
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7441--95-7713

Exploitation of World Wide Web to Support
Network Updating of Vector Product Format
Mapping Database at a Feature Level

MIYI CHUNG
MARIA COBB
KEVIN SHAW

Mapping, Charting, and Geodesy Branch
Marine Geosciences Division

DAVID K. ARCTUR

University of Florida
Gainesville, FL

May 23, 1996

19960628 110
Approved for public release; distribution unlimited.

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE Form Approved
OBM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 23, 1996
3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Exploitation of World Wide Web to Support Network Updating of Vector Product
Format Mapping Database at a Feature Level

5. FUNDING NUMBERS

Job Order No. 574597100

Program Element No. 0602232N

Project No.

Task No. 03213

Accession No.

6. AUTHOR(S)

Miyi Chung, Maria Cobb, Kevin Shaw, and David K. Arctur*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Marine Geosciences Division
Stennis Space Center, MS 39529-5004

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/7441--95-7713

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5050

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

*University of Florida, Gainesville, FL

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report documents the initial findings and understandings with respect to the design of the Object-Oriented Vector Product
Format (OVPF) prototype viewer-editor application for: (1) use of commercial hybrlD database management systems and (2) the
database information update capability over the network. This is a report within the Object-Oriented Database Exploitation within
the Global Geospatial Information and Services (GGIS) Data Warehouse project, sponsored by the Defense Mapping Agency
(DMA). The primary goal of this project is to investigate, through research and prototyping efforts, the potential impact of object-
oriented (OO) technology on DMA's GGIS modernization program. The specific task represented in this report is to address issues
and findings involved in supporting database information updating over the network using the OVPF prototype.

14. SUBJECT TERMS

Digital MC&G, requirements analysis, modeling and simulation, object oriented database,
vector database, test database, raster database

15. NUMBER OF PAGES

49

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

1.0 INTRODUCTION 2

2.0 NETWORK UPDATING CAPABILITY 2

2.1 Required Functionalities on OVPF for Network Updating 3
2.2 Network Update Implementation 5

3.0 ACKNOWLEDGMENTS 9

4.0 REFERENCES 13

APPENDIX A — GGIS Perl Script A-l

APPENDIX B — GGISMAIL Perl Script B-l

APPENDIX C — Netscape Browser GUI C-l

1.0 Introduction

This report documents the initial findings and understandings with
respect to the design of the Object-Oriented Vector Product Format (OVPF)
prototype viewer-editor application for: (1) use of commercial hybrlD database
management systems, and (2) the database information update capability
over the network. This is a report within the Object-Oriented Database
Exploitation within the Global Geospatial Information and Services (GGIS)
Data Warehouse project, sponsored by the Defense Mapping Agency (DMA).
The primary goal of this project is to investigate, through research and
prototyping efforts, the potential impact of object-oriented (OO) technology on
DMA's GGIS modernization program. The specific task represented in this
report is to address issues and findings involved in supporting database
information updating over the network using the OVPF prototype.

An interim report submitted 15 June 1995 stated the current
understanding and experience with respect to the effects of integrating OVPF
with commercial Object-oriented Database Management Systems [Arctur 95].
Similar issues and considerations must be supported to integrate a hybrlD
Database Management System with the OVPF prototype.

Section 2 concentrates on the database information update over the
network. The design and the implementation of this networking capability
are documented. Also, some of the considerations that must be addressed to
support network updating are stated.

2.0 Network Updating Capability

To be consistent with the ongoing testbed effort of the GGIS program,
the network updating capability was demonstrated using the World Wide
Web (WWW) browser. Well-known and available tools, such as the WWW
browser, perl programming environment, and e-mail capabilities, were
exploited to support this updating demonstration. For the network updating,
the winged-edge topology and export to relational functionalities are
implemented. Some discussion on the design and implementation is
provided. The network setup architecture is presented, followed by brief
descriptions of the tools used to support network updating. Some issues and
areas of research are presented to support network updating from field sites to
the GGIS.

2.1 Required Functionalities on OVPF for Network Updating

2.1.1 Winged-Edge Topology

Currently, VPF supports four levels of topology [VPF]. The maximum
topological information supported in VPF is the winged-edge topology. The
winged-edge topology provides adjacency, contiguity, and the orientation of
neighboring primitives, i.e., edges and faces. A sample of a winged-edge
topology is depicted in Figure 1.

connected
^"node

right edge

Figure 1: Winged-edge topology

When a new feature needs to be added, its winged-edge topology must
be considered. For example point features maintain containing face
information. Containing face basically defines a face primitive that contains
the point feature. Hence, when a new point feature is added, such informatio
must be calculated. In other words, if a point feature is placed inside of an
area feature, then the containing face of the point feature would be that area
feature. If not, then the containing face would be the universe. For line
features, if a line feature is defined by more than one edge, then the left and
right edge information needs to be updated with respect to each other.
Furthermore, if the new line feature is connected to an already existing line
feature, then the left /right edge information of the existing line feature's edge
which connects to the new line feature must be updated to be the connecting
edge of the new line feature. Likewise, the edge of the new line feature
connecting to the existing edge must update its left/right edge information.

Based on the VPF specification, if an edge intersects another edge, those
edges must be split into two at the intersecting point. When an edge is split
into two edges, all features that are defined by the original edge must update

their winged-edge information. The new edge created as a result of the split
must be included. The changed definition of the original edge must be
updated. Whenever there is any overlap between line features and an area
feature/based on where the intersection is, there may be a need to redefine
the boundary of area feature. The boundary of an area feature may include
the intersecting line. An example of this is shown in Figure 2. A line feature
shown in the figure is a new line feature that is added.

Figure 2. Area feature boundary change

When there is an overlap between two area features, the two area
features would have to be redefined as three area features: area feature 1
without the overlapping area, area feature 2 without the overlapping area,
and the overlapping area. This can be seen in Figure 3.

Area 3

Figure 3. Area feature overlap

When a point feature is deleted, in case of inner rings, its containing
face may need to be recalculated. When a line feature is deleted, any edge that
referenced any of the edges of the deleted feature needs to recalculate its
neighboring edges. When an area feature is deleted, the same considerations
as for a line feature deletion must be taken. Furthermore, the consideration
for the right or left face needs to be updated for any edges that referenced the
deleted area feature as its left or right face.

2.1.2 Relational Export Capability

The ability to export data to VPF relational tables has now been
implemented in OVPF. This capability allows users to take advantage of
OVPF's feature editing capabilities, such as adding, modifying, or deleting
features, and then to export the updated feature information into VPF for use
with standard VPF tools, such as VPFView.

Export is accomplished in two stages. The first stage involves the
creation of the header (metadata) tables. These include tables that contain

information about the database, such as the database header table and the
library header table. The second stage involves the export of the feature-level
data. Coverage-level export is currently the only option supported by OVPF;
however, support for feature class-level export and export of merged
coverages is planned for the near future.

The design and implementation of the relational export capability will
be documented fully in a future report.

2.2 Network Update Implementation

2.2.1 Network Protocol

There are two stages involved in completing a network update request.
The first stage generates a request for change to the database. Once the change
has been made and upon notification of change processing completion, the
user would reconcile the request with two purposes: (1) visually determine
whether the requested change is what the user intended (in case of feature
add, delete, or move), and (2) determine the mode of receiving the changed
database, e.g., FTP, CDROM media. This two-stage protocol is depicted in
Figures 4A and 4B.

Web browser

attribute
value change
and comments

select DB,
library,
coverage,
feature

location
change and
comments

<4

update
program

1
email request

with
transaction ID

7

Figure 4A. Change Request 1

A user would follow a Uniform Resource Locator (URL) of
http://www.cello.nrlssc.navy.mil to find a HyperText Mark-up Language
(HTML) page that would start the change request form process. The fill-out
form used to generate a change request is structured similarly to the database
directory. When a database is selected, a user is given the library options of
only the selected database. Once library selection has been made, only those
coverages that are defined for the selected library will be provided as vallD
selectable items. Likewise, a feature of interest is selected based on the
previous choice of database, library, and coverage. The user would then have

to enter the feature identification number along with a choice of either
attribute change or location change.

