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Yale University Department of Psychology Campus address: 
P.O. Box iiA Yale Station 2 Hillhouse Avenue. 

New Haven, Connecticut 06520-7447 

September 16,1995 

19960619 

Defense Technical Information Center 
Building 5, Cameron Station 
Alexandria, VA 22304-6145 

Re: Final Technial Report on ONR grant N00014-92-192: 

Dear Sirs/Mesdames: 
This is the final technical report on grant N00014-92-J-1923. This information has 

also been sent to Dr. Thomas McKenna, the Administrative Grants Officer, and the 
Director of the Naval Research Laboratory. 

The overarching goal of this grant "Neuronal Micronets as Nodal Elements" 
(N00014-92-J-1923) application was to determine the computational significance of the 
amount and type of information processing that actually occurs in the nervous system at the 
single-neuron level. 

The basic thesis was that a neuron can be compared to a multi-layered artificial 
neural network (ANN). The question is, what kind of ANN best captures neuronal 
computations? This question raises several others: How do neurons differ from the 
processing elements (PEs) used in connectionistic studies? What do single neurons 
compute? We have been addressing the latter question through compartmental simulations 
of hippocampal neurons containing Hebbian synapses. 

I used the term "micronet" to refer to the type of ANN that can capture neuronal 
computations1. I concluded that micronets are deep (many layers of PEs) but narrow 
(relatively few PEs per layer). To function like a neuron, the PEs must operate 
continuously and asynchronously. There is no clock. Time is its own representation. 
Connections within a micronet are assumed not to be modifiable, but connections among 
micronets can exhibit use-dependent modifications, which can be Hebbian. The PE 
activation function has a passive memory that decays rapidly and exponentially as a 
function of time. 

I requested an AASERT for Sean Murphy, a neuroscience graduate student 
interested in this problem, but this application was not funded. Murphy went on however, 
working with another professor in my department, to begin building ANNs that could 
emulate the input-output functions of neurons, and this grew into part of his dissertation, 
which was just completed2. As I had anticipated, Murphy concluded that an appropriate 
neural network can indeed emulate a relatively realistic neuronal model in terms of gross 
input-output functions. 

In working with one of my former students, we reached a similar conclusion, based 
on less formal or extensive analysis. The main difference, however, was that we 
concluded that, once learning is involved, the circumstance is quite different. And learning 
was an essential part of the problem we sought to understand. What follows summarizes 
some of the reasons for rejecting our initial basic thesis that a neuron can be compared to a 
multilayered ANN. The point is not that the enterprise cannot be done in principle, but that 
this approach is much too cumbersome relative to certain alternatives, if one is interested in 
learning. 
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Part of the reason is that Hebbian learning depends on the electrotonic structure of 
the cells and this is not easy to capture in connectionist models3-9. Hebbian learning 
depends on the amplitude of the signal at the site of the synaptic input. This in turn means 
that voltage transfers to and from that site to and from every other synapse must be 
modeled. In addition, the effects of spiking in the soma must be represented in terms of 
voltage transfer back through the dendritic tree to the synapses. 

These voltage transfers are in general not symmetrical—the attenuation from point i 
to point; is not the same as from; to i and they are frequency dependent10. Furthermore, 
nonlinear membrane responses, which our modeling suggested to be important11"13, 
particularly the backpropagation of action potentials into the dendrites5, are very difficult to 
incorporate in an ANN that includes Hebbian learning but have recently been suggested 
based on experimental data. 

Whv this insistence on Hebbian learning? Based on first principles, it has always 
been clear that Hebbian synapses were theoretically important4-13'14 and we and others had 
previously shown them to exist in hippocampus. Now it seems that Hebbian synapses are 
extremely widespread. One sees such synapses in brain regions other than the 
hippocampus. One even sees such synapses in lower vertebrates. Most recently, it seems 
that they may even exist in invertebrates. 

Thus we continued to explore electrotonic structure in order to understand better 
how it might interact with active membrane and Hebbian learning16-20. At the same time, 
we developed advanced methods to gain a better understanding of the diversity of cell types 
and their characteristic active membrane properties13'21. 

My conclusion from this work was that it is computationally easier to use analog 
models or devices instead of trying to make an ANN emulate what such circuitry would do. 
If learning can be done off line, or if learning is not involved, then the original idea of 
representing a neuron as a micronet still makes sense2. But from what we now know 
about the neurophysiology, the nervous system is continuously self-organizing and 
exhibiting various forms of learning and that these will ultimately depend critically on the 
electrotonic structure and nonlinear dynamics. Therefore, I focused on the latter. We have 
gained deep insights into single neuron computations from this enterprise. 

We have now begun to formalize the manner in which Hebbian self-organization 
depends on electrotonic structure10»22. The effect of nonlinear membrane probably will 
differ in different classes of cells and for different types of synaptic inputs. What we are 
learning is that there is no canonical neuron, even within highly circumscribed brain 
regions. The number of different types is large and we suspect that this means that brain- 
style computations require a correspondingly large number of elemental devices—in 
contrast to the conventional assumptions in ANNs. 

You will recall that this application was submitted in March of 1992, and I received 
notice that it would receive no further funding on August of 1993. At this time I requested 
a no-cost extension. 

We are still publishing work from this period and the enterprise motivated us to 
collect experimental data that confirmed the conclusions based on the simulations 
mentioned above. Additional manuscripts are in preparation. I am currently working on 
what I think may be a fundamental new mechanism for how the nervous system encodes 
time using Hebbian synapses. I am also continuing to work on the design of a simple 
device that can, with small quantitative variations, learn and self-organize the way real 
neurons do. In contrast to Murphy's approach2, this elemental device would not be an 
ANN that emulates a particular neuron. Rather I am looking for an analog device that can 
capture the essence of our insights based on the above considerations. I hope to explore 
these ideas further through interactions with certain electrical engineers at Yale. 
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Sincerely, 

14? /^ <P~ 
Thomas H. Brown, Ph. D 
Professor of Psychology 
Professor of Cellular and Molecular Physiology 
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