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(GEED), WES, and Dr. So-young Song, Korean Agency for Defense Development. The
Program Managers were Mr. Gary Abrisz, U.S. Army Technical Center for Explosives
Safety, and COL Yeon Woo Chung, Logistics Bureau, Korean Ministry of Defense.

Mr. E. C. Knox, REMTECH, Inc., conducted the study reported herein and is the author of
this report. The work was monitored by Mr. Charles E. Joachim, GEED, Structures
Laboratory (SL), WES. Dr. Jimmy P. Balsara was Chief, GEED, and Mr. Bryant Mather
was Director, SL.

At the time of preparation of this report, Director of WES was Dr. Robert W. Whalin.
Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publishing.
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.




NOMENCLATURE

Chocked flow area ( = vent pipe area)
Propellant burning area

Orifice flow coefficient

Pressure in bunker

Propellant combustion gas constant, C-Cy
Measured gas temperature in bunker

Bunker volume, ~5 m®

Propellant surface burn, or recession rate, in./sec
Time for propellant ignition

Ratio of gas specific heats, C,/Cy,

Density, gas or propellant

Subscripts
Denotes burning or propellant characteristic
Denotes chamber or bunker conditions/characteristics

Denotes peak value, as in peak pressure

vi



Conversion Factors,

Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI (metric) units as

follows:
Multiply By To Obtain
atmospheres 101.325 kilopascals
BTU per square foot-second 1134.893 joule per square metre-second
calories per square inch- 0.648521 joule per square centimetre-
second second
degrees 0.01745329 | radians
degrees Fahrenheit {5/9} {F-32} Celsius
degrees Celsius C+273.15 Kelvins
degrees Kelvin 1.8 Ramkine
feet 0.3048 metres
feet per second 0.3048 metres per second
inches 2.54 centimetres
kilowatts per square metre 1.000000 joule per square metre
litres 0.001 cubic metres
pounds (mass) 0.4535924 | kilograms
pounds (mass) per cubic foot 16.01846 kilograms per cubic metre
pound (mass) per cubic inch 27.67990 grams per cubic centimetres
pounds (force) per square 16.894757 kilopascals

inch (psi)

vil




Section 1
INTRODUCTION

The U.S. Army Corps of Engineers, Waterways Experiment Station (WES), is
conducting a test program to study the effects of the accidental burning of propellants stored in
a confined area. This work is a part of a broader program called the Joint U.S./ROK
(Republic of Korea) R&D Study for New Underground Ammunition Storage Technologies.
The goal of the 5-year U.S./ROK Study is to develop improved designs for underground
magazines which will greatly reduce the present external hazard areas that are required by
current U.S. and Korean military safety standards to protect against the possibility of
accidental fires and explosions.

Documentation of propellant burn tests performed to date is presented in Ref, [1].
Additional tests are planned; however, improvements to the instrumentation for these tests
have been deemed necessary before executing them. REMTECH, Inc., was tasked by WES
| to review the instrumentation performance during the Ref. [1] tests and recommend
improvements/additions to the Ref. [1] instrumentation for application to a subscale test
} scheduled for May 1993 at WES. Instrumentation performance experience during these tests

will be factored into the instrumentation selection for full-scale tests to be conducted at a later
time.

|
’ The results of this review are documented in the subject report.

,




Section 2
OBJECTIVES AND TECHNICAL APPROACH

The objectives for this review were to:

1. Develop improved instrumentation/techniques for measuring the thermal effects of
propellant burn tests in confined areas. '

2. Develop empirical methods for estimation of the thermal and fluid dynamic environments
of the propellant burns.

The technical approach adopted to accomplish these objectives was divided into several
phases: review of the available recorded data from Ref. [1] for each instrument channel in
terms of quality and inter-channel compatibility; development of a preliminary one-dimen-
sional model of the flow process; characterization of the propellant thermochemical properties;
and comparison of results from the model and propellant characterization with the experimen-
tal results.



Section 3
PROPELLANT THERMOCHEMICAL PROPERTIES

As a means of establishing a standard by which the performance of the instrumentation
for KA-III, Phase C, tests could be measured in terms of possible total energy release and
likely pressure rise times, the thermochemical and burning properties of the propellant used in
these tests were examined.

