART
comp-pred(c) = HAS-PART =p

Thus by Equation 7.45 there exists an axiom a' E Sc.Axiom such that

2a' = "X E c.Name =* SIZE ({Y I comp-pred(c) (X, Y)}) ! c.Plus.integer"
= "X E a SIZE({YjIp(X, Y)}) x"

Thus a, = a2 E Sc.Axioms = a E Sb'.Axioms.

Again it is clear that a, = a2 = a and thus any axiom in SC' generated by Equation 7.64

also exists in SC.

(d) If a in S&'.Axioma is of the form generated by Equation 7.65 such that

a ="X E s =*- (SIZE({Y I p(X, Y)}) = 0 V SIZE({Y I p(X, Y)}) =1)"

then there exists an axiom, ax E C.Axiom of the form

ax = "SIZE(IMAGE(n(X), Q)) = 0 V SIZE(IMAGE(n(X), Q)) =1"

generated by either Equation 7.65 or 7.66 where sort-of (in) = s and om-pred(n) =p.

Given ax, there are two paths from C, OMT-11 or OMT-12.

i. If ax is generated by OMT-11 then

A. If c.Role is defined then there exists a c E C.Corinection such that

c.Mult = Optional
n = attr-name(c) = c.Role

s = sort-of (n) = sort-(c.Role) = c.Name
p = om-pred(n) = om-pred(c.Role) = c.Role

comp-pred(c) = c.Role = p

Thus by Equation 7.46 there exists an axiom a' E SC.Axiom such that

F-21

a,= "X Ec.Name = (SIZE({YlIcomp-pred(c)(X,Y)}) =

V SIZE({Y I comp-pred(c)(X,Y)}) = 1)"
= "X E s - (SIZE({Y I p(X, Y)}) = 0 V SIZE({Y I p(X, Y)}) = 1)"

B. If c.Role is not defined then there exists a c E C.Connection such that

c.Mult = Specified

n =attr-name(c) = c.Name - OBJ
.5 = sort-of (n) = sort- (c.Name-OB J) =c.Name
p =om-pred(n) = om-pred(c.Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.46 there exists an axiom a' E SC.Axiom such that

a2 = "X E cName SIZE({Y Icomp-pred(c) (X, Y)}) =1"

= "cX E s :SIZE({YjIp(X, Y)}) = 1"

Thus a' a2 E Sc.Axioms =a E S&'.Axioms.

ii. If ax is generated by OMT-12

A. If c.Role is defined then there exists a c E C.Connectiori such that

c.Mult =Specified
c.Mult = {(0, undefined), (1, undefined)}
n = attr-name(c) = c.Role
s = sort-of (n) = sort-(c.Role) = c.Name
p = om-pred(n) = om-pred(c.Role) = c.Role

comp-pred(c) = c.Role = p

Thus by Equation 7.47 there exists an axiom a' E S0 .Axiorn such that

a' = X Cc.Name SIZE({YlIcomp-pred(c)(X,Y)}) =x.valuel"

cc X s = . SIZE({Y I p(X, Y) 1) = il"

B. If c.Role is not defined then there exists a c E C.Connection such that

F-22

c.Mult = Specified

c.Mult = 1{(0, undefined), (1, undefined)}I
n = attr-name(c) = c.Name - OBJ
s = sort-of (n) = sort- (c.Name-OB J) = c.Name
p = om-pred(n) = om-pred(c.Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.47 there exists an axiom a2 E SC.Axiom such that

a' = "X c.Name = SIZE({YlIcomp-pred(c)(X,Y)}) =x.valuel"

= "CX E s SIZE({Y Ip(X,Y)}) = 1"

Thus a, = a2 E Sc.Axioms = a E S&'.Axioms.

Again it is clear that a, a2 = a and thus any axiom in SC' generated by Equation 7.65

also exists in Sc.

(e) If a' in S&'.Axioms is of the form generated by Equation 7.66 such that it consists of

the logical disjunction of n subaxioms of either of two forms

11X E s . SIZE ({Y I p(X, Y)}) =vi1

or

"X E s = (SIZE({Y I p(X, Y)}) vi V SIZE({Y I p(X, Y)}) 5 V2)"

and assuming a' is not of the form generated by Equations 7.62 or 7.65, then by Equa-

tion 7.66, there exists an axiom ax in C.Axiom where ax is the logical disjunction of

the set of subaxioms generated for each si in a' such that

Si ="SIZE(n(X)) =v"

or

Si = "(SIZE(n(X)) ! vi V SIZE(n(X)) V2)"

where s = sort-of (in) and p = om-pred(c). Then by OMT-12 there exists a c E

C.Connection such that c.Mult = Specified, there exists some (Vl, V2) G c.Specified

(V2 may be undefined) for each si in ax, and the attr-name(c) = n.

F-23

i. By the definition of the function om-pred in Equation 7.75, if p = om-pred(c)

HAS-PARTS then c.Role is undefined and

n = attr-name(c) = c.Name - OBJ

s = sort-of (n) = sort-of (c.Name-OBJ) = c.Name
p = om-pred(n) = om-pred(c.Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

ii. By the definition of the function om-pred in Equation 7.75, if p = om-pred(c)

HAS-PARTS then c.Role is defined and

n = attr-name(c) = c.Role
s = sort-of (n) = sort-of (c.Role) = c.Name
p = om-pred(n) = om-pred(c.Role) = c.Role

comp-pred(c) = c.Role = p

Then by Equation 7.47 there exists an a in Sc.Axioms such that for each spec-range E

c.Specified there exists a subaxiom in a of the form

"X E sort-of(attr-name(c))
= SIZE({Y I om-pred(attr-name(c))(X,Y)}) = s.valuel"

or

"X E sort-of (attr-name(c)) => (SIZE({Y I om-pred(attr-name(c))(X,Y)}) > s.valuel
V SIZE({Y I om-pred(attr-name(c))(X,Y)}) < s.value2)"

where if c.Role is defined then sort-of(attr-name(c)) = sort-of (c.Role) = c.Name =

s and om-pred(attr-name(c)) = om-pred(c.Role) = c.Role = p. And, if c.Role is not

defined, then sort-of(attr-name(c)) = sort-of (c.Name-OBJ) = c.Name = s and om-

pred(attr-name(c)) = om-pred(c.Name-OBJ) = HAS-PART = p. Therefore, each

subaxiom in a E Sc.Axioms is of the form

"X E s = SIZE({Y I p(X,Y)}) = vi"

or

F-24

"X E s * (SIZE({Y I p(X,Y)}) >> vi V SIZE({Y I p(X,Y)}) < V2)"

and thus for each subaxiom in a' there exists an equivalent subaxiom in a and thus a =

a'.

Therefore, since for each type of axiom in Sb'.Axioms there is an equivalent axiom

in Sc.Axiom then SC'.Axioms C Sc.Axioms, and, since I have previously shown that

Sc.Axioms C Sc'.Axioms, it is clear that Sc.Axioms = S&'.Axioms

Association Axioms. Since a is in an association specification, it must have been

generated by one of the Equations 7.51 - 7.55. Each possibility is discussed below.

(a) If a in SA.Axioms is of the form generated by Equation 7.51 such that

a ="X E s =. SIZE({Y I SA.Name(X,Y)}) = 1"

then there exists a c E C.Connection such that (1) by Equation 7.51, c.Mult = One and

c.Name = s , or (2) by Equation 7.55 c.Mult = Specified, c.Name = s, c.Specified =

{sr}, and sr =(1, undefined).

i. If c.Mult = One, then by OMT-50 there exists an axiom ax1 E C.Axiom such that

axl ="X E c.Name =t SIZE(IMAGE(A, X)) = 1"

ii. If c.Mult = Specified, then by OMT-54 there exists an axiom ax2 E C.Axiom such

that

axi ="X E c.Name = SIZE(IMAGE(A, X)) = sr.valuel"

Thus, since sr.valuel = 1, ax, = ax2 = ax E C.Axiom, then by Equation 7.70 there

exists an axiom a' E SA.Axioms such that

a' ="X E c.Name =- SIZE({Y I SA.Name(X, Y)}) = 1"

Thus a = a' since c.Name = s and SA.Name = SA.Name; therefore any axiom in SA

generated by Equation 7.51 (or by Equation 7.55 in the form of Equation 7.51) also

exists in SA.

F-25

(b) If a in SA.Axioms is of the form generated by Equation 7.52 such that

a ="X E s = SIZE({Y ISA.Name(X,Y)}) 0"

then there exists a c E C.Connection such that (1) by Equation 7.52, c.Mult

Many and c.Name =s, or (2) by Equation 7.53, c.Mult = Plus, c.Name = 8, and

c.Plus.Integer = 0.

i. If c.Mult = Many, then by OMT-51 there exists an axiom ax1 E C.Axiom such

that

axi = "X E c.Name =: SIZE(IMAGE(A, X)) 0"

where attr-name(c) = c.Role (if defined) or c.Name-CLASS.

ii. If c.Mult = Plus, then by OMT-52 there exists an axiom aX2 E C.Axiom such that

ax, = "X E c.Name =* SIZE(IMAGE(A, X)) > c.Plus.integer"

Thus, since c.Plus.Integer = 0, it is obvious that ax, = aX2 = ax E C.Axiom. Then

by Equation 7.71 there exists an axiom a' E SA.Axioms such that

a' ="X E c.Name . SIZE({Y I SA.Name(X,Y)}) > c.Plus.integer"

and since c.Name = s and SA.Name = SA.Name, a = a' and any axiom in SA generated

by Equation 7.52 (or by Equation 7.53 in the same form) also exists in SA.

(c) If a in SA.Axioms is of the form generated by Equation 7.53 such that

a = "X E s > SIZE({Y ISA.Name(X, Y)}) > x"

then by Equation 7.53 there exists a c E C.Connection such that c.Mult = Plus, c.Name

= s, and c.Plus.Integer = x. (Note: If x = 0 then a is of the form generated by

Equation 7.52 that was previously shown to be in OM'; therefore, in this section of the

proof, I assume x > 0.)

Then by OMT-52 there exists an axiom ax E C.Axiom of the form

ax = "XE c.Name => SIZE(IMAGE(A, X) ! c.Plus.Integer"

and thus by Equation 7.72 there exists an axiom a' E SA.Axioms such that

F-26

a'= "X E c.Name =:: SIZE({Y I SA.Name(X, Y)}) > c.Plus.Integer"

and since c.Name = s, c.Plus.Iriteger =x, and SA.Name = SA.Name, it must be true

that a = a' and thus any axiom in SA generated by Equation 7.53 also exists in SA.

(d) If a in SA.Axioms is of the form generated by Equation 7.54 such that

a = "X e s #- (SIZE({Y I SA.Name(X, Y)}) = 0
V SIZE({Y ISA.Name(X,Y)}) = 1)"

then there exists a c E C.Connection such that (1) by Equation 7.54, c.Mult = Optional

and c.Name = , or (2) by Equation 7.55, c.Mult = Specified, c.Name = s, c.Specif ied

f {sri, sr2}1, sr, = (0, undefined), and sr2 = (1, unde fined).

i. If c.Mult = Optional, then by OMT-53 there exists an axiom ax1 E C.Axiom such

that

axi =" c.Name = (SIZE(IMAGE(A,X) = 0
V SIZE(IMAGE(A,X) = 1)"

ii. If c.Mult =Specified, then by OMT-54 there exists an axiom aX2 E C.Axiom such

that

axi = "X E c.Name = (SIZE(IMAGE(A, X) = sri.valuel

V SIZE(IMAGE(A, X) = sr2.valuel)"

Thus it is obvious that ax, = aX2 = ax E C.Axiom and by Equation 7.73 there exists

an axiom a' E SA.Axioms such that

a'= "X E c.Name = (SIZE({Y I SA.Name(X, Y)}) = 0
V SIZE({ Y I SA.Name(X, Y)}) = 1)"

and since c.Name = s and SAName = SA.Name, a = a'.

Again it is clear that a, = a2 = a and thus any axiom in SA generated by Equation 7.54

also exists in SA-

F-27

(e) If a E SA.Axioms is of the form generated by Equation 7.55 such that a consists of the

logical disjunction of n subaxioms of either of two forms

"X E s - SIZE ({Y I pred(X, Y)}1) = vi"

or

"X E s = (SIZE({Y Ipred(X, Y)}) vi A SIZE({Y Ip(X, Y)}) V2)"

and assuming a is not of the form generated by Equations 7.51 or 7.54, then by Equa-

tion 7.55 there exists c E C.Connection such that c.Mult = Specified, c.Name = s

and pred = SA.Name.

Then for each subaxiom alan in a, there exists some s E c.Specif ied (where s is of type

SPEC-RANGE) such that s.valuel = vi and .s.value2 =V2 (V2 may be undefined).

Then by OMT-54 there exists an axiom ax E C.Axiom such that ax is the logical

disjunction of the set of subaxiomns generated for each si E c.Specified such that

si ="X E c.Name =; SIZE(IMAGE(A, X)) = s.valuel"

or

si ="X E c.Name *. (SIZE(IMAGE(A,X)) > s.valuel
A SIZE(IMAGE(A, X)) < s-value2)"

Then by Equation 7.74 there exists an a' in SA.Axioms such that for each subaxiom of

ax of one of the forms given above for si there exists a subaxiom in a' of the form

"X E c.Name = -SIZE({Y I SA.Name(X, Y)}) = s.valuel"

or

"X E c.Name .- (SIZE({ Y I SA.Name(X, Y)}) > s.valuel
A SIZE({ Y I SA.Name(X, Y)}) < s.value2)"

where c.Name = s and SA.Name = SA.Name. Therefore, each subaxiom in a' E

SA'.Axioms is of the form

"X E s SIZE({Y I pred(X,Y)}) = vi"

F-28

or

"X E s '- (SIZE({Y I pred(X, Y)}) > vi V SIZE({Y I pred(X, Y)}) ! V2)"

and thus for each subaxiom in a there exists an equivalent subaxiom in a' and thus a

a.

Therefore, since for each type of axiom in SA.Axioms there is an equivalent axiom in

SA'.Axiom it must be true that SA.Axioms C SA.Axioms.

a C S'.Axioms #- a E S.Axioms. The six possible sources of axioms in SA' are analyzed

below.

(a) If a in SA.Axiomas is of the form generated by Equation 7.70 such that

a = "X E s ' SIZE({Y I SA.Name(X, Y)}) = 1"

then there exists an axiom, ax E C.Axiom of the form

ax ="X E sSIZE(IMAGE(A,X)) = 1"

generated by either Equation 7.70 or 7.74.

Given ax, there are two paths from C, OMT-50 or OMT-54.

i. If ax is generated by OMT-50 then c.Mult = ONE and c.Name s, ,and by

Equation 7.51 there exists an axiom a' G SA.AxiomT such that

a' = "X E c.Name '- SIZE({Y I SA.Name(X, Y)}1) = 1"

Since c.Name = s and SA.Name =SA.Name, a' = a.

ii. If ax is generated by OMT-54 then there exists a c E C.Conriection such that c.Mult

= Specified, c.Specif ied = {sr}, and sr = (1, undefined). Thus by Equation 7.55

there exists an axiom a' E SA.Axiom such that

a' = "X E c.Name -SIZE({ Y I SA.Name(X, Y)}) = sr.valuel"

Since c.Name =s, sr.valuel = 1, and SA.Name = SA.Name, a' E SA.Axioms = a c

S%'Axioms and thus any axiom in SA' generated by Equation 7.70 also exists in SA.

F-29

(b) If a in SA.Axiomns is of the form generated by Equation 7.71 such that

="X E s ; SIZE({Y I S'.Name(X,Y)}) 0"

then there exists an axiom, ax E C.Axiom of the form

ax ="X E sSIZE(IMAGE(A,X)) > 0"

generated by Equation 7.71.

Given ax, there are two paths from C, OMT-51 or OMT-52.

i. If ax is generated by OMT-51 then there exists a c E C.Connection such that c.Mult

=Many and c.Name = s; therefore, by Equation 7.52 there exists an axiom a' E

SA.Axiom such that

a ="X E c.Name * SIZE({Y I SA.Name(X,Y)}) > 0"

Therefore since s c.Name and SA.Name = SA.Name, a' = a.

ii. If ax is generated by OMT-52 then there exists a c E C.Connection such that c.Mult

=Plus, c.Plus.integer = 0, and s = c.Name and by Equation 7.53 there exists an

axiom a' E SA.Axio'm such that

a = "X E c.Name * SIZE({Y I SA.Name(X, Y)}) 0"

Since s c.Name and SA.Name = SA.Name, a' =a; therefore any axiom in S

generated by Equation 7.70 also exists in SA.

(c) If a in SA.Axioms is of the form generated by Equation 7.72 (assuming x > 0) such that

a ="X E s => SIZE({Y ISA'.Name(X,Y)}) > x"

then there is an axiom, ax E C.Axiom

X C S => ax = "SIZE(IMAGE(A, X)) > x"

generated by Equation 7.72.

Given ax, by OMT-52 there exists a c E C.Connection such thatc.Mult = Plus,

c.Plus.integer = x, and c.Name = s. Therefore, by Equation 7.53 there exists an

axiom a' E SA.Axiom such that

F-30

a ="X E c.Name =: SIZE({Y I SA.Name(X, Y)}) > c.Plus.integer"

Again, since c.Plus.integer = x and c.Name = s, it is clear that a = a and thus any

axiom in SA generated by Equation 7.72 also exists in SA.

