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Final Report on 
AFOSR Contract F49620 

Anisotropie Elastic Materials and Composites With 

The Effects of Temperature and Piezoelectricity 

The objectives of this project were to extend the Stroh formalism for 

two-dimensional deformations of anisotropic elastic bodies to include heat 

flow and piezoelectricity, and to apply the theory to study the effects of 

temperature and piezoelectricity in composites. The basic Stroh formalism 

is not new. The foundation of the formalism was laid down by Stroh in his 

pioneering papers in 1958 and 1962. Since then material scientists, physi- 

cists, and applied mathematicians have recognized its superior features and 

have further developed the formalism. For unexplainable reasons the 

engineering community has refused to employ Stroh formalism and have 

steadfastly employed the traditional Lekhnitskii formalism. Only in recent 

years did a few young researchers in the applied mechanics community 

begin to employ the Stroh formalism. The Stroh formalism is mathemati- 

cally elegant and technically powerful. It is not difficult to understand. In 

fact it is easier to learn and simpler to use than the Lekhnitskii formalism. 

In view of this, it is even more puzzling why the engineering community 

has been so slow in catching up with the Stroh formalism. Researchers in 

material sciences, physics, and applied mathematics hardly use the Lekhnit- 

skii formalism. 



3 

In the first year of the project we extended the Stroh formalism to 

include heat flow in general anisotropic elastic materials [1]. We then 

studied the stress singularities at an interface crack due to heat flow in a 

bimaterial that consists of two dissimilar general anisotropic materials. If 

the stress singularities at the crack tip are written in the form of r5, there 

are three stress singularities 

—i      --k+iy        ,      -A-i'y r 2,    r 2    ,   and    r 2 (1) 

when the heat effects  are ignored.    The materials in the  composite  are 

mismatched when y * 0 so that the second and the third  5 in  (1)  are 

complex.    With the inclusion of heat flow, it is shown that there  is   a 

possibility of a fourth stronger singularity 

_I 
r 2(lnr). (2) 

This is a stronger singularity than the ones shown in (1), indicating that 

heat flow increases the potential for initiation of fracture in composites. 

The   conditions   for   the   existence   of   the   stronger   singularity   (2)   are 

presented explicitly. 

The conditions for the existence of the stronger singularity derived in 

[1]   are  applicable to  general   anisotropic   materials.     It  is   difficult  to 

interpret the conditions physically.   In order to have a quantitative result, 

monoclinic materials with the symmetry planes at x3=0 are considered [2]. 

All quantities  involved  in the  solutions  and in the  conditions  for  the 

existence  of  the   stronger  singularity   now   have  an   explicit  real  form 

expression.   An unexpected result is that the stronger singularity does not 

exist if the two materials in the bimaterial are mismatched.   The is a rather 

puzzling result.   One would have expected that the reverse is true.    It is 

known that a mismatched bimaterial induces an oscillatory displacement 



near the crack tip, resulting in the physically unacceptable interpenetration 

of the two materials at the interface crack. It is, however, saved from a 

stronger stress singularity when the effects of heat flow is included. On 

the other hand, while a non-mismatched bimaterial is immune to the 

interpenetration of the two materials at the interface crack, it may admit a 

stronger stress singularity when the heat flow in considered. 

For isotropic bimaterials the two materials are not mismatched if 

l-2v    l-2v' 
 = — (3) 

where \x is the shear modulus and v is the Poisson's ratio. The prime refers 

to the second material. The condition for existence of the stronger 

singularity is 

cr(l+v)^ «'(!+•) 
 ** ;  (4) 

K K 

where a and K are the thermal expansion coefficient and the heat conduc- 

tivity, respectively. Thus when (3) and (4) are satisfied, there exists a 

stronger stress singularity of the form (2) in an isotropic bimaterial. If the 

material is incompressible, i.e., if v=l/2, (3) is automatically satisfied and 

(4) leads to 

<XK'±a'K. (5) 

In the second and third year we looked at the extension of the Stroh 

formalism to piezoelectric materials and its applications. The sextic formal- 

ism of Stroh becomes an octet formalism. Most of the identities for 

anisotropic materials can be extended to piezoelectric materials except that 

certain matrices are no longer positive definite. However, they can be 

shown to be nonsingular, a very important and crucial property in the 

analysis of piezoelectric materials [3]. 
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One of the basic problems is that of the Green's function for the infinite 

space subject to a prescribed singularity at the origin of the coordinate 

system. The usefulness of Green's function in solving practical problems 

with an arbitrarily prescribed boundary conditions on an irregular shape of 

boundary is well recognized. We presented in [3] the Green's function in 

the infinite space of homogeneous piezoelectric material subjected to a line 

force, line charge, and a line dislocation. To make it more general, we 

consider the infinite space to consist of an arbitrary number of wedges of 

different wedge angles and different piezoelectric materials. The Green's 

function due to a line force, a line charge, and a line dislocation at the 

center of this composite space consisting of an arbitrary number of wedges, 

has a surprisingly simple expression. Moreover, the solution can be 

expressed in a real form, not in a complex form. A real and closed form 

solution for the Green's function is very useful in applications. 

A by-product of the paper in [3] is the problem of a composite wedge 

subjected to a line force at the apex of the composite wedge. The 

composite wedge now consists of any number of homogeneous piezoelec- 

tric wedges of different wedge angles. Again, the solution can be 

expressed in a real and closed form. 

When the number of the wedges in the composite space or composite 

wedge becomes infinite, the material is an angularly inhomogeneous 

material. This means that the material property depends on the polar angle 

6 in a cylindrical coordinate system (r, 0, z). The Stroh formalism does not 

apply to an inhomogeneous materials, let alone the special case of angularly 

inhomogeneous materials. A different approach must be employed. This is 

presented in [4]. The solution is again in an explicit real form. Real 

materials may not always be homogeneous.   Glass fibers, for instance, can 



be cylindrical anisotropic.   This is a special case of angularly inhomoge- 

neous anisotropic materials. 

