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I ABSTRACT 

The unsteady, three-dimensional, incompressible, viscous flow interactions between a 
single vortex tube or a pair of vortex tubes advected by a uniform free stream and a 
spherical particle held fixed in space were investigated numerically for a range of particle 
Reynolds numbers between 20 and 100. Useful correlations of lift coefficient, moment 
coefficient, and drag coefficient with velocity fluctuation, Reynolds number, offset dis- 
tance, and initial vortex size were obtained and reported. A new mechanism based upon 
droplet lift has been suggested for the dispersion of sprays. The mechanism of particle 
dispersion due to the interaction with small vortices was quite different from that due 
to the interaction with a large vortex. A new improved equation of particle (or droplet) 
motion has been demonstrated to be superior to the previously proposed equations of 
particle motion. The droplet heating study showed the very significant response of the 
Nusselt number to vortical disturbances. The new computations with thermocapillary 
effects showed another coupling of the fluid motion to the thermal field. 

II OBJECTIVES 

The objectives of this research program are to investigate the interactions of vapor- 
izing droplets with a turbulent field of the type encountered in gas turbine combustors. 
It is intended to develop predictive capability through the use of correlations. There is 
special interest in the important and challenging high-frequency end of the energy spec- 
trum where turbulent length scales are comparable to droplet size. The full Navier-Stokes 
equations were numerically solved and a simple mathematical description for the turbu- 
lent velocity fluctuation was employed. In the mathematical description, turbulent-like 
fluctuations were simulated in a controlled way by introducing cylindrical vortices which 
have a length scale of the order of that of the droplet and a strength corresponding to a 
turbulent velocity fluctuation. From the calculations, instantaneous lift, drag, and torque 
coefficients, Nusselt number, and Sherwood number are determined. Time-averaged val- 
ues of these fluctuating quantities are also determined. Such quantities should be useful 
in modelling droplet dispersion and modifications of heating and vaporization rates due 
to turbulence. 



Ill SUMMARY OF RESEARCH 

1. Unsteady flow interactions between an advected cylindrical 
vortex tube and a sphere 

As a preliminary step towards understanding the interactions between a droplet and 
the carrier turbulent flow, the unsteady, three-dimensional, incompressible, viscous flow 
interactions between a vortical (initially cylindrical) structure advected by a uniform free 
stream and a spherical particle held fixed in space was investigated numerically for a range 
of particle Reynolds numbers between 20 and 100. The counter-clockwise rotating vortex 
tube was initially located ten sphere radii upstream from the sphere center. 

The computed velocity and pressure fields provided the lift, moment, and drag co- 
efficients on the sphere as a function of time for a range of offset distance, vortex core 
radius, and maximum fluctuation velocity induced by the vortex tube. Initially, the lift 
forces were positive due to upwash on the sphere, then became negative due to downwash 
and higher fluid velocity near the bottom of the sphere when the vortex tube passed the 
sphere. 

Varying the vortex core radius showed that the maximum positive and negative lift 
coefficients and the rms lift coefficient were linearly proportional to the circulation of the 
vortex tube at small values of the core radius while they were linearly proportional only 
to the maximum fluctuation velocity and independent of the core radius at large values 
of the core radius. For mid-range values of the core radius, they depended on both the 
core radius and the maximum fluctuation velocity (or equivalently both the core radius 
and circulation). Some interesting unsteady flow phenomena occurred in the near wake 
on the passage of the vortex tube. 

The paper [1] describing the details of this work was published in the Journal of Fluid 
Mechanics and was appended to the September 1995 Progress Report. 

2. Unsteady flow interactions between a pair of advected vortex 
tubes and a sphere 

The interactions between a pair of vortex tubes and a sphere were studied in order to 
generalize the findings from the previous investigation. 

When the top and bottom (see Figure 2 of Reference 2) vortex tubes have positive and 
negative circulations, respectively, the magnitude of the induced velocity due to the vortex 
tubes is added to the base flow velocity along the stagnation streamline. This causes the 
pressure at the stagnation point and the shear stresses in the upper and lower left regions 
to be higher than those of the axisymmetric flow past a sphere, thus increasing the drag. 
On the other hand, when the top and bottom vortex tubes have negative and positive 



circulations, respectively, the induced velocity due to the vortex tubes is subtracted from 
the base flow velocity along the stagnation streamline. This causes the pressure at the 
stagnation point and the shear stresses in the upper and lower left regions to be lower 
than those of the axisymmetric flow past a sphere, thus reducing the drag. The lift and 
moment are zero for this symmetric configuration. -v-~-~ 

The interactions between a sphere andnike-rotatin/a pair of cylindrical vortex tubes 
initially located ten radii upstream from the center of the sphere were investigated. The 
lift and moment coefficients of the sphere interacting with a pair of vortex tubes as a 
function of time are nearly identical, respectively, to those of the sphere interacting with 
a single vortex tube if the separation distance between the tube centers is less than 2 y/a 
vortex tube diameter for the lift coefficient and less than y/ä vortex tube diameter for 
the moment coefficient; here, vmaxt instead of vmax is used in the case of a pair of vortex 
tubes, where vmax is the maximum induced velocity due to one vortex without presence 
of the other, vmaxt is the total maximum induced velocity due to the pair of vortices and 
a is the radius of initial vortex core normalized by the sphere radius. In particular, lift 
and moment coefficients are linearly proportional to the maximum induced velocity. The 
moment coefficient is negligible compared to the lift coefficient. 

The paper [2] describing this work in detail was submitted to the International Journal 
of Multiphase Flow and is appended to this report. 

3. Interactions of an array of vortex tubes of like rotation with 
a moving sphere 

The two-dimensional trajectories of a spherical particle interacting with an array of 
vortices whose sizes are comparable to the sphere size were examined. The time-dependent 
drag and lift forces (Ref. [1]) for the case of a sphere interacting with a single vortex were 
used to calculate the two-dimensional trajectory of a moving spherical particle interacting 
with an array of vortex tubes of like rotation. The results show that the shear flow across 
the sphere induced by a vortex tube is responsible for the net deflection of a sphere 
interacting with an array of vortex tubes. Thus, the sphere eventually deflects in the 
direction of increasing relative velocity. The deflection ratio (ratio of sphere final location 
in z and x directions) of the sphere increases with decreasing initial Reynolds number 
and with decreasing density ratio. However, the total deflection increases with increasing 
the initial Reynolds number and the density ratio because higher momentum causes the 
sphere to travel farther. See Ref. [2] for details. 



4. The motion of a sphere in unsteady axisymmetric flows at 
moderate Reynolds numbers 

A turbulent flow possesses a wide spectrum of eddy sizes. In order to enhance the 
understanding of droplet motion in a turbulent flow, we have been investigating the motion 
of a freely moving sphere interacting with a large vortex tube whose size is of the order 
of an integral length scale, i.e. at the other end of the spectrum relative to the previous 
cases. The goals of this study are to derive not only a relationship of interaction between 
a small droplet and a large vortex but also an accurate equation for the motion of a 
spherical droplet in finite-Reynolds-number turbulent flows. 

The equations of sphere motion proposed by previous workers were examined and 
compared with the results of the full Navier-Stokes equations for unsteady, axisymmetric 
flow around a freely moving sphere initially injected into a stationary or oscillating fluid. 
As a result, we have proposed a modified equation of sphere motion and demonstrated its 
superiority to the previously proposed equations of sphere motion. This work is described 
in the AIAA preprint 96-0081 by Kim, Elghobashi h Sirignano [3] which is an addendum 
to this report. 

The new equation contains a modified history term with an integral kernel weighted by 
the acceleration magnitude and a new term accounting for the initial velocity difference 
between the particle and the carrier fluid. The weighting function contains the time 
derivative of the relative velocity MAI and the ratio <f>r of MAT. to MAX- MAI,MA2, and <f>T 

are defined by 
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These dimensionless groups can be introduced through dimensional analysis to obtain the 
forces on the particle of unsteady motion. 

