LIGHT SCATTERING FROM NONCONCENTRIC SPHERES

Dat Ngo
Steve Christesen

RESEARCH AND TECHNOLOGY DIRECTORATE

Gorden Videen

U.S. ARMY RESEARCH LABORATORY
White Sands Missile Range, NM 88002-5001

May 1996

19960701 089

Approved for public release; distribution is unlimited.

Aberdeen Proving Ground, MD 21010-5423
Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.
Atmospheric aerosols often contain small inclusions of insoluble material which can affect remote sensing techniques that rely on the scattering or fluorescence for detection, and identification. Thus the exact solution for the scattering from a sphere with a nonconcentric spherical inclusion is derived using an extension of Mie theory. The boundary conditions at the surfaces of both spheres are satisfied by representing the fields emanating from the center of one sphere as a summation of vector harmonics emanating from the center of the other sphere. The exact solution is shown to reduce to the coated sphere solution if the inclusion and host spheres are concentric, and to the Mie theory solution if the refractive indices of the inclusion and host are the same. We then examine the sensitivity of the scattering to various system parameters.
PREFACE

The work described in this report was authorized under Project No. 10161102A71A, Smoke Technology. This work was started in September 1993 and completed in April 1996.

The use of trade or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

This report has been approved for release to the public. Registered users should request additional copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Center.

Acknowledgments

The authors would like to thank Ronald Pinnick and Peter Chylek for their support and discussion. They would also like to thank Roger Combs and Dennis Roser for helpful suggestions and moral support.
CONTENTS

1. INTRODUCTION ... 7

2. THE SOLUTION .. 7
 2.1 Host Sphere ... 11
 2.2 Inclusion Sphere ... 12
 2.3 Fields Interior to the Host Sphere 12
 2.4 Scattering Coefficients .. 16
 2.5 Plane Wave Expansion .. 17
 2.6 The Scattering Amplitudes and Efficiencies 18

3. SPECIAL CASES .. 19
 3.1 Simplifications of Q_n' and Q_n'' 19
 3.2 Mie Reduction ... 20
 3.3 Concentric Spheres .. 21

4. RESULTS AND DISCUSSIONS ... 21
 4.1 Comparison with Mie Theory 21
 4.2 Comparison with Concentric Theory 25
 4.3 Examination of Two Types of Inclusion 25

5. CONCLUSION .. 33

LITERATURE CITED .. 35

APPENDIX - NONCONCENTRIC SPHERE CODE A-1
FIGURES

1 Geometry of the nonconcentric sphere scattering system .. 8

2 Physical representation of the fields upon the nonconcentric sphere system 10

3 Comparison of the scattering intensity using the Mie code and the nonconcentric sphere code ... 22

4 Extinction efficiencies as a function of separation distance between the two sphere centers for two types of inclusion 26

5 Backscattering total intensity as a function of separation distance between the two sphere centers .. 27

6 Extinction efficiencies as a function of incident angle ... 29

7 Backscattering total intensity as a function of incident angle 30

8 Extinction efficiencies as a function of inclusion radius for four values of the separation distance .. 31

9 Extinction efficiencies as a function of inclusion radius for three values of the incident angle .. 32

TABLES

1 Comparison with Mie scattering output ... 23

2 Comparison of nonconcentric with coated sphere theory ... 24
LIGHT SCATTERING FROM NONCONCENTRIC SPHERES

1 INTRODUCTION

Atmospheric aerosols often contain small inclusions of insoluble material which can affect their scattering properties. These inclusions can be found anywhere within the host aerosols. Chemical and biological agents can also exist in the atmosphere as multi component aerosols. For example, bacterial agents can be dispersed as a liquid suspension where the spore or cell is embedded in a water droplet. In the 1950's, the use of carrier dusts for disseminating chemical agents was tested.\cite{1},\cite{2} Although unsuccessful, the goal of this work was to modify the physical characteristics of the chemical agent by use of an inert dust as a carrier to obtain more efficient aerosol dissemination. It is also assumed that any inclusion or encapsulation can directly affect the optical properties of the aerosol, and hence its scattering characteristics. This influence has consequences for remote sensing techniques that rely on the aerosol scattering or fluorescence for detection and identification. Therefore, the purpose of this report is to show the theoretical derivation of a host sphere containing one spherical inclusion arbitrarily located within the host.

Until recently, theoretical predictions of scattering for a host sphere containing a nonconcentrically positioned smaller sphere was not feasible. Most experimentalists had to be content with the concentric sphere model,\cite{3}–\cite{5} i.e., the smaller sphere sharing the same origin as the host sphere. Some made use of the T-matrix method \cite{6}–\cite{8} to examine a radially inhomogeneous sphere, and some even dabbled with the effective medium approximations.\cite{9} It was not until Friedman and Russek \cite{10} published the addition theorem for spherical waves that the solution to the nonconcentric problem was even realizable. However, Friedman and Russek made some errors in their derivations. Stein \cite{11} (and later Cruzan \cite{12}) found the errors and came up with the correct translation addition theorem for spherical wave functions. After that, the solution was attainable. Fikioris and Uzunoglu \cite{13} were the first to obtain a mathematical expression for the scattering of a nonconcentric sphere within a host sphere, followed by Borghese et al.\cite{14} Kirk Fuller derived the relations for the same problem using an order of scattering approach.\cite{15} In the following pages we derive the general expressions for the scattering from a system composed of a sphere containing a nonconcentric spherical inclusion.

2 THE SOLUTION

The scattering solution of a sphere containing many inclusions is difficult to solve, and even more difficult to implement because of the limitation of present day computers. For this reason, we choose a simple model having one spherical inclusion arbitrarily placed inside a larger sphere.
Figure 1. Geometry of the nonconcentric sphere scattering system. A host sphere of radius a_1 and complex refractive index $\tilde{\mu}_1$ is centered on the $x_1y_1z_1$ coordinate system. The inclusion sphere of radius a_2 and complex refractive index $\tilde{\mu}_2$ is centered on the $x_2y_2z_2$ coordinate system at a position $x_1 = 0, y_1 = 0, z_1 = d$. The incident radiation is a plane wave traveling in the $x - z$ plane, oriented at angle α with respect to the z axis.
The geometry of the scatterer is shown in Figure 1. The larger sphere (the host) of radius a_1 and refractive index m_1 completely encloses the smaller sphere (the inclusion) of radius a_2 and refractive index m_2. The center of the host sphere is situated on the x_1, y_1, z_1 coordinate system. The inclusion sphere is centered on the x_2, y_2, z_2 coordinate system at a position $x_1 = 0, y_1 = 0, z_1 = d$. Since the inclusion sphere is centered on the z_1 axis, to make the solution completely general, we require the incident radiation to impinge upon the system at an arbitrary angle α. The problem of a sphere within a sphere can be solved by simultaneously satisfying all the boundary conditions at the surfaces of the two spheres.

Figure 2 shows the physical representation of the fields. Note that we use circular arcs to represent spherical traveling waves (spherical Bessel functions of the 3rd and 4th kinds) and parallel lines to represent plane waves. The boundary conditions at the surfaces of both spheres are satisfied by representing the fields emanating from the center of one sphere as a summation of vector harmonics emanating from the center of the other sphere. We use the vector spherical harmonics which have the following form:

$$M^{(\rho)}_{nm,j} = \hat{\theta}_j \left[\frac{im}{\sin \theta_j} z_1^{(\rho)}(k r_j) \hat{P}^m_n(\cos \theta_j) e^{im \varphi_j} \right] - \hat{\varphi}_j \left[\frac{z_2^{(\rho)}(k r_j)}{d \theta_j} \hat{P}^m_n(\cos \theta_j) e^{im \varphi_j} \right],$$

$$N^{(\rho)}_{nm,j} = \hat{\theta}_j \left[\frac{1}{k r_j} \frac{d}{d \theta_j} \left(r_j z_1^{(\rho)}(k r_j) \right) \frac{d}{d \theta_j} \hat{P}^m_n(\cos \theta_j) e^{im \varphi_j} \right] + \hat{\varphi}_j \left[\frac{1}{k r_j} \frac{d}{d r_j} \left(r_j z_2^{(\rho)}(k r_j) \right) \frac{im}{\sin \theta_j} \hat{P}^m_n(\cos \theta_j) e^{im \varphi_j} \right],$$

where the index j corresponds to the coordinate system used ($j = 1, 2$) and $z_1^{(\rho)}(k r_j)$ are the spherical Bessel functions of the first, second, third, or fourth kind ($\rho = 1, 2, 3, 4$), and

$$\hat{P}^m_n(\cos \theta_j) = \sqrt{\frac{(2n + 1)(n - m)!}{2(n + m)!}} P^m_n(\cos \theta_j),$$

where $P^m_n(\cos \theta_j)$ are the associated Legendre polynomials.
Figure 2. Physical representation of the fields on the nonconcentric sphere system.
2.1 Host Sphere

We now examine the fields which strike the host sphere surface \((j = 1) \). We consider an arbitrary field incident on the system which can be expanded using the spherical Bessel functions of the first kind, \(j_n(kr) \). We will examine the specific cases of plane waves polarized perpendicular and parallel to the \(y \) axis later. The incident electric field may be expanded as

\[
E_{\text{inc}}^1 = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} a_{nm} M_{nm,1}^{(1)} + b_{nm} N_{nm,1}^{(1)}. \tag{3}
\]

Similarly, the scattered electric field may be expanded using the spherical Bessel functions of the third kind, \(h_n^{(1)}(kr) \):

\[
E_{\text{scat}}^1 = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} c_{nm} M_{nm,1}^{(3)} + d_{nm} N_{nm,1}^{(3)}. \tag{4}
\]

The fields near the boundary \(|d| < r_1 < a_1 \) inside the sphere may be expanded into incoming and outgoing spherical waves using spherical Bessel functions of the fourth kind \(h_n^{(2)}(k_1r_1) \) and third kind \(h_n^{(3)}(k_1r_1) \):

\[
E_{\text{sph}}^1 = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} e_{nm} M_{nm,1}^{(3)} + f_{nm} N_{nm,1}^{(3)} + g_{nm} M_{nm,1}^{(4)} + h_{nm} N_{nm,1}^{(4)}. \tag{5}
\]

The application of boundary conditions at the host sphere surface for the above three equations yields two sets of equations:

\[
a_{nm} k_1 \psi_n(k_1 a_1) + c_{nm} k_1 \xi_n^{(1)}(k_1 a_1) = e_{nm} k \xi_n^{(1)}(k_1 a_1) + g_{nm} k \xi_n^{(2)}(k_1 a_1), \tag{6}
\]

\[
a_{nm} \psi_n'(k_1 a_1) + c_{nm} \xi_n^{(1)}(k_1 a_1) = e_{nm} \xi_n^{(1)}(k_1 a_1) + g_{nm} \xi_n^{(2)}(k_1 a_1), \tag{7}
\]

\[
b_{nm} \psi_n(k_1 a_1) + d_{nm} \xi_n^{(1)}(k_1 a_1) = f_{nm} \xi_n^{(1)}(k_1 a_1) + h_{nm} \xi_n^{(2)}(k_1 a_1), \tag{8}
\]

\[
b_{nm} k_1 \psi_n'(k_1 a_1) + d_{nm} k_1 \xi_n^{(1)}(k_1 a_1) = f_{nm} k \xi_n^{(1)}(k_1 a_1) + h_{nm} k \xi_n^{(2)}(k_1 a_1), \tag{9}
\]

where \(\psi_n(r) \) and \(\xi_n^{(q)}(r) \) \((q = 1, 2) \) are the Riccati-Bessel functions defined by

\[
\psi_n(r) = r j_n(r) \quad \text{and} \quad \xi_n^{(q)}(r) = r h_n^{(q)}(r), \tag{10}
\]

and the primes denote derivatives with respect to the argument.
2.2 Inclusion Sphere

Next we examine the fields which strike the inclusion sphere surface \((j = 2)\). The fields inside this sphere may be expressed using spherical Bessel functions of the first kind \(j_n(k_2r_2)\):

\[
E_{\text{int}}^2 = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} p_{nm} M_{nm,2}^{(1)} + q_{nm} N_{nm,2}^{(1)}.
\]

(11)

The fields near the boundary outside the sphere may be expressed into incoming and outgoing spherical waves using spherical Bessel functions of the fourth kind \(h_n^{(2)}(k_1r_2)\) and third kind \(h_n^{(1)}(k_1r_2)\):

\[
E_{\text{ext}}^2 = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} r_{nm} M_{nm,2}^{(3)} + s_{nm} N_{nm,2}^{(3)} + t_{nm} M_{nm,2}^{(4)} + u_{nm} N_{nm,2}^{(4)}.
\]

(12)

Applying boundary conditions at the sphere surface yields two sets of equations:

\[
p_{nm} k_1 \psi_n(k_2a_2) = r_{nm} k_2 \xi_{n}^{(1)}(k_1a_2) + t_{nm} k_2 \xi_{n}^{(2)}(k_1a_2),
\]

(13)

\[
r_{nm} k_1 \psi_n(k_2a_2) = r_{nm} k_2 \xi_{n}^{(1)}(k_1a_2) + t_{nm} k_2 \xi_{n}^{(2)}(k_1a_2).
\]

(14)

\[
q_{nm} k_1 \psi_n'(k_2a_2) = s_{nm} k_2 \xi_{n}^{(1)}(k_1a_2) + u_{nm} k_2 \xi_{n}^{(2)}(k_1a_2).
\]

(15)

\[
q_{nm} k_1 \psi_n'(k_2a_2) = s_{nm} k_2 \xi_{n}^{(1)}(k_1a_2) + u_{nm} k_2 \xi_{n}^{(2)}(k_1a_2).
\]

(16)

We can eliminate the interior field coefficients \(p_{nm}\) and \(q_{nm}\) to find relationships for the exterior field coefficients. After a little bit of algebra, we have:

\[
r_{nm} = \frac{k_1 \xi_{n}^{(2)}(k_1a_2) \psi_n(k_2a_2) - k_2 \xi_{n}^{(2)}(k_1a_2) \psi_n'(k_2a_2)}{k_2 \xi_{n}^{(1)}(k_1a_2) \psi_n(k_2a_2) - k_1 \xi_{n}^{(1)}(k_1a_2) \psi_n'(k_2a_2)} = Q_{n}^r t_{nm}.
\]

(17)

\[
s_{nm} = \frac{k_2 \xi_{n}^{(2)}(k_1a_2) \psi_n(k_2a_2) - k_1 \xi_{n}^{(2)}(k_1a_2) \psi_n'(k_2a_2)}{k_1 \xi_{n}^{(1)}(k_1a_2) \psi_n(k_2a_2) - k_2 \xi_{n}^{(1)}(k_1a_2) \psi_n'(k_2a_2)} = Q_{n}^s u_{nm},
\]

(18)

where \(Q_{n}^r\) and \(Q_{n}^s\) are the Q factors which contain information about the inclusion sphere such as its size and refractive index.

