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A SURVEY OF THREE SCALABLE HYDRODYNAMICS CODES 

INTRODUCTION 

Presented here is a survey and partial assessment of several different hydrodynamic codes with a 
focus on scalability; i.e., codes that are amenable to implementation on high performance parallel 
computer architectures. Massively parallel architectures offer greater memory capacity and faster 
CPU speeds through the cooperative effort of hundreds or thousands of individual processors. Each 
processor works on its own portion of the problem in parallel with the others and communicates its 
results with other processors when necessary. This makes possible the solution of problems previously 
thought to be impractical with conventional vector supercomputers. However, exploiting scalability in 
physical problems brings with it a new set of problems to be solved. Issues, such as decomposing the 
physical problem into naturally parallel parts, load balancing the computation load across multiple 
processors, communicating data effectively between processors, and manipulating and displaying 
large sets of data, become important [1]. 

There are two principal strategies for parallel computing: the single-instruction, multiple-data 
approach (SIMD) and the multiple-instruction, multiple-data (MIMD) approach. In the SIMD 
approach, processors perform their operations in unison under the control of a master processor, thus 
they are particularly effective on problems where the parallelism arises through the parallel structure 
of the data. Computational problems with data irregularities or irregular computational requirements 
lead to a loss of efficiency. SIMD machines operate very efficiently on nearest neighbor transfer of 
information; however, general data exchange operations, as required for unstructured grids, are very 
inefficient. Special routers or precompilers have been developed in an attempt to circumvent this 
problem. These machines are not practical for more general types of applications where the grid 
topology changes every few time steps (remeshing, h-refinement, etc.). Examples of SIMD 
architecture with distributed memory are the Connection Machines—CM-1, CM-2, and CM-200, and 
the MASSPAR-1. 

For MIMD, processors operate independently on their data, possibly using different instructions, 
with coordination between the processors handled by the explicit passing of messages and 
synchronization hardware. Most of the algorithmic considerations designed for vector machines are 
applicable to many MIMD machines since, in many current designs, each node of a MIMD system is 
a vector processor. Because MIMD computers store their code locally, they are capable of running 
with many input-output (I/O) nodes by designating certain processors as I/O nodes. The software 
development for MIMD machines is, in many instances, more complex than that for SIMD. The Intel 
series of machines—the Cray T3D, IBM SP1 And SP2, and the CM-5—are examples of MIMD 
architecture. 

Recent achievements in microprocessor technology and the capability to produce inexpensive 
high-speed processors have led to hardware developments that outpace software developments. The 
Department of Defense (DoD) has taken significant steps to accelerate the exploitation of scalable, 
parallel, high-performance computing systems to solve complex computational problems of critical 
importance to the DoD. One of the motivations of this effort is the realization that code development 
must keep pace with the evolving computational environment while focussing on cost effectiveness. 

Manuscript approved February 29, 1996. 
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These efforts encompass a broad spectrum of research endeavors. This report focuses on a small 
subset of these efforts in the area of hydrodynamics—specifically, computational fluid dynamics— 
and deals with several computational models and their potential for scalability that would be 
applicable to the solution of underwater explosive bubble dynamics. This problem is characterized by 
large material distortions that severely limit the applicability of a pure Lagrangian method. The 
report focuses on three general-purpose computational fluid dynamics (CFD) (or hydrodynamic) 
codes that can model highly dynamic conditions and shock propagation. 

CFD is the accurate numerical solution of the equations describing fluid and gas motion and the 
related use of digital computers in fluid dynamics research. CFD is used for basic studies of fluid 
dynamics, for engineering design of complex flow configurations, for predicting the interactions of 
chemistry with fluid flow for combustion, propulsion, and explosive reactions, for interpreting and 
analyzing experimental data, and for extrapolation into regimes that are inaccessible or too costly to 
study. CFD encompasses all velocity regimes and scales of interest to the DoD. The physics to be 
considered may entail additional force fields, changes of phase, changes of chemical composition, 
interactions among multiple phases of heterogeneous flows, and coupling to surface physics and 
microphysics. CFD has no restrictions on the geometry and motion of boundaries defining the flow. 

Rapid advances in hardware and software on today's modern, parallel computers have provided 
unique opportunities for cost effective CFD calculations. Although these architectures tend to require 
significant restructuring and rewriting of the existing program, the opportunity for great 
improvements in efficiency does exist. An additional incentive to port software to these parallel 
computers lies in their modest cost as compared to the easier-to-use general supercomputers like the 
Cray. 