The new proposed equation of particle motion is expressed as: 
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where Ret = \U(T) — v(r)\2a/vf and Ret0 = |u(0) — v(0)\2a/i/f. 
The six constants c,- (i = 1, ..,6) in the above equations are determined by comparing 

the solutions from Equation (la) with those from the Navier-Stokes equations and given 
for 0 < u' < oo by 

C! = 2.5,   c5 = 0.126,   ce = 15, 

c2 = 45.5,   c3 = 0.03,   c4 = 0.1. (lh) 

to' is the dimensionless frequency of the flow and defined by u>' = u>a/v0, where v0 is the 
initial injection velocity of the particle. 

For low frequencies 0 < u/ < 0.3, the following values of c2, Cz, and c4 provide slightly 
better results than those of Equation (lh). The values of c\, C5, and <% are kept fixed as 
in (lh). 

c2 = 13.9,   c3 = 0.12,  c4 = 0.5 . (li) 

5. The motion of a sphere in unsteady three-dimensional flows 
at moderate Reynolds numbers 

In order to extend Equation (la) to a vector form for two- or three-dimensional case, 
we consider the time-dependent, three-dimensional, incompressible, flow around a small 
spherical solid particle injected into a counter-clockwise rotating large vortex which is 



located at the origin of the coordinates (X, Y, Z) fixed in space. The net gravity force 
acting on the particle is neglected. The origin of a nonrotating noninertial reference frame 
(x, y, z) is chosen at the center of the particle. 

All the variables are nondimensionalized using the sphere radius a as the characteristic 
length and the initial injection velocity of the sphere v0 as the characteristic velocity. 

The initial velocity field induced by the vortex tube is analytically computed by con- 
sidering the evolution of a point vortex and is given by 

^^H-expf-j^)] (2a) 

*• = i^IW • (2b) 

where R = y/X2 + F2, <j> = arctanY/X, and t0 is a parameter defined by initial size of 
the vortex core (a0) and the fluid kinematic viscosity (i//). 

The initial maximum induced velocity umaxo due to the vortex tube occurs on the 
edge of the vortex core R = a0 at t = 0 and can be obtained from Equation (2a). The 
pressure field due to the vortex tube is also analytically computed by integrating the 
radial component of the momentum equation which is pU^/R = dp/dR. 

It is assumed that the vortex is so large that the flow field induced by the vortex is 
not affected by the moving sphere except locally in the region around the sphere. The 
boundary conditions of the flow field are obtained by superimposing the sphere velocity 
and the induced velocity due to the vortex tube at the computational outer boundary 
relative to the sphere, and the pressure field due to the vortex tube is also imposed at the 
computational outer boundary. Although the flow computation is three-dimensional, the 
particle path remains in the plane of symmetry (X — Y plane). Therefore, the trajectory 
computation is made for the case of a freely moving particle in two-dimensions. After 
computing the forces on the sphere, the deceleration (or acceleration) of the sphere is 
obtained via Newton's second law of motion, and then the new location of the sphere is 
obtained. 

Preliminary results of the large vortex study show that the lift force on the particle 
is much smaller than that due to the small vortices with the same maximum induced 
velocity. Our direct solution of the three-dimensional Navier-Stokes equations over a 
freely moving particle confirms that due mainly to the drag force, the particle travels 
in a curved trajectory that depends on the direction of vortex rotation and the Stokes 
number of the particle. This indicates that the mechanism of particle dispersion due to 
the interaction with small vortices is quite different from that due to the interaction with 
a large vortex. Refer to [3] for details of the work. 



6. Unsteady thermal interactions between a liquid sphere and 
an advecting vortex 

Within the scope of our planned study on the thermal aspects of the droplet-turbulence 
interaction, we have completed quantifying the effect of an advecting vortex near the 
droplet on the droplet convective heat transfer. Also, prompted by recent publications, 
we have included the effect of Marangoni stresses in the dynamics. We intend to study 
in the future a coupled effect of the gas field temperature stratification and advecting 
vortical structures on the droplet heating. 

We successfully completed our study of droplet heating influenced by an advecting 
vortex. Since the problem is unsteady by nature, we paid particular attention to time- 
averaged and root-mean-squared values of the droplet Nusselt number. All the existing 
available correlatior/tfor droplet heat transfer are for a steady axisymmetric flow; thus, 
they can not be applied when there exists asymmetry or unsteadiness in the gas field, 
such as that induced by an advecting vortex. It is noteworthy that, in practice, droplets 
do not experience a perfectly symmetric field but an asymmetric one. This introduces 
serious limitation on the applicability of existing correlations. 

We have successfully produced the first known self-similar correlation predicting the 
unsteady droplet heating due to the advecting vortex; this finding well compliments the 
existing correlations for droplet heating in symmetric flows. Our results include several 
interesting observations: first, self-similarity in the droplet heating exists for the unsteady 
droplet-vortex interaction; second, it is not the vortex initial distance from the droplet 
but its ratio to the vortex core size that plays a major role in droplet heating; this ratio 
determines whether the droplet would be embedded inside the vortex inner core in the 
course of the interaction. Third, if this ratio is larger than a certain value, the droplet 
heating merely depends on the vortex circulation and, surprisingly, has little dependence 
on the vortex distance from the droplet. The role of the flow Reynolds number itself 
appears to be crucial as well: droplet heating shows stronger response to the same vortex 
in a flow with a higher Reynolds number. In general, it was found that the droplet Nusselt 
number variation is qualitatively similar to change in droplet fluid dynamic properties 
observed in previous studies of this research group; coupling between the fluid dynamics 
and heat transfer phenomena justifies this similarity. These findings [4] were presented at 
the 24th Aerospace Sciences Meeting, January 1996, in Reno, Nevada, and are attached 
to this report as an Addendum. An expanded version of this paper is being submitted to 
the International Journal of Heat and Mass transfer for publication. 

Recent publications by Niazmand et al [5] and Shih and Megaridis [6] signify some im- 
portance of thermocapillary effects on the droplet response in a hot gaseous axisymmetric 
environment. Most previous publications in the field of spray droplet computations have 
neglected these effects. Following these findings, we included the effect of surface tension, 
the so-called Marangoni stresses, in the force-balance at the droplet-gas interface and so 



in the numerical simulation. This task is completed and the code has been benchmarked 
after this upgrade. We have successfully reproduced the effect of thermocapillary stresses 
on the droplet internal circulation underlined in said publications, the most important 
ones being the slow-down on the droplet internal circulation and the detachment and 
gradual disappearance of the droplet wake. 

Droplets in a combustion chamber do not experience a perfectly-uniform temperature 
field but a spatially varying one. The effect of temperature stratification, coupled with 
the influence of vortical structures, therefore pose interesting questions on the dynamics 
of the said coupling; e.g. it is unclear how the vortex-induced variations in the droplet 
heating [4] will change due to gas-field temperature stratification. In spite of the serious 
practical applications for such findings, there exist no available information shedding light 
on the coupled temperature stratification-vortical stratification effects on droplet heating. 

We therefore intend to study simultaneous thermal and aerodynamic effects of the 
temperature field and the vortical structures on the droplet heating in a combustion 
chamber. We assume a profile for the surrounding gas temperature whose length-scale of 
its gradient is comparable to that of the droplet and the vortex. Otherwise stated, there 
are three important length scales in this study: the vortex core size , droplet size, and 
the length scale for the temperature stratification. Special interest occurs when the three 
length scales are comparable. 
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ADDENDUM TO SECTIONS 2 and 3 

UNSTEADY FLOW INTERACTIONS BETWEEN 

A PAIR OF ADVECTED VORTEX TUBES AND 

A RIGID SPHERE 

by 

Inchul Kim,  Said Elghobashi, and William A. Sirignano 

Department of Mechanical and Aerospace Engineering 

University of California, Irvine 

Irvine, CA 92717 

Abstract 

An idealized representation of the interaction of spherical particles with turbulent eddies of 

comparable length scale is considered by means of a three-dimensional, unsteady finite-difference 

Navier-Stokes solution of the interaction between a fixed rifeid sphere and a pair ol advecting 

vortex tubes. First, a doubly symmetric interaction with vortices of opposite rotation is consid- 

ered. The resulting time-dependent drag differs from the drag in axisymmetric flows; however, 

the lift and torque on the sphere remain zero. Next, an interaction with two vortices of like 

rotation is studied. Here, non-zero lift and torque, as well as drag deviation from the axisym- 

metric case occur and would result in a deflection in the trajectory of a nonfixed sphere. The 

flow in this case behaves like that of a single vortex. Finally, a linear array of like-rotating 

vortices, interacting with a freely moving sphere, is considered. The two-dimensional deflection 

depends strongly upon the sphere/fluid density ratio and initial sphere Reynolds number. Lift 

and moment coefficients are shown to be linearly proportional to the maximum induced velocity 

due to the vortices. Moment coefficients are an order of magnitude less than lift coefficients. 

