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Micromechanics-Based Failure Model of Granular/Particulate 
Medium with Reinforcing Fibers 

SUMMARY 

This report contains results from research sponsored by the Air Force Office of Scientific 
Research, Grant No. F49620-93-1-0192, made to the Johns Hopkins University for 
research entitled "Micromechanics-Based Failure Model of Granular/Particulate Medium 
with Reinforcing Fibers". Research results presented in this report are the outcome of 
a 3-year effort on part of the Principal Investigator and a team of two Graduate Students. 
Both theoretical and experimental effort was undertaken; computational and 
experimental facilities at the Johns Hopkins University were used to accomplish the 
tasks. Results from this research have been published in six technical papers and one 
doctoral dissertation1. This report summarizes the findings. 

Research personnel involved: Radoslaw L. Michalowski, Principal Investigator 
(Associate Professor at the Johns Hokins University), and 2 Graduate Assistants: 
Aigen Zhao (Ph.D. degree conferred in 1995), and Jan Cermak (Ph.D. expected in 
academic year 1996/97). 

1R.L. Michalowski and A. Zhao. Failure criteria for fibrous granular composites. In: Proceedings, 8th. Int. 
Conf. International Association for Computer Methods and Advances in Geomechanics, Morgantown WV, 
1994, vol. 2,1385-1390. 

R.L. Michalowski. Failure criterion for a fiber-reinforced granular composite. In: Proc. ASCE X Engineering 
Mechanics Conference, ed. S. Sture, Boulder, CO, May 1995, Vol. 2,1143-1146. 

R.L. Michalowski and A. Zhao. Limit condition for fiber-reinforced granular soil. Transportation Research 
Record, 1474(1995), 102-107. 

R.L. Michalowski and A. Zhao. Limit condition for unidirectiomlly reinforced soils. In: 5th. Int. Symp. on 
Numerical Models in Geomechanics, G.N. Pande & S. Pietruszczak, eds., Davos, Switzerland, 1995, 237- 
242. 

R.L. Michalowski and A. Zhao. Failure of fiber-reinforced granular soils. Journal of Geotechnical 
Engineering, 122(1996), No. 3, 226-234. 

R.L. Michalowski and A. Zhao. Failure of unidirectionally reinforced composites with a frictional matrix. 
Journal of Engineering Mechanics, 122(1996), No. 11 (in print). 

A. Zhao. Failure Criteria for Reinforced Soils and Analysis of Reinforced Soil Structures. Doctoral Dissertation, 
The Johns Hopkins University, 1994. 



The objectives of this research were: improvement in understanding of the 
mechanical behavior of fibrous composites with a granular matrix; identifying the 
dominant mechanisms of fiber-matrix interaction; formulating mathematical description 
of the behavior of granular composites on the macro-scale, based on microstructural 
interactions; deriving failure criteria for composites both with fibers in a preferred 
direction, and with randomly distributed fibers; collection of experimental evidence for 
validation of the mathematical description (evidence to corroborate model assumptions). 

The report of research findings (pages 11 - 56) is arranged in four subsections. 
The first two subsections describe the failure criteria derived for fiber composites. These 
parts include the concept of homogenization, and a theoretical effort toward 
mathematical description of the failure state of such composites in terms of the 
macroscopic stresses (stresses averaged over the constituents of the composite). Fiber- 
reinforced composites with randomly distributed fibers and with fibers oriented in one 
direction were considered. The former led to an isotropic failure criterion whereas the 
latter is described with an anisotropic function. 

Experimental tests are described in the third part. A technique was devised for 
preparing specimens of composites with fibers distributed uniformly and with a random 
distribution of orientation. Over 80 drained triaxial tests were performed on sand and 
sand - fiber mixtures of different composition. Comparison of these test results with the 
theoretical predictions indicates that the theoretical model for the failure criterion is 
a robust one. An interesting phenomenon of induced anisotropy was detected in 
specimens subjected to large deformation. The experimental results are documented in 
the Appendix. 

The fourth part of the research description contains examples of numerical 
implementation of the failure criteria derived. 

It is suggested in the concluding remarks that this research be continued with 
a wider scope of including anisotropy and describing the entire elasto-plastic behavior 
of fiber composites with granular matrices. 



INTRODUCTION AND LITERATURE SUMMARY REVIEW 

An extensive search of the literature was carried out prior to performing the research. 
Results of that search are summarized below, as part of this Introduction. While a large 
body of literature exists on metallic and synthetic composites, anisotropic laminate 
composites, and composites with a periodic structure, rather modest research results 
were found in the literature with respect to reinforced frictional (pressure-dependent) 
materials with low or no cementation (such as soils). None of the reports attempted a 
systematic analysis of the interracial force transfer, or its consequences for the behavior 
of the composite on a macroscopic level. Problems of a similar nature were considered, 
however, in formulating the strength criteria for media other than the 
granular/particulate kind (e.g., filament reinforced paper, and in description of 
cementitious fibrous composites). Most of those, however, are concerned with elastic 
properties, and much less attention is paid to inelastic behavior, which is so important 
in granular/particulate materials. Some developments in the area of rock joints (and 
faults) modeling were found to be common with modeling other frictional interfaces, 
such as a fiber - granular matrix. Published papers representative of past research are 
mentioned in this Introduction, and a more extensive bibliography is given in section 
References and Bibliography. 

Traces of systematic research into mechanical behavior of fiber composites can be 
found in the early fifties (Cox, 1952). Cox considered elastic interaction between a single 
elastic fiber and a matrix material. His analysis was later called the shear-lag theory, 
and its clear presentation can be found, for instance, in Piggott (1980). In short, the 
equilibrium of a single elastic fiber imbedded in a cylindrical elastic matrix element 
under an axisymmetric strain state is analyzed to give the distribution of the shear stress 
on the perimeter of the fiber, and the axial stress in the fiber. Following the shear-lag 
theory the axial stress in the fiber, cf, and the distribution of the shear stress, xf, along 
a perfectly bonded interface during elastic deformation, can be written as 

<5, = EtB, [1 -cosh(nx/r)/cosh(nL/r)] 
f      \ (1) 
i, = —nE.e, sinh(nx/r)/cosh(nL/r) 
f     2     ' 

where e2 is the axial strain of the matrix at distance R from the axis of the fiber, Ef is the 
Young modulus of the fiber material, and n is a parameter dependent on Ef,Em, vm (the 
last two being the Young modulus of the matrix material and Poisson's ratio), and the 



geometrical parameter R/r, where r is the radius of the fiber. It was assumed that the 
load transfer between the fiber and the matrix takes place only across the cylindrical 
interface and not through the circular ends of the fiber (af = 0 for x = ±L, 2L = fiber 
length). 

The shear-lag theory may be used to calculate microscopic1 stresses in the 
composite constituents necessary for calculation of the macroscopic stress 
(homogenization). While this theory, in a variety of forms, is used often today for 
description of elastic behavior of cementitious composites, its application to granular- 
based composites is questionable for at least two reasons: (a) flexible fibers do not 
remain straight in a coarse granular matrix as they follow the shape of granules, and (b) 
description based on the assumption of a perfect and continuous bond is not realistic for 
the fiber-granular matrix interface. 

Studies of the behavior of a single fiber in the matrix material were carried out 
to predict the behavior of the composite. Homogenization techniques were used to 
generalize the results derived from the microstructural studies to the macroscopic (or 
global) behavior of the composite. These techniques are based on the mixture theory 
where the magnitude of an average quantity (for instance, stress) assigned to the 
composite is calculated as a volumetric average of this variable in the constituents (see 
for instance Aboudi, 1991; Piggott, 1980; Romstad et al, 1976, de Buhan et ah, 1989). For 
instance, the composite normal stress in the direction of the fiber would be represented 
as: a = T\f5f + T\mcm Olo anc* ö() being the respective volume fractions, and average 
stresses in the fibers and in the matrix in a representative element of the composite). If 
fibers in the composite have a homogeneous orientation and regular spacing, and the 
volume of the fibers can be neglected with respect to the volume of the matrix 
(r\f « T|m), the average stress tensor can be written as 

T 
a.. = <f. + — n.n. G) 

v       v    ab   ' i 

where oy is the stress tensor in the matrix material, T is the magnitude of the force in 
a single fiber, a and b are the spacing distances in the plane perpendicular to the fibers, 
and nk is the unit vector in the direction of the fibers.  Another well-known technique 

^e term microscopic indicates an analysis at the level of interaction among the composite constituents 
as opposed to macroscopic considerations at the level of the entire structure. These terms, here, do not 
indicate the structure's scale (size). 



for homogenizing the stress in the composite can be expressed as 

5.. = 1 (Tx.dS (3) 

where G-. is the average stress in a representative volume V of the composite material. 
T, is the traction vector on boundary S of volume V, and x, is the co-ordinate of vector 
T, on boundary S. Boundary S intersects all phases of the composite, and vector T, 
represents forces in all of the constituents. This technique was used by Hill (1963) in 
considering elastic behavior of reinforced solids, and also is often used to arrive at the 
average stress tensor in granular materials (see, for instance, Drescher and de Jong, 
1972). 

A homogenization technique found very useful for granular-based composites is 
based on what is sometimes referred to as the Hill-Mandel principle of 
macrohomogeneity (see, for instance, Maugin, 1992). This principle, in a somewhat 
modified version, was used here to homogenize the stress state in a fiber-reinforced 
granular material at failure. Due to complexity in the calculations of the energy 
dissipation in fibers during plastic deformation, a special integration space was 
introduced. Only an isotropic case of the composite was fully analyzed at the time of 
writing this report, but the concept of the integration space introduced is clearly 
applicable (though somewhat more complex) to composites with a non-isotropic 
distribution of fiber orientation. 