3.1 Propellant Thermochemical Properties

The propellant used in the KA-III, Phase C, tests and planned for use in the WES
May '93 tests is, in the U.S. Army notation demoted as M-1. Its chemical composition is
defined in Ref [2] and repeated herein as

Ingredient Percent by weight
Ethanol (C,H,O) 0.75
Nitrocellulose (CcH7 57;5N5 63550 10.2715) 83.74
Dinitrotoluene (C;HN,0,) | 984
Diphenylamine (C;,NH,;) 0.99
Butyl Phthalate (C,4H,,0,) 4.93
Water (liquid) 0.50

This composition was input to REMTECH's in-house version of the NASA Chemical
Equilibrium Composition code (CEC) {3] to determine the propellant combustion product and
the amount of energy released upon burning.

Two burning condition were analyzed; adiabatic, representing the maximum possible
energy release, and isentropic, representative of the propellant burning at one pressure and
expanding isentropically to another pressure (atmospheric in this case). The resultant pressure
and temperatures for these cases are tabulated as follows:

Condition Pressure, atm Temperature, K
Adiabatic 1810. 2437,
Isentropic 1.00 1919.

The complete CEC code outputs for these conditions are included in Appendices A and
B, respectively. Therein the combustion products are listed to be approximately 50 percent
CO, 20 percent H,, 13 percent water, 10 percent N,, and 6 percent CO,, with lesser amounts
of other constituents.




Determination of the adiabatic properties was aided significantly by the assistance of
Dr. A. J. Kotlar, USA Research Laboratory, Aberdeen Proving Ground, MD, which is hereby
acknowledged.

3.2 Propellant Burning Properties

Mr. Michael M. Swisdak, Jr., Naval Surface Warfare Center/Dahlgren Division, is
hereby acknowledged for his providing the geometry and burning characteristics for the M-1
propellant. Shown in Fig. 1 is the propellant geometry; its density is nominally
0.0566 Ib/in.?, and its burn-rate equation is defined as

r = A * (Pressure)" (1)

where
r = the propellant burning surface recession rate (in./sec),
A = 0.00161 in./sec/psi, and
N = 0.741.

The time for a propellant grain to be consumed by burning for the conditions of the
KA-III, Phase C, tests (Test C-3), using the log-mean pressure from initial to peak and the
grain cylindrical surface area (inside and external) with the above equation, was estimated to
be 0.40 sec.

Comparing this result with the actual burn time of approximately 10 seconds with the
theoretical value of 0.40 seconds has several potential implications which include:

1. The entire surface areas of the pellets are not being ignited simultaneously.

2.  The mass of the air in the bunker is significant compared with the burned propellant
~8as mass during the initial pressure buildup.

3. Stacking methods and container type probably influence the burn history since they
may control the amount of surface area available for burning as a function of time.

As will be shown later in the report, the vent pipe exit velocity exceeds the combustion
gas speed-of-sound (72000 ft/sec) for portions of the burn history prior to and after the pres-
sure peak. Considering the average grain burn time, any burning grains that become airborne
during the burning process could travel as much as 800 ft while in the burning state, thus
giving credence to the likelihood of burning propellant being ejected out of the bunker during
the KA-III, Phase C, tests.



Similar effects were observed for tests reported in Ref [4], in which upwards to
80 percent of the combustible material was ejected out of the combustion chamber, depending
on the vent diameter. Shown in Fig. 2 is a curve of the observed variation of the ejecta
material percent vs. the vent diameter.

The presence of this phenomena in the instant process raises concerns as to the scalability

of any subscale results to full-scale applications without an attendant math model of the flow
process.

-+ 127 mm ——»

Figure 1. M-1 propellant grain geometry -
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Figure 2. Variation of ejected combustible material with vent diameter, (Ref. [4])




Section 4
ANALYTICAL FLOW MODEL

As a means of establishing a standard by which the performance of the instrumentation
for KA-III, Phase C, tests could be measured in terms of pressure histories and related heat
transfer variations, a one-dimensional model of the flow process was developed.

