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SUMMARY 

A single elastic fiber embedded in an infinite elastic matrix is considered. An incident 

plane SH wave is assumed in the infinite matrix, and an expression is derived for the total 

energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy 

is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown 

that the fiber energy attains maximum values at specific values of the wavenumber of the 

incident wave. The results obtained here are interpreted in the context of phenomena 

observed in acousto-ultrasonic experiments on fiber reinforced composite materials. 



INTRODUCTION 

Quantitative ultrasonic nondestructive evaluation methods require analyses of wave 

propagation in the material or structure which is to be evaluated. In fiber reinforced com- 

posite materials, wave propagation characteristics depend on properties and arrangement 

of the constituent materials, as well as on the overall geometry and both the microscopic 

and macroscopic defect state of the composite. 

Analyses of wave propagation in fiber reinforced composites are reviewed in [l] and 

[2]. According to these reviews, wave propagation analyses may be divided into two broad 

categories. In the first category, the composite is treated as an equivalent homogeneous 

medium, and mechanical responses such as stress and strain are described in terms of 

averages over the constitutive elements. It has been stated that the homogeneous or 

equivalent continuum approach is valid "when the scale of the changes in stress level (rise 

distance, wavelength, etc.) is much larger than the sizes of the constituents of the composite 

(fiber or particle diameter, fiber spacing, ply spacing, etc.)" [l]. In the second category 

of wave propagation analyses, the composite is modeled as a heterogeneous mixture of 

constituents, and the dynamic interaction between the constituent materials is considered. 

The heterogeneous analyses are complex, but are necessary if the scale of changes in stress 

level is smaller than or of the same order as the size of the composite constituents, or if 

small-scale phenomena such as interface bond failure are of interest. 

Recent acousto-ultrasonic experiments by Kautz [3] show some interesting wave prop- 

agation behavior in graphite fiber reinforced epoxy composite panels. Kautz introduces a 

broadband signal into a composite panel, and observes that the response of the composite 

appears to be divided into a high frequency component traveling at a relatively fast wave 

speed and a low frequency component traveling at a relatively low wave speed. When the 

same broadband signal is introduced into a geometrically similar panel consisting only of 

the epoxy matrix, the response is observed to consist only of the low frequency component. 

Kautz hypothesizes that the composite panel acts as a heterogeneous medium, with wave 

propagation along the fibers at the higher wave speed and wave propagation through the 

matrix at the lower wave speed. 

In this report, an infinite elastic matrix containing a single cylindrical elastic fiber 

is considered.  An incident plane SH wave is assumed to exist in the elastic matrix, and 



an expression is derived for the total energy of the fiber due to the incident SH wave. 

It is shown that the total fiber energy attains maximum values at specific values of the . 

wavelength of the incident wave. The purpose of this work is to investigate, in a simple 

setting, the issue of energy transfer between the matrix and the fibers in a composite 

material. Recommendations are given for future research which may give further insight 

into the experimentally observed phenomena in [3]. 

ANALYSIS 

A cylindrical fiber having circular cross section is shown in Fig. 1. Rectangular coordi- 

nates {x,y,z) and cylindrical coordinates {r,6,z) are defined as shown in Fig. 1. Displace- 

ments ux, uy and uz are defined in the x, y and z directions, respectively, and displacements 

ur, ue and uz are defined in the r, d and z directions, respectively. The fiber is assumed 

to have radius a and to be of infinite extent in the z direction. The fiber is assumed to be 

elastic, with mass density pf and Lame constants M/ and A,. It is assumed that the fiber 

is embedded in an infinite elastic matrix with mass density p and Lame constants p and 

A. Continuity of relevant stresses and displacements is assumed at the materials interface 

r = a. 
The infinite elastic matrix is assumed to contain an incident harmonic plane wave of 

the form 

uP(x,y,z,t)=0 C1) 

ttW(x,y,Ä,0=0 (2) 

u<p{x,y,»tt) = Re{wo*{k'-ut)} ® 

where the superscript (i) denotes the incident wave, «*> is the amplitude of the incident 

wave, k is the wavenumber of the incident wave, u is radian frequency, t is time and 

j = y/Z\m The wavenumber k and frequency w are related by 

w = c.fc W 

where .      1/2 

9 • (5) 
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Eqns. (1), (2) and (3) define a wave which propagates in the positive x direction with 

particle motion parallel to the fiber in the z direction. Such a wave, in this context, is 

denoted as an SH wave. 

Because of the cylindrical geometry of the fiber, it is convenient to write the incident 

SH wave in the cylindrical coordinates (r, 6, z) as [4] 

u^(r,e,z,t)=0 (6) 

uP{r,0,z,t)=O (7) 

u^(r,6,z,t) = Re I w0 J^ enj
nJn{kr) cos n6e->ut [ (8) 

I       n=0 J 

where Jn is a Bessel function of the first kind and of order n, and where 

_ Jl,   n=0 
e"-\2,   n=l,2,... (9) 

It is shown in [4] that eqns. (l) through (3) and eqns. (6) through (8) are mathematically 

identical representations of the same incident wave. 