Key Words: unsteady flow over a sphere,  sphere-vortex interaction 



Contents 

1 Introduction 2 

2 Problem statement and formulation 4 

2.1 Flow description  . 4 

2.2 Governing equations and boundary conditions   .  6 

2.3 Numerical solution  7 

3 Results and discussion 8 

3.1 Interactions of a sphere and a pair of vortex tubes with top-positive and 

bottom-negative circulations  8 

3.2 Interactions of a sphere and a pair of vortex tubes with top-negative and 

bottom-positive circulations  11 

3.3 Interactions of a pair of vortex tubes of like rotation and a sphere  12 

3.3.1 Flow structure  13 

3.3.2 Lift, moment, and drag coefficients and effect of tube circulation . . 15 

3.3.3 Eifects of the size and the offset distance of the vortex tubes  .... 18 

3.3.4 Effects of Reynolds number  20 

3.4 Interactions of an array of vortex tubes of like rotation and a moving sphere 22 

4 Conclusions 26 

5 References 29 



1    Introduction 

The interactions between vortical structures and spherical particles or droplets is of 

primary practical interest in many particle-laden flows. These interactions modify the 

trajectories of individual particles and cause dispersion in a spray or cloud. Also, they 

can modify heat and mass transfer rates for the particles. There has been long-term 

interest in the effects of turbulent eddies which contain most the energy and whose sizes 

are orders of magnitude larger than the particle diameters. 

However, a need exists to study the interactions of a particle with vortical structures 

that are smaller than, comparable in size to, or only a few times larger than the sphere. 

These small structures have the potential to produce the largest modifications to the 

boundary layer and near wake of the sphere. 

In this paper, an idealized representation of those interactions is made by considering 

the viscous, incompressible, unsteady, three-dimensional flow associated with a pair of 

initially cylindrical vortex tubes advecting past the sphere. This study builds upon the 

previous study of Kim, Elghobashi k Sirignano (1995), hereafter identified as KES. In 

that paper, the authors examined the unsteady, three-dimensional interactions between 

a single advected cylindrical vortex tube and a fixed spherical particle whose diameter is 

of the same order of magnitude as the initial diameter of the vortex. That study served 

as a first step towards better understanding the two-way interactions between small-scale 

turbulence and the particle. Here we extend this work, with the same goal, to study the 

interactions between a pair of advected vortex tubes and a stationary spherical particle. 

In the earlier study (KES) the particle Reynolds number based on the freestream 

velocity and the particle diameter was in the range 20 < Re < 100. The initial size of 

the cylindrical vortex tube was in the range 0.25 < a < 4, where a is the radius of the 

vortex tube normalized by that of the particle. We found that the maximum positive 

lift coefficient and the rms lift coefficient of the sphere are linearly proportional to the 



circulation of the vortex tube at small values of a. However, at large values of <r, they 

are linearly proportional to the maximum induced velocity due to the vortex tube but 

independent of a. 

In the present paper, both like-rotating and opposite-rotating vortical pairs are con- 

sidered. In the opposite-rotating case, only a symmetric configuration (see figure 1) is 

examined. Asymmetric configurations with opposite rotations are left for future studies. 

More attention is given to like-rotating pairs because they have the greatest effect on lift 

and torque. We expect, therefore, that deflections in the trajectories and dispersion of 

sprays and clouds will be greater in this case of like rotation. The case of a "train" of 

vortices advecting past the sphere at prescribed intervals is also examined. 

Our specific objectives are to study: 

1. the detailed flow field behavior during interaction of a pair of vortex tubes with each 

other and with the sphere, 

2. the relationship between the lift coefficient of the sphere and the maximum induced 

velocity due to the two vortex tubes, 

3. the modification of the drag force caused by the interactions, 

4. the effects of Reynolds number, vortex size, and initial offset distance of the vortex, 

and 

5. the sphere deflection caused by the interaction with the vortices. 

The detailed study of the interactions between the particle and the unsteady veloc- 

ity field provides fundamental information about the flow behavior that can be used in 

developing mathematical models for particle-laden flows. The next section provides a 

mathematical description of the flow considered, the governing equations, and the numer- 

ical solution procedure. Section 3 discusses the results including the numerical accuracy 



issues, the effects of varying the parameters listed above, and the trajectories of a moving 

spherical particle interacting with an array of vortex tubes of like rotation as an extension 

of the results of KES and the present study. Section 4 provides a summary and concluding 

remarks. 

2    Problem statement and formulation 

2.1    Flow description 

Consider the time-dependent, three-dimensional, incompressible, viscous flow interac- 

tions between a pair of symmetric, initially cylindrical vortex tubes and a solid sphere. 

The vortex tubes are moving with the laminar free stream, and a sphere is suddenly placed 

and held fixed in space as shown in figure 1. The initial offset distance, d'off, denotes the 

shortest distance between the initial vortical axis and the y-z plane which is parallel to 

the free stream. All the variables are nondimensionalized using the sphere radius a'0 as 

the characteristic length and U'^ as the characteristic velocity, where the superscript / 

denotes dimensional quantity. The two vortex tubes, having equal diameters of the order 

of the sphere diameter, are initially located ten sphere-radii upstream from the center 

of the sphere. The effects of the vortex tubes on the sphere are negligible at this initial 

distance because the magnitude of the initial velocity field induced by the vortex tubes 

is less than 2 percent of the free stream velocity. Far upstream, the flow is uniform with 

constant velocity U'Jk parallel to the y-z plane. There is one symmetry plane, the x-z 

plane, as seen in figure 1. A second symmetry plane (y-z) exists only when the two vor- 

tices have opposite rotations. Our general formulation does not take advantage of this 

second symmetry. 

Note that, later in section 3.4, the fixed sphere results will be employed in a moving 

sphere trajectory analysis. 



Two coordinate systems axe used in our formulation following KES: the Cartesian 

coordinates (x,y,z) and the nonorthogonal generalized coordinates (£,»?,(). The origin 

of the former coincides with the sphere center. £ is the radial, 77 is the angular, and £ 

is the azimuthal coordinates. The nonorthogonal generalized coordinate system can be 

easily adapted to three-dimensional arbitrary geometries. In the present study, a spherical 

domain is used, and the grid reduces to an orthogonal, spherical grid. The grids are denser 

near the surface of the spherical particle, and the grid density in the radial direction is 

controlled by the stretching function developed by Vinokur (1983). Due to symmetry, the 

physical domain is reduced to a half spherical space. The domain of the flow is bounded 

by 1 < £ < Ni, I < T) < N2, I < ( < N3, where £ = 1 and Ni correspond, respectively, to 

the sphere surface and the farfield boundary surrounding the sphere; 77 = 1 and JV2 denote, 

respectively, the positive z-axis (downstream) and the negative z-axis (upstream); ( = 1 

and JV3 refer, respectively, to the x-z plane in the positive x-direction and the x-z plane 

in the negative x-direction. Uniform spacing (S( = 6rj = S( = 1) is used, for convenience, 

for the generalized coordinates. 

The initial vortex tubes have a small core region with a radius cr (normalized by the 

sphere radius). This core is defined such that the initial velocity induced by the vortex 

tube approaches zero as the distance from the center of the vortex tube goes to zero, and 

at distances much greater than <r, the induced velocity approaches that of a point vortex. 