The papers [3,4] inspire the Russian scientist, Professor V. I. Alshits 

and the French scientist, Professor H. O. K. Kirchner. They pointed out 

that, from a different angle, the results in [3,4] can be re-derived by a 

simpler approach. In fact the alternate derivation also allows one to include 

piezomagnetic and magnetoelectric properties. This results in a joint paper 

[5]. The contribution of the principal investigator on this paper is the 

derivation of governing differential equations employing a dual coordinate 

system. The dependent variables are referred to a rectangular coordinate 

system while the independent variables are refereed to a cylindrical coordi- 

nate system. The employment of a dual coordinate system follows from a 

general dual coordinate system presented in a book by the principal investi- 

gator on "Anisotropic Elasticity: Theory and Applications" currently under 

printing by Oxford University Press. 

The last area of applications under this project is the problem of a defect 

in a material. A defect may have the form of a void or an inclusion of 

different material. We consider the void to have the shape of an ellipse, 

and the inclusion to be an rigid elliptic inclusion or an inclusion of dissimi- 

lar material [6]. A crack is a special case of an elliptic hole when the minor 

axis of the ellipse becomes zero. Various problems are studied. For the 

case of an elliptic hole, explicit real form solutions are obtained for the 

stress along the elliptic hole boundary subjected to an arbitrary prescribed 

boundary condition at the elliptic hole boundary. For an elliptic rigid 

inclusion subjected to a line force, a torque, and a line charge, a real form 

solution at the interface between the piezoelectric material and the rigid 

inclusion is obtained.   Also obtained is the general solution for an piezo- 
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electric inclusion of dissimilar materials under a uniform loading at 

infinity. The stresses along the interface between the two materials are 

obtained explicitly. In particular, the stress concentration along the 

interface can be deduced directly from the solutions. These are useful 

information in applications in which one is interested in the stress 

localization in the material due to a defect, and in the possible debonding of 

a fiber in a composite. 

In summary, we have generalized the Stroh formalism for anisotropic 

elastic materials to include the effects of heat flow and piezoelectric 

property. The generalized formalism allows us to extend many solutions 

for purely anisotropic materials to materials subjected to heat flow or has 

piezoelectric effects. Important results are obtained for Green's functions 

for the infinite space, composite space, and the infinite space with an 

elliptic hole or a rigid inclusion. Equally important are the stress concen- 

tration around an elliptic hole, elliptic rigid inclusion, or an elliptic inter- 

face between two dissimilar piezoelectric materials subjected to various 

loading on the materials. These are very useful in applications, especially 

in composite materials. 
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Piezoelectric Solid with an Elliptic Inclusion or Hole 

M.Y. Chung and T.C.T. Ting 

University of Illinois at Chicago 
Department of Civil and Materials Engineering 

842 W. Taylor Street (M/C 246) 
Chicago, IL 60607-7023 

Abstract: The two-dimensional problem of an elliptic hole in a solid of anisotropic piezoelectric 

material is studied. The Stroh formalism is adopted here. Real form solutions are obtained along 

the hole boundary in the case of an arbitrarily prescribed vector field on the hole surface. For 

an elliptic rigid inclusion of electric conductor subjected to a line force, a torque, and a line 

charge, a real form solution at the interface is obtained. Finally, general solutions for an elliptic 

piezoelectric inclusion with uniform loading at infinity are investigated. 

1.  Introduction 

In 1958 and 1962, Stroh elaborated the work of Eshelby et al. (1953) on two-dimensional 

problems of general anisotropic elasticity involving dislocations, line forces, and steady waves. 

This powerful and elegant approach was named the Stroh formalism. 

In 1975, Barnett and Lothe extended Stroh's 1962 paper to include the piezoelectric effect 

in which an eight-dimensional framework had been developed. Here, we consider the two- 

dimensional problem of an elliptic hole in a solid of anisotropic piezoelectric material. Similar 

problems had been studied by Pak (1992) and Sosa (1991). Although some useful solutions had 

been derived in these two papers, they were both restricted to the transversely Isotropie situation. 

In Pak's 1992 paper, special remote loading conditions were employed and the concentration 

effect was studied.   Likewise, only remote loadings were considered in Sosa's 1991 paper. 

Here, solutions of an arbitrarily prescribed loading on the hole surface are derived. 



Furthermore, in the case of an elliptic rigid inclusion of electric conductor subjected to a line 

force, a torque, and a free line charge, real form solutions along the elliptic interface are obtained 

which could be used to examine the concentration effect. Finally, we investigate the situation 

of an elliptic piezoelectric inclusion with uniform loading at infinity. 

In the following basic solutions of the Stroh formalism with the piezoelectric effect are 

given. Some boundary conditions are shown in section 2. In sections 3 and 4, a few useful 

relations are derived. General field solutions to the elliptic problem are obtained in section 5 

with emphasize on solutions along the elliptic boundary. Such boundary solutions could be 

employed to investigate the concentration effect. However, arbitrary constant vectors are 

involved and remain unknown. They will be determined in sections 6, 7, and 8 in which 

different boundary conditions are applied. 

