



Contract Report SL-96-2 UAST-CR-93-004

# JOINT U.S./ROK R&D PROGRAM FOR NEW UNDERGROUND AMMUNITION STORAGE TECHNOLOGIES

**FINAL REPORT** 

# IMPROVED TECHNIQUES FOR MEASURING THERMAL EFFECTS OF PROPELLANT BURN TESTS IN CONFINED AREAS

by

E. C. Knox

DTIC QUALITY INSPECTED &

REMTECH, Inc. 2905 West Corp Boulevard, Suite 112 Huntsville, Alabama 35805

May 1996

Prepared for U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, Mississippi 39180-6199

19960619 064

DISTRIBUTION STATEMENT

Approved for public release; Distribution Unlimited The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.



# **DISCLAIMER NOTICE**

UNCLASSIFIED DEFENSE TECHNICAL INFORMATION ENTER UNCLASSIFIED

# THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.



Contract Report SL-96-2 May 1996

US Army Corps of Engineers Waterways Experiment Station

Joint U.S./ROK R&D Program for New Underground Ammunition Storage Technologies

# Improved Techniques for Measuring Thermal Effects of Propellant Burn Tests in Confined Areas

by E. C. Knox REMTECH, Inc.



Approved For Public Release; Distribution Is Unlimited.

Prepared for Headquarters, U.S. Army Corps of Engineers

Joint U.S./ROK R&D Program for New Underground Ammunition Storage Technologies Contract Report SL-96-2 May 1996

# Improved Techniques for Measuring Thermal Effects of Propellant Burn Tests in Confined Areas

by E. C. Knox

REMTECH, Inc. 2905 West Corp Boulevard, Suite 112 Huntsville, AL 35805

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000

Monitored by U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road, Vicksburg, MS 39180-6199



#### Waterways Experiment Station Cataloging-in-Publication Data

Knox, E. C.

Improved techniques for measuring thermal effects of propellant burn tests in confined areas / by E.C. Knox ; prepared for U.S. Army Corps of Engineers ; monitored by U.S. Army Engineer Waterways Experiment Station.

54 p. : ill. ; 28 cm. — (Contract report ; SL-96-2)

"UAST-CR-93-004"-T.p.

Includes bibliographical references.

1. Ammunition — Storage. 2. Propellant actuated devices. 3. Propellants — Thermal properties. 4. Underground storage. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Structures Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. Joint U.S./ROK R&D Program for New Underground Ammunition Storage Technologies. V. Title. VI. Series: Contract report (U.S. Army Engineer Waterways Experiment Station) ; SL-96-2. TA7 W34c no.SL-96-2

# Contents

| List<br>List<br>Prefa<br>Nom<br>Conv | of Figure<br>of Tables<br>ace<br>enclature<br>version F       | es                                                                                                                                                                                                                                                                              |
|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                    | INTRO                                                         | DUCTION                                                                                                                                                                                                                                                                         |
| 2                                    | OBJEC'                                                        | TIVES                                                                                                                                                                                                                                                                           |
| 3                                    | PROPE<br>3.1 Pr<br>3.2 Pr                                     | LLANT THERMOCHEMICAL PROPERTIES    3      opellant Thermochemical Properties    3      opellant Burning Properties    4                                                                                                                                                         |
| 4                                    | ANALY<br>4.1 Fl<br>4.2 Fl                                     | TICAL FLOW MODEL       7         ow Model Development       7         ow Model Application       7                                                                                                                                                                              |
| 5                                    | TÈST R<br>5.1 Pl<br>5.2 Ve                                    | RESULTS REVIEW AND COMPARISON WITH ANALYSIS13ume, Bunker Pressure and Temperature Measurements Review13ent Pipe Heat Flux Measurement Review14                                                                                                                                  |
| 6                                    | RECON<br>BURN 7<br>6.1 Pr<br>6.2 Ve<br>6.3 Pl<br>6.4 Re<br>In | AMENDED INSTRUMENTATION FOR FUTURE PROPELLANT         TESTS       18         opellant Combustion Chamber Instrumentation       19         ent Pipe Instrumentation       20         ume Instrumentation       21         ecommended Data Reduction and Instrumentation       22 |
| 7                                    | REFER                                                         | ENCES                                                                                                                                                                                                                                                                           |
| Арре                                 | endix A                                                       | ANALYSIS OF ADIABATIC BURNING CONDITION OF M-1<br>PROPELLANT USED IN KA-III, PHASE C, TESTS<br>(CEC Code Output) A-1                                                                                                                                                            |
| Appe                                 | endix B                                                       | ANALYSIS OF ISENTROPIC BURNING CONDITION OF M-1<br>PROPELLANT USED IN KA-III, PHASE C, TESTS<br>(CEC Code Output) B-1                                                                                                                                                           |
| Appe                                 | endix C                                                       | SPECIFICATION SHEETS FOR THE RECOMMENDED THERMAL<br>INSTRUMENTATION                                                                                                                                                                                                             |

# LIST OF FIGURES

| 1   | M-1 Propellant Grain Geometry                                                                              |
|-----|------------------------------------------------------------------------------------------------------------|
| 2   | Variation of Ejected Combustible Material with Vent Diameter (from Ref. [4] 6                              |
| 3   | KA-III, Phase C, Test C-3 Bunker Pressure Histories                                                        |
| 4   | KA-III, Phase C, Test C-3 Bunker Gas Temperature History                                                   |
| 5   | KA-III, Phase C, Test C-3 Post-peak Bunker Pressure Histories                                              |
| 6   | KA-III, Phase C, Test C-3 Bunker Pressure and Gas Temperature Histories 15                                 |
| 7   | Power-law Correlation of KA-III, Phase C, Test C-3 TF191 Heat Flux History to<br>Bunker Pressure History   |
| 8   | Power-law Correlation of KA-III, Phase C, Test C-3 TF192 Heat Flux History to<br>Bunker Pressure History   |
| 9   | Recommended Instrumentation in Combustion Chamber for WES May '93<br>Propellant Burn Tests                 |
| 10  | Recommended Instrumentation in Vent Pipe for WES May '93 Propellant<br>Burn Tests                          |
| 11  | Recommended Instrumentation in Plume Region for WES May '93 Propellant<br>Burn Tests                       |
| C-1 | Recommended Chamber Total Temperature Instrumentation for WES May '93<br>Propellant Burn Tests             |
| C-2 | Recommended Total Heat Flux/Surface Thermocouple Instrumentation for WES<br>May '93 Propellant Burn Tests  |
| C-3 | Recommended Radiometer Instrumentation for WES May '93 Propellant Burn Tests C-4                           |
| C-4 | Recommended Vent Pipe and Plume Total Temperature Instrumentation for WES<br>May '93 Propellant Burn Tests |

### LIST OF TABLES

1 WES May '93 Propellant Burn Tests Recommended Instrumentation Summary .... 18

.

#### PREFACE

This study was conducted for the U.S. Army Engineer Waterways Experiment Station (WES) under contract DACA39-92-M-7281 as part of the Joint U.S./Republic of Korea (ROK) R&D Study for New Underground Ammunition Storage Technologies. Technical Managers for the Joint Program were Mr. Landon K. Davis, Geomechanics and Explosions Effects Division (GEED), WES, and Dr. So-young Song, Korean Agency for Defense Development. The Program Managers were Mr. Gary Abrisz, U.S. Army Technical Center for Explosives Safety, and COL Yeon Woo Chung, Logistics Bureau, Korean Ministry of Defense.

Mr. E. C. Knox, REMTECH, Inc., conducted the study reported herein and is the author of this report. The work was monitored by Mr. Charles E. Joachim, GEED, Structures Laboratory (SL), WES. Dr. Jimmy P. Balsara was Chief, GEED, and Mr. Bryant Mather was Director, SL.

At the time of preparation of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publishing, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

#### **NOMENCLATURE**

- $A^*$  Chocked flow area (= vent pipe area)
- $A_b$  Propellant burning area
- $C_D$  Orifice flow coefficient
- $P_c$  Pressure in bunker
- R Propellant combustion gas constant,  $C_p C_V$
- $T_c$  Measured gas temperature in bunker
- $V_c$  Bunker volume, ~5 m<sup>3</sup>
- r Propellant surface burn, or recession rate, in./sec
- t Time for propellant ignition
- $\gamma$  Ratio of gas specific heats,  $C_p/C_V$
- ρ Density, gas or propellant

#### **Subscripts**

- *b* Denotes burning or propellant characteristic
- *c* Denotes chamber or bunker conditions/characteristics
- *p* Denotes peak value, as in peak pressure

#### **Conversion Factors, Non-SI to SI Units of Measurement**

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

| Multiply                                | Ву           | To Obtain                              |
|-----------------------------------------|--------------|----------------------------------------|
| atmospheres                             | 101.325      | kilopascals                            |
| BTU per square foot-second              | 1134.893     | joule per square metre-second          |
| calories per square inch-<br>second     | 0.648521     | joule per square centimetre-<br>second |
| degrees                                 | 0.01745329   | radians                                |
| degrees Fahrenheit                      | {5/9} {F-32} | Celsius                                |
| degrees Celsius                         | C + 273.15   | Kelvins                                |
| degrees Kelvin                          | 1.8          | Ramkine                                |
| feet                                    | 0.3048       | metres                                 |
| feet per second                         | 0.3048       | metres per second                      |
| inches                                  | 2.54         | centimetres                            |
| kilowatts per square metre              | 1.000000     | joule per square metre                 |
| litres                                  | 0.001        | cubic metres                           |
| pounds (mass)                           | 0.4535924    | kilograms                              |
| pounds (mass) per cubic foot            | 16.01846     | kilograms per cubic metre              |
| pound (mass) per cubic inch             | 27.67990     | grams per cubic centimetres            |
| pounds (force) per square<br>inch (psi) | 6.894757     | kilopascals                            |

#### Section 1 INTRODUCTION

The U.S. Army Corps of Engineers, Waterways Experiment Station (WES), is conducting a test program to study the effects of the accidental burning of propellants stored in a confined area. This work is a part of a broader program called the Joint U.S./ROK (Republic of Korea) R&D Study for New Underground Ammunition Storage Technologies. The goal of the 5-year U.S./ROK Study is to develop improved designs for underground magazines which will greatly reduce the present external hazard areas that are required by current U.S. and Korean military safety standards to protect against the possibility of accidental fires and explosions.

