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Abstract 

The inverse gaussian distribution can be used to model processes with skewed output. 

In this thesis, several Shewhart and CUSUM control schemes are developed for the 

inverse gaussian distribution. The behavior of these schemes is described. A new 

type of Shewhart chart, a self-starting Shewhart chart, is developed and applied to 

the inverse gaussian distribution. A second new type of control chart, which controls 

simultaneously for multiple parameters, is developed and shown to have some useful 

properties. Predictive Shewhart schemes, based on a diffuse prior, are developed and 

used for control. 

We apply these methods to two applications. The first examines the control 

of the distribution of the output of a complex software package representing military 

combat, subject to continual revision. The second investigates the time to complete 

a task on a General Motors assembly line. 
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Chapter 1 

Problem statement 

1.1    Control Charts 

A control chart is a graphical tool for detecting departures from an assumed distri- 

bution. Charts are used to display information taken from samples from the ongoing 

process, and signal by various algorithms when it is likely that a model departure 

exists. 

There are two broad types of control charts. The first type, due to Shewhart 

[Shewart, 1931], measures when individual samples of fixed size indicate a departure 

from the model. For example, a power spike occurs during the manufacturing process, 

causing the characteristic (s) of interest of one batch of output to follow a different 

distribution from historical patterns. Shewhart charts are simple, and signal large 

changes quickly. 

The second type of control chart, due to Page [Page, 1954], detects small, per- 

sistent changes in the process output. Page introduced the Cumulative Sum Chart 

(CUSUM). Another variation on the idea is the Exponentially Weighted Moving Av- 

erage (EWMA), due to Roberts [Roberts, 1959]. These charts use the previous history 

of the process and provide a quicker method of detecting small changes in the process. 

One can chart different attributes of the process. Historically, one has charted 

measures of process location and dispersion. 

Control charts have been used extensively in manufacturing industries, chem- 

ical industries, and business. The most common assume that the underlying process 

can be well modeled by the normal distribution. 
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Control chart methodologies have been developed for processes modeled by 

many members of the exponential family, including the normal, gamma, poisson, 

and binomial. In 1989, Edgeman proposed Shewhart control charts for the inverse 

gaussian (IG) distribution [Edgeman, 1989]. 

The Shewhart charts suffer from limitations. A signal for a change in location 

can mean either a change in process mean, or an increase in process variability. 

This is discussed below. Accordingly, one must consider both charts together when 

diagnosing shifts in process centrality. Furthermore, they are slow to signal small 

changes in the distribution. 

We shall extend existing theory to include CUSUM schemes for inverse gaus- 

sian distributed random variables. We explore their properties. Later, we will propose 

new methods for constructing Shewhart charts, and explore their properties. 

1.1.1    Shewhart charts 

Many excellent references describe the basic Shewhart control scheme. They include 

Montgomery [1991] and Barnard [1959], among others. We survey the general ap- 

proach. 

From historical data or first principles, one models the distribution of the 

process for a given characteristic when it is "in-control". "In-control" means that 

the process is following the postulated distribution. Frequently, the process is taken 

to be normally distributed, but there are schemes for discrete distributions as well 

as for non-normal interval data. The process characteristic could be some physical 

dimension of the output of the process, or the number of defects, or whatever is of 

interest to those monitoring the process. 

We draw samples from the process upon which to base our inference about 

the process characteristic. If we draw samples of size greater than one, we desire to 
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obtain a "rational subgroup". A rational subgroup is a sample which is expected to 

be homogenous. This is best illustrated by counter-example: a sample which spanned 

two shifts of workers would not be expected to be completely homogenous, because of 

worker to worker variation. A rational subgroup has no plausible a priori explanation 

for being a mixed distribution of in-control and out-of-control. 

From the distribution of the characteristic, we determine the sampling distri- 

bution for our sample size. We then construct limits on acceptable values for sufficient 

statistics for draws from the sampling distribution, using either probability limits or 

a rule of thumb based on a given number of standard deviations. We construct the 

control chart by plotting the sufficient statistic vs. draw number on a chart which 

already has graphed the expected value of the statistic, the upper control limit, and 

the lower control limit. See Figure   1.1 for an example. 

If the sample statistic is within the control limits, we take no action. If the 

statistic is outside the limits, we consider that an "out-of-control" signal. We reject 

the hypothesis that the process is still following the postulated model, and investigate. 

Analogous with hypothesis testing, we are concerned with two types of errors. 

First, the process may signal a model departure when none exists. If the control 

limits are constructed so that the probability that the sample is within the limits is 

1 - a, then the probability of a false signal is a. The number of samples to a false 

signal is called the R,un Length. The distribution of the run length for a process 

in-control is geometric. The expected number of samples until a false signal is called 

the Average Run Length (ARL) and is equal to ^. This is the traditional measure 

of effectiveness for a control chart. Long ARL is desirable when in-control, for there 

are costs associated with investigating false signals. 

Given a model departure of specified form and magnitude, we can compute 

the probability of a signal, and the corresponding ARL for detecting the model depar- 

ture. When out-of-control, short ARLs are desirable, since there are (usually) costs 
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Figure 1.1:  A Shewhart control chart for the sample average, with the process in- 

control. 
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associated with model departures of various sizes. We can construct the operating 

characteristic curve as in classical hypothesis testing. 

It is accepted practice to chart for both location and scale, when dealing 

with normal processes. Consider a shift from the distribution Xi ~ N(fi,a) to the 

distribution X0 ~ N(ji, A x a2), A > 1. A chart for location alone would eventually 

detect such a shift, but it would not be efficient. Worse, such a signal might be 

interpreted as a mean shift, not a scale shift. This is illustrated in Figures 1.2 and 

1.3. Notice both location and scale shifts are signaled on the location chart. The 

scale shift signals because the increased variability increases the probability that the 

process will exceed the control limits. 

Conventional practice interprets signals as follows: if there is a signal on the 

scale chart, consider that a shift in scale has occurred. If there is a signal on the 

mean chart only, consider that a shift in mean has occurred. If there is a signal in 

both charts, it may be due to either a shift in scale alone, or a shift in both scale and 

location. Investigate both possibilities. 

As with classic hypothesis testing, there is a tradeoff between the probability 

of type I and type II error, here given by the relative size of the ARL in-control vs. 

ARL out-of-control for various model departures. 

Depending on our criteria, we select sample size, sample frequency, and the 

control limits to best meet our needs. The criteria can be economic, and incorporate 

different losses for false positive signals, false negative signals, and sampling costs. 

The criteria can be strictly statistical. Optimal design against these criteria is dis- 

cussed by many authors, including Girshick and Rubin, [1952], Bather, [1963], Ross 

[1971], Savage[1962], and Taylor [1965, 1967]. A good survey is given in Montgomery 

[1991]. 

The advantages of Shewhart charts are simplicity and immediate sensitivity to 

large model departures. However, for small model departures, the ARL until a signal 



CHAPTER 1.   PROBLEM STATEMENT 

*sl 

Öl 

M 

5 

i 

■a1 

» 
A- Ji—a G_ 

Ö Ö 
o o 

-rf1 

^    öo   # 
o    °o 

"V- 

0 

o 
<» 

(f   oo° 

20 40 60 
Observations 

SO 100 
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can be quite large. Depending on the losses associated with large out-of-control ARLs, 

this can be costly for the process manager. 

1.1.2    Cumulative Sum (CUSUM) control charts 

The Shewhart chart tests the hypothesis that the sample came from the "in-control" 

distribution, Treating each sample separately, it does not use all the information 

available in the case where the out-of-control affects more than one rational sub- 

group. Various rules for declaring signals that the process is out-of-control have been 

proposed to use more of the data available. For example, one author proposes the 

process be declared out-of-control if 8 points in sequence are above the centerline of 

the chart, reasoning that the probability that 8 consecutive independent draws from 

a distribution are above the median is so unlikely (1/28 = .0039) as to signal a depar- 

ture from the null hypothesis [Western Electric, 1956]. More generally, the Western 

Electric rules signal the process out-of-control if k out of N of the preceding points are 

above or below the median. Champ and Woodall [1987, 1990] discuss supplementary 

rules and provide methods for determining ARLs. 

The cumulative sum chart generalizes this idea.   It works with the sum of 

previous observations (or transformations of observations.) As A.L. Goel says, 

This system of charting takes full advantage of the historical record 

and provides a rapid means of detecting shifts in the process level. [Goel, 

1982] 

In other words, the Shewhart chart is designed to detect large, isolated shifts 

in the process. The CUSUM is designed to detect persistent, perhaps small, shifts in 

the process. 

Standards references for the CUSUM include Van Dobben de Bruyn [1966], 

Johnson [1961], and Johnson and Leone [1962a, 1962b, 1962c]. 
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The roots of the CUSUM lay with the sequential probability ratio test (SPRT). 

This test was developed by Abraham Wald while at the Statistical Research Group 

at Columbia during the Second World War. It is interesting (to this candidate) that 

he attributes the genesis of the theory "in connection with some comments made by 

Captain G. L. Schuyler of the Bureau of Ordnance, Navy Department." [Wald, 1947]. 

Wald published on the theory of cumulative sums of random variables [Wald, 

1944]. 

Page [Page, 1954] adapted these methods to quality control, proposing the first 

quality charts based on cumulative sums of observations and calling them "CUSUM" 

charts. 

We will use the following decision interval characterization of the CUSUM. 

Consider the model where X has density f(x\6), i.e. X is a random variable whose 

distribution is indexed by the parameter 9. We consider 9 known and fixed at a 

value, say 90. We observe the sequence XX) X2, ■ ■ ■, Xn. We are interested in testing 

the hypothesis that 9 = 90 against the alternative 9 ^ 90. Instead of dealing with 

a composite alternative hypothesis, we consider two point alternatives:   9 = 9i or 

9 = 9U. 

Wald conjectured [Wald, 1947] and later proved [Wald and Wolfowitz, 1948] 

that the sequential probability ratio test was optimal for deciding between the two 

point hypotheses in the sense that the expected number of points sampled before a 

decision could be reached was minimized with the SPRT. A precise statement of these 

optimality properties of the SPRT in a decision framework can be found in [Ferguson, 

1967]. 

The SPRT considers 

f(X1,X2>...>Xn\91)      frfjXM 
n - f(X1,X2).. .,Xn\90)     i\ f(Xt\d0) 

where f{x\9) is the joint or marginal density as appropriate.   The SPRT accepts 
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Figure 1.4: A graphical description of the SPRT. 

HQ : 9 = 0o Ü An < A, accepts Ha : 9 = 0X if An > B and otherwise continues 

sampling. This is illustrated in Figure 1.4, with A = -3 and B = 3, where the null 

hypothesis would have been rejected at observation number 4. 

In practice, we work with the log-likelihood, or ln(A„), which results in a 

cumulative sum. We accept, reject, or continue sampling based on the value of this 

cumulative sum. As we have written it, the log-likelihood ratio will have a negative 

expected value when the process is in-control. When the process is well modeled 

by the alternate hypothesis, the log-likelihood ratio will have a positive expected 
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value. As a result, when the process is in-control, the sum tends downward. When 

the process is out-of-control at the alternative distribution, the sum tends upward. 

When the sum is above a certain limit, we have evidence in favor of the alternative 

hypothesis. When the sum is below a certain limit, we decide in favor of the null 

hypothesis. When the sum is in-between the limits, we continue to sample. 

The CUSUM is based on this test, except that the null hypothesis is never 

accepted. Instead, we restart the test each time the evidence favors the null hypoth- 

esis. We consider the evidence as favoring the null hypothesis whenever the sum is 

negative. At that point, we start over by resetting the sum to zero. We sample until 

we reject the null hypothesis in favor of the point alternative. 

For members of the one-parameter exponential family, we have the following 

general case: 

ln/(a;|0) = a(x)b(9) + c(x) + d(9) 

Then the log-likelihood ratio SPRT implies: 

o<lnAn<6 (1.2) 

n n 

a < Y,<XiWi) + CK> + d(*i) " CEa(xi)b(00) + c(xt) + d(90)) < b 

__o  , A / , ,    d(e1)-d(eQ)\ b 

Wi) - KOo) - h V Wi) - Wo)) - K*i) - W°) l ' } 

Accordingly, the SPRT is equivalent to testing if a' < Ea(ii) + k < b', where 

(1.4) a'   = 
b(9x) - b(90) 

b>   =   H9^'-H9Ö) (L5) 

"    b(01)-b(0o) [    } 
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The test statistic in the SPRT is the cumulative sum, ELiM^i) + *0- 

The CUSUM differs from the SPRT is two ways. First, we never accept the 

null hypothesis, so anytime the CUSUM is negative, which favors the null hypothesis, 

we start over. In other words, the indices for the sum are different. Less importantly, 

the way we have constructed the SPRT rejects the null hypothesis if the CUSUM 

is greater than a' and ft^) > b(90). We prefer this rejection region on the positive 

side. Reversing the roles of 90 and #i if necessary accomplishes that for the case 

b(9i) < b(90). Since k is usually negative, we also change the sign of k in our notation. 

This notation is consistent with the industry standard, described in Van Dobben de 

Bruyn [1966]. 

The scheme then becomes: 

S0
+   =   0 (1.7) 

S+   =   mzx{0,S+_1 + a(xn)-k
+) (1.8) 

and signals when S+ > h+. 

Say in the case above, 9X > 90. We can also construct a scheme to detect the 

changes in the other direction, for 92 < #o- The second scheme, for a shift in the 

opposite direction, is: 

So   =   0 (1.9) 

S-   =   min(Q, S'^ + aix^-k-) (1.10) 

This chart signals if S^ <h~. Many practitioners change the sign of k~ to be positive 

if it is negative, so one frequently sees Equation 1.10 written as 5~ = min(0, S~_x + 

a{xn) 4- k~). 

We run both schemes simultaneously to detect changes in 9. This results in a 

pair of schemes being plotted on the same chart, as illustrated in Figure 1.5. 
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Figure 1.5: A CUSUM chart, using the decision interval format. 
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We can also decide, based on costs of being out-of-control in one direction or 

the other, to set asymmetric values of 9X and 6>2, resulting in asymmetric values of h+ 

and h~. 

The upward and downward CUSUMs will each have its own ARL. If k+ + k~ > 

\h+ - h~\, then overall ARL for the two-sided scheme is : 

ARL = 
1 

1     ■ +       ' 
(1.11) 

**■**'*-'lower Ji.si.ljupper 

[Van Dobben de Bruyn, 1966]. 

With uniform scaling, it is possible to run both the Shewhart and the CUSUM 

schemes on the same chart. Some practitioners recommend putting as many as 6 

charts on the same graph, for the two parameter normal distribution: A Shewhart 

chart for location, another Shewhart chart for scale, two CUSUMs for location (upper 

and lower), and two CUSUMs for scale (upper and lower). This is illustrated in 

Figure 1.6. About such multiple charts, Hawkins [1992b] says, 

Suprisingly, this chart with up to 6 things plotted does not contain 

much 'clutter'. Under control, each of the four cusums spend much of its 

time running along the axis, and the two positive and negative cusums are 

confined to their own halves of the paper. Showing them as solid lines and 

adding the Shewhart points as individual unconnected symbols generally 

gives quite a clear presentation. 

Moustakides [1986] showed that the CUSUM scheme enjoyed the same opti- 

mality properties as the SPRT. Among all tests with the same in-control ARL, the 

CUSUM had the smallest expected run length out-of-control. The reader is referred 

to Moustakides for a precise statement and proof. 

An interesting interpretation of the Shewhart chart classifies it as a CUSUM 

with h = 0 and k = the control limit. Then the Shewhart chart is a CUSUM which 
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Figure 1.6: A multiple chart, showing both Shewhart charts for location and scale, 
and the 4 CUSUMs for location and scale. 
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signals immediately if a(X) > k, but restarts for any observation less than k. 

We will examine both CUSUMs and Shewhart charts in the body of this thesis. 

1.2    Inverse Gaussian processes 

The inverse gaussian distribution has its genesis in the analysis of Brownian motion. 

Following Chhikara and Folks [1989], we characterize the Wiener process X(t) with 

drift v and variance a2 as follows: 

1. X(t) has independent increments; for tx < t2 < *3 < U, we have X(t2) - X fa) 

independent of X (£4) — X fa) 

2. xfa) - Xfa) is normally distributed with mean vfa - *i) and variance a2 fa - 

ti), with t2 > ti. 

Schroedinger [1915] first showed that the distribution of the first time until 

the process X(t) > a for v > 0, a > 0 was inverse gaussian.  See Figure 1.7 for an 

illustration. 

This characterization of the inverse gaussian is useful for the applications which 

follow in this thesis. Many processes can be well modeled by Brownian motion with 

drift. We shall see how the attrition of forces in a military model can be approximately 

modeled by the inverse gaussian distribution. We shall also examine how well the time 

to complete the work at a station on an automobile assembly line is modeled by an 

inverse gaussian distribution. 

The inverse gaussian distribution is also useful for modeling of positive, skewed 

processes in general, even when the underlying mechanics do not immediately suggest 

a theoretical basis for Brownian motion passage times. 

The reader may notice a striking similarity between Figures 1.4 and 1.7. Wald 

[1944, 1945, 1947] showed that the distribution of the stopping times in the SPRT 
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Figure 1.7: First passage time illustration for Brownian motion with drift 
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with lower limit b — — oo and upper limit a was approximately distributed as inverse 

gaussian. Since the stopping times for the SPRT are discrete random variables and 

the inverse gaussian is a continuous random variable, the two distributions can only 

be approximately equal. 

1.2.1    Well Known Properties 

In this section, we list several well known results about the inverse gaussian distribu- 

tion, which later prove useful. 

1.2.1.1    PDF 

The probability density function (pdf) for X ~ IG(ß, A) is 

\2\ 
*t        w X    -3'2        /    X(x ~ »Y x> 0 (1.12) 

Several density curves for various values of \i and A can be seen in Figures 1.8 

and   1.9. 

1.2.1.2    CDF 

The cumulative distribution function for X ~ IG(fx, A) is 

F(X;IJL,\) = $ 
IX (x_ _ ^ 

X  \fi 
+ exp I — 1 $ 

<\(x 
x \n + 1 (1.13) 

where $(x) is the CDF of the standard normal distribution.   [Chhikara and 

Folks, 1989] 
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Figure 1.8: A sheaf of IG(p, 1) densities for // = .5,1,1.5,2, 5, and 10 
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Figure 1.9: A sheaf of JG(5, A) densities for A = 1, 2, 5,10, and 25 
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1.2.1.3 First passage time interpretation 

It is well known [Chhikara and Folks, 1989] that for a Wiener process with positive 

drift (u > 0) the first passage time to the barrier is inverse gaussian IG(p, A), with 

M = ÖzEal and A = &$£. 

1.2.1.4 Characteristic function and moments 

The characteristic function for X ~ IG(n, A), *(i) = Eexp(iXt), is 

1- 
. A 

V(t) = exp ll1-^) 
From this, it follows that the mean of X is ß and the variance of X is ^-. 