If attribute change is requested, then the fill-out form procedure
continues by providing all attributes used to define the selected feature.
When the attribute of interest is selected, all vallD values of the selected
attribute will be provided as selectable items. When the attribute value has
been selected, then the user would have to enter his or her name,
organization, e-mail address, and phone number to complete a change
request. When the user activates the "Submit" button on the HTML page, an
e-mail message is generated and sent to a user named "ggis-update." The
ggis-update will be the person who will process the request using the OVPF
prototype. To uniquely identify the user at the time of reconciliation, a
transaction identification number is generated at the time of e-mail
transmittal. This transaction ID is generated as the current date and time,
followed by the process ID number. All following inquiries related to this
request will be referenced by this transaction id.

Currently, a request for a location change is accomplished by sending
the change request and the location information file as separate e-mail
messages. When the user initiates a location change request, an HTML page
with a transaction ID and with instructions for sending the additional
location information is provided. As indicated by the instructions, the user
must include the transaction ID as provided on the web page when the
location information file is e-mailed separately to ggis-update.

Figure 3B shows the second stage of the change request processing:

OVPF used
to make
change

capture and store before- and
after-images reflecting change

♦
notify user J

Figure 4B. Change reconciliation

When ggis-update receives a change request, OVPF prototype is used to
process the database change. When the requested change has been completely
processed, images of before and after the change are produced and placed in a
predefined directory necessary for the reconciliation process. These images
are named by the transaction ID followed by the word "before.gif" or
"after.gif" to indicate the state of the image. In case the user decides to
download the changed database, ggis-update would have to create a tar file of

the database and place it in the anonymous FTP directory. Once these steps
have occurred, ggis-update will notify the requesting user that the process is
complete. This serves as notification to the requesting user to reconcile the
change. To reconcile the change and to provide user validation, the user
would have to enter the transaction id. When a vallD transaction ID is
entered, a web page of before- and after-change images is displayed. With this
visual reconciliation, a user has an option to FTP the database with changed
information, or to request a shipment of a CDROM or a tape medium.

2.2.2 Network SetUp

A client-server concept is used to support update. A server
workstation has the OVPF prototype and the WWW server. The actual
changes and updates are made on the server workstation using the OVPF
prototype. The WWW server processes change request form generation and
change reconciliation process based on a script written in Perl. This server
has HTML forms available for any client machine to begin requesting changes
through any web browsers that support forms. The client workstation is any
workstation that is requesting change to the database by accessing HTML pages
from the server. This scenario is depicted in Figure 5.

OVPF Prototype

Web Browser
CLIENT

WORKSTATION f^ggS

SERVER
WORKSTATION

(Sun Sparc 20)

Web Server

mmammetmmmmmmmmmmismm ,*r^*»'
HtJiJil AlifiLiLfif JJ mm

-™
a^«VrWfBqq.RnfV?f H£ *
■wn**

■1

» P

INTERNET

Figure 5. Network setup architecture

The server workstation currently used is a Sun Sparestation 20 with a
dual processor. This server has VisualWorks 2.0, which is the development
environment for the OVPF Smalltalk prototype. The server has the National
Center for Super-Computing Application (NCSA) HyperText Transport
Protocol daemon (HTTPd) 1.4. This server can be accessed by following or
opening the URL of http://www.cello.nrlssc.navy.mil.

2.2.3 Tools Used to Support the Updating Capability

2.2.3.2 Description of the WWW, Hypertext, Browser

The primary objective for the WWW is to provide a distributed
hypermedia system. This system allows access to any referenced documents
just by clicking on the reference or the document name. Independent of who
the author may be, the WWW system provides a web of documents and
information.

Hypertext is used in this system to access other referenced documents.
Hypertext is a text with pointers to other text that may be in another part of
the world. Hypermedia is a superset of hypertext; it is any medium with
pointers to other media. A browser allows access to the web. The browser
reads documents, and can fetch documents from other sources. WWW
servers are the hypermedia servers from which browsers can get documents.

On the Sparestation 20, NCSA HTTPd 1.4 is installed to provide
information for access to other web browsers. The information that is
presented from this server is the capability to request changes to the database
and the change reconciliation [HTTPd].

2.2.3.2 Common Gateway Interface

This is a standard interface for external applications with information
servers such as HTTP or web servers. Ordinarily, when a web daemon
retrieves a plain HTML document, this is done in a static manner. The text
file must have been created a priori and its information content remains
constant. On the other hand, the use of a Common Gateway Interface (CGI)
program allows execution in realtime to output dynamic information. In
other words, based on the previous input, different behaviors can be output.
For example, database access and query require dynamic behavior.

CGI programs are executable. Any CGI program can be written in
C/C++, Fortran, Perl, TCL, Unix Shell Script, Visual Basic, and AppleScript.
Use of one language implies certain requirements. For example, if a
programming language such as C or Fortran is used, the program must be
compiled before it can run. If any scripting language is used, such as Perl, the
script is sufficient to provide requested execution [CGI].

The network updating initiative used Perl scripts to provide required
behavior. A sample of this script is provided in the Appendices A and B.

2.2.3.3 Fill-Out Forms with CGI Program

Fill-out forms have a special form tag in HTML: <FORM
ACTION="URL" METHOD=GET/POST>. ACTION is the URL of the query
server to which the content of the form would be submitted. METHOD is the
means of submitting to the query server [FORMS]. The network updating
uses fill-out forms to submit change requests and to reconcile changes. A Perl
script named ggis is used to generate change request. A Perl script named
ggismail is used to generate an e-mail of the request to the ggis-update.
Similarly, for reconciliation, ggis script is used to process reconciliation and
ggismail is used for any e-mail generation. A copy of the ggis and ggismail
scripts are included in the Appendices A and B.

2.2.4 Issues and Further Study

This networking update required one server machine and one client
submitting request to change. If and when there is more than one user
submitting similar change requests, the process of validating the most
accurate change request can be of major concern.

Determining when to consider the requested change to be the actual
database is another issue. If a DBMS is used to manage the data, issues
concerning when to consider the change request to be pertinent information
needs to be studied.

Maintaining an audit trail of changes also needs to be considered. How
much information to archive and when to decide to delete information needs
to be studied. When to roll back the information to the previous checkpoint
may be one of the criterion in how long to archive the change requests. With
each change request, a separate database with the specific change exported in
relational format may need to be stored. The length and capacity of storage
on the server are two other concerns.

With the static environment of the web browsers, limitations are
experienced. For example, if a location change is requested, another e-mail
message outside of the web browser needs to be generated. The current web
concept does not allow a user to perform any execution from the client
machine. In other words, it is not possible at this time to append a file from a
client machine. A new browser in development by Sun Microsystems called
Hot Java allows execution from client machines. This interactive mode of
operation opens many possibilities with the OVPF. For example, it would
allow client users to view the display of the database of interest to zoom in,
zoom out, and also form a query. This implies that OVPF prototype would
not be a behind-the-client's-eye GIS system, but an actual GIS system that
allows any user to view and analyze VPF databases.

3.0 Acknowledgment

We wish to thank our sponsor, the Defense Mapping Agency, Mr. Jim
Krause and Mr. Jake Garrison, program managers, for sponsoring this
research.

4.0 References

[Arctur95] Arctur, David K., Kevin Shaw, Miyi Chung, Maria Cobb, "Object-Oriented
Database Exploitation Within the GGIS Data Warehouse—Interim Report,,,
June 1995.

[CGI] WWW Site: http://hoohoo.ncsa.uiuc.edu/cgi.

[FORMS] WWW Site: http://www.ncsa.uiuc.edu/SDG/Software Mosiac/Docs/fill-
out-forms/overview.html.

[HTTPd] WWW Site: http://hoohoo.ncsa.uiuc.edu.

[VPF] Military Standard: Vector Product Format, MIL-STD-2407, Appendix B,
26 May 1993.

10

APPENDIX A : GGIS Perl Script

#!/local/bin/perl

$version = '0.4, 18Jul95';

Begin configurable options.

Where to direct the reply.
$submit_url = 'http://www.cello.nrlssc.navy.mil/cgi-bin/ggismail/ggis-update';

Where to direct reconciliation replies (non-FTP) and FTP root site.

$recon_ftp_url = 'ftp://cello.nrlssc.navy.mil/pub/ggis';
$ftp_suffix = '.tar.Z';

Root of features library. No trailing slash although it should
be a directory.