Documentation of propellant burn tests performed to date is presented in Ref. [1]. Additional tests are planned; however, improvements to the instrumentation for these tests have been deemed necessary before executing them. REMTECH, Inc., was tasked by WES to review the instrumentation performance during the Ref. [1] tests and recommend improvements/additions to the Ref. [1] instrumentation for application to a subscale test scheduled for May 1993 at WES. Instrumentation performance experience during these tests will be factored into the instrumentation selection for full-scale tests to be conducted at a later time.

1

The results of this review are documented in the subject report.

#### Section 2 OBJECTIVES AND TECHNICAL APPROACH

The objectives for this review were to:

- 1. Develop improved instrumentation/techniques for measuring the thermal effects of propellant burn tests in confined areas.
- 2. Develop empirical methods for estimation of the thermal and fluid dynamic environments of the propellant burns.

The technical approach adopted to accomplish these objectives was divided into several phases: review of the available recorded data from Ref. [1] for each instrument channel in terms of quality and inter-channel compatibility; development of a preliminary one-dimensional model of the flow process; characterization of the propellant thermochemical properties; and comparison of results from the model and propellant characterization with the experimental results.

#### Section 3 PROPELLANT THERMOCHEMICAL PROPERTIES

As a means of establishing a standard by which the performance of the instrumentation for KA-III, Phase C, tests could be measured in terms of possible total energy release and likely pressure rise times, the thermochemical and burning properties of the propellant used in these tests were examined.

#### 3.1 Propellant Thermochemical Properties

The propellant used in the KA-III, Phase C, tests and planned for use in the WES May '93 tests is, in the U.S. Army notation demoted as M-1. Its chemical composition is defined in Ref [2] and repeated herein as

| Ingredient                                              | Percent by weight |
|---------------------------------------------------------|-------------------|
| Ethanol ( $C_2H_6O$ )                                   | 0.75              |
| Nitrocellulose ( $C_6H_{7.3715}N_{2.6355}O_{10.2715}$ ) | 83.74             |
| Dinitrotoluene ( $C_7H_6N_2O_4$ )                       | 9.84              |
| Diphenylamine (C <sub>12</sub> NH <sub>11</sub> )       | 0.99              |
| Butyl Phthalate ( $C_{16}H_{22}O_4$ )                   | 4.93              |
| Water (liquid)                                          | 0.50              |

This composition was input to REMTECH's in-house version of the NASA Chemical Equilibrium Composition code (CEC) [3] to determine the propellant combustion product and the amount of energy released upon burning.

Two burning condition were analyzed; adiabatic, representing the maximum possible energy release, and isentropic, representative of the propellant burning at one pressure and expanding isentropically to another pressure (atmospheric in this case). The resultant pressure and temperatures for these cases are tabulated as follows:

| Condition  | Pressure, atm | Temperature, K |
|------------|---------------|----------------|
| Adiabatic  | 1810.         | 2437.          |
| Isentropic | 1.00          | 1919.          |

The complete CEC code outputs for these conditions are included in Appendices A and B, respectively. Therein the combustion products are listed to be approximately 50 percent CO, 20 percent H<sub>2</sub>, 13 percent water, 10 percent N<sub>2</sub>, and 6 percent CO<sub>2</sub>, with lesser amounts of other constituents.

3

Determination of the adiabatic properties was aided significantly by the assistance of Dr. A. J. Kotlar, USA Research Laboratory, Aberdeen Proving Ground, MD, which is hereby acknowledged.

#### 3.2 Propellant Burning Properties

Mr. Michael M. Swisdak, Jr., Naval Surface Warfare Center/Dahlgren Division, is hereby acknowledged for his providing the geometry and burning characteristics for the M-1 propellant. Shown in Fig. 1 is the propellant geometry; its density is nominally 0.0566 lb/in.<sup>3</sup>, and its burn-rate equation is defined as

$$r = A * (Pressure)^N \tag{1}$$

where

r = the propellant burning surface recession rate (in./sec),

A = 0.00161 in./sec/psi, and

N = 0.741.

The time for a propellant grain to be consumed by burning for the conditions of the KA-III, Phase C, tests (Test C-3), using the log-mean pressure from initial to peak and the grain cylindrical surface area (inside and external) with the above equation, was estimated to be 0.40 sec.

Comparing this result with the actual burn time of approximately 10 seconds with the theoretical value of 0.40 seconds has several potential implications which include:

1. The entire surface areas of the pellets are not being ignited simultaneously.

2. The mass of the air in the bunker is significant compared with the burned propellant gas mass during the initial pressure buildup.

3. Stacking methods and container type probably influence the burn history since they may control the amount of surface area available for burning as a function of time.

As will be shown later in the report, the vent pipe exit velocity exceeds the combustion gas speed-of-sound (~2000 ft/sec) for portions of the burn history prior to and after the pressure peak. Considering the average grain burn time, any burning grains that become airborne during the burning process could travel as much as 800 ft while in the burning state, thus giving credence to the likelihood of burning propellant being ejected out of the bunker during the KA-III, Phase C, tests.

Similar effects were observed for tests reported in Ref [4], in which upwards to 80 percent of the combustible material was ejected out of the combustion chamber, depending on the vent diameter. Shown in Fig. 2 is a curve of the observed variation of the ejecta material percent vs. the vent diameter.

The presence of this phenomena in the instant process raises concerns as to the scalability of any subscale results to full-scale applications without an attendant math model of the flow process.



Figure 1. M-1 propellant grain geometry



Figure 2. Variation of ejected combustible material with vent diameter, (Ref. [4])

5

#### Section 4 ANALYTICAL FLOW MODEL

As a means of establishing a standard by which the performance of the instrumentation for KA-III, Phase C, tests could be measured in terms of pressure histories and related heat transfer variations, a one-dimensional model of the flow process was developed.

#### 4.1 Flow Model Development

Applying the conservation of mass principle to these tests, the combustion gas generated in the process of burning the propellant is accounted for in the accumulation of mass in the bunker and the mass that is vented out the connecting pipe. This balance is expressed in equation form as

$$A_{b}r\rho_{b} = \frac{d}{dt} \left(\rho_{c}V_{c}\right) = A P_{c} \sqrt{\frac{\gamma}{RT_{c}} \left(\frac{2}{\gamma-1}\right)^{\frac{\gamma}{\gamma}\frac{1}{1}}}$$
(2)

assuming the "chocked" flow condition governs the vented mass flow rate, i.e., the condition for which the bunker pressure is greater than 1.9 times atmospheric pressure. Another expression applies for the "unchoked" condition.

# 4.2 Flow Model Application

Shown in Fig. 3 are the bunker pressure histories for test C-3 of the KA-III, Phase C Tests as measured by instruments ABI180, -181B, and 182. Also shown on Fig 3 is the division between "chocked" and "unchoked" flow; at pressures greater than the division line, the "choked" form of Eq. (2) applies. The comparison temperature (TF190) history is presented in Fig. 4.

The exhibited pressure trends in Fig. 3 are interpreted as propellant burning until the pressure peak, after which pressure decay occurs as the bunker is vented to atmosphere. Then, for the pressure decay portion of the process, the mass generation term goes to zero in Eq. (2) preceding. The reduced Eq. (2) takes the form

$$\frac{dP_c}{dt} = \frac{A}{V_c} \sqrt{RT_c \gamma \left(\frac{2}{\gamma - 1}\right)^{\frac{\gamma}{1}}} P_c \quad 0$$
(3)



Figure 3. KA-III, Phase C, Test C-3 Bunker Pressure Histories.

7



Test C-3 Chamber Temperature

Figure 4. KA-III, Phase C, Test C-3 Bunker Gas Temperature History.

8

for which the solution takes the form

$$P_{c}(t) = (P_{c})_{p} e^{-Bt}, \text{ where } B = \frac{A*}{P_{c}} \sqrt{RT_{c}\gamma\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$$
(4)

The instant venting process may be related to venting through an orifice, so the constant, B, is redefined as  $B * C_D$ , where  $C_D$  is the discharge coefficient.  $C_D$  is a measure of the resistance offered by the orifice to passing the flow through it; a unity value denotes no resistance, i.e., isentropic flow, and values less than unity, increased resistance, typifying real flow with pressure losses and flow friction. The coefficient, B, was computed for the conditions of Test C-3 to be

5.666, treating the gas temperature as constant during the period of "choked" flow ( $\approx$  14.0 to 15.0 sec). Hence, the particular solution for this case from Eq. (4) is

$$P_{c}(t) = (P_{c})_{p} e^{-5.666C_{Dt}}$$
(5)

The pressure-decay portion of Fig. 3 is expanded in Fig. 5. Also presented in Fig. 5 are the computed pressure decay rates for  $C_D = 1.0$  and 0.18 to illustrate the degree to which the measured decay is non-isentropic and the value of  $C_D$  required to match that decay. The normal range for the coefficient,  $C_D$ , to account for pressure losses in the orifice is 0.8 - 0.95; the value required to match the measured decay indicates significant other resistance mechanisms in operation. One such mechanism is thermal choking in the vent pipe, caused by heat release with time. This observation is in concert with the likelihood of burning propellant being ejected, and its definition would require the development of a particle transport mechanism model.

In Fig. 3 an apparent acoustical phenomena of the order of 1 Hz is manifested in the pressure history. Attempts to relate this occurrence to any of the geometric or flow parameters of this case have thus far proved unsuccessful, hence, its cause is not currently understood.