(d) If a in SA.Axioms is of the form generated by Equation 7.73 such that

a ="X E s = (SIZE({Y I SA.Name(X, Y)}) = 0

VSIZE({Y I SA.Name(X,Y)}) = 1)"

then there os an axiom, ax E C.Axiom

ax ="X E S : (SIZE(IMAGE(A, X)) = 0 V SIZE(IMAGE(A, X)) = 1)"

generated by either Equation 7.73 or 7.74.

Given ax, there are two paths from C, OMT-53 or OMT-54.

i. If ax is generated by OMT-53 then there exists a c E C.Connection such that c.Mult

= Optional and c.Name = s. Thus by Equation 7.54 there exists an axiom a' E

SA.Axiom such that

a ="X E c.Name => (SIZE({Y I SA.Name(X, Y)}) = 0

VSIZE({Y SA.Name(X, Y)}) = 1)"

Therefore since s = c.Name and SA.Name = SA.Name, a' = a.

ii. If ax is generated by OMT-54 then there exists a c E C.Connection such thatc.Mult

= Specified, c.Name = s, c.Specified = {sri, sr2}, sr, = (0, undefined), and sr 2

= (1, undefined).

Thus by Equation 7.55 there exists an axiom a' E SA.Axiom such that

a ="X E c.Name => (SIZE({Y I SA.Name(X, Y)}) = 0
VSIZE({Y I SA.Name(X,Y)}) = 1)"

Therefore since s = c.Name and SA.Name = SA.Name, a' = a.

Again it is clear that a' = a in both cases and, therefore, any axiom in SA4 generated by

Equation 7.73 also exists in SA.

F-31

(e) If a' in SA.Axioms is of the form generated by Equation 7.74 such that it consists of

the logical disjunction of n subaxioms of either of two forms

"X E s . SIZE({Y I SA.Name(X, Y)}) = vi"

or

'X E s * (SIZE({Y I SA.Name(X,Y)}) > vi

V SIZE({Y I SA.Name(X,Y)}) < V2)"

and assuming a' is not of the form generated by Equations 7.70 or 7.73, then by Equa-

tion 7.74 there exists an axiom ax in C.Axiom where ax is the logical disjunction of the

set of subaxioms generated for each si in a' such that

si ="X E c.Name SIZE(IMAGE(A, X)) = vi"

or

si ="X E c.Name (SIZE(IMAGE(A, X)) > v,

V SIZE(IMAGE(A,X)) V2)"

Thus by OMT-54 there exists a c E C.Connection such that c.Mult = Specified, and

there exists some (v 1 , v 2) E c.Specified (v 2 may be undefined) for each si in ax.

Then by Equation 7.55 there exists an a in SA.Axioms such that for each spec-range E

c.Specified there exists a subaxiom in a of the form

"X E c.Name =. SIZE({Y I SA.Name(X, Y)}) = s.valuel"

or

"X E c.Name : (SIZE({Y I SA.Name(X, Y)}) > s.valuel

V SIZE({Y I SA.Name(X,Y)}) < s.value2)"

Since c.Name = s and SA.Name = SA.Name, it must be true that for each subaxiom

in a' there exists an equivalent subaxiom in a, and thus a = a'. Therefore, any axiom

in SA generated by Equation 7.74 also exists in SA.

F-32

Therefore, since for each type of axiom in SA.Axioms, there is an equivalent axiom

in SA.Axiom, then SA.Axioms C SA.Axioms, and, since I have previously shown that

SA.Axioms C SA.Axioms it is clear that SA.Axioms = SA.Axioms

Therefore, since each specification in OM is in OM', each specification in OM' is in OM,

and each component within each specification in OM is in the associated specification in OM' and

vice versa, it is obvious that OM = OM'. 0

F.2 Dynamic Model Correctness Proof

In this section, Theorem VII.2 is proved.

Proof. Preservation of the dynamic model semantics by T is established by showing the

equivalence of two sets of dynamic model semantics, M and M', created from a generic OMT

domain theory, g. M is the dynamic model semantics defined by transforming 9 by while M'

is the dynamic model semantics defined by transforming g by -, into an O-SLANG domain theory

0G, and then by w. In this proof, I assume that g has a well defined dynamic model in which C is

a class.

I prove the theorem by showing that, given a valid generic OMT domain theory 9, each

component defined in M (Q, E, A and 6) exist in M' and that each component defined in M' exists

in M.

1. Q=Q'.

To show that Q = Q', I first show that Q g Q' and then that Q' C Q. By assumption, C is

some class in g with a well-defined dynamic model. Therefore, for each state s in C.State, by

o, s.Name is in Q.

F-33

If s in C.State, then by rule OMT-68 (s.Name,, x) is in C.State (with the exception of Initial-

State-Marker by function 7r8 as defined in Equation 7.19) and by w, s.Name is in Q'. The

definition of Q' in w also explicitly re-inserts the Initial-State-Marker, therefore, Q C Q'.

By w, if s.Name is in Q' then s.Name must be the name of some state s in C.State or the

Initial-State-Marker. Rules OMT-68 and OMT-72 are the only translation rules in T that

create elements of C.State. However, since OMT-72 translates substates of some state s in

the states of C and, by assumption the dynamic model has been translated into a simple finite

state machine automata as defined in Section 5.4.4 without substates, if 9 is in C.State it had

to be placed there by OMT-68, and thus s.Name is the name of some state in C.State. Since

the Initial-State-Marker is present in C.State, it is in Q as well. Thus Q' C Q and therefore

Q=Q,.

2. E=E'

To show that E = V', I first show that F C E and then that E' C E. By definition of E in

o, for t.Name to be in the set E, the corresponding transition, t, must exist in C.Transition.

Then, if t E C.Transition, by OMT-74, an event (t.Name, x, y) is in C.Event that is mapped

by w to V'. Thus E C El.

Assume t.Name is in E'. Then by definition of E' in w, there must be some (t.Name, x', y')

in C.Event. And, since Rule OMT-74 is the only rule in T that translates components in g to

C.Event (OMT-17 only creates events in C.Event when there is no dynamic model defined

by the user), t.Name must be the name of some transition t E C.Transition, which by W

implies t.Name E E. Therefore V C F, and knowing that E = E' from above, implies E -- E.

3. A=A'

To show that A = A', I first show that A C A' and then that A' C A. Assume t is some

transition in C.Transition, then by definition of A in W, for each a in t.Action, msig(a), as

F-34

defined in Equation 7.77, is in A if and only if a.Name 5# SEND and msig(a.Actiori) is in

A if and only if a.Name = SEND.

Assume a.Name $ SEND and thus msig(a) = (a.Name, [C.Name] 11 domain (a.Parameter),

[C.Name]) is in A by definition of V. By Rule OMT-75, m = (a.Name, [C.Namel I

domain (a.Parameter), [C.Name]) E C.Method, by Rule OMT-74 (t.Name, [C.Name] I

domain (t.Parameter), [C.Name]) E C.Event, and by OMT-82 an axiom of the form

"oldstate(t.FromState) A guard =: newstate(t)

A ... ATTR-EQUAL(t.Name(...), a.Name(...)).

is in C.Axiom. Therefore, by definition of A' in w, m E A', and msig(a) E A = (a.Name,

[C. Name] Ildomain(a.Parameter), [C.Name) =m E A'.

If a.Name = SEND, by definition of V, esig(a.Action) =(a.Action.Name, [a.Action.Name-

SORT] 11 domain(a.Action.Parameter), [a.Action.Name- SORT]) E A. By Rule OMT-76

and OMT-77, and event theory CF, is created and CE.Name = a.Actiort.Name, by Rule OMT-

79 e = (a.Action.Name, [a.Action.Name] 11 domain (a.Action), [a.Action.Name-SORT])

E CE .Event, and by Rule OMT-80 a.Actiori.Name E C.Import. Then by definition of

A' in w, e E A' and esig(a.Action) E A = (a.Action.Name, [a.Action.Name-SORT] I

domain (a.Action. Parameter), [a.Action.Name-SORT]) =e E A'. Therefore, A C A'.

An event theory can only be created by Rules OMT-76 through OMT-79, or Rule OMT-40;

however, since the event theories defined in Rule OMT-40 are broadcast theories and are only

referenced in aggregate specifications, an event theory whose name, CE .Name is found in

the import block of some class specification C (as required by the definition of A' in W),

must have been created by Rules OMT-76 through OMT-79. So, if there exists an event

theory CjE such that CE .Name = n and n E C.Import of some class specification C, then it

must be the case that there exists some t E C.Transistion with an action a E t.Action such

that a.Name = SEND, a.Action.Name = n, and esig(a) = e E CE.-Evemt (i.e., e is the

F-35

event generated by a via Rule OMT-79). Therefore, by definition of V, esig(a) E A, and by

defintion of w, e E A'.

Assume that there exists some m E A' such that m E C.Method, e E C.Event, and an axiom

a E C.Axiom of the form

C.Name-STATE(x) = q ...

C.Name-STATE(event(...)) =q2 ... ATTR-EQUAL(e.Name(...), m.Name(...))

Since, (1) as defined in Section 6.2.7 a user may not modify a state attribute except through

definition of a transition in the class dynamic model and (2) the assumption for this proof

that a dynamic model for class C has been defined, an axiom of the form of a,

"C.Name-STATE(x) = q... = > C.Name-STATE(event(...)) = q2 ... "

must have been generated by Rule OMT-82. Therefore, by definition of the method-invocation

function that implements Rule OMT-82, it must also be true that an axiom of the form of a

with the substring

"ATTR-EQUAL(e(...), m(...))"

must have been generated from a transition t E C.Transition such that e = t.Name and m -

a.Name for some a E t.Action where a.Name : SEND. This same t and a also generated

m = (a.Name, [C.Name] I domain(a.Parameter), [C.Name]) E C.Method by OMT-75 and

msig(a) = (a.Name, [C.Name]Ildomain(a.Parameter), [C.Name]) E A by definition of p.

Thus A' C A and, already knowing that A C A', implies A = A'.

4. 6 = 6'

To show that 6 = 6', I show that if I pick an object in any class C with a well-defined dynamic

model such that the object is in some arbitrary state q E Q and receive input event a E E,

6(q,a) = 6'(q,o).

F-36

First, pick some object in C in state q E Q. Upon receipt of an input event a E E, if

there exists a transition t E C.Transition such that t.FromState = q, t.Name = a, and

t.Axiom evaluates to true, then by cp, 6(q, a) = t.ToState. Otherwise, if there is no transition

t E C.Transition such that t.FromState = q, t.Name = o, and t.Axiom evaluates to true,

then by V, 6(q, a) = q.

By Rule OMT-82, for all t E C.Transition, t generates an axiom in C.Axiom of the form

C.Name-STATE(x) = q A guard =- C.Name-STATE(a(...)) = q2 ... (F.1)

where q = t.FromState, the guard is simply t.Axiom, and the q2 = t.ToState. And, as shown

above in Item 3, no other axioms of this form can be entered into C.Axiom using any other

transformation rules.

Then, knowing that Q = Q' and E = ' from Items 1 and 2 above, I choose some object

in class C in state q E Q. Upon receipt of an input event a E E, if there exists an axiom

in C.Axiom of the form shown in Equation F.1, such that the guard (t.Axiom) evaluates to

true then by w, Y'(q, a) = q2 = t.ToState. Otherwise, if there is no axiom of the appropriate

form such that the guard (t.Axiom) evaluates to true then by w, 6'(q, a) = q.

Therefore, since for all possible inputs, (q, a), 6(q, a) = 6'(q, a), it must be the case that

6 = 6'.

5. A = A'

To show that A = A', I show that, for any class C with a well-defined dynamic model, if

I pick an object in the class in any arbitrary state q E Q and receive input event a- E E,

A(q, a) = A'(q, a).

First, choose some object in class C with state q E Q. Upon receipt of an input event a E E,

if there exists a transition t E C.Transition such that t.FromState = q and t.Name = a,

F-37

and t.Axiom evaluates to true then by p, A(q, a) = sig(t.Action) which is the set of all ac-

tion/event signatures invoked/sent in response to the transition as defined in Equation 7.79.

Otherwise, if there is no transition t E C.Transition such that t.FromState = q and

t.Name = a, and t.Axiom evaluates to true then by cp, A(q, o-) = f}.

By Rule OMT-82, for all t E C.Transition, t generates an axiom in ax E C.Axiom of the

form given in Equation F.1 where q = t.FromState, the guard is t.Axiom, and the q2 =

t.ToState. The method-invocations function translates each non-send actions a E t.Action to

a subsequence of the form

ATTR-EQUAL(t.Name(...), a.Name(...))

and the function event-sends translates each send event e E t.Action to a subsequence of ax

of the form

e.Action.Name-OB J(t.Name(...)) = e.Action.Name(e.Action.Name-OBJ(x)...)

As discussed above in Item 3, only Rule OMT-82 is capable of placing axioms of this form

into C.Axiom.

Since Q = Q' and E = E' from Items 1 and 2 above, I may choose some object in class C in

state q E Q. Upon receipt of an input event a E E, if there exists an axiom, ax, in C.Axiom

of the form shown in Equation F.1, such that the guard (t.Axiom) evaluates to true then by

w, A'(q, a) = action-set(ax). By Rule OMT-82 all actions in t are translated into either a

method invocation or an event send subsequence in ax. The function action-set as defined

in Equation 7.80 returns the set of all method and event signatures for each method/event

subsequence found in ax; therefore, action-set(ax) = sig(t.Action). If, on the other hand,

there are no axioms in C.Axiom of the form shown in Equation F.1, such that the guard

(t.Axiom) evaluates to true then by w, A'(q, a) = {}. Therefore, since for all possible inputs,

(q, a), A(q,o) = A'(q,a), it must be true that A = A'.

F-38

6. qo = q1

The initial state is explicitly represented in each g dynamic model with a unique identifier

Initial-State-Marker, however, by Rule OMT-83, a transition, t, from the initial state (by a

new event) results in an axiom of the form

C.Name-STATE(new-C.Name(...) - t.ToStateA
method-invocations(t) A event-sends(t)

Therefore, there is no explicit representation of q0. However, Q, 6', A', and qO explicitly

incorporate the Initial-State-Marker into w and thus qo = qO.

Therefore, since Q = Q', E = , A = A', 6 = 6', A = A' and q0 = q' it can be concluded

that M = M'. C

F.3 Functional Model Correctness Proof

In this section, Theorem VII.3 is proved.

Proof. Preservation of the functional model semantics by T is established by showing the

equivalence of two sets of functional model semantics, D and D', created from a generic OMT

domain theory, g. D is the functional model semantics defined by transforming g by W while D' is

the functional model semantics defined by transforming g by r, into an O-SLANG domain theory

(, and then by w. In this proof, I assume that g has a well defined functional model in which C is

a class.

I prove the theorem by showing that, given a valid generic OMT domain theory g, each

component defined in D (C, F, K, and R) exist in D' and that each component defined in D'

exists in D.

1. C=C'.

I show C = C' by showing that C C C' and then showing C' C C.

F-39

CcC'.

For any c E C, by the definition of C, the name of c must be the name of a process of C,

a datastore of C, or the symbol Extern. If c refers to a process in C then by Rule OMT-

85 or Rule OMT-86 the process referred to by c is mapped to either a method or an

operation in C and therefore, by definition of C', c E C'.

If c is the name of a datastore then by definition of a valid dataflow diagram, there

must be a datafiow in C.DataFlow such that it is either the target or source. Also,

by Assumptions V.12 and V.13 there exists a process, p, such that p only accesses or

modifies datastore c. Therefore, by Rule OMT-87 there must be an axiom in C.Axiom

such that the following is a substring.

"... op(datastore(X) ...) ... "

This substring is extracted by function datastores as defined in Equation 7.83 and thus,

by definition of C', c E C'.

If c is Extern then by definition of C', c E C'. Therefore C C C'.

SC'CC.

Now, assume c E C'. If c E C' then by the definition of C', c E C.Method, c E

C.Operation, c E datastores(C), or c = Extern. Since, by assumption, all methods in

C are defined from processes in C via Rule OMT-85 there must be a process in C whose

name is c and, by definition of C, c E C.

If c is the name of an operation in C then by the assumption that all methods in C are

defined from processes in C via Rule OMT-86 there must be a process in C whose name

is c and thus, by definition of C, c E C.

If c is a datastore, then c E datastores(ax) for some ax E C.Axiom that contains the

following substring.

op(c(X) ...)

F-40

Since axioms of this form are only generated by Rule OMT-87, then c must have been

in datastore(C) that, by definition of C, implies c E C.

If c is Extern then by definition of C, c E C and C' C C. Therefore since C' C C and

C C C C = C.

2. F=F'.

I show that F = F' by showing that for any C in G, for each f in C.Dataflow, f E F and

f C F' and nothing else is in F or F'.

If f c C.Dataflow, then trivially, by the definition of F, f E F and nothing else can be in F.

If f E C.Dataf low, it is a dataflow in a functional model. Given a valid dataflow diagram,

as shown in Table 7.1, these dataflows can be (a) an input to a process (lines 1, 2, 10, and

14), (b) an output to a datastore (line 11), or (c) an output from a process to Extern (lines

8 and 12). I discuss each of these possibilities below.

(a) There are two unique cases to consider when a dataflow is an input to a process. The

input may be to a top-level process (line 1 in Table 7.1) or a subprocess(lines 2, 10, and

14 in Table 7.1). Each of these is discussed below.