4.1 Flow Model Development

Applying the conservation of mass principle to these tests, the combustion gas generated
in the process of burning the propellant is accounted for in the accumulation of mass in the
bunker and the mass that is vented out the connecting pipe. This balance is expressed in
equation form as

1l
Ayp, %(pCVC) APCJR; ( 2 JH )

assuming the "chocked" flow condition governs the vented mass flow rate, i.e., the condition
for which the bunker pressure is greater than 1.9 times atmospheric pressure. - Another
expression applies for the "unchoked" condition.

4.2 Flow Model Application

Shown in Fig. 3 are the bunker pressure histories for test C-3 of the KA-III, Phase C
Tests as measured by instruments ABI180, -181B, and 182. Also shown on Fig 3 is the
division between "chocked" and "unchoked" flow; at pressures greater than the division line,
the "choked" form of Eq. (2) applies. The comparison temperature (TF190) history is
presented in Fig. 4.

The exhibited pressure trends in Fig. 3 are interpreted as propellant burning until the
pressure peak, after which pressure decay occurs as the bunker is vented to atmosphere. Then,
for the pressure decay portion of the process, the mass generation term goes to zero in Eq. (2)
preceding. The reduced Eq. (2) takes the form

dr x1!
() o
Y

4
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for which the solution takes the form

y+1
P = (P), e ' where B = %k- JRTCY[ 2 )Y—l @
Y

[

The instant venting process may be related to venting through an orifice, so the constant,
B, is redefined as B * Cp,, where Cj, is the discharge coefficient. Cp, is a measure of the resistance
offered by the orifice to passing the flow through it; a unity value denotes no resistance, i.e.,
isentropic flow, and values less than unity, increased resistance, typifying real flow with pressure
losses and flow friction. The coefficient, B, was computed for the conditions of Test C-3 to be

5.666, treating the gas temperature as constant during the period of "choked" flow (* 14.0 to
15.0 sec). Hence, the particular solution for this case from Eq. (4) is

Pc (t) - (PC )p e -5.666Cp, (5)

The pressure-decay portion of Fig. 3 is expanded in Fig. 5. Also presented in Fig. 5 are the
computed pressure decay rates for Cp, = 1.0 and 0.18 to illustrate the degree to which the mea-
sured decay is non-isentropic and the value of Cp, required to match that decay. The normal range
for the coefficient, Cj,, to account for pressure losses in the orifice is 0.8 - 0.95; the value required
to match the measured decay indicates significant other resistance mechanisms in operation. One
such mechanism is thermal choking in the vent pipe, caused by heat release with time. This obser-
vation is in concert with the likelihood of burning propellant being ejected, and its definition
would require the development of a particle transport mechanism model.

In Fig. 3 an apparent acoustical phenomena of the order of 1 Hz is manifested in the pres-
sure history. Attempts to relate this occurrence to any of the geometric or flow parameters of this
case have thus far proved unsuccessful, hence, its cause is not currently understood.
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Section 5
TEST RESULT REVIEW AND
COMPARISON WITH ANALYSIS

A review of the KA-III, Phase C Tests and comparison with analytical results based on
the information and insights developed in the prior Sections are now presented to gauge the
instrumentation performance. Two primary data sources were used: the Test Report [1], and
the video footage of the plume history.

5.1 Plume, Bunker Pressure and Temperature Measurements Review

Review of the video coverage of the plume behavior during the propellant burns for all of
the tests (C-1 through C-4) showed marked unsteadiness in the plume character, i.e., its shape,
radiation intensity, and its apparent mean velocity. Moreover, on one occasion the plume was
observed to be completely extinguished only to be subsequently re-ignited.

The observed unsteadiness likely is related to the acoustical phenomena detected in the
pressure histories, so understanding this phenomena has more than a causal interest. The re-
ignition process could be related to the presence of burning propellant grains or burning of the
H, produced in the combustion products of the propellant burning process. To gain under-
standing of these plume characteristics, additional instrumentation to the surface pressures
measured in the subject tests is necessary. Recommendations to define the required additional
instrumentation are presented in the next Section.