Figure 5. Ka-III, Phase C, Test C-3 Post-peak Bunker Pressure Histories

#### Section 5 TEST RESULT REVIEW AND COMPARISON WITH ANALYSIS

A review of the KA-III, Phase C Tests and comparison with analytical results based on the information and insights developed in the prior Sections are now presented to gauge the instrumentation performance. Two primary data sources were used: the Test Report [1], and the video footage of the plume history.

# 5.1 Plume, Bunker Pressure and Temperature Measurements Review

Review of the video coverage of the plume behavior during the propellant burns for all of the tests (C-1 through C-4) showed marked unsteadiness in the plume character, i.e., its shape, radiation intensity, and its apparent mean velocity. Moreover, on one occasion the plume was observed to be completely extinguished only to be subsequently re-ignited.

The observed unsteadiness likely is related to the acoustical phenomena detected in the pressure histories, so understanding this phenomena has more than a causal interest. The reignition process could be related to the presence of burning propellant grains or burning of the  $H_2$  produced in the combustion products of the propellant burning process. To gain understanding of these plume characteristics, additional instrumentation to the surface pressures measured in the subject tests is necessary. Recommendations to define the required additional instrumentation are presented in the next Section.

Review of the plotted results presented in Ref [1] provide a better opportunity for direct comparisons and analysis with what one might expect based on fundamental thermochemical and fluid dynamic considerations. Of the four tests presented, the results for Test C-3 provided the better quality plots, hence our review focused on this test exclusively.

Possibly the most surprising aspect of our review was the apparent low amount of energy released in the bunker during the propellant burning compared to the amount theoretically available (See Section 3.1). The comparatively low pressure is possible in view of the vent and/or the slow burning time compared to the fluid dynamic time scale, i.e., the grains can be exhausted well into the plume before burning is completed. Moreover, the pressure histories from three transducers agree well enough to confirm the measurements as being correct.

However, the indicated gas temperature is well below the maximum value one might expect (900K compared to 1900K), suggesting either incomplete combustion in the burning process or very low rate producing little combustion gas. In the latter case the ambient air in the bunker affects measurably the mixture temperature. In addition, the shielded thermocouples may have had significant time lag and conduction loss resulting in lower than actual indicated temperature.

In this vein the one bunker gas temperature measurement was compared chronologically with one of the bunker pressure histories as shown in Fig. 6. The temperature does not peak until about two seconds after the peak pressure occurs. Remembering the inference that the peak pressure indicates the cessation of propellant burning, the continued increase in gas temperature measurement suggests a thermal lag in the temperature measurement device. Future gas temperature instrumentation should be selected to minimize these potential effects.

# 5.2 Vent Pipe Heat Flux Measurements Review

A means of evaluating the performance of the heat flux instrumentation is the fundamental fluid dynamic relationship between the heat flux and local pressure. This relationship states that the heat flux is proportional to the pressure to an exponent, i.e.,

(6)

$$\dot{q} \propto (p)^n$$

where

n = 0.85 for turbulent flow.

Since the local pressure is related to the bunker pressure fluid dynamically and the bunker pressures were already digitized, one of the bunker pressure histories was used in the above equation with each of the two heat flux measurements (TF191 and -192). Shown in Figs. 7 and 8 are the heat flux histories for each measurement plotted against the bunker pressure in the log-log domain. Also shown is the 0.85 exponent line paired through the measurements. Good agreement with the fluid dynamic model is clearly evident, indicating the heat flux trends to be as expected and that the instrumentation is performing satisfactorily. It should be remembered, however, that instrumentation was severely overdriven in Test C-4, so for that reason a different type of instrument to measure heat flux is recommended in the following Section for the future tests.



Figure 6. KA-III, Phase C, Test C-3 Bunker Pressure and Gas Temperature History.



Figure 7. Power-law Correlation of KA-III, Phase C, Test C-3 TF191 Heat Flux History to Bunker Pressure History



Figure 8. Power-law Correlation of KA-III, Phase C, Test C-3 TF192 Heat Flux History to Bunker Pressure History

#### Section 6 Recommended Instrumentation for Future Propellant Burn Tests

Based on the review and analysis presented in the prior Sections, the following recommendations are made for instrumentation to be used in future propellant burn-type tests. The recommendations are made to improve the definition of the thermal and fluid dynamic aspects of the propellant burn process with the view to enhancing the understanding and definition of the process environments, particularly the amount of energy released and where it is distributed. The recommendations are presented by a generic subdivision of the regions of interest with a rationale of the need for each measurement. Specification sheets for the recommended thermal instrumentation are given in Appendix C identifying the type and recommended supplier. And a summary of all recommended instrumentation is presented in Table 1.

|                       | Specification         | Number |
|-----------------------|-----------------------|--------|
| Chamber               | ·                     |        |
| Pressures             | Selected by WES       | 6      |
| Total Temperature (T) | TCGT 130 Series-569   | 2      |
| Total Heat Flux (HT)  | TCS-E-YY-ZZ-10196     | 6      |
| Radiometer (R)        | 32R-L-XX-140-ZZ-21096 | . 6    |
| Vent Pipe             |                       |        |
| Pressures             | Selected by WES       | 7      |
| Total Temperature (T) | T/C-801               | 2      |
| Total Heat Flux (HT)  | TCS-E-YY-ZZ-10196     | 3      |
| Radiometer (R)        | 32R-L-XX-140-ZZ-21096 | 3      |
| Plume                 |                       |        |
| Pressures             | Selected by WES       | 2+     |
| Total Temperature (T) | T/C-801               | 1+     |
| Total Heat Flux (HT)  | TCS-E-YY-ZZ-10196     | 3      |
| Radiometer (R)        | 32-L-XX-140-ZZ-21096  | 3      |

# Table 1: WES May '93 Propellant Burn Tests Recommended Instrumentation Summary

Note: Recording channels for T & HT instrumentation may require 10 MHz sampling rate.

#### 6.1 Propellant Combustion Chamber Instrumentation

Shown in Fig. 9 is a geometrically scaled sketch of the combustion chamber hardware to be used in the WES May '93 tests with the recommended instrumentation located. The recommended instrumentation consists of gas total pressure and temperature and chamber wall total and gas radiative heat flux. The pressure instrumentation used in the KA-III, Phase C tests performed quite well and are recommended for use in the future tests. The sensing face of the transducer should be well shielded from the heat effects of gas radiation. Considering the length- to-diameter of the combustion chamber, it is recommended that three (3) pressure measurements be spaced equally along the chamber length to detect any possible gradients. The pressure measurements at each end are placed to detect any acoustical phenomena.

The gas total temperature measurements should be installed near the pressure measurements located at 0.25 and 0.75 of the chamber length. The measurement tip of the thermocouple should extend about 5 in. beyond the chamber side wall. The spec sheet for this transducer is presented as Fig. C-1 (Appendix C).



Figure 9. Recommended Instrumentation in Combustion Chamber for WES May '93 Propellant Burn Tests

Because of the indication of possible thermal lag of the thermocouple used in the KA-III, Phase C tests, the gauge of the thermocouple wire for this transducer should be as small as possible, consistent with the expected maximum temperature (1900K for the present case). If there is room in the data acquisition system, it would be desirable to add a third thermocouple of a different wire gauge near the bottom of the chamber at the same axial location as one of the top thermocouples to assess the lag effect.

The recommended heat flux measurements in the chamber are designed to allow determination of the amount of energy transferred to the walls before the gas is expelled out the vent pipe. Both total and radiative heat flux instrumentation are recommended to allow the determination of the convective heat transfer (total minus radiative), which may be used in conjunction with the simultaneous gas total and wall temperatures to compute the convective heat transfer coefficient. Having the measurements in this form provides the means to define the thermal environments for other test conditions more readily. The transducer for the total heat flux is actually a surface temperature measurement device; it was selected because it is extremely rugged, provides the direct measurement of the wall temperature, its temperature history can be used in an algorithm to determine the wall heat flux, and it is virtually impossible to overdrive its capability to define the heat flux (as was experienced in the vent pipe for Test C-4 of the KA-III, Phase C tests).

The specs sheets for the surface temperature (total heat flux) and the radiative heat flux gauges are presented as Fig. C-2 and C-3, respectively. The heat flux algorithm is discussed in Subsection 6.4: Recommended Data Reduction and Instrumentation Installation.

#### 6.2 Vent Pipe Instrumentation

The recommended instrumentation in the vent pipe is designed to define the energy and velocity (and mass flow) of the entering and exiting flow, and the distributions with vent-pipe length of static pressure and total and radiative heat flux to the wall. The placing of the vent-pipe instrumentation is shown in Fig. 10; the locations of the wall static pressure and heat flux transducers should be spaced logarithmically along the length for better definition of any pipe-flow characteristics the flow might exhibit.

The total and radiative heat flux gauges and total and static pressure transducers are the same as those recommended for use in the combustion chamber (See Fig. C-2 and C-3). The installation of the pressure transducers in the pitot probes (PT) is described in Subsection 6.4: Recommended Data Reduction and Instrumentation Installation.

The total temperature transducer recommended for use in the vent pipe is similar to the ones in the combustion chamber but has a different radiation shield. The specs sheet for this transducer is presented in Fig. C-4. The concerns for temperature response with thermocouple wire gauge expressed in the combustion chamber discussion apply here also.



Figure 10. Recommended Instrumentation in Vent Pipe for WES May '93 Propellant Burn Tests.

#### **6.3** Plume Instrumentation

Shown in Fig. 11 is a layout for an instrumentation package to minimally define the thermal/fluid dynamic characteristics of the propellant burn exhaust plume. The package consists of a radiometer positioned at three locations along the plume length (15m shown) and a pitot rake which can be positioned at any location along the plume. The pitot rake should facilitate mounting pitot probes and a total temperature transducer at up to eight (8) adjustable positions both vertically and horizontally plus a center position to provide survey type measurements of the plume cross section.

The pitot probes, total temperature instruments, and the radiometers are the same as those used in the vent pipe application.