2.3 Fields Interior to the Host Sphere

The fields in the interior of the host sphere are expressed by equations 6-9, while the fields exterior to the inclusion sphere are expressed by equations 17 and 18. At first glance, it is tempting to merely equate those coefficients, but that would be a mistake since the vector spherical harmonics expressed by those equations are centered about two different coordinate systems. This is where the importance of the translational addition theorem comes into play.
Stein[12] and Cruzan[13] have derived translation addition theorems for vector spherical wave functions which can be used to express the coefficients e_{nm}, f_{nm}, g_{nm}, and h_{nm} in terms of the coefficients r_{nm}, s_{nm}, t_{nm}, and u_{nm}. And the way we have set up our geometry for the scattering system now comes in handy. Because we require that the inclusion be centered along the z-axis, the two origins are separated only by a displacement in z. Hence, there is no rotation. Thus, for a translation along the z axis with no rotation, the vector spherical harmonics are related by:

$$ M_{nm,2}^{(q)} = \sum_{n'=0}^{\infty} A_{n,n'}^{(m,q)} M_{n',m,1}^{(q)} + B_{n,n'}^{(m,q)} N_{n',m,1}^{(q)}; \quad (19) $$

$$ N_{nm,2}^{(q)} = \sum_{n'=0}^{\infty} B_{n,n'}^{(m,q)} M_{n',m,1}^{(q)} + A_{n,n'}^{(m,q)} N_{n',m,1}^{(q)}; \quad (20) $$

where q denotes the order of the spherical Bessel functions ($q = 1, 2, 3, 4$). This relationship is valid in the region where $r > |d|$. The translation coefficients $A_{n,n'}^{(m,q)}$ and $B_{n,n'}^{(m,q)}$ are derived elsewhere. [19] We note that the expressions are:

$$ A_{n,n'}^{(m,q)} = C_{n,n'}^{(m,q)} = \frac{k_1 d}{n'} \frac{(n' - m + 1)(n' + m + 1)}{(2n' + 1)(2n' + 3)} C_{n,n'-1}^{(m,q)}, $$

$$ B_{n,n'}^{(m,q)} = -i k_1 m d \frac{1}{n'(n'+1)} C_{n,n'}^{(m,q)}. \quad (21) $$

The $C_{n,n'}^{(m,q)}$ are scalar translation coefficients. Recursion expressions for these scalar coefficients can be derived using the method of Bobbert and Vlieger.[17] The details are shown elsewhere.[19] The necessary scalar translation coefficients are:

$$ C_{0,n'}^{(0,q)} = \sqrt{2n' + 1} j_{n'}(k_1 d), \quad (23) $$

$$ C_{-1,n'}^{(0,q)} = -\sqrt{2n' + 1} j_{n'}(k_1 d). \quad (24) $$

$$ C_{n+1,n'}^{(0,q)} = \frac{1}{(n+1)} \sqrt{\frac{2n+3}{2n'+1}} \left\{ n' \sqrt{\frac{2n+1}{2n'-1}} C_{n,n'-1}^{(0,q)} + n \sqrt{\frac{2n'+1}{2n-1}} C_{n-1,n'}^{(0,q)} - (n'+1) \sqrt{\frac{2n'+1}{2n'+3}} C_{n,n'+1}^{(0,q)} \right\}. \quad (25) $$
\[
\sqrt{(n - m + 1)(n + m)(2n' + 1)}C_{n,n'}^{(m,q)} = \sqrt{(n' - m + 1)(n' + m)(2n' + 1)}C_{n,n'}^{(m-1,q)} - \\
k_1d_4 \frac{(n' - m + 2)(n' - m + 1)}{(2n' + 3)}C_{n,n' + 1}^{(m-1,q)} - \\
k_1d_4 \frac{(n' + m)(n' + m - 1)}{(2n' - 1)}C_{n,n' - 1}^{(m-1,q)}, \tag{26}
\]
and
\[
C_{n,n'}^{(m,q)} = C_{n,n'}^{(-m,q)}. \tag{27}
\]

From these equations, we see that
\[
A_{n,n'}^{(m,3)} = A_{n,n'}^{(m,4)} = A_{n,n'}^{(-m,3)} = A_{n,n'}^{(m)},
\]
\[
B_{n,n'}^{(m,3)} = B_{n,n'}^{(m,4)} = B_{n,n'}^{(-m,3)} = B_{n,n'}^{(m)},
\]
\[
C_{n,n'}^{(m,3)} = C_{n,n'}^{(m,4)} = C_{n,n'}^{(-m,3)} = C_{n,n'}^{(m)}. \tag{28}
\]

The advantage of expanding the interior fields of the host sphere in the third and fourth kinds of spherical Bessel functions rather than the first and second kinds is that only one set of translation coefficients need to be calculated. Using equations 19, 20, and substituting those expressions into equation 12, we obtain
\[
E_{ext}^2 = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left\{ r_{nm} \left[\sum_{n'=0}^{\infty} A_{n,n'}^{(m,3)} M_{n',m,1}^{(3)} + B_{n,n'}^{(m,3)} N_{n',m,1}^{(3)} \right] \\
+ s_{nm} \left[\sum_{n'=0}^{\infty} B_{n,n'}^{(m,3)} M_{n',m,1}^{(3)} + A_{n,n'}^{(m,3)} N_{n',m,1}^{(3)} \right] \\
+ t_{nm} \left[\sum_{n'=0}^{\infty} A_{n,n'}^{(m,4)} M_{n',m,1}^{(4)} + B_{n,n'}^{(m,4)} N_{n',m,1}^{(4)} \right] \\
+ u_{nm} \left[\sum_{n'=0}^{\infty} B_{n,n'}^{(m,4)} M_{n',m,1}^{(4)} + A_{n,n'}^{(m,4)} N_{n',m,1}^{(4)} \right] \right\}. \tag{29}
\]

The field outside of the inclusion sphere is now expressed in terms of the vector spherical harmonics of the host sphere. Therefore, it is now possible to equate equation 29 with equation 5. Looking only at the \(M_{n'}^{(3)}\), we see that
\[
\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \epsilon_{nm} M_{n,m}^{(3)} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left[r_{nm} \sum_{n'=0}^{\infty} A_{n,n'}^{m} + s_{nm} \sum_{n'=0}^{\infty} B_{n,n'}^{m} \right] M_{n',m}^{(3)}. \tag{30}
\]
Multiplying both sides of this equation by $\int M_{ij}^{(3)}(t) \, dt$ and using the orthogonality condition ($\delta_{ni} \delta_{mj}$ on the left hand side, and $\delta_{ni'} \delta_{mj}$ on the right hand side), we obtain

$$e_{ij} = \sum_{n=0}^{\infty} r_{nj} A_{n,i}^j + s_{nj} B_{nj}^j,$$

which can be rewritten as

$$e_{nm} = \sum_{n'=0}^{\infty} r_{n'm} A_{n',n}^m + s_{n'm} B_{n',n}^m.$$ \hspace{1cm} (31)

Continuing the same line of reasoning, we can show

$$f_{nm} = \sum_{n'=0}^{\infty} s_{n'm} A_{n',n}^m + r_{n'm} B_{n',n}^m,$$ \hspace{1cm} (33)

$$g_{nm} = \sum_{n'=0}^{\infty} t_{n'm} A_{n',n}^m + u_{n'm} B_{n',n}^m,$$ \hspace{1cm} (34)

and

$$h_{nm} = \sum_{n'=0}^{\infty} u_{n'm} A_{n,n'}^m + t_{n'm} B_{n,n'}^m.$$ \hspace{1cm} (35)

These are the four magic equations which relate the coefficients in the two different coordinate systems. Armed with these new expressions, it is now possible to replace one set of coefficients with another.

Substituting equations 32 and 34 into equation 6 we have

$$a_{nm} k_1 \psi_n(k a_1) + c_{nm} k_1 \xi_n^{(1)}(k a_1) = k \xi_n^{(1)}(k a_1) \sum_{n'=0}^{\infty} r_{n'm} A_{n,n'}^m + s_{n'm} B_{n,n'}^m + k \xi_n^{(2)}(k a_1) \sum_{n'=0}^{\infty} t_{n'm} A_{n,n'}^m + u_{n'm} B_{n,n'}^m.$$ \hspace{1cm} (36)

Using equations 17 and 18 for $r_{n'm}$ and $s_{n'm}$, we can substitute those expressions into the above equation to obtain

$$a_{nm} \psi_n(k a_1) + c_{nm} \xi_n^{(1)}(k a_1) = \frac{k}{k_1} \sum_{n'=0}^{\infty} t_{n'm} A_{n,n'}^m \left[\xi_n^{(2)}(k a_1) + Q_n^{s} \xi_n^{(1)}(k a_1) \right] + u_{n'm} B_{n,n'}^m \left[\xi_n^{(2)}(k a_1) + Q_n^{s} \xi_n^{(1)}(k a_1) \right].$$ \hspace{1cm} (37)

Likewise, we can substitute equations 32 - 35 into equations 7 - 9 (and together with equations 17 and 18) to obtain the following set of simultaneous equations, which can be solved to yield
the scattering coefficients \((c_{nm} \text{ and } d_{nm})\) or the internal field coefficients \((t_{nm} \text{ and } u_{nm})\) of the host sphere:

\[
\begin{align*}
 a_{nm} \psi_n'(ka_1) + c_{nm} \xi_n^{(1)}(ka_1) &= \sum_{n'=0}^{\infty} t_{n'm} A_{n,n'}^m \left[\xi_n^{(2)}(k_1a_1) + Q_n^r \xi_n^{(1)}(k_1a_1) \right] + \\
 &\quad + u_{n'm} B_{n,n'}^m \left[\xi_n^{(2)}(k_1a_1) + Q_n^s \xi_n^{(1)}(k_1a_1) \right], \\
 b_{nm} \psi_n(ka_1) + d_{nm} \xi_n^{(1)}(ka_1) &= \sum_{n'=0}^{\infty} t_{n'm} B_{n,n'}^m \left[\xi_n^{(2)}(k_1a_1) + Q_n^r \xi_n^{(1)}(k_1a_1) \right] + \\
 &\quad + u_{n'm} A_{n,n'}^m \left[\xi_n^{(2)}(k_1a_1) + Q_n^s \xi_n^{(1)}(k_1a_1) \right].
\end{align*}
\]

\(2.4 \text{ Scattering Coefficients} \)

The set of four equations (37 - 40) is the final product in our search for the scattering coefficients. We have four equations and four unknowns, the unknowns being \(c_{nm}, d_{nm}, t_{nm}, \) and \(u_{nm}\). The interior field coefficients inside the host sphere, \(t_{nm}\) and \(u_{nm}\), (which can also be viewed as the exterior field coefficients of the inner sphere) may be calculated by eliminating the scattering coefficients \(c_{nm}\) and \(d_{nm}\) in equations 37 - 40. Since all the elements comprising the matrix in the solution are known except for the coefficients \(t_{nm}\) and \(u_{nm}\), we can perform an LU-decomposition to solve for those interior field coefficients. The matrix representation is:

\[
\begin{align*}
 a_{nm} \gamma_n &= \sum_{n'=0}^{\infty} t_{n'n} T_{n,n'}^{(m,1)} + u_{n'n} U_{n,n'}^{(m,1)}, \\
 b_{nm} \gamma_n &= \sum_{n'=0}^{\infty} t_{n'n} T_{n,n'}^{(m,2)} + u_{n'n} U_{n,n'}^{(m,2)}.
\end{align*}
\]

where

\[
\gamma_n = k_1 \left[\xi_n^{(1)}(ka_1) \psi_n(ka_1) - \psi_n'(ka_1) \xi_n^{(1)}(ka_1) \right],
\]

\[
T_{n,n'}^{(m,1)} = A_{n,n'}^m \left\{ k_1 \xi_n^{(1)}(ka_1) \left[\xi_n^{(2)}(k_1a_1) + Q_n^r \xi_n^{(1)}(k_1a_1) \right] \\
- k_1 \xi_n^{(1)}(ka_1) \left[\xi_n^{(2)}(k_1a_1) + Q_n^s \xi_n^{(1)}(k_1a_1) \right] \right\},
\]

(44)
The scattering coefficients, \(c_{nm} \) and \(d_{nm} \) may then be calculated using equations 37 - 40. Once we know the scattering coefficients, we can determine the scattering matrix elements and other parameters associated with the scatter.

2.5 Plane Wave Expansion

Since the small sphere is centered on the z axis, for the solution to be completely general, the incident plane wave must be in an arbitrary direction in the x-z plane. Two plane waves must be considered in order to account for each polarization state. When the plane wave is polarized perpendicular to the x-z plane (TE), the coefficients are found to be [18]:

\[
\alpha_{nm} = \alpha_{nm}^{\text{TE}} = \frac{j^n}{n(n+1)} \left[\sqrt{(n-m)(n+m+1)} \hat{P}_{n+1}^{m+1}(\cos \alpha) - \sqrt{(n-m+1)(n+m)} \hat{P}_n^{m-1}(\cos \alpha) \right],
\]

\[
= \frac{2 j^{n+2}}{n(n+1)} \frac{\partial \hat{P}_n^m(\cos \alpha)}{\partial \alpha}.
\]

\[
\beta_{nm} = \beta_{nm}^{\text{TE}} = \frac{j^{n+2}(2n+1)}{n(n+1)} \left[\sqrt{(n-m+1)(n-m+2)} \hat{P}_{n+1}^{m-1}(\cos \alpha) + \sqrt{(n+m+1)(n+m+2)} \hat{P}_{n+1}^{m+1}(\cos \alpha) \right],
\]

\[
= \frac{2 j^{n+2}}{n(n+1)} m \hat{P}_n^m(\cos \alpha) \frac{\sin \alpha}{\sin \alpha}.
\]
When the plane wave is polarized in the x-z plane (TM), the coefficients are found to be

\[a_{nm} = a_{nm}^{TM} = ib_{nm}^{TE}, \]

and

\[b_{nm} = b_{nm}^{TM} = ia_{nm}^{TE}. \]

2.6 The Scattering Amplitudes and Efficiencies

We consider the scattering amplitudes in the far field, where \(kr \gg ka \). The scattered fields in this case are in the \(\hat{\theta} \) and \(\hat{\varphi} \) directions. In this limit, the spherical Hankel function reduces to spherical waves:

\[h_n^{(1)}(kr) \approx \frac{(-i)^n}{ikr} e^{ikr}. \]

The scattering amplitudes can be expressed in the form of the matrix,

\[
\begin{pmatrix}
E^{sca}_{\varphi} \\
E^{sca}_{\theta}
\end{pmatrix} = \begin{pmatrix}
e^{ikr_1} \\
ikr_1
\end{pmatrix} \begin{pmatrix}
S_1 & S_4 \\
S_3 & S_2
\end{pmatrix} \begin{pmatrix}
E_{TE}^{\nu} \\
E_{TM}^{\nu}
\end{pmatrix}.
\]