We use the vortex tube construction of Spalart (1982), which has the following stream 

function: p 
i/>„(x,z,t = 0) = —^ln[(x - Xj)

2 + (z- zj)2 + a2] , 

where Tj is the nondimensional circulation around the vortex tube at radius a and at the 

initial time. Tj is positive when the vortex tube rotates counterclockwise, and Xj and Zj 

denote the location of the center of the vortex tube. The circulation around a circular 

path far away from the center of the vortex is given by Tjt = 2Tj. Each vortex tube can 

be viewed as an evolution from the point vortex due to the cylindrical viscous diffusion. 



The stream function for a pair of vortex tubes is given by 

^(x, z, t = 0) = - £ £jn[(* - xtf + (z- Zjf + a2] (1) 

2.2    Governing equations and boundary conditions 

The continuity and momentum equations and the initial and boundary conditions are 

nondimensionalized using the sphere radius a'0 as the characteristic length and U'^ as the 

characteristic velocity. 

W = 0 (2a) 

w + v-yy = -vp + ^-v2v (2b) 
at Re 

The governing equations (2a) and (2b) are cast in terms of the generalized coordinates 

{£■> V, 0 to treat a three-dimensional body of arbitrary shape. The numerical integration 

is performed using a cubic computational mesh with equal spacing (8£ = 8rj = SC, = 1). 

The velocities on the sphere surface are zero due to the no-slip condition, and the 

pressure on the sphere is obtained from the momentum equation. The detailed equations 

describing the boundary and initial conditions are given in KES and thus will not be 

repeated here. The only difference from KES is that the initial pressure is estimated as 

zero over the whole computational domain. This estimation is corrected by the pressure 

correction equation and iteration procedure (see section 2.3 for details). 

The only nondimensional groupings appearing in the equations and initial and bound- 

ary constraints are the sphere Reynolds number, vortex tube radius, offset distance, and 

vortex circulation (or vortex Reynolds number). 

The equations evaluating the drag, lift, and moment coefficients are given in KES 

and thus will not be repeated here. The lift force is assumed positive when it is directed 



toward the positive x-axis.  Due to symmetry, only the y-component of the moment is 

non-zero and is assumed positive in the counter-clockwise direction. 

2.3    Numerical solution 

A three-dimensional, implicit, finite-difference algorithm has been developed to solve 

simultaneously the set of the discretized partial differential equations. The method is 

based on an Alternating-Direction-Predictor-Corrector (ADPC) scheme to solve the time- 

dependent Navier-Stokes equations. ADPC is a slight variation of Alternating-Direction- 

Implicit (ADI) method and implemented easily when embedded in a large iteration scheme 

(Patnaik 1986, Patnaik et al 1986). The control volume formulation is used to develop the 

finite-difference equations from the governing equations with respect to the generalized 

coordinates (£,T),(). One of the advantages of the control volume formulation is that 

mass and momentum are conserved over a single control volume, and hence the whole 

domain regardless of the grid fineness. An important part of solving the Navier-Stokes 

equations in primitive variables is the calculation of the pressure field. In the present work, 

a pressure correction equation is employed to satisfy indirectly the continuity equation 

(Anderson et al. 1984). The pressure correction equation is of the Poisson type and is 

solved by the Successive-Over-Relaxation (SOR) method. 

The overall solution procedure is based on a cyclic series of guess-and-corxect opera- 

tions. The velocity components are first calculated from the momentum equations using 

the ADPC method, where the pressure field at the previous time step is employed. This 

estimate improves as the overall iteration continues. The pressure correction is calculated 

from the pressure correction equation using the SOR method, and new estimates for pres- 

sure and velocities are obtained. This process continues until the solution converges at 

each time step. 



3    Results and discussion 

In subsections (3.1) and (3.2), we discuss the three-dimensional interactions of a 

sphere and a pair of vortex tubes of opposite rotation. In subsection (3.3), we examine 

the three-dimensional interactions of a sphere and a pair of vortex tubes of like rotation. 

In subsection (3.4), we investigate the trajectories of a moving sphere interacting with an 

array of vortex tubes of like rotation. 

Testing the accuracy of our numerical solution has been performed and discussed 

earlier in KES. The 51 x 51 x 51 grid is used in the following calculations. The run for 

the interaction between a single vortex tube and a sphere at Reynolds number 100 with 

the 51 x 51 x 51 grid required 4.95 mega words, a dimensionless time step of At = 0.002, 

and a total time of 4 cpu hours on Cray C-90 for the final time of tj = 24.5. Each time 

step takes about 1.18 cpu seconds. 

3.1    Interactions of a sphere and a pair of vortex tubes with 

top-positive and bottom-negative circulations 

We consider the interactions of a pair of vortex tubes advected by the free stream and 

a sphere suddenly placed in the flow and held fixed in space. The two cylindrical vortex 

tubes are initially of the same size and rotating opposite to each other with top-positive 

and bottom-negative circulations as shown in figure 1. The y-z plane is naif way between 

the two tubes so that the offset distance of one vortex tube is the negative of the offset 

distance of the other. The center of the each vortex tube is located at 10 sphere-radii 

upstream from x-y plane containing the center of the sphere. The base case calculation 

is that of Re = 100, d0fj = ±1.5, and a = 1. 

Initially, each vortex tube has its maximum induced velocity vmax located at the edge 

of the core. Because the velocity and vorticity fields induced by one vortex tube influence 



those by the other, the total maximum induced velocity, vmaxt, due to the two vortex tubes 

depends on their size and separation distance and is in the range 0 < vmaxt < 2vmax. The 

total maximum induced velocity vmaxt equals zero when \d0jf\ = 0, 2 vmax when \d0f/\ = cr, 

and vmax when \doJi\ » 1. For example, vmaxt is 0.738 for vmax = 0.4, d0jf = ±1.5, and 

(7=1. The base case calculation is that of Re = 100, d0jj = ±1.5, and a = 1. Note that 

the lift and torque on the sphere are zero due to the flow symmetry in upper and lower 

regions of the sphere 

In order to describe the flow structure, we first consider the pseudo-streamlines and 

vorticity contours in the x-z symmetry plane, defined as the principal plane, where the 

strongest interactions occur between the vortical structures and the sphere. The line 

connecting the front and rear stagnation points in the standard axisymmetric flow over 

a single sphere, which is the x = 0 line in the principal plane, will be used as a reference 

line. We refer to the region above that line as the 'upper' region and that below the line 

as the 'lower' region. 

The pseudo-streamlines are obtained from the pseudo-stream function which is defined 

by assuming that the velocity field in the principal plane does not change in the direction 

normal to that plane and by using the two-dimensional stream function definition. The 

sphere surface in the principal plane is used as a reference streamline (ipps = 0). We note 

that a real stream function ip cannot be defined and calculated from the velocity in the 

principal plane due to the existence of a divergence associated with the third component 

of velocity. Nevertheless, for descriptive purposes only, it is convenient to use the two- 

dimensional stream function definition to present descriptions of the flow pattern. 

Figures 2(a)-(f) display the pseudo-streamlines (left column) and the contour lines of 

y-component vorticity (right column) in the principal plane at t = 0, 3, 6, 9, 12, and 15 

for Re = 100, doff = ±1.5, a = 1 with vmaxt = 0.738 (vmax = 0.4). The contour values of 

the pseudo-streamlines are 0, ±0.02, ±0.1, ±0.3. The contour values of the vorticity are 

±0.4, ±0.8, ±1.4, ±2, with the highest magnitude at the sphere surface. 



Comparing the vorticity contours in figures 2(a)-(f) with those of the single vortex 

tube in figure 5 of KES, we see that the two vortex tubes move downstream faster than 

the single vortex. This additional acceleration occurs because the velocity magnitude at 

the center of each vortex tube equals that of the base flow plus that induced by the other 

vortex tube. 

The distance between the top pseudo-streamline and the bottom pseudo-streamline in 

figures 2(a)-(c) is narrower on the segment connecting the vortex tube centers than any 

other place along the stagnation pseudo-streamline. This indicates that the velocity near 

the middle of the segment between the vortex tube centers is higher than any other place 

along the stagnation pseudo-streamline. The induced velocity due to the vortex tubes is 

added to the base flow near the stagnation pseudo-streamline. 