1.2.1.5 Member of the exponential family 

The inverse gaussian distribution is known to belong to the exponential family of 

order two. Let 0 = -\. Then the pdf can be expressed as 
A* 

f(x;X,9) = ^y/2exp(AÖ/2)x-3/2exp(-^ + ^)) (1.14) 

which is of the natural exponential family 

c(s)d(9)exp(o(a;)-6(6)) 

with 6(0) = 0 = (X,9) and a(x) = -l/2(ar\a:). 

Accordingly, for a random sample X from the inverse gaussian, the two di- 

mensional statistic (£•*"> E A"-1) is complete and minimal sufficient. 

1.2.1.6 MLEs of parameters and their distribution 

For a random sample Xu X2, ...,Xn where Xt ~ IG(n, A), the likelihood function is 
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and the maximum likelihood estimators of ß and A are easily seen to be 

ß = X 

and 

These estimators were obtained by Schroedinger [1915]. 

The distribution of these estimators is also known. Tweedie [Tweedie, 1957a 

and 1957b] proved the following results. 

Let X1} X2, • • • , Xn be independent identically distributed as inverse gaussian 

with finite first and second moments. Then £X* and E^"1 - n2(E^i)_1 are inde- 

pendently distributed. 

Tweedie showed in his proof that X ~ IG(p, nX). He defined 

n   ' 1        1 =?(£4) (115) 

and also proved 

V 
' l 

A^ ~ xt-i 

1.2.1.7    Related Distributions 

Let 
V2 _{X- M)

2 

Xp? 

Then 

AF2 ~ xl 

that is, AF2 has the chi-square distribution with one degree of freedom.   [Chhikara 

and Folks, 1989]. 
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Let Xi, X2,..., Xnx and Yi, Y%,..., Yny be independent random samples from 

IG(fjt, A). Let 

and let Vy be similarly defined.   Then it follows from its form as the ratio of two 

independent x2 random variables and is well known [Chhikara and Folks, 1989] that 

(nY - 1)VX      „ ,, 17N 

[nx - l)Vy 

where i^x-i.n^-i is the standard i7" distribution with nx - I and ny - 1 degrees of 

freedom. 

1.2.1.8    Predictive distribution for non-informative prior 

To obtain natural conjugate priors, it is advantageous to reparameterize the dis- 

tribution. This poses no logical difficulty in the predictive framework, where the 

parameters will be integrated out in the process. The parameterization we use sets 

ijj = 1/fi, and is due to Tweedie. 

Lacking data, one would often prefer a non-informative prior distribution. 

Jeffrey's prior sets p(tp, A) oc \f\I(i', A)|. Unfortunately, this prior produces a posterior 

which is not a proper distribution [Chhikara and Folks, 1989]. 

If one considers instead a diffuse prior for the parameters, the predictive distri- 

bution for the next observation given a series of observations from the inverse gaussian 

is known and due to Chhikara and Guttman [1982]. The prior used is 

p(ip} \) oc X~ . 

Then let x = {xi, x,2, ■ ■ ■, xn} be n independent observations from IG(ß, A), and Y 

be an additional observation taken independently of x. For y > 0, 

h(y\x) = k 
xX 

.1/2 

[nx + y)y 
1 . iß - y)^ 

xy(nx + y) 

n-n/2 

(1.18) 
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where 

A: = 

ß \V %"] ^.w-1 1 V    ra   J 
5i>n denotes the Student's t cumulative distribution function with n degrees of free- 

dom, and 

n(x - yf 
z — nv + 

xy(nx + y) 

Note that the expression given in Equation 1.19 for k is correct, and rectifies an 

existing unnoticed error in both the Technometrics article by Chhikara and Guttman 

[1982] and the Chhikara and Folks monograph [1989]. 

As an example, consider the following 5 observations from an IG (ft, A) distri- 

bution, with ß and A unknown: {xx = 3, z2 = 4, xz = 6, x4 = 3.5, xb = 2.5}. Then the 

graph of the predictive density for the next observation can be seen in Figure 1.10. 

Predictive limits for Y can be obtained by solving the appropriate integral 

equation using h(y\x). To find the lower predictive limit, Z(x), given the data x, for 

the next observation with probability a/2, we solve numerically the integral equation: 

Jo * 

and similarly for the upper predictive limit, u(x). 

We derive the more general joint predictive distribution for the next m obser- 

vations, given the first n, below. We also derive tighter predictive limits. 

1.2.2    Modeling advantages over other skewed distributions 

There are three major advantages to using the inverse gaussian distribution to model 

skewed data. The first is an appeal to the underlying physical properties of the process 
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Figure 1.10: An example of the predictive density for the next observation from an 
IG{n, A), for five previous points: {xi = 3, z2 = 4, z3 = 6, z4 = 3.5, x5 = 2.5}. 
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being modeled, The second discusses the notion of failure rates, and their asymptotic 

behavior. The third is based on the tractability of the sampling distribution of the 

inverse gaussian. We discuss each of the three in turn. 

If the underlying process can be thought of as a Wiener process, then the 

use of the inverse gaussian seems especially appropriate. The time to failure of a 

complex system may depend on the accumulated additive effects of many small per- 

turbations. Compare this with the log-normal distribution, whose application to 

modeling depends on multiplicative effects, which are often difficult to defend from 

first principles. 

Secondly, consider the failure rate, r(t) of a system as a function of time. We 

define 

r{t) = 
l-F(tY 

where r(t) denotes the instantaneous rate of failure for a process conditional on its 

having lasted a certain time. For a Poisson process with time to failure modeled by 

the exponential distribution with parameter A, r(t) = A; a constant failure rate. 

The assumption of constant failure rate is rather strong. Some applications call 

for a monotonic failure rate: some with an increasing failure rate (IFR); others for a 

decreasing failure rate (DFR). For these, it is possible to use the Weibull distribution, 

with density /(i,o;,/3) = aß~aexp{-{xlß)% (x,a,ß > 0). Then r(t) = aß~axa-\ 

and is decreasing for a < 1 and increasing for a > 1. 

In many situations which are characterized by a "burn in" process, it seems 

appropriate to have an initially increasing then decreasing failure rate [Chhikara and 

Folks, 1977]. 

An initially IFR then DFR process is often modeled by the log-normal distri- 

bution. For such a process, 

r(0=7**(*)/(l-*((*"/*)/'))■ 
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This failure rate is non-monotonic; increasing then decreasing asymptotically to zero. 

For many reliability situations, this asymptotic failure rate of zero seems illogical. 

An alternate model uses the inverse gaussian process. Its failure rate is given 

by: 

-« = T% (1'21) 

l art»;     expV   Vt   ) (1.22) 

This failure rate is also non-monotonic, initially increasing then decreasing. 

However, its asymptotic failure rate is given by 

It is easily shown that the maximum value of r(t) occurs at the value t* which is the 

solution to the equation 

r[t) ~ 2M2 + 2t ~ 2*2 

and the maximum failure rate is r(t*). 

This provides a strong argument for using the inverse gaussian over the log- 

normal distribution to model lifetimes. It is hard to conceive of physical processes 

where the failure rate would decrease to zero. 

The third argument for using the inverse gaussian is that the sampling distri- 

bution of the MLEs of the parameters are known and easy to work with, as above. 

Using the inverse gaussian avoids the need to transform the data prior to finding 

MLEs, as is the case with the log-normal distribution. 

1.3    Scope of this thesis 

This thesis extends and corrects the work of Edgeman, who first developed Shewhart 

control charts for the inverse gaussian distribution.   We develop self-starting and 
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predictive Shewhart charts, and discuss their features. We then develop CUSUM 

charts for the inverse gaussian distribution, along with several variants, and discuss 

their properties. We also propose and develop a new type of bi-variate Shewhart 

chart, and apply it to the inverse gaussian case. 

We apply these methods in two settings. First, we model the loss exchange 

ratio (LER) for a military mission as an inverse gaussian random variable. The LER 

is the ratio of enemy casualties to friendly casualties. We use standard military mod- 

eling packages to generate this data using high-resolution simulation - simulation in 

the war-gaming, not statistical, sense. We verify that the inverse gaussian distribu- 

tion provides a reasonable fit. We then show how statistical process control, and in 

particular the methods of this thesis, can alert the decision maker to a shift in the 

distribution, and the significance of such an alert. We explain the significance of this 

application. 

Second, we consider an example from the literature where the time to complete 

a task on a General Motors assembly line has been well modeled by the inverse 

gaussian distribution. We apply our methods to that case, and discuss the significance 

of that application. 



Chapter 2 

Shewhart Control Charts for IG 
Processes 

In this chapter, we discuss Shewhart Control charts for processes modeled by the 

inverse gaussian distribution. 

2.1    Edgeman's work 

Edgeman [1989] proposed control charts for the inverse gaussian distribution. He pro- 

posed charting transformations of the sufficient statistics X and V, discussed above. 

The transformations were originally given by Chhikara and Folks [1976]. 

Let X ~ IG(ß, A). Assume A is fixed and known. Chhikara and Folks [1976] 

showed that the uniformly most powerful unbiased test for E0 : n — \i0 against 

HA: n T^ ß0 is of the form X > &i or X < fc2, 
since the IG has a monotone likelihood 

ratio, and is in the one-parameter exponential family when A is known. To obtain a 

pivotal, they proposed the transformation to the statistic 

Y = (NX ) 1/2(^ " Mo) (2 1) 

The cumulative distribution function of Y is given by 

G(y) = $(y) + exp(2A/M)$ i-Jy2 + — 

where $(y) is the standard normal CDF. It follows from the CDF of Y that \Y\ has 

the folded normal distribution. The rejection region for the test is given by 

|^| > Zl-aß 

29 
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where zi-a/2 is the a critical value from the standard normal distribution. 

Similarly, when A is unknown, the test statistic becomes 

W 
y/n (n - 1) (X - /i0) 

(2.2) 
ßoVXV 

where V is defined as in Equation 1.15. The critical region is 

\W\> ti-a/2 

where ii-a/2 is the critical value from the t distribution with n -1 degrees of freedom. 

The tests for one-sided alternative hypotheses are not quite as simple in form, 

but exist and are discussed in [Chhikara and Folks, 1989]. 

Edgeman replaced \i0 with /x and constructed confidence intervals for /x of the 

form 

/ 
X X 

\ 

1 + Z^a/2^X/(NX)' max (o, 1 - Z^a/2^X/(NX) 

when A is known and of the form 

/ 
X X 

\ 

xv 
^0, 1 - £l-a/2yjV(JV-l)J 

when A is unknown. 

The right hand limits contain the "max" function in the denominator to re- 

strict ft > 0. 

Edgeman then assumed that there was historical data based on about "M = 

20 to M = 25 samples". From that data, he substituted the grand average of all 

observations, ~X for X, and V for V, to obtain lower and upper control limits (LCL 
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and UCL, respectively) for the process centrality when A is known and unknown 

T 
U O' J^X known I 

max 0, 1 - Zi_a/2Y Jjx 

(2-3) 

LCL\knawn     = r== V^'V 

tfCL 

H-^-a/ayivÄ 

Xunknown 

max 0,1 -tx_a/2\j^ 

(2.5) 

LCL \unknown     — IZZ  V^-0/ 

The center line for the chart (CL) for the mean is given by X. The subsequent 

sample averages are plotted against these limits, and the process is signaled as "out- 

of-control" for process centrality if/when a sample average exceeds the control limits. 

We shall see in a later section that the performance of these charts is very 

poor. In checking the original article, we find no performance data for Edgeman's 

scheme, only for a competitor. 

We conjecture that Edgeman's original article contains an error. We find 

that if we proceed as Edgeman did, but substitute the historical mean for /x0 into 

Equation 2.1, and then construct upper and lower bounds on X, we obtain: 

-_-/ r==     ßz    \2 

X [\JXzl/2 + AXn + \/Xza/2) 
LCLx known    — T"T (/■',) 

=-/   >= '         £= \2 

x(yx*t«/2+4An+v**i-«/2j 
UCLxknown    = :        ^T"~ (^-°) 

(2.9) 
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Similarly, if A is unknown, we proceed from Equation 2.2 and obtain: 
^ 2 

—         ,     !TvHt
7 ,„      -+4n2-4n /= 

XFi? I ^ -J^^g + V^t«/2,n-l 

^ ^tinknovm,    = "7, f A/f — 1s) 

=        /    /XVwt?     ,„      ,+4n2-4n .-- 

UCL\unknovm    = .   (\/f _ -\\ \  •    ) 

We use Vff = E^i ( ^ - =) > which is our unbiased estimator for (M - 1)/A 

using the M historical data points. These control limits perform as expected, and 

should be used in lieu of Edgeman's original ones. Note that n refers to the size of 

the rational subgroup. 

By illustration, if one assumes an 7G(3,5) distribution, samples of size 5, 

a = .01, and uses the uncorrected scheme of Equations 2.4 and 2.5, one obtains 

LCL = 1.58538 and UCL = 27.8508. In control, the ARL for the uncorrected 

scheme is 24.000, instead of the desired ARL of 100. Clearly, something is amiss. 

If we use our corrected scheme, we obtain LCL = 1.26308 and UCL = 7.12542, 

and the ARL is 99.9891. This is the desired performance. 

Edgeman controlled for A in a similar fashion, using the fact that the distri- 

bution of V ~ (l/A)Xn-i- He obtained 
2 

UCL   =   ^2&£zl (2.12) Jß - 1) 
LCL   =    FX'-a/2'iV"1 (2.13) (iv-i) y    J 

CL   =   V (2.14) 

We will see in our example in Chapter 8 that this control chart scheme be- 

haves unexpectedly, in that the ARL for out-of-control states obtained by small shifts 

towards the heavy tail is actually greater than the ARL when in-control. This will 

support our argument to use other techniques which do not suffer from this defect. 
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Edgeman compared his uncorrected charts with traditional X and R charts for 

normal processes, and found that the normal charts did not perform well. As noted 

above, he provided no evidence that his uncorrected design performed well, either. 

Edgeman also noted that the "UCLs given ... can become infinite. In the 

event that an infinite UCL occurs, it may be desirable to construct control charts for 

reciprocal process centrality." 

2.2 Improvements 

Additional improvements to Edgeman's work will focus first on simplifying the work. 

Next, we extend it to the case where the parameters are not known a priori, and 

we design a "self-starting'' control scheme which continually adapts to the data. An 

alternative, predictive control charts, will be developed in the next chapter. 

2.3 Simplification 

The transformation of the sample data into Y and W statistics was done to obtain 

pivotal quantities; that is, quantities whose distribution did not depend on the param- 

eter. While this is useful in estimation, it is less so in significance testing, particularly 

where we assume a priori that we know the distribution of the process. Addition- 

ally, quality control methods should strive, where convenient, for simplicity in their 

implementation, as the calculations may be performed manually by the shop worker. 

With this in mind, let us revisit the ~X charts. For A known, we know that the 

uniformly most powerful (UMP) unbiased test for H0 : ß = HQ against Hx : \i ^ p0 

is of the form. X > h or X < k2. In control, the distribution of X is known to 

be IG(/x,n A). Accordingly, it is simpler to directly determine k± and fc2 to meet 

some criteria.  Once the criteria are determined (discussed below) it is much easier 
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to implement the control charts.   Additionally, the problem of infinite or negative 

control limits is also avoided. 

fci and k2 are set so that the probability that the process, in control, exceeds 

them is a = -~r. Traditionally, they have been set symmetrically, satisfying P{X > 

ifei) = a/2 and P{X < k2) = a/2. 

The UMP unbiased test sets the control limits so that Jkl f(x;p,\)dx = 

1/ARL and jjfa; /(a;/*, X)dx = E(X). Economic arguments based on non-uniform 

loss might mitigate a different strategy. 

The symmetric probability and UMP-unbiased control limits are not the tight- 

est possible limits for a skewed distribution. For a skewed distribution, the highest 

probability density region (HPD) provides the shortest interval. See Figure  2.1. 

The HPD is of the form R(a) = {x : f(x) > k(a)}. k{a) is found numerically, 

where a is the desired probability of an out-of-control signal when the process is 

in-control. 

A routine for computing the HPD control limits for the inverse gaussian is 

available from the author. 

In summary, we chart ~X to control for central tendency. Since the distribu- 

tion of X is known to be IC(p,n\), we set the control limits (R) by finding either 

symmetric limits, UMP-unbiased limits, or the HPD region, R(a) for the fx(x). The 

process is deemed to be in control as long as the sample average is within R. 

This approach has two distinct advantages over Edgeman's work. First, we 

avoid the possibility of infinite upper or lower control limits. Second, with the HPD 

region we obtain the tightest (in the sense of shortest possible) control intervals among 

all intervals with the same a. We compare the performance of all these methods later 

in the chapter. 
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Figure 2.1: Illustration of the HPD region for a skewed distribution. Here a = .01, 
and X ~ 7G(3, 25), corresponding to the distribution of the mean of a sample of size 
five from an IG (3, 25). The upper and lower limits of the HPD region were found 
numerically using Mathematica to be x = 1.04805 and x = 6.26794. The value of 
f(x) at the endpoints of the HPD is / = .0119252. 
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2.3.1    Average Run Lengths 

We illustrate the comparative advantages of the known parameter approaches above. 

We examine the ARLs found for several IG (ft, A) distributions, in-control and then 

with departures from control at various points in the process lifetime. The exact 

value of the out-of-control ARLs can be found by integration for all of the known 

parameter approaches. 

It is apparent from Tables 2.3.1 and 2.3.1 that, among the four alternatives, 

the HPD test is the most powerful for detecting an increase in the mean, but performs 

poorly for detecting decreases. For a decrease in the mean, the ARL exceeds 100 for 

some of the test cases. 

The symmetric limits appear to perform reasonably well for detecting both 

decreases and increases. 

The corrected Edgeman test is much slower detecting an upward shift, com- 

pared to the symmetric and HPD tests. However, it does not appear to suffer loss of 

performance for downward shifts. Of course, we expect good performance from the 

corrected Edgeman test, as it is based on the uniform most powerful unbiased test 

for detecting a mean shift, given A is unknown. 

We note that in many applications (and both of the examples which follow 

later in this work), one is more interested in detecting increases in p than in detecting 

decreases. This favors the HPD chart over the corrected Edgeman chart. 

2.4    Self-starting Shewhart Charts 

In this section, we propose charts based on the running estimates for y, and A. Fol- 

lowing Hawkins [1987], we call these "self-starting" charts. 

In the preceding section, we assumed the process characteristics were known 
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Comparing AKLs tor Mean Test s 

V> A Edgeman Corrected Edgeman HPD Symmetric 
3 
4 
5 
6 
7 
1 

5 
5 
5 
5 
5 
5 

24.00 
81.91 
191.94 

344.117 
378.658 

1.01 

99.98 
20.79 
6.56 
3.62 
2.58 
1.12 

1ÜU 
11.18 
4.31 
2.69 
2.06 
1.58 

100 
15.18 
5.30 
3.11 
2.30 
1.17 

Table 2.1: Comparison of the Edgeman, Symmetric, and HPD schemes for a mean 
shift, A known, a = .01, a = 5, with the in-control distribution as IG(3, 5). Note the 
poor performance of the uncorrected Edgeman scheme. Also note that the HPD is 
not as quick to detect a downward mean shift. 