There are as many numerical models in CFD as there are problems to be solved. In this report, we 
restrict our consideration to three models. As noted above, this is somewhat driven by the problem to 
be solved (underwater explosive dynamics) and the requirement that this report be finite in length. 

NUMERICAL MODELS 

CFD has advanced to the point where the flow field about arbitrary, complex, three-dimensional 
(3-D) bodies can be solved given enough memory and CPU time. The first step in the solution 
process is the construction of an appropriate grid to represent the computational domain of interest. 
The criterion for delineating the various models is the methodology used to represent the grid in 
complex geometries.  Grid methods are broadly defined as unstructured or structured. 

For unstructured grids, the computational domain is subdivided into an irregular set of 
computational cells, usually tetrahedra in 3-D. This method is possibly optimal in terms of flexibility, 
degrees of freedom, and ability to "conform" the grid to a complex shape. A number of algorithms 
are known for automatic unstructured grid generation [1,2]. However, the unstructured grid approach 
is not well suited for either SIMD or MIMD parallelism because of the large demands placed on both 
computer memory and CPU time. One of the features of the unstructured grid is that the number of 
elements surrounding an interior node is not necessarily constant; thus additional data have to be 
stored to get information on the neighbors, and additional CPU time is used to transfer the 
information between elements and nodes. A number of schemes have been developed to minimize 
this difficulty [3,4]. 
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For structured grids, the computational domain is divided into an assembly of quadrilateral or 
hexahedral cells. Here, each interior node is surrounded by the same number of elements; thus, this 
methodology is ideally suited for MIMD or SIMD parallelism. Typical structured grid approaches 
are unsuited for complex geometries because of the need to balance computational speed against cell 
resolution near the complex shape. Numerical algorithms such as CIA [5] and virtual-cell embedding 
(VGE) [6] take advantage of the large memory available with parallel architectures and improved 
volume resolution about the complex geometry without much of a sacrifice in computational 
memory or speed. With these algorithms, it is possible to construct an acceptable grid to regions of 
general shape. 

There are several additional considerations with respect to grid generation when developing 
algorithms for MIMD machines. To maximize the advantage of a multiprocessor system, each 
processor should be assigned an equivalent amount of computation to minimize idle time. This is 
referred to as load balancing. Basically, the problem is to map the computational blueprint for the 
discretized equations onto the blueprint for the network of the massively parallel computer in such a 
way that the overall cost of the simulation is minimized. The domain should be decomposed in such a 
way as to minimize the amount of interprocessor transfer time relative to microprocessor 
performance. This is equivalent to minimizing the ratio of the surface area to the volume of the 
computational domain assigned to each processor. The more complex the griding becomes, the more 
difficult it is to minimize this ratio. 

The three codes discussed in this article are: FEFLOIC [7,8], an implicit, 3-D, incompressible 
flow code using unstructured meshes; PCTH [9,10], an explicit, 3-D, compressible, strong shock wave 
code using an Eulerian griding scheme; and FAST3D-VCE [6,11], an explicit, 3-D, monotone, 
positivity preserving hydrodynamics code using a structured, rectilinear Eulerian grid with cell 
subdivision near geometrically complex bodies. 

FEFLOIC 

This code is a classic example of a 3-D, finite element, unstructured grid flow solver [7,8]. The 
incompressible Navier-Stokes equations are discretized in the arbitrary Lagrangian-Eulerian (ALE) 
form. The resulting linearized matrix system is solved sequentially using a projectionlike method 
[12,13]. The large systems of equations in the two-step process are solved iteratively with a 
preconditioned conjugate gradient algorithm. The preconditioning is achieved through linelets [14]. 
This model has been applied to unsteady aerodynamic flows and turbulent separating flows over 
complex structures such as submarines. 

This code is also an example of how the algorithm and the problem to be solved control the 
choice of computer architecture, SIMD or MIMD. As noted above, the unstructured grid offers good 
flexibility with few degrees of freedom and involves straightforward adaptive meshing strategies for 
dynamic resolution in transient problems. The mesh generation employs the advancing front 
technique [15] that requires different tasks to be performed in different subdomains. As noted above, 
the implicit flow solver uses linelets as a preconditioner to achieve improved convergence rates. Both 
the mesh generation technique and the implicit nature of the flow solver necessitate MIMD 
architecture. The use of SIMD architecture would require that linelets be used in all subdomains (or 
not at all). This would eliminate the possibility of retaining an implicit flow solver in regions such as a 
boundary layer (where the cell sizes are small) and an explicit flow solver where the cell sizes are 
large. In an unstructured mesh, the communication pattern is quite irregular, and SIMD architectures 
are efficient only for communication between nearest neighbors. Note that mapping techniques [16] 
can  be  used  to  assign vertices  of  the   unstructured   mesh  to   processors,   thus   minimizing 
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communication costs stemming from the irregular communication pattern; however, this is not 
realistic in situations where adaptive remeshing is taking place. 