If f = (f.Name, f.Type, f .Target, f.Source) is an input to a process, p, where p.Name

= f.Target and (f.Name, f.Type) =E p.InFlows, then by Rule OMT-85 or Rule OMT-

86 there is an operation or method defined in C as shown below.

(f.Target, [... f.Type...], [...]) E (C.Method U C. Operation)

Thus by Rule OMT-87 there exists an axiom, ax, in C.Axiom of the form

ax ="m(ii...i.) = Ol...on... A ri...r. = sp(d,...dp)..."

such that m = f.Target, or, sp = f.Target.

i. If m = f.Target, then some parameter il... ir = f.Name such that the variables in

the function dataflows-of(ax) take on the following values.

F-41

Extern = f.Source
t.Name = fTar get

P3 = f.Name
itVPe-(P3, t) = f.Type

Thus by the defintions of d ataflows-of and F', (P3, itype(p3 , t), Extern, t.Name)

(f.Name, f.Type, f.Source, f.Tar get) E F

ii. If sp =fTar get, then some parameter in di... dm = f.Name such that the variables

in the function dataflows-of (ax) take on the following values.

0p2.Name = f.Source
opt .Name = fTar get

pi = f.Name
itype(pi'opi) = f.Type

Therefore, by the defintions of dataflows-of and F', (pi, itype(pi, opi), op2 .Name,

opi .Name) = (f.Name, f.Type, f.Source, f.Target) G F'

(b) If f (f.Name, f .Type, ff.arget, f.Source) is an output to a datastore, d, then by

Assumptions V.12 and V.13 there exists a process p such that f is the only datastore

output of p. Therefore, p is a method such that p.Name =f.Source and by Rule OMT-

85 there is a method defined in C as shown below.

(f.Source, [f.Target ...], [fTarget]) E C.Method

Thus by Rule OMT-87 there exists an axiom, ax, in C.Axiom of the form

ax ="m(iit... im,) = ol ... o.... A ri ... r., = s~,..d)..1

such that f.Source = sp and ri..r = ri= f.Tar get and the variables in the function

dataflows-of (ax) take on the following values.

F-42

opi.Name = f.Source

o = f.Target
dsname(o) = f.Name
dstype(o) = f.Type

Therefore, by the defintions of dataflows-of and F', (dsname(o), dstype(o), opl.Name,

o) = (f.Name, f.Type, f.Source, f.Target) E F'

(c) There are two unique cases to consider when an output goes to Extern. The output

may come from a subprocess, or it may come from a top-level object. Each of these is

discussed separately.

i. If f =(f.Name, f.Type, f.Target, f.Source) is an output from a subprocess p, with

p.Name = f.Source, to an external object such that f.Target = Extern, then p

must be an operation since the only output from a method is the class sort which

is implied and not actually part of the dataflow diagram. Thus by Rule OMT-86

there is an operation defined in C as shown below.

(f.Source, [...], [...f.Type...]) E C.Operation

Thus by Rule OMT-87 there exists an axiom, ax, in C.Axiom of the form

ax ="m(ii...im) = 0
1... n... A ri...r. = sp(d...dp)..."

such that sp = f.Source and some output of sp, rl...rm = f.Name and the variables

in the function dataflows-of(ax) take on the following values.

Extern = f.Target
opi.Name = f.Source

o = f.name
otype(o, opi) = f.Type

Then by the defintions of dataflows-of and F', (o, otype(o, sp), opl.Name, Extern)

= (f.Name, f.Type, f.Source, f.Target) E F'

F-43

ii. If f = (f.Name, f.Type, f.Target, f.Source) is an output from a top-level process

p, where p.Name = f.Source, then p must be an operation since the only output

from a method is the class sort which is implied and not actually part of the datafiow

diagram. Thus by Rule OMT-86 there is an operation defined in C as shown below.

(f.Source, [...], [...f.Type...]) E C.Operation

Thus by Rule OMT-87 there exists an axiom, ax, in C.Axiom of the form

ax ="m(ii...im) = ol... o,... A ri...ro = sp(d,...dp)..."

such that m = f.Source and some output of m, ol...on = f.Name and the variables

in the function dataflows-of(ax) take on the following values.

Extern = f.Target

t.Name = f.Source
p3 = f.name

otype(p3, t) = f.Type

Thus by the defintions of dataflows-of and F', (P3, otype(p3 , t), t.Name, Extern)

(f.Name, f.Type, f.Source, f.Target) E F'

Therefore, since if f E C.Data flow is either (a) an input to a process, (b) an output to a

datastore, or (c) an output from the top-level process of a dataflow diagram, then f E F.

Also, given the initial assumption that all processes p in C are processes in a functional model

defined in C, all axioms produced by OMT-87 use only processes from a functional model of C.

Since OMT-87 is the only rule capable of producing axioms in C.Axiom of the form required

by the function dataflows-of, all sources and targets extracted from some axiom in C.Axiom

must be processes in a functional model of C. Finally, given the uniqueness of datafiow names

by Assumption V.19, the fact that there must be in inflow and an outflow for each input and

output of a process in a valid dataflow diagram (by Assumption V.18), and the definition of

OMT-87, it is clear that there are no dataflows in F not derived from a dataflows in a C

functional model.

F-44

3. K=K'.

Since I showed in Item 1 that C = C' and by definition their definitions, each includes the

symbol Extern, it is obvious that C \ {Extern} = C' \ {Extern} and thus K = K'.

4. R=R'.

Since the definition of R uses the set dfmerge(C.DataFlow), which is the definition F, its

definition is equivalent to Equation F.2.

{(x, y) I (x, y E F A x.Target = y.Source A x.Target : Extern)

V ((xz)ER A(z,y) R)} (F.2)

And, since the defintion of R' uses the set dfmerge({f I a E C.Axiom A f E data flows-

of(a)}, which is the definition of F', its definition is equivalent to Equation F.3.

{(x,y) I (x,yE F')

A x.Target = y.Source A x.Target : Extern)
V ((x,z) E R'A (z,y) E R')} (F.3)

And finally, since F = F', Equations F.2 and F.3 are equivalent and thus R = R'.

Since, as shown above, C = C', F = F', K = K, and R = R', then D = D' and therefore,

the translation r preserves the semantics of the generic OMT functional model. El

F.4 Summary

This appendix presents the proofs of Theorems VII.1, VII.2, and VII.3. These theorems show

that the transformation rules as defined in Chapter VII preserve the semantics of the the object

model, the dynamic model, and the functional model as defined Chapter V.

F-45

Appendix G. Feasibility Demonstration O-SLANG Output

G.1 Pump O-SLANG

class CLUTCH is
class-sort CLUTCH

import START-FUEL
sort CLUTCH-STATE
attributes START-FUEL-OBJ: CLUTCH -> START-FUEL-SORT
state-attributes CLUTCH-STATE: CLUTCH -> CLUTCH-STATE

methods CREATE-CLUTCH: -> CLUTCH

states

CLUTCH-DISABLED: -> CLUTCH-STATE
CLUTCH-FREE: -> CLUTCH-STATE
CLUTCH-ENGAGED: -> CLUTCH-STATE

events

FREE-CLUTCH: CLUTCH -> CLUTCH
DISABLE-CLUTCH: CLUTCH -> CLUTCH
ENGAGE-CLUTCH: CLUTCH -> CLUTCH
NEW-CLUTCH: -> CLUTCH

axioms

CLUTCH-DISABLED <> CLUTCH-FREE;
CLUTCH-DISABLED <> CLUTCH-ENGAGED;
CLUTCH-FREE <> CLUTCH-ENGAGED;
ATTR-EQUAL(Ci, C2) <=> (START-FUEL-OBJ(Ci) = START-FUEL-OBJ(C2));

(CLUTCH-STATE(NEW-CLUTCH(C)) = CLUTCH-DISABLED
& ATTR-EQUAL(NEW-CLUTCH(C), CREATE-CLUTCH(C)));

(CLUTCH-STATE(C) = CLUTCH-FREE) =>(CLUTCH-STATE(ENGAGE-CLUTCH(C)) = CLUTCH-ENGAGED
& START-FUEL-OBJ(ENGAGE-CLUTCH(C)) = START-FUEL(START-FUEL-OBJ(C)));

(CLUTCH-STATE(C) = CLUTCH-FREE) =>(CLUTCH-STATE(DISABLE-CLUTCH(C)) = CLUTCH-DISABLED);
(CLUTCH-STATE(C) = CLUTCH-FREE) =>(CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-ENGAGED);
(CLUTCH-STATE(C) = CLUTCH-DISABLED) =>(CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-FREE);
CLUTCH-STATE(C) = CLUTCH-DISABLED => CLUTCH-STATE(ENGAGE-CLUTCH(C)) = CLUTCH-DISABLED;
CLUTCH-STATE(C) = CLUTCH-DISABLED => CLUTCH-STATE(DISABLE-CLUTCH(C)) = CLUTCH-DISABLED;
CLUTCH-STATE(C) = CLUTCH-DISABLED => CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-DISABLED;
CLUTCH-STATE(C) = CLUTCH-FREE => CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-FREE;
CLUTCH-STATE(C) = CLUTCH-ENGAGED => CLUTCH-STATE(ENGAGE-CLUTCH(C)) = CLUTCH-ENGAGED;

CLUTCH-STATE(C) = CLUTCH-ENGAGED => CLUTCH-STATE(DISABLE-CLUTCH(C)) = CLUTCH-ENGAGED;
CLUTCH-STATE(C) = CLUTCH-ENGAGED => CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-ENGAGED;
CLUTCH-STATE(C) = CLUTCH-ENGAGED => CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-ENGAGED

end-class

class CLUTCH-CLASS is
class-sort CLUTCH-CLASS
contained-class CLUTCH
events
FREE-CLUTCH: CLUTCH-CLASS -> CLUTCH-CLASS
DISABLE-CLUTCH: CLUTCH-CLASS -> CLUTCH-CLASS
ENGAGE-CLUTCH: CLUTCH-CLASS -> CLUTCH-CLASS
NEW-CLUTCH-CLASS: -> CLUTCH-CLASS

axioms

NEW-CLUTCH-CLASS() = EMPTY-SET;
fa (C:CLUTCH, CC:CLUTCH-CLASS) in(C, CC) <=> in(ENGAGE-CLUTCH(C), ENGAGE-CLUTCH(CC));
fa (C:CLUTCH, CC:CLUTCH-CLASS) in(C, CC) <=> in(DISABLE-CLUTCH(C), DISABLE-CLUTCH(CC));
fa (C:CLUTCH, CC:CLUTCH-CLASS) in(C, CC) <=> in(FREE-CLUTCH(C), FREE-CLUTCH(CC));

G-1

fa (C:CLUTCH, CC:CLUTCH-CLASS) in(C, CC) <=> in(FREE-CLUTCH(C), FREE-CLUTCH(CC))
end-class

class HOLSTER is
class-sort HOLSTER
sort HOLSTER-STATE
state-attributes HOLSTER-STATE: HOLSTER -> HOLSTER-STATE
methods CREATE-HOLSTER: -> HOLSTER
states
HOLSTER-WAIT: -> HOLSTER-STATE
HOLSTER-WORKING: -> HOLSTER-STATE

events
CLOSE-HOLSTER-SWITCH: HOLSTER -> HOLSTER
RELEASE-HOLSTER-SWITCH: HOLSTER -> HOLSTER
NEW-HOLSTER: -> HOLSTER

axioms
HOLSTER-WAIT <> HOLSTER-WORKING;
(HOLSTER-STATE(NEW-HOLSTER(H)) = HOLSTER-WAIT

& ATTR-EQUAL(NEW-HOLSTER(H), CREATE-HOLSTER(H)));
(HOLSTER-STATE(H) = HOLSTER-WAIT)

=> (HOLSTER-STATE(RELEASE-HOLSTER-SWITCH(H)) = HOLSTER-WORKING);
(HOLSTER-STATE(H) = HOLSTER-WORKING)

=> (HOLSTER-STATE(CLOSE-HOLSTER-SWITCH(H)) = HOLSTER-WAIT);
HOLSTER-STATE(H) = HOLSTER-WAIT

=> HOLSTER-STATE(CLOSE-HOLSTER-SWITCH(H)) = HOLSTER-WAIT;
HOLSTER-STATE(H) = HOLSTER-WORKING

=> HOLSTER-STATE(RELEASE-HOLSTER-SWITCH(H)) = HOLSTER-WORKING
end-class

class HOLSTER-CLASS is
class-sort HOLSTER-CLASS
contained-class HOLSTER
events
CLOSE-HOLSTER-SWITCH: HOLSTER-CLASS -> HOLSTER-CLASS
RELEASE-HOLSTER-SWITCH: HOLSTER-CLASS -> HOLSTER-CLASS
NEW-HOLSTER-CLASS: -> HOLSTER-CLASS

axioms
NEW-HOLSTER-CLASS() = EMPTY-SET;
fa ((H: HOLSTER), HC: HOLSTER-CLASS) in(H, HC)

<=> in(RELEASE-HOLSTER-SWITCH(H), RELEASE-HOLSTER-SWITCH(HC));
fa ((H: HOLSTER), HC: HOLSTER-CLASS) in(H, HC)

<=> in(CLOSE-HOLSTER-SWITCH(H), CLOSE-HOLSTER-SWITCH(HC))

end-class

class MOTOR is
class-sort MOTOR
import FREE-CLUTCH, DISABLE-CLUTCH
sort MOTOR-STATE
attributes
DISABLE-CLUTCH-OBJ: MOTOR -> DISABLE-CLUTCH-SORT
FREE-CLUTCH-OBJ: MOTOR -> FREE-CLUTCH-SORT

state-attributes
MOTOR-STATE: MOTOR -> MOTOR-STATE

G-2

methods
CREATE-MOTOR: -> MOTOR

states
MOTOR-DISABLED: -> MOTOR-STATE
MOTOR-RUNNING: -> MOTOR-STATE

events
STOP-MOTOR: MOTOR -> MOTOR

START-PUMP-MOTOR: MOTOR -> MOTOR
NEW-MOTOR: -> MOTOR

axioms
MOTOR-DISABLED <> MOTOR-RUNNING;
ATTR-EQUAL(MI, M2) <=> (DISABLE-CLUTCH-OBJ(MI) = DISABLE-CLUTCH-OBJ(M2)

& FREE-CLUTCH-OBJ(M1) = FREE-CLUTCH-OBJ(M2));
(MOTOR-STATE(NEW-MOTOR(M)) = MOTOR-DISABLED

& ATTR-EQUAL(NEW-MOTOR(M), CREATE-MOTOR(M)));

(MOTOR-STATE(M) = MOTOR-DISABLED)
=> (MOTOR-STATE(START-PUMP-MOTOR(M)) = MOTOR-RUNNING

& FREE-CLUTCH-OBJ(START-PUMP-MOTOR(M))
= FREE-CLUTCH(FREE-CLUTCH-OBJ(M)));

(MOTOR-STATE(M) = MOTOR-RUNNING)
=> (MOTOR-STATE(STOP-MOTOR(M)) = MOTOR-DISABLED

& DISABLE-CLUTCH-OBl(STOP-MOTOR(M))
= DISABLE-CLUTCH(DISABLE-CLUTCH-BJ(M)));

MOTOR-STATE(M) = MOTOR-DISABLED
=> MOTOR-STATE(STOP-MOTOR(M)) = MOTOR-DISABLED;

MOTOR-STATE(M) = MOTOR-RUNNING
=> MOTOR-STATE(START-PUMP-MOTOR(M)) = MOTOR-RUNNING

end-class

class MOTOR-CLASS is
class-sort MOTOR-CLASS
contained-class MOTOR

events
STOP-MOTOR: MOTOR-CLASS -> MOTOR-CLASS

START-PUMP-MOTOR: MOTOR-CLASS -> MOTOR-CLASS
NEW-MOTOR-CLASS: -> MOTOR-CLASS

axioms
NEW-MOTOR-CLASS() = EMPTY-SET;
fa (M:MOTOR, MC:MOTOR-CLASS) in(M, MC)

<=> in(START-PUMP-MOTOR(M), START-PUMP-MOTOR(MC));
fa (M:MOTOR, MC:MOTOR-CLASS) in(M, MC) <=> in(STOP-MOTOR(M), STOP-MOTOR(MC))

end-class

class GUN is
class-sort GUN
import START-TIMER, DISABLE-PUMP, CLOSE-HOLSTER-SWITCH,

FREE-CLUTCH, ENGAGE-CLUTCH, RELEASE-HOLSTER-SWITCH
sort GUN-STATE

attributes
RELEASE-HOLSTER-SWITCH-OBJ:
GUN -> RELEASE-HOLSTER-SWITCH-SORT
ENGAGE-CLUTCH-OBJ: GUN -> ENGAGE-CLUTCH-SORT
FREE-CLUTCH-OBJ: GUN -> FREE-CLUTCH-SORT
CLOSE-HOLSTER-SWITCH-OBJ: GUN -> CLOSE-HOLSTER-SWITCH-SORT