The scattering amplitude matrix elements are solved by expanding the scattered electric fields (equation 4) in terms of the vector wave functions and then expanding the vector wave functions (equation 1) in terms of the polarization directions. Since we are concerned with the far field, we may drop the \(\hat{r} \) component and keep only the \(\hat{\theta} \) and \(\hat{\varphi} \) components. After some algebra, we have:

\[S_1 = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (-i)^n e^{im\varphi_1} \left[d_{nm}^{TE} \frac{m}{\sin \theta_1} \hat{P}_n^m(\cos \theta_1) + c_{nm}^{TE} \frac{\partial}{\partial \theta_1} \hat{P}_n^m(\cos \theta_1) \right]. \]

\[S_2 = -i \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (-i)^n e^{im\varphi_1} \left[c_{nm}^{TM} \frac{m}{\sin \theta_1} \hat{P}_n^m(\cos \theta_1) + d_{nm}^{TM} \frac{\partial}{\partial \theta_1} \hat{P}_n^m(\cos \theta_1) \right]. \]

\[S_3 = -i \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (-i)^n e^{im\varphi_1} \left[c_{nm}^{TE} \frac{m}{\sin \theta_1} \hat{P}_n^m(\cos \theta_1) + d_{nm}^{TE} \frac{\partial}{\partial \theta_1} \hat{P}_n^m(\cos \theta_1) \right]. \]

\[S_4 = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (-i)^n e^{im\varphi_1} \left[d_{nm}^{TM} \frac{m}{\sin \theta_1} \hat{P}_n^m(\cos \theta_1) + c_{nm}^{TM} \frac{\partial}{\partial \theta_1} \hat{P}_n^m(\cos \theta_1) \right]. \]

Using the following relationship for normalized, associated Legendre polynomials,

\[\hat{P}_n^{-m}(\cos \theta) = (-1)^m \hat{P}_n^m(\cos \theta), \]

the following relationships between the scattering coefficients may be derived:

\[c_{nm}^{TE} = (-1)^m c_{nm}^{TM}. \]
The scattering, extinction, and absorption efficiencies of the system are defined as the cross sections per projected area and may be expressed as

\[
Q_{\text{sca}} = \frac{2}{(ka_1)^2} \times \left[\sum_{n=1}^{\infty} n(n+1) \sum_{m=-n}^{n} \left(|c_{nm}|^2 + |d_{nm}|^2 + |c_{nm}|^2 + |d_{nm}|^2 \right) \right],
\]

\[
Q_{\text{ext}} = \frac{2}{(ka_1)^2} \times \text{Re} \left[\sum_{n=1}^{\infty} n(n+1) \sum_{m=-n}^{n} \left(c_{nm}^T a_{nm}^* + d_{nm}^T b_{nm}^* + c_{nm}^T a_{nm}^m + d_{nm}^T b_{nm}^m \right) \right],
\]

\[
Q_{\text{abs}} = Q_{\text{ext}} - Q_{\text{sca}}.
\]

where \(a_{nm}^*\) and \(b_{nm}^*\) are the complex conjugates of \(a_{nm}\) and \(b_{nm}\), respectively. The asymmetry parameter, \(g\), can be expressed as

\[
g = \frac{4}{Q_{\text{sca}}(ka)^2} \sum_{n,m} m \text{Re} \left(c_{nm}^T d_{nm}^* + c_{nm}^T d_{nm}^* \right) \\
+ n(n+2) \sqrt{\frac{(n-m+1)(n+m+1)}{(2n+3)(2n+1)}} \times \text{Re} \left[i(c_{nm}^T c_{n+1,m}^* + d_{nm}^T d_{n+1,m}^* + c_{nm}^T c_{n+1,m}^* + d_{nm}^T d_{n+1,m}^*) \right].
\]

Detailed derivations for the asymmetry parameter and the efficiencies are given elsewhere.[19]

3 SPECIAL CASES

Under certain conditions, the equations describing the internal and scattered fields may be simplified. In this section we examine some of these cases.

3.1 Simplifications of \(Q_n^r\) and \(Q_n^s\)

When the inclusion satisfies certain conditions, equations 17 and 18, which describe the coefficients \(Q_n^r\) and \(Q_n^s\), can be simplified. In this subsection we demonstrate these simplifications. First, when the optical size of the inclusion is much smaller than the wavelength \((k_2a_2 \ll 1)\),

\[
Q_n^r \sim 1,
\]
These are similar to the scattering coefficients for a Rayleigh scatterer. If the inclusion is a perfectly conducting medium \((m_2 \to \infty)\), the coefficients can be reduced to

\[
Q^r_n = -\frac{\xi^{(2)}_n(k_1 a_2)}{\xi^{(1)}_n(k_1 a_2)},
\]

\[
Q^e_n = -\frac{\xi^{(2)}_n(k_1 a_2)}{\xi^{(1)}_n(k_1 a_2)}.
\]

When the perfectly conducting inclusion is much smaller than the wavelength \((a_2 \ll \lambda)\), equations 68 and 69 further reduce to

\[
Q^r_n \sim 1 + \frac{2i(k_1 a_2)^3}{3},
\]

\[
Q^e_n \sim 1 - \frac{4i(k_1 a_2)^3}{3}.
\]

3.2 Mie Reduction

It should be noted that if the refractive index of the inner sphere is equal to that of the outer sphere, then the exterior field coefficients of the inner sphere, \(Q^r_n\) and \(Q^e_n\) are unity (equations 17 and 18). The Riccati-Hankel functions of the first and second kind on the right hand sides of equations 37 - 40 combine to form Riccati-Bessel functions of the first kind:

\[
a_{nm} \psi_n(k a_1) + c_{nm} \xi^{(1)}_n(k a_1) = \frac{2k}{k_1} \sum_{n'=0}^{\infty} t_{n' m} A_{n, n'}^m \psi_n(k a_1) + u_{n' m} B_{n, n'}^m \psi'_n(k a_1).
\]

\[
a_{nm} \psi'_n(k a_1) + c_{nm} \xi^{(1)}_n(k a_1) = 2 \sum_{n'=0}^{\infty} t_{n' m} A_{n, n'}^m \psi'_n(k a_1) + u_{n' m} B_{n, n'}^m \psi'_n(k a_1).
\]

\[
b_{nm} \psi_n(k a_1) + d_{nm} \xi^{(1)}_n(k a_1) = 2 \sum_{n'=0}^{\infty} t_{n' m} B_{n, n'}^m \psi_n(k a_1) + u_{n' m} A_{n, n'}^m \psi'_n(k a_1),
\]

\[
b_{nm} \psi'_n(k a_1) + d_{nm} \xi^{(1)}_n(k a_1) = \frac{2k}{k_1} \sum_{n'=0}^{\infty} t_{n' m} B_{n, n'}^m \psi'_n(k a_1) + u_{n' m} A_{n, n'}^m \psi'_n(k a_1).
\]

Physically, the Riccati-Hankel functions of the first and second kind represent outgoing and incoming spherical waves, respectively. With the inner sphere removed, there is no scattering object within the larger sphere, and standing waves represented by Riccati-Bessel functions of the first kind are contained within its interior. Note that substituting equations 34 and 35 into the right hand side of equations 72 - 75 yields the boundary equations for Mie theory.
3.3 Concentric Spheres

When the host and inclusion spheres are concentric, i.e. they share the same origin \(d = 0 \), the translation coefficients are simplified, and

\[
A_{nn}^{m} = \delta_{nn'}, \\
B_{nn'}^{m} = \delta_{nn'},
\]

where \(\delta_{nn'} \) is the Kronecker delta function. The scattering coefficients described by equations 37 - 40 now reduce to the accepted concentric spheres expressions given by Aden and Kerker.[4]

4 RESULTS AND DISCUSSIONS

In this section we examine the scattering of the nonconcentric sphere system as a function of system parameters. As in any new theory, confidence of a new result relies on its simplification to previously known solutions. But rather than analytically simplifying the general nonconcentric expressions into specialized cases (we have already shown the special cases in the previous section), we will keep everything general and allow the computer to numerically give us the desired results. The greatest advantage of doing it this way is the assurance that the program is coded correctly; or at the very least, the code reduces correctly in the specialized cases. Simplifications of the system can be made by assigning to it special values so that comparisons with Mie theory and concentric spheres theory may be done. We will show that when we simplify the system, we obtain numerical values that are identical to Mie theory and concentric spheres theory. We then consider two specific but arbitrary cases of the noncencentric system. The first is an air inclusion \((n_2 = 1.0 + 0i) \) in a host sphere composed of water \((n_1 = 1.33 + 0i) \). The second is a perfectly conducting inclusion in a host sphere composed of water. In both cases the host radius is equal to the wavelength of the incoming radiation \((a_1 = \lambda) \).

4.1 Comparison with Mie Theory

When the refractive index of the host \((n_1) \) and the refractive index of the inclusion \((n_2) \) are identical, we can say that the system is homogeneous. In this case, the nonconcentric sphere should reduce to Mie theory. We take the host and the inclusion to be glycerol spheres with refractive index \(n = 1.4746 + 0i \) at wavelength \(\lambda = 0.5145 \mu m \). Figure 3a shows the scattering intensity of the glycerol sphere as a function of the sphere's radius. Figure 3b shows the same plot, but using the nonconcentric sphere model. We note that all the cycles of resonances are the same; in fact, we have normalized the scattering intensity so that numeric values from the Mie code and the nonconcentric code are the same (as can be seen in Figure 3). Also listed in Table 1 are the results from a run using the
Figure 3. Comparison of the scattering intensity as a function of droplet radius ($\tilde{n} = 1.4746 + 0i$) using the Mie code from Bohren and Huffman (a), and the nonconcentric code (b) with $\tilde{n}_1 = \tilde{n}_2 = 1.4746 + 0i$. The resonance structures are clearly evident in both cases.
TABLE 1
Comparison with Mie Scattering output

Input:
REFRE = 1.550
REFIM = 0.0
SPHERE RADIUS = 0.525 μm
WAVELENGTH = 0.6328 μm

Output:
Qsca = 3.10543
Qext = 3.10543
g = 0.633137

<table>
<thead>
<tr>
<th>angle</th>
<th>S11</th>
<th>POL (S12)</th>
<th>S33</th>
<th>S34</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.00000</td>
<td>0.0</td>
<td>1.00000</td>
<td>0.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.785391</td>
<td>4.59811E-03</td>
<td>0.999400</td>
<td>3.43261E-02</td>
</tr>
<tr>
<td>18.0</td>
<td>0.356897</td>
<td>4.58540E-02</td>
<td>0.986022</td>
<td>0.160184</td>
</tr>
<tr>
<td>27.0</td>
<td>7.66119E-02</td>
<td>0.364744</td>
<td>0.843602</td>
<td>0.394077</td>
</tr>
<tr>
<td>36.0</td>
<td>3.55355E-02</td>
<td>0.534997</td>
<td>0.686967</td>
<td>-0.491787</td>
</tr>
<tr>
<td>45.0</td>
<td>7.01845E-02</td>
<td>-9.59953E-03</td>
<td>0.959825</td>
<td>-0.280434</td>
</tr>
<tr>
<td>54.0</td>
<td>5.74324E-02</td>
<td>-4.77927E-02</td>
<td>0.985371</td>
<td>0.163584</td>
</tr>
<tr>
<td>63.0</td>
<td>2.19660E-02</td>
<td>0.440604</td>
<td>0.648043</td>
<td>0.621216</td>
</tr>
<tr>
<td>72.0</td>
<td>1.25959E-02</td>
<td>0.831996</td>
<td>0.203255</td>
<td>-0.516208</td>
</tr>
<tr>
<td>81.0</td>
<td>1.73750E-02</td>
<td>-3.41670E-02</td>
<td>0.795354</td>
<td>-0.605182</td>
</tr>
<tr>
<td>90.0</td>
<td>1.24601E-02</td>
<td>-0.230462</td>
<td>0.937497</td>
<td>0.260742</td>
</tr>
<tr>
<td>99.0</td>
<td>6.79093E-03</td>
<td>0.713472</td>
<td>-7.17406E-03</td>
<td>0.700647</td>
</tr>
<tr>
<td>108.0</td>
<td>9.54240E-03</td>
<td>0.756255</td>
<td>-3.94746E-02</td>
<td>-0.653085</td>
</tr>
<tr>
<td>117.0</td>
<td>8.63419E-03</td>
<td>0.281215</td>
<td>0.536251</td>
<td>-0.795835</td>
</tr>
<tr>
<td>126.0</td>
<td>2.27421E-03</td>
<td>0.239612</td>
<td>0.967602</td>
<td>7.95797E-02</td>
</tr>
<tr>
<td>135.0</td>
<td>5.43998E-03</td>
<td>0.850803</td>
<td>0.187531</td>
<td>-0.490882</td>
</tr>
<tr>
<td>144.0</td>
<td>1.60244E-02</td>
<td>0.706334</td>
<td>0.495255</td>
<td>-0.505781</td>
</tr>
<tr>
<td>153.0</td>
<td>1.88853E-02</td>
<td>0.891081</td>
<td>0.453277</td>
<td>-2.26817E-02</td>
</tr>
<tr>
<td>162.0</td>
<td>1.95254E-02</td>
<td>0.783320</td>
<td>-0.391613</td>
<td>0.482752</td>
</tr>
<tr>
<td>171.0</td>
<td>3.01676E-02</td>
<td>0.196194</td>
<td>-0.962069</td>
<td>0.189556</td>
</tr>
<tr>
<td>180.0</td>
<td>3.83189E-02</td>
<td>0.0</td>
<td>-1.00000</td>
<td>0.0</td>
</tr>
</tbody>
</table>
TABLE 2
Comparison of Nonconcentric with Coated Sphere Theory

Input:
\[\lambda = 3.0 \mu m, m_1 = 1.409 + 0.1747i, m_2 = 1.59 + 0.66i \]

Output:

<table>
<thead>
<tr>
<th>Radius ((\mu m))</th>
<th>Coated Sphere</th>
<th>Nonconcentric</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1 = 6.2650)</td>
<td>(Q_{ext} = 2.32803)</td>
<td>(Q_{ext} = 2.32803)</td>
</tr>
<tr>
<td>(a_2 = 0.1710)</td>
<td>(Q_{sca} = 1.14341)</td>
<td>(Q_{sca} = 1.14341)</td>
</tr>
<tr>
<td>(a_1 = 5.50)</td>
<td>(Q_{ext} = 2.34481)</td>
<td>(Q_{ext} = 2.344814)</td>
</tr>
<tr>
<td>(a_2 = 1.50)</td>
<td>(Q_{sca} = 1.13227)</td>
<td>(Q_{sca} = 1.132269)</td>
</tr>
<tr>
<td>(a_1 = 3.50)</td>
<td>(Q_{ext} = 2.58325)</td>
<td>(Q_{ext} = 2.58325)</td>
</tr>
<tr>
<td>(a_2 = 2.00)</td>
<td>(Q_{sca} = 1.28485)</td>
<td>(Q_{sca} = 1.28485)</td>
</tr>
</tbody>
</table>