A lot of attention has been paid to homogenization techniques in the context of 
metal matrix composites (e.g., Hill 1964a,b, 1965; Huang, 1973; Tanaka et al, 1973; 
Wakashima et al, 1979; Dvorak and Bahei-El-Din, 1982; Aboudi, 1986; Pindera et al, 
1991). The finite element technique was used to analyze repeating unit cells of periodic 
arrays (e.g., Adams, 1970; Dvorak et al, 1974). Much of this research was devoted to 
unidirectional fiber composites. The different nature of the metal and 
granular/particulate matrices makes it difficult to extend these research results to 
granular fibrous composites. In addition, the nature of the fiber-matrix interface is quite 
different in both types of composites. An excellent survey of techniques used for 
analysis of composite materials was presented by Hashin (1983). 

Theoretical considerations of the yielding stresses of a fibrous composite in the 
context of plane stress structures, such as paper, were presented by McLaughlin and 



Batterman (1970) and McLaughlin (1972), and also in more general terms by Spencer 
(1972). The novelty of the approach by McLaughlin and Batterman was in introducing 
a kinematically admissible deformation pattern of the composite to obtain the yield stress 
of the composite (a technique similar to limit analysis). Their approach was restricted, 
however, to plane-stress structures. A common characteristic of these and earlier efforts 
was assuming a perfect bond between the fibers and the matrix material, and the global 
behavior of the composite was obtained through a homogenization process without 
provisions for slip of the fibers. 

The most recent papers involving a reinforced non-cementitious granular matrix 
(granular soils) involve a similar approach. The case of elasto-plastic behavior was 
considered most recently by Jommi el al. (1995) (for papers in the context of reinforced 
soil, see also de Buhan and Siad, 1989; Sawicki and Lesniewska, 1989; de Buhan and 
Taliercio, 1991; and Michalowski and Zhao, 1995). A numerical analysis of this problem, 
using a homogenization technique based on a "unit cell", was also tried for reinforced 
soils (Romstad, et al, 1976). An attempt at including the slip of a continuous strip 
reinforcement in a numerical scheme can be found in Naylor and Richards (1978). The 
possibility of a snap-back behavior was noted recently by Abramento and Whittle (1995). 
Analytical results for continuous filament reinforcement are even more limited (Villard 
and Jouve, 1989; and Prisco and Nova, 1993), even though such composites were proved 
to be very effective (Leflaive, 1985). 

There is a handful of papers with results of tests on specimens of fiber-reinforced 
and continuous filament-reinforced soils (Andersland and Khattak, 1979; Hoare, 1979; 
Arenicz and Chowdhury, 1988; Gray and Ohashi, 1983; Maher and Gray, 1990; Liausu 
and Juran, 1995; Stauffer and Holtz, 1995). An effort was made by Gray and Ohashi 
(1983) and Maher and Gray (1990) to describe the strength through considerations of 
soil-fiber interaction in a localized shear band (see also Gray and Al-Refeai, 1986). Strain 
localization is a bifurcation phenomenon where response of the specimen is no longer 
representative of unique material properties, as the deformation mode (and the evolution 
of properties) is no longer uniform. Therefore, a strain localization phenomenon should 
rather be avoided in homogenization processes. 

Research related to that undertaken here is underway in the area of fiber- 
reinforced cementitious materials, concrete in particular. Of special interest are 
theoretical and experimental studies to explain and describe the interaction between 
fibers and the matrix.  Experimental results of pull-out of a fiber from a brittle matrix 
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were reported, for instance, by Pinchin and Tabor (1978) for an unyielding fiber, and by 
Bowling and Groves (1979) for yielding fibers. Laboratory tests and a modeling effort 
for fiber-reinforced mortar, based on the shear-lag theory, were also presented 
(Gopalaratnam and Shah, 1987). After a crack has appeared in the matrix, the fibers are 
expected to do what is usually referred to as "crack bridging". The fiber pullout process 
during crack bridging in a brittle matrix, however, is different than that of the fiber slip 
in a deforming granular matrix. A number of lab tests on fibrous composites in a brittle 
matrix, along with references, are given in a recent text by Bentur and Mindess (1990). 
While tests of this kind are useful in estimating the efficiency of fibers to bridge cracks 
in a brittle matrix, a straightforward interpretation of such tests with respect to a 
granular matrix would not be possible. A review of theoretical analyses of fiber length 
influence on the fiber's debonding from the matrix material during pull-out was 
presented by Gray (1984). 

As mentioned earlier, the transition from the analysis of a single fiber-matrix 
interaction for cementitious composites to macroscopic behavior is traditionally made by 
volumetric averaging, similar to the procedure used in the theory of mixtures. Thus the 
total stress in the composite is represented as the volumetric average of the stresses in 
the fibers and matrix arrived at in micromechanical considerations of a single fiber - 
matrix interaction. Such procedure may be quite artificial for granular materials with 
flexible fibers where the contribution of fibers to the behavior of the composite (or to the 
total stress) may be strongly dependent on the deformation pattern of the fibers 
themselves (e.g., kinking) and the deformation pattern of the entire composite (e.g., 
localization of shear strain). The importance of the kinking process in analysis of the 
fiber composites was emphasized by Budiansky (1983) (see also Steif, 1990). 

Fiber slip (or pullout) is a known failure mode during a crack opening in fiber- 
reinforced concrete. However, no attention has been paid to the process of fiber slip. 
Tracing this process is very important for improving our understanding of possible 
failure modes (and post-failure behavior, softening, snap-back) of the composite 
microstructure, and the consequences for structures built out of such composites. In a 
few analyses involving slip (e.g., Piggott, 1980), the slip of a fiber is assumed to be 
symmetrical (starting from both ends of the fiber), and the shear stress on the slipped 
interface is assumed constant (the consequence of a simple perfectly plastic bond yield 
function). True slip, however, can be unstable, and not necessarily symmetrical, owing 
to the bifurcation of the equilibrium path. Also, no mention of possible scale effects was 
found in the literature on fiber-reinforced granular materials, due to softening of the 



interface with the increase in slip, which is a known phenomenon for materials with an 
"internal length parameter" (Bazant and Desmorat, 1994). The only scale effect 
mentioned is the obvious one, due to the length (aspect ratio) of the fibers. Fundamental 
considerations which shed more light on the slip process can be found in the area of 
modeling frictional slip on rock joints and faults (Dieterich, 1979; Rice and Ruina, 1983; 

Ruina, 1984; Plesha, 1987). 

SCOPE OF RESEARCH AND OBJECTIVES 

This research focuses on the investigation into the limit behavior of fiber reinforced 
granular materials. In particular, an effort was directed toward derivation of the 
functions which describe the failure stress state of such composites, and toward 
collecting experimental evidence to validate the failure criteria derived. The scope of 
this research is restricted to the time-independent irreversible behavior, with the focus 

on failure. 

The objectives of this research were: 

(a) improvement in understanding of the mechanical behavior of fibrous composites 
with a granular matrix, and identifying the dominant mechanisms of fiber-matrix 
interaction, 

(b) formulating mathematical description of the behavior of granular composites on 
the macro-scale, based on microstructural interactions, and deriving failure criteria 
for composites both with fibers in a preferred direction, and with randomly 
distributed fibers, 

(c) collection of experimental evidence for validation of the mathematical description 
(evidence to corroborate model assumptions). 

10 



RESEARCH FINDINGS 

The report of research findings is arranged into 3 parts: (a) presentation of the 
homogenization technique and the failure criteria for fibrous granular composites, 
(b) description of the experimental technique used, and experimental results, and 
(c) presentation of a technique for solving for macroscopic stresses in a continuum. 

Failure Criterion for Fiber-Reinforced Soil (random fibers) 

Macroscopic Failure Stress in Fiber-Reinforced Granular Composite 

We introduce here a notion of a macroscopic stress as a stress averaged over the 
constituents of the composite (the stress averaged over the granular matrix and the 
fibers). An energy-based homogenization (averaging) technique has been proposed. In 
this approach to homogenization, an incipient deformation for a representative element, 
such as the one in Fig. 1(a), is assumed first. Next, the energy dissipation rate, D(etj), 
in the soil and fibers is calculated during the incipient deformation process, and it is 
equated to the work rate of the macroscopic stress öj,- 

o.e.. = 1  (D(e.)dV (4) 
V   >i      y J       >i v   v 

V is the volume of a representative element of the composite and e^ is the macroscopic 
(average) strain rate. A similar averaging technique was investigated earlier in the 
context of cementitious composites by Hashin (1964), Shu and Rosen (1967), and, for 
two-dimensional membranes, by McLaughlin and Batterman (1970). It was also used 
very recently to homogenize a unidirectionally reinforced sand (Michalowski and Zhao, 

1995). 

The specific deformation pattern assumed here in the homogenization process has 
a linear distribution of velocities, subject to constraints imposed by the dilatancy of the 
base (matrix) material (such as in Michalowski and Zhao, 1995). It is further assumed 
that the deformation rate of the granular matrix is identical to the macroscopic 
deformation (etj = etp. The fibers are considered one-dimensional elements, and they can 
deform at the same rate (upon reaching yield stress), or, they can slip in the matrix. 

11 
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Figure 1. Fiber-reinforced composite: (a) Plane-strain deformation of 3D specimen; 
(b) Fiber-matrix shear stress and axial stress in rigid-perfectly plastic fiber. 
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Definitions and Assumptions 

We assume here that the fibers are distributed uniformly in the space with a random 
distribution of orientation. Hence, a representative specimen must exist in which the 
fiber concentration p and the distribution of orientation can be considered uniform. 
Fiber concentration characterizes the amount of reinforcement and is defined here as 

P,ll (5) 
K      V 

where VT is the volume of the fibers and V is the volume of the entire representative 
composite element. For practical purposes, such as preparing specimens of 
fiber-reinforced soil, the weight content may be a more convenient parameter. However, 
as the mechanical properties of the composite constituents are not necessarily related to 
their mass densities (and, therefore, to the unit weights), the volumetric content of the 
fibers is the appropriate parameter to represent the fiber content. Note also that it is the 
volumetric content of the constituents that governs the averaging schemes in the theory 
of mixtures. 