G-3

DISABLE-PUMP-OBJ: GUN -> DISABLE-PUMP-SORT
START-TIMER-OBJ: GUN -> START-TIMER-SORT

state-attributes
GUN-STATE: GUN -> GUN-STATE

methods
CREATE-GUN: -> GUN

states
GUN-DISABLED: -> GUN-STATE

GUN-ENABLED: -> GUN-STATE

GUN-ON: -> GUN-STATE

events
REMOVE-GUN: GUN -> GUN
RELEASE-TRIGGER: GUN -> GUN
DEPRESS-TRIGGER: GUN -> GUN

CUT-OFF-SUPPLY: GUN -> GUN
REPLACE-GUN: GUN -> GUN
NEW-GUN: -> GUN

axioms
GUN-DISABLED <> GUN-ENABLED;

GUN-DISABLED <> GUN-ON;
GUN-ENABLED <> GUN-ON;

ATTR-EQUAL(GI, G2) <=> (RELEASE-HOLSTER-SWITCH-OBJ(Gi) = RELEASE-HOLSTER-SWITCH-OBJ(G2)
& ENGAGE-CLUTCH-OBJ(GI) = ENGAGE-CLUTCH-OBJ(G2)

& FREE-CLUTCH-OBJ(GI) = FREE-CLUTCH-OBJ(G2)
& CLOSE-HOLSTER-SWITCH-OBJ(Gl) = CLOSE-HOLSTER-SWITCH-OBJ(G2)
& DISABLE-PUMP-OBJ(GI) = DISABLE-PUMP-OBJ(G2)

& START-TIMER-OBJ(GI) = START-TIMER-OBJ(G2));

(GUN-STATE(NEW-GUN(G)) = GUN-DISABLED & ATTR-EQUAL(NEW-GUN(G), CREATE-GUN(G)));

(GUN-STATE(G) = GUN-ENABLED) => (GUN-STATE(REPLACE-GUN(G)) = GUN-DISABLED
& START-TIMER-OBJ(REPLACE-GUN(G)) = START-TIMER(START-TIMER-OBJ(G))
& DISABLE-PUMP-OBJ(REPLACE-GUN(G)) = DISABLE-PUMP (DISABLE-PUMP-OBJ(G))

& CLOSE-HOLSTER-SWITCH-OBJ(REPLACE-GUN(G))
= CLOSE-HOLSTER-SWITCH(CLOSE-HOLSTER-SWITCH-OBJ(G)));

(GUN-STATE(G) = GUN-ON) => (GUN-STATE(CUT-OFF-SUPPLY(G)) = GUN-ENABLED
& FREE-CLUTCH-OBJ(CUT-OFF-SUPPLY(G)) = FREE-CLUTCH(FREE-CLUTCH-OBJ(G)));

(GUN-STATE(G) = GUN-ENABLED) => (GUN-STATE(DEPRESS-TRIGGER(G)) = GUN-ON

& ENGAGE-CLUTCH-OBJ (DEPRESS-TRIGGER(G))
= ENGAGE-CLUTCH(ENGAGE-CLUTCH-OBJ(G)));

(GUN-STATE(G) = GUN-ENABLED) => (GUN-STATE(RELEASE-TRIGGER(G)) = GUN-ON

& FREE-CLUTCH-OBJ(RELEASE-TRIGGER(G)) = FREE-CLUTCH(FREE-CLUTCH-OBJ(G)));

(GUN-STATE(G) = GUN-DISABLED) => (GUN-STATE(REMOVE-GUN(G)) = GUN-ENABLED
& RELEASE-HOLSTER-SWITCH-OBJ(REMOVE-GUN(G))

= RELEASE-HOLSTER-SWITCH(RELEASE-HOLSTER-SWITCH-OBJ(G)));

GUN-STATE(G) = GUN-DISABLED => GUN-STATE(REPLACE-GUN(G)) = GUN-DISABLED;

GUN-STATE(G) = GUN-DISABLED => GUN-STATE(CUT-OFF-SUPPLY(G)) = GUN-DISABLED;

GUN-STATE(G) = GUN-DISABLED => GUN-STATE(DEPRESS-TRIGGER(G)) = GUN-DISABLED;

GUN-STATE(G) = GUN-DISABLED => GUN-STATE(RELEASE-TRIGGER(G)) = GUN-DISABLED;

GUN-STATE(G) = GUN-ENABLED => GUN-STATE(CUT-OFF-SUPPLY(G)) = GUN-ENABLED;

GUN-STATE(G) = GUN-ENABLED => GUN-STATE(REMOVE-GUN(G)) = GUN-ENABLED;
GUN-STATE(G) = GUN-ON => GUN-STATE(REPLACE-GUN(G)) = GUN-ON;
GUN-STATE(G) = GUN-ON => GUN-STATE(DEPRESS-TRIGGER(G)) = GUN-ON;
GUN-STATE(G) = GUN-ON => GUN-STATE(RELEASE-TRIGGER(G)) = GUN-ON;
GUN-STATE(G) = GUN-ON => GUN-STATE(REMOVE-GUN(G)) = GUN-ON

end-class

G-4

class GUN-CLASS is
class-sort GUN-CLASS contained-class GUN
events
REMOVE-GUN: GUN-CLASS -> GUN-CLASS
RELEASE-TRIGGER: GUN-CLASS -> GUN-CLASS
DEPRESS-TRIGGER: GUN-CLASS -> GUN-CLASS

CUT-OFF-SUPPLY: GUN-CLASS -> GUN-CLASS
REPLACE-GUN: GUN-CLASS -> GUN-CLASS
NEW-GUN-CLASS: -> GUN-CLASS

axioms
NEW-GUN-CLASSO = EMPTY-SET;
fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(REPLACE-GUN(G), REPLACE-GUN(GC));
fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(CUT-OFF-SUPPLY(G), CUT-OFF-SUPPLY(GC));
fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(DEPRESS-TRIGGER(G), DEPRESS-TRIGGER(GC));
fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(RELEASE-TRIGGER(G), RELEASE-TRIGGER(GC));
fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(REMOVE-GUN(G), REMOVE-GUN(GC))

end-class

class DISPLAY is
class-sort DISPLAY
import GRADE, AMOUNT, VOLUME
sort DISPLAY-STATE
operations ATTR-EQUAL: DISPLAY, DISPLAY -> BOOLEAN
attributes

COST: DISPLAY -> AMOUNT
VOLUME: DISPLAY -> VOLUME
PPG: DISPLAY -> AMOUNT
GRADE: DISPLAY -> GRADE

state-attributes DISPLAY-STATE: DISPLAY -> DISPLAY-STATE
methods

CREATE-DISPLAY: -> DISPLAY
UPDATE-DISPLAY: DISPLAY, COST, VOLUME -> DISPLAY
ZERO-OUT-DISPLAY: DISPLAY -> DISPLAY

states
ZERO-DISPLAY: -> DISPLAY-STATE
INCREMENT-DISPLAY: -> DISPLAY-STATE

events
RESET-DISPLAY: DISPLAY -> DISPLAY
PULSE: DISPLAY -> DISPLAY
NEW-DISPLAY: -> DISPLAY

axioms
ZERO-DISPLAY <> INCREMENT-DISPLAY;
ATTR-EQUAL(DI, D2) <=> (GRADE(Di) = GRADE(D2) & VOLUME(D1) = VOLUME(D2)

& COST(DI) = COST(D2));
DISPLAY-STATE(D) = ZERO-DISPLAY => COST(D) = 0 & VOLUME(D) = 0;
DISPLAY-STATE(D) = INCREMENT-DISPLAY => COST(D) >= 0 & VOLUME(D) >= 0;
COST(D) >= 0;
VOLUME(D) >= 0;

PPG(D) = COST(D) / VOLUME(D);
VOLUME(CREATE-DISPLAY(D)) = 0;
COST(CREATE-DISPLAY(D)) = 0;
GRADE(UPDATE-DISPLAY(D)) = GRADE(D);
VOLUME(UPDATE-DISPLAY(D)) = VOLUME(D) + 1;

G-5

COST(UPDATE-DISPLAY(D)) = COST(D) + 1;

GRADE(ZERO-OUT-DISPLAY(D)) = GRADE(D);

COST(ZERO-OUT-DISPLAY(D)) = 0;

VOLUME(ZERO-OUT-DISPLAY(D)) = 0;
(DISPLAY-STATE(NEW-DISPLAY(D)) = ZERO-DISPLAY

& ATTR-EQUAL(NEW-DISPLAY(D), CREATE-DISPLAY(D)));

(DISPLAY-STATE(D) = ZERO-DISPLAY) => (DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY

& ATTR-EQUAL(PULSE(D), UPDATE-DISPLAY(D)));

(DISPLAY-STATE(D) = INCREMENT-DISPLAY)

=> (DISPLAY-STATE(RESET-DISPLAY(D)) = ZERO-DISPLAY
& ATTR-EQUAL(RESET-DISPLAY(D), ZERO-OUT-DISPLAY(D)));

(DISPLAY-STATE(D) = INCREMENT-DISPLAY) => (DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY

& ATTR-EQUAL(PULSE(D), UPDATE-DISPLAY(D)));

DISPLAY-STATE(D) = ZERO-DISPLAY => DISPLAY-STATE(RESET-DISPLAY(D)) = ZERO-DISPLAY;

DISPLAY-STATE(D) = ZERO-DISPLAY => DISPLAY-STATE(PULSE(D)) = ZERO-DISPLAY;

DISPLAY-STATE(D) = INCREMENT-DISPLAY => DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY;

end-class

class DISPLAY-CLASS is

class-sort DISPLAY-CLASS
contained-class DISPLAY

events

RESET-DISPLAY: DISPLAY-CLASS -> DISPLAY-CLASS
PULSE: DISPLAY-CLASS -> DISPLAY-CLASS
NEW-DISPLAY-CLASS: -> DISPLAY-CLASS

axioms

NEW-DISPLAY-CLASS() = EMPTY-SET;

fa (D:DISPLAY, DC:DISPLAY-CLASS) in(D, DC) <=> in(PULSE(D), PULSE(DC));
fa (D:DISPLAY, DC:DISPLAY-CLASS) in(D, DC) <=> in(RESET-DISPLAY(D), RESET-DISPLAY(DC));

end-class

class CLUTCH-MOTOR-ASSEMBLY is

class-sort CLUTCH-MOTOR-ASSEMBLY

import CLUTCH-MOTOR-ASSEMBLY-AGGREGATE
attributes
MOTOR-OBJ: CLUTCH-MOTOR-ASSEMBLY -> MOTOR-CLASS

CLUTCH-OBJ: CLUTCH-MOTOR-ASSEMBLY -> CLUTCH-CLASS
methods

CREATE-CLUTCH-MOTOR-ASSEMBLY: -> CLUTCH-MOTOR-ASSEMBLY
events NEW-CLUTCH-MOTOR-ASSEMBLY: -> CLUTCH-MOTOR-ASSEMBLY

axioms

ATTR-EQUAL(C1, C2) <=> (CLUTCH-OBJ(CI) = CLUTCH-OBJ(C2)

& MOTOR-OBJ(Ci) MOTOR-OBJ(C2));
ATTR-EQUAL(NEW-CLUTCH-MOTOR-ASSEMBLYO, CREATE-CLUTCH-MOTOR-ASSEMBLY());

SIZE(CLUTCH-OBJ(C)) = 1;
SIZE(MOTOR-OBJ(C)) = 1

end-class

class CLUTCH-MOTOR-ASSEMBLY-CLASS is
class-sort CLUTCH-MOTOR-ASSEMBLY-CLASS
contained-class CLUTCH-MOTOR-ASSEMBLY
events

NEW-CLUTCH-MOTOR-ASSEMBLY-CLASS: -> CLUTCH-MOTOR-ASSEMBLY-CLASS

G-6

axioms NEW-CLUTCH-MOTOR-ASSEMBLY-CLASS(0 = EMPTY-SET
end-class

aggregate CLUTCH-MOTOR-ASSEMBLY-AGGREGATE is
nodes DISABLE-CLUTCH, FREE-CLUTCH, MOTOR-CLASS, MOTOR, START-FUEL,

CLUTCH-CLASS, CLUTCH
arcs DISABLE-CLUTCH -> CLUTCH: {DISABLE-CLUTCH-SORT -> CLUTCH},

FREE-CLUTCH -> CLUTCH: {FREE-CLUTCH-SORT -> CLUTCH},
MOTOR -> MOTOR-CLASS: {}, CLUTCH -> CLUTCH-CLASS: {},
DISABLE-CLUTCH -> MOTOR: {}, FREE-CLUTCH -> MOTOR: {},
START-FUEL -> CLUTCH: {}

end-aggregate

class GUN-HOLSTER-ASSEMBLY is
class-sort GUN-HOLSTER-ASSEMBLY
import GUN-HOLSTER-ASSEMBLY-AGGREGATE

attributes
GUN-OBJ: GUN-HOLSTER-ASSEMBLY -> GUN-CLASS
HOLSTER-OBJ: GUN-HOLSTER-ASSEMBLY -> HOLSTER-CLASS

methods CREATE-GUN-HOLSTER-ASSEMBLY: -> GUN-HOLSTER-ASSEMBLY
events NEW-GUN-HOLSTER-ASSEMBLY: -> GUN-HOLSTER-ASSEMBLY
axioms

ATTR-EQUAL(GI, G2) <=> (HOLSTER-OBJ(GI) = HOLSTER-OBJ(G2) & GUN-OBJ(G1) = GUN-OBJ(G2));
ATTR-EQUAL(NEW-GUN-HOLSTER-ASSEMBLY(), CREATE-GUN-HOLSTER-ASSEMBLY());
SIZE(HOLSTER-OBJ(G)) = 1;
SIZE(GUN-OBJ(G)) = 1

end-class

class GUN-HOLSTER-ASSEMBLY-CLASS is
class-sort GUN-HOLSTER-ASSEMBLY-CLASS
contained-class GUN-HOLSTER-ASSEMBLY
events NEW-GUN-HOLSTER-ASSEMBLY-CLASS: -> GUN-HOLSTER-ASSEMBLY-CLASS
axioms NEW-GUN-HOLSTER-ASSEMBLY-CLASS() = EMPTY-SET

end-class

aggregate GUN-HOLSTER-ASSEMBLY-AGGREGATE is
nodes RELEASE-HOLSTER-SWITCH, FREE-CLUTCH, ENGAGE-CLUTCH,

CLOSE-HOLSTER-SWITCH, DISABLE-PUMP, START-TIMER, GUN-CLASS,
GUN, HOLSTER-CLASS, HOLSTER

arcs RELEASE-HOLSTER-SWITCH -> HOLSTER: {RELEASE-HOLSTER-SWITCH-SORT -> HOLSTER},
CLOSE-HOLSTER-SWITCH -> HOLSTER: {CLOSE-HOLSTER-SWITCH-SORT -> HOLSTER},
GUN -> GUN-CLASS: {},
HOLSTER -> HOLSTER-CLASS: fl,
RELEASE-HOLSTER-SWITCH -> GUN: {},
FREE-CLUTCH -> GUN: {},
ENGAGE-CLUTCH -> GUN: {},
CLOSE-HOLSTER-SWITCH -> GUN: {},
DISABLE-PUMP -> GUN: {},

START-TIMER -> GUN: {}

end-aggregate

G-7

class PUMP is
class-sort PUMP
import PUMP-ID, RESET-DISPLAY, START-PUMP-MOTOR, PUMP-AGGREGATE
sort PUMP-STATE operations ATTR-EQUAL: PUMP, PUMP -> BOOLEAN
attributes

PUMP-ID: PUMP -> PUMP-ID
GUN-HOLSTER-ASSEMBLY-OBJ: PUMP -> GUN-HOLSTER-ASSEMBLY-CLASS

CLUTCH-MOTOR-ASSEMBLY-OBJ:
PUMP -> CLUTCH-MOTOR-ASSEMBLY-CLASS
DISPLAY-OBJ: PUMP -> DISPLAY-CLASS
START-PUMP-MOTOR-OBJ: PUMP -> START-PUMP-MOTOR-SORT
RESET-DISPLAY-OBJ: PUMP -> RESET-DISPLAY-SORT

state-attributes PUMP-STATE: PUMP -> PUMP-STATE
methods

CREATE-PUMP: PUMP-ID -> PUMP

ENABLE-PUMP: PUMP -> PUMP
states

PUMP-DISABLED: -> PUMP-STATE
PUMP-ENABLED: -> PUMP-STATE

events
ENABLE-PUMP: PUMP, PUMP-ID -> PUMP
NEW-PUMP: PUMP-ID -> PUMP
DISABLE-PUMP: PUMP -> PUMP

axioms
PUMP-DISABLED <> PUMP-ENABLED;

ATTR-EQUAL(P, P2) <=>
(PUMP-ID(PI) = PUMP-ID(P2) & RESET-DISPLAY-OBJ(P1) = RESET-DISPLAY-OBJ(P2)

& START-PUMP-MOTOR-OBJ(PI) = START-PUMP-MOTOR-OBJ(P2)
& DISPLAY-OBJ(P) = DISPLAY-OBJ(P2)
& CLUTCH-MOTOR-ASSEMBLY-OBJ(P1) = CLUTCH-MOTOR-ASSEMBLY-OBJ(P2)
& GUN-HOLSTER-ASSEMBLY-OBJ(PI) = GUN-HOLSTER-ASSEMBLY-OBJ(P2));

(PUMP-STATE(P) = PUMP-ENABLED) => (PUMP-STATE(DISABLE-PUMP(P)) = PUMP-DISABLED);
(PUMP-STATE(NEW-PUMP(P, A)) = PUMP-DISABLED