Figure 11. Recommended Instrumentation in Plume Region for WES May '93 Propellant Burn Tests.

# 6.4 Recommended Data Reduction and Instrumentation Installation

Data Reduction -- The total heat flux/surface temperature is the only measurement result for which the data reduction procedure is not straightforward multiplication of a gauge constant scale factor, supplied by the instrument vendor, times the instantaneous output of the instrument. Some thermocouple transducers are non-linear and require special digital data reduction.

The surface temperature is obtained by the tabular look-up in the millivolt output tables for Chromel-Constantan taking into account the thermocouple reference temperature, or input of the millivolt output into a curve fit equation of the tables. Computation of the heat flux is more complicated; it requires the time-wise integration of the surface temperature to get the heat flux. The heat flux algorithm is based on the condition of one-dimensional conduction along the gauge, a condition that is satisfied if the gauge is installed in a material of similar thermophysical properties such that  $\sqrt{\rho C_p k}$  for the gauge and the host material are as near the same as possible. For Chromel-Constantan, steel is the best match for these properties. The temperature variation of  $\sqrt{\rho C_p k}$  over the range measured by the gauge is required in the data reduction procedure.

The simplest algorithms that for a gauge installed in a semi-infinite slab under a heating load from a time-invariant heat transfer coefficient. This algorithm is available in Ref [5]. However, it is not likely that the heat transfer coefficient for the conditions of the propellant burn tests will be constant with time.

A second algorithm for the time-variant heat transfer coefficient may be developed by solving the inverse of the equation presented in Ref [6] for the wall temperature as a function of the time-variant heat transfer coefficient. This approach requires the computation of the instantaneous slope of the wall temperature with time.

The most direct method of computing the heat transfer coefficient variation with time from the wall temperature time history is by the use if a one-dimensional conduction code which has this capability built in. The EXITS code, developed by REMTECH, Inc., has this capability and can be made available for use in this application.

This type gauge is recommended despite the difficult data reduction procedure required to compute the heat flux in view of the benefits of a very rugged transducer which is virtually impossible to destroy or over-range. Moreover, its use with the radiometer and gas total temperature measurement permits the computation of the convective heat transfer coefficient.

It should be emphasized here that in order to measure the total heat flux, the exposed surface of the gauge must be coated with a paint of known emissivity -- the closer to unity the better for greater accuracy.

Instrumentation Installation -- The installation requirements (hole diameter and thread type, etc.) for all the thermal instrumentation are called out on the spec sheets for each type. Additional installation considerations are discussed below.

The radiometer and heat flux gauge should be installed flush with the internal wall of the test hardware. The heat flux gauges may be contoured to the local radius. The radiometers should not be contoured and should be installed such that no part of the window is protruding into the flow.

21

In order to avoid the violation of thermal diffusion times, which complicates the data reduction procedure for the heat flux gauges, the minimum wall thickness into which these gauges should be installed is 1.5 in. This criterion is not satisfied in the vent pipe as it is presently designed; methods to effectively increase the local wall thickness around each gauge (1.0 in. radius) should be adopted.

The mounting of the total temperature and pitot probes in the vent pipe should be such as to minimize the interference effects of its presence in the passing flow; how much is too much is difficult to determine -- a rule of thumb is no more than 15 percent blockage area to the unblocked flow area.

The important aspect of the installation of the pressures in the pitot pressure probe is that the static pressure transducer be located sufficiently downstream of the probe front face so that the local pressure has returned to the stream static. A rule of thumb for that distance is 10 probe diameters. For all installations the pressure transducers should be protected from direct radiation from the combustion gases.

#### Section 7 REFERENCES

- [1] Joachim, Charles E., "KA-III' Phase C, M-1 Propellant Tests, Deflagration in Partial Confinement," Technical Report SL-91-11, U.S. Army Engineers Waterways Experiment Station, July 1991.
- [2] Freedman, Eli, "Thermodynamic Properties of Military Gun Propellants," in Gun Propulsion Technology, Vol. 109, Prog. in Astro. & Aero., edited by Ludwig Stiefel, AIAA, Inc., Washington, DC, 1988, p. 103.
- [3] Gordon, Sanford and McBride, Bonnie J., "Computer program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA SP-273, March 1976.
- Bouhard, F., Veyssière, B., Leyer, J. -C., and Chaineaux, J., "Explosion in a Vented Vessel Connected to a Duct," in *Dynamics of Detonations and Explosions: Explosion Phenomena*, Vol. 134, *Prog. in Astro. & Aero.*, edited by A. L. Kuhl, et al., AAIA, Inc., Washington, DC, 1990, p. 85.
- [5] Cook, W. J., and Felderman, E. J., "Reduction of Data from Thin-Film Heat Transfer Gages: A Concise Numerical Technique," AAIA J., Vol. 4, No. 3, March 1966.
- [6] Goodman, T. R., "Application of Integral Methods to Transient Nonlinear Heat Transfer," Advances in Heat Transfer, edited by T. F. Irvine and J. P. Hartnett, Vol. 1, Academic Press, 1964.