The fibers are considered to be cylindrical in shape, and their slenderness is 
described here by the aspect ratio 

I]   « -L <6> 
2r 

where / is the length of the fiber and r is its radius. It is further understood that the 
length of the fibers is at least one order of magnitude larger than the diameter (say d^) 
of the sand grains, and the diameter of fibers is at least of the same order as the grains. 

Both the fibers and matrix (granular fill) are considered perfectly plastic, described 
by the Tresca and the Mohr-Coulomb failure criteria, respectively. The influence of the 
confining stress on the fiber tensile strength is ignored. The kinematics of the granular 
fill is governed by the normality rule. 

Contribution of Fibers to Strength of Composite 

Failure of a single fiber in a deforming composite can occur due to fiber slip or tensile 
rupture.   Tensile rupture will be modelled here as incipient plastic flow of fibers. 
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Notice, however, that even if a tensile rupture occurs, the ends of the fiber will slip as 
the tensile strength of the fiber material cannot be mobilized throughout the entire fiber 
length. For a rigid - perfectly plastic behavior of the granular soil, fibers, and the 
interface, the expected distribution of the shear stress on the fiber surface and the axial 
stress in the fiber must conform to that in Fig. 1(b). 

When a fiber fails in the tensile rupture mode, the slip occurs at both fiber ends 
up to the distance s 

a, 
s = 

r       "° (7) 
2 o tancp 

a0 is the yield stress of the fiber material, c„ is the stress normal to the fiber surface, and 
(p„ is the friction angle of the matrix-fiber interface. A pure slip failure mode will occur 
if the length of fibers / becomes less than 2s, or when the aspect ratio is 

„<1       °° <8) 
2 a tancp 

We further assume that the fibers contribute to the strength of the composite only if they 
are subjected to tension, whereas their influence in the compressive regime is neglected 
due to possible buckling and kinking. 

Deformation of an Idealized Specimen and Space with "Ordered" Fibers 

A plane-strain deformation is considered here for the specimen depicted in Fig.l(a), with 
a linear velocity distribution. The volume of the specimen is large enough so that its 
increase does not produce any change in the average properties of the specimen 
(representative volume). 

The consequence of the linear velocity field is a uniform strain-rate throughout 
the specimen. The deformation process assumed is irreversible (plastic flow) and it is 
interpreted here as a composite failure. The average stress (macroscopic stress state) at 
failure is obtained from eq. (4). The kinematics of the granular fill is governed by the 
flow rule associated with the Mohr-Coulomb yield condition, which leads to the 
following constraint on dilatancy (plane strain) 

14 



ej + e„ e 
i = -sincp      or      Ii = -tan2(*-l) (9) = - sin© 

*,"«3 *3 4        2 

where et and e3 are the maximum and minimum principal strain rates, respectively, and 
(p is the internal friction angle of the matrix (for the associative flow rule (p also indicates 

the rate of dilation). 

In order to make integration on the right-hand side of eq. (4) tractable, we 

introduce a physical space with "ordered" fibers (Fig. 2) where all fibers are moved (in 
a parallel manner) to the origin of that space. Such transformation is admissible since 

the energy dissipation rate in fibers is dependent only on their orientation, and is 
independent of their location in the sample. The sample from Fig. 1(a) (which is three- 
dimensional, with fibers oriented in three-dimensional space) is now represented by a 
sphere with radius RQ (fibers are not shown in Fig. 2). Due to macroscopic isotropy of 
the composite and symmetry of the deformation pattern, it is sufficient to consider Va of 

the sphere. 

Energy Dissipation Rate in an Idealized Specimen 

The energy dissipation rate during plastic deformation of soil conforming to the Mohr- 
Coulomb failure condition is zero, therefore only the fibers will contribute to the 

dissipation in the composite specimen. 

First, the region of fibers under compression in space in Fig. 2 needs to be found. 

A uniform plane deformation is considered with axes x and y (Fig. 2) coinciding with 

directions 1 and 3 [Fig. 1(a)], respectively. The regions with fibers in tension and 
compression are separated by a plane of inclination 0O (plane OBC in Fig. 2). All fibers 

in plane OBC undergo no deformation 

E9  = e1cos20o + e3sin20o = 0 (10) 

which leads to 

15 



Figure 2. Integration space for isotropic fiber-reinforced representative element 
(fibers not shown). 
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Ii = -tan2e0 <"> 
C3 

and, considering eq. (9), angle 60 can be determined as 

6   -1-1 <12> 
o      4     2 

The energy dissipation rate in a single fiber oriented in direction 6, due to slip along end 
sections s and due to plastic extension in the middle section of length / - 2s, is 

d = 27crs2aBtanq>.(*e> + icr2(/-2s)o0(*9> = KT
2
ü0(1 - J^—)UB)       <«) 

n ' w 

Since the number of fibers per unit volume of the composite is p/rcr2/, the energy 
dissipation rate in fibers per unit volume of the composite is 

D   -If« 
V J 2a tanra 

V "        WJ 

_E- (ee) dV <14> 

where ön is now the average normal stress to the fibers in volume V, and (e^ is the 
strain rate in the direction of the fiber (tension is taken here as negative) 

u;.     (IM   «*e<° 05, 
{    0    otherwise 

The energy dissipation rate per unit volume of the composite from eq. (14) can be 

written as 

D  =__!_   f(l-J_^_)pa0<ee)^ (16) 
IKR? *      4T1 G»tan(p- 
6 

where dV is an infinitesimal volume shown in Fig. 2. The exact magnitude of the 
average stress normal to the soil/fiber interface cannot be found since the distribution 
of the microstress is not considered here.   An approximation is made where G„ is 
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assumed constant for all fibers, and equal to the mean of the maximum and minimum 
principal stress in the composite [p = (Gt + 53)/2]. Such an assumption is a realistic 
estimate of a„ for randomly distributed fibers. 

Having assumed that G„ can be approximated by p, and noting that dV = V3R0 dS 
(Fig. 2), eq. (16) can be written as 

D=2^(l-J 5l_)    (UB)dS (17) 
7tK0

2        4riptanq>w    { 

The unit vector normal to the spherical surface in Fig. 2 is 

n =  i+JL[ + — k (18) 
Ro ~    Ro      Ro 

and the velocity vector is 

v = -txxi_-t3yi 

thus the magnitude of the velocity component along n becomes 

(19) 

v. = vn = -—e, -z— e, 
9   ""      R0 

l   Ro3 
f!e  -Z!e. (20) 

and the strain rate along a fiber identified by co-ordinates x-y on the sphere's surface in 
the "ordered" space is 

C9   =   " 

ue    «i^2 + ^y2 
(21) 

*o ^o2 

Substituting (21) into (17) one obtains 

D=2^-(l-J ÜL.)    f(-er2-e3y
2)dS (22) r        ^ 4Tiptan(Pu,     J       1 

Notice that because of the definition of (ee) [eq. (15)] a minus sign appears in the integral 
expression, and S is part of the surface associated with fibers under tension only (ABC, 
Fig. 2). The following transformation is used to solve analytically the integral in eq. (22) 
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Jjf(x,y,z)dS = Jjf[x,yfz(x,y)] 
s a ^ 

1 + 

f    V 
3z 

yBXj 

(    V 
dz 
dy 

dxdy 
(23) 

v ^y 

where ß is the projection of area S on plane x-y (projection of surface ABCA in Fig. 2 
on plane x-y). Note that z = (R^ - x2- y2)* thus 

dz_ 
lx 

-x 

slK-*2-y: 

dz 

/Äf-F-7 
(24) 

Eq.(22) now becomes 

D-l^lil-1       °> 
KR*        4n ptany. 

)   //(-e^-^y2) * dxdy (25) 
w Q 

Introducing new variables £ and 9 [C, = (x2 + y2 )* 9 = tan'Ky/x)], and using (11), the 
expression in (25) becomes 

pCT°"      *      a°    )    fft.^)      ^       r.^o.e^o,^^.^ D  = 2_(1 - 
TtJ?3        4n ptancp; a; 0 9„ 

 - [cos29 - sin29 tan2 (_ + Z)] dC,dQ 

{W~^ (26) 

where 90 is given in eq. (12).  The expression in (26) can be integrated analytically to 
yield 

D   = l_ÜM(l-_ !L_)e, r       3 4n ptancp 
(27) 

where M is 

M = (_ + _ + _coscp) tan (_ + _)-_-_ + _cos(p (28) 
2       Jt       7C 4     2      2     7t     7t 

If the condition in eq. (8) is satisfied, then pure slip occurs, and the above procedure 

19 



leads to an expression for the energy dissipation rate per unit volume independent of 
the fiber yield stress a0 

D  = -pnMptancp^Cj (29) 

Failure Criterion for Fiber-Reinforced Soil 

The energy balance equation (4) for isotropic material under plane strain conditions is 

e^ +c,ö   = D  = OOlMil-J: —)e, (30) 1  l     3 3        r       3 4TI ptancp      J 

Utilizing (9) one obtains 

J(K + <P^   ^ o1-tan*(_+Z)a3 3 4r| ptancp 
(31) 

Introducing stress invariant R, convenient for plane-strain conditions (radius of the Mohr 
circle), 

R = 
N 

(5 -G)
2 

_J: L_+i2 

4 *y 
(32) 

and noting that 2p = a2 + a3, eq. (31) can be transformed to represent the failure criterion 
of the fiber-reinforced soil in terms of in-plane invariants R and p 

where 

f 
R V ■ 1    XT   = —— sincp + _ N 

P°o P°n 3 
1-. 