& ATTR-EQUAL(NEW-PUMP(P, A), CREATE-PUMP(P, A)));
(PUMP-STATE(P) = PUMP-DISABLED &(X = PUMP-ID(P)))

=> (PUMP-STATE(ENABLE-PUMP(P, X)) = PUMP-ENABLED
& RESET-DISPLAY-OBJ(ENABLE-PUMP(P, X)) = RESET-DISPLAY(RESET-DISPLAY-OBJ(P))
& START-PUMP-MOTOR-OBJ(ENABLE-PUMP(P, X))

= START-PUMP-MOTOR(START-PUMP-MOTOR-OBJ(P)));

(PUMP-STATE(P) = PUMP-DISABLED &(X <> PUMP-ID(P)))
=> PUMP-STATE(ENABLE-PUMP(P,)) = PUMP-DISABLED;

PUMP-STATE(P) = PUMP-DISABLED => PUMP-STATE(DISABLE-PUMP(P)) = PUMP-DISABLED;
PUMP-STATE(P) = PUMP-ENABLED => PUMP-STATE(ENABLE-PUMP(P,)) = PUMP-ENABLED

end-class

class REGULAR is
class-sort REGULAR < PUMP
import PUMP
methods CREATE-REGULAR: -> REGULAR
events NEW-REGULAR: -> REGULAR
axioms ATTR-EQUAL(NEW-REGULARo, CREATE-REGULARO)
end-class

G-8

class REGULAR-CLASS is
class-sort REGULAR-CLASS
contained-class REGULAR
import PUMP-CLASS
events NEW-REGULAR-CLASS: -> REGULAR-CLASS
axioms NEW-REGULAR-CLASS() = EMPTY-SET

end-class

class SOPHISTICATED is

class-sort SOPHISTICATED < PUMP
import PUMP
operations ATTR-EQUAL: SOPHISTICATED, SOPHISTICATED -> BOOLEAN

attributes
VOLUME-SELECT: SOPHISTICATED -> VOLUME

AMOUNT-SELECT: SOPHISTICATED -> AMOUNT

methods
CREATE-SOPHISTICATED: -> SOPHISTICATED
events
NEW-SOPHISTICATED: -> SOPHISTICATED
axioms
ATTR-EQUAL(Si, S2) <=> (PUMP.ATTR-EQUAL(SI, S2)

& AMOUNT-SELECT(SI) = AMOUNT-SELECT(S2) & VOLUME-SELECT(Si) = VOLUME-SELECT(S2));

AMOUNT-SELECT(CREATE-SOPHISTICATED(S)) = 0;

VOLUME-SELECT(CREATE-SOPHISTICATED(S)) = 0;
ATTR-EQUAL(NEW-SOPHISTICATED), CREATE-SOPHISTICATEDO)

end-class

class SOPHISTICATED-CLASS is
class-sort SOPHISTICATED-CLASS
contained-class SOPHISTICATED
import PUMP-CLASS
events NEW-SOPHISTICATED-CLASS: -> SOPHISTICATED-CLASS

axioms NEW-SOPHISTICATED-CLASS() = EMPTY-SETend-class

class PUMP-CLASS is
class-sort PUMP-CLASS contained-class PUMP
events
ENABLE-PUMP: PUMP-CLASS, PUMP-ID -> PUMP-CLASS
DISABLE-PUMP: PUMP-CLASS -> PUMP-CLASS

NEW-PUMP-CLASS: -> PUMP-CLASS

axioms
NEW-PUMP-CLASS() = EMPTY-SET;
fa ((P: PUMP), PC: PUMP-CLASS) in(P, PC) <=> in(DISABLE-PUMP(P), DISABLE-PUMP(PC));

fa ((P: PUMP), (PC: PUMP-CLASS), X: PUMP-ID) in(P, PC)
<=> in(ENABLE-PUMP(P, X), ENABLE-PUMP(PC, X))

end-class

aggregate PUMP-AGGREGATE is

nodes FREE-CLUTCH, ENGAGE-CLUTCH, GUN-HOLSTER-ASSEMBLY-AGGREGATE,
GUN-HOLSTER-ASSEMBLY-CLASS, GUN-HOLSTER-ASSEMBLY,
CLUTCH-MOTOR-ASSEMBLY-AGGREGATE, CLUTCH-MOTOR-ASSEMBLY-CLASS,

CLUTCH-MOTOR-ASSEMBLY, GRADE, AMOUNT, VOLUME, DISPLAY-CLASS,

G-9

DISPLAY
arcs FREE-CLUTCH -> GUN-HOLSTER-ASSEMBLY-AGGREGATE: {},

FREE-CLUTCH -> CLUTCH-MOTOR-ASSEMBLY-AGGREGATE: {},
FREE-CLUTCH -> CLUTCH-MOTOR-ASSEMBLY-AGGREGATE: {FREE-CLUTCH-SORT -> CLUTCH},

ENGAGE-CLUTCH -> GUN-HOLSTER-ASSEMBLY-AGGREGATE: {},
ENGAGE-CLUTCH -> CLUTCH-MOTOR-ASSEMBLY-AGGREGATE: {ENGAGE-CLUTCH-SORT -> CLUTCH},
GUN-HOLSTER-ASSEMBLY-AGGREGATE -> GUN-HOLSTER-ASSEMBLY: {},
GUN-HOLSTER-ASSEMBLY -> GUN-HOLSTER-ASSEMBLY-CLASS: {},
CLUTCH-MOTOR-ASSEMBLY-AGGREGATE -> CLUTCH-MOTOR-ASSEMBLY: {},
CLUTCH-MOTOR-ASSEMBLY -> CLUTCH-MOTOR-ASSEMBLY-CLASS: {},
DISPLAY -> DISPLAY-CLASS: {},
GRADE -> DISPLAY: {},
AMOUNT -> DISPLAY: {},
VOLUME -> DISPLAY: {}

end-aggregate

aggregate DOMAIN-THEORY-AGGREGATE is
nodes DISABLE-PUMP, REGULAR-CLASS, REGULAR, SOPHISTICATED-CLASS,

SOPHISTICATED, PUMP-ID, START-PUMP-MOTOR, RESET-DISPLAY,
PUMP-AGGREGATE, PUMP-CLASS, PUMP

arcs DISABLE-PUMP -> PUMP: {DISABLE-PUMP-SORT -> PUMP},
DISABLE-PUMP -> PUMP-AGGREGATE: {},
REGULAR -> REGULAR-CLASS: {},
SOPHISTICATED -> SOPHISTICATED-CLASS: {},
START-PUMP-MOTOR -> PUMP-AGGREGATE: {START-PUMP-MOTOR-SORT -> MOTOR},

RESET-DISPLAY -> PUMP-AGGREGATE: {RESET-DISPLAY-SORT -> DISPLAY},
PUMP-AGGREGATE -> PUMP: {},
PUMP -> PUMP-CLASS: {},
PUMP-ID -> PUMP: {},
START-PUMP-MOTOR -> PUMP: {},
RESET-DISPLAY -> PUMP: {},
PUMP-CLASS -> REGULAR-CLASS: {},
PUMP -> REGULAR: {},
PUMP-CLASS -> SOPHISTICATED-CLASS: {},
PUMP -> SOPHISTICATED: {}

end-aggregate

event START-FUEL is
class-sort START-FUEL-SORT
events START-FUEL: START-FUEL-SORT -> START-FUEL-SORT

end-event

event FREE-CLUTCH is
class-sort FREE-CLUTCH-SORT
events FREE-CLUTCH: FREE-CLUTCH-SORT -> FREE-CLUTCH-SORT

end-event

event DISABLE-CLUTCH is

class-sort DISABLE-CLUTCH-SORT
events DISABLE-CLUTCH: DISABLE-CLUTCH-SORT -> DISABLE-CLUTCH-SORT

end-event

G-10

event ENGAGE-CLUTCH is
class-sort ENGAGE-CLUTCH-SORT
events ENGAGE-CLUTCH: ENGAGE-CLUTCH-SORT -> ENGAGE-CLUTCH-SORT

end-event

event START-TIMER is
class-sort START-TIMER-SORT
events START-TIMER: START-TIMER-SORT -> START-TIMER-SORT
end-event

event CLOSE-HOLSTER-SWITCH is
class-sort CLOSE-HOLSTER-SWITCH-SORT
events
CLOSE-HOLSTER-SWITCH: CLOSE-HOLSTER-SWITCH-SORT -> CLOSE-HOLSTER-SWITCH-SORT

end-event

event RELEASE-HOLSTER-SWITCH is

class-sort RELEASE-HOLSTER-SWITCH-SORT
events RELEASE-HOLSTER-SWITCH: RELEASE-HOLSTER-SWITCH-SORT -> RELEASE-HOLSTER-SWITCH-SORT

end-event

event RESET-DISPLAY is

class-sort RESET-DISPLAY-SORT
events RESET-DISPLAY: RESET-DISPLAY-SORT -> RESET-DISPLAY-SORT

end-event

event START-PUMP-MOTOR is

class-sort START-PUMP-MOTOR-SORT

events START-PUMP-MOTOR: START-PUMP-MOTOR-SORT -> START-PUMP-MOTOR-SORT
end-event

event DISABLE-PUMP is
class-sort DISABLE-PUMP-SORT

events DISABLE-PUMP: DISABLE-PUMP-SORT -> DISABLE-PUMP-SORT

end-event

G.2 Faculty Student Database - Faculty Workload Functional Model

Figures G.1 through G.4 define the Faculty Workload process. This functional model is

translated into the Faculty- Workload class in Section G.3.

G-11

calculate-faculty- workload 77

Faculty-Wbrkioad

Figure G.1 Faculty Workload Functional Model

.- mi.t-ais-I~ 4

retm 0worod

crfirtge

get-ko cacdae-worftd

/aLI ms~irtegr,-/ /ptdsrieger

Figure G.2 Calculate-Faculty-Workload Functional Model

G-12

ca.......oa......

gS-fwu

cabziats-woMd

fm ire/

FacIiV

Figure G.3 Calculate- Student-Load Functional Model

saotivessctiam-das cisscoinse-class

.s~ r

Figure GA4 Calculate- Course-Load Functional Model

G-13

G.3 Faculty Student Database O-SLANG

class SECTION is
class-sort SECTION
import NUMBER
operations ATTR-EQUAL: SECTION, SECTION -> BOOLEAN

attributes NUMBER: SECTION -> NUMBER
methods CREATE-SECTION: -> SECTION
events NEW-SECTION: -> SECTION
axioms
ATTR-EQUAL(SI, S2) <=> (NUMBER(S1) = NUMBER(S2));
ATTR-EQUAL(NEW-SECTION(, CREATE-SECTIONO)

end-class

class SECTION-CLASS is
class-sort SECTION-CLASS
contained-class SECTION
events NEW-SECTION-CLASS: -> SECTION-CLASS
axioms NEW-SECTION-CLASSC) = EMPTY-SET
end-class

class A-CLASS is
class-sort A-CLASS
import PROGRAM
operations ATTR-EQUAL: A-CLASS, A-CLASS -> BOOLEAN
attributes PROGRAM: A-CLASS -> PROGRAM
methods CREATE-A-CLASS: -> A-CLASS
events NEW-A-CLASS: -> A-CLASS
axioms

ATTR-EQUAL(Ai, A2) <=> (PROGRAM(Ai) = PROGRAM(A2));
ATTR-EQUAL(NEW-A-CLASSo, CREATE-A-CLASSO)

end-class

class A-CLASS-CLASS is
class-sort A-CLASS-CLASS
contained-class A-CLASS
events NEW-A-CLASS-CLASS: -> A-CLASS-CLASS
axioms NEW-A-CLASS-CLASS() = EMPTY-SET
end-class

class QUARTER is
class-sort QUARTER
import END-DATE, START-DATE, QUATER-YEAR, QUARTER-NAME
operations ATTR-EQUAL: QUARTER, QUARTER -> BOOLEAN
attributes
QUARTER-NAME: QUARTER -> QUARTER-NAME
QUATER-YEAR: QUARTER -> QUATER-YEAR
START-DATE: QUARTER -> START-DATE
END-DATE: QUARTER -> END-DATE

methods CREATE-QUARTER: -> QUARTER
events NEW-QUARTER: -> QUARTER
axioms

G-14

ATTR-EQUAL(Qi, Q2) <=> (END-DATE(Qi) = END-DATE(Q2)

& START-DATE(Qi) = START-DATE(Q2)

& QUATER-YEAR(Q1) = QUATER-YEAR(Q2)

& QUARTER-NAME(Qi) = QUARTER-NAME(Q2));

ATTR-EQUAL(NEW-QUARTERO, CREATE-QUARTERO)

end-class

class QUARTER-CLASS is
class-sort QUARTER-CLASS
contained-class QUARTER
events NEW-QUARTER-CLASS: -> QUARTER-CLASS
axioms NEW-QUARTER-CLASS 0 = EMPTY-SET
end-class

class COURSE is
class-sort COURSE
import ABET-OTHER, ABET-MATH, ABET-SCIENCE, ABET-DESIGN, LAB-HOURS,

LEXTURE-HOURS, CREDIT-HOURS, DESCRIPTION, TITLE, NUM, TYPE
operations ATTR-EQUAL: COURSE, COURSE -> BOOLEAN
attributes

TYPE: COURSE -> TYPE

NUM: COURSE -> NUM
TITLE: COURSE -> TITLE

DESCRIPTION: COURSE -> DESCRIPTION
CREDIT-HOURS: COURSE -> CREDIT-HOURS
LEXTURE-HOURS: COURSE -> LEXTURE-HOURS
LAB-HOURS: COURSE -> LAB-HOURS
ABET-DESIGN: COURSE -> ABET-DESIGN
ABET-SCIENCE: COURSE -> ABET-SCIENCE
ABET-MATH: COURSE -> ABET-MATH
ABET-OTHER: COURSE -> ABET-OTHER

methods CREATE-COURSE: -> COURSE
events NEW-COURSE: -> COURSE
axioms
ATTR-EQUAL(C1, C2) <=> (ABET-OTHER(CI) = ABET-OTHER(C2)

& ABET-MATH(Ci) = ABET-MATH(C2)
& ABET-SCIENCE(CI) = ABET-SCIENCE(C2)
& ABET-DESIGN(C1) = ABET-DESIGN(C2)
& LAB-HOURS(Cl) = LAB-HOURS(C2)
& LEXTURE-HOURS(Ci) = LEXTURE-HOURS(C2)
& CREDIT-HOURS(Cl) = CREDIT-HOURS(C2)
& DESCRIPTION(C1) = DESCRIPTION(C2) & TITLE(Cl) = TITLE(C2)
& NUM(C1) = NUM(C2) & TYPE(C1) = TYPE(C2));

ATTR-EQUAL(NEW-COURSE(, CREATE-COURSEO)
end-class

class COURSE-CLASS is
class-sort COURSE-CLASS contained-class COURSE
events NEW-COURSE-CLASS: -> COURSE-CLASS
axioms NEW-COURSE-CLASS() = EMPTY-SET

end-class

G-15

class FACULTY is
class-sort FACULTY
import ACADEMIC-RANK, SEX, SSAN, AGE, BIRTHDATE, FIRSTNAME,

INITIAL, LAST-NAME
operations ATTR-EQUAL: FACULTY, FACULTY -> BOOLEAN
attributes
LAST-NAME: FACULTY -> LAST-NAME
INITIAL: FACULTY -> INITIAL
FIRSTNAME: FACULTY -> FIRSTNAME
BIRTHDATE: FACULTY -> BIRTHDATE
AGE: FACULTY -> AGE
SSAN: FACULTY -> SSAN
SEX: FACULTY -> SEX
ACADEMIC-RANK: FACULTY -> ACADEMIC-RANK

methods CREATE-FACULTY: -> FACULTY
events NEW-FACULTY: -> FACULTY
axioms
ATTR-EQUAL(F, F2) <=> (ACADEMIC-RANK(Fi) = ACADEMIC-RANK(F2)

& SEX (FI) = SEX (F2) & SSAN(F1) = SSAN(F2)
& BIRTHDATE(F1) = BIRTHDATE(F2) & FIRSTNAME(F1) = FIRSTNAME(F2)
& INITIAL(Fl) = INITIAL(F2) & LAST-NAME(Fi) = LAST-NAME(F2));

ATTR-EQUAL(NEW-FACULTYO, CREATE-FACULTYO)
end-class

class FACULTY-CLASS is

class-sort FACULTY-CLASS
contained-class FACULTY
events NEW-FACULTY-CLASS: -> FACULTY-CLASS
axioms NEW-FACULTY-CLASS() = EMPTY-SET

end-class

class STUDENT is

class-sort STUDENT
import GPA, WEIGHT, HEIGHT, SEX, SSAN, AGE, BIRTH-DATE, FIRST-NAME,

INIT, LASTNAME
operations ATTR-EQUAL: STUDENT, STUDENT -> BOOLEAN

attributes
LASTNAME: STUDENT -> LASTNAME
INIT: STUDENT -> INIT

FIRST-NAME: STUDENT -> FIRST-NAME
BIRTH-DATE: STUDENT -> BIRTH-DATE
AGE: STUDENT -> AGE
SSAN: STUDENT -> SSAN
SEX: STUDENT -> SEX
HEIGHT: STUDENT -> HEIGHT