# Appendix A ANALYSIS OF ADIABATIC BURNING CONDITION OF M-1 PROPELLANT USED IN KA-III, PHASE C, TESTS (CEC Code Output)

REACTANTS

-

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FORMIC ACID<br>METHANOL<br>CO2<br>METHANOL<br>CO2<br>C2H3 RAD<br>ACETALDEHYDE<br>C2H3 RAD<br>ACETALDEHYDE<br>C2H3 RAD<br>ACETALDEHYDE<br>C2H3 RAD<br>ACETALDEHYDE<br>C13 - BUTANE<br>PROPYLENE<br>PROPYLENE<br>PROPYLENE<br>PROPYLENE<br>PROPYLENE<br>PROPYLENE<br>D-BUTANE<br>CARBON SUBOXIDE<br>1,3-BUTANE<br>PROPYLENE<br>D-BUTANE<br>CARBON SUBOXIDE<br>1,3-BUTANE<br>PROPYLENE<br>D-BUTANE<br>BENZENE<br>CYCLOPENTANE<br>BENZENE<br>HNO2<br>H20<br>NH20<br>NH20<br>NH20<br>NH20<br>NH20<br>NH20<br>NH20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>د. د. د. د. د.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L 4/85<br>DUR 665<br>DUR 665<br>DUR 665<br>DUR 665<br>DUR 84<br>DUR 84<br>DUR 84<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/85<br>P12/8                                          |
| s 298.300<br>s 298.300<br>s 298.300<br>s 298.300<br>s 298.300<br>s 298.300<br>s 298.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FORMALDEHYDE<br>CH4<br>CH4<br>CO<br>CO<br>KETENE<br>ETHYLOXIDE RAD<br>ETHYLOXIDE RAD<br>CNC RA                                                                                                                                                      |
| -66420.00<br>164700.00<br>-17100.00<br>31070.00<br>201400.00<br>201400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DETN = F<br>J 3/61<br>J 3/61<br>J 3/61<br>J 3/61<br>DUR 84<br>L 1/85<br>BUR 84<br>L 1/85<br>BUR 84<br>L 1/85<br>BUR 84<br>L 1/85<br>BUR 84<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85                                           |
| 0.007500<br>0.837400<br>0.098400<br>0.009900<br>0.049300<br>0.049300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F SHOCK = F<br>F SHOCK = F<br>CH2<br>METHYLOXIDE<br>CNN RAD<br>METHYLOXIDE<br>CNN RAD<br>ACETYLENE<br>CH2CHO RAD<br>CH2CHO RAD<br>ACETYLENE<br>CH2CHO RAD<br>ACETYLENE<br>CH2CHO RAD<br>CH2CHO RAD<br>CH2CHO RAD<br>CH2CHO RAD<br>CH2CHORADE<br>CHAND<br>CT2CHORANE<br>CT3H3 RAD<br>CT3H3 RAD<br>CT3H3 RAD<br>CT3H3 RAD<br>CTCLOBUTADIENE<br>C3H3 RAD<br>CTCLOBUTADIENE<br>C3H3 RAD<br>CTCLOBUTADIENE<br>C3H3 RAD<br>CTCLOBUTADIENE<br>C3H3 RAD<br>CTCLOBUTADIENE<br>C3H2 RAD<br>N-HEXYL RAD<br>N-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IONS - RKT -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>ACE = 0.000000+00<br/>UV = T SV = F<br/>NODATA = F<br/>NODATA = F<br/>CO = F PHI = F<br/>OOE+00 H = 0.000<br/>HYDROXYMETHYLENE<br/>CH<br/>HYDROXYMETHYLENE<br/>CCH<br/>HYDROXYMETHYLENE<br/>CCH<br/>CCH<br/>HYDROXYMETHYLENE<br/>CCH<br/>CCH<br/>HYDROXYMETHYLENE<br/>CCH<br/>CCH<br/>HYDROXYMETHYLENE<br/>CCH<br/>CCH<br/>HETHYLETHER<br/>C3H5 RAD<br/>N-PROPYL RAD<br/>BUTADIYNE<br/>C3H5 RAD<br/>N-PROPYL RAD<br/>HEXATRIYNE<br/>CYCLOHEXENE<br/>N-HEFTYL RAD<br/>HEXATRIYNE<br/>CYCLOHEXENE<br/>N-HEFTYL RAD<br/>HEXATRIYNE<br/>CYCLOHEXENE<br/>NH20H<br/>HC2 RAD<br/>NH20H</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.000<br>1.000<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.2.635<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.000000<br>1.00000000 | <pre>P 0 TF<br/>TV = F<br/>99950E+00<br/>P 0.0000000<br/>P 0.0000000<br/>P 0.0000000<br/>P 12/69<br/>D 2/2/30<br/>D 2/2/30</pre> |
| 00 H 6.0000 6<br>00 H 7.3715 7<br>00 H 6.0000 7<br>00 H 22.0000 0<br>00 H 22.0000 0<br>00 0 1.0000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2***<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>PT2**<br>P                                                                                                                                                                                                                                                                                                                                                                   |
| с 2.00<br>с 6.00<br>с 12.00<br>с 16.00<br>н 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NAMELIST:<br>0 ***INI<br>0KASE = F<br>0TP = F<br>0TRNSPT =<br>0005 = F<br>0005 = F<br>0000 = 0.0<br>000 = 0.0<br>0000 INPT2<br>001 = 0.0<br>001 = 0.0<br>0000 = 0.0<br>00000 = 0.0<br>0000 = 0.0<br>00000 = 0.0<br>0000 = 0.0000 = 0.0000 = 0.0000 = 0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| RUS 78 N20<br>RUS 78 N3H<br>J 3/78 C(GR)<br>L 3/81 H20(S)            |                                                                                                                                 |                                                                        | TATE TEMP<br>DEG K<br>S 298.30<br>S 298.30<br>S 298.30<br>S 298.30<br>S 298.30<br>S 298.30<br>S 298.30                                                                                                                                 |                                                                            |                                                                                       |                 |                                           |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------|-------------------------------------------|
| RUS 78 N2H4<br>RUS 78 N3<br>J 6/61 O3<br>L 6/88 JET-A(L)             | MIXTURE<br>HSUBO<br>-0.28176266E+03<br>B0(1)<br>0.25349588E-01<br>0.31067750E-01<br>0.33694333E-01<br>0.89330269E-02            | PROPERTIES AT ASSIGNED                                                 | WT FRACTION ENERGY S'<br>(SEE NOTE) CAL/MOL<br>0.007444 -66420.000<br>0.831166 -164700.000<br>0.097667 -17100.000<br>0.09826 31070.000<br>0.048933 -201400.000<br>0.048933 -201400.000<br>0.04963 -68315.000<br>0 = 1.9657 PHI= 0.0000 |                                                                            |                                                                                       |                 |                                           |
| RUS 78 NH2NO2<br>RUS 78 N2O5<br>J 3/77 O2<br>P10/80 OCTANE(L)        | EFFECTIVE OXIDANT<br>HPP(1)<br>0.0000000E+00<br>B0P(1,1)<br>0.0000000E+00<br>0.0000000000000<br>0.0000000000                    | O N -20.635 -11.217<br>-20.635 -11.217<br>MIC EQUILIBRIUM COMBUSTION P | 0 10.27150<br>0 4.00000<br>00.0000 EQUIVALENCE RATIC                                                                                                                                                                                   |                                                                            |                                                                                       |                 |                                           |
| RUS 78 N2H2<br>RUS 78 N2O4<br>J 6/77 OH<br>P10/80 TOLUENE(L)         | EFFECTIVE FUEL<br>HPP(2)<br>-0.28176266E+03<br>BOP(1,2)<br>0.25349588E-01<br>0.31067750E-01<br>0.33694333E-01<br>0.89330269E-02 | H<br>- 7.089<br>THERMODYNAN                                            | .00000 0 1.00000<br>.37150 N 2.63550<br>.00000 N 2.00000<br>.00000 H 11.00000<br>.00000 0 4.00000<br>.00000 0 4.00000                                                                                                                  |                                                                            |                                                                                       |                 |                                           |
| (T) an:                                                              | 0<br>1) /KG                                                                                                                     | 49 -6.380<br>1                                                         | CCAL FORMULA<br>CCAL FORMULA<br>00000 H 6<br>00000 H 7<br>00000 H 6<br>00000 H 22<br>00000 H 22<br>00000 H 22<br>00000 O 1<br>00F= 0.00                                                                                                | 1810.19<br>2437.49<br>2.0000-1<br>-340.73<br>-559.92<br>-5703.39<br>2.2001 | 22.099<br>-1.00334<br>1.0150<br>0.4475<br>1.2558<br>1073.2                            | 6               | 0.00011<br>0.00005<br>0.00001<br>0.00053  |
| J 3/77 N2<br>RUS 78 N203<br>J 3/77 O<br>P10/80 BENZE<br>J 3/79 H20(L | 00F = 0.00000<br>INTERNAL ENERG<br>KG-MOL) (DEG M<br>OKG-FORM.MT./KG<br>C<br>H<br>N<br>N                                        | OPOINT ITN T<br>1 13 2437.<br>1<br>0<br>Case NO                        | CASE NO.<br>CHEMJ<br>FUEL C 2.(<br>FUEL C 6.(<br>FUEL C 12.(<br>FUEL C 12.(<br>FUEL H 2.(<br>0<br>O<br>OTHERMODYNAMIC                                                                                                                  | P, ATM<br>T, DEG K<br>RHO, G/CC<br>H, CAL/G<br>G, CAL/G<br>S, CAL/G        | M, MOL WT<br>(DLV/DLP)T<br>(DLV/DLT)P<br>CP, CAL/(G)(K)<br>GAMMA (S)<br>SON VEL,M/SEC | OMOLE FRACTION: | FORMALDEHYDE<br>Formic Acid<br>CH3<br>CH4 |

C0 0.50555 C02 0.05351 HCN 0.00036 HCN 0.00036 HCO 0.00033 HNCO 0.00003 H20 0.13114 NH2 0.00033 H20 0.131174 NH3 0.00033 ND1110NAL PRODUCTS WHICH WERE DUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.50000E-05 FOR ALL ASSIGNED CONDITIONS

| CN<br>C2H3 RAD<br>(FORMIC ACID)2<br>CCNC RAD<br>ALLENE<br>PROPANE<br>1,3-BUTYL RAD<br>T-BUTYL RAD<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTADIENE<br>CYCLOPENTA<br>CYCLOPENTA<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENTE<br>CYCLOPENT |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METHANOL<br>KETENE<br>ACETIC ACID<br>ETHANOL<br>PROPYL RAD<br>BUTAN-IEN-3YN<br>(ACETIC ACID) 2<br>C5<br>ISOPENTANE<br>C7CLOHEXENE<br>1-OCTENE<br>1-OCTENE<br>NH2OH<br>NH2OH<br>NH2OH<br>NH2OH<br>NH2O<br>NH2O<br>NH2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| METHYLOXIDE<br>ACETYLENE<br>ACETALDEHYDE<br>DIMETHYL ETHER<br>CYCLOBOROPENE<br>I-PROPYL RAD<br>CYCLOBUTADIENE<br>1-BUTENE<br>1-BUTENE<br>PHENOL<br>N-HEPTANE<br>PHENOL<br>N-HEPTANE<br>AZULENE<br>HNO3<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2<br>NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HYDROXYMETHYLENE<br>C2H RAD<br>ETHYLENE<br>AZOMETHANE<br>C3H3 RAD<br>PROPYLENE OXIDE<br>BUTADIYNE<br>ISOBUTANE<br>ISOBUTANE<br>ISOBUTANE<br>N-PENTYL RAD<br>N-PENTYL RAD<br>N-PEPTYL RAD<br>NAPTHLENE<br>N-HEPTYL RAD<br>NAPTHLENE<br>HNO2<br>NH<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NO2<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NH2NDA<br>NHA<br>NHA<br>NHA<br>NHA<br>NHA<br>NHA<br>NHA<br>NHA<br>NHA<br>NH                                                         |
| CH2<br>C2<br>C2<br>CH2CHO RAD<br>ETHANE<br>C3<br>PROPYLENE<br>C3<br>PROPYLENE<br>C3<br>2-BUTENE<br>C4<br>2-BUTENE<br>C1<br>2-BUTANE<br>T-PENTYL RAD<br>T-PENTYL RAD<br>T-PENTYL RAD<br>T-PENTYL RAD<br>1-HEPTENE<br>N-NONYL RAD<br>1-HEPTENE<br>N-NONYL RAD<br>HNO<br>NCO<br>NCO<br>NCO<br>NCO<br>NCO<br>NCO<br>NCO<br>NCO<br>NCO<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH<br>CNN RAD<br>CH3CO RAD<br>ETHYL OXIDE RAD<br>CCO RAD<br>CCO RAD<br>CCO RAD<br>CCO RAD<br>CCO RAD<br>CCO RAD<br>CCO RAD<br>CCO RAD<br>CARBONE<br>2-BUTENE TRANS<br>N-BUTYL RAD<br>1-PENTENE<br>PHENYL RAD<br>1-PENTENE<br>PHENYL RAD<br>CRESOL<br>ISO-OCTANE<br>JET-A (G)<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C<br>NCN RAD<br>METHYL CYANIDE<br>ETHYL RAD<br>CYANOGEN<br>C3H5 RAD<br>1-PROFANOL<br>2-BUTYL RAD<br>CYCLOPENTANE<br>HEXATRIYNE<br>CYCLOPENTANE<br>HEXATRIYNE<br>TOLUENE<br>OCTANE<br>B1PHENYL<br>H202<br>N02<br>N02<br>N02<br>N02<br>N02<br>N02<br>N02<br>N02<br>N02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

STOP DERROR IN ABOVE CARD. CONTENTS IGNORED.