1    cotq> 

4TIP   J?_ 

P°o 

XT 1 /I <P\     • N = —coscp + (_+_) sincp 
K 2    it 

(33) 

(34) 

20 



(a) 1.5 

1 - 

0.5 

reinforced composite           J7y 
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(b) A (7,     Failure criterion of composite 

Failure criterion 
of granular matrix 

Figure 3. Theoretical failure criterion for isotropic fiber-reinforced granular composite: 
(a) Failure envelopes as functions of in-plane invariants R and p (p = 0.02, 0 = 35°, 
0W= 20°); (b) Failure surface in principal stress space. 
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When pure slip occurs [eq. (8)] the failure criterion takes the form 

  = JO— (sin(p+_NpTitan(p ) (35) 
P°o      Pao 3 

Note that when no fibers are present both (33) and (35) reduce to the standard 
Mohr-Coulomb failure criterion for granular material 

R = p sinq> (36) 

Figure 3(a) presents results from (33) and (35) in the R-p plane. Different curves present 
failure criteria for fiber-reinforced soil with fibers of various aspect ratios. As indicated 
in eq. (35), the slip mode is described by a linear function (when the internal friction 
angle of the soil fill is constant), whereas in the tensile rupture mode the shear strength 
is not proportional to the mean stress [eq. (33)]. There is no discontinuity in the gradient 
at the transition point (smooth piece-wise function). Stresses are normalized in Fig. 3(a) 
by parameter po0 (fiber concentration x fiber yield point). The failure criterion in the 
principal (macroscopic) stress space is shown in Fig. 3(b). 

Failure Criterion for Unidirectionally Reinforced Composite 

Homogenization Scheme 

The purpose of homogenization is to represent quantities such as stresses and strains or 
material properties (such as elastic moduli) as average quantities which take into account 
microstresses in the composite constituents, volumetric proportions of these constituents, 
their respective properties, and shape of inclusions. Here the objective is to represent 
the failure criterion of a pressure-dependent (frictional) material reinforced with 
longitudinal inclusions. Such criterion is to be represented in terms of the macroscopic 
stress, that is, the stress averaged over the two solid constituents of the composite 
(matrix and fibers). The term macroscopic here pertains to the average stress, or 
properties, of the composite, as opposed to the stress or properties in the constituents 
(microscopic). The terms macro- and microscopic do not relate here to the size of the 
composite representative element. 

The diameter of the inclusions is considered to be at least an order of magnitude 
larger than the diameter of the grains in the matrix, and the dry friction law is 
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considered applicable on the soil-fiber interface. The aspect ratio of the inclusions is at 
least of the order of 101 to 102, and spacing is of at least one order of magnitude higher 
than the inclusions' thickness/diameter. Under such circumstances one can expect that, 
given sufficient confining stresses, a tensile force can be induced in longitudinal 
reinforcing elements which allows the macroscopic stress in the composite to increase 
beyond what would be considered a limit stress for the matrix alone. 

A kinematics (or energy-based) approach to homogenization will be used in which 
a plastic velocity field for a representative composite element, such as in Fig. 4, is 
assumed, and the energy dissipation rate in the constituents of the composite, DCe,^, is 
equated to the work performed by the macroscopic stress Ö» 

Ö..?.. = 1   (D(e.)dV (37) 
•I   'I       V J        'i V v 

V is the volume of a representative element of the composite and ei} is the macroscopic 
(average) strain rate. This technique is identical to that used earlier (eq. ?), except that 
now a different kinematics of the composite element will be considered. This 
homogenization concept was explored earlier in the context of cementitious composites 
by Hashin (1964), Shu and Rosen (1967), and, for two-dimensional membranes, by 
McLaughlin and Batterman (1970). Once the energy dissipation rate during the plastic 
deformation (collapse) of the element is calculated, the macroscopic stress o); can be 
calculated from eq. (37). This macroscopic stress then can be represented as a point on 
the failure surface in the macroscopic stress-space. 

Of interest are failure criteria associated with plane kinematics where the uniaxial 
reinforcement is contained in the plane of deformation. In this homogenization scheme 
we will assume a linear velocity field throughout the representative element in the form 

v. = a..x. (38) 

where vt is the velocity vector, xf is the Cartesian co-ordinate and a{j is a matrix of 
coefficients subject to constraints imposed by the dilatancy of the base (matrix) material. 
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(a) 
composite 

macrostress 

(b) 
matrix        deformed configuration 
material 

original configuration 

Figure 4. Composite material: (a) Macrostresses; 
(b) Deformation of a composite element. 
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Failure Criteria 

In order to calculate energy dissipation rate D(£l7), the strain rate field, eijt inside the 
representative element needs to be known. As the velocity field throughout the 
representative element is assumed to be linear (eq. (38)), the strain rates are uniform, and 
the macroscopic strain rate e{j = etj. While such assumption would not be realistic for 
elastic deformation or a hardening flow regime, it is a reasonable one when the 
composite failure is reached (zero hardening modulus). 

The matrix of the composite is assumed here to conform to the Mohr-Coulomb 
failure criterion and the associative flow rule. Consequently, the strain rate field used 
in the kinematical approach must satisfy the relation (plane strain) 

e!~ E3 

= - smcp (39) 

where ev = eu = the volumetric strain rate, tx and e3 are the maximum and minimum 
principal strain rates, respectively, and (p is the internal friction angle of the matrix, 
which, for the associative flow rule, also indicates the rate of dilation. 

There is some controversy about using the normality rule since the laboratory 
results for sand indicate less dilation than that predicted by the associative flow law. 
Here, however, the associative flow rule is used only to select a virtual deformation in 
the homogenization scheme. It is convenient to use the associative rule, since the energy 
dissipation rate in the composite matrix becomes, in such case, independent of a 
particular stress state (zero for a non-cementitious matrix). A discussion of the normality 
rule versus the non-associative flow law, however, is beyond the scope of this 
investigation. 

The rate of energy dissipation per unit volume of the matrix during plastic 
deformation under plane strain conditions is 

Dm = o-e.. = (el - e3)ccos(p (40) 

where af satisfies the Mohr-Coulomb failure function (c = cohesion and cp = internal 
friction angle of the matrix material). The amount of reinforcement inclusions is 
characterized here by reinforcement concentration (volume density) 
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p . ^ (41) 
V 

where Vr is the volume of the inclusions and V is the volume of the entire representative 
composite element. We are considering composites where the volume of reinforcing 
inclusions (for instance, fibers) is small compared to the volume of the composite 
(p « 1); thus Dm in eq. (40) can be interpreted as the dissipation rate in the matrix per 
unit volume of the composite. 

Long Inclusions (Strips/Bars) 

First a composite with long reinforcing inclusions is considered, where no slip occurs. 
Such composite material is representative of "traditional" reinforced soil. The yield point 
of the reinforcement material is CT0 . Since the deformation of the reinforcing inclusions 
is assumed to be the same as that for the matrix, the dissipation rate in the inclusions 
per unit volume of the composite is 

Df = po(.e.. = (VpGnn.n.e.. (42) 

where n, and n; are the unit vectors in the direction of reinforcement and coefficient (£) 
depends on the mobilization of the tensile force in fibers 

, -1 when e.n.n. < 0 .,„. 
(£) = \ '> ' i (43) 

0     otherwise 

As most applications of the theory presented here are in soil mechanics, we assume that 
the tension is negative. Coefficient £ represents mobilization of the stress in the 
reinforcement, and, in general, it can vary in the range of -1 < % < 0, but the energy can 
be dissipated in fibers only when yield point a0 is reached (^ = (^) = -1). Note that, 
according to eq. (42), the contribution of the longitudinal inclusions (fibers, bars, strips) 
in the compressive regime to the composite strength is neglected here (due to buckling 
and kinking). 

Eq. (37) can now be written for plane strain conditions as 
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a e +a e + 2x e    = Dm + D xx y   y xy   xy 
(44) 

It is convenient to represent the macroscopic failure criterion for plane strain conditions 
in space p, q, xv, where p = (äx + öy)l2 and q = (äx-äy)l2. Introducing angle of 
inclination of the major principal macrostress to the x-axis \|/ 

tan2y = ^ \   = ^L 
a. - a..      q x y 

(45) 

eq. (44) takes the form 

m     ,     T\f (p+q)ex + (p-q)e  +2q tan2ye    = D    +D (46) 

It was found to be convenient to calculate points on the failure surface in space p, q, x^ 
by calculating in-plane stress invariant R for given values of p and angle \)/ 

Ä-1^/(5, -Ö/+4T4   =^2+^   = k|\/l + tan22V 
(47) 

Using eqs. (40) and (42), solving eq. (46) for q and using the relation in eq. (47), one 
obtains 

R(e ,e ,i  ) = x'   y'    xy' 

ccosyj(ex- -e )2+4e2    + (Opo\e -p(e +e ) y'              xy            ^>   ~    0   a    '   v   x       y 

e  - e  + 2e   tan2w x          y              xy              T 

VI + tan22\|/ 
(48) 

where ea is the magnitude of the rate of strain in the direction of reinforcing inclusions 

e   = e.n.n. = c cos2a + e sin2a + e  sin2a a i)    i   ) x y xy 
(49) 

and a is the angle of inclination of the inclusions to the x-axis. As this approach yields 
the upper bound to the macroscopic failure criterion, a minimum R was sought from 
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eq. (48) in an optimization scheme where the strain rates were variable with restriction 
in eq. (39) and with <£> determined in eq. (43). Cross-sections of the failure surface 
calculated (p = const) are shown in Fig. 5. The failure surface in space p, q, x^ is 
presented in Fig. 6. It consists of two conical surfaces joined by two plane sectors. 

The matrix of the composite was assumed to obey the Mohr-Coulomb yield 
function and the associative flow rule. The resulting flow rule for the composite also 
conforms to the normality rule. 