WEIGHT: STUDENT -> WEIGHT

GPA: STUDENT -> GPA
methods CREATE-STUDENT: -> STUDENT

events NEW-STUDENT: -> STUDENT
axioms
ATTR-EQUAL(Sl, S2) <=> (GPA(S1) = GPA(S2) & WEIGHT(Sl) = WEIGHT(S2)

& HEIGHT(Sl) = HEIGHT(S2) & SEX (S1) = SEX (S2)
& SSAN(Sl) = SSAN(S2) & BIRTH-DATE(S1) = BIRTH-DATE(S2)
& FIRST-NAME(Sl) = FIRST-NAME(S2) & INIT(Sl) = INIT(S2)

G-16

& LASTNAME(S1) = LASTNAME(S2));

ATTR-EQUAL(NEW-STUDENTO, CREATE-STUDENT())

end-class

class STUDENT-CLASS is
class-sort STUDENT-CLASS

contained-class STUDENT
events NEW-STUDENT-CLASS: -> STUDENT-CLASS
axioms NEW-STUDENT-CLASS() = EMPTY-SET

end-class

class FACULTY-WORKLOAD is
class-sort FACULTY-WORKLOAD
import FACULTY-WORKLOAD-AGGREGATE
operations
ATTR-EQUAL: FACULTY-WORKLOAD, FACULTY-WORKLOAD -> BOOLEAN

GET-SECTIONS: TEACHING, FACULTY -> SECTION-CLASS

COMPUTE-CREDITS: TAUGHT-AS, SECTION-CLASS -> INTEGER
CALCULATE-COURSE-LOAD: FACULTY-WORKLOAD, FACULTY -> INTEGER
GET-STUDENTS-ADVISED: ADVISES, FACULTY -> STUDENT-CLASS
COUNT-STUDENTS: MEMBER-OF, STUDENT-CLASS -> INTEGER
CALCULATE-STUDENT-LOAD: FACULTY-WORKLOAD, FACULTY -> INTEGER, INTEGER
CALCULATE-WORKLOAD: INTEGER, INTEGER, INTEGER -> WORKLOAD
CALCULATE-FACULTY-WORKLOAD: FACULTY-WORKLOAD, NAME -> WORKLOAD
GET-FACULTY: FACULTY-CLASS, NAME, NAME -> FACULTY
GET-COURSE: COURSE-CLASS, NUM, TYPE -> COURSE
GET-SECTIONS-TAUGHT: SECTION-CLASS, FACULTY -> SECTION-CLASS
GET-SECTIONS-OFFERED: SECTION-CLASS, COURSE -> SECTION-CLASS
COMPUTE-SECTION-UNION: SECTION-CLASS, SECTION-CLASS -> TIMES-TAUGHT
COUNT-TIMES-TAUGHT: SECTION-CLASS, COURSE, FACULTY -> TIMES-TAUGHT
GET-TEACHES: TEACHES, FACULTY, COURSE -> TEACHES-LINK

attributes

STUDENT-OBJ: FACULTY-WORKLOAD -> STUDENT-CLASS

FACULTY-OBJ: FACULTY-WORKLOAD -> FACULTY-CLASS
SECTION-OBJ: FACULTY-WORKLOAD -> SECTION-CLASS
COURSE-OBJ: FACULTY-WORKLOAD -> COURSE-CLASS
QUARTER-OBJ: FACULTY-WORKLOAD -> QUARTER-CLASS
A-CLASS-OBJ: FACULTY-WORKLOAD -> A-CLASS-CLASS
MEMBER-OF-OBJ: FACULTY-WORKLOAD -> MEMBER-OF
ADVISES-OBJ: FACULTY-WORKLOAD -> ADVISES
TEACHES-OBJ: FACULTY-WORKLOAD -> TEACHES
OFFERING-OBJ: FACULTY-WORKLOAD -> OFFERING
TAUGHT-AS-OBJ: FACULTY-WORKLOAD -> TAUGHT-AS
SCHEDULED-IN-OBJ: FACULTY-WORKLOAD -> SCHEDULED-IN
TEACHING-OBJ: FACULTY-WORKLOAD -> TEACHING

methods
CREATE-FACULTY-WORKLOAD: -> FACULTY-WORKLOAD
MODIFY-TEACHES: TEACHES, TIMES-TAUGHT, TEACHES-LINK -> TEACHES
UPDATE-TEACHES: FACULTY-WORKLOAD, NUM, NAME, TYPE -> FACULTY-WORKLOAD

events
CALCULATE-FACULTY-WORKLOAD-EVENT: FACULTY-WORKLOAD, NAME -> WORKLOAD
UPDATE-TEACHES-EVENT: FACULTY-WORKLOAD, NUM, NAME, TYPE -> FACULTY-WORKLOAD
NEW-FACULTY-WORKLOAD: -> FACULTY-WORKLOAD

axioms

G-17

ATTR-EQUAL (F1, F2) <=> (A-CLASS-OBJ (Fl) = A-CLASS-OBJ (F2)

& QUARTER-OBJ (Fl) = QUARTER-OBJ (F2)

& COURSE-OBJ (Fl) = COURSE-OBJ (F2)

& SECTION-OBJ (Fl) = SECTION-OBJ (F2)

& FACULTY-OBJ (Fl) = FACULTY-OBJ (F2)

& STUDENT-OBJ (Fl) = STUDENT-OBJ (F2));

UPDATE-TEACHES (F, NUM, NAME, TYPE) = F1
& TEACHES-OBJ (Fl) = MODIFY-TEACHES (TEACHES-OBJ (F), TIMES-TAUGHT, TEACHES-LINK)

& TEACHES-LINK = GET-TEACHES(TEACHES-OBJ (F), FACULTY, COURSE)
& TIMES-TAUGHT = COUNT-TIMES-TAUGHT (SECTION-OBJ (F), COURSE, FACULTY)

& COURSE = GET-COURSE (COURSE-OBJ (F), NUM, TYPE)

& FACULTY = GET-FACULTY (FACULTY-OBJ (F), NAME, NAME);

COUNT-TIMES-TAUGHT (SECTION-OBJ (F), COURSE, FACULTY) = TIMES-TAUGHT

& TIMES-TAUGHT = COMPUTE-SECTION-UNION (C, F)

& C = GET-SECTIONS-OFFERED (SECTION-OBJ (F), COURSE)
& F = GET-SECTIONS-TAUGHT (SECTION-OBJ (F), FACULTY);

CALCULATE-FACULTY-WORKLOAD (F, NAME) = WORKLOAD

& WORKLOAD = CALCULATE-WORKLOAD (PHDS, MS, CREDITS)
& <MS, PHDS> = CALCULATE-STUDENT-LOAD (F, FACULTY)
& CREDITS = CALCULATE-COURSE-LOAD (F, FACULTY);

CALCULATE-STUDENT-LOAD (F, FACULTY) = <MS, PHDS>

& MS = COUNT-STUDENTS (MEMBER-OF-OBJ (F), STUDENTS)

& STUDENTS = GET-STUDENTS-ADVISED (ADVISES-OBJ (F), FACULTY);

CALCULATE-COURSE-LOAD (F, FACULTY) = CREDITS
& CREDITS = COMPUTE-CREDITS (TAUGHT-AS-OBJ (F), SECTIONS)
& SECTIONS = GET-SECTIONS (TEACHING-OBJ (F), FACULTY);

ATTR-EQUAL (NEW-FACULTY-WORKLOAD (), CREATE-FACULTY-WORKLOAD 0);
ATTR-EQUAL (UPDATE-TEACHES-EVENT (F, N, A, T), UPDATE-TEACHES (F, N, A, T));

ATTR-EQUAL (CALCULATE-FACULTY-WORKLOAD-EVENT (F, N),

CALCULATE-FACULTY-WORKLOAD (F, N))
end-class

class FACULTY-WORKLOAD-CLASS is

class-sort FACULTY-WORKLOAD-CLASS

contained-class FACULTY-WORKLOAD
events NEW-FACULTY-WORKLOAD-CLASS: -> FACULTY-WORKLOAD-CLASS

axioms NEW-FACULTY-WORKLOAD-CLASS(0 = EMPTY-SET

end-class

aggregate FACULTY-WORKLOAD-AGGREGATE is

nodes MEMBER-OF, MEMBER-OF-LINK, ADVISES, ADVISES-LINK, TEACHES,

TEACHES-LINK, OFFERING, OFFERING-LINK, TAUGHT-AS,
TAUGHT-AS-LINK, SCHEDULED-IN, SCHEDULED-IN-LINK, TEACHING,
TEACHING-LINK, GPA, WEIGHT, HEIGHT, BIRTH-DATE, FIRST-NAME,

INIT, LASTNAME, STUDENT-CLASS, STUDENT, ACADEMIC-RANK, SEX,
SSAN, AGE, BIRTHDATE, FIRSTNAME, INITIAL, LAST-NAME,
FACULTY-CLASS, FACULTY, NUMBER, SECTION-CLASS, SECTION,
ABET-OTHER, ABET-MATH, ABET-SCIENCE, ABET-DESIGN, LAB-HOURS,

LEXTURE-HOURS, CREDIT-HOURS, DESCRIPTION, TITLE, NUM, TYPE,
COURSE-CLASS, COURSE,END-DATE, START-DATE, QUATER-YEAR,
QUARTER-NAME, QUARTER-CLASS, QUARTER, PROGRAM, A-CLASS-CLASS,

A-CLASS, TRIV-127: TRIV, TRIV-128: TRIV, TRIV-129: TRIV,
TRIV-130: TRIV, TRIV-131: TRIV, TRIV-132: TRIV, TRIV-133: TRIV,

TRIV-134: TRIV, TRIV-135: TRIV, TRIV-136: TRIV, TRIV-137: TRIV,

G-18

TRIV-138: TRIV, TRIV-139: TRIV, TRIV-140: TRIV

arcs TRIV-140 -> MEMBER-OF-LINK: { E -> STUDENT-OBJ},
TRIV-140 -> STUDENT: { E -> STUDENT},
TRIV-139 -> MEMBER-OF-LINK: { E -> A-CLASS-OBJ},
TRIV-139 -> A-CLASS: { E -> A-CLASS},
MEMBER-OF-LINK -> MEMBER-OF: {},
TRIV-138 -> ADVISES-LINK: { E -> FACULTY-OBJ},
TRIV-138 -> FACULTY: { E -> FACULTY},
TRIV-137 -> ADVISES-LINK: { E -> STUDENT-OBJ},
TRIV-137 -> STUDENT: { E -> STUDENT},
ADVISES-LINK -> ADVISES: {},
TRIV-136 -> TEACHES-LINK: { E -> COURSE-OBJ},
TRIV-136 -> COURSE: { E -> COURSE},
TRIV-135 -> TEACHES-LINK: { E -> FACULTY-OBJ},
TRIV-135 -> FACULTY: { E -> FACULTY},
TEACHES-LINK -> TEACHES: {},
TRIV-134 -> OFFERING-LINK: { E -> QUARTER-OBJ},
TRIV-134 -> QUARTER: { E -> QUARTER},
TRIV-133 -> OFFERING-LINK: { E -> COURSE-OBJ},
TRIV-133 -> COURSE: { E -> COURSE},
OFFERING-LINK -> OFFERING: {},
TRIV-132 -> TAUGHT-AS-LINK: { E -> SECTION-OBJ},
TRIV-132 -> SECTION: { E -> SECTION},
TRIV-131 -> TAUGHT-AS-LINK: { E -> COURSE-OBJ},
TRIV-131 -> COURSE: { E -> COURSE},
TAUGHT-AS-LINK -> TAUGHT-AS: {},
TRIV-130 -> SCHEDULED-IN-LINK: { E -> SECTION-OBJ},
TRIV-130 -> SECTION: { E -> SECTION},
TRIV-129 -> SCHEDULED-IN-LINK: { E -> QUARTER-OBJ},
TRIV-129 -> QUARTER: { E -> QUARTER},
SCHEDULED-IN-LINK -> SCHEDULED-IN: {},
TRIV-128 -> TEACHING-LINK: { E -> SECTION-OBJ},
TRIV-128 -> SECTION: { E -> SECTION},
TRIV-127 -> TEACHING-LINK: { E -> FACULTY-OBJ},
TRIV-127 -> FACULTY: { E -> FACULTY},
TEACHING-LINK -> TEACHING: {},
STUDENT -> STUDENT-CLASS: {},
FACULTY -> FACULTY-CLASS: {},
SECTION -> SECTION-CLASS: {},
COURSE -> COURSE-CLASS: {},
QUARTER -> QUARTER-CLASS: {},
A-CLASS -> A-CLASS-CLASS: {},
GPA -> STUDENT: {},
WEIGHT -> STUDENT: {},
HEIGHT -> STUDENT: {},
BIRTH-DATE -> STUDENT: {},
FIRST-NAME -> STUDENT: {},
INIT -> STUDENT: {},
LASTNAME -> STUDENT: {},
ACADEMIC-RANK -> FACULTY: {},
SEX -> STUDENT: {},
SEX -> FACULTY: {},
SSAN -> STUDENT: {},
SSAN -> FACULTY: {},
AGE -> STUDENT: {},
AGE -> FACULTY: {},

G-19

BIRTHDATE -> FACULTY: {},
FIRSTNAME -> FACULTY: {},
INITIAL -> FACULTY: {},
LAST-NAME -> FACULTY: {},
NUMBER -> SECTION: {},
ABET-OTHER -> COURSE: {},
ABET-MATH -> COURSE: {},
ABET-SCIENCE -> COURSE: {},
ABET-DESIGN -> COURSE: {},
LAB-HOURS -> COURSE: {},
LEXTURE-HOURS -> COURSE: {},
CREDIT-HOURS -> COURSE: {},
DESCRIPTION -> COURSE: {},
TITLE -> COURSE: {},
NUM -> COURSE: {},
TYPE -> COURSE: fl,
END-DATE -> QUARTER: {},
START-DATE -> QUARTER: {},
QUATER-YEAR -> QUARTER: {},
QUARTER-NAME -> QUARTER: {},
PROGRAM -> A-CLASS: {}

end-aggregate

link TEACHING-LINK is
class-sort TEACHING-LINK
sort SECTION, FACULTY
operations ATTR-EQUAL: TEACHING-LINK, TEACHING-LINK -> BOOLEAN
attributes
FACULTY-OBJ: TEACHING-LINK -> FACULTY
SECTION-OBJ: TEACHING-LINK -> SECTION

methods CREATE-TEACHING-LINK: FACULTY, SECTION -> TEACHING-LINK
events NEW-TEACHING-LINK: FACULTY, SECTION -> TEACHING-LINK
axioms
ATTR-EQUAL(T1, T2) <=> (SECTION-OBJ(Ti) = SECTION-OBJ(T2)

& FACULTY-OBJ(TI) = FACULTY-OBJ(T2));
SECTION-OBJ(CREATE-TEACHING-LINK(T, S, F)) = S;
FACULTY-OBJ(CREATE-TEACHING-LINK(T, S, F)) = F;
ATTR-EQUAL(NEW-TEACHING-LINK(T, S, F), (CREATE-TEACHING-LINK(T, S, F)))

end-link

association TEACHING is
class-sort TEACHING

link-class TEACHING-LINK
sort SECTION-CLASS, FACULTY-CLASS

operations
IMAGE: TEACHING, SECTION -> FACULTY-CLASS
IMAGE: TEACHING, FACULTY -> SECTION-CLASS

events NEW-TEACHING: -> TEACHING

axioms
NEW-TEACHINGO) = EMPTY-SET;
fa ((S: TEACHING), (T: SECTION), A: FACULTY)

(ex (F: TEACHING-LINK) in(F, S) & TEACHING-OBJ(F) = T & TEACHING-OBJ(F) = A)
<=> in(A, image(S, T));

fa ((S: TEACHING), (T: SECTION), A: FACULTY)

G-20

(ex (F: TEACHING-LINK) in(F, S) & TEACHING-OBJ(F) = A & TEACHING-OBJ(F) = T)
<=> in(T, image(S, A))

end-association

link SCHEDULED-IN-LINK is
class-sort SCHEDULED-IN-LINK
sort SECTION, QUARTER
operations ATTR-EQUAL: SCHEDULED-IN-LINK, SCHEDULED-IN-LINK -> BOOLEAN
attributes
QUARTER-OBJ: SCHEDULED-IN-LINK -> QUARTER
SECTION-OBJ: SCHEDULED-IN-LINK -> SECTION

methods
CREATE-SCHEDULED-IN-LINK:
QUARTER, SECTION -> SCHEDULED-IN-LINK

events NEW-SCHEDULED-IN-LINK: QUARTER, SECTION -> SCHEDULED-IN-LINK

axioms
ATTR-EQUAL(Si, S2) <=> (SECTION-OBJ(Si) = SECTION-OBJ(S2)

& QUARTER-OBJ(SI) = QUARTER-BJ(S2));
SECTION-OBJ(CREATE-SCHEDULED-IN-LINK(S, A, Q)) = A;
QUARTER-OBJ(CREATE-SCHEDULED-IN-LINK(S, A, Q)) = Q;
ATTR-EQUAL (NEW-SCHEDULED-IN-LINK(S, A, Q), (CREATE-SCHEDULED-IN-LINK(S, A, Q)))

end-link

association SCHEDULED-IN is
class-sort SCHEDULED-IN
link-class SCHEDULED-IN-LINK
sort SECTION-CLASS, QUARTER-CLASS
operations