Input:
\[\lambda = 3.0 \mu m, m_1 = 1.409 + 0.0i, m_2 = 1.592 + 0.66i \]

Output:

<table>
<thead>
<tr>
<th>Radius ((\mu m))</th>
<th>Coated Sphere</th>
<th>Nonconcentric</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1 = 6.2650)</td>
<td>(Q_{ext} = 2.77588)</td>
<td>(Q_{ext} = 2.77588)</td>
</tr>
<tr>
<td>(a_2 = 0.1710)</td>
<td>(Q_{sca} = 2.77518)</td>
<td>(Q_{sca} = 1.77518)</td>
</tr>
<tr>
<td>(a_1 = 5.50)</td>
<td>(Q_{ext} = 2.04387)</td>
<td>(Q_{ext} = 2.04387)</td>
</tr>
<tr>
<td>(a_2 = 1.50)</td>
<td>(Q_{sca} = 1.85917)</td>
<td>(Q_{sca} = 1.859173)</td>
</tr>
<tr>
<td>(a_1 = 3.50)</td>
<td>(Q_{ext} = 3.19478)</td>
<td>(Q_{ext} = 3.194786)</td>
</tr>
<tr>
<td>(a_2 = 2.00)</td>
<td>(Q_{sca} = 2.41198)</td>
<td>(Q_{sca} = 2.411986)</td>
</tr>
</tbody>
</table>

Input:
\[\lambda = 3.0 \mu m, m_1 = 1.409 + 0.0i, m_2 = 1.592 + 0.0i \]

Output:

<table>
<thead>
<tr>
<th>Radius ((\mu m))</th>
<th>Coated Sphere</th>
<th>Nonconcentric</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1 = 6.2650)</td>
<td>(Q_{ext} = 2.77604)</td>
<td>(Q_{ext} = 2.77604)</td>
</tr>
<tr>
<td>(a_2 = 0.1710)</td>
<td>(Q_{sca} = 2.77604)</td>
<td>(Q_{sca} = 2.77604)</td>
</tr>
<tr>
<td>(a_1 = 5.50)</td>
<td>(Q_{ext} = 2.31972)</td>
<td>(Q_{ext} = 2.319716)</td>
</tr>
<tr>
<td>(a_2 = 1.50)</td>
<td>(Q_{sca} = 2.31972)</td>
<td>(Q_{sca} = 2.319716)</td>
</tr>
<tr>
<td>(a_1 = 3.50)</td>
<td>(Q_{ext} = 2.28173)</td>
<td>(Q_{ext} = 2.28173)</td>
</tr>
<tr>
<td>(a_2 = 2.00)</td>
<td>(Q_{sca} = 2.28173)</td>
<td>(Q_{sca} = 2.28173)</td>
</tr>
</tbody>
</table>
nonconcentric code with inputs taken from page 482 of Bohren and Huffman.[20] The numerical values for both programs are identical. This tells us that our nonconcentric sphere model does indeed reduce to Mie theory in the appropriate limit.

4.2 Comparison with Concentric Theory

When the displacement \(d \) separating the two origins is zero, we have a concentric sphere system. Using the concentric code presented in Bohren and Huffman, we are able to show that, in all cases, our nonconcentric sphere model reduces to the concentric sphere model. Sample results of using the two methods are given in Table 2 (the first set of output can be compared to page 489 of Bohren and Huffman).[20]

4.3 Examination of Two Types of Inclusion

In this section, we examine the scattering properties of the nonconcentric sphere model by considering two specific but arbitrary cases. The first is an air inclusion \((m_2 = 1.0 + 0.0i)\) in a host sphere composed of water \((m_1 = 1.33 + 0.0i)\). The second is a perfectly conducting inclusion in a host sphere composed of water. In both of these cases, the host radius is equal to the wavelength of the incident radiation \((a_1 = \lambda)\).

Figure 4 shows the extinction efficiencies as a function of displacement distance \(d \) when the incident angle \(\alpha = 0^\circ \) and the beam travels parallel to the \(z \) axis for inclusion spheres of different radii. For comparison, we also plot the extinction efficiencies for a sphere composed entirely of water \((a_2 = 0, \text{ shown by the solid lines, top and bottom})\), for which \(Q_{\text{ext}} = 3.916 \). For a sphere composed entirely of a perfectly conducting medium (top graph), \(Q_{\text{ext}} = 2.094 \). For a sphere composed entirely of air, we have, of course, \(Q_{\text{ext}} = 0.0 \). The most remarkable feature of the graphs is their symmetry. The extinction is independent of the sign of the displacement; i.e., \(Q_{\text{ext}}(d) = Q_{\text{ext}}(-d) \).

The result that \(Q_{\text{ext}}(d) = Q_{\text{ext}}(-d) \) is a direct consequence of the reciprocity theorem which states that if a scattering system whose scattering matrix is given by equation 55 is replaced by its mirror image (the mirror is perpendicular to the direction of the incident field), then the scattering due to the mirror system in the forward direction \((\theta_1 = \alpha, \varphi_1 = 0^\circ)\) is given by

\[
\begin{pmatrix}
E_x^{\text{sc}}(\alpha, 0^\circ) \\
E_0^{\text{sc}}(\alpha, 0^\circ)
\end{pmatrix}
= e^{ikr_1}
\begin{pmatrix}
S_1 & -S_3 \\
-S_4 & S_2
\end{pmatrix}
\begin{pmatrix}
E_{\text{TE}}^{\text{mc}} \\
E_{\text{TM}}^{\text{mc}}
\end{pmatrix}.
\]

(77)

We know from the optical theorem that the extinction is proportional to the real part of the scattering amplitude in the forward direction, and from equations 48-53 and 56-61, it can be shown that there is no coupling of modes in the scattering plane, i.e., \(S_3 \) and \(S_4 \) do not contribute to the scattering amplitude when \(\varphi = 0^\circ \). Therefore, the extinction of the scattering system discussed in this paper is equal to the extinction of its mirror image.
Figure 4. The extinction efficiencies as a function of displacement distance d when the incident angle $\alpha = 0^\circ$ for a perfectly conducting inclusion (top) and an air inclusion (bottom) inside an $a_1 = \lambda$ water host ($\hat{m}_1 = 1.33 + 0i$).
Figure 5. The backscattering total intensity S_{11} as a function of displacement distance d when the incident angle $\alpha = 0^\circ$ for a perfectly conducting inclusion (top) and an air inclusion (bottom) inside an $\mu = \lambda$ water host ($\mu_1 = 1.33 + 0i$).
Figure 5 shows the backscattering intensities (incident angle $\alpha = 0^\circ$ and $\theta_1 = 180^\circ$) as a function of displacement distance d for the same cases shown in Figure 4. Also shown on both graphs are the backscattering intensities when there is no inclusion ($a_2 = 0$), in which case the backscattering $S_{11} = 1.837$. Unlike the plots shown in Figure 4, these plots do not show a symmetric S_{11}. There are also some differences in the backscattered intensities between the two systems in this figure. For the case of the perfectly conducting inclusion, the backscatter is generally greater than for a sphere with no inclusion (at times by more than an order of magnitude); whereas, for the case of the air inclusion, the backscatter generally stays within a factor of two of the backscatter of the system with no inclusion.

The difference in the backscattering between a system with a perfectly conducting inclusion and an air inclusion can be better understood by considering the rays which strike the system. Incident rays striking the surface of the host sphere either refract convergently within the sphere (for our case when the refractive index of the host sphere is greater than the refractive index of the incident medium) or reflect off the outer surface. Some of the refracted rays which reflect off the surface of the inclusion may be traced into the backscatter direction (these are the rays which strike the inclusion at normal incident or strike the inclusion at $x_2 = y_2 = 0$). The reflectance from the perfectly conducting inclusion is 100%; whereas, the reflectance from an air-water interface is approximately 2% near normal incidence. Because of the greater reflectance at the conductor interface, we expect the backscatter to be greater when there is a perfectly conducting inclusion. The reflectance at the air inclusion interface is approximately the same as at the outer surface interface, so we do not expect the backscatter for the air-inclusion system to vary as greatly from the sphere system without the inclusion.

Figure 6 shows the extinction efficiencies for an $a_2 = \lambda/4$ inclusion as a function of the incident angle α for four displacements. When the inclusion and host spheres are concentric, the extinction does not vary, as expected from symmetry. As the inclusion distance increases, the magnitude of the total variation in the extinction becomes greater. Also, the number of inflection points in the extinction curves increases. Essentially, the closer the inclusion is to the host sphere surface, the greater the effect it has on the extinction of the system. This point is reinforced in the next section where we examine the resonance of the composite system. We also note that because of the system symmetry, the extinction efficiencies must be symmetric about $\alpha = 0^\circ$, and from the reciprocity theorem, they must also be symmetric about $\alpha = 90^\circ$.

Figure 7 shows the backscattering intensities ($\theta_1 = \pi + \alpha$) for an $a_2 = \lambda/4$ inclusion as a function of incident angle α for the same displacements as in the previous figure. As was the case for the extinction efficiencies, the number of inflection points in these backscattering intensity curves increases as the inclusion distance increases. However, the symmetry about $\alpha = 90^\circ$ which exists in the extinction efficiencies of Figure 6 is not present in the backscattering intensities.

Figure 8 shows the extinction efficiencies as a function of the inclusion radius for four
Figure 6. The extinction efficiencies as a function of the incident angle α for a perfectly conducting inclusion (top) and an air inclusion (bottom) inside an $a_1 = \lambda$ water host ($\tilde{n}_1 = 1.33 + 0i$). The inclusion radius is $a_2 = \lambda/4$.
Figure 7. The backscattering total intensity S_{11} as a function of the incident angle α for a perfectly conducting inclusion (top) and an air inclusion (bottom) inside an $a_1 = \lambda$ water host ($m_1 = 1.33 + 0i$). The inclusion radius is $a_2 = \lambda/4$.
Figure 8. The extinction efficiencies as a function of inclusion radius when the incident angle $\alpha = 0^\circ$ for a perfectly conducting inclusion (top) and an air inclusion (bottom) inside an $a_0 = \lambda$ water host ($n_1 = 1.33 + 0i$).
Figure 9. The extinction efficiencies as a function of inclusion radius when the incident angle $\alpha = 0^\circ$ and $a_2 = a_2 + d$ for a perfectly conducting inclusion (top) and an air inclusion (bottom) inside an $a_1 = \lambda$ water host ($\tilde{m}_1 = 1.33 + 0i$).
different separation distances when $\alpha = 0^\circ$. The solid lines in both graphs ($d = 0$) correspond to the cases where the host and inclusion spheres are concentric. We also calculated the extinction efficiencies for systems having negative values of the displacements shown, but, as has been discussed earlier, these values are identical to the extinction efficiencies of systems having positive displacements.

Figure 9 shows the extinction efficiencies as a function of the inclusion radius when the inclusion is at the edge of the host sphere ($a_1 = a_2 + d$) when $\alpha = 0^\circ$. From system symmetry and the reciprocity theorem, $Q_{ext}(\alpha) = Q_{ext}(-\alpha) = Q_{ext}(180^\circ - \alpha)$. A comparison of Figures 8 and 9 shows that there is a greater range in extinction efficiencies, and therefore a greater sensitivity of the efficiencies, when the angle of incidence is varied than when the inclusion is translated in the direction of the incident beam.

Examinations of the above figures reveal two important findings for the nonconcentric sphere system. The first finding is that the extinction efficiency is independent of the sign of the displacement of the inclusion particle. In other words, the system gives the same value of the extinction efficiency regardless of whether the inclusion lies in the forward direction (where the fields are generally stronger) or in the backscatter direction (where the fields are generally weaker). We also see that the closer an inclusion is to the surface of the host sphere, the greater the effect it has on the extinction of the system. This last point is very important in terms of resonance suppression.

5 CONCLUSION

We have derived solutions for the total field when an incident plane wave strikes a host sphere containing a nonconcentric spherical inclusion. Reduction of the general result to that of the concentric sphere and the Mie sphere verifies the validity of the derivation. We have examined the scattering as a function of a number of system parameters. Of particular interest is the independence of the extinction efficiency on the sign of the displacement of the inclusion particle. We also see that the closer an inclusion is to the surface of the host sphere, the greater the effect it has on the extinction of the system.

[16] P.A. Bobbert and J. Vlieger, "Light scattering by a sphere on a substrate," Physica 137A,

Appendix: NONCONCENTRIC SPHERE CODE

Description of The Program

This appendix contains the FORTRAN code for the nonconcentric spheres. The program consists of the main routine and twelve subroutines. Most calls to the subroutines are made from the main program. We will briefly describe each subroutine and its respective variables. This program calculates the Mueller scattering matrix elements \(S_{ij} \), and the extinction \(Q_{\text{ext}} \), scattering \(Q_{\text{sca}} \), and absorption \(Q_{\text{abs}} \) efficiencies for a set of initial inputs. The input data is read from the "input.in" file. All the variables used are defined in a separate file named "declare.def". The reason for using this method is the convenience of having all the variables in one separate file for comparison and debugging purposes. Explanation of some important variables are given in the subsections below. Also, a short descriptions of the subroutines are presented.

The only restriction placed on this program is that we cannot allow the inclusion radius to equal zero, i.e. \(a_2 \neq 0 \). The reason is that the Neumann functions blow up if the argument is zero. If the user wishes to have no inclusion, the user can let the index of refraction of the inclusion equal that of the host sphere, i.e. \(\hat{n}_1 = \hat{n}_2 \).

Subroutine bessel (n,np,bessj,x)

This subroutine calculates the spherical Bessel function of the first kind from order -1 to order n, and stores the results in the array bessj. The variable n is related to the size parameter x. If x is large, then n is also large. The variable np is the maximum size (the physical dimension) of the array. Here np is isize, where isize is defined in the file "declare.def".

Input
- n: The largest order of the Bessel function, which is determined in the main routine by the definition of nbg.
- np: The array size defined by the parameter isize.
- x: The argument of the Bessel function.

Output
- bessj: This double precision real array contains the values of the spherical Bessel function of the first kind \([j_n(k_0a_1)]\), from order -1 to order n.
Subroutine c_bessel(n,np,bessj,x)

This subroutine is similar to the Bessel subroutine except that it takes a complex argument x instead of a real argument. The array bessj is a complex double.

Input
n: The largest order of the Bessel function, which is determined in the main routine by the definition of nbg.
np: The array size defined by the parameter isize.
x: The complex argument of the Bessel function.

Output
bessj: This double complex array contains the complex values for this complex spherical Bessel function of the first kind \(\{j_n(k_1a_1)\} \) from order -1 to order n.

Subroutine newman(n,np,bessy,x)

This subroutine calculates the spherical Bessel function of the second kind (or the Neumann function, \(n_v(k_0a_1) \)), from order -1 to order n and stores the results in the double precision array bessy.

Input
n: The largest order of the Neumann function, which is determined in the main routine by the definition of nbg.
np: The array size defined by the parameter isize.
x: The argument of the Neumann function.