The interface conditions at r = a and the three-dimensional equations of elasticity 

which govern the infinite medium and the fiber are satisfied by the total displacement field 

[4] 

ur(r,e,z,t) = 0                                                   ^ (10) 

ue{r,e,z,t) = 0                                                   I r>a (11) 

uz(r,O,z,t) = UW(r,0,z,t)+uW(r,O,z,t) J (i2) 

ur(r,e,z,t)=0 (13) 

ue{r,0,z,t) = 0                                                     I  r<a (14) 

uz{r,6,z,t) = ui»{r,0,z,t) J (15) 

where 

uz z°\r,0,z,t) = Re I woY,AnH£\kr) cos nOe-i^K (i6) 
I        n=0 J 

uz
fXr,0,z,t) = Re I -w0 ^ CnJn(kfr) cosnOe-^* 1 (17) 

n=0 



An = (-Jn6n/A) lfifkfJn(ka)J'n(kfa) - ßkJn(ka)Jn(kfa)} (18) 

Cn = (-j»6n/A) ßk [j'n(ka)Hn
l\ka) - H^'(ka)Jn(ka)] (19) 

A = ViSk}Hn
x\ka)Jn{kja) - fikH^'(ka)Jn(kfa) (20) 

kf = ±k (21) 
c,/ 

•"-&) (22) 

The quantities A„ and Cre are dimensionless complex coefficients. H™ is a Hankel function 

of the first kind and of order n, and the prime denotes the derivative of a function with 

respect to its argument. 
Eqn. (16) represents a scattered wave which propagates outward from the fiber. As 

r -+ oo, the amplitude of the scattered wave approaches zero, so that far from the fiber 

the total displacement field approaches the displacement field of the incident SH wave. 

Eqn. (17) represents a refracted or transmitted wave in the fiber. Eqn. (17) is a 

standing wave with time-harmonic particle motion in the z direction. Over any fiber cross 

section z = constant, the fiber displacement in the z direction varies as a function of r and 

6 according to eqn. (17). 
The nonzero fiber strains associated with the displacements given by eqns. (13) through 

(15) are 

dr 

and the nonzero stresses in the fiber are 

le*     r   dd 

duz
J> (24) 

1 duP 
08z-Hfr    m 

(25) 

(26) 

The elastic strain energy Uf per unit length of fiber in the z direction is 

Uf=        /     - [orzlrz + oezlez) r dBdr 
Jo  Jo     * 

(27) 
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The kinetic energy Kf per unit length of fiber in the z direction is 

Kf = Io   L     \pf{^f))2rd6dr (28) 
The total energy Ef per unit length of fiber is, therefore, 

Ef = Uf + Kf (29) 

The energy Ef given by eqn. (29) is a function of time. In order to obtain a single 

numerical measure of energy, it is customary to average the energy Ef over one time period 

of the harmonic oscillation. The time-averaged energy < E >f is defined by 

1   fT 

<E>f=-J    Efdt ''fdt (30) 

where 

T=~ (31) 

When eqn. (17) and eqns. (23) through (29) are substituted into eqn. (30), a long 

algebraic calculation gives the following result for the time-averaged fiber energy: 

< E >f= ^o2 p{c:Cn±[^{jZ+1(kfa) - Jn(kfa)Jn+2(kfa) 

+ J^{kfa) - Jn-i{kfa)Jn+l{kfa)) (32) 

+nJ^(kfa) 

where 

a       j 1/2,    n = 0 
^{l,        » = 1,2,... (33) 

and where the asterisk denotes the complex conjugate. The derivation of eqn. (32) requires 

the complex variable identity 

Re{z} =-{z + z*) « (34) 

the trigonometric identies [5] 

/     cos nO cos mO d6 = —<5. 
Jo 

2ir 

mn (35) 
ßn 



,27T f 

I     sin nö sin mö = < 

and the Bessel function identities [6] 

27r „ .       „      ( 0 for n=0 or m=0 
7r<5mn    otherwise 

(36) 

d Jn(kfr) = -kfJn+1(kfr) + " J„(fc,r) (3.7) 
dr 

(38) 

(39) 

I" rJ2
n{kfr)dr = ^ {J*(M - J„_i(M-WM} 

ja Jn(kfr)Jn+1(kfr)dr = i- J i [l - 4{kfa)] - £ Jl{kfa) I 

r -Jn(kfr)dr = ^ j 1 + 'o (M + J«(M - 2 £ J?(M | ,   n > 0       (40) 
./o   r ln  \ k=0 ) 

The quantity 6mn in eqns. (35) and (36) is the Kronecker delta. 

Eqn. (32) is an expression for the total fiber energy per fiber length in the z direction. 

In order to nondimensionalize the fiber energy < E >/, consider an infinite uniform elastic 

matrix containing only the incident SH wave given by eqns. (6) through (8), and consider 

the time-averaged energy < E >m contained, per unit length in the z direction, in the 

region 0 < r < a.   By a calculation similar to the calculation leading to eqn. (32), the 

time-averaged energy < E >m is 

< E >m= \^lY,{KDnjn [^{^+i(M - Jn(ka) JB+2(*a) 
n=0 *■ 

+Jl{ka) - Jn-i{ka)Jn+i{ha)} + nJl{ka) 

(41) 

where 

Dn = enj
n (42) 

A nondimensional fiber energy < e >/ is now defined by 

< e >f= —-—- {*6) 

The dimensionless quantity < e >/ gives a measure of the fiber energy relative to the 

energy the matrix would contain if there were no fiber present. 