IMAGE: SCHEDULED-IN, SECTION -> QUARTER-CLASS
IMAGE: SCHEDULED-IN, QUARTER -> SECTION-CLASS

events NEW-SCHEDULED-IN: -> SCHEDULED-IN
axioms
NEW-SCHEDULED-IN() = EMPTY-SET;
fa ((S: SCHEDULED-IN), A: SECTION) SIZE(IMAGE(S, A)) 1;
fa ((S: SCHEDULED-IN), (A: SECTION), B: QUARTER)

(ex (Q: SCHEDULED-IN-LINK) in(Q, S) & SCHEDULED-IN-OBJ(Q) = A
& SCHEDULED-IN-OBJ(Q) = B) <=> in(B, image(S, A));

fa ((S: SCHEDULED-IN), (A: SECTION), B: QUARTER)
(ex (Q: SCHEDULED-IN-LINK) in(Q, S) & SCHEDULED-IN-OBJ(Q) = B
& SCHEDULED-IN-OBJ(Q) = A) <=> in(A, image(S, B))

end-association

link TAUGHT-AS-LINK is
class-sort TAUGHT-AS-LINK
sort SECTION, COURSE
operations ATTR-EQUAL: TAUGHT-AS-LINK, TAUGHT-AS-LINK -> BOOLEAN
attributes
COURSE-OBJ: TAUGHT-AS-LINK -> COURSE
SECTION-OBJ: TAUGHT-AS-LINK -> SECTION

methods CREATE-TAUGHT-AS-LINK: COURSE, SECTION -> TAUGHT-AS-LINK
events NEW-TAUGHT-AS-LINK: COURSE, SECTION -> TAUGHT-AS-LINK
axioms
ATTR-EQUAL(TI, T2) <=> (SECTION-OBJ(TI) = SECTION-OBJ(T2)

G-21

& COURSE-OBJ(T1) = COURSE-OBJ(T2));
SECTION-OBJ(CREATE-TAUGHT-AS-LINK(T, S, C)) = S;
COURSE-OBJ(CREATE-TAUGHT-AS-LINK(T, S, C)) = C;
ATTR-EQUAL(NEW-TAUGHT-AS-LINK(T, S, C), (CREATE-TAUGHT-AS-LINK(T, S, C)))

end-link

association TAUGHT-AS is
class-sort TAUGHT-AS
link-class TAUGHT-AS-LINK

sort SECTION-CLASS, COURSE-CLASS
operations

IMAGE: TAUGHT-AS, SECTION -> COURSE-CLASS
IMAGE: TAUGHT-AS, COURSE -> SECTION-CLASS

events NEW-TAUGHT-AS: -> TAUGHT-AS

axioms
NEW-TAUGHT-AS() = EMPTY-SET;
fa ((T: TAUGHT-AS), S: SECTION) SIZE(IMAGE(T, S)) = 1;
fa ((S: TAUGHT-AS), (T: SECTION), A: COURSE)

(ex (C: TAUGHT-AS-LINK) in(C, S) & TAUGHT-AS-OBJ(C) = T & TAUGHT-AS-OBJ(C) = A)
<=> in(A, image(S, T));

fa ((S: TAUGHT-AS), (T: SECTION), A: COURSE)
(ex (C: TAUGHT-AS-LINK) in(C, S) & TAUGHT-AS-OBJ(C) = A & TAUGHT-AS-OBJ(C) = T)

<=> in(T, image(S, A))

end-association

link OFFERING-LINK is
class-sort OFFERING-LINK
sort QUARTER, COURSE
operations ATTR-EQUAL: OFFERING-LINK, OFFERING-LINK -> BOOLEAN
attributes

COURSE-OBJ: OFFERING-LINK -> COURSE
QUARTER-OBJ: OFFERING-LINK -> QUARTER

methods CREATE-OFFERING-LINK: COURSE, QUARTER -> OFFERING-LINK

events NEW-OFFERING-LINK: COURSE, QUARTER -> OFFERING-LINK
axioms

ATTR-EQUAL(Oi, 02) <=> (QUARTER-OBJ(OI) = QUARTER-OBJ(02)

& COURSE-OBJ(01) = COURSE-OBJ(02));
QUARTER-OBJ(CREATE-OFFERING-LINK(O, Q, C)) =Q;
COURSE-OBJ(CREATE-OFFERING-LINK(O, Q, C)) = C;
ATTR-EQUAL(NEW-OFFERING-LINK(0, Q, C), (CREATE-OFFERING-LINK(O, Q, C)))

end-link

association OFFERING is
class-sort OFFERING
link-class OFFERING-LINK
sort QUARTER-CLASS, COURSE-CLASS
operations

IMAGE: OFFERING, QUARTER -> COURSE-CLASS
IMAGE: OFFERING, COURSE -> QUARTER-CLASS

events NEW-OFFERING: -> OFFERING
axioms
NEW-OFFERING() = EMPTY-SET;
fa ((Q: OFFERING), (0: QUARTER), A: COURSE)

G-22

(ex (C: OFFERING-LINK) in(C, Q) & OFFERING-OBJ(C) = 0 & OFFERING-OBJ(C) = A)
<=> in(A, image(Q, 0));

fa ((Q: OFFERING), (0: QUARTER), A: COURSE)
(ex (C: OFFERING-LINK) in(C, Q) & OFFERING-OBJ(C) = A & OFFERING-OBJ(C) = 0)

<=> in(O, image(Q, A))

end-association

link TEACHES-LINK is
class-sort TEACHES-LINK

sort COURSE, FACULTY
operations ATTR-EQUAL: TEACHES-LINK, TEACHES-LINK -> BOOLEAN
attributes
FACULTY-GBJ: TEACHES-LINK -> FACULTY
COURSE-OBJ: TEACHES-LINK -> COURSE

methods CREATE-TEACHES-LINK: FACULTY, COURSE -> TEACHES-LINK
events NEW-TEACHES-LINK: FACULTY, COURSE -> TEACHES-LINK
axioms

ATTR-EQUAL(TI, T2) <=>(COURSE-OBJ(T1) = COURSE-OBJ(T2)

& FACULTY-OBJ(TI) = FACULTY-OBJ(T2));
COURSE-OBJ(CREATE-TEACHES-LINK(T, C, F)) = C;
FACULTY-OBJ(CREATE-TEACHES-LINK(T, C, F)) = F;
ATTR-EQUAL(NEW-TEACHES-LINK(T, C, F), (CREATE-TEACHES-LINK(T, C, F)))

end-link

association TEACHES is
class-sort TEACHES
link-class TEACHES-LINK
sort COURSE-CLASS, FACULTY-CLASS
operations

IMAGE: TEACHES, COURSE -> FACULTY-CLASS
IMAGE: TEACHES, FACULTY -> COURSE-CLASS

events NEW-TEACHES: -> TEACHES
axioms
ATTR-EQUAL(Ti, T2) <=>(AVERAGE-SIZE(T) = AVERAGE-SIZE(T2)

& TIMES-TAUGHT(T1) = TIMES-TAUGHT(T2));
NEW-TEACHESO) = EMPTY-SET;
fa ((C: TEACHES), (T: COURSE), A: FACULTY)

(ex (F: TEACHES-LINK) in(F, C) & TEACHES-OBJ(F) = T & TEACHES-OBJ(F) = A)
<=> in(A, image(C, T));

fa ((C: TEACHES), (T: COURSE), A: FACULTY)
(ex (F: TEACHES-LINK) in(F, C) & TEACHES-OBJ(F) = A & TEACHES-OBJ(F) = T)

<=> in(T, image(C, A))
end-association

link ADVISES-LINK is
class-sort ADVISES-LINK
sort FACULTY, STUDENT
operations ATTR-EQUAL: ADVISES-LINK, ADVISES-LINK -> BOOLEAN
attributes

STUDENT-OBJ: ADVISES-LINK -> STUDENT
FACULTY-OBJ: ADVISES-LINK -> FACULTY

methods CREATE-ADVISES-LINK: STUDENT, FACULTY -> ADVISES-LINK
events NEW-ADVISES-LINK: STUDENT, FACULTY -> ADVISES-LINK

G-23

axioms
ATTR-EQUAL(Al, A2) <=> (FACULTY-OBJ(A1) = FACULTY-OBJ(A2)

& STUDENT-OBJ(Ai) = STUDENT-OBJ(A2));
FACULTY-OBJ(CREATE-ADVISES-LINK(A, F, S)) = F;

STUDENT-OBJ(CREATE-ADVISES-LINK(A, F, S)) = S;
ATTR-EQUAL(NEW-ADVISES-LINK(A, F, S), (CREATE-ADVISES-LINK(A, F, S)))

end-link

association ADVISES is
class-sort ADVISES
link-class ADVISES-LINK
sort FACULTY-CLASS, STUDENT-CLASS
operations

IMAGE: ADVISES, FACULTY -> STUDENT-CLASS
IMAGE: ADVISES, STUDENT -> FACULTY-CLASS

events NEW-ADVISES: -> ADVISES
axioms
NEW-ADVISES() = EMPTY-SET;
fa ((F: ADVISES), (A: FACULTY), B: STUDENT)

(ex (S: ADVISES-LINK) in(S, F) & ADVISES-OBJ(S) = A & ADVISES-OBJ(S) = B)
<=> in(B, image(F, A));

fa ((F: ADVISES), (A: FACULTY), B: STUDENT)
(ex (S: ADVISES-LINK) in(S, F) & ADVISES-OBJ(S) = B & ADVISES-OBJ(S) = A)

<=> in(A, image(F, B))
end-association

link MEMBER-OF-LINK is
class-sort MEMBER-OF-LINK
sort STUDENT, A-CLASS
operations ATTR-EQUAL: MEMBER-OF-LINK, MEMBER-OF-LINK -> BOOLEAN
attributes
A-CLASS-OBJ: MEMBER-OF-LINK -> A-CLASS
STUDENT-OBJ: MEMBER-OF-LINK -> STUDENT

methods CREATE-MEMBER-OF-LINK: A-CLASS, STUDENT -> MEMBER-OF-LINK
events NEW-MEMBER-OF-LINK: A-CLASS, STUDENT -> MEMBER-OF-LINK
axioms
ATTR-EQUAL(M1, M2) <=> (STUDENT-OBJ(MI) = STUDENT-OBJ(M2)

& A-CLASS-OBJ(M1) = A-CLASS-OBJ(M2));
STUDENT-OBJ(CREATE-MEMBER-OF-LINK(M, S, A)) = S;
A-CLASS-OBJ(CREATE-MEMBER-OF-LINK(M, S, A)) = A;
ATTR-EQUAL(NEW-MEMBER-OF-LINK(M, S, A), (CREATE-MEMBER-OF-LINK(M, S, A)))

end-link

association MEMBER-OF is
class-sort MEMBER-OF
link-class MEMBER-OF-LINK

sort STUDENT-CLASS, A-CLASS-CLASS

operations
IMAGE: MEMBER-OF, STUDENT -> A-CLASS-CLASS

IMAGE: MEMBER-OF, A-CLASS -> STUDENT-CLASS
events NEW-MEMBER-OF: -> MEMBER-OF

axioms
NEW-MEMBER-OF() = EMPTY-SET;

G-24

fa ((M: MEMBER-OF), S: STUDENT) SIZE(IMAGE(M, S)) = 1;
fa ((S: MEMBER-OF), (M: STUDENT), B: A-CLASS)

(ex (A: MEMBER-OF-LINK) in(A, S) & MEMBER-OF-OBJ(A) = M & MEMBER-OF-OBJ(A) = B)
<=> in(B, image(S, M));

fa ((S: MEMBER-OF), (M: STUDENT), B: A-CLASS)
(ex (A: MEMBER-OF-LINK) in(A, S) & MEMBER-OF-OBJ(A) = B & MEMBER-OF-OBJ(A) = M)

<=> in(M, image(S, B))

end-association

aggregate DOMAIN-THEORY-AGGREGATE is
nodes FACULTY-WORKLOAD-AGGREGATE, FACULTY-WORKLOAD-CLASS, FACULTY-WORKLOAD
arcs FACULTY-WORKLOAD-AGGREGATE -> FACULTY-WORKLOAD: {},

FACULTY-WORKLOAD -> FACULTY-WORKLOAD-CLASS: {}
end-aggregate

G-25

Bibliography

1. Ackroyd, M. and D. Daum. "Graphical Notation for Object-Oriented Design and Program-
ming," Journal of Object-Oriented Programming, 3(5):18-28 (January 1991).

2. Adler, Mike. "An Algebra for Data Flow Diagram Process Decomposition," IEEE Transac-
tions on Software Engineering, 14 (2):169-183 (February 1988).

3. Aho, Alfred and others. Compilers: Principles, Techniques, and Tools. Reading, Mas-
sachusetts: Addison-Wesley, 1986.

4. ALabiso, B. "Transformation of Data Flow Analysis Models to Object-Oriented Design."
Proceedings of OOPSLA '88 Conference. 335-353. September 1988.

5. Alencar, Antonio J. and Joseph A. Gougen. "OOZE: An Object Oriented Z Environment."
ECOOP '91 Proceedings. 180-199. New York: Springer-Verlag, July 1991.

6. Alencar, Antonio J. and Joseph A. Gougen. "OOZE." Object Orientation in Z edited by
Rosalind Barden Susan Stepney and David Cooper, 78-94, Springer-Verlag, 1992.

7. Alencar, Antonio J. and Joseph A. Gougen. "Specification in OOZE with Examples." Object-
Oriented Specification Case Studies edited by Kevin Lano and Howard Houghton, 158-183,
Prentice-Hall, 1994.

8. Alexander, Perry. "Best of Both Worlds," IEEE Potentials, 29-32 (December 1995).
9. Arango, Guillermo. "Domain Analysis - From Art Form to Engineering Discipline." Pro-

ceedings of the 5th International Workshop on Software Specifications and Design. 152-159.
1989.

10. Babin, G. and others. "Specification and Design of Transactions in Information Systems:
A Formal Approach," IEEE Transactions on Software Engineering, 17(8):814-829 (August
1991).

11. Bailin, S.C. "An Object-Oriented Requirements Specification Method," Communications of
the ACM, 32(5):608-623 (May 1989).

12. Bar-David, Tvsi. "Practical Consequences of Formal Defintions of Inheritance," Journal of
Object-Oriented Programming, 5(4):43-49 (July/August 1992).

13. Booch, Grady. Object-Oriented Design with Applications. Benjamin Cummings, 1991.

14. Bourdeau, Robert H. and Betty H.C. Cheng. "A Formal Semantics for Object Model Dia-
grams," IEEE Transactions on Software Engineering, 21(10):799-821 (October 1995).

15. Brumbaugh, David E. Object-Oriented Development: Building Case Tools with C++. New
York: John Wiley and Sons Inc., 1994.

16. Burstall, R. M. and J. A. Goguen. "Putting Theories Together to Make Specifications."
Proceedings. 5th International Joint Conference on Artificial Intelligence. 1045-1058. Cam-
bridge, MA: MIT, 1977.

17. Carrington, David and others. "Object-Z: An Object-Oriented Extension to Z." Formal
Description Techniques, II: Proceedings of the IFIP Second International Conference on For-
mal Description Techniques for Distributed Systems and Communications Protocol. 281-297.
Amsterdam: North-Holland, December 1989.

18. Chang, Chin-Lian and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem
Proving. San Diego, California: Academic Process, Inc., 1973.

19. Coad, Peter and Edward Yourdon. Object-Oriented Analysis. Englewood Cliffs, New Jersey:
Yourdon Press, 1990.

20. Coad, Peter and Edward Yourdon. Object-Oriented Design. Englewood Cliffs, New Jersey:
Prentice-Hall, 1991.

BIB-1

21. Coleman, Dereck and others. Object-Oriented Development: The Fusion Method. Englewood
Cliffs, New Jersey: Prentice Hall, 1994.

22. Conger, S. A. and others. "A Structured Stepwise Refinement Method for VDM." Proceeding
of the 8th Annual Conference on Ada Technology. 311-320. Atlanta GA: ANACOST, Inc.,
March 1990.

23. Danforth, Scott and Chris Tomlinson. "Type Theories and Object-Oriented Programs," ACM
Computing Surveys, 20(1):29-72 (March 1988).

24. Debart, Francoise and others. "Multimodal Logic Programming using Equational and Order-
Sorted Logic," Theoretical Computer Science, 105(1):141-166 (1992).

25. DeBellis, Michael and others. KBSA Concept Demo. Technical Report RL-TR-93-38, Griffiss
Air Force Base, New York: Rome Laboratory, April 1993.

26. D'Ippolito, Richard S. "Using Models in Software Engineering." Tri-Ada '89. 256-265. 1989.

27. Fiadeiro, J. and T. Maibaum. "Describing, Structuring and Implementing Objects." Founda-
tions of Object-Oriented Languages 489. LNCS, edited by J.W. deBakker and W.P. deRoever,
Springer-Verlag, 1990.

28. Fraser, Martin D. and others. "Informal and Formal Requirements Specification Languages:
Bridging the Gap," IEEE Transactions on Software Engineering, 17(5):454-466 (May 1991).

29. Fraser, Martin D., et al. "Strategies for Incorporating Formal Specifications," Communica-
tions of the ACM, 37(10):74-86 (October 1994).

30. Garlan, David and Mary Shaw. "An Introduction to Software Architecture." Advances in
Software Engineering and Knowledge Engineering 1, World Scientific Publishing Company,
1993.

31. Geller, J., et al. "Structure and Semantics in OODB Class Specifications," SIGMOD
RECORD, 20(4):40-43 (December 1991).