FEFLOIC has been ported to a MIMD environment such as the Intel DELTA prototype. A 
description of the problem to be addressed (surfaces, initial condition, etc.) are typically formed from 
a CAD-like description, and the sequence of events required to perform a run on the MIMD machine 
is as follows [8]: 

• generate the mesh either on a serial or parallel machine; 
• partition the mesh by using a load balancing algorithm with a serial or parallel machine [17]; 
• integrate the flowfield on a parallel machine; and 
• display the results on a supergraphics workstation. 

The algorithm is parallelized through domain decomposition. To be efficient, the workload in 
the subdomains must be balanced and executed without incurring substantial overhead. The workload 
in each subdomain is summed and any imbalance in the surplus/deficit of this workload between the 
element and its neighbors is computed. Elements are then added to subdomains with a deficit, and the 
process is repeated until a balance is achieved [17]. 

Once the domain has been partitioned, each subdomain is assigned to a processor. There is one 
layer of elements overlapped between adjacent subdomains. The information at the vertices associated 
with this layer of elements are communicated between processors. The interprocessor communication 
is achieved by adding one extra layer of elements. When information from neighboring domains is 
required, a central library of subroutines is invoked. Details of the parallel implementation are 
available in Ref. 8. 

Figure 1 shows the scalability of the code [8]. This shows the CPU time taken per-point-per- 
timestep (x ) for steady flow over a NACA 0012 airfoil. For constant problem size (2992 points), 
x decreases linearly as the number of processors increases from one to four but then deviates from 
ideal scaling as the number of processors increases because of increased communication time. For a 
grid of 98,022 points and 194,993 elements, t decreases linearly from 124 p.s to 32 \is, as the number 
of processors is increased from 32 to 100. Figures 2(a) and (b) show the grid and the domain 
decomposition for the airfoil study. Figures 3(a) and (b) show the domain decomposition and 
pressure contours for flow past a DARPA-2 submarine model. 

PCTH 

PCTH is a software system used for modeling multidimensional, multimaterial, large deformation, 
strong shock-wave physics [9,10]. PCTH is the scalable version of the CTH shock-physics code and 
is under active development at Sandia National Laboratory. The conservation equations for mass, 
momentum, and energy are cast into a finite volume format. A two-step solution scheme is used on a 
fixed Eulerian mesh. The first step is a Lagrangian step in which the cells distort to follow the 
material motion, and the second step is a remesh step where the distorted cells are remapped back 
onto the Eulerian mesh. Three-dimensional rectangular geometry is available with PCTH. This code 
is used for solid dynamics problems such as armor design, penetrator design, and explosive 
component design and can model alloys, ceramics, glasses, geological materials, and energetic 
materials [18]. 
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Fig. 1 — Performance of the implicit flow solver FEFLOIC from Ref. 8 (Used with permisssion) 

Fig. 2(a) — Grid for simulation of flow past a NACA0012 airfoil 
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Fig. 2(b) — Pressure contours and domain decomposition for the same problem. From Ref. 7. 
(Used with permisssion) 

PCTH uses second-order accurate algorithms to reduce dispersion and dissipation and 
incorporates a high-resolution interface reconstruction scheme to prevent numerical breakup and 
distortion of material interfaces. Up to ten materials and void can occupy a computational cell. 
Several material models are available: analytic equations of state for the nonlinear behavior of 
materials in the high-pressure regime, elastic-perfect plastic with material softening, programmed 
explosive burn, and a history variable model, the Jones-Wilkins-Lee analytic model for explosive 
reaction products, and fracture. [19] 

PCTH is designed for distributed memory parallel architectures (MIMD). The mesh is broken 
into several subdomains. Each subdomain is sent to a different processor. The problem scales to 
different size parallel computers by dividing the mesh into a different number of subdomains. 
Explicit message-passing is used to communicate between processors. The communication software 
can be modified easily and is easily structured to use either vendor provided communication routines 
or PVM3 message passing routines. PCTH is written in the C++, ANSI Fortran77, and C languages. 