Comparing ARLs tor Mean Tests 

f* A Edgeman's Corrected Edgeman HPD Symmetric 
42 66 23.17 10U 1U0 100 
45 66 31.00 86.75 53.8326 69.87 
50 66 47.83 46.86 23.4519 33.17 
60 66 97.08 14.49 8.1826 10.81 
70 66 168.04 6.96 4.5026 5.56 
40 66 18.82 93.80 154.278 109.93 
35 66 10.61 53.79 267.764 75.22 

Table 2.2: Comparison of the Edgeman, Symmetric, and HPD schemes for a mean 
shift, A known, a = .01, n = 5, with the in-control distribution as 7(3(42,66). This 
distribution is discussed later in the General Motors example. Again, note the poor 
performance of the uncorrected Edgeman scheme and the one-sided performance of 
the HPD test. 
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exactly. 'Tins, of: course, is not always the case, Edgeman addressed this issue by 

setting p — X and A = 1/V. These are only estimates, and subject to sampling 

error. If there is extensive historical data, then the error will be small. However, 

Edgeman states 

The values of ~X and V should be based on the results of about M = 20 

to M = 25 samples 

citing Montgomery [1985]. A check of the revised referenced work indicates that, in 

the section discussing the statistical basis of the chart for the normal distribution, 

Montgomery [1991, p. 203] states 

These estimates should usually be based on at least 20 to 25 samples. 

(Emphasis added.) 

The use of the rule of thumb of "about" 20 to 25 historical samples for setting con- 

trol limits for a non-normal, potentially heavy tailed distribution such as the inverse 

gaussian does not seem supported by this reference. For CUSUM charts, a different 

context, Hawkins [1987] has found evidence for normal processes that "25 start-up 

observations (as seems to be the standard practice) is too short a learning set, par- 

ticularly ao regards the process standard deviation." 

Additionally, the use of a fixed learning set to set process limits ignores the 

improved precision one may get from incorporating subsequent data into the estimates 

of the process parameters. Further, such a rule is of no help in the start-up phase 

of the process, when we wish to control the process while also gathering the process 

initial data. 

To address these issues, we may use self-starting control charts. Hawkins 

[1987] has proposed self-starting CUSUM control chares. He argues for them as 

follows: 
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Thus the self-starting cusums produce superior performance to those 

obtained with some 25 special start-up values while not involving any 

measurements beyond those produced anyway. ... We would therefore 

argue that self-start CUSUMs should always be used in preference to 

plugging the mean and observations of a start-up sample into the formulae 

assuming known parameters. 

We argue similarly for self-starting Shewhart charts, while noting that the Shewhart- 

type chart is more robust to a model mis-specification of parameter than the CUSUM. 

Hence the case for the self-starting CUSUM may be more compelling than that for 

the self-starting Shewhart chart. 

We design two self-starting Shewhart charts, one for location and one for shape. 

The self-starting Shewhart chart is based on the UMP-unbiased test [Chhikara, 1975] 

for the equality of two inverse gaussian population means. The self-starting Shewhart 

chart for shape is based on the likelihood ratio test for the equality of the scale 

parameters A and r of two inverse gaussian populations IG(fi,\) and IG(I/,T). These 

are discussed in detail below. 

2.4.1    Self-Starting Shewhart charts for location for the IG(ii, A) 

Assume we have two inverse gaussian processes, X and Y, with common but un- 

known scale parameter A. Chhikara [1975] derived the uniformly most powerful un- 

biased (UMP-unbiased) test for the equality of the two process means. We test the 

hypothesis 

Ho ■ ti = v versus H\ : n ^ v 

We draw a sample from each population. The rejection region is given by 
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\T\ = > h-a/2,ni+n2-2 (2.15) 
y/n1n2(n1+n2-2)(X-Y) 

y/XY(n1Y + n2Y)(V1 + V2) 

\T\ has the folded t distribution with m + n2-2 degrees of freedom, a result 

reported in Chhikara and Folks [1989]. Note that the expression in Equation 6.31 of 

Chhikara and Folks [1989] is incorrect; the expression in Equation 2.15 is correct. 

To construct a self-starting scheme, we collect a first sample of size n, call 

it Xi. We then collect a second sample of size n, Yu compute Tx and test for the 

equality of means. If the null hypothesis is not rejected, we merge sample Xx and Y1 

into the new reference sample, X2, of size 2n. We then collect our third sample of 

size n, call it Y2, compute T2 and test for the equality of means for X2 and Y2. If it 

is not rejected, we merge Y2 with X2, and draw another sample. And so forth. 

The scheme suffers from the disadvantage that the control limits depend on a 

t statistic, whose value changes as the sample sizes change. This problem is reduced 

as the number of samples grows, because t —*■ N(0,1). 

There is a further transformation of the test statistic that can allow for con- 

stant control limits. 

For a given observation of T, we compute its p-value using the CDF for T: 

P = FT(T). It is well known that P ~ U(0,1). We then convert that percentile 

to a JV(0,1) variate, using the inverse CDF for the standard normal distribution: 

Z = $_1(P).  We are now in the very familiar setting of charting standard normal 

variates, 

Z = $-1(FT(T))~N (0,1) 

While these transformations complicate the computations for the operator 

doing his charts by hand, for those using a computer this scheme has the advantage 

of constant limits, a distribution unaffected by the number of samples to date, and a 

very familiar context. This allows simpler charting and easier probability calculations. 
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We obtain control limits in the usual manner, first specifying the ARL we 

wish. We then set a = j^ and find za/2 and 2i_a/2, the usual critical values. Since 

in-control we are charting normal variates, all standard control chart theory applies. 

If the mean of the process shifts, we see that the numerator of T no longer has 

expected value of 0. Accordingly, the ARL out-of-control is reduced. Calculation 

of the exact out-of-control ARL is cumbersome due to the mixed in-control and 

out-of-control distributions in the denominator of T and is further complicated by 

the transformations. For approximating those out-of-control ARL calculations, we 

suggest simulation. Simulation also provides a characterization of the out-of-control 

run length distribution itself. 

As an alternative, one could forego the above transformations and chart the 

corresponding p-values for the T*, and signal if the p-values fell in some rejection 

region. As the p-values are uniformly distributed while the process is in-control, it is 

easy to derive a control scheme for them. We prefer to chart the corresponding normal 

variates, because they provide higher visual resolution in the tails of the distribution. 

2.4.1.1    Example 

We provide the following example of a self-starting chart for the process mean. The 

in-control distribution is IG(3, 5). We take samples of size one by simulation. We 

desire an ARL of 100, so we signal if \z\ > 2.5758 or if .005 < p < .995. 

Our first case has an out-of-control point deliberately inserted at observation 

6. Table 2.3 provides the data. The control chart is presented in Figure 2.2. We see 

that the scheme does not catch an early outlier, which is to be expected. We also see 

that the next several observations report low p-values and ^-scores, which is also to 

be expected until the effect of the outlier is averaged out. 

Our second case has the outlier at observation 16. Table 2.4 provides the data. 



CHAPTER 2.   SHEWHART CONTROL CHARTS FOR IG PROCESSES 42 

tf 

w 

il 
H 
O 
U   O 
ri 

I 

"V- 

0 

o     o 

o * 
o o 

5 10 15 £0 
Observation 

Figure 2.2: Control chart for the self-starting example with early outlier, a = .01. 
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n ß A X P-value Signal? 
1 3 25 3.5156 n/a 
2 1.4671 n/a 

.4520 3 2.2176 
4 2.0622 .3965 
5 2.7420 .6437 
6 7 40 13.0000 .9916 NO 
7 3 25 2.2903 .2662 
8 2.6414 .3282 
9 2.6564 .3343 
in 5.2536 .6860 
11 3.1756 .4041 
12 5.2532 .6888 
13 1.9516 .1504 
14 3.7829 .5119 
15 2.7475 .3141 
16 2.7620 .3208 
17 3.6853 .5170 
18 2.8630 .3408 
19 2.2799 .2044 
20 2.3533 .2279 

Table 2.3: Self-starting results for a data stream with early outlier, a = .01. 

The control chart is presented in Figure 2.3. We see that the scheme does catch this 

outlier when it occurs later in the process. We also see the effect on the observations 

following the outlier is less dramatic. 

Self-starting charts offer us the opportunity to detect outliers in our initial 

phase. This provides control not available otherwise. Additionally, once we correct 

the conditions which caused them, we can delete those outliers from our process 

historical data, obtaining better estimates for subsequent control. 

We return to this data set when we analyze the performance of the predictive 

charts developed in the next chapter. 

2.4.2    Self-Starting Control charts for shape for the IG(fi, A) 

Assume we have two inverse gaussian processes, X and Y, with common but un- 

known mean, \i. Chhikara [1975] derived the uniform most powerful unbiased (UMP- 

unbiased) test for the equality of the two process shape parameters, A. We test the 
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Figure 2.3: Control chart for the self-starting example with later outlier, a = .01. 
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n M A X P-value Signal? 
1 3 25 3.5156 n/a 
2 1.4671 n/a 

.4520 3 2.2176 
4 2.0622 .3965 
5 2.7420 .6437 
6 2.7620 .6385 
7 2.2903 .4179 
8 2.6414 .6013 
9 2.6564 .6033 
in 5.2536 .9882 
ii 3.1756 .6451 
12 5.2532 .9472 
13 1.9516 .1427 
14 3.7829 .7382 
15 2.7475 .4165 
16 7 40 13.0000 .9993 YES 
17 3.6853 .5170 
18 2.8630 .3408 
19 2.2799 .2044 
20 2.3533 .2279 

Table 2.4: Self-starting results for a data stream with later outlier, a = .01. 

hypothesis: 

H0: Xx — ^Y versus HA ■ ^X ¥" ^Y 

Again, we draw a sample from each population. Let 

v^/ 1        1\ 

and VY be similarly defined. Then we recall from Equation 1.17 that the distribution 

under the null hypothesis of 

R 
inY - 1)VX 

(nx - l)VY 

is known to be Fnx_i>ny_i. 

We can use this known distributional result to construct a simple self-starting 

Shewhart scheme to control for the shape parameter. 

We set our significance level, a, a priori. We then draw our first sample from 

our process, and call it Y\. We draw our second sample, and call it X. We compute 

R for the two samples, X and Yi. We find the corresponding two-sided p-value from 
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a standard F table or numerical routine with the appropriate degrees of freedom, and 

chart it. If p $ [a/2,1 - a/2], we signal. Else, we define Y2 = Yx + X, and draw a 

new sample , X. 

In control, our ARL is 1/a. 

Now, assume that the distribution shifts in the shape parameter to Aa. For 

the first observation out-of-control, we have 

X ~ IG(fi, A«) 

Then the distribution of Vx shifts as well: 

Vx ~ A„ >a 

Then 
A(ny. - 1)VX _ _A_ 

R - X(nx - 1)W ~ Aa 
X Ha 

P I — X -^o > [Cloweri Cupper\ j  — -T I Ka ^ 

where ßa has the F distribution with the appropriate degrees of freedom. In other 

words, there is a scale shift in R. For this first observation, we can compute explicitly 

the probability of a signal: 

For subsequent observations out-of-control, the distribution of R is not as 

clean, due to the mixing of differently scaled x2 variables in the expression for YJ. 

2.5    Conclusion 

In this chapter, we have improved and extended the work by Edgeman, who first 

described Shewhart charts for the inverse gaussian distribution. We have corrected 

the test for the mean of the process. We have explored both symmetric and HPD 

control limits, and contrasted them to the corrected Edgeman scheme. We have also 
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described self-starting Shewhart charts to allow both process control in the startup 

phase and improved control during the run phase. The examples in the preceding 

section illustrated the comparative utility of these approaches. 



Chapter 3 

Predictive control charts for the IG 

Instead of using the self-starting methodology of the previous chapter, it is possible 

to consider the problem anew from a Bayesian perspective. This offers the possibility 

of incorporating pre-existing information about the process into our control schemes, 

while simultaneously recognizing that there is uncertainty associated with the pre- 

existing information. 

We consider two classifications of schemes in this chapter: rational groups of 

size one and then larger rational groups. We derive the predictive limits for the next 

observation or next group of observations. 

The predictive framework has the advantage of dealing with observables. While 

traditional quality control methods control for the value of a parameter, the predic- 

tive approach controls more generally for model departures. If the model is correct, 

and unchanged, we may obtain an interval with a given probability for the next ob- 

servation. If the next observation is within that interval, we update and continue to 

sample. If the next observation is outside that interval, we stop the process and check 

for model departures in the underlying physical process. 

Since we also obtain the distribution of the next observable, we are able to 

make expected loss calculations for any loss function. We can then control for ex- 

pected loss as a function of the next observable, instead of controlling for the value of 

the observable, or even for a parameter shift. The ability to introduce loss functions 

in this manner also argues strongly for the predictive approach. 

48 
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3.1     Sample of size one 

In this section, we utilize Equations 1.18 and 1.19 to construct a control scheme for 

the next observation from an inverse gaussian process. In this approach, we assumed 

an appropriate non-informative prior distribution, as was used in Chapter 1 where 

these results were reviewed. 

Instead of a non-informative prior distribution, it is possible to use the natural 

conjugate prior for the inverse gaussian as the prior. Those methods are not developed 

further in this thesis. Such an approach would have the advantage of greater predictive 

power early in the process startup phase, reflecting a more informed prior opinion. 

Recall that the predictive distribution for the next observation Y from an 

inverse gaussian process with previous observations X\, X2, ■ ■ ■, Xn is given by: 

r _? nl/2 r /_ ^9;   i-™/2 
1™ A 

h(y\x) = k (nx + y)yz 
1+ (*-y)2* 

xy(nx + y) 
(3.1) 

where 

V ((n + 1) y^S) 

Sttn denotes the Student's t distribution with n degrees of freedom, x is the arithmetic 

mean, and v = Y,iMxi) ~ l/^> and 

n(x - y)2 

z = nv + 
xy(nx + y) 

As in the previous chapter, there are two approaches to finding limits for 

the next observation. The first uses symmetric quantiles, and requires us to compute 

quantiles for predictive distribution. A numerical routine which computes these quan- 

tiles is available from the author. The second approach uses the highest probability 

density region. It, too, has a numerical routine available from the author. 
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Prom each of these schemes (controlling with probability limits and controlling 

with highest probability density limits), we have obtained a region R for the next 

observation Y. If Y € R, we continue to sample. If Y $ R, then we stop the process 

and check for a physical reason for the model departure. 

For the first approach, notice that we do not actually have to compute the 

region, R, which is an extensive exercise in numerical computing. Rather, we compute 

the p value associated with the observation, and compute and chart it. If P(Y < y) 

is too low or too high, we stop the process as out-of-control. 

For the second approach, we find the P(h(Y) < h(y)). Again we chart this 

probability. If this probability is too low (one sided test here), we stop the process as 

out-of-control. Computing P(h(Y) < h(y)) is easier than finding the corresponding 

rejection region. 

Charting p values has the additional benefit of being easy to explain to the 

practitioner. We are charting how unlikely the subsequent data is, given all of the 

preceding observations. 

3.1.1    An example 

Let us assume that we have a process with true but unknown parameters \x, = 3, and 

A = 25. Let us further assume that we have an out-of-control state which has \i = 7 

and A = 40. We will run the process in control for various lengths, and then see if 

the chart detects the departures. We will set a = .01, resulting in an ARL of 100 in 

control. Notice the scheme does not know what the initial parameters are. Tables 

3.1.1 and  3.2 record what happens. 

In constructing the samples, we generated 19 observations from an JG(3, 25), 

and one outlier. The outlier was chosen so as not to signal early in the process, but 

to signal late in the process.   We see that the vagueness in the prior results in a 
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n M A X P-value Signal? 

1 3 25 3.5156 n/a 
2 1.4671 n/a 

.4704 3 2.2176 
4 2.0622 .4718 
5 2.7420 .7141 
6 7 40 13.0000 .9947 NO 
7 3 25 2.2903 .3796 
8 2.6414 .4529 
9 2.6564 .4554 
in 5.2536 .7978 
ii 3.1756 .5253 
12 5.2532 .7938 
13 1.9516 .2174 
14 3.7829 .6277 
15 2.7475 .4131 
16 2.7620 .4175 
17 3.6853 .6219 
18 2.8630 .4344 
19 2.2799 .2741 
20 2.3533 | .3010 

Table 3.1:   Representative predictive results for early outlier. 
(.005, .995). 

We signal if p  ^ 

n M A X P-value Signal? 
1 3 25 3.5156 n/a 
2 1.4671 n/a 

.4704 3 2.2176 
4 2.0622 .4718 
5 2.7420 .7141 
6 2.7620 .7048 
7 2.2903 .4816 
8 2.6414 .6578 
9 2.6564 .6557 
10 5.2536 .9926 
11 3.1756 .7099 
12 5.2532 .9657 
13 1.9516 .1851 
14 3.7829 .7988 
15 2.7475 .4881 
16 7 40 13.0000 .99973 YES 
17 3.6853 .6219 
18 2.8630 .4344 
19 2.2799 .2741 
20 2.3533 j .3010 

Table 3.2:   Representative predictive results for later outlier. 
(.005,.995). 

We signal if p   £ 
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wide posterior distribution for the next observable early in the process. That is why 

observation 6 in Table 3.1.1 does not signal, but observation 16 in Table 3.2 does. 

We can introduce a loss function into this problem. Assume that there is a 

loss function L(Y) associated with each observation. We wish to predict the expected 

loss for the next observable, based on the current data. If the predicted expected loss 

exceeds some value, we stop the process. Then 

EY\x(L(Y)\X) = /    L(y)h(y\x) dy (3.3) 

A simple example of a loss function would arise in a warranty context. Say 

Y models the lifetime of the next component, which is warranted for a period of one 

time unit. If Y < 1, we have a loss of, say, 1, else we have no loss. The expected 

loss is, of course, the same as finding P(Y < 1|X), where Y is the predicted next 

observation. 

One can use any other loss function in a similar manner. We discuss two 

asymmetric loss functions which seem useful later in this chapter. 

This Bayesian approach is particularly useful when one is indifferent to the 

model parameters, but very interested in controlling some loss. For example, when 

modeling skewed data, the practitioner might not care if the model used was a log- 

normal one or an inverse gaussian one. He might only care what his expected loss 

was. The advantage of the inverse gaussian model is that it allows the calculation of 

this expected loss much more easily than the lognormal model, using this predictive 

approach based on the sample. 

3.1.2    Comparison with the self-starting scheme 

Recall that we have used the same data sets as examples for both the self-starting 

and predictive charts. Comparing Tables 2.3 and 2.4 with Tables 3.1.1 and 3.2, 

we see that the predictive method almost detected the early outlier (p = .9947) and 
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was more sensitive than the self-starting technique (where p = .9916.) The predictive 

chart also signaled more strongly than the self-starting chart for the later outlier 

(p = .9997 for the predictive chart vs. p = .9993 for the self-starting scheme). 