$db_root = '/ovpf/dmap_html/ggis/VPF';
$gif_dir = '/ovpf/dmap_html/ggis/GIF';
$gif_url = '/ggis/GIF;
#$feature_root = '/cis/homes/bcs/public_html/dmap/features';

$location_e-mail = 'loc-change@dmap.nrlssc.navy.mil';

Maximum size of a scrolled list in the fill-out forms.

$max_list_size = 10;

The location of the Perl CGI library.

$cgi_lib = '/depot/httpd/cgi-lib/cgi-lib.pl';

End of configurable options.

Use the CGI Perl library.

require $cgi_lib;

Output not buffered.

$1 =1;

Determine our mode of operation by looking at the extra path information
appended to the URL.

&error_no_mode if (! ($mode = $ENV{'PATH_INFO'}));
if ($mode eq '/database') {

&do_database_mode;
}
elsif ($mode eq '/library') {

&do_library_mode;

A-l

elsif ($mode eq '/coverage') {
&do_coverage_mode;

}
elsif ($mode eq '/feature') {

&do_feature_mode;
}
elsif ($mode eq '/attribute') {

&do_attribute_mode;
}
elsif ($mode eq '/attribVal') {

&do_attribVal_mode;
}
elsif ($mode eq '/validate') {

&do_validate_mode;
}
elsif ($mode eq '/display') {

&do_display_mode;
}
elsif ($mode eq '/download') {

&do_download_mode;
}
exit;

Begin subroutines.

sub emit_header {
local($title) = @_;
$title = 'GGIS' if (! $title);
print «"EndOfText";
Content-type: text/html

<html>
<head>

<! This HTML was generated by the ggis ($version) program. >
<! $credit >

<title>$title</title>
</head>
<body>
<h2>
$title
<hr>
</h2>
EndOfText
}

sub emit_footer {
print «"EndOfText";
</body>
</html>
EndOfText
exit;
}

A-2

This routine processes the first mode of operation 'database.'
It emits the first form with a list of databases to choose.
The form points back here to 'library' mode.

sub do_database_mode {
&emit_header('GGIS Database Selection');
$action_url = &MyURL . '/library';
print «"EndOfText";
<form method=POST action="$action_url">
<dl>
<dt> Select a database:
<dd>
EndOfText

local(@filenames) = &get_filenames($db_root);
local($list_size);
$list_size = ©filenames;
$list_size = $max_list_size if ($list_size > $max_list_size);
print "<select name=\"database\" size=$list_size>\n";
foreach (©filenames) {

print "<option> $_\n";

print «"EndOfText";
</select>
</dl>
<p>
<hr>
<input type="submit" value="Continue">
</form>
EndOfText
&emit_footer;
}

This routine processes the first mode of operation 'database.'
It emits the first form with a list of databases to choose.
The form points back here to 'library' mode.

sub do_database_mode {
&emit_header('GGIS Database Selection');
$action_url = &MyURL . '/library';
print «"EndOfText";
<form method=POST action="$action_url">
<dl>
<dt> Select a database:
<dd>
EndOfText

local(@filenames) = &get_filenames($db_root);
local($list_size);
$list_size = ©filenames;
$list_size = $max_list_size if ($list_size > $max_list_size);
print "<select name=\"database\" size=$list_size>\n";
foreach (©filenames) {

print "<option> $_\n";
}

print «"EndOfText";

A-3

</select>
</dl>
<p>
<hr>
<input type="submit" value="Continue">
</fortn>
EndOfText
&emit_footer;
}

This routine processes the operation mode 'library.'
It emits the first form with a list of libraries to choose.
The form points back here to 'coverage' mode.

sub do_library_mode {
&ReadParse;
local($database) = $in{'database'};
&error_no_input('database') if (! $database);
&emit_header('GGIS Library Selection');
$action_url = &MyURL . '/coverage';
print «"EndOfText";
<form method=POST action="$action_url">
<input type=hidden name="database" value="$database">
Current Selections:
<pre>

Database: $database< / strong>
</pre>
<dl>
<dt> Select a library:
<dd>
EndOfText

local(@filenames) = &get_filenames("$db_root/$database");
local($list_size);
$list_size = ©filenames;
$list_size = $max_list_size if ($list_size > $max_list_size);
print "<select name=\"library\" size=$list_size>\n";
foreach (©filenames) {

print "<option> $_\n";

print «"EndOfText";
</select>
</dl>
<p>
<hr>
<input type="submit" value="Continue">
</form>
EndOfText
&emit_footer;
}

This routine processes the operation mode 'coverage.'
It emits form with a list of coverage to choose.
The form points back here to 'features' mode.

sub do_coverage_mode {

A-4

&ReadParse;
local($database) = $in{'database'};
local($library) = $in{'library'};
&error_no_input('database') if (! $database);
&error_no_input('library') if (! $library);
&emit_header('GGIS Coverage Selection');
$action_url = &MyURL . '/feature';
print «"EndOfText";
<form method=POST action="$action_url">
<input type=hidden name="database" value="$database">
<input type=hidden name="library" value="$library">
Current Selections:
<pre>

Database: $database
Library: $library

</pre>
<dl>
<dt> Select a coverage:
<dd>
EndOfText

local(@filenames) = &get_filenames("$db_root/$database/$library");
local($list_size);
$list_size = ©filenames;
$list_size = $max_list_size if ($list_size > $max_list_size);
print "<select name=\"coverage\" size=$list_size>\n";
foreach (©filenames) {

print "<option> $_\n";

print «"EndOfText";
</select>
</dl>
<p>
<hr>
<input type="submit" value="Continue">
</form>
EndOfText
&emit_footer;
}

This routine processes the operation mode 'feature.'
It emits the first form with a list of features to choose.
The form points back here to 'attribute' mode.

sub do_feature_mode {
&ReadParse;
local($database) = $in{'database'};
local($library) = $in{'library'};
local($coverage) = $in{'coverage'};
&error_no_input('database') if (! $database);
&error_no_input('library') if (! $library);
&error_no_input('coverage') if (! $coverage);
&emit_header('GGIS Feature Selection');
$action_url = &MyURL . '/attribute';
print «"EndOfText";
<form method=POST action="$action_url">
<input type=hidden name="database" value="$database">

A-5

<input type=hidden name="library" value="$library">
<input type=hidden name="coverage" value="$coverage">
Current Selections:
<pre>

Database: $database
Library: $library
Coverage: $coverage

</pre>
<dl>
<dt> Select a feature:
<dd>
EndOfText

local(@selections) =
&get_feature_selections("$db_root/$database/$library/$coverage");

local($list_size);
$list_size = ©selections;
$list_size = $max_list_size if ($list_size > $max_list_size);
print "<select name=\"feature\" size=$list_size>\n";
foreach (©selections) {

print "<option> $_\n";
}

print «"EndOfText";
</select> <p>

<dt> Feature ID number:
<dd> <input type=text size=10 name=feat_id> <p>

<dt> Type of feature change:
<dd>
<input type=radio name=fchange value="attribute" checked> Attribute Change

<input type=radio name=fchange value="location"> Location Change

</dl>
<P>
<hr>
<input type="submit" value="Continue">
</form>
EndOfText
&emit_footer;
}

This routine processes the operation mode 'attribute.'
It processes both attribute changes and location changes.

sub do_attribute_mode {
&ReadParse;
local($database) = $in{'database'};
local($library) = $in{'library'};
local($coverage) = $in{'coverage'};
local($feature) = $in{'feature'};
local($feat_id) = $in{'feat_id'};
local($fchange) = $in{'fchange'};
&error_no_input('database') if (! $database);
&error_no_input('library') if (! $library);
&error_no_input('coverage') if (! $coverage);
&error_no_input('feature') if (! $feature);
&error_no_input('feature ID') if (! $feat_id);

A-6

&error_bad_feat_id($feat_id) if ($feat_ID =~ /\D/);

If the user specified a localtion coordinates change, process
that request. Otherwise continue with an attribute change.

if ($fchange eq 'location') {

do_location_change($database, $library, $coverage, $feature, $feat_id);

&emit_header('GGIS Feature Attribute Selection');
$action_url = &MyURL . '/attribVal';
print «"EndOfText";
<form method=POST action="$action_url">
<input type=hidden name="database" value="$database">
<input type=hidden name="library" value="$library">
<input type=hidden name="coverage" value="$coverage">
<input type=hidden name="feature" value="$feature">
<input type=hidden name="feat_id" value="$feat_id">
Current Selections:
<pre>