The code requires the standard UNIX tools LEX and YACC for input parsing, and the code generated 
by these software tools is modified automatically by the PCTH Makefile system [18]. PCTH runs on 
several distributed memory parallel machines including the Intel Paragon, Intel Delta, nCUBE2, 
networked HP's workstations, and networked Sun workstations. 

PCTH runs approximately five times faster on the 1024 nCUBE2 massively parallel computer 
than on the single processor Cray YMP and approximately 30 to 60 times faster on the 1840 
processor Intel Paragon than on the single processor Cray YMP. Recent simulations on 256 nodes of 
the Paragon include the formation of a shaped charge and the impact of the charge on a rod of high 
explosive PBX-9501 and the explosive welding of a copper tube to a steel plate [18]. 
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Fig. 3(a) — The mesh and domain decomposition for the DARPA-2 submarine problem 

Fig. 3(b) — Pressure contours of flow past a DARPA-2 submarine model, from Ref. 8. 

(Used with permission.) 
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FAST3D-VCE 

The parallel FAST3D CFD code with the VCE grid generator for complex geometry uses a 
globally structured grid [6,11]. FAST3D is a compressible fluid dynamics flow-solver applicable to 
problems such as noise generation in supersonic jets and reactive flow in ram accelerators, as well as 
low speed flows such as the unsteady airwake over a complex Navy ship superstructure [11]. The 
multiphase version of FAST3D is being used to model wave-breaking over complex geometries and 
underwater explosion and bubble dynamics. FAST3D was designed to be scalable since these 
applications require large grid sizes as well as long run times to collect unsteady flow field data. 
FAST3D solves the unsteady 3-D transport equations using the flux-corrected transport (FCT) [20] 
algorithm with the VCE method [6] for complex geometries. The FCT algorithm is a high-order, 
monotone, conservative, positivity preserving algorithm. Thus when a convected quantity such as 
density is initially positive, it remains positive, and no new maxima or minima are introduced due to 
numerical errors in the convection process. Monotonicity is achieved by introducing a diffusive flux 
and later correcting the calculated results with an antidiffusive flux modified by a flux limiter. In the 
FAST3D model, the FCT algorithm solves the 3-D flow equations by using a direction-split, time-split 
method, essentially creating a series of 1-D equations, which the FCT algorithm time integrates. For 
multidimensional problems, FAST3D is implemented typically in an Eulerian fashion. In addition, a 
structured, orthogonal, rectilinear mesh is used for 3-D problems. In turn, this would require 
extremely fine grids for accurate solution around complex bodies; however, the VCE method 
circumvents this problem. 

The VCE method improves the accuracy around complex bodies without sacrificing speed or 
memory [6]. While the VCE method uses a structured, rectilinear grid, the cells with the VCE method 
may be fully outside the body, fully inside the body, or partially inside the body. It is the partially 
obstructed cells—those cells "cut" by the surface of the body—that are given special treatment. To 
compute the fluxes correctly in these partially obstructed cells, the unobstructed face areas and 
volumes are needed. These cells are subdivided into a number of smaller subcells with which the areas 
and volumes can be calculated to arbitrary accuracy. Using the VCE method, only those cells next to 
the body are subdivided. The term "virtual" is used since the subcells embedded within a cell are 
not stored in memory and, therefore, are not integrated in the flow solution. CPU time is not 
sacrificed appreciably since only those cells next to the body require special treatment. The 
information computed from the subcells (computed once and stored) is stored in a list at the location 
indicated by a pointer stored in the parent cell. The division into subcells can be made so fine that the 
body is essentially smooth without staircasing. VCE has been shown to provide accurate results when 
tested on a series of 2- and 3-D problems [6]. 

The full 3-D, time-dependent model FAST3D-VCE has been implemented in parallel on the 
Intel iPSC/860 Touchstone computer [11]. Each node of the Touchstone is based on the Intel i860 
high-performance chip that has vector-processing capability. The Touchstone architecture is a 
hypercube with distributed memory and MIMD data flow. Since memory is distributed across the 
nodes, internode communication becomes of paramount importance. The orthogonal, structured grid, 
FCT algorithm is based on operator-spliting techniques that enable the 3-D flow field to be solved as 
a series of 1-D integrations along the three independent coordinate directions. This multidimensional 
data structure, coupled with the VCE technique for complex geometries, is particularly amenable to 
parallelization. As with the previous cases, the choice of computer architecture was driven somewhat 
by the problem to be solved and the method of solution. In this case, there was the desire to preserve 
much of the original code, retain the long vector features, interface with the simpler to program 
vector computers to do the initialization for complex geometries, and be able to modify resolution 
during a computer run. To meet these criteria, an efficient running transpose (RT) data structure was 
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developed, and a system of virtual nodes was incorporated to simplify the transpose on varying 
numbers of physical nodes [11]. 