Review of the plotted results presented in Ref [1] provide a better opportunity for direct
comparisons and analysis with what one might expect based on fundamental thermochemical
and fluid dynamic considerations. Of the four tests presented, the results for Test C-3
provided the better quality plots, hence our review focused on this test exclusively.

Possibly the most surprising aspect of our review was the apparent low amount of energy
released in the bunker during the propellant burning compared to the amount theoretically
available (See Section 3.1). The comparatively low pressure is possible in view of the vent
and/or the slow burning time compared to the fluid dynamic time scale, i.e., the grains can be
exhausted well into the plume before burning is completed. Moreover, the pressure histories
from three transducers agree well enough to confirm the measurements as being correct.

However, the indicated gas temperature is well below the maximum value one might
expect (900K compared to 1900K), suggesting either incomplete combustion in the burning
process or very low rate producing little combustion gas. In the latter case the ambient air in
the bunker affects measurably the mixture temperature. In addition, the shielded

11




thermocouples may have had significant time lag and conduction loss resulting in lower than
actual indicated temperature.

In this vein the one bunker gas temperature measurement was compared chronologically
with one of the bunker pressure histories as shown in Fig. 6. The temperature does not peak
until about two seconds after the peak pressure occurs. Remembering the inference that the
peak pressure indicates the cessation of propellant burning, the continued increase in gas
temperature measurement suggests a thermal lag in the temperature measurement device.
Future gas temperature instrumentation should be selected to minimize these potential effects.

5.2 Vent Pipe Heat Flux Measurements Review

A means of evaluating the performance of the heat flux instrumentation is the
fundamental fluid dynamic relationship between the heat flux and local pressure. This
relationship states that the heat flux is proportional to the pressure to an exponent, i.e.,

g = @) (6)

where
n = 0.85 for turbulent flow.

Since the local pressure is related to the bunker pressure fluid dynamically and the
bunker pressures were already digitized, one of the bunker pressure histories was used in the
above equation with each of the two heat flux measurements (TF191 and -192). Shown in
Figs. 7 and 8 are the heat flux histories for each measurement plotted against the bunker
pressure in the log-log domain. Also shown is the 0.85 exponent line paired through the
measurements. Good agreement with the fluid dynamic model is clearly evident, indicating
the heat flux trends to be as expected and that the instrumentation is performing satisfactorily.
It should be remembered, however, that instrumentation was severely overdriven in Test C-4,
so for that reason a different type of instrument to measure heat flux is recommended in the
following Section for the future tests.

12
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Section 6
Recommended Instrumentation for
Future Propellant Burn Tests

Based on the review and analysis presented in the prior Sections, the following
recommendations are made for instrumentation to be used in future propellant burn-type tests.
The recommendations are made to improve the definition of the thermal and fluid dynamic
aspects of the propellant burn process with the view to enhancing the understanding and
definition of the process environments, particularly the amount of energy released and where it
is distributed. The recommendations are presented by a generic subdivision of the regions of
interest with a rationale of the need for each measurement. Specification sheets for the recom-
mended thermal instrumentation are given in Appendix C identifying the type and recom-
mended supplier. And a summary of all recommended instrumentation is presented in
Table 1. :

Table 1: WES May '93 Propellant Burn Tests Recommended Instrumentation Summary

Specification Number

Chamber

Pressures Selected by WES 6

Total Temperature (T) TCGT 130 Series-569 2

Total Heat Flux (HT) TCS-E-YY-ZZ-10196 6

Radiometer (R) 32R-L-XX-140-ZZ-21096 6
Vent Pipe "

Pressures Selected by WES 7

Total Temperature (T) T/C-801 2

Total Heat Flux (HT) TCS-E-YY-ZZ-10196 3

Radiometer (R) 32R-L-XX-140-ZZ-21096 3
Plume

Pressures Selected by WES 2+

Total Temperature (T) T/C-801 1+

Total Heat Flux (HT) TCS-E-YY-ZZ-10196 3

Radiometer (R) 32-L-XX-140-ZZ-21096 3

Note: Recording channels for T & HT instrumentation may require 10 MHz

sampling rate.