Database: $database
Library: $library < / strong>
Coverage: $coverage
Feature: $feature
Feature ID: $feat_id

</pre>
<dl>
<dt> Select a feature attribute:
<dd>
EndOfText

local(@filenames) =
&get_filenames("$db_root/$database/$library/$coverage/$feature");

local($list_size);
$list_size = ©filenames;
$list_size = $max_list_size if ($list_size > $max_list_size);
print "<select name=\"attribute\" size=$list_size>\n";
foreach (©filenames) {

print "<option>$_\n";

print «"EndOfText";
</select>
</dl>
<p>
<hr>
<input type="submit" value="Continue">
</form>
EndOfText
&emit_footer;
}

sub do_location_change {
local($database, $library, $coverage, $feature, $feat_id) = @_;
&emit_header('GGIS Feature Location Change');
$action_url = $submit_url;
local($trans_id) = &get_trans_id;

A-7

print «"EndOfText";
<form method=POST action="$action_url">
<input type=hidden name="f_database" value="$database">
<input type=hidden name="g_library" value="$library">
<input type=hidden name="h_coverage" value="$coverage">
<input type=hidden name="i_feature" value="$feature">
<input type=hidden name="j_feat_id" value="$feat_id">
<input type=hidden name="k_change" value="location">
<input type=hidden name="a_trans_id" value="$trans_id">
Current Selections:
<pre>

Database: $database
Library: $library

Coverage: $coverage< / strong>
Feature: $feature

Feature ID: $feat_id
Transaction ID: $trans_id

</pre>
<p>
You have indicated a location coordinate change for the feature listed above.
You can either enter the coordinate change information below or send
your changes separately over e-mail to $location_e-mail. If you
are planning to send your changes separately over e-mail, please include
the transaction ID (above) in the <code>Subject:</code> of the e-mail.
<blockquote>
<input type=radio name="m_attachment" value="no" checked> No Attachment

<input type=radio name="m_attachment" value="yes"> Sending Attachment

</blockquote>
Location change data or comments:

<textarea rows=10 cols=60 name="n_comments"x/textarea><p>
<dl>
<dt> Your name:
<dd> <input name="b_!name" size=50>
<dt> Your organization:
<dd> <input name="c_org_name" size=50>
<dt> Your e-mail address:
<dd> <input name="d_!e-mail">
<dt> Your phone number:
<dd> <input name="e_!phone">
</dl>
<hr>
<input type=submit value="Process Change">
<input type=reset value="Erase Comments">
</form>
EndOfText
&emit_footer;
}

sub do_attribVal_mode {
&ReadParse;
local($database) = $in{'database'};
local($library) = $in{'library'};
local($coverage) = $in{'coverage'};
local($feature) = $in{'feature'};
local($feat_id) = $in{'feat_id'};
local($attribute) = $in{'attribute'};
&error_no_input('database') if (! $database);
&error_no_input('library') if (! $library);

A-8

&error_no_input('coverage') if (! $coverage);
&error_no_input('feature') if (! $feature);
&error_no_input('feature ID') if (! $feat_id);
&error_bad_feat_id($feat_id) if ($feat_ID =~ /\D/);
&error_no_input('attribute') if (! $attribute);
&emit_header('GGIS Feature Attribute Value Selection');
$action_url = &MyURL . '/file';
local($trans_id) = &get_trans_id;
print «"EndOfText";
<form method=POST action="$submit_url">
<input type=hidden name="f_database" value="$database">
<input type=hidden name="g_library" value="$library">
<input type=hidden name="h_coverage" value="$coverage">
<input type=hidden name="i_feature" value="$feature">
<input type=hidden name="j_feat_id" value="$feat_id">
<input type=hidden name="k_change" value="attribute">
<input type=hidden name="l_attribute" value="$attribute">
<input type=hidden name="a_trans_id" value="$trans_id">
Current Selections:
<pre>

Database: $database
Library: $library
Coverage: $coverage</ strong>
Feature: $feature
Feature ID: $feat_id
Attribute: $attribute
Transaction ID: $trans_id

</pre>
<dl>
<dt> Select a feature attribute value:
<dd>
EndOfText

local(@values) =
&get_file_lines("$db_root/$database/$library/$coverage/$feature/$attribute");

local($list_size);
$list_size = ©values;
$list_size = $max_list_size if ($list_size > $max_list_size);
print "<select name=\"m_!attr_value\" size=$list_size> value=\"\"\n";
foreach (©values) {

print "<option> $_";

print «"EndOfText";
</select>
</dl>
Comments:

<textarea rows=10 cols=60 name="n_comments"></textareaxp>
<dl>
<dt> Your name:
<dd> <input name="b_!name" size=50>
<dt> Your organization:
<dd> <input name="c_org_name" size=50>
<dt> Your e-mail address:
<dd> <input name="d_!e-mail">
<dt> Your phone number:
<dd> <input name="e_!phone">
</dl>

A-9

<p>
<hr>
<input type=submit value="Process Selection">
</form>
EndOfText
&emit_footer;
}

sub do_validate_mode {
&emit_header('GGIS Change Request Validation');
$action_url = &MyURL . '/display';
print «"EndOfText";
<form method=POST action="$action_url">
<dl>
<dt> Please enter the following information to validate your session:
<dd>
</dl>
Transaction ID:<input size=30 name="trans_id"><P>
<HR>
<input type="submit" value="Process Validation">
<input type="reset" value="Reset">
</form>
EndOfText
&emit_footer;
}

sub do_display_mode {
&ReadParse;
local($trans_id) = $in{'trans_id'};
&error_no_input('transaction ID') if (! $trans_id);
&check_gif($trans_id);
$before_gif = "$gif_url/$trans_id.before.gif";
$after_gif = "$gif_url/$trans_id.after.gif";
&emit_header('GGIS Display of Change Request');
$action_url = &MyURL . '/download';
print «"EndOfHTML";
<form method=POST action="$action_url">
For the following transaction:
<pre>

Transaction ID: $trans_id
</pre>
<input type=hidden name="trans_id" value="$trans_id">
We have the following data: <p>
<dl>
<dt> Before:
<dd>
<dt> After:
<dd>
<p>
<dt> If this data is acceptable, please choose a download method: <p>
<dd> <input type="radio" name="dl_type" value="FTP" checked> FTP

<input type="radio" name="dl_type" value="CD-ROM"> CD-ROM

<input type="radio" name="dl_type" value="4mm Tape"> 4mm Tape

<input type="radio" name="dl_type" value="8mm Tape"> 8mm Tape
</dl>
<p>
<input type="submit" value="Download">

A-10

</form>
<hr>
EndOfHTML
&emit_footer;
}

sub do_download_mode {
&ReadParse;
local($trans_id) = $in{'trans_id'};
local($dl_type) = $in{'dl_type'};
&error_no_input('transaction ID') if (! $trans_id);
&error_no_input('download type') if (! $dl_type);
&do_ftp_download($trans_id) if ($dl_type eq 'FTP');
&emit_header('GGIS Download Reconciled Data Request');
print «"EndOfHTML";
<form method=POST action="$recon_url">
You have requested to secure a new version of the database
associated with transaction:
<pre>

Transaction ID: $trans_id
</pre>
<input type=hidden name="a_trans_id" value="$trans_id">
You have indicated a database media type:
<pre>

Data Media Type: $dl_type
</pre>
<input type=hidden name="aa_dl_type" value="$dl_type">
This type of media requires that we send you the new data
using surface (postal) mail.
In order to process your request, we need the following information:
<dl>
<dt> Your name:
<dd> <input name="b_!name" size=50>
<dt> Your organization:
<dd> <input name="c_org_name" size=50>
<dt> Your e-mail address:
<dd> <input name="d_!e-mail">
<dt> Your phone number:
<dd> <input name="e_!phone">
<dt> Address:
<dd> <input name="f_!address" size=50>
<dt> City:
<dd> <input name="g_!city">
<dt> State:
<dd> <input name="h_!state">
<dt> ZIP Code:
<dd> <input name="i_!zip">
<dt> Comments:
<dd> <textarea rows=10 cols=60 name="n_comments"></textareaxp>
</dl>
<input type="submit" value="Process Request">
</form>
<hr>
EndOfHTML
&emit_footer;
}

A-ll

sub do_ftp_download {
local($trans_id) = @_;
local($ftp_url) = "$recon_ftp_url/$trans_id$ftp_suffix";
print «"EndOfHTML";
<form method=POST action="$recon_url">
You have requested to secure a new version of the database
via FTP for the transaction;
<pre>

Transaction ID: <strongxa href="$ftp_url">$trans_id</ax/strong>
</pre>
Following the link above will FTP a compressed tar (Tape Archive)
file with the changes associated with your transaction ID.