Output
bessy: This double precision real array contains the values for this spherical Neumann function \(\{n_v(k_0a_1)\} \) from order -1 to order n.

Subroutine c_newman(n,np,bessy,x)

This subroutine is similar to the newman subroutine, except that it takes a complex argument x instead of a real argument. The array bessy is now a complex double.

Input
n: The largest order of the Neumann function, which is determined in the main routine by the definition of nbg.
np: The array size defined by the parameter isize.
x: The complex argument of the Neumann function.

Output
bessy: This double complex array contains the complex values for this spherical Neumann
function \(n_v(k_1a_1) \), from order -1 to order \(n \).

Subroutine riccati(nbg,hval,zeta,dzeta,x)

This subroutine takes as input the Hankel functions of the first or second kind and transform them into the Riccati-Bessel functions and their derivatives. The transformation follows from the definition of the Riccati-Bessel functions shown in the preceding derivations.

Input
- \(nbg \): The largest order for the Hankel and Riccati-Bessel functions.
- \(hval \): The double complex array which contains either the first \([h^1(k_1a_1)]\) or the second \([h^2(k_1a_1)]\) Hankel functions as defined and computed in the main routine. The values stored in this array range from order -1 to order \(nbg \).
- \(x \): The double complex argument of the spherical Hankel function.

Output
- \(zeta \): This is the Riccati-Bessel function. The values are stored from order zero to order \(nbg \) into this double complex array.
- \(dzeta \): This is the derivative of the Riccati-Bessel function, the results are stored into this double complex array.

Subroutine nplgnndr(m,nbr,iisize,legpol,x)

Given a value for \(m \), where \(m \leq nbr \), this subroutine calculates the normalized associated Legendre polynomials \(\tilde{P}_n^m(x) \) from order \(m = 0 \) to \(nbr \) and stores the values in the array \(legpol \).

Input
- \(m \): The integer order for \(legpol \), which ranges from 0 to \(nbg \).
- \(nbr \): This variable has a maximum value of \(nbg+1 \); the iteration of this subroutine goes from \(m \) to \(nbr \).
- \(iisize \): This variable is defined as \(isize + 1 \) (shown in the “declare.def” file).
- \(x \): This argument for the normalized associated Legendre polynomials is the cosine of the angle, i.e. \(x = \cos\theta \).

Output
- \(legpol \): This is the one-dimensional array containing the calculated values. It has a physical dimension of \(isize + 1 \).
This subroutine decomposes and Tri-diagonalizes a matrix. Given a matrix \(a(l:n,1:n) \) with physical dimension \(np \), where \(np \) is defined as isiz2 in the "declare.def" file, this subroutine replaces it by the LU Decomposition of a row-wise permutation of itself. The procedure is an \(n^3 \) process, so that for large size parameters, the computation time slows down dramatically. If \(nb \) is bigger than 70 (which corresponds to a size parameter of \(x \approx 50 \)), one should change the value of \(nmax \) in this subroutine so that one always has \(nmax > 2(nbg+1) \). This routine is used in conjunction with the subroutine lubksb\(^1\) to solve linear equations or invert a matrix. Note that we have modified this subroutine to accept double complex arguments.

Input

- \(a \): This is a double complex \(n \times n \) matrix given by equations 40 and 41 in the preceding derivation. After this matrix passes through this subroutine, it will be destroyed and replaced with its tri-diagonal.
- \(n \): This integer value is equal to 2\((nb+1)\). The parameter \(nmax \), defined within this subroutine, must be greater than or equal to this value.
- \(np \): This is the physical dimension size of the matrix and has a value of isiz2. It is safe to let it be larger than \(n \).

Output

- \(a \): The original matrix is now a tri-diagonalized matrix. This new matrix can now be used in conjunction with the subroutine lubksb to solve the linear equation.
- \(indx \): This is an array which records the row permutation effected by the partial pivoting.

Subroutine lubksb\((a,n,np,indx,b)\)

This subroutine solves the set of \(n \) linear equations \(ax = b \). The solution vector is represented by the array \(b \), and the solution vector \(x \) after going through the subroutine, is also stored in \(b \). The variables \(n \), \(np \), and the arrays \(a \) and \(indx \), are not modified by this routine and can be left in place for successive calls with different right-hand sides \(b \). This routine takes into account the possibility that \(b \) will begin with many zero elements, so it is efficient for use in matrix inversion. We have also modified this subroutine to accept double complex arguments.

Input

- \(a \): This double complex matrix, with physical dimension \(np \), is the same matrix \(a \) which has undergone the tri-diagonalization in the subroutine ludcmp.
- \(n \): This integer value is equal to 2\((nb+1)\). The variable \(nmax \), defined within this subroutine, must be greater than or equal to this value.
- \(np \): This is the physical dimension size of the matrix and has a value of isiz2. We must keep in mind that \(np \) must be greater than \(n \).
- \(indx \): This is the output vector which records the row permutation effected by the partial pivoting.

\(^1\)Numerical Recipes, 2nd Edition
pivoting in the subroutine ludcmp.

b: This input vector is the right-hand side of the equation \(ax = b \), i.e. it is the solution vector. The subroutine will solve for the vector \(x \), and places its values in \(b \).

Output
b: The vector \(x \) is now placed in this array.

Subroutine mprove(a, alud, n, np, indx, b, x)

This subroutine, which has been modified to accept double complex arguments, improves a solution vector \(x \) of the linear set of equations \(ax = b \). It assumes that the vector \(x \) is off from the true solution by \(\delta x \), and it recursively solves for \(\delta x \) and improves that vector. It does this by comparing the two matrices \(a \) and \(alud \), with the solution \(b \) and argument \(x \), and improves on the solution of \(x \). Note that inside this subroutine is the parameter \(nmax \), which should have the same value as that given in the subroutine ludcmp.

Input
a: This \(n \times n \) matrix is the original matrix before it has undergone any changes due to the result of the subroutine ludcmp. All the values are in their original state.
alud: This \(n \times n \) matrix is the one that underwent the tri-diagonalization associated with the ludcmp subroutine. It is the output matrix, \(a \), given in the ludcmp subroutine above.
n: The size of the two matrices, and the size of the vector \(x \), \(b \), and \(indx \).
np: The physical dimension of the two matrices.
indx: The output vector returned by the subroutine ludcmp.
b: The solution vector of the equation \(ax = b \).
x: This vector is the output from the subroutine lubksb.

Output
x: After mprove, \(x \) has been modified and improved to a new set of values. Note that this subroutine can be called as often as one wishes, but generally, one or two calls are enough.

Function find_g(nbgn, nn, ang, cte, dte, ctm, dtm)

This function calculates the asymmetry parameter, \(g \), and returns the value in double precision to the main routine.

Input
nbgn: The largest order of the Bessel function defined in the main routine.
nn: The physical size of the arrays used.
ang: The incident angle.
cte: This is the array which contains the scattering coefficients for the TE mode.
dte: This too contains the scattering coefficients for the TE mode.
ctm: This array contains the scattering coefficients for the TM mode.
dtm: This contains the scattering coefficients for the TM mode.

Output
fing-g: Returns as a double precision real number.

Subroutine rotation(a,b,c,d,nbg,ang,cte,dte,ctm,dtm,nn,ij)

This subroutine is used in conjunction with the function find_g to calculate the asymmetry parameter. We must rotate and integrate over the entire sphere in order to find the asymmetry parameter.

Input
nbg: The largest order of the Bessel function used.
ang: The incident angle.
nn: The physical size of the arrays sent from the main routine.
ij: The physical size of the arrays sent from the function find_g.
cte, dte, ctm, dtm: The arrays which contain the scattering coefficients as sent in from the main routine. These values are now stored into the arrays a, b, c, d respectively.

Output
a, b, c, d: These are the new rotated arrays containing the scattering coefficients. Now we can use these new arrays to calculate the asymmetry parameter.

Function factorial(n)

This function calculates the factorial of a given integer. Since a factorial of a large integer will blow up, we define this function to take the sum of the log of the number. This will ensure us of stability in our calculations.

Input
n: The integer value sent in from the subroutine rotation.

Output
factorial: This function now returns a double precision real number.

Declare def

Within the main routine is an include statement which refers to this file. The parameter isize is presently set to handle a size parameter of up to 50. The program can be made to handle an even larger size parameter by increasing isize appropriately. Note that if the size parameter
of the run is greater than 50, one must change isize to a larger number to include all memory allocations; also, the parameter nmax in the subroutines ludcmp and mprove must be increased in value. The other parameter, isiza, is presently set to handle up to 360 degrees by increments of 9 degrees. If the run is to have a resolution greater than 1 degree (which can be changed in the input file with the variable num), isiza must be changed to meet that specific need.
Scattering program for an inclusion imbedded inside the host droplet. The input data is taken from the file "input.in" and the variables and arrays are defined in the file "declare.def".

```
implicit double precision (a-h,o-z)
INCLUDE 'declare.def'

open(unit=4,file='input.in',status='old')
rewind(4)
open(unit=8,file='output.out')

read(4,*) wavel
read(4,*) rad1
read(4,*) rad2
read(4,*) distance
read(4,*) m_r1,m_i1
read(4,*) m_r2,m_i2
read(4,*) inc_ang
read(4,*) num
read(4,*) phi

pi=1.0
c=0.0*pi
pi=4.0*datan(pi)

m_1 =dcmplx(m_r1,m_i1)
m_2 =dcmplx(m_r2,m_i2)
k0 =2.*pi/wavel
k1 =k0*m_1
k2 =k0*m_2
x0 =k0*rad1
x1 =k1*rad1
x2 =k1*rad2
x3 =k2*rad2

nbg = # of iterations for the big sphere and loops
nbg =cdabs(x0) + 4.*cdabs(x0)**.333 + 2.0
print*, 'the value of nbg=', nbg
```
Calculate Bessel Functions for the first boundary at rad1.
We have bessel as an incident field of the sphere, and a hankel as the scattered field. Their arguments are x0 and cx0.
Then we have hankel1 and hankel2 inside the sphere; and their argument is k1*rad1=x1.

cx0=dreal(x0)
call bessel(nbg,isize,besj_o,cxO)
call newman(nbg,isize,temp,cxO)
call c_bessel(nbg,isize,hankel_o,xO)
do 11 i=-1,nbg
 hankel_o(i)=hankel_o(i)+ccc*temp(i)
11 continue

call c_bessel(nbg,isize,hankell_1,x1)
call c_bessel(nbg,isize,hankel2_1,x1)
call c_newman(nbg,isize,tempc,x1)
do 12 i=-1,nbg
 hankell_1(i)=hankell_1(i) + ccc*tempc(i)
 hankel2_1(i)=hankel2_1(i) - ccc*tempc(i)
12 continue

Now we match boundary at rad2. Here we have two hankels in the host sphere, and their argument is k1*rad2=x2.
Then we have a bessel inside the inclusion with its argument being x3. Note: since this is for the small inclusion, we must take care to have spherical bessel functions which are within the limits of that size; the order should never exceed the size of the sphere because it'll blow up in your face.

nsm=cdabs(x2) + 4.*cdabs(x2)**.333 + 2.0
if(m_r2.gt.0.0) call c_bessel(nsm,isize,besj_2,x3)
call c_bessel(nsm,isize,hankell_2,x2)
call c_bessel(nsm,isize,hankel2_2,x2)
call c_newman(nsm,isize,tempc,x2)
do 13 i=-1,nsm
 hankell_2(i)=hankell_2(i) + ccc*tempc(i)
 hankel2_2(i)=hankel2_2(i) - ccc*tempc(i)
13 continue

Calculate Riccati-Bessel Functions and Derivatives needed.
Note that zeta1_1 means the 1st zeta at k1a1.
... and \(\zeta_{2} \) means the 2nd \(\zeta \) at \(\kappa_{1}a_{1} \).

... and \(\zeta_{1} \) means the 1st \(\zeta \) at \(\kappa_{1}a_{2} \).

\[
\psi_{0}(-1) = c_{0} \ast \text{besj}_{0}(-1)
\]

\[
do 21 \: n = 0, \text{nbg}
\]

\[
\psi_{0}(n) = c_{0} \ast \text{besj}_{0}(n)
\]

\[
d \psi_{0}(n) = c_{0} \ast \text{besj}_{0}(n-1) - n \ast \text{besj}_{0}(n)
\]

21 \: continue

\[
\text{call riccati}(nbg, \text{hankel}_{0}, \zeta_{0}, \text{dzeta}_{0}, x_{0})
\]

\[
\text{call riccati}(nbg, \text{hankel}_{1}, \zeta_{1}, \text{dzeta}_{1}, x_{1})
\]

\[
\text{call riccati}(nbg, \text{hankel}_{2}, \zeta_{2}, \text{dzeta}_{2}, x_{1})
\]

\[
\text{call riccati}(nbg, \text{besj}_{2}, \psi_{2}, d\psi_{2}, x_{3})
\]

... Now we must solve for the Quality factors by using equations 17 and 18; These Q's relate the inclusion's field coeffs to the outer sphere's coefficients, and it contains infos such as the inclusions's radius and refractive index. Note that if the index of refraction of the inclusion is negative, then we'll take that to mean it is a perfect conductor. and the simplification is in the "else" part of the if-else statement. We cannot use index > 100 because it'll blow up.

\[
\begin{align*}
\text{if}(c_{r2} > 0.0) \: \text{then} & \quad \text{do 25 } n = 0, \text{nsm} \\
& \quad \text{fact1} = k_{1} \ast \text{dzeta}_{2} \ast \psi_{2}(n) - k_{2} \ast \text{zeta}_{2} \ast d\psi_{2}(n) \\
& \quad \text{fact2} = k_{2} \ast \text{zeta}_{1} \ast d\psi_{2}(n) - k_{1} \ast \text{dzeta}_{1} \ast \psi_{2}(n) \\
& \quad Q_{r}(n) = \text{fact1} / \text{fact2} \\
& \quad \text{fact3} = k_{2} \ast \text{dzeta}_{2} \ast \psi_{2}(n) - k_{1} \ast \text{zeta}_{2} \ast d\psi_{2}(n) \\
& \quad \text{fact4} = k_{1} \ast \text{zeta}_{1} \ast d\psi_{2}(n) - k_{2} \ast \text{dzeta}_{1} \ast \psi_{2}(n) \\
& \quad Q_{s}(n) = \text{fact3} / \text{fact4}
\end{align*}
\]

25 \: continue

... Now to fill in the rest of the array with a constant value. This is a must.

\[
\begin{align*}
\text{do 26 } n &= \text{nsm} + 1, \text{nbg} \\
& \quad Q_{r}(n) = \text{dcmplx}(1.0,0.0) \\
& \quad Q_{s}(n) = Q_{r}(n)
\end{align*}
\]

26 \: continue

else

... The inclusion is a perfect conductor.

else

print*, 'The inclusion is a perfect conductor'

\[
\begin{align*}
\text{do 35 } n &= 0, \text{nsm}
\end{align*}
\]
\[Q_r(n) = -\frac{\zeta_2(n)}{\zeta_1(n)} \]
\[Q_s(n) = -\frac{d\zeta_2(n)}{d\zeta_1(n)} \]