Appendix B ANALYSIS OF ISENTROPIC BURNING CONDITION OF M-1 PROPELLANT USED IN KA-III, PHASE C, TESTS (CEC Code Output)

|                                                                                                                             | FORMIC ACID<br>METHANOL<br>CO2<br>CC13 RAD<br>ACETALDEHYDE<br>CC2H3 RAD<br>ACETALDEHYDE<br>ACETALDEHYDE<br>CC3RBON SUBOXIDE<br>T,3-BUTADIENE<br>PROPYLENE OXIDE<br>CARBON SUBOXIDE<br>1,3-BUTADIENE<br>T3-BUTADIENE<br>1,3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE<br>T3-BUTADIENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                             | L 4/85<br>L 9/85<br>J 9/85<br>J 9/85<br>J 9/85<br>L 9/85<br>L 9/85<br>F 4/84<br>F 4/84<br>F 10/83<br>F 12/85<br>F 10/83<br>F 10/83<br>F 10/83<br>F 73<br>F 10/83<br>F                                                                                                                                                                                                                     |
| દય દય દય દય દય દય                                                                                                           | SAD CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 298.300<br>298.300<br>298.300<br>298.300<br>298.300<br>298.300<br>298.300                                                   | FORMALDEHYDE<br>CH4<br>CH4<br>CO<br>KETENE<br>ETHYLONIDE<br>FUTLONIDE<br>FUPYLONE<br>FUPYLENE<br>FROPYLENE<br>PROPYLENE<br>PROPYLENE<br>PROPYLENE<br>PROPYLENE<br>PROPYLENE<br>PROPYLENE<br>PROPANOL<br>BUTAN-LEN-JYN<br>ISOBUTENE<br>N-BUTYL RAD<br>CYCLOPENTADIE<br>PHENOXY RAD<br>TOCLENE<br>NAFTLENE<br>JET-A(G)<br>HN0<br>N2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -66420.00<br>-164700.00<br>-17100.00<br>31070.00<br>-201400.00<br>-201400.00                                                | DETN = F<br>DETN = F<br>J 3/61<br>J 3/61<br>J 3/61<br>BUR 84<br>L 4/85<br>BUR 84<br>BUR 84<br>BUR 84<br>BUR 84<br>BUR 84<br>BUR 84<br>BUR 84<br>BUR 84<br>BUR 84<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/85<br>P10/8                                                                                                              |
| 0.007500<br>0.837400<br>0.098400<br>0.009900<br>0.0049300<br>0.005000                                                       | F SIUNIT = F<br>T SHOCK = F<br>SHOCK = F<br>CH2<br>METHYLOXIDE<br>CNN RAD<br>ACETYLENE<br>CNN RAD<br>ACETYLENE<br>CH2CHO RAD<br>ETHYL RAD<br>ETHYL RAD<br>ETHYL RAD<br>CYCLOBUTADIENE<br>C3H3 RAD<br>CYCLOBUTADIENE<br>C3H3 RAD<br>CYCLOBUTADIENE<br>C3H3 RAD<br>CYCLOBUTADIENE<br>C3H3 RAD<br>CYCLOBUTADIENE<br>C3H3 RAD<br>BITHENYL RAD<br>N-HEYYL RAD<br>N-HONYL RAD<br>N-HEYYL RAD<br>N-HEYYL RAD<br>N-HYNNYL RAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                             | IONS<br>RKT =<br>RKT =<br>RKT =<br>IONS<br>J12/72<br>J 6/66<br>J 3/61<br>BUR 84<br>L 9/85<br>BUR 84<br>L 4/85<br>BUR 84<br>L 9/85<br>BUR 84<br>L 9/85<br>F10/83<br>T12/69<br>J12/70<br>J12/70<br>SUS 78<br>RUS 78<br>RU                                                                                                        |
| 0.0000<br>5 0 10.2715<br>0 0 4.0000<br>0.0000<br>0.0000                                                                     | <pre>ACE = 0.000000+00<br/>UV = F SV = F<br/>0 NUDATA = F<br/>0 = F PHI = F<br/>00E+00 H = 0.000<br/>CH HYDROXYMETHYLENE<br/>VCN RAD<br/>CCH RAD<br/>N-PROPYL RAD<br/>BUTALIYNE<br/>C3H5 RAD<br/>N-PROPYL RAD<br/>BUTALIYNE<br/>C3H5 RAD<br/>N-PROPYL RAD<br/>BUTALIYNE<br/>C3H5 RAD<br/>N-PROPYL RAD<br/>CCARBON SUBNITRID<br/>HCO RAD<br/>HCO RAD<br/>HC</pre> |
| 000000000000000000000000000000000000000                                                                                     | 111 112 112 112 112 112 112 112 112 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                 |
| OZZIO                                                                                                                       | а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| H 6.0000<br>H 7.3715<br>H 6.0000<br>N 1.0000<br>H 22.0000<br>O 1.0000                                                       | 2***<br>1 IDEB<br>1 IDEB<br>1 TRPACC =<br>TRPACC =<br>1 F FFCT<br>00000E+00<br>000E+00<br>000E+00<br>100E+00<br>000E+00<br>100E+00<br>11E GIVEN F<br>000E+00<br>13<br>13<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0000<br>00000<br>00000<br>00000                                                                                             | HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HIPTY<br>HI                                                                                                                                                                                                                                                                                                                                                                                                               |
| REACTA<br>C 2<br>C 6<br>C 7<br>C 12<br>C 12<br>C 16<br>C 16<br>C 12<br>C 12<br>C 12<br>C 12<br>C 12<br>C 12<br>C 12<br>C 12 | NAMELI:<br>17 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

B-2

-

| RUS 78 N203                                    | RUS 78              | N204                      | RUS 78 N2O5                                                          | HEN 87 SUN EN 87 |  |
|------------------------------------------------|---------------------|---------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| J 3/77 0<br>F10/80 BENZENE(L)<br>J 3/79 H20(L) | J 6/77<br>P10/80    | OH<br>TOLUENE (L)         | J 3/1/ 02<br>P10/80 OCTANE(L)                                        | U 6/88 JET-A(L) L 3/81 H20(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| U ************************************         | 2<br>               | EST = 3800.0              | 000 FAC = F MA = 0.00                                                | 000000E+00 ACAT = 0.0000000E+00 DEBUGF = F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0SUPAR =<br>00F = 0.000000                     |                     |                           |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ENTHALPY<br>126-MOLI JDFG X1 /KG               | EFFECTI<br>HPP      | VE FUEL<br>(2)<br>2668+03 | EFFECTIVE OXIDANT<br>HPP(1)<br>0.00000000000000000000000000000000000 | MIXIORE<br>HSUBO<br>-0.28176266E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| OKG-FORM.WT./KG                                | BOP (I              | , 2)                      | BOP (1,1)                                                            | B0(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| U #                                            | 0.25349             | 588E-01<br>750E-01        | 0.00000000E+00<br>0.0000000E+00                                      | 0.23349388E-01<br>0.31067750E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| : 0 :                                          | 0.33694             | 333E-01                   | 0.00000000E+00                                                       | 0.33694332-01<br>0 89340268-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| OPOINT ITN T C                                 |                     | H                         | N                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1 21 1927.03 -11.497<br>2 4 1703.22 -10.657    |                     | -10.417<br>-10.505        | -23.644 -14.5<br>-25.590 -14.6                                       | 550<br>644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| PC/PT= 1.808481 T = 17<br>2 2 1702.49 -10.654  | 03.22               | -10.506                   | -25.597 -14.6                                                        | 645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PC/PT= 1.812162 T = 17<br>3 4 1919.02 -11.472  | 02.49               | -10.420                   | -23.705 -14.5                                                        | 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                              | HEORETICA           | L ROCKET PERF             | FORMANCE ASSUMING EQUILIB<br>EDOM INFINITE ADEA COME                 | BRIUM COMPOSITION DURING EXPANSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| OPINF = 15.0 PSIA                              |                     |                           | ERUN INFINITE AREA COMP                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CASE NO. 1                                     |                     |                           |                                                                      | WT FRACTION ENERGY STATE TEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| CHEMICAL FORMULA<br>FUEL C 2.00000 H 6         | .00000              | 0 1.00000                 |                                                                      | (SEE NOTE) CAL/MOL DEG K<br>0.007444 -66420.000 298.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| FUEL C 6.00000 H 7                             | .37150              | N 2.63550<br>N 2.00000    | 0 10.27150                                                           | 0.831166 -164700.000 298.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| FUEL C 12.00000 N 1                            | .00000              | H 11.00000                | 00000 · F                                                            | 0.009826 31070.000 298.30<br>0.009826 31070.000 298.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| FUEL C 16.00000 H 22                           | .00000              | 0 4.00000                 |                                                                      | 0.048933 -201400.000 298.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| FUEL H 2.00000 0 1<br>0 0.00                   | .00000<br>00 PER    | CENT FIFT.= 1(            | 00.0000 FOUTVALENCE BA                                               | 0.004963 -68315.000 298.30<br>APTC=1 9657 DUT- 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 0 CHAMBER                                      | THROAT              | EXIT                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| PINF/P 1.0000<br>P. ATM 1.0207                 | 1.8122<br>0.56324   | 1.0204<br>1.0003          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| T, DEG K 1927.03                               | 1702.49             | 1919.02                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| RHO, G/CC 1.4230-4<br>u CAT/G -559.92          | 8.8898-5<br>-657 06 | 1.4004-4<br>-563.42       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| U, CAL/G -733.63                               | -810.50             | -736.41                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| G, CAL/G -5904.06<br>S, CAL/(G)(K) 2.7732      | -5378.49            | -5885.34<br>2.7732        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| M, MOL WT 22.046                               | 22.050              | 22.046                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (DLV/DLT) P 1.0034                             | 1.0008              | 1.0032                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

B–3

0.4382 1.2609 955.3 0.179 3.3440 4233 0.133 448.7 17.5 1.0000 4233 0.699 164.5 91.9 0.4293 1.2662 901.6 1.000 0.4387 1.2606 957.2 0.000 OPERFORMANCE PARAMETERS CP, CAL/(G)(K) GAMMA (S) SON VEL,M/SEC MACH NUMBER IVAC, LB-SEC/LB ISP, LB-SEC/LB AE/AT CSTAR, FT/SEC ដ

a .070

BUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.50000E-05 FOR ALL ASSIGNED CONDITIONS