16




6.1 Propellant Combustion Chamber Instrumentation

Shown in Fig. 9 is a geometrically scaled sketch of the combustion chamber hardware to
be used in the WES May '93 tests with the recommended instrumentation located. The recom-
mended instrumentation consists of gas total pressure and temperature and chamber wall total
and gas radiative heat flux. The pressure instrumentation used in the KA-III, Phase C tests
performed quite well and are recommended for use in the future tests. The sensing face of the
transducer should be well shielded from the heat effects of gas radiation. Considering the
length- to-diameter of the combustion chamber, it is recommended that three (3) pressure
measurements be spaced equally along the chamber length to detect any possible gradients.
The pressure measurements at each end are placed to detect any acoustical phenomena.

The gas total temperature measurements should be installed near the pressure
measurements located at 0.25 and 0.75 of the chamber length. The measurement tip of the
thermocouple should extend about 5 in. beyond the chamber side wall. The spec sheet for this
transducer is presented as Fig. C-1 (Appendix C).

TT TT
HTR PHTR HTR

DM

—— P,HT, R

/////

HT, R—
— P,HT.R

7

AT

Pressures (P): Gas total pressure; six measurements for gradient defini-
tion, acoustic effects and redundancy.

Temperatures (TT): Gas total temperature; two measurements for gradient def-
inition and redundancy.

Heat Flux (HT): Wall total heat flux gauges; gauge will measure wall surface
temperature as well.
Radiometer (R): Gas radiation gauge; HT-R at each location will provide

convection heat flux, allowing definition of local convective
heat transfer coefficient, using nearest TT and wall temper-
ature.

Figure 9. Recommended Instrumentation in Combustion Chamber for WES May '93
Propellant Burn Tests
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Because of the indication of possible thermal lag of the thermocouple used in the KA-III,
Phase C tests, the gauge of the thermocouple wire for this transducer should be as small as
possible, consistent with the expected maximum temperature (1900K for the present case). If
there is room in the data acquisition system, it would be desirable to add a third thermocouple
of a different wire gauge near the bottom of the chamber at the same axial location as one of
the top thermocouples to assess the lag effect.

The recommended heat flux measurements in the chamber are designed to allow
determination of the amount of energy transferred to the walls before the gas is expelled out
the vent pipe. Both total and radiative heat flux instrumentation are recommended to allow the
determination of the convective heat transfer (total minus radiative), which may be used in
conjunction with the simultaneous gas total and wall temperatures to compute the convective
heat transfer coefficient. Having the measurements in this form provides the means to define
the thermal environments for other test conditions more readily. The transducer for the total
heat flux is actually a surface temperature measurement device; it was selected because it is
extremely rugged, provides the direct measurement of the wall temperature, its temperature
history can be used in an algorithm to determine the wall heat flux, and it is virtually impossi-
ble to overdrive its capability to define the heat flux (as was experienced in the vent pipe for
Test C-4 of the KA-III, Phase C tests).

The specs sheets for the surface temperature (total heat flux) and the radiative heat flux
gauges are presented as Fig. C-2 and C-3, respectively. The heat flux algorithm is discussed
in Subsection 6.4: Recommended Data Reduction and Instrumentation Installation.

6.2 Vent Pipe Instrumentation

The recommended instrumentation in the vent pipe is designed to define the energy and
velocity (and mass flow) of the entering and exiting flow, and the distributions with vent-pipe
length of static pressure and total and radiative heat flux to the wall.. The placing of the vent-
pipe instrumentation is shown in Fig. 10; the locations of the wall static pressure and heat flux
transducers should be spaced logarithmically along the length for better definition of any pipe-
flow characteristics the flow might exhibit.

The total and radiative heat flux gauges and total and static pressure transducers are the
same as those recommended for use in the combustion chamber (See Fig. C-2 and C-3). The
installation of the pressure transducers in the pitot probes (PT) is described in Subsection 6.4:
Recommended Data Reduction and Instrumentation Installation.

The total temperature transducer recommended for use in the vent pipe is similar to the
ones in the combustion chamber but has a different radiation shield. The specs sheet for this
transducer is presented in Fig. C-4. The concerns for temperature response with thermocouple
wire gauge expressed in the combustion chamber discussion apply here also.
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PT X TT

l

l |

P,HT,R P,HLR P HT, R

Pressures (P):
Heat Flux (HT):

Radiometer (R):

Pitot Tubes (PT):

Temperatures (TT1):

Wall static pressures; three measurements are minimum
needed to identify pipe flow characteristics.