By introducing the nondimensional parameters 

r   = U- 
'       P 

V± 
ß 

eqns. (43) and (19) can be written as 

rli = 

(44) 

(45) 

<e >/= 
_ <E>f 

<E>m 

= r, 

(7feq)2 |  Jn+ihka) ~ Jn{lka)Jn+2{lka) 
2     1 +Jnhka) ~ Jn-i{lka)Jn+i(ika) 

+ nJ^ka) 

V°°   D*D -i- (feg)2 j   ^n+i(H-^n(A;a)Jn+2(A:a)   1 2,    , 
2    \ +Jn

2(A;a) - ./„^(fca)JB+i(*a) / + nJ^aj 

^46) 

Cn 

Hn£n) IjUka^H^ika) - H{
n
iy {ka)Jn{ka) 

respectively, where 

rtllH^\ka)J>n{1ka) - H{
n
iy\ka)Jn{~ika) 

1/2 

1 

(47) 

(48) 

From eqns. (46), (47) and (48) it can be seen that the nondimensional fiber energy < e >/ 

depends only on the nondimensional parameters ka, rp and rM. The parameter ka is a 

nondimensional wavenumber of the incident wave, and can be written in terms of the 

incident wavelength A,- as 

ka = 
2ira 

"Ä7 
or in terms of frequency as 

ka = 
oja 

The nondimensional fiber energy < e >j is plotted as a function of the nondimensional 

wavenumber ka in Fig. 2 for the numerical values rp = 2.0 and rß = 25.0. These numerical 

values correspond to an E-glass fiber in a PMR (polyimide monomeric reactant) matrix 

[7]. In Fig. 3, the nondimensional fiber energy < e >/ is plotted as a function of ka for the 

numerical values rp = 1.5 and rM = 7.5. These numerical values correspond to a Celion 

6000 fiber in a PMR matrix [7]. The numerical values used to generate Fig. 3 are estimates 

of the material properties of the graphite/epoxy composite used in [3]. The infinite series 

in eqn. (46) are computed by truncating when the absolute value of the individual terms 

becomes less than 10~12 times the absolute value of the accumulated sum. 



DISCUSSION 

In both Fig. 2 and Fig. 3, the nondimensional fiber energy < e >/ is approximately 

equal to one when ka is close to zero, or, equivalently, when the wavelength of the incident 

wave is long compared to the fiber diameter. This means that for long wavelengths, the 

energy in the fiber is approximately the same as the energy which would exist in a uniform 

matrix. In other words, the presence of the fiber does not significantly affect the energy 

distribution for long wavelengths. As ka becomes larger (or, equivalently, as the wavelength 

becomes smaller) the energy in the scattered wave becomes larger, and the energy in the 

fiber becomes smaller than the energy which would exist in the region 0 < r < a in the 

uniform matrix. 

The most interesting features of Fig. 2 and Fig. 3 are the local maxima in the values 

of < e >/. For an incident wave containing a broad band of wavenumber, the fiber energy 

will be greatest at frequencies corresponding to the values of ka where the local maxima 

occur. If the fiber response could be measured, the local maxima would appear in a 

frequency spectrum of the measured response. Thus it is sensible, at least in this simple 

case, to suppose that certain frequency components in a measured response may contain 

information about the fiber. 

The incident SH wave assumed here is independent of the spatial coordinate z and so, 

therefore, is the displacement field in the fiber. Therefore, it is impossible, in this analysis, 

to discuss the issue of wave propagation along the fiber in the z direction. The analysis of 

an incident wave which has a z component may allow consideration of wave propagation 

along the fiber. Equations which describe the scattering and refraction of such an obliquely 

incident wave are given in [4]. 

CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this report is to investigate the transfer of energy to a single fiber in 

an infinite elastic matrix containing an incident SH wave. An expression is derived for the 

energy in the fiber, and it is shown that the fiber energy attains local maxima at specific 

values of the wavenumber of the incident wave. 

Future research should consider the problems of incident P and SV waves. As men- 

tioned above, an obliquely incident wave may allow analysis of wave propagation along 



the fiber. Also, properties of the scattered wave given by eqn. (16) should be investigated, 

since the scattered wave may be available for experimental measurement. It would be in- 

teresting to see if the energy flux of the scattered wave has wavelength dependence similar 

to the wavelength dependence of the energy of the fiber. 
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Fig. 1 Elastic fiber embedded in infinite elastic matrix containing incident SH wave. 
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Fig. 2 Nondimensional fiber energy, < e >/ as a function of nondimensional wavenumber ka 
for rp = 2.0, r 25.0. 
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Fig. 3 Nondimensional fiber energy, < e >/ as a function of nondimensional wavenumber ka 
for rp = 1.5, and rM = 7.5. 
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