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ABSTRACT 

Many environmental sampling problems involve some specified regulatory or contractual 

limit (RL). Often the interest is in estimating the percentile of the underlying contaminant concen- 

tration distribution corresponding to RL. In previous reports, we have discussed the problem of 

determining a lower 100(l-a)% confidence limit for that percentile when no observations are 

observable, but are all known to be less than a detection limit DL, where DL < RL. In this report 

we extend those results to the situation in which more than a single detection limit is involved. 



1.  PROBLEM DEFINITION 

Many environmental sampling problems involve some specified regulatory or contractual 

limit (RL). Such problems exist whether sampling air, water, soil, or living organisms. For 

example, one might be analyzing air samples in buildings for CO, water samples from lakes for 

pesticides, soil samples from dump sites for arsenic, or leaf samples from trees for lead. Often 

the interest is in estimating pRL, a specified percentile of the underlying contaminant concentration 

distribution corresponding to RL. 

The problem addressed in this paper is the estimation of the desired percentile pRL based 

on a sample of n observations, all of which are nondetectable, where an observation X; is known 

only to be less than some detection limit DLj < RL. That is, we are considering a sample in which 

all observations are censored. We will assume, of course, that the sample is a representative 

sample. 

Given n observations, each known to be less than RL, a binomial lower limit on pRL is 

given by: 

PRL * a1'", 

where (1-a) is the desired confidence level. This lower limit makes no use of the information that 

the observation x{ is less than DLj (which may be much less than RL). 



2. BACKGROUND 

There are a number of procedures that have been proposed for dealing with estimation 

problems when some observations in a set of data are censored, and reported only as less than a 

detection limit. These include, for example, simple substitution methods, maximum likelihood 

estimation, and regression methods. 

Haas and Scheff [1] and Helsel and Gilliom [2] have evaluated the performance of a 

number of suggested approaches. Any of the methods can be used to provide an estimate of pRL 

when there are a number of uncensored observations in the sample. However, none can be used 

to deal with the problem defined in the previous paragraphs. 

In two previous reports [4,5], we proposed a procedure that is applicable to the situation 

where all observations are left-censored at the same value DL <, RL. Our first report [4] was 

based on the assumption of an underlying lognormal distribution. That is the usual assumption 

for contaminants present in small quantities. 

However, there are some cases in which the assumption of a normal distribution may be 

more reasonable. For example, if the cost of sampling is small relative to the cost of chemical 

analysis, composite samples may be used. Whatever the underlying distribution of contaminant 

concentrations, the distribution of concentrations in the composite samples will tend toward 

normality. Therefore, our second report [5] was based on the assumption of an underlying normal 

distribution. This report extends the results of that report by considering the situation in which 

multiple detection limits are involved. 



r  PROPOSED PROCEDURE 

Given a sample x = {x1; x2, ... xj from the distribution of the random variable X, we 

want a lower 100(l-cc)% confidence limit for pRL = Pr{X < RL}. It is assumed that X is 

normally distributed and that each observation x; < DLj < RL, where DL; denotes the detection 

limit for the ith observation and RL denotes the regulatory limit of interest. 

The usual confidence limit for a percentile, which is also known as a tolerance limit, is of 

the form x + k«s, where x and s are the sample mean and standard deviation, respectively. A 

tolerance limit p* for pRL can be expressed as: 

Pr{Pr(X < x + k«s) > p*} = (1-a). 

Of course, in the situation we are considering, none of the x( values are known. 

However, since larger values of k correspond to larger values of p*, a conservative lower 

bound for pRL can be found by minimizing k subject to the restriction that x + k«s = RL. That 

is, we want to minimize k = (RL - x)/s subject to the constraints 0 < X; < DL; for all i. This 

procedure finds the worst-case sample, subject to the constraints. It is shown in the next section 

that each of the n observations in this worst-case sample is either equal to the corresponding 

detection limit DLj or is equal to zero. 

Given k, a lower bound for pRL can be found from a table of normal tolerance limits, using 

the desired confidence level. If the required software is available, exact values can be obtained 

using the noncentral t distribution function, as described in the next section. An extensive 

discussion of the noncentral t distribution and its use in computing tolerance limits can be found 

in [3]. 



4.  MATHEMATICAL DETAILS 

Our objective is to minimize, subject to the constraints that 0 < Xj < DLj < RL, the func- 

tion (RL - x)/s. Since this function is positive in this interval, this is equivalent to maximizing its 

reciprocal.  For analytical convenience, we work with the squared reciprocal: 

f(x)  =        s2 =       £>j - *>' 
(RL - x)2 (n-l)(RL - x)2 

Consider the partial derivative of this function with respect to an individual observation: 

dm   =    (RL - XXXJ - x) + (l/n)L(Xi - x)2 

aXj .5(n-l)(RL - x)3 

Let g(Xj) denote the numerator of this function. 