Wall total heat flux gauges to characterize pipe flow and
detect any vent pipe burning.

Gas radiation gauge; HT-R at each location will provide
convection heat flux, allowing definition of local convective
heat transfer coefficient, using nearest TT and wall temper-
ature.

Probe configured to measure both gas total and static pres-
sures as a measure of these parameters and flow dynamic
pressure. Comparisons of entrance and exit values will re-
veal any in-pipe shock fronts.

Gas total temperature; used in conjunction with PT mea-
surements to get gas mass flow. Comparisons of entrance
and exit values will reveal any in-pipe energy release.

Figure 10. Recommended Instrumentation in Vent Pipe for WES
May '93 Propellant Burn Tests.

6.3 Plume Instrumentation

Shown in Fig. 11 is a layout for an instrumentation package to minimally define the
thermal/fluid dynamic characteristics of the propellant burn exhaust plume. The package
consists of a radiometer positioned at three locations along the plume length (15m shown) and
a pitot rake which can be positioned at any location along the plume. The pitot rake should
facilitate mounting pitot probes and a total temperature transducer at up to eight (8) adjustable
positions both vertically and horizontally plus a center position to provide survey type mea-
surements of the plume cross section.

The pitot probes, total temperature instruments, and the radiometers are the same as
those used in the vent pipe application.
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Vertlcal and Horizontal
Pitot Rake (PT and TT)
R

R R
{ { {
= f — f —
0 s 10 15  Meters from
’ ’ Vent Exit
XL =0.164 0.405 1.00

Note: Instrument stations spaced equally from vent pipe exit on log scale.

Radiometer (R): Plume radiation heat flux gauges; measure of
far-field radiation effects of plume.

Rake Pitot Tubes (PT):  Probe configured to measure both gas total
and static pressures; several locations are de-
sirable to survey plume cross section.

Rake Temperatures (TT): Plume gas total temperature to measure plume
total energy; several locations are desirable to
survey plume cross section.

Note: Initial tests should use only one each of the PT and TT instruments. After
performance verified, use multiple instruments to define plume profiles.

Figure 11. Recommended Instrumentation in Plume Region for WES
May ‘93 Propellant Burn Tests.

6.4 Recommended Data Reduction and Instrumentation Installation

Data Reduction - The total heat flux/surface temperature is the only measurement result
for which the data reduction procedure is not straightforward multiplication of a gauge
constant scale factor, supplied by the instrument vendor, times the instantaneous output of the
instrument. Some thermocouple transducers are non-linear and require special digital data
reduction.

The surface temperature is obtained by the tabular look-up in the millivolt output tables
for Chromel-Constantan taking into account the thermocouple reference temperature, or input
of the millivolt output into a curve fit equation of the tables. Computation of the heat flux is
more complicated; it requires the time-wise integration of the surface temperature to get the
heat flux.
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The heat flux algorithm is based on the condition of one-dimensional conduction along
the gauge, a condition that is satisfied if the gauge is installed in a material of similar
thermophysical properties such that [z for the gauge and the host material are as near the
same as possible. For Chromel-Constantan, steel is the best match for these properties. The
temperature variation of JoC,E oOver the range measured by the gauge is required in the data
reduction procedure.

The simplest algorithms that for a gauge installed in a semi-infinite slab under a heating
load from a time-invariant heat transfer coefficient. This algorithm is available in Ref [5].
However, it is not likely that the heat transfer coefficient for the conditions of the propellant
burn tests will be constant with time.

A second algorithm for the time-variant heat transfer coefficient may be developed by
solving the inverse of the equation presented in Ref [6] for the wall temperature as a function
of the time-variant heat transfer coefficient. This approach requires the computation of the
instantaneous slope of the wall temperature with time.

The most direct method of computing the heat transfer coefficient variation with time
from the wall temperature time history is by the use if a one-dimensional conduction code
which has this capability built in. The EXITS code, developed by REMTECH, Inc., has this
capability and can be made available for use in this application.