<P>
<hr>
EndOfHTML
&emit_footer;
}

Assert there are GIFs related to the transaction ID.

sub check_gif {

local($tid) = @_;
if (! -f "$gif_dir/$tid.before.gif") {

&error_gif($tid, 'no before GIF');
}
if (! -f "$gif_dir/$tid.after.gif") {

&error_gif($tid, 'no after GIF');

Return some sort of unique transaction identifier as a string.
YYMMDDHHMMSS.pid

sub get_trans_ID {

local(@t) - localtime;
$t[4]++;
return(sprintf "%2d%.2d%.2d%.2d%.2d%.2d.%s", @t[5,4,3,2,l,0], $$);

}

sub get_filenames {

local($dir) = @_;
local(@filenames);
opendir(_FH, $dir);
©filenames = grep(!/A\.\.?$/, readdir(_FH));
closedir(_FH, $dir);
return(sort ©filenames);

}

This routine returns a list of feature selection items. This
is a special routine since this selection spans more than 1
directory in the db_root. The first directory level is for the
feature type (point, line, etc.); the seonds level is the feature
name itself. We take the db directory as a single argument.
Make sure to ignore the featlist files.

sub get_feature_selections {

local($fdir) = @_;
local(@ftypes) = &get_filenames("$fdir");

A-12

@ftypes = grep(!/Afeatlist\.// @ftypes);
local(@selections);
foreach (@ftypes) {

local($ftype) = $_;
local(@fnames) = &get_filenames("$fdir/$ftype");
foreach (@fnames) {

push(@selections, "$ftype/$_");

return(@selections);
}

sub get_file_lines {

local($fn) = @_;
local(@features);
open(F, "$fn") I I &error_filename("$fn");
©features = <F>;
close(F);
return(@features);

}

sub error_filename {
local($fh) = @_;
print «"EndOfText";
<h2>Error: Unable to open file!</h2>
$fn: $! <p>
EndOfText
}

sub error_no_input {
local($name) = @_;
&emit_header(");
print «"EndOfText";
<h2>Error: Missing $name selection!</h2>
You must choose a $name from the list of values. Please try again.
<p> <hr>
EndOfText
&emit_footer;
}

sub error_no_mode {
&emit_header;
print «"EndOfText";
<h2>Error: No mode specified!</h2>
This CGI program requires an operation mode, specified as extra path
information in the URL. Contact your local admin for details.
<p> <hr>
EndOfText
&emit_footer;
}

sub error_bad_feat_ID {
local($feat_id) = @_;
&emit_header(");
print «"EndOfText";
<h2>Error: Bad feature ID!</h2>
The feature ID '$feat_id' is invalid. <p>
Feature IDs must be integers and thus composed of only digits (0-9).

A-13

<p> <hr>
EndOfText
&emit_footer;
}
#"
sub error_gif {
local($tid, $msg) = @_;
&emit_header(");
print «"EndOfText";
<h2>Error: $msg!</h2>
For transaction ID: "$tid" <p>
No GIF data exists for your transaction ID. Either you have mis-typed
your transaction ID or your update request has not yet been applied.
<p> <hr>
EndOfText
&emit_footer;
}

A-14

APPENDIX B: GGISMAIL Perl Script

#! / local/bin/perl

ggismail — generic CGI script to direct fill-out form input to e-mail,
based upon form2mail-2.6.

$version = '0.1, 07Jul95';

Begin configurable options.

This appears in the e-mail body for identification.

$body_header = "This message generated by the DMAP/GGIS WWW server."

Which MTA to use to send the mail.

Smaller = '/usr/lib/sendmail';

The Reply-To: field will be set using this normalized variable name,
if present.

$reply_to_field = 'e-mail';

The location of the Perl CGI library.

$cgi_lib = '/depot/httpd/cgi-lib/cgi-lib.pl';

Setting this variable to something non-null allows local
user globbing: local userids prefixed with the user_glob
character are vallD addresses. For example, with a user_glob
of '=', the URL:

http://your.server/cgi-bin/cgimail/=foo

will allow mail to be sent to user 'foo' if s/he exists on your
system (lives in the passwd(5) file). Setting user_glob to "
disables this local user delivery feature. Configure the local
domain below as well. This is appended to the recipient address.

$user_glob = '=';
$user_glob_domain = '©dmap.nrlssc.navy.mil';

Otherwise, here is the list of vallD addresses. The format of each
entry is:

'address', ':e-mail:subject'

Note that the first character (':' above) defines the delimiter
to be used to seperate the e-mail address from the subject.
Make sure the addresses are fully qualified; see the $mailer comments
above.

%addresses = (
'ggis-update', ':chung@dmap.nrlssc.navy.mil:GGIS Update Request.',

B-l

);

The prefix character, usually an underscore.

$prefix_char = '_';

What character in the parsed variable name indicates a required field.
For example, if '!' then the variable 'aa_!name' would required by this
processor. Missing fields generate an error.

$required_char = '!';

The address used for internal testing and help modes.

$help_address = '!help';
$test_address = '!test';
$example_address = 'iexample';

End of configurable options.

Use the CGI Perl library.

require $cgi_lib;

Output NOT buffered.
$1 =1;

Send out the proper HTML/MIME header. We'll append subsequent
output on either success or failure.

&header;

Determine what our address is. We use this to assign our To: and Subject:
fields below. This is a mnemonic that comes from the CGI extra path
information.

&error_no_address if (! ($address = &parse_address));

Now see if it is a vallD address. Remember that the GECOS field
may have commas as internal delimiters. In such cases we only
want the first word (name).

if ($user_glob && (substr($address, 0, 1) eq $user_glob)) {

$user = substr($address, 1);
&error_user_glob if (! (©fields = getpwnam($user)));
$pw_name = $fields[6];
$pw_name = (split(/\,/, $pw_name, 2))[0] if ($pw_name =~ A,/);
$to = substr($address, 1) . $user_glob_domain;
$subject = "Local form2mail processing for '$pw_name'.";

}
elsif ($address eq $test_address) {

An internal "address." This means echo the mail back to
the client. Very useful for testing.

}
elsif ($address eq $help_address) {

An internal "address." Give the user help information on

B-2

using this program. Nifty.

&emit_help;

}
elsif ($address eq $example_address) {

An internal "address." Give the user a sample HTML use of
this program. More nifty.

&emit_example;

}
else {

&error_bad_address($address)
if (! (($to, $subject) = &lookup_address($address)));

}

We only process input from forms. Simply parse the input and
generate an e-mail message with all the fields present in the form,
presented in alphabetical order by variable /field name.

&ReadParse;

Check for special <select> variables which aren't even sent
if nothing is selected (!). I consider that a bug. The variable
names must be known a priori.

if ($in{'ff_change'} eq 'attribute') {

$foo = 'hh_!attr_value';
if (! $in{$foo}) {

print "<h3>Error: no feature attribute value selected!</h3>\n";
print "You must select a feature attribute value. <p>\n";
print "Please try again.<pxhr>\n";
&footer;

This little bit determines the length of the longest field name,
just for aesthetics in the mail output formatting. Check if the
field is a required field.

$maxlength = 0;
foreach (keys %in) {

if (($field = &is_required($_))) {

This field is required. If it's NULL complain.