3.2    Sample of size m 

A search of the literature does not reveal the predictive distribution for the next m 

observations, based on a sample of size n. In this section, we derive this distribution, 

using principles summarized by Geisser [1993]. We parallel the approach in Chhikara 

and Guttman, [1982], used for the univariate case. 

The resulting distribution can be used in exactly the same manner as the 

preceding section for control of the process or the loss from a process. 

For ease of computation, we use the parameterization of the density in the form 

f(x\9, A). We use the diffuse prior for 9 and A given by [Banerjee and Bhattacharyya, 

1979], which is 

p(9, A) ex i 

\ + (xe -1)2 

vx 

Then, the likelihood becomes 

/is             (   n^v 

L(0,A|x) ocexpl — 

where x = X) Xi/n and 
E(i/s«)    l v = — 

n x 

Note that we have slightly redefined v in this section, to match the notation of 

Chhikara and Folks. 

The posterior density for the parameters becomes 

tV2   /„,An/2 

mAlx).(Cll)l^eXp(-^(1 + ^^)) (3.4) 
VX 
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We write the joint density of the future m observations, y, given 9, A as: 

/<™-®>M-H?(H)+^))   (3'5) 

Then the predictive density becomes: 

oo oo 

h(y\x) = J J f(y\9,\)p(9,\\x)ddd\ (3.6) 
0   0 

The simplification of /i(y|x) is an extensive bit of work. We will use the 

following constants and redefined variables to reduce the notation. We will introduce 

additional notation later. 

(sHT)-Vr* (?*-**) (37) 
r (^p) st,nr-i (v ^F) 

= f^l-ll (3.8) 
m 

W 

mx + ny(vx + l)+w(xy) _ (m + n)' 
x y my + nx 

z   =     __  • = z—^ (3.9) 

Using the above change of variables and constants, we can write Equation 3.6 

as: 

\d0 d\       (3.10) 

oo V      V " / 
Ä(y|x) = cj J A^^exp    -A    ^ v—L 

Using the appropriate Gamma identity, we simplify to 

"(ylx)-r(^)/ 
/*+my + nX(8-^)\ ^ 

\ 
2 

o 

We make four new definitions: 

m +n tyfz 
9- 

my + nx y/m +n + ly/nx + my 

Cl = cr(^y(^y2 
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,-(m+n-l)/2 
C\ Z 

C2    = \Jm + n - l^Jnx + my 

-(m+n)  j(m + n- l)(nx + my) 
LI,        —         _ — A — 

my -\-nx V z 

Now, we change variables from 0 to t. The integral for the predictive density 

becomes: 
oo   , 2 x-(m+n)/2 /j 

Ä(y|x) = Cl / ^ + ^3lj Vm+n-Wnx + my * (3'12) 

Factoring out the z, grouping, and appealing to the symmetry of the integrand, 

we obtain: 
oo   , 2 s -(m+n)/2 

k(yW = "»/(^j^rr) * (3'13) 

J   V       m+n — 1/ 
—oo    N 

=   c2 5t)m+n_!(-LL) (3-15) 

Here, as before, the CDF of the Student's i-distribution with k degrees of 

freedom is given by St,k- 

Now that the parameters have been successfully integrated out, the remaining 

task is to recover the variables of interest from the expression and simplify. We have: 

/i(y|x)   =   c2£t)m+n_i(-LL) 
^(m+n_1)/2r((m + n)/2)2(m+n)/2ny-3/2 

yj{m + n-l)(nx + my)T((n - l)/2) 

x 
St.n- 

S,,w-i(--^)     /x\W /n>A"/2,    ,m/2 (3 16) 

Q | (m+n) y/m+n—1 

X   
\\ (nx + my)v ft (yf)) St^x (ffi) 
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x{nvYn/2±K2±_      {m+n-l),2 (3.17) 

T (2fi) 7T^/2 

"ZT      \ F (n+m—1\ 
x(nv)n x V     2     )  

C | (m+n) y^m+n-l \ 

•*• - in m+n-i "j:   3/2 
-2  2   nvt 

(3.18) 

I 

We write 
n(vx +1) , m      (m + n) 

x y      my + nx 

Notice that Equation 3.18 reduces to three summary statistics for the future 

observables: w,y, and UVi, which are functions of the harmonic, arithmetic, and 

geometric means, respectively. This contrasts with inference for the parameters, 

which reduced to the two sufficient statistics ( which were the arithmetic and harmonic 

means). We can apply Equation 3.18 to our control charting scenario for groups of 

observations. Say we are sampling from a process which is in its start-up phase. We 

take samples of size m. After the first sample, we can compute a predictive density for 

the second sample. We find the probability of obtaining the current sample given the 

predictive distribution for the previous sample (s). If that probability is alarmingly 

low, we stop the process and investigate. Else, we incorporate the current sample 

into our "old" data and recompute a new predictive distribution, and sample again. 

Determining the acceptance region of the future observables is best accom- 

plished by use of the highest probability density approach, which results in a one- 

dimensional measure. We compute the value of the predicted density for the observa- 

tions, and then compute P (ä(Y|X) > /i(y|x)|x) using either Monte Carlo methods, 

or an indicator function and a numerical integration routine over m space. 

In practice, this approach is more cumbersome than merely using the predictive 

format for a single future observable.   This is especially true when attempting to 
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compute the predictive probability of the next set of observables. It does allow for 

fair treatment of all of the observations in the next sample, avoiding the temptation to 

order favorably or unfavorably the observations when applying the single observation 

prediction tests. 

The multiple predictive density is of greater utility in computing expected 

losses for the next batch of the process, as opposed to the next sample. One can 

adjust the dimension of the future observables to any convenient size, and work with 

it. It might be that the appropriate size for prediction was, say, the output of the next 

shift at a plant, instead of predicting for merely the next sample or the quantities 

until the next sample. 

3.3    Loss functions 

There are two current loss functions widely in use in quality control. 

The first is an indicator function for the region where the process is out-of- 

specification, L(y) = 1R(V). It is equal to one when the process is out-of-specification, 

and zero when the process is in-control. This is the implied loss function for many 

traditional charting schemes. 

The second function in use is quadratic loss, whose best known proponent 

is Taguchi. Quadratic loss argues for continuous improvement to reduce variabil- 

ity, as any deviation from the target value for the process characteristic is penal- 

ized. Quadratic loss is symmetric with respect to deviations above and below target. 

Quadratic loss is also very tractable to work with, and is directly related to the 

variance of a process. 

However, there is nothing sacred about quadratic loss as a choice of loss func- 

tion, and upon reflection one can see that it does have modeling weaknesses. 

It is a large assumption that one's losses are quadratic in form.   Most are 
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asymmetric. For example, consider filling a bag with flour. The loss for slightly over- 

filling the bag is likely much less than the loss for under-filling, with its associated 

losses of good-will and regulatory penalties. Similarly, consider the tensile strength 

of 550 pound parachute cord. The loss for making the cord too strong is probably 

much smaller than the loss for making the cord too weak, and the loss for making 

the cord too weak grows (in this parachutist's opinion) much faster than quadratic 

growth. 

Loss functions ideally would come from process understanding. Many of the 

losses for being out-of-control are intangible, or poorly estimable. That lack of un- 

derstanding of the loss has argued for a quadratic loss function, which at least is easy 

to work with. However, it is also possible to work with at least two other types of 

asymmetric loss functions. 

3.3.1    Lin-quad loss 

This loss function is a piecewise differentiable function which is linear on one side 

of the target value and quadratic on the other. It is easy to derive its form. Let 

the quadratic loss be specified by Lx(y) = k(x - c)2, where c is the target value and 

k is the coefficient. Let the linear loss be specified by L2(y) = b(x - d). d adjusts 

the intercepts, as we will see below. To obtain differentiablity, we define the point 

x = b/(2k) + c as the point where the definition changes. We have then: 

yyj      I     k(x - cy      for x > c + ^ 

Here we have placed the linear portion on the left side (b < 0). A similar procedure 

works for the linear loss on the right hand side.   This loss function is pictured in 

Figure 3.1. 

For the multivariate predictive case, one way we can obtain our multivariate 

loss is by adding the marginal expected losses. 
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Figure 3.1: Linear-quadratic loss function for target value 0. 
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The coefficients c, k and b can be estimated in the usual way from historical 

loss data or assumed as part of the modeling effort. 

3.3.2    LINEX Loss 

Varian [1975] proposed, Zellner [1986] further investigated, and Geisser [1993] used 

an asymmetric loss function called LINEX. Varian defined A = 9 - 9 as the scalar 

estimation error. His loss function was then 

L(A) = &exp(aA) - cA - b 

This loss function is illustrated in Figure 3.2. 

This loss function is recommended where the consequences for error to one 

side of the target value are catastrophic. Geisser [1993] discusses this loss function 

in the context of regulating insulin dosage to diabetics, where too much insulin is 

catastrophic, compared to too little. 

We can use a loss function of similar form for our predictive control problem, 

where A = y - c, and c is our target value. Again, we can find the expected loss by 

integrating against the predictive density. 

3.4    Conclusions 

The advantages of using a predictive method should now be clear: first, we obtain 

tighter predictions; second, we can integrate our predictive density against a loss 

function and obtain our expected loss. We can base our decisions on this value. By 

further incorporating in the cost of stopping the process to investigate a signal, we 

can act on our total expected loss. This offers a choice: instead of acting on possible 

parameter shifts which may cost more to investigate than to tolerate, we can decide 

on economic grounds. 
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Figure 3.2: Linear-exponential loss function for target value 0. 



Chapter 4 

Cumulative Sum Charts for IG 
Processes 

In this chapter, we derive a CUSUM scheme for processes modeled by the IG distri- 

bution. We chart for location and shape, and then examine the behavior of the tests 

under the model, and under various model departures. 

4.1    Scheme construction 

Control charts for normal processes chart location and scale. The statistic for location 

is usually the sample mean; the one for scale is usually the sample standard deviation. 

For the IG distribution, those statistics (sample mean, sample standard deviation) are 

not independent. To use them to control an IG process, one would need a bivariate 

chart (discussed below). However, the control limits for such a chart would seem 

artificial, as indicated by the plot of X vs. S for an IG example in Fig 4.1, below. A 

better scheme for joint control will be discussed later. 

We return to well-known principles to derive our CUSUM scheme. Recall 

from Chapter 1 that the inverse gaussian distribution is a member of the exponential 

family. As discussed in Hawkins [1992c] and in Chapter 1, the upward CUSUM for a 

member of exponential family in decision interval form is defined by 

=   0 (4.1) 

5+   =   max(0, S+_x + Tn-k+) (4-2) 

62 
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Figure 4.1: A plot of {X, S) for samples of size 5 from the IG(3, 5). Notice that as 
X increases, so does the magnitude and dispersion of 5. 
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_      d(91) - d(flp) f43) 

~       6(00-0(00)' 

where 6(0) and d(0) come from the parameterization of the exponential family 

as f(x) = exp(a(x)b{9) + c(x) + d(0)) and Tn = a(Xn) . 

Similarly, the downward CUSUM is given by: 

So   =   0 (4-4) 

S-   =   mm(0, S^ + Tn + k-) (4.5) 

rf(fli) - d(gp) 

6(öx) - b(90) 

We assume as our model that our process is well specified as X ~ /G(M, A). 

For two parameters, we write the density of X as 

f(x; 4>i, <t>2) = J^ exp [yjMzj a;-3/2exp (— (re, 1/x) • (^i, <^ 

where <f>i = j? and ^2 = A. 

We will use four charts simultaneously: one each for upward and downward 

departure in the two model parameters. 

The schemes derived below are for individual observations, or samples of size 

one. This has the advantage of maximum flexibility: one can always chart a larger 

sample as a group of individual observations. While we do not do so here, it is possible 

also to derive schemes for samples larger than size one by considering CUSUMs of 

the X and V, the minimal sufficient statistics for the sample. 

4.2    CUSUMs for location 

We use the decision interval form for the CUSUM, as it is more easily implemented by 

computer. We maintain a pair of CUSUMs for location; one for upward departures 
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from the mean and the second for downward departures, denoted by S+ and S~, 

respectively. 

For our CUSUM for location, we assume that fa = A is fixed and known. We 

then have a one-parameter exponential family in (f>1. To determine our settings for 

the CUSUM chart, we first decide for which shifts of the mean we wish maximum 

sensitivity. We call the upper value ß+ and the lower value fi~. The corresponding 

values of fa are called 0J" and fa{. 

With the shape parameter fixed, we have 

f(x, fa) = exp(a(x)b(fa) + c(x) + d(fa)) 

with a{x) = x, d(fa) = VfaX and b(fa) = -fa/2. Then the reference value, kt, is 

given by Equation 4.3, which simplifies to 

jfe. = ~2V^ (4.6) 

where <j> = X//J,2 and fa is (f>f or fa, as appropriate. 

Rewriting Equation 4.6 in terms of the parameters [i and A, we obtain 

k (w) = ^~ (4-7) 
P + Pi 

This value for k is the harmonic mean of the in-control and out-of-control 

parameters. Notice that this value for k is very close to the heuristic value one would 

obtain by using the arithmetic mean. The difference between the heuristic value and 

the optimal value for k is only 

A = _>o-/*i)2 (4.8) 
2(ßo + (ii) 

The CUSUM scheme for location then consists of two decision interval charts, 

one for upward detection and one for downward detection. They are given by Equa- 

tions 4.1, 4.2, and 4.7 for the upward CUSUM and Equations 4.4, 4.2, and 4.7 for 
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the downward CUSUM. In both cases, Tn(Xn) = Xn. This scheme has the advantage 

of simplicity: it accumulates the sum of the observations themselves less k, without 

the need for any transformation. The k term depends only on the mean under the 

null and alternative hypothesis. The parameter fa is not as simple as the mean or 

variance of the process, but it does have the characterization as the process mean 

divided by the process variance: 

A       n EX 

M2      /£      Var(X) 

also known as the process signal-to-noise ratio. 

The scheme signals when either £+ > h+ or S~ < h~. 

h+ and h~ are set by considering the average run length, that is, the average 

number of samples until 5+ > h+ or S~ < h~, resulting in a false signal when the 

process remains in control. These average run lengths are discussed below. 

4.3    CUSUMs for shape 

To derive our CUSUM for the shape parameter, we assume p fixed and known, and 

again consider the resulting one parameter exponential family. We take 

aix) = 5— 
Xfiz 

5(A) = -A/2, and d(X) = ln(A)/2. The sequential probability ratio test for a shift 

from A to A0 involves summing afa) until it exceeds a limit which depends on the 

number of terms in the sum. 

We could attempt to follow the same procedure as in the previous section to 

construct our CUSUM for shape.   This would result in the scheme S$ = 0, 5+ = 

max(0, £+_! + a{Xn) - fc), with 

d(X0)-d(X) = ln(A0/A) (4 g) 

b(X0) - 6(A)        A0 - A 
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We prefer to focus instead on the fact that Xa(X) ~ Xi and to derive a CUSUM 

scheme for that distribution. Then a test for a shift in A becomes a test of a scale 

change in a X?, or, better, a scale change in a r(l/2, 2) distribution, with the gamma 

density given in the form 

/(*; a, ß) =  ^ (4.1UJ 

By focusing on the more general problem of a scale shift for a Gamma distri- 

bution, we get two CUSUM schemes for the price of one. 

Note that the Ph.D. dissertation of Regula [Regula, 1976] considered a shift in 

the shape parameter, a, for a Gamma distribution. A search of the literature does not 

reveal an explicit CUSUM test for the scale parameter, ß, of a Gamma distribution, 

although it follows easily from the CUSUM for the variance of a normal distribution 

derived by Johnson and Leone [1961b], and the work of Hawkins [1992c]. 

Let Y ~ T(a,ß). The log-likelihood ratio for the Gamma distribution for a 

test of ß = ßa against ß = ßo using Equation  4.10 simplifies to 

A =Y-amß^ + {ß°-ßa)yi (4-11) 

Following our pattern of using the SPRT to obtain CUSUM schemes, Equa- 

tion 4.11 motivates the following CUSUM scheme for the shape parameter of the 

gamma distribution: 

So   =   0 

Sn   =   max(0, 5n_i + Yn - k) 
_    aßoßaln(ßo/ßa) /4 12\ 

k     _ ßa-ß0 

As usual, the scheme signals when S+ > h, where h is found by determining 

the a priori desired ARL. 
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A FORTRAN routine for determining h for the scale change for a r(a, ß) is 

available from the author. 

For the problem of the shape parameter given X ~ IG(ß, A), we note that the 

distribution of 

^# = MX) ~ xl 

We see that a shift in A results in a scale shift in a T(l/2, 2) and can be detected 

using the scheme just derived for the scale shift of a Gamma distribution. 

Our in-control parameter for /3 is 2. When the true value of A shifts to A0, the 

distribution of Xoa(X) shifts to 

So our alternate point hypothesis for the CUSUM of the Gamma scale parameter 

becomes ß = %£. 

Our CUSUM scheme then becomes 

S0
+   =   ° 

S+   =   max(5+_1 + X0a(Xn) - k) (4.13) 

In ^ 
k   =   Ao-^*- (4-14) 

Ao — Aa 

This scheme is illustrated in Table 4.1 and its behavior is explored in detail in 

the next section. 

We note that it is the same scheme as the one we derived from first principles 

in Equation 4.9 but has more general application to the problem of scale shift for an 

arbitrary Gamma distribution. 
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ßn Mi A /» ARL in control ARL out-of-control 
3 «.ft ft 1 4.742 3.Ö39 

ft 16.340 9.730 
in 44.877 20.314 
20 178.354 47.989 
40 1233.208 115.569 

ß An AT h ARL in control ARL out-ot-control 
3 ft 4 ft 31.691 17.44b" 

10 105.302 40.639 
20 532.991 101.779 
40 5163.017 239.129 

Table 4.1: Some in-control and out-of control ARL values for various CUSUM pa- 
rameters. Out-of-control values are taken for the parameter at the alternate (tuning) 

value. 

4.4    ARLs in control 

We provide two methods for computing the ARLs of these schemes. The first, due to 

Jun and Choi [1993] uses simulation and variance reduction techniques. The second 

uses an approximation due to Hawkins [1992c] which approximates the underlying 

integral equations to find the ARL. Table 4.1 provides some typical in-control and 

out-of-control ARL values. Details of algorithms and coding are in the Appendix. 

The variance reduction scheme was used as an independent check on the au- 

thor's programming implementation of the faster, more accurate integral approxima- 

tion. 

Below we provide graphs of h versus In(ARL) for the CUSUM chart in-control 

and out-of-control at the alternate value. Similar charts could be used to select h. 

Additionally, we provide FORTRAN routines in the appendix for finding h for any 

ARL for both fi and A, given the parameters of the process in- and out-of-control. 