In a Cartesian coordinate system (xn x2, x3) the constitutive equations for piezoelectric 

materials are given by (Tiersten, 1969) 

aij   =   CVkmUk,m   +  ««(,-*.»'       Di   =  eikmUk,m   "   <»UnV.m       ÜJ ,k,m = 1,2, 3) Ü-D 

in which repeated indices mean summation and a comma stands for partial differentiation. o{j is 

the elastic stress and Di is the electric displacement. Coefficients Cijhn, emiji coim are, 

respectively, the elastic stiffnesses, piezoelectric constants, and permittivities with the following 

symmetries: 

C...    = C .    = C. ...     e     = e ...     u.=o) .. (1-2) ijkm jikm kmij' my mjt' im mi 

uk is the elastic displacement and <p is the electrostatic potential. C^ and cojm are positive 

definite in the sense that 

CijkmhjuKm > 0,     <*JL%Em > 0 (1-3) 

for arbitrary real nonzero w.. and Ei with 

Ex = -<p,. (1.4) 

In the absence of body forces and free charges, the balance laws require 



%=°>      ^M=0- (1.5) 

For two-dimensional deformations in which uk and (p  depend on x1  and x2 only, a general 

solution to (1.5) is given by 

Uj = afiz)     (J = 1,2,3,4) (1.6) 

in which 

z = Xj+px2,     u4 = <p, (1.7) 

and p, üj are constants to be determined.   In matrix notation, 

u = a/(z). (1.8) 

Thus u, a are four-vectors and u is called the generalized displacement.  By defining 

Q = 
QE    e„ 

en     au 
,    R = 

RE e
21 

,     T = 
T 

«12 -°>12\ 

TE    e, •22 

e22        ^22 

(1.9) 

where 

mik = ClM,     (R\ = Cim,     (T\ = Cim,     (eij)m=e,ym) 

we combine (1.1), (1.5), and (1.6) into one equation as 

Q+p(R + RT)+p2Tla = 0. 

(1.10) 

(1.11) 

The 4x4 matrices Q and T are symmetric but not positive definite.  However, they can be 

shown to be nonsingular. 

Let the generalized stress function vector <J> be defined as 

* = b/(z),     b = (RT + pT)a = —(Q + pR)a, 
P 

(1.12) 

with 

°il   =   -4>L2>        ai2   =   4>W       Dl   =   -<f>4,2>       D2   =   <t>4,r (1.13) 
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The second equality in (1.12), follows from (1.11). Equation (1.13) provide all components 

of otj and Di except  o33  and D3;  they can be determined from (1.1). 

With the positive definiteness of Cijkm and  o>im shown in (1.3), the eigenvalues p of 

(1.11) are all complex and consist of four pairs of complex conjugates.   Let 

Pa+*=P~a>     
Im{Pa}>0     (a = 1,2,3,4), (1-14) 

a*+4 = ^>   K* = K> (L15) 

where the overbar denote the complex conjugates. The general solution obtained by superposing 

eight solutions of (1.8) and (1.12), associated with the eight eigenvalues pa are 

u - 2Jfej£ *Ja(za)\,     * = 2ifej£ bja(za)\ (1-16) 

in which Re stands for the real part and /ff+4 =fa   {a = 1,2,3,4)  is chosen. 

In most applications 

f<Ma) = <lAza)     (a not summed) (1.17) 

is assumed.  Hence, equation (1.16) reduces to, in matrix notation, 

u = 2Re{\<f{zJ>q},     * = 2Jte{B</[zJ>q} (1.18) 

where A and B are 4x4 matrices given by 

A = [a;, a2, aJ? a4],    B = [b„ b2, bJ3 b4], (1.19) 

and <ft.z,)> is the 4x4 diagonal matrix 

<Az.)> = diag<f{z1), Kz2), Az3), Kz} >. (1-20) 

The elements of the four-vector q are qa (a=l,2,3,4).  Notice that the solutions given in 

(1.18) are in terms of the arbitrary function f(za)  and the arbitrary complex constant vector q. 



2.  Boundary Conditions 

Consider an arc or a contour C  described by 

C(5) (2.1) 

where s  is the arc-length.   The unit tangential vector n and the unit normal vector m  are 

given by 

n' 
dx,    dx, 
— ,  —, 0 
ds      ds 

nr 
dx2     dxj 

ds '    ds 
, 0 (2.2) 

respectively.  By taking derivative of $ in the direction of increasing 5   (with material on the 

RIGHT-hand side) and using (1.13), we obtain 

dfa d<bA 
-/=tj     (j = 1,2,3),     -P=D-m=Dm, 
ds       J ds 

in which tj is the component of surface traction vector.  Similarly, one obtains 

du. 
—- = -En = -E. 
ds 

(2.3) 

(2.4) 

If we consider a dielectric interface with materials indicated by "1" and "2", the electrical 

conditions at the interface are 

Ej  n = E2  n,    Dt -nij +D2  m2 = as (2.5) 

where n is a unit vector tangential to the dielectric interface, mi is an inward normal unit 

vector, and os is the free surface charge density along the interface. Without loss in generality, 

we can rewrite (2.5) as 

<Pj = <p2,     Dj-nij +D2m2 = os (2.6) 

If we have an interface between electric conductor "1" and dielectric "2", then inside the 

electric conductor, 



D, =0,     E.  = 0. 
i 3 1 

(2.7) 

In the dielectric, at the interface 

E2 -n = E,   = 0,     D,   m, = a 2    "*2 
(2.8) 

3.  Eight-Dimensional Formalism 

The two equations in (1.12)2 can be rewritten as 

[-RT  II a T  0 a 

-Q   0 b = P R  I b 

Since T"1 exists, we can reduce (3.1) to 

N£ =pl, 

(3.1) 

(3.2) 

where 

N = 
N,   N2 

N3  N] 
I = (3.3) 

N, = -T 'RT,     N2 = F1,     N3 = RT   RT-Q (3.4) 

The real 4x4 matrices N2 and N3 are symmetric. Equation (3.2) is a standard eigenrelation 

in the eight-dimensional space. There are eight eigenvalues pa (cc = 1,2,...,8) and eight 

associated eigenvectors  t,a. The eigenvalues are the roots of the determinant 

||N -pl\\ = 0. (3-5) 

The vector £  in (3.2) is a right eigenvector.  The left eigenvector TI   is defined by 

HTN-^T,     tfn-pn, (3-6) 

and can be shown to be 



Tl    = 
b 

a 
(3.7) 

Normalization of £a and T^ (which are orthogonal to each other) gives 

^/X   =   Ößa (3.8) 

where  ößa is the Kronecker delta. Making use of (1.15), (1.19), (3.3)2, and (3.7), equation (3.8) 

is written as 

(3.9) 

This is the orthogonality relation. The two 8x8  matrices on the left hand side of (3.9) are the 

inverses of each other.  Their product commutes so that 

(3.10) 

BT AT' [AÄ1 
I  0 

BT ÄT B  B 0  I 

A A BT AT I  0 

B  B BT ÄT 0  I 

This is the closure relation and is equivalent to 

ABT + ÄBT = I = BAT + BÄT,     AAT + ÄÄT = 0 = BBT + BB1 

Hence, the three matrices S, H, L defined by 

S = i(2ABT-I),     H = i2AAT,     L = -i2BBT 

(3.11) 

(3.12) 

are real.  The matrices H and L are symmetric and nonsingular (Lothe and Barnett, 1976). 