35 continue
36 do 36 n = nsm + 1, nbg
 \[Q_r(n) = \text{dcmplx}(1.0, 0.0) \]
 \[Q_s(n) = Q_r(n) \]
36 continue
37 continue
38 endif

Calculate translation coefficients when the separation of the center to center radii is \(d \). We will first find the bessel function which describes the separation, \(k_1d \).

\[x_d = (k_0 \cdot m_1) \cdot \text{distance} \]
if \((x_d = 0.0) \) then
 \[nsm = 2 \]
else
 \[nsm = \text{cabs}(x_d) + 4.0 \cdot \text{cabs}(x_d)^{0.333} + 2. \]
endif
\[\text{call c_bessel}(3 \cdot nsm, \text{isiz4, besj_d, xd}) \]

Begin the scalar translation coefficients, keeping in mind that \(c_{l0} = c_{0,0}(n) \) and \(c_{l0} = c_{1,0}(n) \) for starters.

\[\text{do 110 } np = 0, nbg \times 4 \]
\[fnp = \text{dfloat}(np) \]
\[\text{cuplo}(np) = \text{besj_d}(np) \times \text{dsqrt}(2.0 \times fnp + 1.0) \]
\[\text{cuplo}(np) = -\text{cuplo}(np) \]
110 continue
\[\text{do 115 } np = 0, nbg \times 2 \]
\[\text{cuplom}(0, np) = \text{cuplo}(np) \]
115 continue

Now for some acrobatics; this is where we perform the switcharos and recursively solve for the translation coeff. The result is stored into the matrix \(\text{cuplom} \).

\[\text{do 140 } n = 1, nbg \times 2 \]
\[fn = \text{dfloat}(n) \]
\[\text{do 120 } np = 0, nbg \times 4 - n \]
fnp=dfloat(np)
c=cdsqrt(dcmplx((2.*fnp+1.)/(2.*fnp-3.))*(fnp-1.))
c=cuplo1(np)*c
cuplo1(np)=cuplo(np)
cuplo(np)=c
120 continue

do 130 np=0,nbg*4-n
 fnp=dfloat(np)
c=-(fnp+1.)*dsqrt((2.*fn-1.)/(2.*fnp+3.))*cuplo1(np+1)
c=c+fnp*cdsqrt(dcmplx((2.*fn-1.)/(2.*fn-1.)))*cuplo1(np-1)
c=c+cuplo(np)
cuplo(np)=c*dsqrt((2.*fii+l.)/(2.*fiip+l.))/fii
if (np.le.nbg*2) then
 cuplom(n,np)=cuplo(np)
write(8*)n,np,cuplom(n,np)
endif
130 continue
140 continue

c . Now that we have the elements in the matrix
 c . cuplom(n,np), we can start the iterations in
 c . m to get the rest of the translation coeff
 c . Then we'll have the complete set of C(n,m)np
 c ...
do 299 m=0,nbg
 c ...
c . But first we need to calculate, for each m, the
 c . Legendre Polynomials for incident angle theta
 c ...
 ii=nbg+1
 x=dcos(pi*inc_ang/l80.)
 mmm=m+1
 call nplgndr(mmm,ii,SIZEL,legpol1,x)
 mmm=m
 call nplgndr(mmm,ii,SIZEL,legpol2,x)
if (m.gt.0) then
 mmm=m-1
 call nplgndr(mmm,ii,SIZEL,legpol,x)
else
 do 165,ii=2,SIZEL
 legpol(ii)=-legpol1(ii)
 continue
endif
do 180 i=m, nbg
 fi=dfloat(i)
 tau=dsqrt((fi+m+1.)*(fi-m))*legpol1(i)
 pie=tau
 tau=(tau-dsqrt((fi+m)*(fi-m+l.))*legpol(i))/2.0
 if (dabs(x).gt.0.5) then
 c The angle theta is between 0 and 60 degrees
 c
 pie=pie+dsqrt((fi+m)*(fi-m+l.))*legpol(i)
 pie=pie*.5/x
 else
 c theta is between 60 and 90; use this so the
 c Polynomial doesn't blow up at 90 or 0 degrees
 c
 pie=m*legpol2(i)/dsin(inc_ang*pi/180.)
 endif
 if (i.gt.0) then
 c = (ccc**i)/(fi*(fi+l.))
 ba(i)=-c*pie
 aa(i)=c*tau
 endif
180 continue

d That ends the Calculation for the Legendre Polynomials
 for each value of m. The incident field coefficients
 for the TE case are stored in aa(i) and ba(i); the TM
 case will be done later by flipping the TE coefficients.

c Now to find the rest of the matrix in C(n,m)np. For each
 value of m that is greater than 0, say 1, we can find the
 matrix C(n,1)np and store that into cuplom(n,np); then
 the next iteration of m, i.e. m=2, we can find C(n,2)np
 by already having C(n,1)np stored in the matrix cuplom(n,np)

c if(m.gt.0) then
 do 155, n=m-1,2*nbg-m+1
 do 154, np=m-1,2*nbg-m+1
 cuplom1(n,np)=cuplom(n,np)
 154 continue
 155 continue
do 160 n=m,2*nbg-m
 fn=dnfloat(n)
do 159 np=m,2*nbg-m
 fnp=dnfloat(np)
c=dsqrt((fnp-m+1.)*(fnp+m)*(2.*fnp+1.))*cuplom1(n, np)
cuplom(n, np)=c
 c=xd*dsqrt((fnp-m+2.)*(fnp-m+1.)/(2.*fnp+3.))
cuplom(n, np)=cuplom(n, np)-c*cuplom1(n, np+1)
c=xd*dsqrt((fnp+m)*(fnp+m-1.)/(2.*fnp-1.))
cuplom(n, np)=cuplom(n, np)-c*cuplom1(n, np-1)
c=dsqrt((fnp-1.)*(fnp+m)*(2.*fnp+1.))
cuplom(n, np)=cuplom(n, np)/c
159 continue
160 continue
 endif

c . Cuplom(n, np) now has the most recent values.
c . for the most recent value of m. Note that we didn't find C(n,0)np because we already have those values stored in the cuplom matrix.
c .
c .

c . Now that we have the matrix which contains the C(n,m)np.
c . we can go ahead and find the vector translation coefficients.
c . A(n,m)np and B(n,m)np
 c
 do 190 n=nxnb
 pie=0.0
 tau=0.0
do 195 np=m,nxnb
 fnp=dnfloat(np)
 tau=(fnp-m+1.0)*(fnp+m+1.0)
 tau=tau/((2.*fnp+1.)*(2.*fnp+3.))
 tau=dsqrt(tau)
 TransA=-xd/(fnp+1.0)
 TransA=TransA*tau*cuplom(n, np+1)
 TransB=0.0
 if (np.gt.0) then
 pie=(fnp-m)*(fnp+m)
 pie=pie/((2.*fnp-1.)*(2.*fnp+1.))
 pie=dsqrt(pie)
 c=-xd*pie*cuplom(n, np-1)/fnp
 TransA=TransA+c
 TransB=c*xd*m*cuplom(n, np)/(fnp*(fnp+1.))

A-14
endif

TransA=cuplom(n,np)+TransA
TransAm(n,np)=TransA
TransBm(n,np)=TransB

195 continue
190 continue

numel=nbg-m+1
numtot=numel+numel
do 220 n=m,nbg
 i=n-m+1
 do 215 np=m,nbg

 fact 1 =dzeta_o(n)*(zeta2_1(n)+Q_r(np)*zeta1_1(n))
fact2=zeta_o(n)*(dzeta2_1(n)+Q_r(np)*dzeta1_1(n))
fact3=dzeta_o(n)*(zeta2_1(n)+Q_s(np)*zeta1_1(n))
fact4=zeta_o(n)*(dzeta2_1(n)+Q_s(np)*dzeta1_1(n))
ii=np-m+1

 c =TransAm(np,n)*(k0*fact1 - k1*fact2)
 matrixlu(i,ii)=c
 matrix(i,ii)=c

 c =TransBm(np,n)*(k0*fact3 - k1*fact4)
 matrixlu(i,ii+numel)=c
 matrix(i,ii+numel)=c

 c =TransBm(np,n)*(k1*fact1 - k0*fact2)
 matrixlu(i+numel,ii)=c
 matrix(i+numel,ii)=c

 c =TransAm(np,n)*(k1*fact3 - k0*fact4)
 matrixlu(i+numel,ii+numel)=c
 matrix(i+numel,ii+numel)=c

215 continue
220 continue

THE MATRIX IS FILLED!! That was the heart of the problem...
Now we can load up the solution vectors $aa(n)$ and $ba(n)$ and start the LU Decomposition to get $t(n)$ and $u(n)$. Note that $aa(n)$ and $ba(n)$ contain the incident angle for TE case.

```
do 226 n=m,nbg
   i=n-m+1
   c=dzeta_o(n)*psi_o(n)
   c = k1*(c - dpsi_o(n)*zeta_o(n))
   b(i)=aa(n)*c
   b(i+numel)=ba(n)*c
   bd(i)=b(i)
   bd(i+numel)=b(i+numel)
226 continue
ii=isiz2
   call ludcmp(matrixlu,numtot,ii,indx,dd)
   call lubksb(matrixlu,numtot,ii,indx,b)
   call mprove(matrix,matrixlu,numtot,ii,indx,bd,b)
do 227 n=m,nbg
   i=n-m+1
   TintTE(m,n)=b(i)
   UintTE(m,n)=b(i+numel)
227 continue
```

Now we must find the Scattering coefficients $CscaTE$ and $DscaTE$, and from these coeff we can determine the scattering matrices.

```
do 250 n=m,nbg
   sum1=0.0
   sum2=0.0
   do 260 np=m,nbg
      fact1=dzeta2_1(n)+Q_r(np)*dzeta1_1(n)
      fact1=TransAm(np,n)*TintTE(m,np)*fact1
      fact2=dzeta2_1(n)+Q_s(np)*dzeta1_1(n)
      fact2=TransBm(np,n)*UintTE(m,np)*fact2
      sum1=fact1+fact2+sum1
      fact3=eta2_1(n)+Q_r(np)*eta1_1(n)
      fact3=TransBm(np,n)*TintTE(m,np)*fact3
      fact4=eta2_1(n)+Q_s(np)*eta1_1(n)
      fact4=TransAm(np,n)*UintTE(m,np)*fact4
      sum2=sum2+fact3+fact4
260 continue
```
260 continue
 CscaTE(m,n) = (sum1-aa(n)*dpsi_o(n))/dzeta_o(n)
 DscaTE(m,n) = (sum2-ba(n)*psi_o(n))/zeta_o(n)
 c print*,n,CscaTE(m,n),DscaTE(m,n)
 250 continue

.........................
 c FOR TM CASE!!! .
 c.........................

 do 228 n=m,nbg
 i=n-m+1
 c=dzeta_o(n)*psi_o(n)
 c =k1*(c - dpsi_o(n)*zeta_o(n))
 b(i)=ccc*ba(n)*c
 b(i+numel)=ccc*aa(n)*c
 bd(i)=b(i)
 bd(i+numel)=b(i+numel)
 228 continue
 ii=isiz2
 call lubksb(matrixlu,numtot,ii,indx,b)
 call mprove(matrix,matrixlu,numtot,ii,indx,bd,b)
 do 229 n=m,nbg
 i=n-m+1
 TintTM(m,n)=b(i)
 UintTM(m,n)=b(i+numel)
 229 continue

 ++--++
 c. Now we must find the Scattering coefficients CscaTM and DscaTM,
 c. and from these coeff we can determine the scattering matrices.
 c.---

 do 251 n=m,nbg
 sum1=0.0
 sum2=0.0
 do 261 np=m,nbg
 fact1=dzeta2_1(n)+Q_r(np)*dzeta1_1(n)
 fact1=TransAm(np,n)*TintTM(m,np)*fact1
 fact2=dzeta2_1(n)+Q_s(np)*dzeta1_1(n)
 fact2=TransBm(np,n)*UintTM(m,np)*fact2
 sum1=fact1+fact2+sum1
 fact3=zaeta2_1(n)+Q_r(np)*zeta1_1(n)
 fact3=TransBm(np,n)*TintTM(m,np)*fact3
 fact4=zaeta2_1(n)+Q_s(np)*zeta1_1(n)
 fact4=TransAm(np,n)*UintTM(m,np)*fact4
 sum2=sum2+fact3+fact4

A-17
261 continue
CscaTM(m,n)=dpsi_o(n)*ccc*ba(n)
CscaTM(m,n)=(sum1-CscaTM(m,n))/dzeta_o(n)
DscaTM(m,n)=ccc*aa(n)*psi_o(n)
DscaTM(m,n)=(sum2-DscaTM(m,n))/zeta_o(n)
c print*,n,CscaTM(m,n),DscaTM(m,n)
251 continue

c . We can now calculate the Efficiencies (Qext, Qsca, Qabs).

do 510 n=1,nbg
 tau=C scaTE(m,n)*dconjg(CscaTE(m,n))
 tau=tau+DscaTE(m,n)*dconjg(DscaTE(m,n))
 pie=C scaTM(m,n)*dconjg(CscaTM(m,n))
 pie=pie+DscaTM(m,n)*dconjg(DscaTM(m,n))
 x=n*(n+1.0)*(tau+pie)
 s1=C scaTE(m,n)*dconjg(aa(n))
 s1=s1+DscaTE(m,n)*dconjg(ba(n))
 s2=C scaTM(m,n)*dconjg(ccc*ba(n))
 s2=s2+DscaTM(m,n)*dconjg(ccc*aa(n))
 s3=n*(n+1.0)*(s2+s1)
 if(m.eq.0) then
 x=2.0*x
 s3=-2.0*s3
 else
 x=4.0*x
 s3=-4.0*s3
 endif
 qsca=qsca +x
 qext=qext +dreal(s3)
510 continue

c . That finishes one loop in m, now we move to the next m and repeat .
c . the same procedure all over again, storing our internal results
 c . into T te, U te, T tm, U tm, and storing the scattering results
 c . into C te, D te, C tm, D tm.
c .
c .
299 continue

c . DONE!! The sum over m is now complete!!!
qext=qext/cdabs(x0)**2
qsca=qsca/cdabs(x0)**2
qabs=qext-qsca

write(8,*) real(distance),real(qext),real(qsca),real(qabs)

print*, 'Qext, Qsca, Qabs=',qext,qsca,qabs

c ***
c COMMENT THIS BLOCK OUT IF YOU DON'T WANT TO FIND
c THE ASYMMETRY PARAMETER. THIS FIND_G SUBROUTINE
c IS VERY TIME CONSUMING
 ii=isizel
 alpha=inc_ang
 gg=find_g(nbg,ii,alpha,CscaTE,DscaTE,CscaTM,DscaTM)
 gg=gg/x0**2/qsca
 print*, 'asym parameter =',gg

print*, '***
print*, 'Done with the rough stuff, now to find the Mueller elements'
print*, '***

phi_o=dfloat(phi*pi/180.0)
i=0

d_ang=360.0/num
 b_angle=inc_ang+180.
 f_angle=inc_ang
do 399 j=1,num+1
 angle=d_ang*(j-1)
 if((angle.le.180.0).and.(angle.ge.0.0)) then
 print*, 'Obs ANGLE IS ',angle

 print*, '***
if(angle.gt.180.0) then
 angle=360.0-angle
 phi=pi + phi_o
else
 phi=phi_o
endif
i=i+l
s1TE(i)=0.
s3TE(i)=0.
s2TM(i)=0.
s4TM(i)=0.
theta=angle*pi/180.
x=dcos(theta)
do 330 m=0,nbg
 c ... The next few lines will calc the Legendre polynomial.
c . at the angle theta
 c
 c ... ii=nbg+1
 mmm=m
 call nplgndr(mmm,ii,isize1,legpol2,x)
 mmm=m+1
 call nplgndr(mmm,ii,isize1,legpol1,x)
 if (m.eq.0) then
 do 305 jj=-2,isize1
 legpol(jj)=-legpol1(jj)
 305
 continue
 else
 mmm=m-1
 call nplgndr(mmm,ii,isize1,legpol,x)
 endif
 do 310 n=m,nbg
 c ... Calculate the corresponding pie and tau.
c
 tau=sqrt((n+m+1.)*(n-m))*legpol1(n)
 pie=tau
 tau=-(tau-sqrt((n+m)*(n-m+1.))*legpol(n))/2.
 if (dabs(x).gt.0.5) then
 pie=pie+sqrt((n+m)*(n-m+1.))*legpol(n)
 pie=pie*.5/x
 else