It is interesting to note from the graphs that the rate of increase in ARL versus 

h appears to be approximately exponential for the in-control case and linear for the 

out-of-control case. 
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Figure 4.2: A chart of h vs. In ARL for the CUSUM for detecting shifts in /*, with 
pQ = 3, fr = 3.5, and A = 5. Here we consider samples of size 5. The lower curve is 
the ln(ARL) for the out-of-control state. 
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Figure 4.3: A chart of h vs. ARL for the CUSUM for detecting shifts in A, with 
/x = 3, A0 = 5, and Ai = 4, with samples of size 5. The lower curve is the ARL for the 
out-of-control state. There is an anomaly for h = 26, from the FORTRAN output, 
causing the inappropriate dip in the curve. Note that this figure in not in logarithmic 

scale. 



CHAPTER 4.   CUMULATIVE SUM CHARTS FOR IG PROCESSES 72 

4.4.1 Two pedagogical notes 

We mention in passing that the algorithm for finding h to meet a specified ARL is a 

straightforward application of the Newton-Raphson root finding algorithm, with one 

small twist: the derivatives are approximated numerically, instead of being computed 

symbolically. The routine is very fast, usually producing convergence in a handful of 

steps. 

We also mention that the variance reduction scheme for the simulation method 

is accessible to the introductory (calculus-based) statistics student and provides a nice 

motivation for discussing covariance. 

4.4.2 Comments on ARL as a measure of effectiveness of a 

CUSUM scheme 

There have been objections in the literature to using ARL as the sole measure of the 

effectiveness of a scheme [Gan, 1992] [Bissell, 1969] [ Barnard, 1959]. If the distribution 

of the run-length for the CUSUM was known for a particular scheme, it would clearly 

be preferred for characterizing a CUSUM scheme. The run-length distribution is 

known for some simple distributions, such as the exponential [Gan, 1992a]. However, 

in the absence of knowledge of the run-length distribution (such as in the case of the 

inverse gaussian distribution), ARL remains the accepted method for evaluating the 

performance of CUSUM schemes. The practitioner is advised to keep in mind that the 

run-length is often skewed, and that the median run-length may differ sharply from 

the average run-length. Deriving the exact run-length distribution for the inverse 

gaussian CUSUM scheme is a topic for later research. Approximating the run-length 

distribution can be done easily by simulation. 

We recommend that the practitioner present simulation results indicating the 

general shape of the run length distribution for a scheme, as well as the ARL, when 
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briefing a designed CUSUM scheme to the client. 

4.5    Performance for small persistent shifts 

We consider the performance of the CUSUM schemes for detecting small, persistent 

shifts in the parameters. Moustakides [1986] proved that the schemes are optimal 

in the sense they have the smallest expected number of samples until a signal, when 

shifting out of control to the alternate value, of all schemes with similar in-control 

false alarm rates. We construct tables to illustrate the response rates. 

4.5.1    Small persistent shifts in \i 

In the following tables, we present the performance of the CUSUM scheme in detecting 

small persistent shifts. We assume that the process is exactly specified a priori. 

We desire some benchmark to examine just how optimal is the optimal proce- 

dure. For comparison, we use the CUSUM scheme for the mean of a normal distri- 

bution, which uses the arithmetic mean between the parameter values in-control and 

out-of-control as its reference value. Recall that our optimal CUSUM for the mean of 

an Inverse Gaussian random variable uses the harmonic mean between the in-control 

and out-of-control values. Since the harmonic mean is close to (but strictly less than) 

the arithmetic mean for small shifts, this should provide a reasonable competitor. 

We will call the use of the arithmetic mean for k for the IG case a "naive" CUSUM 

scheme, and the use of the optimal harmonic mean the "optimal" scheme. 

We tabulate the out-of-control ARLs for both schemes for some illustrative 

values of n, A, and ARL in-control. We use the one-sided CUSUM in these tables. 

Similar results hold for the two-sided CUSUM. 
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ß Ma 

Uut-ot'-control AK.L 
Parameters 

A     ARL in-control 
T 
3 
3 
3 
3 
3 
3 
3 
3 
10 
10 
10 
10 
10 

2.5 
5 

3.5 
2.5 
3.5 
2.5 
3.5 
2.5 
11 
9 

20 
11 
9 

-5- 
5 
5 
10 
10 
5 
5 
10 
10 
10 
10 
10 
100 
100 

"TOO- 

100 
100 
100 
100 
1000 
1000 
1000 
1000 
100 
100 
100 

1000 
1000 

Naive CUSUM 
34.250 
34.313 
11.429 
25.690 
24.581 
106.981 
94.902 
68.469 
24.581 
54.806 
58.301 
9.808 

243.701 
241.259 

Optimal CUSUM 
 3X247 

34.299 
10.072 
25.683 
24.563 
106.894 
94.730 
68.388 
24.563 
54.806 
58.300 
9.734 

243.688 
241.229 

Table 4.2:  Comparing performance by ARL of various control schemes to detect a 

small persistent shift in the mean. 

Shewhart one-sided ARLs were calculated as 

1 
ARL = (4.15) 

P(X > crit\X ~ IG(ßa, A)) 

by numeric integration. 

The naive and optimal CUSUM schemes were designed for their in-control 

ARLs.  h was found using the FORTRAN routines in the Appendix,  k depends, of 

course, on the scheme. 

We see from Table 4.2 that for small shifts the use of the optimal harmonic 

mean as a reference value does beat the benchmark arithmetic mean for performance, 

but not by much. This is not surprising, given that Equation 4.8 indicates that values 

of the harmonic mean and arithmetic mean are very close for small shifts. 

4.5.2    Small persistent shifts in A 

We will repeat the process of the previous section to obtain a benchmark for the 

CUSUM for A. We construct a naive alternative for k by averaging the expected 

values of a(X) when the process is in-control then out-of-control. We recognize that 
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Uut-ot-controJ ARL 
Parameters 

A A„     ARL in-control Optimal CUSUM 
10 11              100 7U.UÖ 

10 9               100 61.08 
10 11             1000 442.12 
10 9              1000 373.09 
5 5.1              100 92.28 
5 4.9              100 90.14 
5 5.1             1000 777.17 
5 4.9             1000 746.67 

100 101             100 96.01 
100 99              100 94.91 
100 101            1000 875.24 
100 99             1000 860.24 

Table 4.3: Out-of-control ARLs for a small persistent shift in A. Note that a small 
persistent change in A can be very difficult to detect. 

the expected value of a(X) in control is 1, and that when A = Aa, the expected value of 

a(X) is E(a{X)) = £. Averaging those two expected values results in k = 1/2 + ^. 

These two values for k are very close. For example, when A = 10 and Aa = 11, 

the two values for k differ by only .00144365. 

We construct Table 4.3 to explore small persistent shifts in the scale parameter, 

A. We see that it is very difficult to detect a small persistent shift in A. 

Examination of Table 4.3 shows that the optimal scheme has shorter out-of- 

control ARLs than the benchmark. It also shows that the optimal scheme in not 

greatly more powerful than the benchmark. This is a result of the underlying robust- 

ness of the CUSUM to mis-specification of the out-of-control state when designing 

the CUSUM scheme. One could look at the benchmark value here as the optimal 

value to detect some different shift in the mean, and see that the performance was 

still fairly close to the scheme designed for the actual shift in the mean. 
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4.6    Conclusions 

In this chapter, we derived the optimal tests for the CUSUM of the inverse gaussian 

distribution for both the mean and shape parameter. In the process of doing this, 

we developed an optimal test for shift of scale for the CUSUM of a xl random 

variable. We found an immediate application for that %ltest in our test for the shaPe 

parameter. We adapted existing FORTRAN codes to evaluate the ARL of these tests. 

We checked those FORTRAN codes against a variance reduction simulation scheme. 

We compared the optimal tests against the usual heuristic and found that for small 

changes in the mean the optimal test was not significantly better than the usual 

heuristic. 

We developed codes which allow the interested party to design an optimal or 

traditional CUSUM scheme, and to find its average run length. 



Chapter 5 

CUSUM Embellishments for IG 
processes 

In this short chapter, we address two CUSUM embellishments and how they apply 

to the work in the previous chapter. 

5.1    Fast initial response CUSUM 

Lucas and Crosier [1982] proposed the fast initial response (FIR) CUSUM. They 

reasoned that if the CUSUM was started not at zero, but at some value between 

0 and the decision-interval value h, the CUSUM would respond faster to early out- 

of-control states. However, if the process was in-control in those early states, the 

CUSUM would most likely return to zero, and nothing would be lost. 

Lucas and Crosier recommend a head start value for S0 = h/2, based on 

numerical evidence for the normal scheme. 

The FORTRAN programs discussed in the previous chapter can take advan- 

tage of a feature of the CUSARL code of Hawkins. That code reports the FIR ARL 

for So = h/2 along with the regular ARL. It is, therefore, simple to adjust the pro- 

grams which find the ARL for the IG(n, A) to also find the FIR ARL. Generally, one 

pays for increased speed of detection when starting out-of-control with a slightly lower 

ARL when starting in-control. To maintain the same in-control ARL, one adjusts h 

upward appropriately, until one obtains the desired in-control FIR ARL. Of course, if 

the process is initially in-control, but goes out-of-control later, there will be a delayed 
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response compared with the regular ARL as the CUSUM moves toward the higher 

value of h. 

One should use the FIR, then, if one is concerned that the process goes out-of- 

control early. One obtains that increased detection power at the expense of decreased 

power to detect later departures from control. 

While the ARL may not be significantly affected by the use of the FIR scheme, 

the underlying run-length distribution is. One incurs more frequent short-length runs, 

accentuating the already skewed nature of the run-length distribution. This could be 

of no small annoyance to the process manager, who has already had to learn that the 

mean run length is greater than the median run length. 

One context where such a trade-off is desirable is immediately after repairing 

the process due to an earlier signal. If one has not correctly diagnosed and repaired 

the process, the process is still out of control. Upon restarting the process, one would 

wish to know this quickly, to avoid continuing out of control. 

The practice of using FIR CUSUMs is not universally accepted, because of the 

above trade-offs. 

A topic for additional research would be to determine an algorithm for finding 

the optimal head start value to meet some criteria. Since one obtains the ARLs 

for many states when one uses the Markov-chain approximation for finding ARLs 

(discussed in the appendix when the CUSARL code is presented), one could either 

determine a better rule to select a head start or validate the h/2 heuristic. 

5.1.1    An example 

Let's return to Figure 4.2, which illustrated \n(ARL) versus h for an example. In 

Figure 5.1, we add the FIR scheme for the same parameter values. This means we 

start at S$ = h+/2 and SQ = h~/2. We see that the out-of-control ARL is greatly 
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Figure 5.1: Comparison of FIR and regular ARL schemes, with p0 = 3.0, m = 3.5, 
A = 5, and n = 5, where n is the size of the rational subgroup. The FIR response 
is the lower of each pair of curves; the upper pair the in-control ARL and the lower 
pair the out-of-control ARL. 
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Table 5.1: Table of comparable values for regular and FIR CUSUMs, with fi0 = 3.0, 
fix = 3.5, A = 5, and n = 1, where n is the size of the rational subgroup. 

Value 
k 
h 
So 

ARL in-control 
ARL out-of-control 

Regular CUSUli" 
3.2307 
37.5619 

0 
1000 

106.89 

FIR CUSUM 
3.2307 
38.8170 
19.4085 

1000 
75.2727 

reduced, while the in-control ARL is not affected nearly so much. However, if the 

CUSUM returns to zero (a regeneration point), the ARL then becomes much greater 

that the standard CUSUM scheme because of the higher value of h, the decision value. 

As a more focused example, we look at the design parameters for an ARL of 

exactly 500 for this scheme. Using a routine available from the author, we obtain the 

information in Table 5.1. 

If the FIR CUSUM returns to zero before reaching h, the ARL for the scheme 

in Table 5.1 becomes 1114.7690 in-control. The out-of-control ARL increases as well, 

to 111.3589. 

Accordingly, we see the fast response feature of the FIR only applies if the 

CUSUM goes out of control before returning to zero. If the CUSUM does return 

to zero, the scheme performs worse than the regular ARL. One should then use the 

FIR with caution. The FIR is still a good choice for starting the scheme after a 

signal if there is doubt as to whether or not the condition causing the signal has been 

corrected. 
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5.2    Self-starting CUSUM for the mean 

The arguments in Section 2.4.2 for self-starting charts for the Shewhart Control 

scheme apply with greater strength to the CUSUM scheme, which was their orig- 

inal context. In fact, our attention was first drawn to self-starting schemes in the 

article by Hawkins [1987], who specifically addressed self-starting CUSUM charts of 

normal variates. 

We will use the same transformations in the self-starting CUSUM scheme that 

we used in the self-starting Shewhart scheme for the mean. That is, we will CUSUM 

Z = $-1(FT{T))~N (0,1) 

with $-1(z) being the inverse CDF for the standard normal variate. Recall 

yn1n2(ni -f n2 - 2) (X - Y) 

~ ^XY(niX +n2Y)(V1 + V2) 

Our self-starting CUSUM scheme, in control, becomes a CUSUM of iV(0,1) 

variates. 

The sole difficulty becomes the computation of the reference value, k. The 

distribution of Tt when there is a model departure is not known, depends on the 

length of time the process has been running in control, and appears likely to be too 

complicated to be worth the effort to find it. 

We note that Hawkins [1987] finessed the issue in his paper. He expressed the 

shift of the mean in the original variable as a multiple of standard deviations, and 

used one-half that value as the reference value. Since his intermediate studentized 

residuals can be thought of as approximating the number of standard deviations away 

from the unknown mean, this seems reasonable. The additional transformation to the 

N (0,1) distribution does not radically affect this heuristic. This approach avoided 

the difficulty of finding the k in the context of the transformed variables. 
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Since we, by contrast, are using an exact transformation to normal variables, 

we fall back on standard procedure. We will set k as being the average between the 

expected value of Z in control and the expected value of Z when the process is out of 

control at some level. When the process is in control, the expected value of Z is 0 and 

the standard deviation of Z is 1. We appeal to the robustness of the CUSUM reference 

value and select the out-of-control mean value to be 0.1. This value is obtained from 

a simulation of various out-of-control states at various points, computing the value of 

Z for the first observation out-of-control. While it is a very rough approximation, the 

CUSUM is known to be robust to mis-specifications of the out-of-control state. This 

results in a reference value of k = 0.05. When the underlying IG process goes out of 

control, both the mean and the standard deviation of the Z change. Depending on 

how long the process has been running, these will change either slowly or rapidly back 

to N{0,1) as the process fails to signal over time. However, if the process has been 

running an appreciable time, the drift back to the original expected value should be 

relatively slow. 

If we don't know the distribution of the summand for the CUSUM when the 

process is out of control, it is not possible to analytically derive an optimal CUSUM 

scheme. If we were concerned with finding a better reference value for a given out- 

of-control state, we could simulate to approximate the expected value of $""1(Fo(T)), 

and then use the rule for shifts of means of normal variates which sets 

_ Mo + i"! 
*~      2 

Since under a model shift, F0(T) is no longer distributed uniformly and it follows 

that $-1(Fo(T)) is not normal, this is at best an approximation. 

However, we are proposing this self-starting CUSUM as a reasonable, not 

optimal, scheme. We defer further discussion of optimality for subsequent work, and 

proceed to examples. 
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As an example, consider the following scenario. Let our true (but unknown) 

process parameters be /x = 42, A = 66. We will look at samples of size 1, and 

at observation 50 we will change the distribution to JG(52, 66), corresponding to a 

moderate shift in the process. 

The self-starting CUSUM is illustrated in Figure 5.2. We run in-control for 

50 cases with an JG(42, 66). We wiU go out of control at observation 51 and beyond, 

moving to an JG(52,66). We set our ARL = 100. Since we have set k = .05, we 

have h+ = h~ = 10.2969. In this case, the self-starting CUSUM signaled at the 66th 

observation, or 16 observations after the process went out of control. 

For short start-ups before going out of control, it is not unusual for the scheme 

to fail to detect the change. The example above can be considered a short training 

set, since 50 points corresponds to only 10 samples of size 5. 

Performance is better for longer training sets, as indicated in Figure 5.3. 

Note from Figure 5.3 that, even with the long start-up of 150 observations, 

the self-starting scheme begins to adjust to being out-of-control.   This can be seen 

from the CUSUM for S+, which starts to tail back to the horizontal center line after 

observation 225 or so, despite remaining out-of-control. 

For the behavior of the out-of-control CUSUMs, including run-length distri- 

bution, we must resort to simulation, since the CDF for the distribution of the out- 

of-control Z is not known. 

We reiterate that the ARL will depend not only on the size of the shift, but the 

length of time the process has been running in-control prior to going out of control. 
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Figure 5.2: A combined self-starting Shewhart and self-starting CUSUM chart. The 
process ran in-control (IG(42, 66)) for 50 samples of size 1, then went out of control 
to JG(52, 66). The chart signals at observation 66 for the CUSUM, and observation 
80 for the Shewhart. 
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Figure 5.3: Self-starting CUSUM for the mean of an IG random variable. The process 
is in-control at IG(42, 66) until observation 150, when it shifts to 10(52,66). The 
change is signaled at observation 193. 
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5.3    Conclusions 

We have seen how two standard embellishments can be applied to the CUSUM scheme 

for processes well modeled by the inverse gaussian distribution. The fast initial re- 

sponse allows improved sensitivity to early departures from control, at the expense of 

slightly slower response to later departures. The self-starting CUSUM allows control 

of the process in the early stages, before enough historical data has been gathered to 

firmly establish the in-control parameters of the process. 



Chapter 6 

Bivariate Shewhart control charts 

In this chapter, we generalize the idea of using highest probability density regions 

(HPD regions) to control two parameters of a process simultaneously. Doing so gives 

the tightest possible control limits. This can be useful in many contexts. We also 

address a vexing diagnosis problem found with traditional rectangular charting meth- 

ods. 

6.1    Current practices 

The traditional control chart scheme maintains separate charts for each process pa- 

rameter. For example, the charts for normally distributed processes include one for 

location and one for scale. If either chart signals, the process is deemed out of control. 

If the scale chart signals, the process is deemed to have undergone a scale shift. If 

the location chart shifts, however, it is not immediately clear whether that is due to 

a location shift or a scale shift. In that case, the accepted practice is to first examine 

the scale chart to see if there is any indication of a scale shift. In its absence, only 

then does one assume that there has been a location shift. 

The operation of two charts as above is similar to running one bivariate chart 

with rectangular limits. See Figure 6.1. If a point plots inside the rectangular limits, 

then the process is assumed to be in control. If the process plots in region I (signaling 

a scale shift ) the process is assumed out-of-control for scale. The process is only 

considered out of control for location if a sample is plotted in region II. See, for 

example, Montgomery [1991], who says,  "Never attempt to interpret the X chart 
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Figure 6.1: A bivariate Shewhart control chart with rectangular limits. Two possible 
out-of-control regions are labeled I and II. 
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when the R chart indicates an out-of-control condition". (An R chart is another type 

of control chart for scale, not discussed here.) 

6.2    Improved diagnosis of an out-of-control signal 

This algorithm can be improved by dividing the out-of-control region into three areas, 

instead of two. We will classify out-of-control points as either a location shift, a scale 

shift, or both. 