The failure criterion of an anisotropic pressure-dependent material under plane- 
strain conditions can be, in general, written as 

/(öx,öy/xiy)-R-F(p/V) =0 (50) 

where \ji and invariant R are given in (12) and (35), respectively, and p is another in- 
plane invariant [p = (äx + öy/2]. When function F is independent of \j/, eq. (50) 
represents an isotropic yield criterion. Representation of failure surface Hp^,*^) = 0 can 
be given as a piece-wise function. Analytical expressions are given below, in which 
angle a is the angle of inclination of the principal axis of anisotropy to the x-axis 
(inclination of the direction of reinforcing inclusions). For the part where no influence 
of fibers is present (£ = 0), i.e., where 

|2\|/-2a| < *-(p (51) 

the analytic representation of the macroscopic yield function is 

R = F(p) = p sin(p + ccoscp (52^ 

For planar segments in Fig. 6 (-1 < £ < 0), angle 2\|/ remains in the range 

^-cp<l2V-2al<^-cP+tan-1(   °*pa° ) (53) 
2 2 p tancp + c 
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1.5 r   rx//3Cro 

-2.0 

q/pac 

1.0 

po =0.5 
p/pao=1.0 -1.5 *- 

Figure 5. Cross-sections of a failure surface for a unidirectionally reinforced 
composite with long inclusions (no slip). 

Figure 6.   Failure surface for a unidirectionally reinforced composite in 
space p, q, x^ (no slip of reinforcing inclusions). 
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and the failure criterion is 

R = F(p/V) =   psin(p+CC°S(p (54) 
sin(2y - 2a + (p) 

When the strength in the fibers is fully mobilized (£ = -1), angle 2\\f remains in the range 

rc-m + tan-y     ' pg° ) < |2\|/-2a| < it <55> 
2 p tanq) + c 

and 

R =F(p,y) = -0.5pa0cos2(\j/-a)+^[(p+0.5pa0)sin(p+ccos9]2-[0.5pa0sin2(\|/-a)]2 

(56) 

A surface identical to that in Fig. 6 can be obtained through a purely static 
approach as in the theory of mixtures. This surface is an envelope to the sum of the 
limit stress in the matrix and stresses at or below failure in reinforcing strips/fibers. 
Such an approach, however, would be very cumbersome when applied to 
homogenization of the stress in a composite with short fibers, as presented in the next 
subsection. The former was considered earlier (de Bunan and Siad, 1989) for the case 
of a non-cementitious matrix, but the failure surface was presented in a different stress 
space. A more convenient analytical description for this perfect case was found recently 
(Michalowski and Zhao, 1995) 

No lab test results on composite samples are available to verify the failure 
criterion derived. Later, in the subsection on implementation, a solution to a boundary 
value problem (collapse of a vertical slope) is compared to the result from a lab test on 
a physical model to indicate the rationality of the description proposed. 

Short Inclusions (Fibers) 

A model of a composite with short inclusions is representative of fiber-reinforced soils. 
In some applications, such as rolled subgrades of airfields, the preferred orientation of 
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the fibers is horizontal. If the plane of deformation is any vertical plane, then the failure 
criterion as presented here can be used to describe the strength of such composite (the 
effective length of fibers being the average of the fibers' projection on the plane of 
deformation). 

No cohesive bond between the fibers and the matrix is considered, and the load 
transfer to the fibers has a frictional nature. During plastic deformation of the 
composite, fibers are expected to slip in the matrix at a low confining pressure, and to 
fail in tension at large mean stresses. In the latter case the ends of fibers slip to a 
distance where the yield stress, cr0, is mobilized in the fibers. Fig. 1(b) presents an 
expected distribution of shear at the fiber surface and axial stress during deformation 
of rigid-perfectly plastic fibers in a matrix subjected to the velocity field in eq. (38). 
Assuming cylindrical fibers with radius r, the length of slip region s (Fig. 1(b)) is 

c- r      °° (57) 
2 cr tanm n ~w 

where a„ in the stress normal to the fiber surface and <pw is the friction angle of the 
matrix-fiber interface. In order for the tensile collapse of fiber to occur, length s must 
be smaller than half of the fiber length 1/2, which occurs when 

"H > 77 
1      _°°  (58) 
2 c tan(p 

where n is the fiber aspect ratio 

n = — 
2r 

1 (59) 

We assume here that all fibers have the same aspect ratio T). The energy dissipation rate 
due to plastic deformation of fibers (yielding) per unit volume of the composite can be 
calculated now as 

D/ = (^)pa0(l-J ^L_)ea (60) 1 °        2n antan(pw    a 

where (£) and ea are given in eq. (43) and in eq. (49), respectively. The dissipation due 
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to slip of the fiber ends (per unit volume of the composite) is 

ö2'-<$>po0_L_!^-ea (61) 2 °4TI a tan©    a 

Note that no dissipation is accounted for in the compressive regime «£) = 0). The total 
energy dissipation rate in fibers per unit volume of the composite now becomes 

Df - t>[ + t)[ = (Vpa0 (1 - _L_ÜL_) ea (62) 1       2 °        4n a tancp     a 
n ' w 

When 

n < I      c° (63) 

the fiber energy dissipation occurs in the slip mode only, and it becomes independent 
of yield point a0 

D/ = D2' = <$>pTiaBtan<pwea «*) 

The failure criterion for a frictional matrix reinforced with short fibers can now 
be obtained following the same procedure as in the preceding section, with the exception 
that the dissipation rate in the fibers, eq. (42), needs to be replaced with eq. (62) (or 
eq. (64)). Consequently, the failure condition can be obtained through minimizing 
function R in eq. (48) where the second term in the numerator is replaced with eq. (62) 
(or eq. (64)). Notice that when n -> <» eq. (48) is recovered. The influence of the fiber 
aspect ratio on the macroscopic failure criterion is illustrated in Fig. 7. 

While limited laboratory results on random fiber soil reinforcement are available, 
no experimental data on uni-axially reinforced soils exist that could be presented in 
terms of a failure surface in the macroscopic stress space. However, in an early work 
by Yang (1972), one point on the failure surface was obtained for which the major 
principal stress was perpendicular to the direction of reinforcement. That result was for 
long reinforcement and it is identical to a particular case of eq. (56) when 2\|/ = K + 2a. 
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Figure 7. Cross-sections of composite failure surfaces (p = const) for fibers 
of different aspect ratios. 
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The length of the fiber slip section (eq. (57)) and the energy dissipation rate due 
to fibers (eq. (62)) depend on the stress normal to the fiber surface. While the normal 
stress in the plane of deformation can be represented as a function of the limit 
macrostress äijt distribution of the normal stress along the entire perimeter of the fibers 
cannot be found, since the resulting failure criterion is independent of the intermediate 
principal stress. Any attempt at calculation of a„ then will be approximate. Stress a„ 
was taken in calculations here as being equal to the mean of maximum and minimum 
macrostresses in the plane of deformation (p). 

Experimental Tests 

An experimental investigation was carried out primarily to determine whether the 
approach selected for mathematical description of the failure criteria for fiber-reinforced 
granular materials is reasonable, and, if so, to indicate where the refinement of the 
suggested failure condition should be pursued. 

Material Used 

A coarse, poorly-graded sand with d^ = 0.89 mm and uniformity coefficient Cu= 1.52 was 
used in the experiments presented in this section. The specific gravity of the sand was 
G = 2.65, and minimum and maximum void ratios were 0.56 and 0.89, respectively. Two 
types of fibers were selected: galvanized or stainless steel (G = 7.85), and polyamide 
monofilament (G = 1.28). Polyamide is not a material likely to be used as a permanent 
soil reinforcement (because of its moisture sensitivity and aging/deterioration 
characteristics), but its availability in a variety of diameters and its mechanical behavior 
common to other synthetic materials makes it a convenient material to use in tests. 

Compaction of the specimens was characterized by the void ratio. In all tests the 
initial void ratio of prepared specimens was e = 0.66, corresponding to a relative density 
of Id = 70% for unreinforced sand. In the definition of the void ratio for reinforced 
specimens the volume of the fibers is considered part of the skeleton. Relative density 
is not an appropriate parameter for characterizing fiber-reinforced specimens, since the 
minimum and maximum void ratios of the composite are very much dependent on the 
fiber characteristics. 
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Specimen Preparation 

The length of the fibers was approximately 2.5 cm in all tests, and the required aspect 
ratio was adjusted by selecting an appropriate fiber diameter. Both the height and 
diameter of the specimens was 9.65 cm. The following procedure of sample preparation 
was followed in order to achieve uniform distribution of fibers in space and isotropic 
distribution of fiber orientation in the specimens. 

(a)      According to the required void ratio (e = 0.66) and fiber concentration by volume 
(p), the corresponding fiber concentration by weight (pw) was calculated as 

(l+g)G,p (65) 

P"      (l+e)(G„ -G)p+G 

where Gs and Gr are the specific gravity of the sand and fibers, respectively. The 
weight of the dry sand (Ws) and the fibers (Wr) was then calculated from 

W = 
V        (I-PJG.G 

1 +e (1 -p )G +p G 
(66) 

and 

W  = 
r 

V p  G G (67) 
1 +e (1 -p )G +p G 

where V is the required volume of the mixture (volume of the specimen), and yw 

is the specific weight of water. 
(b) The weight of the sand and fibers was divided into five equal portions used later 

to produce five layers of the specimen. 
(c) A 6x6 cm square grid of steel wires (with 3 cm spacing between the wires) was 

placed at the bottom of the mold. 
(d) A small amount of sand was dropped through a funnel into the mold to cover the 

grid evenly. Each of the five portions (b) was divided into three parts. One-third 
of the fibers for the first layer was slowly dropped into the mold. Care was taken 
to produce an even distribution of the fibers on the sand surface. Then, one-third 
of the sand for that layer was dropped through a funnel with a low mass rate 
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(fall-height = 40 cm). Following the same procedure, the remaining two parts of 
the first layer of the specimen were produced. 