This type gauge is recommended despite the difficult data reduction procedure required
to compute the heat flux in view of the benefits of a very rugged transducer which is virtually
impossible to destroy or over-range. Moreover, its use with the radiometer and gas total
temperature measurement permits the computation of the convective heat transfer coefficient.

It should be emphasized here that in order to measure the total heat flux, the exposed
surface of the gauge must be coated with a paint of known emissivity -- the closer to unity the
better for greater accuracy.

Instrumentation Installation -- The installation requirements (hole diameter and thread
type, etc.) for all the thermal instrumentation are called out on the spec sheets for each type.
Additional installation considerations are discussed below.

The radiometer and heat flux gauge should be installed flush with the internal wall of the
test hardware. The heat flux gauges may be contoured to the local radius. The radiometers
should not be contoured and should be installed such that no part of the window is protruding
into the flow.
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In order to avoid the violation of thermal diffusion times, which complicates the data
reduction procedure for the heat flux gauges, the minimum wall thickness into which these
gauges should be installed is 1.5 in. This criterion is not satisfied in the vent pipe as it is
presently designed; methods to effectively increase the local wall thickness around each gauge
(1.0 in. radius) should be adopted. |

The mounting of the total temperature and pitot probes in the vent pipe should be such as
to minimize the interference effects of its presence in the passing flow; how much is too much
is difficult to determine -- a rule of thumb is no more than 15 percent blockage area to the
unblocked flow area.

The important aspect of the installation of the pressures in the pitot pressure probe is that
the static pressure transducer be located sufficiently downstream of the probe front face so that
the local pressure has returned to the stream static. A rule of thumb for that distance is 10
probe diameters. For all installations the pressure transducers should be protected from direct
radiation from the combustion gases.
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Appendix A
ANALYSIS OF ADIABATIC BURNING
CONDITION OF M-1 PROPELLANT USED
IN KA-lll, PHASE C, TESTS (CEC Code Output)
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ANALYSIS OF ISENTROPIC BURNING
CONDITION OF M-1 PROPELLANT USED
IN KA-lll, PHASE C, TESTS (CEC Code Output)
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Appendix C
SPECIFICATION SHEETS FOR THE
RECOMMENDED THERMAL INSTRUMENTATION




REVISIONS

FRACTIONS DECIMALS ANGLES

GAS TOTAL

SYM OESCRIPTION DATE APPROVAL
12 Dia
4 Holes . Lp ———be . 50 -
i I
] T .30
f l r?__i 2ovZAZ ‘/ | —{—
-:I.,
1.00 5, & o5 I v =
T
N J o
| __j 2 52 | b
.18 g .
SMooTd TUSE AR —J.3
INSTALLATIoN WiTH ——/ C—
CoMPResSION 2177/ &G (@)
S
SECTION A-A
Available Options:
3. Probe Length (L.) Order Code
1. T/C Mat'l Order Code il
Available in 1/8" State
Pt/Pt 10% Rh S increments 1-12" length in
W/ %W 26 Re W/W 26 inches
2. T/C Wire Size Order Code 4. Lead Wire
(Nominal
aig a. Protection  Order Code
35 .00 CRES Braid S
30 .013 gg Spiral Armor X
26 .016 26 b. Length (L) Order Code
2 .

2 025 22 (12" Standard) State
length in
inches.

Model No. I/C MatTl 1/C Wire Probe Length Lead Wire
e | © [ ® | ® ®
UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES
TOLERANCES HIGH TEMPERATURE
THERMOCOUPLE PROBE MEDTHERM

CORPORATION

—_ .01 + 1° POuT oriect 31 i T RONTIVLE AR Y
= TCGT 130 SERIES
MATERIAL
Sheath Tube-Tantalum
owG

Base-CRES omwn:@ug. DATE: /-/3-67 SZE
FINISH CHECKED: , SCALE: — A 5 6 9

3 { >

\2/8 Polish APFROVEW [Lm NO: — SHEET or

Figure C-1: Recommended. Chamber Total Temperature Instrumentation
for WES May '93 Propellant Burn Tests
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