It can be verified that: 

g'(Xj) = (l/n)E(RL-Xi) > 0, 

so g(Xj) is increasing.    Since the numerator of f'(Xj) is increasing and the denominator is 

decreasing,  f'(Xj) must be increasing.   Therefore, f(Xj) is maximized either at zero or at DLj. 

Now consider f(x) as a function of Xj and xj; with detection limits DLj and DLj, 

respectively. Suppose that f(x) is maximized when X; = 0 and Xj =DLj. Note that f(0, DLj) = 

f(DLj, 0).  Now, if DL; > DLj, then either: 

(1) f(DLi5 0) > f(DLj, 0) 

or       (2) f(0, 0) > f(DLj, 0), 

which violates the assumption that f(0, DLj) is a maximum. Therefore, DLj < DLj. 

Thus, the procedure to be followed to maximize f(x) is to sort the detection limits in 

ascending order, DL(1) < DL(2) <... < DL(n), and then compute: 

f(DL(1), DL(2),...,DL(n)), 

f(0, DL(2),...,DL(n)), 



and     f(0, 0,...,DL(n)). 

One of these n calculations will result in a maximum value of f(x). 



5.  SOME RESULTS 

Following [3], the tolerance limit equality in Section 3 can be reexpressed as: 

Pr{Tn., < k-n» | 0} = (1-a), 

where T,,., has a noncentral t distribution with (n-1) degrees of freedom and noncentrality 

parameter ö. The noncentrality parameter is given by: 

6 = n'^V), sop* = $(0^), 

where $ denotes the standard normal distribution function. Therefore, given k, n and the desired 

confidence level (1-a), one can search for ö and solve for p*, the lower bound on pRL. 

Our previous paper [5] provided estimates of pRL, given by pRL = $(k), and lower 95% 

(a = .05) bounds for pRL for various sample sizes and values of r = RL/DL. Tables 1 and 2 

extend these results by considering multiple detection limits. Specifically, the tables presents the 

estimates for the cases where 20%, 50%, and 80% of the detection limits are DL and the 

remaining ones are .5DL. Also included are the binomial lower 95% limits on pRL and the case 

where 100% of the detection limits are DL, which were presented in the previous paper. 

Note that the procedure addressed in this paper provides point estimates of pRL in each 

case, which the binomial approach does not (except for the uninformative 1.0). Likewise, 

because the 95% confidence bounds do use the information given by the detection limits, the 

procedure performs better than the binomial method, except for situations in which r is close to 

1.0. 

It appears that the procedure discussed in this paper should prove useful in many cases 

where a sample is encountered in which all observations are less than detection limits, This is 

particularly true for larger values of r and smaller values of F. 



Sample 
Size F r = 1.0 

.932 

r = 1.5 

.997 

r = 2.0 

>.9999 

r = 2.5 

>.9999 

r = 3.0 

10 .20 >.9999 
.50 .802 .971 .998 .9999 >.9999 
.80 .802 .951 .996 .9999 >.9999 

1.00 .624 .951 .996 .9999 >.9999 

20 .20 .937 .998 >.9999 >.9999 >.9999 
.50 .809 .974 .998 >.9999 >.9999 
.80 .675 .954 .997 .9999 >.9999 

1.00 .588 .954 .997 .9999 >.9999 

30 .20 .939 .998 >.9999 >.9999 >.9999 
.50 .810 .975 .998 >.9999 >.9999 
.80 .676 .956 .997 .9999 >.9999 

1.00 .572 .956 .997 .9999 >.9999 

Table 1: Estimated Values of pRL (r = RL/DL) when a Fraction, F, of the Observations in 
the Sample Have Detection Limit DL and the Remainder Have Detection Limit 
.5DL 

Sample 
Size F r = 1.0 

.756 

r = 1.5 

.941 

r = 2.0 

.990 

r = 2.5 

.999 

r = 3.0 

>.9999 

Binomial 

10 .20 .741 
.50 .586 .835 .946 .986 .975 .741 
.80 .455 .791 .934 .984 .997 .741 

1.00 .411  • .791 .934 .984 .997 .741 

20 .20 .834 .977 .998 >.9999 >.9999 .861 
.50 .666 .903 .980 .997 .9998 .861 
.80 .525 .863 .973 .996 .9997 .861 

1.00 .440 .863 .973 .996 .9997 .861 

30 .20 .861 .986 .999 >.9999 >.9999 .905 
.50 .698 .925 .987 .9992 >.9999 .905 
.80 .555 .889 .982 .998 .9999 .905 

1.00 .451 .889 .982 .998 .9999 .905 

Table 2: Conservative Lower 95% Bounds for pRL (r = RL/DL)when a Fraction, F, of the 
Observations in the Sample Have Detection Limit DL and the Remainder Have 
Detection Limit .5DL 
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