A-20
pie = m * legpol2(n) / dsin(theta)
endif

c ..
c . Done with finding Tau and Pie!
c . Now to find the scattering amplitude S1, S2, S3, and S4.
c ..

ifact = (-ccc)**n
if (m.eq.0) then
 fact1 = DscaTE(0, n)*pie + Cscate(0, n)*tau
 fact2 = DscaTM(0, n)*pie + DscaTE(0, n)*tau
 fact3 = Cscate(0, n)*pie + DscaTE(0, n)*tau
 fact4 = DscaTM(0, n)*pie + Cscatm(0, n)*tau
 sl = ifact * fact1
 s2 = ifact * fact2
 s3 = ifact * fact3
 s4 = ifact * fact4
else
 fact1 = DscaTE(m, n)*pie + Cscate(m, n)*tau
 fact1 = fact1 * 2.0 * dcos(m*phi)
 fact2 = Cscatm(m, n)*pie + DscaTM(m, n)*tau
 fact2 = fact2 * 2.0 * dcos(m*phi)
 fact3 = Cscate(m, n)*pie + DscaTE(m, n)*tau
 fact3 = fact3 * 2.0 * ccc * dsin(m*phi)
 fact4 = DscaTM(m, n)*pie + Cscatm(m, n)*tau
 fact4 = fact4 * 2.0 * ccc * dsin(m*phi)
 sl = ifact * fact1
 s2 = ifact * fact2
 s3 = ifact * fact3
 s4 = ifact * fact4
endif

s1TE(i) = s1TE(i) + sl
s2TM(i) = s2TM(i) + s2
s3TE(i) = s3TE(i) + s3
s4TM(i) = s4TM(i) + s4

310 continue

c ..
c . Finished summing over n, now need to
c . sum over m in order to have the complete
c . solution for the Scat Amp Matrix
c ..

330 continue

s1TE(i) = s1TE(i)
s2TM(i) = -ccc * s2TM(i)
\[s_{3TE}(i) = -ccc \cdot s_{3TE}(i) \]
\[s_{4TM}(i) = s_{4TM}(i) \]

c . Done summing over \(m \). Now we have one complete set of scat amp \(S(i) \) c .

c .

c . Lastly, we can now use the scattering amplitude matrix and solve for the Mueller Matrix elements. Once we have the MM, we have all the informations we need.

do 410 jj = 1,4
 mm(1, jj) = 0.0
 mm(2, jj) = 0.0
 mm(3, jj) = 0.0
 mm(4, jj) = 0.0
410 continue
 fact1 = s_{1TE}(i) * dconjg(s_{1TE}(i)) / 2.
 fact2 = s_{2TM}(i) * dconjg(s_{2TM}(i)) / 2.
 fact3 = s_{3TE}(i) * dconjg(s_{3TE}(i)) / 2.
 fact4 = s_{4TM}(i) * dconjg(s_{4TM}(i)) / 2.
 c = s_{2TM}(i) * dconjg(s_{3TE}(i))
 cc = s_{1TE}(i) * dconjg(s_{4TM}(i))
 mm(1,1) = dreal(fact1 + fact2 + fact3 + fact4)
 mm(1,2) = dreal(fact2 - fact1 - fact3 + fact4) / mm(1,1)
 mm(1,3) = dreal(c + cc) / mm(1,1)
 mm(1,4) = dimag(c - cc) / mm(1,1)
 mm(2,1) = dreal(fact2 - fact1 + fact3 - fact4)
 mm(2,2) = dreal(fact2 + fact1 - fact3 - fact4) / mm(1,1)
 mm(2,3) = dreal(c - cc) / mm(1,1)
 mm(2,4) = dimag(c + cc) / mm(1,1)
 mm(3,1) = dreal(fact1 + fact2)
 mm(3,2) = dreal(fact1 - fact2) / mm(1,1)
 mm(3,3) = dreal(fact3 + fact4) / mm(1,1)
 mm(3,4) = dimag(c + cc) / mm(1,1)
 fact1 = s_{2TM}(i) * dconjg(s_{4TM}(i))
 fact2 = s_{1TE}(i) * dconjg(s_{3TE}(i))
 fact3 = s_{1TE}(i) * dconjg(s_{2TM}(i))
 fact4 = s_{3TE}(i) * dconjg(s_{4TM}(i))
 c = s_{2TM}(i) * dconjg(s_{1TE}(i))
 cc = s_{4TM}(i) * dconjg(s_{3TE}(i))
 mm(3,1) = dreal(fact1 + fact2)
 mm(3,2) = dreal(fact1 - fact2) / mm(1,1)
 mm(3,3) = dreal(fact3 + fact4) / mm(1,1)
 mm(3,4) = dimag(c + cc) / mm(1,1)
 fact1 = s_{4TM}(i) * dconjg(s_{2TM}(i))
fact3 = s1TE(i)*dconjg(s2TM(i))
mm(4,1) = dimag(fact1 + fact2)
mm(4,2) = dimag(fact1 - fact2)/mm(1,1)
mm(4,3) = dimag(fact3 - fact4)/mm(1,1)
mm(4,4) = dreal(fact3 - fact4)/mm(1,1)
print*, real(angledd), real(mm(1,1))
write(8,*) int(angle), real(mm(1,1)), real(mm(1,2)),
+ real(mm(3,3)), real(mm(3,4))
endif

This endif statement lets us select the angles we want to look at.

399 continue

. Done with calculating the amplitude coefficients .

print*, 'That is all, Folks!'
This is the Input File

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6328</td>
<td>The free space wavelength (wavel)</td>
</tr>
<tr>
<td>0.525000</td>
<td>The host radius in microns (rad1)</td>
</tr>
<tr>
<td>0.125</td>
<td>radius of the inclusion (rad2)</td>
</tr>
<tr>
<td>0.1000</td>
<td>center-center separation distance (note: d+rad2 < rad1)</td>
</tr>
<tr>
<td>1.550 0.0d-1</td>
<td>refractive index of host (m1)</td>
</tr>
<tr>
<td>1.550 0.0d-1</td>
<td>refractive index of inclusion (m2)</td>
</tr>
<tr>
<td>0.0</td>
<td>incident angle of beam (inc_ang)</td>
</tr>
<tr>
<td>20</td>
<td>number of obs. angles between 0 and 360 (num)</td>
</tr>
<tr>
<td>0.0</td>
<td>angle phi (relative to plane)</td>
</tr>
</tbody>
</table>
DECLARE.DEF

This is the declaration for the variables which will be used in the scattering program. All the arrays and other variables can be declared and changed in here.

The parameter *isize* is the physical dimension of the arrays. We should make it at least as big as nbg (suggest nbg+2). Also, you should make sure that the parameter nmax in the subroutines mprove and ludcmp should be at least 2*isize. If you don't care about the scattering matrix elements, set isiza=1; otherwise, set isiza=361 (one for each degree from 0 to 360 degrees).

```plaintext
parameter (isize=200, isiza=361)
parameter (isize1=isize+1)
parameter (isiz2=2*isize, isiz4=4*isize)
```

For the MEDIUM, which in our case is just plain old air.
```plaintext
double precision besj_o(-l :isize), temp(-1:isize)
double precision psi_o(-l :isize), dpsi_o(-1:isize)
complex *16 hankel_o(-1:isize), tempc(-1:isize)
complex *16 zeta_o(-1:isize), dzeta_o(-1:isize)
```

For the HOST SPHERE, all the arrays need be at least nbg
```plaintext
complex *16 hankell_l(-1:isize)
complex *16 zeta_l(-1:isize), dzeta_l(-1:isize)
complex *16 hankel2_l(-1:isize)
complex *16 zeta2_l(-1:isize), dzeta2_l(-1:isize)
```

For the INCLUSION SPHERE
```plaintext
complex *16 besj_2(-1:isize)
complex *16 psi_2(-1:isize), dpsi_2(-1:isize)
complex *16 hankel1_2(-1:isize)
complex *16 zeta1_2(-1:isize), dzeta1_2(-1:isize)
complex *16 hankel2_2(-1:isize)
complex *16 zeta2_2(-1:isize), dzeta2_2(-1:isize)
```

For the separation, and besj_d need be at least 4*nbg
```plaintext
complex *16 xd, besj_d(-1:isiz4)
```

For the refractive indices and k-vectors
```plaintext
double precision m_r1, m_r2, m_i1, m_i2
complex *16 k0, k1, k2, x0, x1, x2, x3, m_1, m_2
```
c For the Internal Coefficients
complex *16 TintTE(0:size1,0:size1), UintTE(0:size1,0:size1)
complex *16 TintTM(0:size1,0:size1), UintTM(0:size1,0:size1)

c For the SCATTERING
complex *16 CscaTE(0:size1,0:size1),DscaTE(0:size1,0:size1)
complex *16 CscaTM(0:size1,0:size1),DscaTM(0:size1,0:size1)
complex *16 Q_r(0:size),Q_s(0:size)
complex *16 s1TE(sizea),s2TM(sizea),s3TE(sizea),s4TM(sizea)
complex *16 s1,s2,s3,s4,sum1,sum2,fact1,fact2,fact3,fact4

c For the NORMALIZED ASSOCIATED LEGENDRE POLYNOMIALS
double precision legpol(-2:size1),legpol1(-2:size1)
double precision legpol2(-2:size1), tau,pie
double precision inc_ang,x

c For the TRANSLATION COEFFICIENTS
complex *16 cuplo(-1:size4), cuplo1(-1:size4)
complex *16 cuplom(0:size2,0:size2), cuplom1(0:size2,0:size2)
complex *16 TransA,TransB,TransAm(0:size,0:size)
complex *16 TransBm(0:size,0:size)
complex *16 c,cc,ccc,ifact

c For the MATRICES IN THE LU_DEC0MPOSTION
dimension indx(size2)
complex *16 matrix(size2,size2), matrixlu(size2,size2)
complex *16 b(size2),bd(size2),aa(0:size),ba(0:size)

c MUELLER MATRIX
double precision mm(4,4)
subroutine bessel(n,np,bessj,x)

implicit double precision (a-h,o-z)
parameter(iacc=500,bigno=1d100,bigni=1d-100)
integer n,np
double precision bessj(-l:np),x,xx,pi
double precision bjp,bj,factor,ax

pi=1.0
pi=4.*datan(pi)
xx=x-2*pi*int(x/2./pi)
if (n.lt.3) then
 n=3
endif

if (x.lt.n) then
 ax=dabs(x)
axx=x-2*pi*int(ax/2./pi)
 if (ax.eq.0) then
 bessj(0)=1.
 do 10 i=1,n
 bessj(i)=0.
 10 continue
 else
 m=2*((n+int(sqrt(float(iacc*n))))/2)
 continue
 end if
else
 m=2*((n+int(sqrt(float(iacc*n))))/2)
end if

If x is less than n, we must use the downward recurrence relation, otherwise our results for bessj will be unstable. In fact, we will use the downward a lot more than the upward because our x will often be less than n, i.e., the size parameter is less than the order.

A-27
do 15 j=0,n
 bessj(j)=0.
15 continue
bjp=0.
bj=1.
do 20 j=m,1,-1
 bjm=(2.*j+1.)/ax*bj-bjp
 bjp=bj
 bj=bjm
 if(dabs(bj).gt.bigno) then
 c ...
 c . If bj is huge, we must renormalize to prevent overflow .
 c ...
 bj=bj*bigni
 bjp=bjp*bigni
 do 17 i=0,n
 bessj(i)=bessj(i)*bigni
17 continue
 endif
 endif
 if(j.le.n)bessj(0)=bjp
20 continue
bessj(0)=bj
sum=0.
do 25 j=0,n
 sum=sum+(2.*j+1.)*bessj(j)*bessj(j)
25 continue
do 30 j=0,n-1
 bessj(j)=bessj(j)/dsqrt(sum)
 if(x.lt.0.and.mod(n,2).eq.1) bessj(j)=-bessj(j)
30 continue
bessj(-1)=dcos(xx)/x
endif
else
 c ...
 c . Use upward recurrence for when x is greater than n .
 c ...
 bessj(-1)=dcos(xx)/x
 bessj(0)=dsin(xx)/x
 do 40 i=0,n-1
 bessj(i+1)=bessj(i)*(2.*i+1.)/x-bessj(i-1)
40 continue
 endif
return
end
subroutine c_bessel(n,np,bessj,x)

parameter(iacc=500,bigno=1d100,bigni=1d-100)

implicit double precision (a-h,o-z)
double precision pi,xx
integer n,np
complex *16 x,xxxx,sum
complex *16 bessj(-1:np)
complex *16 bjp,bj,factor,bjm

if(n.lt.3)then
 n=3
endif

xx=cdabs(x)
pi=1.0
pi=4.*datan(pi)
xxxx=x
if(xx.gt.32760)then
 x=x-2*pi*int(x/2./pi)
endif

if (xx.lt.n) then
 c
 c . Use downward recurrence
 c
 if (xx.eq.0) then
 bessj(0)=1.
 do 10 i=1,n
 bessj(i)=0.
 10 continue
 else
 m=2*((n+int(sqrt(float(iacc*n))))/2)
 do 15 j=0,n
 bessj(j)=0.
 15 continue
 bjp=dcmplx(0.d0,0.)
 endif
endif
bj=dcmplx(1.d0,1.)
do 20 j=m,1,-1
 bjm=(2.*j+1.)/x*bj-bjp
 bjp=bj
 bj=bjm
 xxx=cdabs(bj)
 if(xxx.gt.bigno) then
 c ..
 c . Renormalize to prevent overflow .
 c ..
 bj=bj*bigni
 bjp=bjp*bigni
 do 17 i=0,n
 bessj(i)=bessj(i)*bigni
 17 continue
 endif
 if(j.le.n) bessj(j)=bjp
20 continue
bessj(0)=bj
sum=0.
do 25 j=0,n
 sum=sum+(2.*j+1.)*bessj(i)*bessj(i)
25 continue
do 30 j=0,n
 bessj(j)=bessj(j)/cdsqrt(sum)
30 continue
bessj(-1)=cdcos(xxxx)/x
else
 c ..
 c . Use upward recurrence .
 c ..
 bessj(-1)=cdcos(xxxx)/x
 bessj(0)=cdsin(xxxx)/x
 do 40 i=0,n-1
 bessj(i+1)=bessj(i)*(2.*i+1)/x-bessj(i-1)
40 continue
endif
return
end
subroutine newman(n,np,bessy,x)

 subroutine to calculate the spherical bessel function of the
 second kind (or Neumann function) from order -1
 to order n; result stored in array bessy. bess_y is the common
 notation for the Neumann function.