(e) The grid was slowly pulled (manually) through the first one-fifth portion of the 
specimen (first layer). The grid was left on the surface of that layer. 

(f) The distance from a reference point on the mold to the top of the layer was 
measured to ensure that the target void ratio was achieved. If the prepared 
mixture was too loose, the mixture was gently vibrated until the proper density 
was reached. If the mixture was significantly too loose (or if it was too dense), 
the entire specimen was recreated. 

(g) For the subsequent 4 layers of the specimen, steps (d)-(f) were repeated. The 
possible influence of vibration on the layers below, when preparing the 
subsequent layers, was ignored. 

The same preparation procedure was followed for unreinforced specimens (except there 
were no fibers). The grid used in steps (c) and (e) was intended to create an isotropic 
distribution of fiber orientation. When placing the sand and fiber mixture directly into 
the mold, the fibers were assuming an anisotropic orientation with the horizontal being 
the preferred direction. Therefore, the sand and fiber mixture was placed over a grid 
of wires and the grid was pulled slowly through the mixture, altering the orientation of 
a portion of fibers. This technique was developed to assure an approximately uniform 
distribution of fiber orientation (macroscopically isotropic specimens). The distribution 
of fiber orientation was estimated to be isotropic by visual inspection, and the authors 
recognize the approximate quality of the conclusion. 

Results 

Series of triaxial tests were conducted. The fiber concentration, aspect ratio, diameter 
of fibers and the range of confining pressure for some of the series are given in Table 1. 
The typical confining pressures for one series were: 50, 100, 200, 300, 400 and 
600 kN/m2. The results of the tests are presented in Figs. 8 through 11. More tests 
which were performed as part of this research are reported in the Appendix. 

The addition of steel fibers to sand led to an increase in the peak shear stress of 
about 20% (p = 1.25%, r\ = 40) for samples tested under a confining pressure of 100 to 
600 kN/m2 [Fig. 8 (a)]; this relative increase was larger at a very low confining pressure 
(50 kN/m2). The samples exhibited a typical compaction effect [Fig. 8(b), 
ev = volumetric strain] at small axial strains ej, and dilation at larger strains.   The 
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presence of fibers inhibited the dilation effect to a certain degree. The increase in the 
content of steel fibers (p) leads to a clear increase in the peak shear stress [Fig. 9(a)], and, 
also, it leads to an increase in the stiffness of the composite prior to reaching failure. An 
increase in the aspect ratio of the fibers also contributes to a significant increase in the 
peak shear stress [Fig. 9(b)]. 

Table 1. Typical series of specimens tested (fiber-reinforced composite with coarse matrix). 

Fiber material 
Fiber concentration 

P 
(%) 

Aspect ratio 
tl 

Fiber diameter 
2r 

(mm) 

Range of confining 
pressure a3 

(kN/m2) 

(1) (2) (3) (4) (5) 

no fibers 

steel 

steel 

steel 

polyamide 

polyamide 

polyamide 

0 

0.41 

1.25 

0.5 

05 

1.25 

0.5 

40 

40 

85 

85 

85 
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Polyamide fibers produced a significant increase in the peak shear stress 
[Fig. 10(a)] for large confining pressures, but the effect is associated with a considerable 
loss of stiffness prior to failure and a substantial increase of strain-to-failure. At a 
confining pressure of 100 kN/m2, however, no increase of the peak shear stress (with 
respect to the granular matrix alone) was recorded. 

Addition of the polyamide fibers to the soil inhibits the dilatancy, and the effect 
is more pronounced for low confining pressures [Fig. 10(b)]. An increase in the fiber 
content, while the aspect ratio is kept constant, leads to a very significant increase in the 
peak shear stress, a noticeable decrease in stiffness, and an increase of the strain-to- 
failure [Fig. 11(a)]. An increase in the aspect ratio of polyamide fibers leads to similar 
effects [Fig. 11(b)]. 

An interesting effect is presented in Fig. 12 where the composite (with an amount 
of fiber reinforcement larger than that in Figs. 8-11) does not fail: the stress-strain curve 
reaches a point of inflection at rather large strain, and the failure stress increases beyond 
that point. This occurs because of the structural changes in the specimen due to large 
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Figure 8. Triaxial compression tests on sand reinforced with steel fibers: 
(a) Stress-strain relation for different confining pressures; (b) Volumetric 
strain. 
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Figure 9. Stress-strain behavior of steel fiber-reinforced sand: (a) Influence 
of fiber content; (b) Effect of fiber aspect ratio. 
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Figure 10. Triaxial compression tests on sand reinforced with polyamide 
fibers: (a) Stress-strain relation for different confining pressures; (b) 
Volumetric strain. 
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Figure 11. Stress-strain behavior of polyamide fiber-reinforced sand: 
(a) Influence of fiber content; (b) Effect of fiber aspect ratio. 
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Figure 12. Triaxial compression tests on fine sand reinforced with 
polyamide fibers: (a) Stress-strain curves with anisotropic hardening effect, 
and (b) Volumetric strain. 
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strains. The fibers, originally with random orientation, start to exhibit preferred 
orientation. The macroscopic properties become therefore anisotropic, causing the 
kinematic (or anisotropic) hardening effect. A full analysis of this "induced anisotropy" 
effect and an inclusion of anisotropy in the failure criteria for fiber-reinforced granular 
composites will be proposed in a request for continuation of this research. 

Discussion of the Experiments and Theoretical Predictions 

A one-to-one height-to-diameter ratio of the specimens led to failure where no visible 
localization of strain was present. Also, extra care taken to minimize the effect of friction 
at the bases of specimens allows one to assert that the macroscopic stress in the 
composite specimens was close to uniform, and the measured deviatoric stress at failure 
can be identified with the failure stress of the composite material (macroscopic failure 
stress state). These stresses, therefore, can be compared directly to those predicted by 
the suggested theory. 

Using different deformation modes in the theoretical derivation (plane strain) and 
in the experiments (axisymmetrical kinematics) may be disputed. The matrix failure 
criterion used (Mohr-Coulomb) is independent of the intermediate principle stress, and 
the theoretical result is not affected by whether the matrix deformation is plain or 
axisymmetrical. However, the particular deformation mode used in the homogenization 
process does affect the theoretical result through the fiber component, when only fibers 
in the tensile regime are considered to contribute to the composite strength. This is 
because the volumetric strain rate associated with fibers in tension is not invariant, only 
the total volumetric strain-rate is. As a result of further theoretical considerations, this 
effect appeared to be small (negligible). 

While the influence of the mean principal stress on the granular matrix strength 
is not contested (see, for instance, Lade 1977), the model presented is a reasonable 
approximation of the true composite behavior. To reduce the influence of the granular 
matrix approximation (Mohr-Coulomb criterion) in the theory-experiment comparison, 
the internal friction angle of the matrix used for theoretical prediction was determined 
from the axisymmetrical (triaxial compression) tests, and the composite specimens were 
also tested under axisymmetrical conditions. 

No ruptured fibers were found in the specimens upon inspection after the tests. 
However, for polyamide fibers, some permanent kinking and local damage was noticed. 
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(a) 

(b) 

Figure 13. Polyamide fibers after a test; (Scanning Electron Microscope); 
(a) kinking, (b) irreversible buckling of a single fiber. 
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(a) 

(b) 

Figure 14. Polyamide fibers after a test, local damage (SEM); 
(a) ploughing, (b) gouging. 
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Permanent kinking and plastic buckling of polyamide fibers recovered after a test are 
shown in Fig. 13. Local damage to fibers is presented in Fig. 14. 

The prediction of the composite failure stress for both steel and polyamide fibers 
is made in Figs. 15-17 using eq. (35). The major principal stress at failure, öx, is shown 
as a function of the confining stress, ö3 (a, = p + R, a3 = p - R). The experimental results 
came from tests on composite specimens with p = 0.0125 (1.25%) and rj = 40 (steel 
fibers), and p = 0.005 (0.5%) and T| = 85 (polyamide fibers). The internal friction angle 
for the granular matrix (determined from drained triaxial compression tests) was in the 
range of 42° to 35.9° for specimens tested under confining pressures from 100 to 600 
kN/m2. This is why the predicted failure criteria in Figs. 15-17 are not straight lines. 

The angle of fiber/soil interface friction was determined from pull-out 
experiments in a modified direct shear apparatus (for steel fibers), and from a direct 
shear of soil over a polyamide sheet, also in a direct shear device. The friction angle is 
dependent on the normal pressure at the fiber interface, and was found for steel to be 
in the range of 24.6° to 19.5°, and for polyamide in the range of 17.9° to 14.7° (normal 
interface stress changing from approximately 160 to 1600 kN/m2). In interpretation of 
the steel fiber pull-out tests the active stress state in the soil was assumed, 
inhomogeneities in the mobilization of friction along the fiber were ignored, and the 
peak value of the pull-out force was taken to calculate the interface friction angle 
(reasonable for short inclusions such as fibers). 