&error_missing_field($field) if (! $in{$J);

}
$normalized = &norm_varname($_);
$reply_to = $in{$_} if ($normalized eq $reply_to_field);
$len = length($normalized);
$maxlength = $len if ($len > $maxlength);

}
$proto = sprintf("%%%ds = %%s\n", $maxlength);

Now open up the MTA and form the envelope. We may actually send this
information back to the client (instead of the MTA) if in test mode.

if ($address eq $test_address) {

B-3

$MAILER = 'STDOUT;
&emit_testmode_heading;

}
else {

open (MAILER, " I $mailer $to") I I &error_mailer;
SMAILER = 'MAILER';

}

print SMAILER "Reply-To: $reply_to\n" if ($reply_to);
print $MAILER "To: $to\n";
print $MAILER "Subject: $subject\n";
print SMAILER "\n";

print SMAILER "This is a GGIS feature update request processed by the\n";
print SMAILER "GGIS WWW server. Some information about the request:\n\n";
Surl = &MyURL;
print SMAILER " ggismail URL: $url\n";
$remote_host = $ENV{'REMOTE_HOST'};
if (! $remote_host) {

$remote_host = $ENV{'REMOTE_addr'}

}
$remote_user = $ENV{'REMOTE_USER'};
print SMAILER " Remote-Host: $remote_host\n";
print SMAILER " Remote-User: $remote_user\n" if ($remote_user);
print SMAILER "\nThe actual request follows\n~\n";

Now process the input.

foreach (sort keys %in) {

Remove the initial xxx_ from the name; it's there only
to force alphabetiztion.

Sfield = &norm_varname($_);

Try and format multi-line responses.

Svalue = $in{$_};
if (Svalue =~ An/) {

($foo, Svalue) = split(/\n/, Svalue, 2);
printf SMAILER Sproto, Sfield, $foo;
while (Svalue) {

($foo, Svalue) = split(/\n/, Svalue, 2);
printf SMAILER "%${maxlength}s %s\n", " ", $foo

}
}
else {

printf SMAILER Sproto, Sfield, Svalue;
}

}
if (Saddress ne $test_address) {

close SMAILER;
&emit_ok;

print "</pre>\n" if (Saddress eq $test_address);
#&emit_credit;

B-4

fefooter;
exit;

Begin subroutines.

sub header {
print «"EndOfText";
Content-Type: text/html

<html>
<head>

<! This HTML was generated by the ggismail ($version) program. >
<! $credit >

<title>Form-to-Mail Gateway</title>
</head>

<body>
<h2>
GGIS Form-to-Mail Gateway
<hr>
</h2>

EndOfText
}

sub footer {
print «"EndOfText";
</body>
</html>
EndOfText
exit;
}

Parse the address from the extra path info on the URL.

sub parse_address {

local($address) = $ENV{TATH_INFO'};
if ($address) {

$address = substr($address, 1);

The strips off a trailing '/'is present. We are so nice.

if (substr($address, length($address) - 1) eq '/') {

$address = substr($address, 0, length($address) - 1);

$address;
}

Check to see if the address is in our list of allowed addresses.

sub lookup_address {

local($address) = @_;

B-5

local($delim);

Look up the address. If it exists, then extract the
e-mail/subject delimiter and then parse them.

"#
$db = $addresses{$address};
returnO if (! $db);
$delim = substr($db, 0, 1);
$db = substr($db, 1);
split(/$delim/, $db, 2);

}

Let the user know the processing was successful.

sub emit_ok {
print «"EndOfText";
<h2>Message Sent</h2>
Your database update request has been processed. Thank you.

<P>
EndOfText
#&emit_credit;
&footer;
exit;
}

Give some indication that we are in test mode.

sub emit_testmode_heading {
$test_url = $ENV{'SCRIPT_NAME'} . "/$test_address";
$help_url = &MyURL . "/$help_address";
print «"EndOfText";
This is test mode. Below is a sample of the e-mail
message that would be generated by this program when running in
real mode. Test mode is entered by using the following
relative/partial URL:
<blockquote>
<code>$test_url</code>
</blockquote>
In real mode the To: and Subject: fields would
have meaningful values. <p>
Here is help on using this program. <p>
<hr>

<pre>
EndOfText
}

sub error_mailer {
print «"EndOfText";
<h2>Error: Unable to open mailer</h2>
An internal error has occurred; your form was not processed.<p>
Please try again later.
EndOfText
exit;
}

sub error_no_address {
$help_url = &MyURL . "/$help_address";

B-6

print «"EndOfText";
<h2>Error: No address specified !</h2>
Addresses are specified using a pre-defined mnemonic sent as extra
path information in the URL. <p>
Here is help on using this program. <p>
EndOfText
exit;
}

sub error_bad_address {
$help_url = &MyURL . "/$help_address";
print «"EndOfText";
<h2>Error: Address not allowed! </h2>
The address you supplied as extra path information in the URL is
not allowed.<p>
Here is help on using this program. <p>
EndOfText
exit;
}

sub error_user_glob {
$help_url = &MyURL . "/$help_address";
print «"EndOfText";
<h2>Error: User address is not valid !</h2>
The specified user address '<code>$address</code>' is not a vallD user
on this system. <p>
Here is help on using this program. <p>
EndOfText
exit;
}

sub error_missing_field {
local($f) = @_;
print «"EndOfText";
<h2>Error: '$f is missing!</h2>
You must supply this information for the form to be processed.
EndOfText
exit;
}
Strip off the xx_ prefix from the variable name.

sub strip_prefix {

local ($s) = @_;

$s = substr($s, index($s, $prefix_char) + 1);
}

Return a normalized variable name if a required char is present.

sub is_required {

local($s) = @_;

$s = &strip_prefix($s);
if (substr($s, 0, 1) eq $required_char) {

$s = substr($s, 1);
}
else f

B-7

$s = ";
}
$s;

}

Normalize a variable name. This means no prefix or required char.

sub norm_varname {

local ($s) = @_j

$s = &strip_prefix($s);
if (substr($s, 0, 1) eq $required_char) {

$s = substr($s/ 1);
}
$s;

}

Give information on how to use this program. Integrated help!

sub emit_help {
$cgi_rel_url = $ENV{'SCRIPT_NAME'};
$sample_url = &MyURL . "/$example_address";
print «"EndOfText";

This page documents the form2mail program.
This program processes input from a
<ahref=http://www .ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/fill-out-

forms/overview.html>fill-out
FORM. The input from the form is simply sent off in an e-mail
message. The e-mail message looks like this: <p>

<blockquotexpre>
text = some text

password = mypassword
checked = on

color = Red
menu = TELNET
list = FTP

</prex/blockquotexp>

To use this gateway, simply compose your HTML file using whatever
<a href=http: / / www.ncsa.uiuc.edu/SDG / Software / Mosaic/Docs / f ill-out-

forms/overview.html>fill-out FORM tags
you like. Then reference the form2mail program with the ACTION token
in the FORM tag, like this: <p>

<blockquotexpre>
<form method=POST action=$cgi_rel_url/<i>cookie</i>>
</prex/blockquotexp>

where <i>cookie</i> is a pre-defined "magic cookie" encoded in the
program itself that defines the To: and Subject: fields for the e-mail
message. Note that the ACTION URL is a relative URL; no
"<code>http://hostname</emx/code>" is present. This is because you
want to make sure to reference your local form2mail
program since only it has your list of pre-defined magic cookies.
EndOfText

B-8

&emit_cookie_help;

print «"EndOfText";
<h2>FORM Field Names</h2>

The field names (variable names) in the FORM are listed in the e-mail
message alphabetically, by the name (NAME=) of the field/variable. To
control the order, you should preface your variable names with something
like "aa_". For example, if you want the fields in the FORM
to appear in the e-mail message in the same order, you could use the the
following HTML: <p>

<blockquotexpre>
<input type=text name=aa_text> A text field
<input type=password name=bb_password> A password field
<input type=radio name=cc_color> Radio buttons
</prex/blockquotexp>

Without the "aa_" prefixes, the alphabetical order of the field names
would be color, password, text. The form2mail program will strip
off the "aa_" prefixes when formatting the e-mail message. See
the example above. <p>

To insert new fields, simply add
leters to the prefix. For example, to add a checkbox field after the
password field, you would: <p>

<blockquotexpre>
<input type=text name=aa_text> A text field
<input type=password name=bb_password> A password field
<input type=checkbox name=bbb_checked> A checkbox
<input type=radio name=cc_color> Radio buttons
</prex/blockquotexp>

<h2>Required Fields</h2>
To make a field in the form required (it must have a non-null value),
you can use the character "!" as the first character in the field name
that follows the sorting prefix. In the above examples, to make the password
a required field, you would use: <p>

<blockquotexpre>
<input name=bb_!password> A password field
</prex/blockquotexp>
EndOfText

&emit_reply_to_help;

print «"EndOfText";
<h2>Example</h2xp>

Here is an example HTML FORM that uses this program.
You should use your browser "view source" mode to look at the raw HTML. <p>
EndOfText

#&emit_credit;
fefooter;