Our approach will be based on likelihood ratios. Our first step is to hypothesize 

that, given an out of control signal, both the location and scale have shifted to their 

(now) most likely values, the MLEs. We then construct regions indicating a scale 

shift or a location shift only, based on a likelihood ratio with the parameters being 

either both of the MLEs (signaling both parameters have shifted) or just one of the 

MLEs (corresponding to only one parameter shifting). We examine 

  i 
f(x,s2\ii = x,a2 = s2) 

A -    f(x,s2\ß = x,a2 = ao) ,ß   . 
^•location     —       »/—     öl —     ö ö\~ V   '   / 

A -    f(x,s2\ii = fio,a2 = s2) (62) 
Ascale   -     /(_a2||i = _ffa = a2) 

If either A is greater than some critical value, we reject the hypothesis that both 

parameters have shifted in favor of the hypothesis that only one has shifted. This 

means that the likelihood of a shift of just one parameter is not much smaller than 

the likelihood of both parameters shifting. 

For the normal case, we use charts for the mean and sample variance. Then 

-2 In Ascale = -nln(s2) + 2nln(a0) + (n - l)(s2 - a2
Q)/a2

0 (6.3) 

which does not depend on x. This implies that if we set -2 In Ascaie < c, we obtain 

boundaries parallel to the x axis. 



CHAPTER 6.   BIVARIATE SHEWHART CONTROL CHARTS 90 

On the other hand, 

n(x — u)2 ,a ,s 
-2 In klocatim =    V    2

P (6-4) 

which implies that accepting the hypothesis of a mean shift only depends on both x 

and s2, and we obtain an acceptance region bounded by a quadratic curve. 

The distribution of -2 In Aiocaticm, is either central or non-central Fi,n_i, de- 

pending on whether the mean has shifted or not. The distribution of -2\nAscaie is 

not a standard one, and also depends on the correct specification of a2. Appealing 

to asymptotic theory for the distribution of -21nAsca/e ~ xl [Bickel and Doksum, 

1977],we obtain working critical values. 

For the test of location shift against both location and scale shift, we use the 

appropriate critical value from the F distribution. 

Note this .05 significance level is not for the test of whether the process has 

gone out-of-control; rather, it is for the discriminating between the hypotheses that 

both parameters have shifted or only one has shifted given that we already have a 

signal that the process is out-of-control. Loss considerations could motivate us to 

select other critical values, if there were higher costs associated with mis-diagnosis of 

one state. 

For example, using a .05 significance level, /xo = 0, a = 1, and n = 5, we obtain 

a xl 05 critical value of 9.4877. Setting Equation 6.2 equal to the critical value, we 

obtain two roots: s2 = .07132 and s2 = 5.5037. Setting Equation 6.1 equal to fcrit, 

. i     i 2 50? we obtain a parabola: s   — 7i7086 • 

Further exploration of the exact critical values is deferred for future work. We 

note, however, that from the preceding paragraphs the shape of the regions is known. 

This, coupled with approximation theory and simulation, allows for the selection of 

reasonable approximations to the exact boundaries. 

We use these regions to determine our diagnostics. Say our rectangular region 
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has been constructed to have an a significance level. Then, given we have an out-of- 

control signal, if s2 G (.07132,5.5037), we have a mean shift only. If s2 > .6486x2, 

we have a scale shift only. Otherwise, we proceed under the conclusion that we have 

both a scale and a location shift. Figure 6.2 illustrates the regions. 

The diagnostic boundaries are derived without regard to the control bound- 

aries. Accordingly, it is possible to have an out-of-control signal which does not fall 

in the diagnostic regions. We shall see an example of this later. Accordingly, there is 

a fourth diagnostic state: indeterminate. 

In summary, we are able to classify points out-of-control as arising from a 

mean shift only, a scale shift only, both location and scale, or unknown. Here we 

have used "location" and "scale" to represent the parameters controlled. The same 

process applies to the control of other parameters, such as shape. 

6.3    HPD bivariate control regions 

Rectangular limits are known not to give the smallest possible region for a given 

significance level. The HPD region gives that smallest possible region. However, the 

HPD region is not rectangular, and is therefore not the intuitive first choice when 

dealing with a pair of statistics for location and scale, especially when the statistics 

are independent when the process is in control. 

We propose the following scheme.   First, determine the HPD in-control or 

acceptance region for the joint density of the sampling distributions. This region will 

have the form 

Rk = {(x,v)\Mx,v)>k} (6-5) 

where fic(x, y) is the in-control density, k is found numerically or by simulation for a 

given significance level. 
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Figure 6.2: Diagnostic regions for bivariate Shewhart chart. Given a signal out-of- 
control, we classify the signal as either a location shift, scale shift, or both, depending 
where the signal is located. These boundaries are for a JV(0,1) in control. The 
rectangular control region is omitted. 
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Figure 6.3:  Spin plot of X, V, and f(X, V) for 1000 samples of size five from an 
IG(3, 5) distribution. 

We propose this scheme for any bivariate distribution, but we will demonstrate 

it with an example using the inverse gaussian sampling distribution. 

By illustration, we offer Figures 6.3, 6.4, and 6.5. Figure 6.3 is a three- 

dimensional spin plot oiX,V and f(X, V) for 1000 samples of size 5 from an IG(3, 5) 

distribution. Figure 6.5 is a plot of the solution to f(X, V) = k, with k selected so 

that P(/(X, V) <k) = .01. 

Second, plot the bivariate observations as they occur, signaling if the bivariate 
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Figure 6.4: HPD out-of-control region by simulation. Spin plot of X, V, and f(X, V) 
for 1000 samples of size five from an JG(3, 5) distribution, censored to show the 100 
points with the smallest values of f(X, V), rotated for effect. 
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Figure 6.5: Graph of f(X, V) = k, where P(f(X, V) > k) = .01, for samples of 
size five from an IG(3, 5) distribution. The exterior of the curve is the HPD rejection 
region. Compare with Figure 6.4. 
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observation is outside the HPD acceptance region. Interpretation of the signal will be 

discussed below. Third, to reduce chart clutter, use a weighting scheme that reduces 

the intensity of the plotted points on the (electronic) chart until points older than 

a given number of observations disappear. Make the most recent observation green; 

make any out of control observations red; make all others black. 

Calculation of the bivariate HPD region requires solution of an integral equa- 

tion: find k such that 

I   f(x,y)dxdy=p (6-6) 
JRk 

for p = 1 - a. A solution to Equation 6.6 is found either by a numerical search 

method, based on Newton-Raphson, or by a routine to simulate the distribution of 

f(X,Y) and determine the appropriate quantile. This approach is similar to the one 

used earlier to find the HPD region for the predictive schemes. 

Calculation of the in-control ARL is not necessary:   one simply inverts the 

significance level. 

Calculation on the out-of-control ARL is easily (if slowly) accomplished using 

a numerical integration routine. Let /ic(x, y) be the joint sampling density, as before, 

when the process is in control, and /«.(x, y) the joint density when the process is out 

of control. Let h,fic(x,y)(x, v) be the indicator function which is 1 if /fc(ar, y) < k. One 

finds: 
oo    oo 

1- ß = P(signal| out-of control) =   [ j hj^y) (x, y)foc(x, y) dx dy        (6.7) 
—oo —oo 

One can find the ARL for any out-of-control state using Equation 6.7, since 

the out-of-control ARL will be 

ARL = l^ß 
This approach for declaring out-of-control regions is applicable to any distri- 

bution. We shall provide examples using two distributions: the normal distribution 

and the inverse gaussian distribution. 
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6.3.1    An example 

Here is an example. Let X ~ N(p,a2). We take samples of size, say, 5. Normal 

practice would chart X and S2. X ~ JV(/x, f) and ^ ~ xl> and the two sample 

statistics are independent. Therefore, the joint density in-control of (X, S2) is given 

by the product of their marginal densities. Now, in-control, let \x = 0 and a - I. 

Then the joint density is: 

with x = x and y = s2. 

We set the ARL at 100, giving a = .01. Using an Xlisp-Stat routine available 

from the author, we determine k by simulation, obtaining k = 0.004845. 

Now let the out-of-control distribution be given by X ~ N (1,1). The out-of- 

control ARL is given by Equation 6.7, which simplifies to ARL = 3.98. 

Figure 6.6 illustrates the situation. Level curves for the in-control density are 

plotted, along with one out-of-control level curve. 

6.4    Implementation of basic scheme 

There are three computational issues when implementing this scheme. 

First, finding the appropriate value of k requires solving a two dimensional 

integral equation involving indicator functions. This can only be done numerically, 

requires iteration, and is very slow, especially when using double precision arithmetic. 

We used simulation techniques for a fast approximation. 

Second, plotting the control HPD limits requires an ability to plot implicitly 

defined functions of the form f(x,y) = k, which is not supported by all graphical 

packages, particularly XLISP-STAT. 
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Figure 6.6: Level curves for the bivariate Shewhart chart normal example. The in- 
control curves are from a iV(0,1) distribution. The single out-of-control curve is from 

a N(l,22) distribution. 
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Last, using the technique of varying colors and point intensity requires some 

fairly advanced programming skills. 

We have a patchwork approach to implementation. First, we can find k using 

a FORTRAN program (again available from the author) that runs very slowly, or by 

simulation. Second, once we have k, we plot the control limits using Derive, which 

easily plots the implicit functions. Third, we do the actual plotting of points in 

XLISP-STAT which allows the coloring of points and varying of intensity. We were 

unable to find and unwilling to develop a routine to do implicit plots in XLISP-STAT. 

With additional programming effort, the three tasks could be combined in one 

software application, but the patchwork is sufficient for demonstration purposes. 

6.5    Comparison with traditional charts 

We will compare the performance of the bivariate chart proposed here with that of 

the traditional Shewhart chart. 

Both charts have the same in-control behavior, since both are constructed for 

the same significance level. When the k level for the HPD is found by simulation, the 

in-control ARL may not be exact. The ARL for the estimated k should be checked 

to assure ourselves that there is not a significant departure from the design ARL. 

We compare charts by their out of control ARL for various combinations of 

out-of-control parameters. 

6.5.1    Normal case 

For our normal case, we will use X ~ N(0,1) as our in-control distribution. We take 

samples of size 5. We design for an ARL of 100. 

Consider first our bivariate Shewhart method.   Then our joint density was 
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given in Equation 6.8 for the case n = 5, \i = 0, and a = 1. We earlier found 

k = .004845. 

For our various cases, we then compute (numerically or by simulation) our 

out-of-control ARL, by solving the integral equation in Equation 6.7. 

We compare this with the standard normal case. For each of the two charts, 

we choose the significance level a* = 1 - y/\ - a, so the rectangular region has the 

same significance as our bivariate chart. 

Our control limits for X are given by \i ± z^na/ifa, which in this example 

reduces to 

-2.8062/V5 < X < 2.8062/V5 

Our control limits for S2 are given by 

/Xl-q/2,n-l°"2        S2 <  X<*ß,n-la   \ 

\      n-1 n-l    ) 

which in this example reduces to 

.145053/4 < S2 < 16.4183/4 

Our out-of-control ARL for the standard charts in this example is found as 

follows: 

Px   =   P ((-1.645/\/5 < X < 1.645/V5) \X ~ N(ß, a)) (6.9) 

//.14503        n     16.4183Vv      .Tt      A fR m, ps2   =   pi l—^— < 52 < — J \X - N(ß, a)) (6.10) 

ARL   =  (6-11) 
1 - Px x Vs* 

We tabulate some of these values for various out-of-control cases in Table 6.1. 

We obtained the value of k for the bivariate case by simulation, which explains why 

the ARL is not exactly 100 for the in-control case. 
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A* a ARL-bivariate ARL-standard 
(1 1 99/20 1UU.UU 
1 1 3.98 3.47 
2 1 1.07 1.05 
5 1 21.97 19.79 
n 1.5 4.22 5.75 
n .5 8887. 28.76 
1 1.5 2.00 2.32 
l .5 11.9914 6.3622 

Table 6.1: Comparison of ARLs for bivariate Shewhart and a pair of standard charts. 
ARLs are given in number of samples of size 5. The in-control distribution is JV(0,1). 

We see from the Table 6.1 that we have improved power for increases in a2, 

reduced power for decreases in a2, and comparable power for detection of shifts in 

location. We also see that we have improvement in our detection of simultaneous 

shifts in fi and increases in a. 

As an example of the charting, we take samples of size 5, with the process 

in-control as X ~ AT(0,1). It shifts at observation 10 to X0 ~ N(l,l). We show 

the charts for observations 9 onward in Figures 6.7 through 6.13. For this black and 

white printer, the points in control are marked by "-"s of various sizes, with larger 

points being more recent. Also, due to difficulty implementing the plotting implicit 

functions, the control limit curve is not shown. The points out of control are marked 

by red Vs. The most recent point is given by "+", if in-control. To avoid clutter, 

only the 9 most recent in-control points are displayed. Out-of-control points remain 

visible indefinitely. 

When the process goes out of control, we are able to diagnose the out-of-control 

point using the rules portrayed in Figure 6.2 to see that we most likely have a mean 

shift only. 



Figure 6.7: Bivariate Control chart for Normal Example, up to observation 9. 
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Figure 6.8: Bivariate Control chart for Normal Example, up to observation 10. Notice 
only the most recent 9 points plot. 
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Figure 6.9: Bivariate Control chart for Normal Example, up to observation 11. The 
process is now out of control at JV(1,1). The chart has not yet signaled. 
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Figure 6.10: Bivariate Control chart for Normal Example, up to observation 12. The 
process is now out of control at iV(l, 1). The chart has not yet signaled. 
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Figure 6.11: Bivariate Control chart for Normal Example, up to observation 13. The 
process is now out of control at i\T(l, 1). The chart has not yet signaled. 
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Figure 6.12: Bivariate Control chart for Normal Example, up to observation 14. The 
process is now out of control at N(1,1). The chart has not yet signaled. 
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Figure 6.13: Bivariate Control chart for Example, up to observation 15. The process 
is out of control, and has now signaled out-of-control. Applying the rules developed 
in Figure 6.2, we diagnose a mean shift only. 
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6.5.2 IG case 

We now turn to the IG case, and develop bivariate Shewhart charts based on the 

HPD for this distribution. 

The joint density for X, V is given by 

,/      N mA__3/o        /   n\(x-jj,)2\ 
/(.,,)   =   ^_,Valp^__L__j 

X2<~-^n--l)/2)^("~1)/2'le*P(-A*/2) (6'12) 

We will define our control region by using the highest probability density. We define 

Rk = {(x, v)\f(x, v) > k} and set k so that ARL = P/(^y)efi \ for our desired ARL. 

As with the normal case, this requires finding a solution to Equation 6.6. This is no 

less difficult than in the normal case. We approximate k by simulation. 

We use a similar diagnostic scheme, based on likelihood. Using -2 In A, we 

obtain diagnostic regions for V and X when the process signals out of control. 

If 21n(n - l)n/2 - nln(Au) + Xv - n + 1 < c, we declare the process out of 

control for a scale shift. This equation will have two roots, so we obtain a region of 

the form V < c\ or V > c<i- 

If n(n-i)(x-n)   <- ^ we deciare the process out of control for a mean shift only. 

This equation will be a quadratic, and is similar in form to the equation we obtained 

for the normal diagnostic curve. 

As before, if we don't signal an exclusive shift, we assume that both parameters 

have shifted. 

6.5.3 An example 

We assume that we have an IG(3, 5) process in-control. We draw samples of size 5. 

We desire an ARL of 100. By simulation, we determine that k = 3.0 10~4. Our 

HPD and diagnostic lines are plotted in Figure 6.14. We run the bivariate chart for 
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0.5 1 1.5        2        2.5        3        3.5        4        4.5 

CDHHftHD: flEHüffl Center Delete Help Hove Options Plot Quit Range Scale Transfer 
Hindou aXes Zoon 

Enter option 
Cross x:2.2656 y:6.5156 Scale x:8.5 y;3 Deriw 2D-plot 

Figure 6.14: Bivariate HPD regions for an IG(3, 5) with samples of size 5. The in- 
control region is shaded. Out of control areas are labeled with their diagnosis. Note 
the scales. 
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Figure 6.15: Long run Bivariate HPD chart for JG(3, 5) with 1000 observation. Only 
the last 9 in-control points are plotted. There are 10 outliers, marked with diamonds. 

1000 observations in control, plotting as before the last 9 observations plus all out-of- 

control observations. We observe 10 points out-of-control, illustrated in Figure 6.15. 

This is exact agreement between observed and predicted number of out-of-control 

observations. 

We shift the process to an IG(Q, 4) and continue to take samples of size 5. In 

our 1000 points, we observe 299 observations signaling out-of-control. The chart for 

this run is shown in Figure 6.16. 
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Figure 6.16: Out-of-control bivariate HPD chart, with 1000 observations. 
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6.6 Interpretation of a signal 

When an observation is out of control, we can automate the diagnosis by including the 

classification algorithm in the computing code. When the process signals, the point is 

plotted in an out-of-control region, which visually indicates to the operator an initial 

diagnosis. We can also print the out-of-control values, and report the likelihood ratios 

for a mean shift only against a shift in both mean and scale, and a scale shift only 

against a shift in both. 

With any diagnostics based on likelihood, it is possible for an observation out 

of control for one reason to plot in a different region. Operators should be especially 

alert to this possibility when the out-of-control observation is close to a boundary. 

6.7 Conclusions 

We have proposed and developed two ideas in this chapter. First, we have advocated 

using bivariate control charts to control processes to allow better diagnosis of out- 

of-control signals. We applied this method to both the normal and inverse gaussian 

distribution. Second, we have examined using the HPD region as the control region 

for these bivariate charts. 

In many contexts, one follows the same procedures to react to an out-of- 

control process regardless of its suspected cause. In other contexts, one proceeds quite 

differently based on the initial diagnosis. In those contexts, the improved diagnostic 

tools of this chapter save time and money by directing the corrective actions first to 

the most likely cause. 



Chapter 7 

Application to combat models 

In the next two chapters, we apply the tools we have developed to problems of interest. 

In this chapter, we examine control of software revisions. In the next chapter, we look 

at an automobile assembly line. 

7.1    Background 

There are two major approaches to modeling combat. The first, originated by Fred- 

erick Lanchester [1956] at the turn of the century, represents combat by differential 

equations. The second, currently popular, involves high detail computer simulations. 

Each suffers from weaknesses. In this section, we propose a hybrid model based on 

the inverse gaussian distribution, which captures some of the advantages of both. 

Given this hybrid model, we can monitor simulated or actual operations to 

detect model changes, using the tools developed in the preceding chapters. 

Many authors have attempted to model combat. The first and arguably most 

influential was Frederick Lanchester. He proposed simple differential equation models 

for attrition, where the rate of change of the force level of one side was a function 

of the friendly force level and the opposing force level. The form of the function 

depended on the type of combat. The solutions to these differential equations have 

been used extensively in military modeling [Taylor, 1981] [Taylor, 1983]. 

These Lanchester Equations are recognized to have several shortcomings [Hughes, 

1964] [Dupuy, 1987] [Ventisel, 1964].  They are deterministic, simplistic, and do not 

114 



CHAPTER 7.   COMBAT MODELS 115 

fit the historical record well. Still, they are widely used because they are easily un- 

derstood and may give insights despite their weaknesses. The Corps level model 

Vector-in-Commander used by the Army is a deterministic model based on Lanch- 

ester Equations. 