The increase in the deviatoric failure stress for fiber-reinforced specimens with 
respect to the sand tested under identical confining pressure was roughly 20%. This 
relative increase is smaller when presented in terms of the in-plane invariants R and p 
since an increase in the deviatoric stress (while confining pressure is constant) also 
causes an increase in the mean maximum-minimum stress p. While steel fibers with 
aspect ratio r\ = 40 may not seem to be a very effective reinforcement, the theoretical 
prediction follows the experimental results very closely (Fig. 15). Table 2 presents the 
data including the internal friction angle for the granular matrix, (p, and the interface 
friction angle, (pw. The friction angle (secant) was calculated from sand samples tested 
under a given (constant) confining pressure (a3), and it is related in Table 2 to composite 
mean stress p for which the confining pressure was the same [i.e., (p in column 2 was not 
calculated from data in columns (1) and (6)]. The internal friction angle for p = 203.5 
kN/m2 was extrapolated. Since tests were performed under a constant confining 
pressure, mean stress p at failure for reinforced and non-reinforced specimens varied. 
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Figure 15. Failure criterion for coarse sand reinforced with steel fibers. 
Comparison of theoretical prediction to triaxial test results. 
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Figure 16. Failure criterion for coarse sand reinforced with polyamide fibers. 
Comparison of theoretical prediction to triaxial test results. 
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Figure 17. Failure criterion for fine sand reinforced with polyamide fibers. 
Comparison of theoretical prediction to triaxial test results. 
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The magnitude of R for the granular matrix alone, column 6 in Table 2, was therefore 
interpolated to relate to p in column 1. 

Table 2. Experimental data and predictions of the failure stress state for a steel 
fiber-reinforced coarse sand; p = 1.25%, r\ = 40. 

(Sx+ öjß 

(kN/m2) 
(1) 

Int. friction angle 

<P 

(2) 

Composite 
(experiment) 

R 
(kN/m2) 

(3) 

Composite 
(prediction) 

R 
(kN/m2) 

(4) 

Sand 

R 
(kN/m2) 

(5) 

203.6 

345.9 

633.1 

881.8 

1150.8 

1611.9 

43° 

42° 

39.7° 

38.3° 

37.1° 

35.9° 

153.6 

245.9 

433.1 

581.8 

750.8 

1011.9 

147.9 

246.7 

431.5 

583.5 

741.6 

1010.5 

136.3 

228.2 

399.7 

540.7 

686.4 

936.8 

Figure 16 presents predictions for sand reinforced with polyamide fibers. There 
is a tendency to underestimate the actual influence of fiber reinforcement for large mean 
stresses. In the theoretical model the fibers were assumed to be straight inclusions, and 
a possible source of discrepancies may be in ignoring any effects stemming from local 
damage (gouging, ploughing) and "serpentine" alignment of fibers (which enhances the 
soil-fiber interaction). These effects are more pronounced for coarse sand and soft fibers, 
such as polyamide. The prediction is very accurate, however, for polyamide fibers and 
fine granular matrix (Fig. 17). 

It is fair to conclude that the suggested model is consistent with experimental 
evidence, and the results for applications are promising. A substantial improvement 
(increase in failure stress) can be expected for inclusions with large aspect ratios and 
volumetric concentration of 2% (Fig. 17). 

Implementation 

Eamples of application of the derived failure criterion are presented below. Solutions 
of boundary value problems were attempted for both random fiber-reinforced soil and 
unidirectionally reinforced composite (with very long fibers, TJ -> °o, since the 
closed-form criterion was derived for this case). The influence of the aspect ratio (TJ) on 
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the bearing capacity in the first example can be asserted, to a certain extent, from Fig. 7, 
where the effectiveness of reinforcement as a function of r| is illustrated. 

A flat smooth punch indentation of a rigid-plastic half-space whose failure 
criterion is described by the surface in Fig. 6 (see also eqs. (51)-(56)) is considered. The 
limit load is found using the slip-line method. Eq. (50), along with the set of differential 
equilibrium equations, leads to a set of two hyperbolic-type partial differential equations 
which can be solved using the method of characteristics. The equations of characteristics 
can be expressed as (Booker and Davis, 1972) 

_~L = tan(\|/ - m - v), s -characteristic 
dx 

-JL = tan(\j/ - m + v), s,- characteristic 
dx 

and the stress relations along the characteristics are 

sin[2(m-v)]^-+2F^+Ycos(2m)[cos(2v)^--sin(2v)4^-] =0,   s. 
dsx dsi dSl dS1 

sin[2(m+v)] ?L + 2F^ + y cos(2m) [cos(2v)^i + sin(2v) j^J = 0,    s2 
9s2 ds2 ds2 ds2 

(68) 

(69) 

and 

tan(2m) = -L ^L,      cos(2v) = cos(2m)^L (70) 
2F d\\f dp 

where y is the unit weight of the soil.  The gravity acceleration is assumed here to be 
directed opposite to co-ordinate y. 

Solutions to two boundary value problems are given below. The application in 
Fig. 18 is similar to the smooth punch-indentation problem considered by Hill (1950), 
with the exception that the half-space is now pressure-dependent and anisotropic. The 
failure criterion is represented by equations (51)-(56). Such a composite is representative 
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Figure 18. Stress characteristics field for a smooth punch indentation into 
an anisotropic half-space (simulating soil reinforced in horizontal direction). 
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of a soil subgrade reinforced with horizontal reinforcement strips or blankets of 
geosynthetic material. The matrix (fill) material is cohesionless with internal friction 
angle cp = 35°. The geometry of the punch and the amount of reinforcement is 
characterized by coefficient yb/pa0 - 0.4 (y= specific weight, b = punch half-width). The 
stress boundary condition is given along AG (Fig. 18) as a vertical pressure, qjyb = 0.25, 
and the direction of the limit pressure along AB is vertical (smooth punch). 

Along AG we have \|/ = 0, and the force in the reinforcement is not mobilized in 
the entire triangle AFG. The failure criterion is described here by the classical Mohr- 
Coulomb failure function, eq. (52), and the Cauchy boundary value problem in AFG 
reduces to the isotropic case as in Sokolovskii (1965). Fan of characteristics AFC 
represents the slip-line solution for a boundary value problem with a singular point at 
A. The case where no force is mobilized in the reinforcement extends from characteristic 
AF to AE. At point A of characteristic AE angle 2\|f = JC/2 - (p. Beyond characteristic AE 
a tensile force is mobilized in the reinforcement, but the reinforcement stress does not 
reach yield point G0 (see eqs. (53) and (54)). 

Using eqs. (70) and (54), expressions for 2m and 2v are found, and, after 
substituting these into eq. (68), the equations of characteristics become 

(71) 
dx 

= tano 

f               \ 

s1 - characteristic 

dx 
= tan K 

— -<D +0C 
2 i 

,         s2 - characteristic 

where a is the angle of inclination of the reinforcing inclusions to the x-axis (inclination 
angle of the axis of anisotropy). This comes as a surprise, since the inclination of the 
characteristic lines is now independent of the principal stress directions. Further increase 
in angle \j/ at singular point A does not generate more characteristics in fan AFC until 
angle \|/ reaches the range expressed in eq. (55). The latter is indicative of the 
reinforcement reaching yield point o0, which occurs in the region to the right of line AE; 
line AE is a stress discontinuity. This is quite different from slip-line fields for isotropic 
materials where a stress characteristic cannot become a stress discontinuity. This 
peculiar type of discontinuity was first reported by Rice (1973) for a pressure- 
independent (non-frictional) material. Such discontinuities are always associated with 
plane segments of failure criterion in the space presented in Fig. 6. 
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The stress state in the plastic region to the right of stress discontinuity AE satisfies 
eq. (56) (yield point reached in the reinforcement). The average limit pressure along 
boundary AB is pjyb = 39.93, a 2.03 times increase above the limit pressure over an 
unreinforced half-space. 

The second example of application is shown in Fig. 19. This is a simulation of a 
collapse of a 3-meter-tall vertical slope built of cohesive soil reinforced with 12 horizontal 
reinforcing layers. A physical model of the wall was laboratory tested, and the details 
can be found in Wu (1992). The material parameters (based on data reported in Wu, 
1992) are: cohesion c = 82.7 kN/m2, internal friction angle <p = 12.6°, and unit weight 
Y = 18.9 kN/m3. The reinforced soil mass is homogenized here, and its failure condition 
is described by equations (51)-(56). There were 12 layers of geosynthetic reinforcement 
used with strength estimated from tests as 6 kN/m which, for a wall height of 3m, 
yields a macroscopic strength of pa0 = 24 kN/m2. The wall was loaded using air bags, 
and a pressure of 227 kN/m2 was regarded as the failure load since it was associated 
with a disproportionately large increment of displacement. 

The stress state at failure and the limit load is calculated here using the method 
of characteristics. The slip-line network is shown in Fig. 19. Zero traction is given at 
boundary AD, and the collapse load along AB is vertical. The tensile stress in the 
reinforcing inclusions is now mobilized everywhere in the composite mass, and the 
failure criterion is expressed by eq. (56). The average collapse load at AB was calculated 
to be p0 = 216 kN/m2, while the model of the slope collapsed at p0 = 227 kN/m2. While 
such coincidence of results cannot be regarded as verification of the failure criterion 
derived, it indicates that the stability analyses based on such criterion are reasonable. 
In an associated velocity field discontinuities could occur along slip-lines. Shear bands 
examined at the side wall of the test tank, however, do not coincide with characteristics 
from the theoretical solution. This is probably caused by the small depth-to-height ratio 
of the wall backfill in the experiment, which did not allow for a full development of the 
field similar to that in Fig. 19. 

It needs to be mentioned that the model wall was loaded with air bags, and the 
structure used to brace the air bags probably restricted the freedom of horizontal 
displacement of the top boundary. A concentrated load cannot be included in the slip 
line solution, but this support condition could be simulated approximately with a 
distributed horizontal component of the load on boundary AB. The limit load calculated 
then would have increased. In such a case, point A would become a singular point in 

54 



Figure 19.   Stress characteristics field for an anisotropic vertical slope 
(simulation of a reinforced soil slope). 

q/pc0«2.77 

0=40°,   0„=25G 

7=150 
7H/pcjo=0.32 

0=40° 
7H/p<7o=0. 32 

Figure 20.    Slip-line fields for slope limit load calculations: (a) fiber 
reinforcement; (b) unidirectional (horizontal) reinforcement. 
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the stress field, giving rise to a fan of slip lines between the Cauchy stress region in 
triangle ADC and the mixed stress boundary value problem in ABC. 