B-9

Give a little credit.

sub emit_credit {

$help_url = &MyURL . "/$help_address";
"print "<hr>\n";
$link_text = "ggismail, version $version";
if ($address ne $help_address) {

print "$link_text</axbr>\n";

}
else {

print "$link_text
\n";
}
print "$credit\n";

}

Provide a example use of the program. Yet another internal function.

sub emit_example {
$test_url = &MyURL . "/$test_address";
print «"EndOfText";
This a sample HTML file that uses this program. Use your browser's
"view source" mode to look at the raw HTML. Note that this example
uses the test mode by using the <code>$test_address</code>
address. <p>

Note that we use the variable name prefixes (aa_, bb_, etc.) to insure
the ordering of the data in the e-mail. We also use the required
character "$required_char" to make the <code>password</code> field
required. <p>

<hr>

<form method=POST action=$test_url>
<input type=text name=aa_text> A text field

<input type=password name=bb_!password> A password (text) field

<input type=text name=bc_$reply_to_field> A <code>Reply-To:</code> address<p>
<input type=checkbox name=bbb_checked> A checkbox<p>
Radio buttons:
<input type=radio name=cc_color value="Red" checked> Red
<input type=radio name=cc_color value="Green"> Green
<input type=radio name=cc_color value="Blue"> Blue <p>
Option menu:

<select name=dd_menu>

<option value="TELNET"> TELNET
<option value="FTP"> FTP
<option value="WWW"> WWW
<option value="Gopher"> Gopher
<option value="WAIS"> WAIS
<option value="NNTP"> Usenet News
<option value="SMTP"> E-mail

</selectxp>
Scrolled list:

<select name=ee_list size=3>

<option value="TELNET"> TELNET
<option value="FTP" selected> FTP
<option value="WWW"> WWW
<option value="Gopher"> Gopher
<option value="WAIS"> WAIS

B-10

<option value="NNTP"> Usenet News
<option value="SMTP"> E-mail

</select>
<P>
Textarea:

<textarea rows=3 cols=60 name=textarea>This stuff can contain default values.
</textareaxp>
<hr>
<input type=submit value="Submit">
<input type=reset value="Reset">
</fonn>
EndOfText
#&emit_credit;
&footer;
}

sub emit_cookie_help {
print "<h2>Magic Cookies</h2xp>\n";

if ($user_glob) {
$user_url = "$ENV{'SCRIPT_NAME'}/$user_glob" . 'foo';
print «"EndOfText";
This version of form2mail supports user globbing which means
the cookie can be of the form <code>$user_glob</codexem>user
where user is any vallD user on the server machine (as defined
by /etc/passwd). For example, the URL
<blockquotexcode>
$user_url
</codex/blockquotexp>
would send the e-mail from form2mail to the local user foo. <p>
EndOfText

print «"EndOfText";
To pre-define a cookie, you must contact your local WWW administrator.
Here are the currently defined cookies: <p>
EndOfText

&emit_cookie_list;
)

Provide a list of currently defined cookies.

sub emit_cookie_list {
print "\n";
foreach (sort keys %addresses) {

($to, $subject) = &lookup_address($_);
print " <code>$_</code>:\n";
print "<ulxli>To: $to Subject: $subject \n";

}
print "</ulxp>\n";

print «"EndOfText";
Additionally, the following internal cookies are defined: <p>

 <code>!help</code>: This help page.
 <code>!example</code>: Sample usage of this program (see below).
 <code>!test</code>: Test mode, used in the example above.

B-ll

This mode shows the e-mail that would be sent in real mode.
Very useful for developing your HTML page that uses this
program.

EndOfText
}

Provide help on the Reply-To: field, if configured.

sub emit_reply_to_help {
return if (! $reply_to_field);
print «"EndOfText";
<h2>Reply-To: Field</h2>
This version of formZmail allows you to specify a field name whose
value will be used to form the <code>Reply-To:</code> header in the
generated e-mail message. Such a header allows you to use your mail
reader's reply function to compose a reply message with the proper
<code>To:</code> address already formatted.<p>

Without a <code>Reply-To:</code> header, automatically composed
replies will probably be addressed to the address of the WWW server
on which form2mail runs. In most cases, you want to reply to the
person who filled out your form — not to the WWW server. <p>

The field to use for the <code>Reply-To:</code> is:
<blockquotexcode>

$reply_to_field
</codex/blockquote>

Note that you can still use of the ordering or required field prefixes:
<blockquotexcode>

aa$prefix_char$required_char$reply_to_field
</codex/blockquote>
EndOfText
}

[end of form2mail]

B-12

APPENDIX C: Netscape Browser GUI
Netscape: World of DMrtP

File Edit View Go Bookmarks Options Directory

Back fri>--:er-
M4.

Print Find Stop

Location:' j]http - //ww. cello. nrlssc. navy, mil/inäex. html

Vfliat's New] What's Coolj Handbookj Net Search) Het Directory [Newsgroups |

• WELCOME TO DMÄP '
Digital Mapping, Charting, and Geodesy Rcogram (DMÄP) serves as the Oceano grapher of the Navy's

- (N096) te<^cdpro^amresponsibleforperformingtiieNavy'stechiücalreviewof emerging Defense
Mapping Agericy (DMA.) digital mapping prototype databases and service-wide requirements analysis

DMAP Projects

• Review of DMA's Products:
O Technical Reviews ofVPF

■,"', ■': '•: \ O' Technical Reviews-of RPF
O Technical Reviews ofTPF

. • Development of Object-Oriented Vector Products
-•""•',.';'~,-'V Ö Overview of the Program

O OVPF Prototype Description
"'/.'C'.' '•/''" Q . Future Studies " . . '.

DMA Sapport of GGIS Testbed

-'Any questions»please contact chting@drctap.nrlssc.navy.mil

Document Done ManoKHHS

This is the home page for any person who wants to access any DMAP
information. The hyperlink that is of interest is the DMA Support of GGIS
Testbed.

C-l

 .

r -,~ ».«r-jcajs: Product Selectmen tarm

R5e Edit View Go Bookmarks Options Directory

™^^^^!!^^fr^

Heip 1

4» x -
Back

3 •yj^gj^^ggs

, f^^rt Home Reload

?^'J$^f'SB*5iS8S

fasöas; , Open ' Print! S'.jf-

Location: jjhttp: //TOW. cello. nrlssc. navy, mil/ggis. html

Vftiat's Newj Whafs Cooij Handbook | Net Search [Het Directory | Newsgroups

Database Selection Form

Vector Product Format

Raster Product Format

•Coitbrolleä Imagery Base (CIB), , *

ARC DigLtiz6d Raster Graphics f ADRG) •

Text Product Format

Change Request Submission Reconciliation

if^
t..'~..'"' u'.TTnrw.'"","™T™" ■■""■j—"-,

;

Upon selecting the DMA Support of GGIS Testbed,, this page of
Database selection page is displayed. Based on the three different formats
produced by the DMA, the format of interest is the Vector Product Format
hyperlink.

C-2

(f_2_ . . Netscape: GCTs DataBase Selection

File Edit View Go Bookmarks Options Directory

Back
U; ■<*&.

- Home Reload
mi
Open Print Fiid 5%

I

Location: Jittp://m. cello, nrlssc. navy, mil/cgi-biri/ggis/database

What's Mew What's Cooij Handbook j Net Search j Net Directory j Hewsgro

GGIS Database Selection

Select a database

DNC01"
UVMiP

' ' ' VM&PLVO
WVSPLUS

Continue

M

&-
,UU_1 Document Done

The five vector product formats are displayed as a selectable databases.
Selected database is registered once the Continue button is pressed.

C-3

[r__ Netscape: GGisTTbrary SeSection

Rle Edit View Go Bookmarks Options Directory Help

Back Home Reload ^j^; Open Print Fina !'■;

Location: ijittp: //cello. nrlasc. navy, mil/cgi-bin/ggis/library

Searchj Net Directory j ;\'e vsijrsups j Wnat's New | What s Cooij Handbook; Net
y ■■■■■ ■ ■ ■!

El
GGIS library Selection

CmreiitSdections:

Select a IbT&ry

a0i0B17C
a0108280
browse
coaOl
genOl ■
hD10B28G

Continue

Docum&nt: Done. u^U—^^r- T^.y'^i.i.i^-y.-jr

Once the DNC01 database is selected, a list of all its libraries are listed as
selectable library. Current selection of DNC01 is also displayed.