B-4

| AD<br>AD                    | RAD C22CHO RAD<br>OXIDE RAD ETHANE<br>AD C3                    | PROPANE PROPYLENE<br>N SUBOXIDE C4       | ENE TRANS 2-BUTENE CIS<br>YL RAD N-BUTANE | L RAD T-PENTYL RAD             | CTANE I-HEPTENE<br>CTANE N-NONYL RAD | (G) HCN HCN     | NH20H<br>N20       | (L) H20(s)        | 101011                                    | NOTEN |
|-----------------------------|----------------------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------|--------------------------------------|-----------------|--------------------|-------------------|-------------------------------------------|-------|
| CH3<br>CNN P                | E CH3CC<br>ETHYI<br>CCO R                                      | CYCLO                                    | Z-BUT<br>N-BUT<br>1-DEW                   | PHENY                          | ISO-O                                | JET-A<br>HO2    | NH3<br>N2H4        | O<br>JET-A        | URTNG EVDA                                |       |
| FORMIC ACID<br>NCN RAD      | METHYL CYANID<br>ETHYL RAD<br>CYANOGEN                         | C3H5 RAD<br>1-PROPANOL<br>2-BUTVNE       | S-BUTYL RAD<br>CYCLOPENTANE               | HEXATRIYNE<br>TOLUENE          | OCTANE                               | HNO3            | NH2<br>NH2NO2      | N3H<br>OCTANE (L) | IDANTS<br>N COMPOSITION D                 |       |
| FORMALDEHYDE<br>CN          | CZH3 RAD<br>(FORMIC ACID)2<br>CNC RAD                          | ALLENE<br>Propane<br>1, 3-butadtene      | T-BUTYL RAD<br>CYCLOPENTADIENE            | СНЗС (СНЗ) 2СН3<br>N-НЕХҮL RAD | N-OCTYL RAD<br>O-RIDUENVI DAD        | HNO2            | N2H2<br>N2H2<br>V2 | TOLUENE (L)       | XIDANT IN TOTAL OX<br>NNCE ASSUMING FROZE |       |
| CH2<br>METHANOL             | ACETIC ACID<br>ETHANOL                                         | EROFINE<br>N-PROPYL RAD<br>BUTAN-1EN-3YN | (ACETIC ACID) 2<br>C5                     | LSOPENTANE<br>CYCLOHEXENE      | 1-OCTENE<br>N-DECYL RAD              | HNO             | NO3<br>N205        | BENZENE (L)       | LAL FUELS AND OF C                        |       |
| CH<br>CH4<br>ACPTVI BND     | ACETALDEHYDE<br>ACETALDEHYDE<br>DIMETHYL ETHER<br>CYCLOBDODEWE | CYCLOBUTADIENE                           | 1-BUTENE<br>CARBON SUBNITRID              | PHENOL                         | AZULENE                              | HNCO<br>N       | NO2<br>N204        | C (GR)            | CTION OF FUEL IN TO<br>THEORETIC          |       |
| C<br>METHYLOXIDE<br>C2H RAD | ETHYLENE<br>AZOMETHANE<br>C3H3 RAD                             | PROPYLENE OXIDE<br>BUTADIYNE             | ISOBUTENE<br>ISOBUTANE<br>N-PENTVI DAD    | BENZENE<br>N-UEDTYT DAD        | NAPTHLENE                            | HCO RAD<br>H2O2 | N0<br>N203         | 03<br>H20 (L)     | ONOTE. WEIGHT FRA                         |       |

15.0 PSIA 1 OPINF = CASE NO.

CHEMICAL FORMULA

STATE WT FRACTION (SEE NOTE)

TEMP DEG K

ENERGY CAL/MOL

| 298.30<br>298.30<br>298.30<br>298.30<br>298.30<br>298.30<br>298.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                             |                     |                                                                  |                 | 0.22141<br>GNED CONDITIONS                    | HYDROXYMETHYLENE<br>C2<br>CH2CHO RAD<br>ETHANE<br>C3<br>PROPYLENE<br>C3<br>PROPYLENE<br>C4<br>2-BUTENE<br>C4<br>2-BUTENE<br>C1<br>PHENOXY RAD<br>1-HEPTENE<br>N-NONYL RAD<br>1-HEPTENE<br>N-NONYL RAD<br>HCN                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------|-----------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -66420.000<br>164700.000<br>-17100.000<br>31070.000<br>-68315.000<br>-68315.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | :                   |                                                                  |                 | H2<br>JOE-O5 FOR ALL ASSI                     | CH3<br>CNN RAD<br>CNN RAD<br>CH3CO RAD<br>ETHYL OXIDE RAD<br>CCO RAD<br>CCO RAD<br>CCO RAD<br>CYCLOPROPANE<br>CYCLOPROPANE<br>CYCLOPROPANE<br>CYCLOPROPANE<br>CARBON SUBOXIDE<br>CARBON SUBOXIDE<br>C-BUTTENE<br>PHENYL RAD<br>1-PENTENE<br>PHENYL RAD<br>1-PENTENE<br>PHENYL RAD<br>CRESOL<br>ISO-OCTANE<br>JET-A (G)<br>HO2 |
| 0.007444<br>0.831166<br>0.097667<br>0.009826<br>0.048933<br>0.004963<br>TIO= 1.9657<br>FHJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |                     |                                                                  |                 | 0.00045<br>0.00002<br>LESS THAN 0.5000        | FORMIC ACID<br>NCN RAD<br>METHYL CYANIDE<br>ETHYL RAD<br>CYANOGEN<br>CYANOGEN<br>C3H5 RAD<br>1-PROPANOL<br>2-BUTYL RAD<br>1-PROPANOL<br>2-BUTYL RAD<br>2-BUTYL RAD<br>CYCLOPENTANE<br>HEXATRIYNE<br>TOLUENE<br>OCTANE<br>BIPHENYL<br>HNO3                                                                                     |
| 150<br>000<br>EQUIVALENCE RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                     |                                                                  |                 | 13 H<br>47 OH<br>JLE FRACTIONS WERE           | FORMALDEHYDE<br>CN<br>C2H3 RAD<br>(FORMIC ACID)2<br>CNC RAD<br>ALLENE<br>PROPANE<br>1,3-BUTADIENE<br>1,3-BUTALENE<br>1,3-BUTALENE<br>T-BUTYL RAD<br>CYCLOPENTADIENE<br>CH3C(CH3)2CH3<br>N-HEXYL RAD<br>N-OCTYL RAD<br>N-OCTYL RAD<br>O-BIPHENYL RAD                                                                           |
| 1.00000<br>2.63550 0 10.27<br>2.00000 0 4.00<br>4.00000<br>MT FUEL- 100.0000<br>EXIT<br>EXIT<br>1.0204<br>1.0003<br>918.73<br>918.73<br>918.73<br>736.38<br>884.54<br>2.7732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.046<br>0.4215<br>1.2720<br>959.4<br>0.178                                  |                     | 3.3544<br>4220<br>0.133<br>448.6<br>17.5                         |                 | 0.063<br>0.098<br>Dered But Whose MC          | CH2<br>METHANOL<br>KETENE<br>ACETIC ACID<br>FTHANOL<br>PROPYL<br>PROPYL<br>N-PROPYL<br>RAD<br>BUTAN-1EN-3XN<br>(ACETIC ACID) 2<br>C5<br>ISOPENTANE<br>CYCLOHEXENE<br>I-OCTENE<br>N-DECYL RAD<br>HNO                                                                                                                           |
| H 6.0000 0<br>H 7.37150 N<br>H 6.00000 N<br>N 1.00000 H<br>H 22.00000 0<br>0 1.0000 0<br>0 1.0000 PERCE<br>HAMBER THROAT<br>HAMBER THROAT<br>1.0000 1.8199<br>927.03 169347 1<br>4230-4 8.8975-5 1.<br>733.63 -810.17<br>- 733.63 -5353.93 -5<br>22.7732 2.7732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.046 22.046<br>0.4218 0.4136<br>1.2718 1.2787<br>961.4 903.7<br>0.000 1.000 | TERS                | 1.0000<br>4220<br>0.703<br>164.2<br>92.2                         |                 | .49571 CO2<br>.12081 N2<br>S WHICH WERE CONSI | CH<br>CH4<br>ACETYLENE<br>ACETALDEHYDE<br>DIMETHYL ETHER<br>CYCLOPROPENE<br>I-PROPYL RAD<br>CYCLOBUTADIENE<br>I-BUTENE<br>CARBON SUBNITRID<br>PENTANE<br>PHENOL<br>N-HEFTANE<br>AZULENE<br>HNCO                                                                                                                               |
| FUEL C 2.00000<br>FUEL C 6.00000<br>FUEL C 1.00000<br>FUEL C 12.00000<br>FUEL C 12.00000<br>FUEL C 12.00000<br>FUEL C 12.00000<br>FUEL H 2.00000<br>FUEL H 2.00000<br>FUEL H 2.00000<br>FUEL H 2.00000<br>FUEL H 2.00000<br>FUEL C 15.00000<br>FUEL C 16.0000<br>FUEL C 12.00000<br>FUEL C 12.000000<br>FUEL C 12.00000<br>FUEL C 15.00000<br>FUEL C 15.00000<br>FUEL C 15.00000<br>FUEL C 16.00000<br>FUEL C 16.000000<br>FUEL C 16.000000<br>FUEL C 16.000000<br>FUEL C 16. | M, MOL WT<br>CP, CAL/(G)(K)<br>GAMMA (S)<br>SON VEL,M/SEC<br>MACH NUMBER      | OPERFORMANCE PARAME | AE/AT<br>CSTAR, FT/SEC<br>CF<br>IVAC,LB-SEC/LB<br>ISP, LB-SEC/LB | OMOLE FRACTIONS | CO<br>H2O<br>0ADDITIONAL PRODUCT              | C<br>METHYLOXIDE<br>C2H RAD<br>ETHYLENE<br>AZOMETHANE<br>C3H3 RAD<br>PROPYLENE OXIDE<br>BUTADIYNE<br>ISOBUTENE<br>ISOBUTENE<br>N-PENTYL RAD<br>BENZENE<br>N-HEPTYL RAD<br>NAPTHLENE<br>HCO RAD                                                                                                                                |

**B-**5

NH2OH N2O O2 H2O (S) NH3 N2H4 O JET-A (L) NH2 NH2NO2 N3H OCTANE (L) H202 N NO N02 N02 N03 N2H2 NH N203 N204 N205 N3H 03 C(GR) BENZENE(L) TOLUENE(L) OCTAN H20(L) TOLUENE(L) TOLUENE(L) OCTAN 000TE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 1 STOP