Since S, H, L are real, the following relation exists (Chung, 1995; Ting and Yan, 1991) 

(3.13) 

which indicates that SH and LS are anti-symmetric. It can be shown that H_1S and SL"1 

are also anti-symmetric. 

Finally, we rewrite (3.2) as 

S    H S    H I  0 

.-L  ST. .-L  ST 0  I 



N 
a/'(z) 

b/'GO. 

*pf'(z) 

bpf'iz). 

(3.14) 

Employing (1.7),, (1.8), and (1.12), leads to a matrix differential equation for u and <|>. 

(3.15) N 
u ,2 

* ,2 

4.  The Integral Formalism 

Let the tensor EUKm be defined by (Barnett and Lothe, 1975; Kuo and Barnett, 1991) 

E       - C 

= e mi) 

eikm 

=     -CO, 

(J,K = 1,2,3), 
(7 = 7,2,3; K = 4), 

(J = 4;K = 1,2,3), 
(J = K = 4). 

With n(<y) and m(<y) given by 

nT(<y) = [costy,  sinw,  0],     mT(<y) = [-siney,  COSGJ,  0] 

in which  u> is a real parameter range from 0 to 2it, we let 

7^) = mi(a)EUKmmm(a)1 

and 

N3(w) = R(<y)T-1(w)RT(6;)-Q(a)). 

Lothe and Barnett (1976) have shown that 

It 71 71 

S = - (N^dco,     U = - (N2(co)do),     -L = — fnJa)da. 
K   n It -i, It "i. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

0 "* 0 "0 

Equations (4.5) provide an alternate to (3.12) for the Barnett-Lothe tensors S, H,  and L. 
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5.  The General Solutions 

In this section the general solutions for two-dimensional deformations along an elliptic 

boundary will be derived (Ting and Yan, 1991).  An ellipse r given by 

x, = acosilr ,r ,x 
r-\ u ■   , {     ' x2 = bsmifr 

is shown in Fig.l.   Let n and m be the unit vectors tangential and normal to the elliptic 

boundary, respectively and  o  be the angle between vector n and the positive x1  axis. Hence, 

nT = [cosw,  sinw,  0],     mT = [-sinw,  cos<y,  0] (5-2) 

which is (4.2).  The infinitesimal arc-length ds of the ellipse is given by 

ds = p(f)dijf,     p(ifr) = sja2 sin2 ifr + b1 cos2 ifr. ^53^ 

From (2.2), and (5.1) we see that 

cosco =  sintir,     sin<y =  cosifr (5.4) 
Pit) Pit) 

when comparison is made with (5.2),. 

If there is a line force f  and a free line-charge density  X  applied at the origin (Fig.l), 

by employing (2.3), the equilibrium conditions give 

fitjjds = lim 0.(5) - <t>fA) = f.     V = 1,2,3) 
ri B-A 

JD mds = lim 4>4(B) - <p4(A) = -X 
(5.5) 

B~A 

in which tm and D are the surface traction and the electric displacement of the medium along 

the elliptic boundary r, respectively. Therefore, we have a jump in <J> across the positive xl 

axis if f  and X  are not equal to zero.    Points A and B are in fact the same point on 

positive xI axis except that when one moves from A to B counter-clockwise, the whole 

ellipse r is transversed. 

Consider the transformation 



z.-cj^dj^     {a-1,2,3,4), (5-6) "a a ' a        a ' or 

where ca and <ia are complex constants and za=x} +pax2.  The constants ca and rfa are 

chosen such that when  (xr x2) c r,     £a (a = 1,2,3,4)  is on a unit circle.  That is, 

(\   = elt = cos^ + isintfr     (a = l,2,3,4) (5.7) 
ir 

when za = acos^r +jPaZ>sin^ and one obtains 

c_ = fl-fr.*f     d   =  
fl + t>^ (5.8) 

a r, ' a 

Since a, b, and /ffi{pa} are all positive and non-zero, it can be shown that the branch 

points Ca of the transformation (5.6) are located inside the unit circle in the Ca~ plane. Hence, 

the branch points in the (xr x2) plane are located inside the ellipse. In addition, the 

transformation is one-to-one outside the elliptic hole. 

In order to satisfy the jump conditions stated in (5.5) along the positive x1    axis, the 

arbitrary function flza)  given in (1.18) is chosen to be 

Aza) = ln^, (5-9) 

with za and Ca being related by (5.6). Also, by putting (Ting, 1986; 1988a, Hwu and Ting, 

1989) 

q=ATg0 + BTh0 (5-10) 

in (1.18) where gg and h0 are real constants, we obtain the first basic solution 

u1 = 2/te{A<lnC>AT}g0 + 2Jte{A<ln<r+>BT}h0 

4>r = 2/?e{B<ln^>AT}g0+2i?e{B<ln^>BT}h0 

(5.11) 

in which < ln£", > is the diagonal matrix of lnCa with a = 1,2,3,4. Since kiCa is a multi- 

valued function, a cut along i/r = 0 is introduced which makes u1, «J)1 single-valued and allows 

a discontinuity along the positive x1 axis. As zff^°°, the elastic stresses and the electric 

displacements obtained from (5.11)2 vanish.  This is consistent with the boundary conditions at 
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infinity. 