A second approach has arisen with the advent of powerful computers. This 

is the high resolution simulation. In these models, every actor on the battlefield is 

modeled. Then a stochastic simulation is run, and the results reported. For example, 

one soldier may be set in motion towards an object. If he makes contact with an 

enemy soldier, there is a conflict resolution according to some stochastic algorithm. 

And the game proceeds according to the results. A large number of actors and a large 

number of conflicts produce a very large space of possible outcomes of the simulation. 

Some of these simulations are interactive, with humans making decisions at 

appropriate points. Others are not; they run as programmed until some stopping 

criterion is met. 

Unfortunately, there are serious questions about the utility of these large scale 

simulations. [Dupuy, 1987] 

First, they are only as good as the underlying algorithms, and in many cases 

the algorithms rely on either Lanchester Equations (which are known to be flawed) 

or on Monte-Carlo models with the parameters estimated on an ad hoc basis. These 

assumptions are usually invisible to the user of the simulation, and tend to become 

obscured and lost even to those who are responsible to maintain and improve the 

simulations. This is not due to a lack of diligence or professionalism, but is a result 

of the sheer size of the programs, the turn-over of personnel, and the fundamental 

lack of good algorithms. 

Second, these models also do not have good records replicating the historical 

record. 

A third approach to modeling combat has been taken by those who have 
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attempted to construct statistical models based on the historical record. Robert L. 

Helmbold offers a survey of these results [Helmbold, 1990]. Despite the best efforts of 

many talented people, these statistical models have failed to explain the variation in 

the overall historical record well, with the best regression models enjoying R2 « .3. 

These issues are not just of interest to the military academic. Procurement, 

doctrine, and force structure decisions are being made on the basis of the results of 

military models. This is a trend that will continue and accelerate, as the cost of 

conducting analysis based on physical models is prohibitive. Sound stewardship of 

national resources as well as prudence in the conduct of the national defense make it 

imperative that the models used be correct as possible. 

7.1.1    Underlying hypothesis of Brownian motion for combat 

models 

Combat operations are inherently stochastic. This nature argues in favor of deeper 

models than the Lanchester differential equations, which at best can be considered 

models of the expected results of combat and completely fail to capture the distribu- 

tion of results that may occur. 

It is possible to cast these equations as stochastic differential equations (SDEs), 

and attempt to solve them. However, complicated situations with many mixtures of 

players argue that such stochastic differential equations would be very complicated 

to solve. Additionally, the coefficients of such SDEs would need to be fit or estimated 

from either historical data or some other modeling effort. 

In the remainder of this chapter, we make a large assumption. Without at- 

tempting to explicitly define the SDEs, their coefficients, or their number and type, 

we will assume that their solution is well modeled by Brownian motion with drift. 

This is not such a huge assumption as it might appear.   First, on its face it 
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appears a reasonable model of the physical nature of combat operations. Many indi- 

vidual actions occur as a force moves toward an objective, some favorable, and others 

unfavorable. The sum of these actions constitutes the net effort of the larger unit. 

It is not unreasonable to model this ebb and flow of battle as Brownian motion with 

drift. This seems especially unobjectionable when the characteristic we are modeling 

is actual movement of a unit. Attrition models require a stronger assumption, since 

attrition tends to accelerate as one side gains ascendancy. 

Second, this type of model captures the benefits of the simplicity of the differ- 

ential equation approach while retaining the distributional nature of the simulation 

approach. It also is much less computationally intensive than the simulation effort. 

Third, it appears partially supported by the historical record. Helmbold [1990] 

looked at advance rates for 634 battles. He concluded: 

The upshot of our analysis is the advance rates are not normally dis- 

tributed. Their distribution is highly skewed, and much more closely fit 

by lognormal distributions than by any of the others tried (normal, expo- 

nential, Weibull, and gamma.)[Helmbold, 1990] 

Helmbold did not try the inverse gaussian distribution. We know that data well fit 

by the log-normal distribution is usually also well fit by the inverse gaussian. 

We examine the log-normal probability plot in Figure 3-1 of Helmbold. This is 

a plot of the advance rates observed in 57 battles in the Italian Theater during W. W.II 

between the fall of 1942 and spring of 1944. We notice that the data does appear to 

be well fit by the log-normal except at the tails, where there is a slight S shape. The 

exact same tail behavior is demonstrated by the graph of 1000 ln(/G(3,5)) variates 

when similarly plotted in Figure 7.1. In other words, it is very plausible that the data 

from Helmbold is better fit by the inverse gaussian model than by the log-normal 

model. Without access to the original data, this is as compelling an argument as can 
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Figure 7.1: Example of the tail behavior when an IG random variable is plotted on 
a log-normal probability plot. 
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be made from the graphical evidence available. We are encouraged to continue our 

efforts to model advance rates with the inverse gaussian distribution. 

Of course, what we would expect from the physical process is that the time to 

accomplish a mission was distributed as an inverse gaussian random variable. This 

too seems plausible. If the advance rate is well modeled as inverse gaussian, then the 

time to move a fixed distance is distributed as the reciprocal of an inverse gaussian. 

Since the distribution of the reciprocal of an inverse gaussian random variable is 

known and similar in form to an inverse gaussian, we proceed to model the movement 

itself as having an inverse gaussian distribution. We note that if this was true, then 

the log-normal probability plot of the advance rate would appear as in Figure 7.2, 

which again matches the figure in Helmbold and is similar to Figure 7.1. 

A separate issue raises itself, and we defer it for future study. If the move- 

ment of forces appears to follow an inverse gaussian distribution, perhaps regression 

methods of explaining combat based on the inverse gaussian distribution, instead of 

the normal distribution, may be successful for statistical modeling of combat. 

7.1.2    Program maintenance and unintended effects 

The computer simulations used to model combat are very large programs. The pro- 

grams are constantly being maintained, as new algorithms are added, new weapons 

systems are modeled, and new scenarios imagined. Historical data also causes model 

changes and updates, as when the experience of the Gulf War did not match the 

predictions of the simulations run during the planning phases. 

The major Army proponent for these models is located at the Training and 

Doctrine Command Analysis Center (TRAC) activity at the White Sands Missile 

Range (WSMR). There, analysts, modelers, and. programmers continually change the 

program code.   To test for unintended programming effects, TRAC-WSMR has a 
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Figure 7.2: Example of the tail behavior when the reciprocal of an IG random variable 
is plotted on a log-normal probability plot. 
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suite of scenarios it runs after updating the programs to check for consistency with 

earlier versions of the software. 

There are many measures associated with each model run. For example, one 

can measure friendly losses, enemy losses, the ratio of friendly to enemy losses, and 

so on. If we represent the number of friendly forces by X and the number of enemy 

forces by Y, then ^ is the Loss Exchange Ratio. This measure is widely used, and 

the one we examine in the remainder of this chapter. 

We defer examination of other measures for later work for two reasons. First, 

additional post-processing of simulation runs is expensive, and we are already in- 

debted to the Rand Corporation and to TRAC-White Sands Missile Range for the 

extensive work they did to produce data on the loss exchange ratios. Second, the 

loss exchange ratio is a widely used measure for modelers, and we shall see below 

that it appears to be well-modeled by the inverse gaussian distribution. This lends 

credibility and practical significance to the work, which would not be obtained by 

working with a less familiar measure. 

We have proposed to TRAC-WSMR and to the Army Research Laboratory 

that the time to accomplish the mission and the time to make decisions be examined 

to determine if the inverse gaussian distribution is an appropriate model. The Army 

Research Laboratory has agreed to fund the author's investigation of those topics. 

That research will be conducted in the summer of 1996 in conjunction with a large 

command and control exercise at Fort Leavenworth, Kansas. We feel that those 

measures have a better theoretical basis for being modeled as inverse gaussian variates. 

7.2    Goodness of fit 

We have as our initial data 80 replications of a simulation conducted at Fort Hood, 

Texas, in December 1993. These trials were used to measure the effectiveness of the 
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Figure 7.3: A histogram of force exchange ratios from the Blue Defense vignette for 
the M1A2 IOTE. The fitted IG distribution has been superimposed. 

M1A2 main battle tank. The trials consisted of a Blue armor task force defending 

against a Red force. We were provided the friendly losses ("Blue losses"), the enemy 

losses ("Red losses"), and the resulting loss exchange ratio. 

This model represents damage to each vehicle as a vector, representing of 

damage to different sub-systems. The model changes the allowed behavior of each 

vehicle, based on its damage vector. Different ways of representing this allowed 

behavior have been coded into the model, and simulated. These different approaches 

constitute our possible out-of-control observations. 
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The MLEs for the parameters for an inverse gaussian model of the base data 

are fi = 1.697875 and A = 11.2150895. A histogram of the data with the fitted density 

is provided at Figure 7.3 and indicates a good fit. We pursue goodness of fit testing 

next. 

7.2.1    Goodness of fit of IG model 

Following Edgeman, Scott and Pavur [1988], we perform a modified Kolmogorov- 

Smirnov test for the goodness of fit of the inverse gaussian distribution. The Kolmogorov- 

Smirnov statistic DN = 0.0982,   We further adjust this value using the regression 

equation D*N = DN{\fW + b^'-5 + b2N'1 + bzN'2), obtaining D*N = 1.2753. 

The critical value for rejecting the hypothesis that the data is well fit by an 

inverse gaussian distribution at the .20 significance level is greater than 1.994, using 

Table I in Edgeman, Scott and Pavur. The critical value at the .10 significance level 

is at least 2.356. Accordingly, we find no evidence that the data is not well fit by an 

inverse gaussian distribution. 

7.3    Results 

We will now use the procedures in this thesis to detect changes to the underlying 

model. We have three possible out-of-control scenarios. 

The first one represents a large model change. We will attempt to detect these 

changes with our self-starting and predictive Shewhart charts. 

The second two scenarios correspond to small persistent model changes. These 

are the ones least likely to be noticed after program maintenance. For these we will 

use self-starting CUSUM charts. 

We could, of course, apply all methods to all cases, but we have chosen to 
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limit ourselves. 

We assume the base case corresponds to the process in-control. Since we have 

less than 100 in-control individual observations, we will use self-starting and predictive 

methods. 

The first case we examine is a previous version of this computer combat model. 

The old methodology assigns a one-dimensional utility number to a combat vehicle. 

This number represents the fraction of capability left in the vehicle. It does not 

distinguish between loss of capability due to loss of mobility or that due to loss of a 

weapon system. We expect this model to perform differently from the base case. We 

have 20 observations for this case. 

The second two cases are modifications to the base case. The second case 

allows only two states for each subsystem: operable or inoperable. The third case 

allows the utility for each subsystem to be any value in the interval [0,1]. This 

contrasts with the base case, which has a finite number or degraded utility states. 

We have 80 observations of each of these cases. 

Figure 7.4 shows a boxplot of the four data sets, with the base case at the left, 

then the old program, and the two further modifications. 

Each of the four models tracks damage to the vehicles differently, and feeds 

that information into the main battle simulation. We note from Figure 7.4 that the 

old model is obviously different from the other three, but that the two modifications 

do not look very different from the base case. 

Normally, we would not use control charts in this scenario, but rather tests of 

equality of parameters. This is especially true because we know precisely when the 

possible model changes occur. We use these four cases to illustrate a more sophisti- 

cated process. Over the life of this code, there are literally hundreds of changes in 

the details of the implementation. The four described above are not very significant 

programming changes, and refer to one very small piece of the code. How does one 
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Figure 7.4: Boxplot of the four data sets used in this chapter. From left to right, 
they are the base case (assumed in-control), the old program, and two modifications 
to the base case. Source: White Sands Missile Range, 1996. 
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monitor the overall performance of the code when there are continual changes, most 

of which are not supposed to produce any change in the output characteristics? In 

this setting, control charts are useful to track the model over time, when it is unknown 

when a substantial change to the model may occur. 

There is no history of statistical testing of equivalency of models after pro- 

gramming changes at WSMR, according to the sources who provided this data. We 

hope that this methodology will be adopted by WSMR, and we have reason to believe 

that it will be. 

The concept of charting computer program performance against a set of bench- 

marks during program modifications is useful in more contexts than just this one 

military application. It allows a holistic view of software maintenance over time, in 

any context. 

7.3.1    Self starting Shewhart Charts 

Here we compare the base case with the old model, using a self-starting Shewhart 

scheme for the mean. The chart is at Figure 7.5. We see that even with this relatively 

large model change, we do not get a signal in 20 observations, although there is an 

obvious downward trend. 

If we break the data into samples of size five, there is also no indication of 

a shape change on the self-starting Shewhart chart for shape, found in Figure 7.3.1. 

Perhaps the lack of evidence is due to the process not running long enough. To check 

this, we sample from the in-control data 200 times to produce a new "base case". 

We then check the self-starting charts for this data, again with just our original 20 

out-of-control points. 

We obtain an immediate signal on our self-starting Shewhart chart for fi with 

this strategy, as seen in Figure 7.3.1. We obtain no signal in our self-starting chart 
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Figure 7.5: A self-starting Shewhart chart for the mean of the base case and historical 
data. 



CHAPTER 7.   COMBAT MODELS 128 

* 

V 
H 
O 
U  O 
Irt 

H 

I 

0   0 

o • o *     °o 

0 0 

0 
O Ö 

10 20 
Observation 

30 

Figure 7.6: Self-starting Shewhart chart for A, Data is treated as samples of size 5. 
No evidence of a shape change is found. 
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for A. 

We see no conclusive evidence in our original self-starting Shewhart charts of 

a model shift in either \JL or A. We do see evidence of a shift in the mean in our 

"bootstrap" self-starting Shewhart chart for the mean. 

7.3.2    Predictive Shewhart Charts 

We construct the predictive chart for the base case followed by the large shift in Fig- 

ure 7.8. Just as the self-starting chart, the predictive chart does not signal, although 

it does indicate a downward trend in the data. 

We increase the size of the training set by bootstrapping the base case to 200 

points, and construct at Figure 7.9 the predictive chart for the data. We see that, 

unlike the self-starting chart, the predictive chart does not signal immediately. There 

are several interesting features to this chart. First, there are 7 out-of-control points 

in the first 200 observations. With an ARL of 100, we expect two out-of-control 

points. This indicates that the process may not be in control. Since these points are 

normalized from the predictive scheme, that indicates that the process may not be 

modeled well by the inverse-gaussian. This is interesting, and argues for more precise 

distributional testing of the White Sands data. 

7.4    Self-starting CUSUM charts for the mean 

We apply the self-starting CUSUM schemes to the comparison of the base case with 

all three model changes. The charts are displayed in Figures 7.10,   7.11, and   7.12. 

We see that the self-starting charts detect the mean shift quickly for the shift 

from the base case to the historical case, and relatively quickly for the shift from the 

base case to the other two degraded states models. 
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Figure 7.7: Self-starting Shewhart chart for (JL. Training set has been redefined to 
200 observations by sampling with replacement from the original 80 base case points. 
The chart signals immediately when the data from the historical model is charted. 
Note that the points are labeled from 0 upward, and the point plotted as observation 
zero is observation 3 compared with observations 1 and 2 from the data stream. The 
signal at point 200 corresponds to the 3rd point from the historical data. 
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Figure 7.8: Predictive chart for the base case followed by the historical data. While 
the chart does not signal, evidence indicates a downward trend after observation 80. 
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Figure 7.9: A predictive Shewhart chart with bootstrapping to increase the training 
set to 200 points from 80. Note the first two observations are not plotted (since we 
need at least two points to predict the next observation) and points that are plotted 
are numbered with the first point being 0, as is the Xlisp-Stat convention. The bold 
points at the right of the chart are the observations from the historical model, different 
from the base case. There are several interesting aspects to this chart, including the 
unexpectedly high number of out-of-control points. Those out-of-control points are 

also highlighted. 
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Figure 7.10: Self-starting CUSUM of base case and historical case. ARL = 250. Note 
the chart signals at observation 84, four observations after going out of control. 
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Figure 7.11: Self-starting CUSUM of base case and first model change. ARL = 250. 
Note the chart signals at observation 114. 
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Figure 7.12: Self-starting CUSUM of base case and second model change. ARL = 250. 
Note this chart also signals at observation 114. 
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7.5    Conclusions 

We have seen that the methods of this thesis detect changes in the output of combat 

simulation models. This is significant for three reasons. 

First, we have modeled the output of these combat models as inverse-gaussian 

variates. This is a novel modeling strategy, and offers promise for fresh insight into 

the behavior of these combat simulations. It allows a new approach to comparing the 

output of different versions of the computer code based on statistical methodology, as 

the sampling theory of inverse gaussian variates is well known. In particular, it offers 

a way to determine, before simulation begins, an appropriate number of simulation 

runs, based on power considerations. This would be a vast improvement over the 

current approach of running 30 simulations due to an appeal to the central limit 

theorem. 

Second, we have applied control chart methodology to this new modeling strat- 

egy. This holds promise for quality control of large computer programs of any sort 

which are subject to continual revision. 

Last, we have shown how the tools of this thesis can be used in a practical 

setting. Our control chart methods, based on the inverse gaussian distribution, apply 

in this context where other methods based on other distributions would have been 

inappropriate. 



Chapter 8 

Application to automobile 
manufacturing: General Motors 

This chapter examines another application of the inverse gaussian distribution as 

a model for task completion time. The example comes from an article in Applied 

Statistics, by A. F. Desmond and G. R. Chapman [1993]. We again demonstrate how 

the tools developed in this thesis can be useful to both the industrial statistician and 

quality controller. 

8.1    Background 

In their paper, Desmond and Chapman examined the time to complete a task by crews 

of workers at the General Motors plan in Oshawa, Ontario. The crews performed 

repetitive tasks on an assembly line. The facility in which they worked electronically 

monitored "all aspects of the operation of the plant." [Desmond and Chapman, 1993]. 

Desmond and Chapman looked at three processes, of which we consider one. The 

thrust of Desmond and Chapman's paper was modeling these task completion times 

with mixtures of inverse gaussian distributions. The third process "exhibits no mixing 

whatsoever." This is the process we will study in this chapter. 

We examine the station where the parts required to install a radio were assem- 

bled. Desmond and Chapman[1993] describe this "radio kitting station" as the place 

where " a single worker performs the simple task of reading a docket indicating what 

parts are required, taking the parts from the appropriate bins, and placing them into 

137 
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a tray." 

For reasons very close to the ones addressed in our introductory chapter, 

Desmond and Chapman chose to model the task completion time using inverse gaus- 

sian random variables, instead of using Weibull, gamma, lognormal or other skewed 

non-negative distributions. 

Those authors also caveat their data with the warning that the reported times 

were subject to variation from actual time, due to operator discretion in the opera- 

tion of the mechanism which signaled task completion, and other sources. General 

Motors pre-processed the data prior to releasing it to Desmond and Chapman. The 

completion times were sorted; accordingly, no time-series analysis is directly applica- 

ble. Additionally, Desmond and Chapman screened for what they considered outliers 

(they termed them "bogus readings") and removed them. 