Figure 3 shows the drag coefficients of the sphere as a function of time for the same 

parameters as above. The drag coefficients are obtained with four different total maximum 

induced velocities due to the vortex tubes, vmaxt = 0.185, 0.369, 0.554, and 0.738 (vmax = 

0.1, 0.2, 0.3, and 0.4). The temporal behavior of the drag coefficients is different from that 

of the case of the pair of vortex tubes of like rotation as will be shown in section 3.3. The 

time-averaged value of the deviation of the drag coefficient from that of the axisymmetric 

flow past a sphere for all values of vmaxt is not negligible and increases linearly with vmaxt. 

The time-averaged drag coefficient CD,ave may be expressed by 

Cn,ave ~ Cx\axt   +   ß Vmaxt , (3) 

where the constant ß = 0.27, and CD,OXX is the time averaged value of the drag coefficient 

in the case of axisymmetric flow (vmaxt = 0). The drag coefficients reach their maximum 

at about t = 9 (see figure 3). The maximum drag coefficient CD,max can be expressed 

approximately by equation (3) but with ß = 1.05, and Cn,axi here is the local value of the 

axisymmetric drag coefficient at the time of Ci)<max. Because the top and bottom vortex 

tubes have positive and negative circulations, respectively, the induced velocity due to the 
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vortex tubes adds its magnitude to the base flow along the stagnation pseudo-streamline. 

This increased velocity causes the pressure at the stagnation point and the shear stresses 

in the upper and lower left regions to be higher than those of the axisymmetric flow past 

a sphere. As a consequence, the drag is increased. 

3.2    Interactions of a sphere and a pair of vortex tubes with 

top-negative and bottom-positive circulations 

We consider the same initial flow geometry and parameters as those in section 3.1 but 

for a pair of vortex tubes with top-negative and bottom-positive circulations. 

Figures 4(a)-(f) display the pseudo-streamlines (left column) and the contour lines of 

y-component vorticity (right column) in the principal plane at t = 0, 3, 6, 9, 12, and 15 

for Re = 100, doff = ±1.5, (7 = 1 with vmast - 0.738 (vmax = 0.4). The contour values of 

the pseudo-streamlines and the vorticity are the same as those in the previous section. 

The vorticity contours in figures 4(a)-(f) show that the two vortex tubes move down- 

stream slower than the single vortex tube in figure 5 of KES. This relative deceleration 

occurs because the velocity magnitude at the center of each vortex tube equals that of 

the base flow minus that induced by the other vortex tube. 

The distance between the top pseudo-streamline and the bottom pseudo-streamline 

in figures 4(a)-(c) is broader near the segment connecting the vortex tube centers than 

any other place along the stagnation streamline. This indicates that the velocity near the 

middle of the segment between the vortex tube centers is lower than those upstream or 

downstream of the vortex tubes along the stagnation streamline. The induced velocity 

due to the vortex tubes is subtracted from the base flow near the stagnation pseudo- 

streamline. 

Figure 5 shows the drag coefficients of the sphere as a function of time for the same 

parameters as used in section 3.3.1. The drag coefficients are obtained for four different 
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total maximum induced velocities due to the vortex tubes, vmaxt = 0.185, 0.369, 0.554, 

and 0.738 (vmax = 0.1, 0.2, 0.3, and 0.4). The temporal behavior of the drag coefficients 

is different from that of the case of the pair of vortex tubes of like rotation as will be 

shown in section 3.3. The time-averaged value of the deviation of the drag coefficient 

from that of the axisymmetric flow past a sphere for all values of vmaxt is not negligible 

and decreases linearly as vmaxt increases. The time-averaged drag coefficient Cx>,ot,e may 

be expressed by by equation (3) but with the proportionality constant ß = —0.28, and 

CD,axi is the time-averaged value of the drag coefficient in the case of axisymmetric flow 

(vmaxt = 0). The drag coefficients reach their minimum at about t = 11 (see figure 5). 

The minimum drag coefficient CD,min can be expressed approximately by equation (3) but 

with ß = -0.95, and Cn,axi here is the local value of the axisymmetric drag coefficient at 

the time of CD,min- Because the top and bottom vortex tubes have negative and positive 

circulations, respectively, the induced velocity due to the vortex tubes is subtracted from 

the base flow velocity along the stagnation streamline. This causes the pressure at the 

stagnation point and the shear stresses in the upper and lower left regions to be lower 

than those of the axisymmetric flow past a sphere. Thus, the drag is reduced. 

3.3    Interactions of a pair of vortex tubes of like rotation and a 

sphere 

We consider the same initial flow geometry and parameters as those in section 3.1 

but for a pair of vortex tubes of like rotation. The base case calculation is that of 

Re = 100,do// = ±1-5, and a = 1. 

Initially each vortex tube has its maximum induced velocity vmax located at the edge 

of the core. Because the velocity and vorticity fields induced by one vortex tube influence 

those by the other, the total maximum induced velocity, vmaxt, due to the two vortex tubes 

depends on their size and separation distance and is in the range vmax < vmaxt < 2vmaX' 
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Vmaxt equals 2vmax when \d0fj\ = 0 and equals vmax when \d0fj\ » 1.   For example, 

Vmaxt = 0.59 for vmax = 0.4, <i0// = ±1.5, and a = 1. 

In subsections 3.3.1 and 3.3.2, we investigate the base case. In subsections 3.3.3 and 

3.3.4, we discuss the effects of the size and the offset distance of the vortex tubes and 

Reynolds number, respectively. 

3.3.1    Flow structure 

Figures 6(a)-(f) display the pseudo-streamlines (left column) and the contour lines of 

y-component vorticity (right column) in the principal plane at t = 1, 6,10, 15, 21, and 30 

for Re = 100, doff = ±1.5, a = 1, and vmaxt = 0.59 (vmas = 0.4). The contour values of 

the pseudo-streamlines are 0, ±0.02, ±0.1, ±0.3. The contour values of the vorticity are 

±0.4, ±0.8, ±1.4, ±2, with the highest magnitude at the sphere surface. The solid and 

dotted lines in the figures represent respectively positive and negative values. 

The pseudo-streamlines shown in figures 6(a)-(f) resemble closely those for the inter- 

action between a single vortex tube and a sphere which was described in KES. Since the 

description of the flow structure with the aid of the streamlines is given in KES, it will 

not be repeated here, and only the vorticity contours will be described here. 

The vorticity contours in figures 6(a) and 6(b) show that the vortex tubes not only 

are advected downstream but also rotate about each other. The contour lines of vorticity 

in the figures also show that viscous diffusion takes place. It is well known that two co- 

rotating point vortices located a distance apart in an inviscid flow rotate with constant 

angular velocity about the point located at the center of the segment connecting them 

while the separation distance held fixed. On the other hand, when two co-rotating vortex 

tubes are located a distance apart in an inviscid flow and the separation distance is small 

enough, they interweave as well as rotate about each other (Zabusky, Hughes & Roberts 

(1979); Overman and Zabusky (1982); Rangel k Sirignano (1989)). 
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Figures 6(c) and 6(d) show that the vortex tubes contact the boundary layer of the 

sphere and go around the bottom of the sphere. The reason for the passage of the vortex 

tubes around the bottom of the sphere rather than around the top is as follows. When 

the vortex tubes rotating counter-clockwise come close to the sphere boundary layer, they 

augment the magnitude of the vorticity in the lower boundary layer and reduce that of the 

vorticity in the upper boundary layer. Consequently, the vorticity in the lower boundary 

layer induces a velocity in the downward direction at the location of the vortex tubes with 

higher magnitude than that induced by the vorticity in the upper boundary layer. This 

downward induced velocity advects the vortex tubes below the sphere (KES). 

Figure 6(e) shows that the pairing vortex tubes merge into one vortex due to the 

interweaving and the viscosity. Figure 6(f) shows that the vorticity contours around the 

sphere approach that of the axisymmetric flow as the tubes are advected far downstream. 