In order to provide analytical solutions outside the ellipse, 

Ma) = C     q=ATg, + B
Th,,     (£=1,2,...) (5.12) 

(5.13) 

are assumed in (1.18) where g*, hk are real constants.  Superimposing the solutions 

from k = 1  to » leads to the second basic solution 

u11 = lJ2 Re{A<Ck>AT\gk + 2J2 Re{A<Ck>BT\hk 
*-i t-i 

<f>n = 2J2 Re{B<Ck>Angk + 2Jr Re{B<c:k>BT\hk 

in   which < ^*>  is   the   diagonal   matrix   of  f«  (cc = 1,2,3,4).  Notice   that   both u11 

and $a approach zero as za~°°   (or Ca^°°)- 

With (5.7) it is easy to see that 

<lnqr> = itfrl,     <^|r> = cos(kil/)I-ism(kiJr)I. (5.14) 

Substituting back in (5.11) gives the first basic solution along the elliptic boundary r as 

u'|r = fh,,     tf\r = ^ (5.15) 

h0 = Hg0 + Sh0,     g, -SPfc-Lh,,, (5.16) 

when using (3.12).  Similarly, the second basic solution along the elliptic boundary r is in the 

form 

u\ = E [cos(fc^r)ht - sin(fctfr)hj,    <|>n|r - £ [cos^tfOg^ - sm(kifr)gk]    (5-17) 

in which 

h, = Hgt + Shfc,     g, = STg,-Lhr (5.18) 

Some useful relations between gt, h^, g^, and ^ are given below (Chung, 1995; Ting 

and Yan, 1991). 
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h^L-'fS^-^),     fc^L-ffc + S1^)     (* = 0,1,2,...), (5-19) 

gt= -H^jh^Sh,),     gk = -H^Sh,-^)     (* = 0,1,2,...). (5-20) 

In fact, any two of gk, hk, gk,  and h^ can be written in terms of the others. 

In order to investigate the concentration effect, we will derive the generalized stress 

vector t and the generalized hoop stress vector t along the elliptic boundary. In Fig.2, 

if n is the arc-length of r measured in the direction of n, then from (2.3) the generalized 

stress vector t    is defined as 
m 

Z = [(0;>   (U2>   (U3.  Dm] = <t>T„, (5-21) 

or, using (5.3),, 

t    =«,    =     ^ (5.22) 
m        •"       pWdifr 

Substituting tf\r and <J>n|r given in (5.15)2 and (5.17)2 leads to 

Note that the arbitrary constant vectors gg, g^., and gk (k = 1,2,...)  are involved. 

Similarly, in Fig.3, if the generalized hoop stress vector t   is defined by 

? = [(^i. (y2. (^3. -A] (5-24) 

with  -Dn =D -(-n), then by letting m be the arc-length measured in the direction of m, it 

is clear that 

K = ♦m = -4>(;Sina; + 4>2cosw (5.25) 

where use has been made of (2.3) and (5.2)2. Alternatively, one can express t   in terms of u „ 

and t    as (Chung, 1995; Ting and Yan, 1991) 

t n = N3(«y)u„+Ny(iu)tm (5-26^ 
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which is a relation applies to a general shape of boundary. 

For the elliptic boundary  r shown in Fig.3, we have 

tn = N3(o>) -Kx(co)tm = tn+tn 
P(^W 

(5.27) 

in which 

«I- 1 
[NjC^^+N^lo 

P(#> 

_N3(a>) 

P(0O fei 
J^ ^[sin(fej/r)ht + cos(fc^r)hA 

Nl(o)) 

p(<0 
£ U|sin(&i/0gfc 

+ cos(kifr)gh 
fc=i 

(5.28) 

with the use of (5.15),, (5.17),, and (5.23).  Again the arbitrary constant vectors are involved. 

In the case of a hole with free surface and electrically open (i.e., zero normal component 

of electric displacement), (5.26) then takes the form 

t    =  N,(6»)U. (5.29) 

and t    =0 (Kuo and Barnett, 1991). 

If we have a rigid inclusion of electric conductor inclusion with boundary condition 

E n = 0 given by (2.8),, it follows from (2.4) that (5.26) is reduced to 

tn = N3(«y) 
Ur,n 

0 
+ N(6>)t (5.30) 

in which ur is the rigid body motion of the boundary.  Hence, 

ur = u0 + Q e5 x rr (5.31) 

where u0 is a rigid body translation,  Q  is the rotation about x3 axis and rr is the position 

vector of a point on the boundary.  For an elliptic boundary r,    i> = acos^e; + bsin^e2. 



Thus, 

rr,„ = n'     ur,n = Qe3xr/> = Qm- 

Substituting (5.32), into (5.30) yields (Chung, 1995) 

which is also applicable to circular boundary. 

The hoop stress   <Jm is given by 

a    = t   •(-n) 

14 

(5.32) 

(5.33) 

(5.34) 

and the two shear stresses are 

a     = t   • (-m),     a , = t nm n      V /' ni n 
(5.35) 

in which e, = [0, 0,   1]. 

Notice that our solutions are all in terms of arbitrary constant vectors gk, hk, gk, hk 

with k = 0,1,2,.... When we determine these constants, we have the solutions. In the next three 

sections, the arbitrary constant vectors will be determined by applying appropriate boundary 

conditions. 