C-4

ffjrj- Netscape: GGiS Cover-age Selection"

RIe Edit View Go Bookmarks Options Directory Help

HP
' •> "0 t& i »»..,„„„
■ Back Home Relosd '; vQsasggg-. Open MÄ? Fn.d

.
Location: Jittp://cello.nrL3sc.navy.mil/cgi-bin/ggas/coverage

Whats New| Wiat's Coo! 1 Handbook* Net Search} Net Directory|

T"

GGIS Coverage Selection

Cmreat Selections:

Dat^isss BNCOi
Lj-brary- aC10S280

Select a coverage:

culp
dqy
ecr
hyd
iwy
lcr
lim
nav
obs
pory

p^S^:g|!%

Continue

Li
'^^51 Document: Done.

A selection of library requires a selection of a coverage of interest. A
list of coverages for the selected DNC01 database and a0108280 library is
displayed. Once again, current selections are also displayed, i.e., DNC01 and
a0108280.

C-5

iitaiiiiiiiiViMiiiiiiii«OTK»WMtnBi

Netscape: GGIS Feature Selection

REe Edit View Go Bookmarks Options Directory Help

Back Home Reload

=0°

? I Open Print
a a!

Find i
Location: jjittp: //cello. nrlssc. navy, mil/cgi-bin/ggis/feature

VJhats Newj Wiats Cooij Handbook j Hut Seairhj Hut üirfettnrv!

GGIS Feature Seiecüon

Current Selections:

B&taba^K BJJCÜ1
Library- aO2JB8280
Coverage: obs-

Select a feature:

ares/dangera
area/hazarda
line/bridgel
lirie/pipelinl
line/tunnell
point/dangerp
po int/hazardp
point/loadingp
po int/obs t ruep
point/ruinsp

F eature ID numb er:
. i '

Type of feature change:

"**■ Attribute Change

V Location Change

Continue

m
fjfcgj] Document: Done.

A selection of obs. coverage provides another list of feature class of
interest. This is the beginning page of feature update. Since, it is assumed
that any user is interested in updating a feature of interest, the feature ID
needs to be specified. Since there are differences in requesting a change for
feature attribute and location change, a user is given the choice of two to
select. Also, note that the feature class listing precedes by the feature type, e.g.,
point, line and area.

C-6

^2] ""Netscape: üGfcFeature Attribute SeTectiori"

File Edit View Go Bookmarks Options Directory

Sack
<?a- »-S ■ [

- - ~ Home Reload ffragss

^.r 2-r mm. Mal ~Ä:~t:

Location: Jittp://cello.nrls3c.navy.mil/cgi-bin/ggis/attribute

that's New] Whärs Gaol} Hämfeoökj Met Search} Het Directory

GGIS Feature Attribute Selection

Current Seltcnons:

Database DNCÜl
Liirarj) &010828C
coverage-. «bs
Feature: - area/dangera
Feature XD: 23

S elect a feature attribute:

. acc-ÄccuracyCategory
• dat-D'ate -

' - exe-ExistenceCategory

- " , hdi-Hydrograph'icDepths
■ vrr-VerticalReferenceCategory

Continue

Document Done. .;

This instance shows a selection of danger feature class of area feature
type for a feature number 23. Only those attributes for this feature class and
feature type are listed.

C-7

f -\ Netscape: GGTS Feature Attnfcute Value Selection

R!e Edit View Go Bookmarks options Directory

Back -TO-TT.H Home ' Reload irftsj'«: Open Print Find Sw

Location: j Jittp: //cello. nrlssc. navy.mil/cgi-bin/ggtis/attribVal

What's Hewj Vfliafs Coolj handbook j Met Search | Net Directory j

GGIS Feature Attribute Value Selection

CunentSdectioris:

Database:
Libraicj):
Co verier«:
Feature
Feature ID
Attribute:

HKCÜ1
»0108280

23
afic-AcnurscyCategszy

.'. Jraasactio» ID: 8512OT113734.21433

Select s. feature attribute value:

1 Accurate
2 Approximate
3 Doubtful

Comments:

: Your organisation:

II

For the ace-Accuracy Category attribute, corresponding list of values are
displayed for selection. This will actually set the value for the attribute. Once
this change has been recorded, information regarding the user is solicited to

C-8

be able to respond. Under the Current selection: listing, there is a listing for a
transaction ID. This represents a unique number for this particular user.
This number is the key to viewing the requested change upon reconciliation
or verification of change. This is will end the change request session. When
this page is completely filled out, an e-mail is generated and forwarded to the
server site for the actual processing if the requested change.

If location change was requested, following page would have been
displayed:

Netscape: GGIS Feature Location Change

File Edit View Go Bookmarks Options Directory Help

Back Home -Reload ■>-,-■;-•.--

«22
Open Pmf Find 3»p;

Location: http //cello nrlssc.navy Tail/cgi-bin/ggis 'attribute

■, What's New What's Cool| Handbook| Net Search | Net Directory

GGIS Feature Location Change

Current Selections:

Batabase DNCÜl
Library a0111828C

Coverage: obs
'. Feature: ax-ea/d&ngera

' .Feature IB:.23
Transaction ID: 353207114239.21438

You have indicated a location coordinate change tor the feature listed, above. You cm either enter the
coordinate change information below or send your changes separately over email to.

■hc-char<^@diwp.Krhsc.navy.md. If you are planning to send your changes separately over email,
please.iaclude the transaction ID (above) in tie sub j ect: of the email.

-. • "^ No Attachment • •

v Sending Attachment

Location change data or comments: . .. •

i lilt
az

Since current web browser facility does not have the capability to attach
a file interactively from a client machine, a crude way of sending an
attachment as a separate e-mail if the location change involves more than

C-9

one coordinate or a text pane can be used to request simple changes such as
one coordinate change or an offset by certain seconds. User information
similar to the attribute change request is requested.

Once the change has been processed, an e-mail is sent from the server
machine for the user to verify or reconcile the requested change. On the
Database selection form, there is another hyperlink, Change Request
Submission Reconciliation. Following this link provides the following page:

K«v| Netscape: GGiS Change Request Validation "

File Edit View Go Bookmarks Options Directory Hefp

■"■<J»
Back Home Reload Jtnajres:

3äSS
Print Find

Location: hittp.//ww. cello nrlssc naw.mil/cgi-bin/ggis/validate I

What's Newj What's Coolj Handbook j Net Search | ?tet Directory j

GGIS Change Request Validation

Please enter the fallowing information to validate your session:

Transaction ID: I

Process Validation Reset

This page prompts for the Transaction ID as explained earlier as a
control mechanism between the GGIS controller and the user. Upon entering
a vallD transaction ID, a following page is displayed:

C-10

GGIS Display of Change Requesr ~

l;^^^^^^^P^^^^S^^^^^^^^^^^Ä^^^^^^^^^^^^^^^^^^^^^^^S 5
Ä 1

For th.e Mowing transaction

Tranj^ctiOü ID- 07281395.123

We have the following data:
' 1 ^llfltllltll^ 11

Betora:

WMM^$MW^^^^M^BMMSM^^^MM0iiM^^^^^B9

-

.

Sf^S W& # - gi|:aKi|l|Siiiil 1

. - :5»
■ * -If -^s

;:'::: :^:':' ''■ ■ '-/ ' .-^ ''': :'|:J vW^^:l:l%:^|;;3 ^ |:

•
:

5

-. "i | >

. •■ ■ ■■rr "}:B:.:v::':":'V::: g;:;gS«|i*lt 1
J . >.. . • &j

^-^ '"■A

■.,--,,-■ .,-■■,■'/'' ;;'■:■.. ■■" ■ •'■'■'■'

1 y , ■■:■'.:.■■ .- ■.-■.-.

I

C-ll _

Ii this data is acceptable. please, choose, a download mtthod

' ' • , ' ^FTF . '

vCD-ROM

'"'"'•". •v;4xnmTape-

l_ -vSmmTapfc ■ ;
jgflsil.. lDgtyjment:„Done„.__ ... -_. ^^.^^sz^^^j^ri^r^^szriSSj , |

A before and after the change GIF graphics are presented. If this request
is satisfactory then a method to download the changes in database format is
requested. Currently, the actual database updating capability is still under
discussion.

C-12