A three-dimensional view of the pair of vortex tubes is examined by considering the y- 

| component of vorticity vector. Figures 7(a) and 7(b) show the views of a three-dimensional 

) contour surface of uy = 0.2 at t = 6 and t = 21, respectively, for the flow depicted in 

figure 6. The figures show a view looking down with an acute angle toward the y-z plane. 

The ellipse in the figures is the boundary of the spherical computational domain viewed 

at an angle. It appears as a circle when viewed normal to the principal plane. The sphere 

is at the center of the domain in figures 7(a) and 7(b). Figure 7(a) shows that the two 

vortex tubes rotate about each other. Figure 7(b) demonstrates that the pair of vortex 

tubes merge after some time. 

The resemblance of the streamline pattern between the case of a pair of vortex tubes 

and the case of a single vortex tube indicates that the force and moment on the sphere 

due to a pair of vortex tubes may be close in value to those due to a single vortex tube. 

In the next subsections, we discuss the lift, moment, and drag coefficients for the pair of 

vortex tubes and compare them with those for a single vortex tube. 
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3.3.2    Lift, moment, and drag coefficients and effect of tube circulation 

Figure 8 shows the lift coefficients of the sphere as a function of time for Re — 100, 

d0ff = ±1.5, and a = 1. The lift coefficients are computed for four different total 

maximum induced velocities vmaxt due to the pair of vortex tubes, with magnitudes equal 

to 0.148, 0.295, 0.443, and 0.590 (umax = 0.1, 0.2, 0.3, and 0.4) normalized by free stream 

velocity. Due to the sudden placement of the sphere into the stream, it takes a short time 

(0 < t < 0.8) for the initial flow perturbations to vanish. 

When the pair of vortex tubes approach the sphere (0 < t < 9), they produce upwash 

resulting in a positive lift force on the sphere. The maximum positive lift coefficient 

CL,maxi occurs at about t = 6.8. On the other hand, when the vortex tubes pass the 

sphere, they produce downwash and higher fluid velocity near the bottom of the sphere 

than the top due to the shear flow imposed by the vortex tubes resulting in a negative lift 

force. The magnitude of the negative lift is greater than the positive lift. The maximum 

negative lift coefficient Ch,m«x2 occurs at about t = 12.2. CL,maxi and CL,maX2 are linearly 

proportional to the total maximum induced velocity. The maximum positive lift coefficient 

Ci.maxi is expressed by 

Ci.moxl = c vmaxt, (4) 

where the proportionality constant c = 0.88. The maximum negative lift coefficient 

CL,max2 is also expressed by equation (4) but with c = -1.62. After the lift coefficient 

reaches its maximum negative value, it decays quickly towards zero because the vortex 

tube vorticity is diffused in the sphere wake. The time averaged lift coefficient (averaged 

over a time span between t = 0.8 and the maximum time 24.5) for all values of vmaxt 

is negative and small (O(10~2)). As mentioned earlier, the behavior of CL(t) during the 

period 0 < t < 0.8 is influenced by the initial flow perturbation, and thus its value during 

this initial period is excluded from the averaging process. The root mean square Cz,,rmÄ of 

the lift coefficient as a function of time is also linearly proportional to vmaxt with c = 0.7. 
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The lift coefficient of the sphere interacting with a single vortex tube as a function 

of time is also shown as a reference (marked with an asterisk) in figure 8 for Re = 100, 

d0fj = 0, and a = 1 with vmaxt = vmax = 0.148. Figure 8 shows that the lift coefficient 

of the sphere interacting with a pair of like-rotation vortex tubes as a function of time 

is approximately the same as that of the sphere interacting with a single vortex tube for 

the parameters given above if the same total maximum induced velocity is used in both 

cases. The dependency of this phenomenon on the parameters (d0jj, a, and Re) will be 

discussed in the following subsections. 

Figure 9 shows the temporal development of the moment coefficients for the sphere 

under the same conditions as figure 8. 

When the vortex tubes pass the sphere, the front stagnation point on the sphere is 

shifted above the plane x = 0 due to the downwash. This causes higher shear stress in 

the lower left region compared to the upper left region resulting in a positive (counter- 

clockwise) torque on the sphere. The upward shift of the front stagnation point also causes 

the shear stress to be higher in the top and upper right regions than in the bottom and 

lower right regions resulting in a negative torque on the sphere. However, the effect of this 

negative torque is diminished by the shear flow induced by the vortex tubes across the 

sphere which produces high shear stress at the bottom of the sphere. As a consequence, 

a net high positive torque acts on the sphere. The maximum positive moment coefficient 

CM,max occurs at t = 11.5. CM,max is approximately linearly proportional to vmaxt with 

c=0.11. 

When the vortex tubes approach the sphere or are relatively far away from the sphere, 

the effect of the shear flow induced by the vortex tubes across the sphere is small, resulting 

in a net weak torque on the sphere. 

The time averaged moment coefficient for all values of vmaxt is positive and small 

O(10-3). The rms moment coefficient CM,rm> is approximately linearly proportional to 

Vmaxt with c = 0.043. We note that the torque depends only the distribution of the shear 
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stresses (rre and rr^) and is relatively small compared to the lift force. 

The moment coefficient of the sphere interacting with a single vortex tube as a function 

of time is also shown as a reference (marked with an asterisk) in figure 9 for Re = 100, 

d0jf = 0, and a = 1 with vmaxt = vmax = 0.148. The pattern of the moment coefficient 

of the sphere interacting with a pair of vortex tubes as a function of time is similar to 

that of the sphere interacting with a single vortex tube for the parameters given above, 

but the maximum moment coefficient of the former is lower than that of the latter. This 

shows that the moment coefficient is more sensitive to the offset distance than the lift 

coefficient. This will be discussed in the next section in detail. 

Figure 10 shows the drag coefficients of the sphere as a function of time for the same 

conditions as figure 8. The drag coefficients are computed for four different values of 

v.mnTt as in figure 8, in addition to vmaxt = 0 which corresponds to the axisymmetric flow 

without the vortex tubes. 

As discussed earlier, the sudden placement of the sphere in the flow results in initially 

large values of shear stress and pressure on the sphere, and hence a large drag as shown in 

figure 10. When the vortex tubes approach the sphere, the pressure at the front stagnation 

point is lower than that of the axisymmetric flow past a sphere due to the low pressure 

at the center of the vortex tube. Also, the maximum shear stresses in the upper and 

lower regions of the sphere are lower than those of the axisymmetric flow. This causes 

the drag on the sphere to be lower than that of the axisymmetric flow without the vortex 

tube. As the vortex tubes move around the bottom of the sphere, the front stagnation 

point is shifted above the plane x = 0 due to the downwash. Consequently, high pressure 

and high shear stress act in the upper and lower left regions, respectively. This increases 

the drag during the period 9 < t < 13.4. For t > 13.4, the drag approaches that of 

the axisymmetric flow as the vortex tube moves further downstream. The time averaged 

value of the deviation of the drag coefficient from that of the axisymmetric flow past a 

sphere for all values of vmax is nearly zero (O(10~4)). 
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The pattern of the drag coefficient of the sphere interacting with a pair of vortex 

tubes as a function of time is similar to that of the sphere interacting with a single vortex 

tube for the parameters given above (compared with figure 11 in KES), but the largest 

deviation of the former from the case of the axisymmetric flow occurs earlier than that 

of the latter. The reason is that due to the rotation about each other, one of the vortex 

tubes in the former approaches the sphere faster than the vortex tube in the latter. 