6.  An Elliptic Hole 

We consider an elliptic hole shown in Fig.2.  Let 

u|r = u*|r + uu|r = ^hQ + £ \cos{k$)\\k - sjn(*^r)ht] 

t=i 

(6.1) 

The right hand sides of (6.1) are given by (5.15) and (5.17).  Since u|r must be single-valued, 

it follows from (6.1), that 



ho =°> 
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(6.2) 

and one obtains 

S'Hg,, (6.3) 

when (5.20)2 is employed. The generalized stress vector along the elliptic hole boundary p is, 

with (5.23), 

2        ji     in t    = t   +1    = m mm 
1 1 

Pit) Pif)kZ 
go ~ —77E 1* *Hkf)gk + cos(kifr)gk 

(6.4) 

To find tn, we first substitute (5.19) into (6.1),.  With (6.2) and 

SL-'tL-'S7 = 0, 

the generalized displacement vector along r becomes 

(6.5) 

u|r = -SL"1^ [cos^g, -sm.(kifr)gk] - L~lJ2 \cos(kifr)gk + sm(k^)gk}.      (6-6> 

Equation (6.5) comes from the anti-symmetric property of SL"1. From (5.27), the generalized 

hoop stress vector then takes the form 

«„ = J PO) 

+     p(fl    S {*[«****)** - cos(^)g,]} 

in which (6.4)2 and (6.6) are employed.  Alternatively, one obtains 

G friA f m 1 

(6.7) 

(6.8) 

with 

G^a) = N[((O)-N3(O,)SL-
1
,     GJCO) = -N^cy)!/1. (6.9) 

Since N3(<y) is symmetric so is G3(G/)L.  It can be shown that 



GjC^L = N[(G>)L-N3(W)S 
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(6.10) 

is also symmetric. 

For   an   arbitrarily   prescribed   boundary   condition   along r, we   define   a   four- 

vector   W^r), 

M = {^mW)> (TJ2(^)' i^W), DmW} = [*lW, DmW (6.11) 

in which (tm)j(!/0 (i = 1,2,3) are arbitrarily prescribed traction components on p while the 

stress at infinity vanishes. Dm(i(r) ( = D(ip) m) is an arbitrarily prescribed normal component 

of electric displacement of the medium along r with the electric displacement vanishes at 

infinity also. Notice that Dm(ip) = 0 refers to the so-called electrically opened situation (Kuo 

and Barnett, 1991; Pak, 1992). With the arbitrarily prescribed boundary conditions it is clear that 

x (ilr) = t  . (6-12) 

Employing (6.4)2 and the orthogonality properties between sine and cosine, some of the arbitrary 

constant vectors in terms of Tm( ifr)  are determined as 

2rc 

go = ^-/p(«*m(Wrf^ 

g* = 
kit 

o 
2it 

/ p(#>Tm(tfOsir##)<ty 
0 

2tt 
-1 r 

gk = — \ p(ilr)im(iy)cos(kifr)d^ 
ten J

n 

U* 1 ) 

(* * 1 ) 

(6.13) 

Equations (5.19)2, (6.2), and (6.13), can then be used to find gg. After that, h^ and h^ are 

obtained by employing (5.19), and (5.19)2, respectively. In fact h0 can simply be computed 

from (6.3). 

Indeed, gg is related to the resultant line force f applied on r and the resultant free 

line-charge density X. enclosed by f. By considering (5.5) and (6.12), the equilibrium equation 

becomes 
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2TT 

fxm(f)p(iy)dr/f = JTm(ifr)dn = 2iz 80 = f (6.14) 

0 r 

where n is the arc-length along the elliptic hole boundary r. 

In the following some special boundary conditions of *m(^)  are considered.   We first 

assume 

p(i/f)D (f) = ß = constant. 

By (6.14), one has 

DJLV 
-k 

p(ip)       2TZ p(ijf) 

(6.15) 

(6.16) 

Suppose that a uniform pressure p is applied along the elliptic boundary r.  i.e., 

xJiir) = -pm(w). (6.17) 

With this and (6.16),, the prescribed generalized stress vector takes the form 

«£<*> = p cosilr,  p shxilf, 0,   —*— 
At)      %m pit) 

(6.18) 

in which (5.2)2 and (5.4) are employed. By comparing with (6.4)2 the arbitrary constant vectors 

gk and gk are easily determined as 

go = ß*v     8i = -Pae2,     g, = -p*ep     g, = g, = 0     (^2),       (6-19) 

where the four-vectors 6j are defined as 

Wi = {o; !;J (u=1.2,3,4). (6.20) 

Thus, with (6.6), the generalized displacement vector along the elliptic boundary is simply 

(6.21) »IT = SL^pUA-x.,^)+L-1p(-*;e1 +^JC2e2). 
b 
a 

Similarly, with (6.8), (6.12), and (6.18), the generalized hoop stress vector is given by 



tn = GjCw) 

psinw 

-pcosw 

0 

P 
Pif) 

+ G,(6;)S1 

r                          -, ' b        1 0 — COS CO 

a 
0 

a . 
0 - G3(6;)p — sina> 

b 
p 0 

LP(^). 0 

(6.22) 

Likewise, we can consider a uniform in-plane shear stress   x instead of a uniform pressure p. 

In addition to the special boundary condition stated in (6.15), the traction boundary 

condition described by 

f 
P(f)-cjf) constant = 

2n 
(6.23) 

is considered.  Following the similar procedure given above, we have 

u|r = 0 = constant (6.24) 

which implies that the elliptic hole is not distorted and the electrostatic potential is constant on 

the hole surface. Consequently, if the elliptic hole is filled with a rigid electric conductor and 

subjected to a concentrated line force f and a free line charge density X at the origin, the 

generalized stress vector t along the interface is simply given by (6.15) and (6.23) (Ting and 

Yan, 1991).  The generalized hoop stress vector is 

t. 1 

P(f) 
G1(w)+G3(w)ST] (6.25) 

which can be shown to be consistent with what is stated in (5.33) when (6.5) and (6.9) are 

employed. 

In the following the solutions for boundary conditions prescribed as 

*m(*> 

aUmi + 02im2 + 0Sim3 

anm1 + o22m2 + a32m3 

auml + a23m2 + a33m3 

D1m1 + D^m^ + D3m3 

"öTl ö 

öT 
m(<y) = 

DT 
m(co) (6.26) 
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will be derived. Here, 5 and f) are the prescribed uniform stress field and electric 

displacement field along the elliptic hole boundary r within the medium, respectively. 