What was reported in the article were the MLEs from 1955 observations of a 

process claimed to be well modeled by an inverse gaussian distribution. The authors 

offered to make the data itself available for examination, but had not forwarded it 

as of the date this was written. Accordingly, we accept their claim, and reserve for 

future work any additional goodness of fit testing. 

The task completion times are modeled as inverse gaussian random variables, 

with fi - 42.6257 and A = 66.282. We note the large reported confidence interval for 

these estimates (JJ, G (41.0678, 44.1501)). The units of time were not specified in the 

paper, but we assume (from the context) that they are in seconds. Figure 8.1 shows 

the density of this distribution. We note the very heavy tail to the right. The median 

for this model is 32.5051, and the mode is 18.1071. 

We note that conventional quality control charts based on the normal dis- 

tribution are inappropriate here. Because of the heavy tail to the right, charts for 

centrality will never behave as expected, signaling too frequently. This situation ar- 

gues for inverse gaussian charts, and illustrates that they are not of only theoretical 
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Figure 8.1: Density for an IG(42.6257,66.282) distribution. 
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interest. 

What features are of interest to those monitoring this process? As this is a 

station in an assembly line, steady flow is desirable. Increases in the mean processing 

time or a decrease in A, or both, will decrease the service rate at this station and 

can cause slowdown in the overall assembly process. On the other hand, decreases 

in ix and increases in A allow management to identify circumstances which reflect 

improved service rates and decreased variation in the process. 

We noted in earlier chapters that the HPD test was more effective at detecting 

increases in /x than the (corrected) UMPU test of Edgeman. Here is an instance where 

that appears to be advantageous. 

8.2    Results 

In the last chapter, we used the self-starting and predictive schemes because we had 

time-series data, and startup conditions. We did not use those means that assumed we 

had accurate process knowledge, namely the corrected Edgeman Shewhart scheme, 

the HPD schemes, and the standard CUSUM. For the General Motors example of 

this chapter, in contrast, we do not have time series data available. However, we 

have extensive process history (1955 observations) from which to estimate our MLEs. 

Accordingly, we will not use the self-starting or predictive schemes in this context. 

Rather, we will use the corrected Edgeman scheme, the standard CUSUM, and the 

HPD charts. 

Between this chapter and the previous chapter, we will have illustrated each 

of the tools developed in this thesis. 

We set the in-control ARL equal to 100 for each of the calculations that follow. 

We will use samples of size 1, unless otherwise indicated, to facilitate comparison 

between the CUSUM and Shewhart schemes. 
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Table 8.1: Table of ARLs for corrected Edgeman Shewhart control scheme for samples 
of size 1 from an IG(/J,, 66.282) distribution. 

ARLs out of control 

& 
ARL 

28.8038 
25 46.8314 
30 66.1206 
35 84.6923 
40 97.8671 

42.6257 100 
45 98.2058 
50 84.8686 
60 50.5315 
70 30.4222 
80 20.4493 

8.2.1    Shewhart Chart for the mean 

We find, using Equations 2.8 and 2.9, that our control limits for process central- 

ity are given by 6.98446 < X < 260.141. In control, that gives an ARL of 100. 

Straightforward integration gives the results in Table 8.1. 

We see that even for large shifts in fi, this scheme is relatively slow to detect 

the process changes. 

8.2.2    Shewhart chart for A 

We mentioned in Chapter 2 that the Shewhart chart for changes in A behaved unex- 

pectedly. We will develop that assertion now. 

For this example, we consider samples of size 5. We also consider A known 

from historical data, and equal to 66.282. We know that XV ~ xl> ancl we construct 

our control limits as Equations 2.13 and  2.14 direct. 

We find LCL = .206987 and UCL = 14.8602. Those limits give an ARL in 

control of 100, and out-of-control ARLs as presented in Table 8.2. 

We note that the scheme is not effective for detecting upward shifts in A. 
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Table 8.2: Table of ARLs for the corrected Edgeman Shewhart scheme for A for 
an in-control distribution of IG(42.6257, 66.282). The scheme is reasonably effective 
detecting decreases in A, but is not effective detecting upward shifts. 

ARLs out of control 
A ARL 

1U 1.44617 
20 2.89911 
30 6.57186 
40 15.6796 
50 36.7708 
60 74.6842 

66.282 100 
70 110.963 
80 118.352 
90 105.769 
100 89.6385 
110 75.6325 
120 64.4051 
130 55.4939 
140 48.3559 
150 42.5583 

This results from both the skewness of the distribution of the \2 random variable 

and the nature of the test. An upward shift in A corresponds to a scale change 

in the distribution of V, resulting in compression of the distribution of V towards 

zero. The skewness of the distribution means that the such compression adds more 

probability on the right hand side of the control chart, following such a shift, than 

is lost on the left hand side. Consider a shift from A = 66.282 to A0 = 80, an 

increase by a factor of about 1.2. With A0 = 80, P(XV < .206987) = .0071840, while 

P(XV > 14.8602) = .0012730. In other words, the probability of being signaled as 

out-of-control has dropped to 0.00845170 from 0.01000, or about 16%. This results 

in the increase of the ARL to 118.352. Figure 8.2 illustrates. Since this chart is 

essentially the same chart for a scale change in a normal distribution, which is given 

by the limits 
2 2 2 2 

Id = Xa/2'n~l(7    < S2 <  Xl-°/2,n-lff    = UCL 

71—1 71—1 
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Figure 8.2: This graph shows the pdf of the sampling distribution of V when in 
control (the lower curve, A = 66.282) and when A has increased to 80. Note that the 
increase in A has resulted in a compression of the density towards the origin. 
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it appears that using S2 charts would suffer from the same defect. 

While this scheme does not detect increases in A well, in this context that 

is not necessarily a fatal defect. Recall that the variance of an IG random variable 

is inversely proportional to A. Increases in A result in decreased process variability, 

which is desirable. It is less critical to detect improvements quickly. On the other 

hand, the scheme does a reasonably good job of detecting shifts in A which result 

in increased variability, and it is increased variability which will wreak havoc with a 

queuing system. If the scheme has to be weak in one direction, it at least is weak in 

the least dangerous direction. 

8.2.3 HPD chart for the mean 

Calculating the HPD limits for samples of size one, we obtain LCL = 3.05051 

and UCL = 171.599. We compare these limits with the corrected Edgeman lim- 

its (6.98446, 260.141) and see by inspection that the HPD test will be quicker to 

detect upward shifts in the mean, and slower to detect downward shifts in the mean. 

Again, in this context, that is desirable behavior. We illustrate with Table 8.3. This 

example, when compared with the earlier corrected Edgeman example, highlights that 

the HPD test is not the uniformly most powerful test. However, since we are more 

interested in detecting increases in the mean than in detecting decreases, that feature 

is not unattractive. Yet compared to a one-sided test, it still can detect downward 

shifts in the mean, albeit more slowly. 

8.2.4 HPD chart for A 

We find that the HPD limits for V are given by LCL = .017469 and UCL = 13.2854. 

Since these limits are to the left of the Edgeman limits, we expect that we will again 

see the HPD scheme to be more sensitive to one side than the corrected Edgeman 
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Table 8.3: Table of ARLs for HPD scheme for the mean of an IG(n, 66.282) distribu- 
tion with samples of size 1. We see that the test detects upward shifts much better 
than it detects downward shifts. 

ARLs out of control 
P ARL 
1U 1064.88 
20 14490 
30 2115 
40 152.205 

42.6257 100 
50 42.2147 
60 20.4234 
70 12.9217 
80 9.46838 
90 7.5729 
100 6.40606 
110 5.62765 
120 5.07682 

charts. We present Table 8.4 to illustrate. 

8.2.5    CUSUM chart for the mean 

We now turn our attention to CUSUM charts for the mean. We construct a table of 

ARLs for various shifts in the mean, and present it in Table 8.5. The ARLs presented 

are for a shift to the indicated out-of-control state, with the CUSUM parameters se- 

lected for maximum power to detect changes to that state. As expected, the CUSUM 

scheme detects these changes much more quickly than the Shewhart scheme. 

8.2.6    CUSUM chart for A 

We now turn our attention to CUSUM charts for A. We construct a table of ARLs 

for various shifts in A, and present it in Table 8.6. The ARLs presented are for a 

shift to the indicated out-of-control state, with the CUSUM parameters selected for 

maximum power to detect changes to that state.   Compare Table 8.6 to Table 8.2, 
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Table 8.4: Table of ARLs for HPD scheme for A of an 7G(44.6257, A) distribution 
with samples of size 1. We see that the test detects upward shifts much better than 
it detects downward shifts. 

ARLs out of control 
A ARL 
10 1.35924 
20 2.46350 
30 5.02293 
40 10.9235 
50 24.7391 
60 57.581 

66.282 100.0 
70 136.451 
80 325.887 
90 769.017 
100 1716.42 
110 3308.50 
120 4965 
130 5724 
140 5591 
150 5115 

Table 8.5: Table of ARLs for CUSUM for the mean, GM example.  We use an in- 
control ARL of 100 for fx = 42.6257 and A = 66.282. 

ARLs out of control 
P ARL 
20 
25 
30 
35 
40 

42.6257 
45 
50 
60 
70 
80 

6.93 
11.32 
18.83 
33.16 
65.23 
100 

64.42 
34.28 
16.54 
10.86 
8.23 
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Table 8.6: Table of ARLs for CUSUM for A, GM example. We use an in-control ARL 
of 100 for n = 42.6257 and A = 66.282. Note that this is a CUSUM of individual 
observations. 

ARLs out of control 
A ARL 
10 3.05 
20 5.79 
30 10.27 
40 18.05 
50 32.52 
60 62.59 

66.282 100 
70 80.82 
80 52.60 
90 38.92 
100 31.06 
110 26.01 
120 22.51 
130 19.95 
140 18.06 
150 16.50 

the table for the corrected Edgeman Shewhart charts for A. The latter table was for 

samples of size five, and it performed poorly. By contrast, the CUSUM of individual 

observations does not display increased ARLs for out-of-control states with increased 

A. 

8.3    Conclusions 

We have presented performance data for our various tools, applied to the General 

Motors case. We have seen that the CUSUM schemes for ß and A perform much 

better than the HPD and Edgeman schemes. We have also seen that the HPD scheme 

performs better than the Edgeman scheme for detecting process changes of interest 

to the process manager, namely increases in fj, and decreases in A. 

Finally, by presenting an assembly line application in the automobile manu- 

facturing industry, we hope to have again shown that the methods of this thesis are 
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of practical as well as theoretical significance. 



Chapter 9 

Conclusions 

This short chapter summarizes the work of this thesis, and outlines further research 

areas. 

9.1    Summary and significance 

The title of this work is "Topics in Statistical process control". In this thesis, we have 

explored several topics which found common application in the setting of Chapter 7 

and Chapter 8. 

We first reviewed the existing literature on the statistical process control of 

inverse gaussian variates, due to Edgeman. We extended and modified his work with 

Shewhart control schemes. 

We introduced self-starting and predictive control charts, explored their prop- 

erties, and gave examples of their use. As part of that work, we derived the predictive 

distribution for the next m observations of an inverse gaussian variate, given the first 

n observations. 

We introduced HPD control regions for skewed distributions, and explored 

their advantages and disadvantages. 

We explored bivariate control charts, and gave new diagnostic rules for classi- 

fying out of control observations. We extended this idea to bivariate control charts 

based on HPD regions. 

We developed optimal CUSUM schemes for the parameters of an inverse gaus- 

sian distribution.  As a consequence, we obtained optimal CUSUM schemes for the 

149 
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scale parameter of a Gamma variate. We developed numerical routines to find the 

parameters of these CUSUM schemes based on both variance reduction simulation 

and numerical approximations to integral equations, using work of Hawkins for the 

latter. 

We found a new application for these tools, control of software modeling mili- 

tary combat. We modeled the output of those simulations as inverse gaussian variates, 

and applied our new tools to this data. We extended this work to the idea of control- 

ling complex software subject to constant revision. 

Finally, we returned to an industrial setting for our final application, and 

showed that even the much examined automotive assembly line could benefit from 

the application of the tools of this thesis. 

In all of the above work, we wrote software to implement the algorithms we 

developed, and used that software in our examples. 

9.2    Future work 

There are several exciting areas for future research opened by this thesis. 

First, what is the distribution of the run length of a CUSUM scheme which 

goes out of control when the S+ and S~ are not zero? Since most departures from 

control occur when these values are not zero, this has practical significance as well 

as theoretical interest. Solution allows for generalizing the idea of the Fast Initial 

Response CUSUM. 

Second, how can the diagnostic tools for a bivariate chart be sharpened? 

Third, we believe that other outputs of military combat simulations are better 

modeled as inverse gaussian variates, especially the time to complete a mission, the 

time to reach a decision, and time to move a certain distance. We wish to explore 

this further, with an eye to developing regression models to explain these responses. 
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We also believe that modeling these measures of effectiveness as inverse gaussian 

random variates allows rational principles of design of experiments to be applied to 

the conduct of these simulations, notably power and sample size calculations. 

Fourth, can we elicit and apply informative prior distributions to these military 

models? How does that effect our power and sample size? 

Fifth, can we develop bivariate CUSUM schemes with diagnostic tools similar 

to the bivariate Shewhart schemes? 

Sixth, can we find or develop efficient numerical integration techniques for 

higher dimensional integrals involving indicator functions? 

Last, what other skewed process could be well modeled by the inverse gaussian 

distribution, and benefit from the application of these tools to their control? 

These questions will keep us occupied for the near future. 



Appendix A 

Statistical Computing 

This appendix discusses the various pieces of code used to support the work done in 

this dissertation. We include it for two reasons. First, it allows someone to request 

code to check the results obtained in this dissertation. Second, it allows someone who 

desires to apply the results of this thesis to save the labor of devising and writing 

functionally equivalent algorithms. 

Because of the preference at the University for XLISP-STAT [Tierney, 1990], 

much of the code is written in that language. However, to take advantage of some 

earlier results, other routines are written in FORTRAN using the IMSL routines 

[IMSL, 1989]. We understand that the computer scientist might be offended by such 

an eclectic approach. 

This appendix is divided into functional pieces, as indicated by the headings. 

A.l    Generating IG variates 

This Xlisp-Stat function is based upon the algorithm recommended by Chhikara and 

Folks [1989], which in turn was based on work by Michael et al. [1976]. 

;;;  generate IG's   ;;;  uses algorithm in Chhikara/Folks 

(defun inv-gauss-rand  (n mu lambda)   (let*  ((y  (chisq-rand n 1))   (xl 

(*   (/ mu lambda 2)   (+  (* 2 lambda)   (* mu y)   (-   ((+  (* 4 lambda mu y)   (* 

mu mu y y))   .5)))))   (u  (uniform-rand n))) 

(dotimes  (i n)   (setf  (select xl i)   (if   (<  (select u i)   (/ mu  (+ mu 

(select xl i))))   (select xl  i)   (/  (* mu mu)   (select xl i)))))  xl ))   This 
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and a number of other Xlisp-Stat function are available from the author upon request. 

A.2    CUSUM ARL FORTRAN routines with ex- 

planation 

We have four classes of FORTRAN routines, available from the author. The first 

generates tables of ARL vs. h for either the optimal or the naive value of A;. We 

have these routines for upward and downward shifts of \i and A. There are 8, named 

ARLl.f-ARL8.f. 

The second class of programs finds the value of h to obtain a given one-sided 

ARL for either the optimal or naive value of k. As before, we have these routines for 

upward and downward shifts of \i and A. There are 8, labeled findl.f - find8.f 

The third class of routines finds the cutoff values for HPD regions, using 

numerical integration routines. There is one routine in this class - findbik.f, which 

finds the value of k such that P(f(x)y)>k) = p. 

The fourth class of routines computes the predictive p value for a series of 

observations, using the predictive distribution. This can be used to run a Shewhart 

or CUSUM chart of p-values. The routine labeled predl.f computes the p-value for 

the next observation. The routine predm.f computes the p-value for the next m 

observations. 

A.2.1    CUSARL 

Many of these FORTRAN routines are based on a sub-program called CUSARL.f, 

by Douglas Hawkins. That routine evaluates the average run length for a one-sided 

CUSUM chart for an arbitrary data distribution of one parameter. We have made one 

slight modification, allowing for a two-parameter distribution to be evaluated (such 
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as the IG(ß, A). 

CUSARL uses a Markov chain approximation to find the ARLs, with an iter- 

ative mesh technique which uses Richardson extrapolation to incorporate the infor- 

mation from previous iterations into the current estimate. This algorithm is accurate 

and computationally efficient. 

We do not reproduce the CUSARL code here; it is contained in the paper by 

Hawkins [1992c] and is also available by ftp from the StatLib archives at Carnegie 

Mellon University. 

A.2.2    Finding ARL for shifts in y, and A: ARL1 - 8.f 

The routines ARLl.f —ARL4.f find tables of values for a shift in the mean of the 

IG(/J,, A) distribution. The user enters the in-control distribution, the out-of-control 

tuning value for the mean, and a range of h values. The programs compute the in- 

control and out-of-control values of the ARL for both conventional and fast initial 

response schemes, and write them to a file for importation into a graphics program. 

These routines allow the user to see the trade-offs in using each of the schemes, 

and how the ARLs in-control tend to grow non-linearly with increasing h, while the 

out-of-control ARLs tend to grow linearly. 

Each of these routines is for a point alternative, or a one-sided CUSUM scheme. 

ARLs for the two-sided schemes must be found by combining the ARLs as described 

in Equation 1.11. 

ARLl.f finds the ARL for an upward mean shift using the optimal scheme. 

ARL2.f finds the ARL for an upward mean shift using the arithmetic mean. ARL3.f 

find the ARL for a downward mean shift using the optimal scheme. ARL4. f finds 

the ARL for a downward mean shift using the arithmetic mean. 

ARL5.f through ARL8.f are the same as ARL1.4 through ARL4.f, except they 
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are for shifts in A. 

These routines are available from the author upon request. 

A.2.3    Finding decision limits for a CUSUM scheme. 

The optimal scheme in this thesis tells us what k, the reference value, should be. We 

still have to determine h, the reference value, to meet a desired ARL for the given k. 

We used a modified Newton-Raphson method with a difference quotient in- 

stead of the exact derivative to solve for h. We used the CUSARL code to give us the 

ARL of an arbitrary h as f(h) = ARLh, and then we found the root of the equation 

f(h) - ARL = 0 for our desired ARL. 

These programs are named FINDHl.f through FINDH8.f, and correspond to 

the cases for the ARL code. 

These, too, are available from the author. 

A.3    Variance reduction techniques for IG ARLs 

with code 

We needed a check on our programming for the FORTRAN routines. We developed 

simulation routines to find ARLs for our schemes. We used a clever variance reduction 

scheme developed by Jun and Choi [1991], and applied it to the inverse gaussian 

distribution. The technique uses total hazard as a control variate. The routine is 

available from the author as IG-ARL.LSP. 

A.4    Data 

The data files used in this thesis are available from the author. 
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