3.3.3    Effects of the size and the offset distance of the vortex tubes 

The effects of the size of the vortex tubes on the flow field are studied by performing 

computations similar to those in the previous section for Re = 100, d0ff = ±1.5, and five 

different sizes of the vortex tubes, a = 0.25, 0.5, 2, 3, and 4 in addition to the base case 

Table 1 shows CL<maxl, CL,max2, CL,rms, CM,max, and CMrms as a function of the vortex 

tube size which covers six different initial radii of the vortex tube, a = 4,3,2,1,0.5, and 

0.25, for vmaxt = 0.1. Another computation with different vmaxt showed that all the lift 

and moment coefficients are linearly proportional to vmaxt at each a. When a > 2, Ci,,max\ 

and Cx.rm« become independent of a, but the magnitudes of Cx,ma*25 CM,max, and CM,™* 

for a = 4 are smaller than those for a = 2 and 3. When a approaches zero, all the 

coefficients tend to be proportional to (<r vmast) or (a vmax) which is proportional to the 

circulation of the vortex tube. For example, CLiTmt is expressed by 

CL,™*   =   ci vmaxU     2 < 0 < 4 

=   c2vmaxt0
n,  0.25 < 0 < 2,   0.75>n>0.3, (5) 

where the constant C\ = 1 and c2 = 0.7, and n depends on 0 and should approach unity 

as 0 reaches zero. For Cx.maxi, ci = 1.1 and c2 = 0.88. Cz,,max2, CM,max, and CM,™* for 

0 < 3 are also expressed by equation (5) with c\ = —2 and c2 = —1.65, c\ = 0.13 and 

c2 = 0.11, and Ci = 0.053 and c2 = 0.04, respectively. The time averaged value of the 
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deviation of the drag coefficient from that of the axisymmetric flow past a sphere for all 

values of a is nearly zero (O(10~4)). 

Comparing the results in table 1 (based on vmaxt) with those of the sphere interacting 

with a single vortex tube (KES, table 4 (based on vmax)), it is found that the magnitudes 

of the lift coefficients in table 1 are within 2% to 20% of those in KES, with the largest 

deviation occurring at a = 0.25. 

Note that C^maxi, CM,max, and C\f,rms for <r = 4 axe, respectively, smaller than those 

for a = 2 and 3 due to the shear flow effect explained in KES. 

Now, the effects of the offset distance on the flow field are investigated by varying d0jj 

for Re = 100 and a = 4. The computation was performed for d0ff = 0, ±1, ±2, ±3, and 

±4 in addition to the base case d0jf = ±1.5. Note that the case of d0jf = 0 corresponds 

to the interaction between a single vortex tube and a sphere. 

It is found that CL,maxi, C^maxi-, CL,rms, CM,max, and C^rm* for each doff are linearly 

proportional to vmaxt as in the case of d0jf — ±1.5. The triangular symbols in figure 11 

show C^rma as a function of | d0//1 for Re = 100 and a = 4 while the maximum induced 

velocity (or the circulation) of each vortex tube is kept as a constant, vmax = 0.2. The 

triangular symbols show that Ci,rm3 decays rapidly as \d0ff\ > 0. On the other hand, 

the circular symbols in figure 11 show C^rms as a function of |d0//| for Re = 100 and 

<7 = 4 while the total maximum induced velocity due to the two vortex tubes is kept as 

a constant, vmaxt = 0.2. The circular symbols show that the magnitudes of the rms lift 

coefficients for d0jj = ±1, ±1.5, ±2, ±3, and ±4 are close to that for d0jj = 0. The 

behavior of Cx,maxi and Ci,maX2 as a function of \d0/f\ is similar to that of Ci,irma. 

Examination of the effect of the offset distance for a = 1 and 2 shows that the lift 

coefficient of the sphere interacting with a pair of vortex tubes as a function of time is 

nearly identical to that of the sphere interacting with a single vortex tube if the separation 

distance between the tube centers is less than 2 y/a vortex tube diameter for Re = 100 

and vmaxt instead of vmax is used in the former. 
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The triangular symbols and the circular symbols in figure 12 show CM,™* as a function 

of \d0jf\ for the same parameters as used for Cx,™»- Figure 12 shows that the magnitude 

of the rms moment coefficient decays more rapidly than that of the rms lift coefficient as 

d0jj increases. The behavior of C\{,max as a function of d0fj is similar to that of CM,™*- 

The moment coefficient of the sphere interacting with a pair of vortex tubes as a function 

of time is nearly identical to that of the sphere interacting with a single vortex tube if 

the separation distance between the tube centers is less than y/ä vortex tube diameter 

for Re = 100 and vmaxt instead of vmax is used in the former. 

3.3.4    Effects of Reynolds number 

Computations like those in section 3.3.2 are made for four different Reynolds numbers 

in the range of 20 < Re < 80, doii = ±1.5, and 1 < a < 4 in addition to the base case 

Re = 100. 

A result like that shown in section 3.3.3 for Re = 100 is obtained. Cx,ma*i and CL,Tms 

are linearly proportional only to vmaxt and independent of a when a > 2 at fixed Reynolds 

number as in the case of Re = 100. CL,maxi dependence on Reynolds number may be 

expressed by 

Cx,marl = A Vmaxt ReP , (6) 

where A = 8.9 and P = —0.45 for 2 < a < 4. Cx,rTOi may be also expressed by equation (6) 

with A = 8.1 and P = —0.45 for 2 < a < 4. CW.ma* and Cjv/>rm, may be also represented 

by equation (6) with A = 5.5 and P = -0.83 for the former, and A = 3.1 and P = -0.88 

for the latter for 2 < a < 3. 

Now, the effect of the offset distance for 20 < Re < 80 in addition to the base case 

Re = 100 is discussed. 

The triangular symbols in figure 13 show Cx,,rma as a function of \d0jj\ for Re = 20 

and cr = 4 while the maximum induced velocity (or the circulation) of each vortex tube is 

20 



kept as a constant, vmax = 0.2. The triangular symbols show that C^rms decays rapidly 

as \d0fj\ > 0. On the other hand, the circular symbols show Cx,,rms as a function of |<f0//| 

for Re = 20 and a = 4 while the total maximum induced velocity due to the two vortex 

tubes is kept as a constant, vmaxt = 0.2. The circular symbols show that the magnitudes 

of the rms lift coefficients for d0fj = ±2 and ±4 are close to that for d0jj = 0. The 

behavior of CL,maxi and CL,max2 as a function of \d0jj\ resembles that of Ci^Tmi. 

The results for the range of a values indicate that the lift coefficient of the sphere 

interacting with a pair of like-rotation vortex tubes as a function of time is nearly identical 

to that of the sphere interacting with a single vortex tube if the separation distance 

between the tube centers is less than 2 y/ä vortex tube diameter for Re = 20 and vmast 

instead of vmax is used in the former case. The same result as above was obtained at 

different Reynolds numbers, Re = 40, 60, and 80. 

The triangular symbols and the circular symbols in figure 14 show CM,™* as a function f 

of \d0ff\ for the same parameters as used for Cx,rm». The figure shows the magnitude of 

the rms moment coefficient decays more rapidly than that of the rms lift coefficient as 

d0jf increases. The behavior of CM,max as a function of d0ff resembles that of CM,™*- It 

is found that the moment coefficient of the sphere interacting with a pair of vortex tubes 

as a function of time is nearly identical to that of the sphere interacting with a single 

vortex tube if the separation distance between the tube centers is less than yfä vortex 

tube diameter for Re = 20 and vmaxt instead of vmax is used in the former case. The same 

result as above was obtained at different Reynolds numbers, Re = 40, 60, and 80. 

In summary, the comparison of the results from this section with those from the 

previous section shows that the range of the offset distance for which the lift and moment 

coefficients of the sphere interacting with a pair of vortex tubes are nearly identical to 

those of the sphere interacting with a single vortex tube is independent of Reynolds 

number for 20 < Re < 100. 
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3.4    Interactions of an array of vortex tubes of like rotation and 

a moving sphere 

Our results for the cases of a fixed spherical particle interacting with a single advecting 

vortex and with an advecting pair of vortices can now be used to calculate the trajectory 

of a moving spherical particle interacting with an array of like-rotating vortex tubes. 

Opposite-rotating vortices are less interesting since they produce no lift or deflection. 

Studying these interactions can improve our understanding of the behavior of a particle 

(or droplet) interacting with eddies of comparable length scale in a turbulent flow. For 

this study, the array will be a linear arrangement of single vortices. Since a single vortex 

and a pair of like-rotating vortices produce comparable effects on the sphere, this choice 

should not be critical. 