Since mT(» = [-sina>,  cosw,  0],  we have from (5.4) 

*»(*) = P(f) 
COSl/ftj 

a 

P(tf0 
sinifrL,     t.  = 

dll °12 

°21 ^22 

°31 
,       t2   = 

°32 

Pi. Ö2 

(6.27) 

The arbitrary constants are determined by comparing with (6.4)2 which leads to 

go = 0,     gj = at,,     gj = &t15     gfc = gk = 0     (fci2). (6.28) 

With the use of (5.1) and (6.28), (6.6) reduces to 

u|r = -SL'^jCj^-j^tJ -L"1 b   i     a   i (6.29) 

The generalized hoop stress vector stated in (6.8) takes the form 

tn = G^oOfcoswtj - siiKutJ + G3(6;) b i     a .     2 — coswt. + — sina>t, 
a 1    b 2 

(6.30) 

when (5.4), (6,12), (6.27),, and (6.28) are employed. 

For the problem of an elliptic hole subject to a uniform stress field a™ and a uniform 

electric displacement field D" at infinity while the surface of the hole is free of traction and 

electrically open (Pak, 1992), the solution may be separated into two parts. The first part is the 

uniform solution in which the stress and electric displacement are a™ and D°° everywhere. The 

second part is the "disturbed" state due to the presence of the hole. The solution of the second 

part must satisfy the boundary conditions that the stress and electric displacement vanish at 

infinity while at the hole surface 

Ut) = 
-a 

-D" 
m(6;). (6.31) 

This is precisely the problem considered in this section. 



20 

In general, for an arbitrarily prescribed boundary condition Tm(i/A)  the series solutions 

u|r and t   given above retain infinite terms. However, by introducing the conjugate function 

(Bary, 1964; Ting and Yan,  1991), one can rewrite the infinite series solutions in terms of 

definite integrals. 

7.  A Rigid Inclusion of Electric Conductor 

In section 6 the solutions for a rigid elliptic inclusion of electric conductor in the absence 

of torque are studied. Here, in addition to a line force f and a free line-charge density X, a 

counter-clockwise torque Te3 is applied. The generalized stress function vector and generalized 

displacement vector along the elliptic boundary r are, respectively, 

♦IT 
= ^8o + E \^os(kijr)gk - sin(kiff)gl     u|r = £ \cos(kifr)hk - sin(fcj/r)h (7.1) 

The equilibrium conditions stated in (5.5) are, 

-ftmdn+f = Q,     f = 
f (7.2) 

and t    is defined in (5.21),.   Using (5.22)2 and (7.1),, (7.2) reduces to 

In 

-!■ 

ö*lr p{ilf)dilr + i = *(0)|r-<K27i)|jr + f = -27^ +f = 0, (7.3) 
o P(tfW 

which is the same result given in (6.14) so that ^ can be computed.  Since the rigid inclusion 

does not deform and the electrostatic potential  <p ( = u4) is constant along the elliptic boundary 

p   by ignoring the constant components and noticing that rr = acos^e; + &sin^e2, we have, 

by using (5.31), 

u\r = Q(acosifre2-bsimlre^. (7-4) 

Some of the arbitrary constants are determined by comparing with (7.1)2 which yields 

ht = Qae2,     hx = Qbelt    ht = fit = 0     ( k z 2 ). (7-5) 
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The constants g^ and gk are then obtained from (5.20), and (5.20)2, respectively. Note that the 

angular rotation Q is still unknown. To determine it, we consider the equilibrium of moment 

which gives (Chung, 1995; Ting and Yan, 1991) 

Q 
71 U 

(7.6) 

where 

U = b2H;, +a2H~l +2ab(H-lS HI 22 12V 

= F(H"1
+iH-1S)c =rZc. 

(7.7) 

In the above C
T = [-ib,  a,  0,  0] and Z is the surface impedance tensor (Lothe and Barnett, 

1976; Kuo and Barnett, 1991).  Hence, one obtains 

1 
A+_LH-I 

p(ij/) In     TZU 

a .     _      b        -c/        - -N — smcoe. + — coscoe. - S(costye, -sinwe,) 
b a 

For a circular rigid inclusion  p(#) = a = b = /, (7.8) is simplified to 

-—:*+ H'Hcoscje, +sinoe, + Sfsintye, -coscje,)!. 
2TU/        TZU        

[ l 2        v 1 2'J 

(7.8) 

(7.9) 

In the case of zero torque, one obtains from (7.8) 

1 

Pit) 2it 
(7.10) 

This means that p(^)tm is a constant which is consistent with our observation in (6.15) and 

(6.23).  Furthermore, for a circular rigid inclusion,  (7.9) reduces to 

tm = 
1 

2TC/ 

f 

-X 
(7.11) 

This means that the traction tm along the circular interface is a constant in the direction 

of f. This phenomena was also observed in the purely elastic case (Ting and Yan, 1991). 

To find the generalized hoop stress vector tn,  (5.33) is employed in which tm  is given 

in (7.8) and (7.9) for elliptic and circular rigid inclusion of electric conductor, respectively. 
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8.  A Piezoelectric Inclusion 

In this section we consider an elliptic piezoelectric inclusion within a piezoelectric matrix. 

If the matrix is subjected to uniform fields at infinity, with either  e"  /r" or  a°°^ £>." 

prescribed such that  e°°  = Q and £" = 0, then the uniform field solutions in the absence of 

an elliptic inclusion can be written as (Hwu and Ting, 1989) 

(8.1) U     =  X1Zl  +X2E2,        4»     =  Xjtz ~X2tx, 

in which 

CO 00 

e,   = u , 
0 

u 

2^2/ 

>22 

2e 25 

-E 

(8.2) 

and 

tr- 
OB        OO        OO      _ OO  1 A08        J.