# Appendix C SPECIFICATION SHEETS FOR THE RECOMMENDED THERMAL INSTRUMENTATION



Figure C-1: Recommended Chamber Total Temperature Instrumentation for WES May '93 Propellant Burn Tests



C--3



Figure C-3: Recommended Radiometer Instrumentation for WES May '93 Propellant Burn Tests

C-4



Figure C-4: Recommended Vent Pipe and Plume Total Temperature Instrumentation for WES May '93 Propellant Burn Tests

C--5

#### DISTRIBUTION LIST US/ROK Technical Organizations

#### No. of Copies

#### No. of Copies

| Commander<br>Office of the Assistant Secretary<br>of the Army<br>(Research, Development & Acquisition)<br>ATTN: SARD-IN<br>RM 3E416<br>Washington, DC 20310-0103 | 1 | Chairman<br>Department of Defense Explosives<br>Safety Board<br>ATTN: Technical Library<br>Hoffman Building 1<br>2461 Eisenhower Avenue<br>Alexandria, VA 22331         | 1           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Ministry of National Defense<br>Logistics Bureau<br>ATTN: Colonel Yeon Woo Chung<br>1 Yongsan 3ka-dong<br>Yongsan-ku<br>Seoul KOREA 120-023                      | 1 | Applied Research Associates, Inc.<br>ATTN: Mr. Charles Needham<br>Suite A220<br>4300 San Mateo Blvd., NE<br>Albuquerque, NM 87110                                       | 1           |
| Director<br>U.S. Army Defense Ammunition Center<br>and School<br>ATTN: SMCAC-PMUAST<br>(Mr. Gary Abrisz)<br>Savanna, IL 61074-9639                               | 5 | Agency For Defense Development<br>ATTN: Dr. Song, So-Young<br>ADD 1-3-7<br>P.O. Box 35<br>Dae-Jeon, 300-600<br>REPUBLIC OF KOREA                                        | 3           |
| Chairman<br>Department of Defense Explosives<br>Safety Board<br>ATTN: DDESB-KT (Dr. Chester Canada)<br>2461 Eisenhower Avenue<br>Alexandria, VA 22331-0600       | 1 | Director<br>Defense Nuclear Agency<br>ATTN: TDTR (Mr. Tom Kennedy)<br>SPWE (Dr. Ed Tremba)<br>SPSD (Dr. K. Goering)<br>6801 Telegraph Road<br>Alexandria, VA 22310-3398 | 1<br>1<br>1 |
| Commander<br>U.S. Army Corps of Engineers<br>Omaha District<br>ATTN: CEMRO-ED-SH                                                                                 |   | Air Force Armaments Laboratory<br>ATTN: ASD/YQI (Mr. J. Jenus)<br>Eglin AFB, FL 32542-5434                                                                              | 1           |
| (Mr. William Gaube)<br>215 North 17th Street<br>Omaha, NE 68102-4978                                                                                             | 1 | Commander<br>Defense Nuclear Agency<br>ATTN: FCTT (Dr. Byron Ristvit)<br>FCTT (Dr. Eric J. Rinehart)                                                                    | 1           |
| Naval Weapons Center<br>Conventional Weapons Division<br>Ordnance Evaluation Department                                                                          |   | 1680 Texas St., SE<br>Kirtland AFB, NM 87117-5669                                                                                                                       |             |
| ATTN: Mr. Carl C. Halsey (Code 3269)<br>China Lake, CA 93555-6001                                                                                                | 1 | Commander<br>Air Warfare Center<br>ATTN: Code 326B (Mr. L. Josephson)                                                                                                   | 1           |

China Lake, CA 93555-6001

| Commanding Officer<br>Naval Ordnance Station<br>ATTN: Technical Library<br>Indian Head, MD 20640                                             | 1      |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Commander<br>Belvoir Research, Development and<br>Engineering Center<br>ATTN: AMXME-ND<br>Fort Belvoir, VA 22060                             | 1      |
| Chief of Engineers<br>Department of the Army<br>ATTN: CERD-ZA<br>20 Massachusetts Ave.<br>Washington, DC 20314                               | . 1    |
| Southwest Research Institute<br>ATTN: Mr. K. Marchand<br>8500 Culebra Road<br>San Antonio, TX 78206                                          | 1      |
| Applied Research Associates<br>ATTN: Mr. J. L. Drake<br>3202 Wisconsin Ave.<br>Vicksburg, MS 39180                                           | . 1    |
| PM AMMOLOG<br>ATTN: AMCPM-AL (Mr. Bob Rossi)<br>Picatinny Arsenal, NJ 07806-5000                                                             | 1      |
| Bakhtar Associates<br>ATTN: Dr. K. Bakhtar<br>2429 West Coast Highway, Suite 201<br>Newport Beach, CA 92663                                  | 1      |
| Commander<br>U.S. Army Research Laboratory<br>ATTN: SLCBR-TB-EE (Dr. R. Frey)<br>(Mr. O. Lynn)<br>Aberdeen Proving Ground, MD 21005          | 1<br>1 |
| U.S. Army Corps of Engineers<br>Huntsville Division<br>ATTN: CEHND-ED-CS<br>(Mr. Paul Lahoud)<br>P. O. Box 1600<br>Huntsville, AL 35807-4301 | 1      |

No. of Copies Headquarters, U.S. Air Force ATTN: SEP (Mr. Paul Price) 1 1400 Air Force Pentagon Washington, DC 20330-1400 Director U.S. Army Research Laboratory ATTN: AMSRL-WT-TB 1 (Mr. John Starkenberg) Aberdeen PG, MD 21005-5066 Commander Naval Surface Warfare Center Dahlgren Division ATTN: Code R10H (Mr. Michael Swisdak) 1 10901 New Hampshire Avenue Silver Spring, MD 20903-5000 Commander Naval Facilities Engineering Service Center ATTN: Code ESC-62 (Mr. James Tancreto) 1 Port Hueneme, CA 93043-5003 Commander Air Force Weapons Laboratory ATTN: NTEDE (Dr. Henny) 1 Kirtland AFB, NM 87117-6008

1

Director Harry Diamond Laboratories ATTN: SLCHD-NW-RA 2800 Powder Mill Road Adelphi, MD 20783-1197

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REPORT DO                                                                                                   | Form Approved<br>OMB No. 0704-0188                                                  |                                     |                                    |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|--|--|--|--|--|
| Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Sond comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Departions and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC20503.                                                                            |                                                                                                             |                                                                                     |                                     |                                    |  |  |  |  |  |
| 1. AGENCY USE ONLY (Leave blank)       2. REPORT DATE May 1996       3. REPORT TYPE AND DATES COVERED Final report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |                                                                                     |                                     |                                    |  |  |  |  |  |
| 4. 1<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>TTLE AND SUBTITLE</b><br>improved Techniques for Measurn Confined Areas                                  | <ul> <li>FUNDING NUMBERS</li> <li>Contract No.</li> <li>DACA39-92-M-7281</li> </ul> |                                     |                                    |  |  |  |  |  |
| 6.AL<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.AUTHOR(S)<br>E. C. Knox                                                                                   |                                                                                     |                                     |                                    |  |  |  |  |  |
| 7.  <br>]<br>]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PERFORMING ORGANIZATION N<br>REMTECH, Incorporated<br>2905 West Corp Boulevard, Sui<br>Huntsville, AL 35805 | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER<br>RTR 256-01<br>UAST-CR-93-004         |                                     |                                    |  |  |  |  |  |
| 9. 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPONSORINGMONITORING AGE<br>J.S. Army Corps of Engineers<br>Washington, DC 20314-1000                       | 10. SPONSORING/MONITORING<br>AGENCY REPORT NUMBER<br>Contract Report SL-96-2        |                                     |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J.S. Army Engineer Waterways<br>3909 Halls Ferry Road, Vicksbu                                              | s Experiment Station<br>lrg, MS 39180-6199                                          |                                     |                                    |  |  |  |  |  |
| 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SUPPLEMENTARY NOTES                                                                                         |                                                                                     |                                     | - <u> </u>                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Available from National Tech                                                                                | nical Information Service, 5285                                                     | Port Royal Road, Sprin              | gfield, VA 22161.                  |  |  |  |  |  |
| 12a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISTRIBUTION/AVAILABILITY                                                                                   | STATEMENT                                                                           | ******                              | 12b. DISTRIBUTION CODE             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approved for public release;                                                                                |                                                                                     |                                     |                                    |  |  |  |  |  |
| 13. ABSTRACT (Maximum 200 words)<br>During 1989, WES conducted a series of propellant burn experiments in a partially confined space to evaluate the<br>potential for transition from deflagration to detonation. Pressure, temperature, and thermal flux-time histories were recorded.<br>These data were analyzed in terms of quality and interchannel compatibility to develop improved instrumentation/techniques<br>for measuring the thermal effects of propellant deflagration. In addition, a one-dimensional model was developed<br>characterizing the propellant thermochemical properties and flow processes. This report documents the data analyses,<br>thermal model development, comparison of model and measured data, and recommendations for improved thermal<br>instrumentation. |                                                                                                             |                                                                                     |                                     |                                    |  |  |  |  |  |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SUBJECT TERMSDeflagrationParM-1 propellantSinPropellant burn                                                | 15. NUMBER OF PAGES<br>54<br>16. PRICE CODE                                         |                                     |                                    |  |  |  |  |  |
| 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SECURITY CLASSIFICATION 18<br>OF REPORT<br>UNCLASSIFIED                                                     | 8. SECURITY CLASSIFICATION<br>OF THIS PAGE<br>UNCLASSIFIED                          | 19. SECURITY CLASSIF<br>OF ABSTRACT | ICATION 20.L IMITATION OF ABSTRACT |  |  |  |  |  |
| NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |                                                                                     |                                     |                                    |  |  |  |  |  |