32. Gerken, Mark J. Specification and Design Theories for Software Architectures. PhD disser-
tation, Graduate School of Engineering, Air Force Institute of Technology (AU), 1995.

33. Goguen, J. A. and R. M. Burstall. "Some Fundamental Algebraic Tools for the Semantics
of Computation Part I: Comma Categories, Colimits, Signatures and Theories," Theoretical
Computer Science, 31:175-209 (1984).

34. Goguen, J. A. and R. M. Burstall. "Some Fundamental Algebraic Tools for the Semantics of
Computation Part II: Signed and Abstract Theories," Theoretical Computer Science, 31:263-
295 (1984).

35. Goguen, J.A., et al. "An Initial Algebra Approach to the Specification, Correctness, and
Implementation of Abstract Data Types." Data Structuring IV, edited by R.T. Yeh, 80-149,
Englewood Cliffs, NJ: Prentice-Hall, 1978.

36. Goguen, Joseph A. "Parameterized Programming," IEEE Transactions on Software Engi-
neering, 528-543 (September 1984).

37. Goguen, Joseph A. "Reusing and Interconnecting Software Components," IEEE Computer,
16-28 (February 1986).

38. Goguen, Joseph A. and Jose Meseguer. "Unifying Functional, Object-Oriented and Relational
Programming with Logical Semantics." Research Directions in Object-Oriented Programming
edited by Bruce Shriver and Peter Wegner, 417-477, MIT Press, 1987.

39. Goguen, Joseph A. and Jose Meseguer. "Order-Sorted Algebra I: Equational Deduction for
Multiple Inheritance, Overloading, Exceptions and Partial Operations," Theoretical Com-
puter Science, 105(2):217-273 (November 1992).

BIB-2

40. Goguen, Joseph A. and Timothy Winkler. Introducing OBJ3. Technical Report, 333
Ravenswood Ave, Menlo Park, CA: Computer Science Laboratory SRI International, Au-
gust 1988.

41. Goldberg, Allen T. "Knowledge-Based Programming: A Survey of Program Design and
Construction Techniques," IEEE Transactions on Software Engineering, SE-12(7):752-768
(July 1986).

42. Green, Cordell and others. "Report on a Knowledge-Based Software Assistant." Readings in
Artificial Intelligence and Software Engineering edited by C. Rich and R.C. Waters, 377-428,
San Mateo, CA: Morgan Kauffman, 1986.

43. Guttag, John and James Horning. Larch: Languages and Tools for Formal Specification.
New York: Springer-Verlag, 1993.

44. Hall, Anthony. "Seven Myths of Formal Methods," IEEE Software, 7(5):11-19 (September
1990).

45. Harel, David. "Statecharts: A Visual Formalism for Complex Systems," Science of Computer
Programming, 8:231-274 (1987).

46. Harel, David and others. "On the Formal Semantics of Statecharts." Proceedings of the
Symposium on Logic in Computer Science. 54-64. Ithaca, NY: IEEE Computer Society
Press, June 1987.

47. Hopcroft, John E. and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Reading, Massachusetts: Addison-Wesley, 1979.

48. Iscoe, Neil. "Domain-Specific Reuse: An Object-Oriented and Knowledge-Based Approach."
Tutorial on Software Reuse: Emerging Technology edited by Will Tracz, IEEE Computer
Society Press, 1988.

49. Jing, Ying and others. "A Methodology for High-level Software Specification Construction,"
SIGSOFT Software Engineering Notes, 20(2):48-54 (1995). April.

50. Jullig, Richard and Yellamraju V. Srinivas. "Diagrams for Software Synthesis." KBSE '93.
IEEE, 1993.

51. Kang, Kyo C., et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report, Software Engineering Institute, Carnegie Mellon University, November 1990.

52. Kemmerer, R. A. "Integrating Formal Methods into the Development Process," IEEE Soft-
ware, 37-50 (September 1990).

53. Kestrel Institute. KIDS Manual, September 1991.

54. Kestrel Institute. Slang Language Manual: Specware Version Core4, October 1994.

55. Kestrel Institute. Specware User Manual: Specware Version Core4, October 1994.

56. Kierburtz, R.B. and others. "Calculating Software Generators from Solution Specifications."
TAPSOFT '95: Theory and Practice of Software Development. 546-60. Berlin, Germany:
Springer-Verlag, May 1995.

57. Kung, C. H. "Conceptual Modeling in the Context of Software Development," IEEE Trans-
actions on Software Engineering, 15(10):1176-1187 (October 1989).

58. Lano, Kevin. "Z++, An Object-Oriented Extension to Z." Z User Workshop, Oxford 1990
edited by J.E. Nicholls, 151-172, Springer-Verlag, 1990.

59. Lano, Kevin and Howard Haughton. "Reuse and Adaptation of Z Specifications." Z User
Workshop, London 1992 edited by J.P. Bowen and J.E. Nicholls, 62-90, Springer-Verlag,
1992.

BIB-3

60. Lano, Kevin and Howard Houghton. "A Comparative Description of Object-Oriented Spec-
ification Languages." Object-Oriented Specification Case Studies edited by Kevin Lano and
Howard Houghton, 20-54, Prentice-Hall, 1994.

61. Lano, Kevin and Howard Houghton. "Object-oriented Specification Languages in the Soft-
ware Life Cycle." Object-Oriented Specification Case Studies edited by Kevin Lano and
Howard Houghton, 55-79, Prentice-Hall, 1994.

62. Lano, Kevin and Howard Houghton. "Specifying a Concept-recognition System in Z++."
Object-Oriented Specification Case Studies edited by Kevin Lano and Howard Houghton,
137-157, Prentice-Hall, 1994.

63. Lano, Kevin and Mary Tobin. "Specification and Analysis Techniques in Object-oriented
Methods." Object-Oriented Specification Case Studies edited by Kevin Lano and Howard
Houghton, 1-19, Prentice-Hall, 1994.

64. Lano, Kevin C. "Z++." Object Orientation in Z edited by Rosalind Barden Susan Stepney
and David Cooper, 105-112, Springer-Verlag, 1992.

65. Lin, Captain Catherine J. Developing a Transformation Methodology From Object-Oriented
Domain Models Into Algebraic Specifications. MS thesis, Graduate School of Engineering,
Air Force Institute of Technology (AU), 1994.

66. Liskov, B. and S.Zilles. "Specification Techniques for Data Abstraction," IEEE Transactions
on Software Engineering, SE-1:7-19 (1975).

67. Liskov, Barbara. "Data Abstraction and Hierarchy." (addendum to) Conference Proceedings,
Object Oriented Programming Systems Languages and Applications (OOPSLA). 1987.

68. Lowry, Michael R. "Software Engineering in the Twenty-First Century," AI Magazine (Fall
1992).

69. Lu, Xue-Miao and Tharam S. Dillon. "An Algebraic Theory of Object-Oriented Systems,"
IEEE Transactions on Knowedge and Data Engineering, 6(3):412-419 (June 1994).

70. Lubars, Mitchell D. "Domain Analysis and Domain Engineering in IDeA." Domain Analysis
and Software Systems Modeling edited by Ruben Prieto-Diaz and Guillermo Arango, 163-178,
IEEE Press, 1991.

71. MacLane, Saunders and Garrett Birkhoff. Algebra. New York, NY: Chelsea Publishing
Company, 1993.

72. Martin, James. Principles of Object-Oriented Analysis and Design. Englewood Cliffs, New
Jersey: Prentice Hall, 1993.

73. Meyer, B. Object-Oriented Software Construction. Englewood Cliffs, MJ: Prentice Hall,
1988.

74. Miriyala, K. and M. T. Harandi. "Automatic Derivation of Formal Software Specifications
from Informal Descriptions," IEEE Transactions on Software Engineering, 17(10):1126-1142
(October 1991).

75. Mitra, Swapan. "Object-oriented Specification in VDM+±." Object-Oriented Specification
Case Studies edited by Kevin Lano and Howard Houghton, 130-136, Prentice-Hall, 1994.

76. Monarchi, David E. and Gretchen I. Puhr. "A Research Typology for Object-Oriented Anal-
ysis and Design," Communications of the ACM, 35(9):35-47 (September 1992).

77. Moore and Balin. "Domain Analysis: Framework for Reuse." Domain Analysis and Software
Systems Modeling edited by Ruben Prieto-Diaz and Guillermo Arango, 163-178, IEEE Press,
1991.

78. Neighbors, J. Software Construction Using Components. PhD dissertation, Dept. of Infor-
mation and Computer Science, U. of California, Irvine, 1981.

BIB-4

79. Prieto-Diaz, Ruben. "Domain Analysis for Reusability." Proceedings of COMPSAC '87.
23-29. 1987.

80. Prieto-Diaz, Ruben. "Domain Analysis: An Introduction," ACM SIGSOFT Software Engi-
neering Notes, 15(2) (April 1990).

81. Rafsanjani, G-H Bagherzadeh and S. J. Colwill. "For Object-Z to C++: A Structural Map-
ping." Z User Workshop, London 1992 edited by J.P. Bowen and J.E. Nicholls, 166-179,
Springer-Verlag, 1992.

82. Rose, Gordon and Roger Duke. "An Object-Z Specification of a Mobile Phone System."
Object-Oriented Specification Case Studies edited by Kevin Lano and Howard Houghton,
110-129, Prentice-Hall, 1994.

83. Rumbaugh, James and others. Object-Oriented Modeling and Design. Englewood Cliffs, New
Jersey: Prentice-Hall Inc., 1991.

84. Shlaer, S. and S.J. Mellor. Object-Oriented Systems Analysis: Modeling the World in Data.
Englewood Cliffs, MJ: Prentice Hall, 1988.

85. Silvio Lemos Meira, Ana Ldcia C. Cavalcanti and Cassio Souza Santos. "The Unix Filing
System: A MooZ Specification." Object-Oriented Specification Case Studies edited by Kevin
Lano and Howard Houghton, 80-109, Prentice-Hall, 1994.

86. Smith, Douglas R. "KIDS - A Semi-automatic Program Development System," IEEE Trans-
actions of Software Engineering, 16(9):1024-1043 (September 1990).

87. Smith, Douglas R. "Transformational Approach to Transportation Scheduling." Proceedings
of the 8th Knowledge-Based Software Engineering Conference. 60-68. IEEE, October 1993.

88. Srinivas, Yellamraju V. Algebraic Specification: Syntax, Semantics, Structure. Technical
Report, Department of Information and Computer Science, University of California, Irvine:
Department of Information and Computer Science, University of California, Irvine, June
1990. TR 90-15.

89. Srinivas, Yellamraju V. Category Theory Definitions and Examples. Technical Report, De-
partment of Information and Computer Science, University of California, Irvine: Department
of Information and Computer Science, University of California, Irvine, February 1990. TR
90-14.

90. Srinivas, Yellamraju V. "Augmenting Algebraic Specifications with Structured Sorts and
Structural Subsorting." IFIP TC2 Working Conference on Programming Concepts, Meth-
ods and Calculi (PROCOMET '94, 6-10 June 1994, San Miniato, Italy). 531-550.
Elsevier/North-Holland, June 1994.

91. Susan Stepney, Rosalind Barden and David Cooper. Object Orientation in Z. Springer-
Verlag, 1992.

92. Tao, Yonglei and Chenho Kung. "Formal Definitions and Verification of Data Flow Dia-
grams," Journal of Systems and Software, 16(1):29-36 (September 1991).

93. Tracz, Will, et al., "A Domain-Specific Software Architecture Engineering Process Outline."
In Report: Collected Papers of the Domain-Specific Software Architectures (DSSA) Avionics
Domain Application Generation Environment (ADAGE), May 1993.

94. Vazquez, Federico. "An Algebra Approach to the Deduction of Data Flow Diagrams and
Object Oriented Diagrams from a Set of Specifications," OOPS Messenger, 6(2):18-27 (April
1995).

95. Wagner, Eric G. "Categorical Semantics, or Extending Data Types to Include Memory."
Recent Trends in Data Type Specification: 3rd Workshop on Theory and Applications of
Abstract Data Types. 1-21. New York: Springer-Verlag, 1985.

BIB-5

96. Wartik, Steve, et al. Domain Engineering Guidebook. Technical Report, Defense Technical
Information Center, December 1992.

97. Wartik, Steven and Ruben Prieto-Diaz. "Criteria for Comparing Reuse-Oriented Domain
Analysis Approaches," International Journal of Software Engineering and Knowledge Engi-
neering, 2(3):403-431 (1992).

98. Wasserman, A.I. and others. "The Object-Oriented Structured Design Notation for Software
Design Representation," IEEE Computer, 50-62 (March 1990).

99. Wegner, Peter. "The Object-Oriented Classification Paradigm." Research Directions in
Object-Oriented Programming edited by Bruce Shriver and Peter Wegner, 479-560, MIT
Press, 1994.

100. Wills, Alan. "Specification in Fresco." Object Orientation in Z edited by Rosalind Barden
Susan Stepney and David Cooper, 127-135, Springer-Verlag, 1992.

101. Wills, Alan. "Refinement in Fresco." Object-Oriented Specification Case Studies edited by
Kevin Lano and Howard Houghton, 184-201, Prentice-Hall, 1994.

102. Wing, J. "A Specifier's Introduction to Formal Methods," IEEE Computer, 23(9):8-24
(September 1990).

103. Wirfs-Brock, R.J. and others. Designing Object-Oriented Software. Englewood Cliffs, NJ:
Prentice Hall, 1990.

BIB-6

Vita

Major Edward A. Ingham

He graduated from high school in Edmonds, Washington in June of 1980. He then

attended the United States Air Force Academy where he obtained a Bachelor of

Science in Engineering Sciences on 30 May 1984. He was commissioned a second

lieutenant and attended Undergraduate Pilot Training at Williams AFB, Arizona.

After training, he continued at Williams as a first assignment instructor pilot in the

T-37. In May of 1988, he upgraded to the F-16C and was assigned to the 14th Fighter

Squadron, Misawa Air Base, Japan. He entered the Graduate School of Engineering,

Air Force Institute of Technology, in May of 1992. At the Air Force Institute of

Technology, Major Ingham completed a Masters of Science in Systems Engineering.

He has continued to the present in a Ph.D. program with the department of Electrical

and Computer Engineering. Major Inghaxn and his wife Renee were married in 1985.

They have two sons: Connan and Dillon.

201

ADA310879

R 0 DForm Aoproved

REORT UM N O PAGE OMB No. 0704-0188
P-Jotic reooinr curcer "-, -is coi'ection -fT rItormation is estimated to average i our per resoi'ose. mc:udling the time Tor reviewing instructions, searching existing data sources,
-lathering and -airntaln C trie jat3 needed. arna comoleting and reviewing the collection of intormation. Sena comments regarding this burden estimate or an other asoect of th-s
co;!ection or nfTrratiicn, rciui ln suggestions or reducing tis Ourden :o Washinoton Headquarters Senvices. arectorate tor information Orerations and fe-orts, :215 ietferson
Davis Hllngh ay, I'te 12-4 ;rli'oton. VA 222324302, and to the Office of Management ana Budget. ?aoervorm Reduccion Profect(0704-0188), Aashington, DC 20503.

1. AGENCY JSE ONLY, (Leave oanK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED7 7June 1996 _7Doctoral Dissertation

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
FORMAL TRANSFORMATIONS FROM GRAPHICALLY-BASED
OBJECT-ORIENTED REPRESENTATIONS TO THEORY-BASED
SPECIFICATIONS

6. AUTHOR(S)
Scott A. DeLoach, Major, USAF

7. ?ERFORMING ORGANIZATION AAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER

2750 P Street AFIT/DS/ENG/96-05

WPAFB OH 45433-7765

9. 4PONSORING 1 MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
Mr. Glenn Durbin AGENCY REPORT NUMBER

NSA/Y21
9800 Savage Road, Suite 6718
Fort Meade, MD 20755-6718

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION i AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
Formal software specification has long been touted as a way to increase the quality and reliability of software,
however, it remains an intricate, manually intensive activity. An alternative to using formal specifications
is to use graphically-based, semi-formal specifications such as those used in many object-oriented speci-
fication methodologies. While semi-formal specifications are generally easier to develop and understand,
they lack the rigor and precision of formal specification techniques. The basic premise of this investigation
is that formal software specifications can be constructed using correctness preserving transformations from
graphically-based object-oriented representations. In this investigation, object-oriented specifications defined
using Rumbaugh's Object Modeling Technique (OMT) were translated into algebraic specifications. To en-
sure the correct translation of graphically-based OMT specifications into their algebraic counterparts, a for-
mal semantics for interpreting OMT specifications was derived and an algebraic model of object-orientation
was developed. This model defines how object-oriented concepts are represented algebraically using an
object-oriented algebraic specification language 0-SLANG. O-SLANG combines basic algebraic specification
constructs with category theory operations to capture internal object class structure as well as relationships
between classes. Next, formal transformations from OMT specifications to O-SLANG specifications were
defined and the feasibility of automating these transformations was demonstrated by the development of a
proof-of-concept system.

14. SUBJECT TERMS 15. NUMBER OF PAGES
formal specification languages, algebraic specification languages, 390

specification acquisition, object-oriented models, object-orientation, 16. PRICE CODE
software synthesis, software engineering

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION I 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF THIS PAGE I OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

arescribed by ANSI Std. Z39-18

298-102