The quantity of the horizontal force at the support was not measured in the 
experiment. Without an accurate measurement of the horizontal load and without 
including it in the boundary condition, one cannot make an assessment as to whether 
the vertical component of the failure load calculated would become even closer to the 
actual collapse load or would overestimate it. 

Another example of implementation, a slope stability problem, is shown in Fig. 20. 
The slip-line fields for a slope of inclination angle of 55° and soil randomly reinforced 
with fibers (isotropic composite), with internal friction angle of 40° is shown in Fig. 20(a). 
The slip-line field for a unidirectionally reinforced soil (anisotropic composite) is 
presented in Fig. 20(b). The aspect ratio of the fibers is 150, interfacial friction angle 
(p„ = 25°, and the slope is characterized by dimensionless parameter yH/pa0 = 0.32 
(y = unit weight of soil, H = slope height). The average limit load was calculated, and 
it is given in dimensionless fashion: for a fiber-reinforced slope qjpo0 = 2.77, and for 
horizontal reinforcement q/po0 = 10.89. 

FINAL REMARKS 

This research focused on the limit behavior of granular composites reinforced with 
fibers. In particular, failure criteria for such composites for both a macroscopically 
isotropic case (random fiber reinforcement) and a composite with a preferred direction 
of fibers have been derived. An experimental program was also carried out to validate 
the findings of the theoretical considerations. 

An energy-based homogenization technique was found to be a viable method for 
describing the macroscopic (average) stress at failure for fiber-reinforced granular 
composites. Two composites were considered: one was uniform with respect to both the 
spatial distribution of fibers and the distribution of fiber orientation, and the second one 
had a uniform distribution of fibers in space, but a preferred direction of orientation. 
Consequently, an isotropic yield condition was obtained for the former, and an 
anisotropic one for the latter. In both cases piece-wise and closed-form failure criteria 
were obtained in terms of the macroscopic (average) stress-state. Since the granular 
matrix was described by the Mohr-Coulomb failure function, the limit condition for the 

56 



composite is independent of the mean principal stress. 

The failure criterion for the randomly fiber-reinforced soil (isotropic case) consists 
of two segments: the first one describes failure of the composite due to fiber slip, and 
the second one is associated with the tensile rupture (or plastic flow) of fibers. 
However, the transition from one mode to another is continuous and smooth 
(continuous derivative). 

The failure criterion for the composite reinforced in one preferred direction 
consists of four segments: one which includes the strength of the matrix only (with all 
reinforcement under compression) and is represented in the macroscopic stress space as 
a segment of a cone, a segment of a larger cone which includes the strength of the 
granular matrix and the fibers under tension, and two plane segments, tangent to the 
two cones, which are associated with the transition of the stress in the reinforcement 
from compression to maximum (limit) tension. 

The following parameters are needed to predict theoretically the failure stress 
using the proposed criteria: volumetric fiber concentration p, fiber aspect ratio r|, fiber 
yield point a„, soil/fiber interface friction angle (pw, the internal friction angle of the 
granular matrix, (p, and, for the unidirectionally reinforced composite, the angle of 
inclination of the reinforcement. For a pure fiber slip failure mode, the failure criterion 
is independent of the fiber yield stress (although a0 was used to present the results in 
a dimensionless fashion in Figs. 3 and 6). 

For the derived failure criteria to be applicable, the fiber concentration needs to 
be low enough so that the interaction between fibers can be neglected. This is 
a common limitation of self-consistent schemes of homogenization. The diameter of the 
inclusions (fibers) is considered to be at least an order of magnitude larger than the 
diameter of the grains in the matrix, and the dry friction law is considered applicable 
on the soil-fiber interface. The aspect ratio of the inclusions is at least of the order of 101 

to 102, and spacing (for the unidirectionally reinforced composite) is of at least one order 
of magnitude higher than the inclusions' thickness/diameter. Under such circumstances 
one can expect that, given sufficient confining stresses, a tensile force can be induced in 
longitudinal reinforcing elements which allows the macroscopic stress in the composite 
to increase beyond what would be considered a limit stress for the matrix alone. 

The derived failure criterion for the randomly fiber-reinforced soil predicts the 
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strength of such composite well, particularly for cases where fibers retain their straight 
shape when placed in soil and loaded (such as steel fibers in a coarse matrix). The 
predictions are also very sound for fine-grain composites with flexible fibers. This 
criterion yields reasonable results for flexible fibers in a coarse matrix, although the 
prediction could possibly be improved by including the effect of a "serpentine" 
alignment of fibers when mixed with a coarse granular soil. 

The failure criteria derived are directly applicable in numerical methods for 
solving boundary value problems. Immediate applications of the failure model derived 
are foreseen in design of airfields, aircraft parking facilities, and roads. Future research 
needs to include a refinement of the fiber/matrix interaction, and it needs to include the 
anisotropy patterns due to more realistic distribution of fiber orientation. A description 
of the entire stress-strain behavior also needs to be attempted, which is likely to reveal 
the possibility of such phenomena as snap-back of individual fibers. 

Future research will concentrate on making the description of the mechanical 
behavior of fibrous granular composites more comprehensive (the entire stress-strain 
behavior). The fundamental question that was partly answered in this research was: 
under what circumstances can the process of deformation of a fiber composite become 
unstable? Issues of fundamental and practical importance that will be addressed in 
future research are in the questions: Can the deformation process of the composite be 
controlled by stiffness or length (aspect ratio) of fibers? What is the capability of the 
granular/particulate matrix based composite to dissipate energy? Does a residual 
interfacial stress remain upon removing the loads, and can shakedown occur in a cyclic 

process? 
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APPENDIX 

An extensive experimental program was carried out in addition to theoretical 
considerations. Experimental results were used in this report to verify the assumptions 
of the failure model presented, and to validate the model-based predictions. 

Specimens of fiber-reinforced fine and coarse sand were tested. Specimens were 
subjected to an axisymmetrical stress state (o^ > a2 = o3) in a triaxial apparatus 
(kinematically controlled), and drained tests were carried out. The specimens had a one- 
to-one height-to-diameter ratio (diatn. = 9.65 cm). Over 80 specimens were tested. 

The procedure of specimen preparation is described on pages 35-36. Fine and 
course quartz sand and three types of fibers were used (steel, polyamide and 
polypropylene). Description of the specific confining stress, fiber content and fiber 
aspect ratio is given in the figures and in the figure captions. All fibers were 
approximately 2.54 cm long (1"), except where the influence of the length was tested 
(and this is noted in the captions). The aspect ratio is not given for the polypropylene 
fibers, as they were groups (strands) of thin monofilament fibers with no unique 
diameter. 

The majority of the specimens were macroscopically isotropic (with a uniform 
distribution of fiber orientation in all directions). Eight specimens (Figs. A10, A16, A24, 
and A32) had fibers placed in a preferred direction (vertical or radial). 

The following 32 pages present the stress-strain behavior for all specimens: 
(a) deviatoric stress vs. axial strain, and (b) volumetric strain vs. axial strain. 
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Figure A1.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, unreinforced. 
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Figure A2.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, unreinforced. 
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Figure A3. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polyamide fibers. 
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Figure A4.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polyamide fibers. 
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Figure A5. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polyamide fibers. 
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Figure A6. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polyamide fibers. 
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Figure A7.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polyamide fibers. 
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Figure A8.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polyamide fibers. 
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Figure A9.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polyamide fibers. 
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Figure A10.  Triaxial tests on macroscopically anisotropic specimens with all 
fibers in the horizontal (radial) direction, or all fibers in the vertical direction; 
(a) deviator stress vs. strain, (b) volumetric strain. Fine sand, polyamide fibers. 
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Figure A11.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polypropylene fibers. 
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Figure A12.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, polypropylene fibers. 
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Figure A13. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, steel fibers. 
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Figure A14. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, steel fibers. 
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Figure A15.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Fine sand, steel fibers. 
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Figure A16.  Triaxial tests on macroscopically anisotropic specimens with all 
fibers in the horizontal (radial) direction, or all fibers in the vertical direction; 
(a) deviator stress vs. strain, (b) volumetric strain. Fine sand, steel fibers. 
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Figure A17. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, unreinforced. 
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Figure A18. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, unreinforced. 
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Figure A19.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, polyamide fibers. 
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Figure A20.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, polyamide fibers. 
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Figure A21.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, polyamide fibers. 



(a) 
1,250 

1,000 

E 

CO 

ID 
I 

ID" 

750 - 

500 

250 

!   °3= 200 kPa 

/ 

/ 
100 kPa 

1 /    .*-—*" 
50kPa 

W                                            p=1.5% 

' ,   .   ,   ,   i   .   ,   ,   .   i   ,   ,   ,   , . 

10 

e,(%) 

15 20 

(b) 

Figure A22. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, polyamide fibers. 
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Figure A23. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, polyamide fibers. 
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Figure A24. Triaxial tests on macroscopically anisotropic specimens with all 
fibers in the horizontal (radial) direction, or all fibers in the vertical direction; 
(a) deviator stress vs. strain, (b) volumetric strain. Coarse sand, polyamide fibers. 
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Figure A25. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, polypropylene fibers. 
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Figure A26. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, polypropylene fibers. 
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Figure A27.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, steel fibers. 
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Figure A28.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, steel fibers. 
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Figure A29. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, steel fibers. 
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Figure A30. Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, steel fibers. 
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Figure A31.  Triaxial test results: (a) deviator stress vs. strain, 
(b) volumetric strain. 

Coarse sand, steel fibers. 
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Figure A32.  Triaxial tests on macroscopically anisotropic specimens with all 
fibers in the horizontal (radial) direction, or all fibers in the vertical direction; 
(a) deviator stress vs. strain, (b) volumetric strain. Coarse sand, steel fibers. 