The fluid equations are integrated forward in time on a computational domain which is an Nx X 
Ny X Nz rectilinear, structured grid. The 3-D flow field is partitioned across the nodes so that each 
node's subset contains its share of full-length vectors at each stage of the full 3-D transpose. In a 
typical simulation, the blocks are on the order of tens to hundreds of kilowords. These blocks are 
swapped with their replacement blocks in counterpart nodes and are transmitted as a single large 
message at each stage of the RT. This approach minimizes communications overhead and entirely 
eliminates interprocessor communications from the fluid geometry and fluid dynamic integration 
sections of the code. This does require an efficient RT algorithm because of the size of the large data 
blocks being transmitted, unlike the standard static block domain decomposition that requires only 
that the data along the block surface interaction be transferred. 

There are several reasons for invoking this methodology [11]: 

• overhead for communications startup is minimal; 
• the transpose proceeds at near optimum data rates on a hypercube architecture; 
• the data blocks are very large and there are few transfers per time step; 
• the data structure maintains its full-length vector features at each processor, improving 

optimization; and 
• the data structure is exactly the same for both scalable and serial machines, allowing for 

preservation of much of the original code. 

The parallel performance characteristics indicate that the benefits of this data structure greatly 
outweigh the minimal overhead costs associated with the running transpose. The CPU time for the 
hydrodynamics operations scale nearly as the inverse of the number of nodes. This confirms that a 
high degree of scalability has been achieved. The RT scales at a slower rate. (See Fig. 4.) In practice, 
with a variety of architectures and sizes, the running transpose accounts for less than 10% of the total 
CPU time. Standard benchmark calculations indicate that 32 nodes of the Intel iPSC Touchstone is 
equivalent to one Cray C90 processor and five Power Challenge SGI nodes. The code has been used 
to model the flow characteristics over ship superstructures. The DDG51 destroyer geometry is shown 
in Fig. 5. This geometry was obtained from a CAD package that constructed the shell of the ship with 
a series of plates. Figure 6 shows the typical unsteady flow pattern down the centerline of the DDG51 
destroyer [21]. 

ADDITIONAL CONSIDERATIONS 

As the above examples showed, the algorithm and the problem to be solved can control the 
choice of computer parallel architectures—SIMD or MIMD. Several other issues should also be 
considered when developing scalable software from existing serial code. Strong consideration should 
be given to keeping restructure of the original code to a minimum. There are several benefits in this 
approach: 

• it minimizes the interactive cycle time between the user and the simulation; 
• it allows for rapid and efficient verification/validation with serial code; 
• it enhances the rapid portability of the code to various architectures; and 
• it allows for easier and more rapid revision/modification of the code to incorporate new 

algorithms and technologies. 
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Fig. 5 — The DDG51 Destroyer geometry 
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Aft View - Closed Hangar Doors     Aft View - Open Hangar Doors 

Fig. 6 — Plots of the stack gas distribution for the cases with the hanger doors both open and closed. 
From Ref. 21. (Used with permission.) 
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There are minimal debugging facilities on most scalable architectures, which implies that the code 
developer should follow certain precautions. Interactive, real-time graphics capability is a necessity. 
It is almost impossible to develop and debug codes of the size discussed here without such a 
capability. The user/developer should write periodically all primary data, including complex 
geometry information, from a selection of cross-sectional planes to a file on a workstation. All three 
planes, or portions thereof, could be viewed without making the files unmanageable. Displays of the 
evolving flow could be displayed on terminals for both diagnostic and debugging purposes. 

Many geometries are extremely complex and require CAD packages that construct the shell(s) of 
the object(s) being modeled with a series of plates. The ability to rapidly grid complex geometries 
can entail initial reliance on serial architectures. Thus, it is more efficient to keep the data structures 
of both the serial and parallel versions of the code the same. 

Significant thought must be given to the overall data structure. Typically, very large and very 
long production calculations stem from scalable code development [22]. In addition, interaction with 
other users of the same machines may necessitate reducing the number of nodes available during 
heavy use periods. The data structure should be designed in such a manner as to facilitate check- 
point restarting, provide fault tolerance for very long run times, allow for changes in the number of 
physical nodes used in different segments of a single simulation, and ensure that dump-restart files 
are compatible with other serial processors required for initializing complex geometry cases and 
postprocessing the simulation results [11]. 
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