09 OO        OO OO      _ OO  1       A08 

aH>    CT/2>    aiJ?>    Dl        =   _<P,2>       4   =     °21>    a22->    a23>   D2        =  V,l 
(8.3) 

Note that (8.l)x is unique up to a rigid body motion and a constant electrostatic potential. 

If s", E°° are given,  a", D°° can be obtained by using (1.1), (1.4), and 

1 
*«= 2 {UUJ+UJ,i 

(8.4) 

If a", D" are known, the following constitutive equations are employed (Sosa, 1991): 

The zero element in e" implies that there is no rotation of the xl axis with respect to 

the x3 axis. By means of superposition the field solutions in the piezoelectric matrix are (Hwu 

and Ting, 1989) 

u = u- + 22fe{A<^1>AT}g1+22fe{A<^1>BT}h1 

* = 4r + 2ite{B<^'>AT}g1+2/te{B<^1>BT}h1 

(8.6) 
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The first terms of (8.6) arise from the uniform fields applied at infinity without an inclusion and 

are given in (8.1). The remaining terms are due to the presence of elliptic inclusion and are 

equivalent to (5.13) with k = 1. Thus, all the derivations obtained in previous sections can be 

employed.  Along the elliptic inclusion boundary r,  (8.6) is reduced to 

ujr = u™|r + cos^rh1 -sini/f^ 

= acosifre™ + bsmiffE™ + cosilrhl - sini/fh., 
(8.7) 

= acosi/rt^ - bsmif/t" + cosi/fg{ - sin^gp 

(8.8) 

in which (5.1), (5.17), and (8.1) are employed. 

The solutions inside the piezoelectric inclusion are assumed uniform and have the form 

u° = x^+x^l,     4>° = x£-x2t\, (8.9) 

where 

Ei = u,/ 

-n 

Q 

2< e 13 

< 

o o 
8,   =   U, 

2 e2l - Q 

'22 

2e° ^fc25 

(8.10) 

and 

t° = °11>    a12>    a13>   Dl        =   -♦, r.2> S a. o        r»o]T ,o 
°23>   D2        =  ♦,/• 

(8.11) 

The constant Q  in  e° and z°2 represents the rotation of the xt - axis in the inclusion. Along 

the elliptic inclusion boundary r, (8.9) and (5.1) give 

u°|r = acosilre° + bsmil/E2,     <j>°|r = acosifr^ - fcsin#rt°. 

The continuity condition states that 

(8.12) 

u|r=u°|r,     <|)|r = <|)0 
\r (8.13) 
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Employing (8.7), (8.8), and (8.12) in (8.13) leads to 

°° 1- ° L°°£. I_° ael + lij = flEj,     OE2 - iij = öe2, 

0*2 +8i = at2>     &tr + 8i = K- 

(8.14) 

In order to solve h., g., e°, e2, t°, and t^, two more equations are required. Application of 

(3.15) to the matrix and the inclusion yields 

N 

With (5.18) we rewrite (8.14) in matrix form as 

oo 00 0 o 
«1 

= 

E2 
,     N° 

El 
= 

E2 

k -t" ll k°J -t° 

(8.15) 

X 
= a 

o 
El 

-a 

oo 

El S    H X = z> 
00 

e2 

-Z> 

0 
E2 

L«J t° 2. .£. [-L  STJ [Si\ -t" 1 -t° 

(8.16) 

Employing (3.13) and (8.15),  e°, t^  are obtained as 

:N° 
a 

S    H 

-L  ST 

b N + 
a 

S    H 

-L ST 
(8.17) 

assuming that the matrix on the left is non-singular. The constants hp gj and e2, t° are then 

computed from (8.16), and (8.15)2, respectively. The rigid body rotation Q can easily be 

determined from (8.16), as 

X)2 Q = (8.18) 
a 

The generalized stress vector along the elliptic inclusion boundary F is given by 

1 

t    = <t>    = m        ~,n 

■1 
—— asinij/t^ + bcosijft™ +—— [g.sin^r + g.cos^l 
P(f)1 J     Pit)1 J 

(8.19) 

when (8.8)2 is used-   Note that the second part of (8.19) has the same form as (5.23)2 with 

k - 1.  With (8.8),, the generalized hoop stress vector is 
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*n   =  *m   =  *"m +iCOSl/fg1 -Sill^g,] (8.20) 

Observing  that cos^gj - sintfrgj  is  equivalent  to <J>njr given  in  (5.17)2  with k = 1, its 

derivative with respect to m can be computed as (Chung, 1995; Hwu and Ting, 1989) 

[cosi/rg, -sin^]    = <J>nm = N3(w)u" +N]'((u)*JI
n, 

aunL 
N,(«)-        lr 

p(^)ö^ 
Nj(w) a*nl (8.21) 

p(ilf)diif 

With u"L given by (5.17),, when k = 1, we have 

*: 
N3(w)r . N*(<u) 

h^in^r + hjCos^rj + —;-^[g1sin#r + gxcos^ (8.22) 

Pit) L  *      '        x       ' J      P(^) 

Again, the second part of (8.22) is readily obtained by observing that the result stated in (5.28)2 

can be employed with k = 1. From (5.4), (5.25), and (8.1)2, $"   is found to be 

<|>m = <|>7(-sin<y) + <J>2(cos<y) = -t£ cosijf + t" »   a 

P(«) PW 
sin^r. (8.23) 

Combining (8.22) and (8.23) yields, with (5.18), 

tn = PW 
l 

hjSintfr + ISh, +Hg,)cos^ 

gjSin^ + ^Lhj + STg1)cos#r 

(8.24) 
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►    X 

Fig.l    An ellipse in the {xv x2) plane 
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Fig.2    Generalized stress vector along the elliptic boundary 



+ Xj 

Fig.3    Generalized hoop stress vector along the elliptic boundary 