 implicit double precision (a-h,o-z)
 integer n,np
 double precision x,xx,pi
 double precision bessy(-l :np)

 if(n.lt.3)then
 n=3
 endif
 pi=1.0
 pi=4.*datan(pi)
 xx=x-2.*pi*int(x/2./pi)

 bessy(-1)=dsin(xx)/x
 bessy(0)=-dcos(xx)/x
 bessy(1)=-dcos(xx)/x/x-dsin(xx)/x
 do 10 i=2,n
 bessy(i)=(2.*(i-l.)+l.)/x*bessy(i-l)-bessy(i-2)
 10 continue
 return
end

subroutine c_newman(n,np,bessy,x)

 subroutine to calculate the complex spherical bessel function
 from order 0 to order n, the result is stored in array bessy.
 This is the Newman function, aka, bessel function of order 2.

 implicit double precision(a-h,o-z)
integer n, np
complex *16 x, xx, bessy(-1:np)
double precision pi

if (n.lt.3) then
 n=3
endif
pi=1.0
pi=4.*datan(pi)
xx=x-2.*pi*int(x/2./pi)
bessy(-1)=cdsin(xx)/x
bessy(0)=cdcos(xx)/x
bessy(1)=-cdcos(xx)/x/cdsin(xx)/x

do 10 i=2, n
 bessy(i)=(2.*(i-1.)+1.)/x*bessy(i-1)-bessy(i-2)
10 continue
return
end

c **

subroutine nplgnrd(m, nbr, iisize, legpol, x)
c ...
c Calculate normalized ass. legendre pol. from l=0 to nbr using value of
-c . -1<=x<=1 Note that everything here is double precision because other
-c . wise we've got a runaway solution.
c ...
c implicit double precision (a-h,o-z)
double precision x
integer m,nbr,iisize
double precision legpol(-2:iisize)
double precision pmrn,somx2,fact, pll, pmmpl
mm=mod(rn,2)*(-2)+1
m=abs(m)
do 5 i=-2,m
 legpol(i)=0.
5 continue
pmm = 1.
if (m.gt.0) then
 somx2=sqrt((1.-x)*(1.+x))
 fact=1.
 do 11 i=1,m
 pmm=pmm*fact*somx2/sqrt(real(i))
 fact=fact+2.
11 continue
 do 110 i=m+1,2*m
 pmm=pmm/sqrt(real(i))
110 continue
 pmm=pmm*sqrt(2.*m+1.)
endif
legpol(m)=pmm*mm
if(nbr.gt.m) then
 pmmp1=x*sqrt(2.*m+3.)*pmm
 legpol(m+1)=pmmp1*mm
endif
if(nbr.gt.m+1) then
 do 12 ll=m+2,nbr
 pll=x*sqrt(2.*ll-1.)*pmmp1
 pll=pll-sqrt((ll+m-1.)/(ll-m-1.))*(2.*ll-3.)*pmm
 pll=pll/sqrt((ll-m)*(ll+m)/(2.*ll+1.))
 pmm=pmmp1
 pmmp1=pll
 legpol(ll)=pll*mm
12 continue
 endif
 m=m*mm
return
end

subroutine riccati(nb, hval, zeta, dzeta, x)
integer nb, i
complex *16 hval(-1:nb), zeta(-1:nb), dzeta(-1:nb), x
zeta(-1)=x*hval(-1)
do 10 i=0,nb
 zeta(i)=x*hval(i)
 dzeta(i)=x*hval(i-1)-i*hval(i)
10 continue
return
end
subroutine ludcmp(a,n,np,indx,d)

complex *16 tiny
parameter (nmax=150)

complex *16 a(np,np),sum,cdum,vv(nmax),aamax
dimension indx(n)

tiny=dcmplx(1.0d-80,1.0d-80)
d=1.
do 12 i=1,n
 aamax=dcmplx(0.d0,0.)
do 11 j=1,n
 if (cdabs(a(i,j)).gt.cdabs(aamax)) aamax=a(i,j)
 continue
 if (cdabs(aamax).eq.0) pause 'singular matrix'
vv(i)=1./aamax
 12 continue
do 19 j=1,n
 do 14 i=1,j-1
 sum=a(i,j)
do 13 k=1,i-1
 sum=sum-a(i,k)*a(k,j)
 13 continue
 a(i,j)=sum
 14 continue
 aamax=dcmplx(0.d0,0.)
do 16 i=j,n
 sum=a(i,j)
do 15 k=1,j-1
 sum=sum-a(i,k)*a(k,j)
 15 continue
a(i,j) = \text{sum}
\text{cdum} = w(i) * \text{sum}
\text{if } (\text{cdabs}(\text{cdum}) \geq \text{cdabs}(aamax)) \text{ then }
\text{imax} = i
\text{aamax} = \text{cdum}
\text{endif}
\text{continue}
16 \text{ if } (j \neq \text{imax}) \text{ then }
\text{do } 17 \text{ k} = 1, n
\text{cdum} = a(\text{imax}, k)
\text{a(imax, k)} = a(j, k)
\text{a(j, k)} = \text{cdum}
17 \text{ continue}
\text{d} = -d
\text{vv(imax)} = \text{vv(j)}
\text{endif}
\text{indx(j)} = \text{imax}
\text{if } (\text{cdabs}(a(j,j)) \text{.eq.0}) \text{ a(j,j)} = \text{tiny}
\text{if } (j \neq n) \text{ then }
\text{cdum} = 1./a(j,j)
\text{do } 18 \text{ i} = j + 1, n
\text{a(i, j)} = a(i, j) \ast \text{cdum}
18 \text{ continue}
\text{endif}
19 \text{ continue}
\text{return}
\text{end}

subroutine lubksb(a,n,np,indx,b)

complex *16 a(np,np), b(n), sum

dimension indx(n)
ii=0
do 12 i=1,n
 ll=indx(i)
 sum=b(ll)
 b(ll)=b(i)
 if (ii.ne.0) then
 do 11 j=ii,i-1
 sum=sum-a(i,j)*b(j)
 11 continue
 else if (cdabs(sum).ne.0.) then
 ii=i
 endif
 b(i)=sum
12 continue
do 14 i=n,1,-1
 sum=b(i)
 if (i.lt.n) then
 do 13 j=i+1,n
 sum=sum-a(i,j)*b(j)
 13 continue
 endif
 b(i)=sum/a(i,i)
14 continue
return
end

subroutine mprove(a,alud,n,np,indx,b,x)
c
c . improves a solution vector X of the linear set of equations A*X=B .
c . The matrix A, and the vectors B and X are input, as is the dim
 c . n. Also input is alud the ludcomp of A as returned by ludcmp, and
 c . the vector indx also returned by that routine. On output, only
 c . X is modified, to an improved set of values.
c
parameter (nmax=150)
c
c . all the values here should be the same as those .
c . found in the ludcmp subroutine, eg nmax should .
c . have the same numerical value as in ludcmp .
c
complex *16 a(np,np),alud(np,np),b(n),x(n),sdp,r(nmax)
dimension indx(n)
do 12 i=1,n
 sdp=-b(i)
 do 11 j=1,n
 sdp=sdp+a(i,j)*x(j)
 continue
11 r(i)=sdp
12 continue
 call lubksb(alud,n,np,indx,r)
 do 13 i=1,n
 x(i)=x(i)-r(i)
13 continue
return
end

double precision function fmd_g(nbg,nn,ang,cte,dte,ctm,dtm)

integer nbg,nn
double precision ang
complex *16 cte(0:nn,0:nn),dte(0:nn,0:nn)
complex *16 ctm(0:nn,0:nn),dtm(0:nn,0:nn)
parameter (size=76)

ccc=dcmplx(0.0d0,1.0d0)
nj=size

ii=nn
jj=nn

print*,nn,ii=nn,jj

do 20 mp=-n,n,1
 m=mp
 t1=m*dreal(a(m,n)*dconjg(b(m,n)) +c(m,n)*dconjg(d(m,n)))
 fn=dfloat(n)
 fact=(fn-m+1.)*(fn+m+1.)/(2.*fn+3.)/(2.*fn+1.)
 fact=fh*(fn+2.)**dsqrt(fact)
 cc=a(m,n)*dconjg(a(m,n+1)) +b(m,n)*dconjg(b(m,n+1))
 cc=cc+c(m,n)*dconjg(c(m,n+1)) +d(m,n)*dconjg(d(m,n+1))
 t2=fact*dreal(ccc*cc)
 asym_g=4.*(t1+t2)
 gg = gg+asym_g
 continue
20
 continue
10
 continue
find_g=gg
return
end

**

subroutine rotation(a,b,c,d,nbg,ang,cte,dte,ctm,dtm,nn,ij)
subroutine rotation(a,b,c,d,nbg,ang,cte,dte,ctm,dtm,nn,ij)
subroutine rotation(a,b,c,d,nbg,ang,cte,dte,ctm,dtm,nn,ij)

integer nbg,nn,ij
complex *16 a(-ij:ij,0:ij),b(-ij:ij,0:ij)
complex *16 c(-ij:ij,0:ij),d(-ij:ij,0:ij)
double precision ang
double precision cte(0:nn,0:nn),dte(0:nn,0:nn)
double precision ctm(0:nn,0:nn),dtm(0:nn,0:nn)

integer n,mp,m,ii,jj,i_high,i_low

parameter (siz=200)
parameter (siz=200)
parameter (siz=200)

double precision factorial
double precision beta(-siz:siz,-siz:siz)
double precision t1,t2,t3,t4, fact,term1,term2
complex *16 sum1,sum2,sum3,sum4,c1,c2,c3,c4
integer n,mp,m,ii,jj,i_high,i_low

print*, 'angle=', ang
ang=-ang

A-38
do 10 n=0,nbg
 print*, 'rotation n= ', n
 do 15 m=-n,n
 a(m,n)=cmplx(0.0,0.0)
 b(m,n)=cmplx(0.0,0.0)
 c(m,n)=cmplx(0.0,0.0)
 d(m,n)=cmplx(0.0,0.0)
 15 continue

c ...

c . For each value of n, we will find all possible values .
c . of the BETA(m,mp), and find the resulting new scat-
c . tering coefficients a,b,c,d .
c ...

do 20 mp=-n,n
 do 30 m=-n,n
 t1=factorial(n+mp)
 t2=factorial(n-mp)
 t3=factorial(n+m)
 t4=factorial(n-m)
 term1=t1+t2-t3-t4
 term2=dexp(term1)
 beta(mp,m)=dsqrt(term2)

sum1=cmplx(0.0,0.0)
 i_low=0
 if((-m-mp).gt.i_low) i_low=-m-mp
 i_high=n-m
 if((n-mp).lt.i_high) i_high=n-mp
 if(i_low.gt.i_high) then
 beta(mp,m)=0.0
 else
 do 40 jj=i_low,i_high,1
 t1=factorial(n+m)
 t2=factorial(n-mp-jj)
 t3=factorial(m+mp+jj)
 t4=t1-t2-t3
 term1=dexp(t4)

 t1=factorial(n-m)
 t2=factorial(jj)
 t3=factorial(n-m-jj)
 t4=t1-t2-t3
 term2=dexp(t4)
ii=n-m-jj
ii=mod(ii,2)
if(ii.eq.0) then
 fact=1.0
else
 fact=-1.0
endif
if(term1.gt.1.d200.or.term1.lt.1.d-200) then
 print*, 'mp,m, beta=', mp,m,beta(mp,m)
 stop
endif
ii=2*jj+mp+m
t3=(dcosd(ang/2.))**(ii)
ii=2*n-2*jj-mp-m
t4=(dsind(ang/2.))**(ii)
suml=suml+(term1*term2)*fact*t3*t4
continue
endif
beta(mp,m)=beta(mp,m)*suml

That's one value of m computed for each given value of mp.

There! We've just finished calculating all the possible values of BETA(mp,m) for each given value of n.

Now to find the new values for the scattering coefficients, using the BETA that we've just found.

do 50 mp=-n,n,1
 sum1=cmplx(0.0,0.0)
 sum2=cmplx(0.0,0.0)
 sum3=cmplx(0.0,0.0)
 sum4=cmplx(0.0,0.0)
666 do 60 m=-n,n,1
 if(m.le.0) then
 ii=abs(m)
 if(mod(ii,2),eq,0) then
 c1=cte(ii,n)
 endif
c2 = -dte(ii,n)
c3 = -ctm(ii,n)
c4 = dtm(ii,n)
else
 c1 = -cte(ii,n)
c2 = dte(ii,n)
c3 = ctm(ii,n)
c4 = -dtm(ii,n)
endif
else
 c1 = cte(m,n)
c2 = dte(m,n)
c3 = ctm(m,n)
c4 = dtm(m,n)
endif
sum1 = sum1 + c1 * beta(m,mp)
sum2 = sum2 + c2 * beta(m,mp)
sum3 = sum3 + c3 * beta(m,mp)
sum4 = sum4 + c4 * beta(m,mp)
60 continue

These a, b, c, d are now the new values of the scattering coefficients after the rotation.

a(mp,n) = sum1
b(mp,n) = sum2
c(mp,n) = sum3
d(mp,n) = sum4
50 continue
10 continue
return
end

c ***

double precision function factorial(n)
integer n
integer loop
double precision sum

c Since n can be a huge number (like 190) we will take the log of the factorial, so the machine won't blow up. eg. 10! will be log10 + log9 + log8 + ... log1

c ***

A-41
sum=0.0
if (n.lt.0) then
 print*, 'ERROR! value less than zero!'
 print*, 'value=', n
 stop
endif
if (n.gt.1) then
 do 10 loop=1,n
 sum=sum + dlog(dfloat(loop))
 10 continue
 factorial=sum
else
 factorial=0.0
endif
99 return
end