Figure 15 shows the initial flow geometry where a spherical particle is injected into an 

array of infinite number of counter-clockwise rotating vortices which are located on the 

negative z-axis with center-to-certer nondimensional distance of 24. Since the life time of 

a vortex tube is short (2Tra/vmax) compared to the travel time (or life time) of the particle 

(or droplet), it is assumed that the next vortex with the same strength as the first vortex 

is generated when the sphere passes the first vortex. The deflection of the moving sphere 

will cause the offset distance to vary from one collision with a vortex tube to the next. 

Therefore, d0ff is a time-dependent quantity. 

We assume that the particle is constrained to move only in the x-z plane. The aim 

is to calculate the trajectory in the two-dimensional plane from the already-known time 

evolution of Cn{i) and Cx(2) as given by KES. The particle trajectory as a function of 

time is computed by solving the following system of two ordinary differential equations 

which are the nondimensional form of the Newton's equation of motion in the z and x 

directions. 
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dU,       3  ,   „ /lX     n    „ ,.,   .  „ ,„2 , rr2N 
dt       8pr 

dUx       3 

(-Cjo(t) cosO - CL(t) sinB) (Ul + Ul) (7a) 

M       o     (-CD(t)sin6 + CL(t)cose)(U2
z+Ul), (7b) 

dt       ö pr 

where U, and Ux are, respectively, the sphere velocities in z and x direction, tanO = 

Ux/(—U,), and /jr is the ratio of the particle density to the fluid density. Initially, 0 = 0. 

The term (U%+U%) arises since the velocities are normalized by the initial particle velocity 

while the drag and lift coefficients are normalized by the instantaneous particle velocity. 

The gravity force is neglected in this formulation. 

Our numerical results (KES) for the time-dependent lift coefficient of a spherical par- 

ticle interacting with a single vortex tube depends on the offset distance d0jj, the vortex 

core size <r, and Reynolds number Re and can be summarized as: 

CJ* - A [CL(t)]b exp{?-^) /(As, w)    for C v^ < doff <D^, (8) 

where the following combinations of values apply: 

A B C D 

1.15 0.3 —oo -0.7 

1 0.1 -0.7 0 

1 0 0 1 

eo.i -0.1 1 1.7 

1.15 e0-3 0.3 1.7 oo 

Also, [CL(2)]{, is the lift coefficient for the base case where Re = 100 and d0fj = 0 with 

Vmax = vmaXtb, f(Re,vmax) = (100/i?e)m vmax/vmax,b, and the exponent m is given by 
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ma t 

0.375           1 0 < t < 9 

0.45           1 9 < t < 24 

0.44    2 < <r < 4 0 < i < 9 

0.51    2 < <r < 4 9<i<24 

The time-averaged drag coefficient of the sphere in the flow with a vortex tube differs 

by 0.01% to 5% (depending on the offset distance) from the time-averaged drag coefficient 

of the axisymmetric flow for Re = 100 and vmax = 0.2. (Refer to equation (19) in KES.) 

Therefore, the time-dependent drag coefficient in equations (7a) and (7b) is approximated 

by the time-dependent drag coefficient obtained from the axisymmetric flow generated by 

a spherical particle injected into a quiescent fluid. The spherical particle in this flow 

experiences the drag force and thus is retarded. This axisymmetric drag coefficient was 

computed as a function of time and instantaneous Reynolds number by using the code 

which has been developed for the time-dependent axisymmetric flow. The torque on the 

sphere is neglected since the magnitude of the moment coefficient is small and less than 

8% of the lift coefficient magnitude (table 4 of KES). 

Figure 16 shows two trajectories of the sphere during the dimensionless time period 

between 0 and 24 for initial particle Reynolds numbers 50 and 100 with density ratio 200 

(which is the ratio, for example, of n-octane density to that of air under 10 atmospheres 

of pressure). The initial vortex size is three times the sphere radius, and the initial offset 

distance of the sphere is zero. The initial maximum induced velocity of the vortex tube is 

0.2 normalized by the initial sphere velocity. The sphere initially moves upward due to the 

vortex upwash and then moves downward due to the vortex downwash. The maximum 

positive deflection for the case of Re0 = 50 is higher than that of Re0 = 100. 

Figure 17 shows two trajectories of the sphere which are traced from the initial injection 

beyond the time period of figure 16 until particle Reynolds number reaches unity for 
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initial particle Reynolds numbers 50 and 100 with the same initial parameters as in 

figure 16. Since the final Reynolds number is small, these trajectories are approximately 

those corresponding to the whole particle motion until it stops relative to the fluid. A 

counter-clockwise rotating vortex tube produces not only upwash downstream of itself 

and downwash upstream of itself but it also causes a shear flow across the sphere when 

it passes the sphere. The combined effect of the downwash and the shear flow causes the 

magnitude of the maximum negative lift to be greater than the maximum positive lift 

magnitude. Therefore, the average lift coefficient averaged over the time span 24 (the 

interaction time with one vortex tube) is one order of magnitude less than the rms lift 

coefficient and negative due to the shear flow effect. This small negative value of the 

average lift coefficient becomes important when the sphere interacts with an array of . 

many vortices. Thus, the sphere travels upward only for the short initial time period and I 

then moves downward for the most of the time until it stops. The final deflection ratios f 

defined by the ratio of the final position Xf to Zf of the sphere are 1/36 for the case of 

Re0 = 100 and 1/34 for the case of Re0 = 50. However, the final deflection for the case of 

Re0 = 100 is higher than that of Re0 = 50, because the sphere for the case of Re0 = 100 

possesses higher initial momentum and it travels farther than that of Re0 = 50. 

Figure 18 shows four trajectories of the sphere during the dimensionless time period 

between 0 and 24 for the density ratio 25, 50, 100, and 200 with Reynolds number 100 

and the same parameters for a, d0jf, and vmax as in figure 16. A sphere with lower density 

ratio initially deflects more than a sphere with higher density ratio as shown in figure 19. 

Four trajectories of the sphere which are traced from the initial injection until particle 

Reynolds number reaches unity for the density ratio 25, 50, 100, and 200 with the same 

initial parameters as in figure 18. However, the final transverse displacement increases 

with density ratio because the sphere with higher density ratio possesses higher initial 

momentum and it travels farther than the sphere with lower density ratio. 

The larger vmax causes the larger sphere deflection; however, the sphere deflection is 
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not linearly proportional to vmax due to the nonlineaxity of the equations (7a) and (7b). 

The results of figures 16 and 18 indicate that the sphere would experience slightly 

lower drag than that of a sphere subjected to an axisymmetric flow when it passes the 

first vortex tube. This lower drag is caused by the upward motion of the sphere due 

to the upwash of the approaching vortex tube, and thus the center of the vortex tube is 

located below the front stagnation point of the sphere. This causes lower dynamic pressure 

ahead of the front stagnation point. However, the sphere would experience higher drag 

eventually when it passes more than one vortex tube and travels downward. Due to the 

downward motion, the vortex tubes are located above the front stagnation point of the 

sphere, causing higher dynamic pressure ahead of the front stagnation point. 

The original computations in KES and in section 3.3 were made for a nondimensional 

time duration of 24 and 24.5, respectively. However, the trajectory calculations presented 

in figures 17 and 19 use the basic information from those original computations to yield 

trajectory predictions for much longer periods. 

4    Conclusions 

In order tc improve +he understanding of the physics of interaction between a particle 

and eddies of comparab1 ° length scale in a carrier flow, the unsteady, three-dimensional, 

incompressible, viscous flow interactions between a pair of vortex tubes advected by a 

uniform free stream and a spherical particle suddenly placed and held fixed in space were 

investigated numerically for a range of particle Reynolds number 20 < Re < 100. 

When the top and bottom vortex tubes have positive and negative circulations, re- 

spectively, the magnitude of the induced velocity due to the vortex tubes is added to 

the base flow velocity along the stagnation streamline. This causes the pressure at the 

stagnation point and the shear stresses in the upper and lower left regions to be higher 

than those of the axisymmetric flow past a sphere, thus increasing the drag. On the other 
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hand, when the top and bottom vortex tubes have negative and positive circulations, 

respectively, the induced velocity due to the vortex tubes is subtracted from the base flow 

velocity along the stagnation streamline. This causes the pressure at the stagnation point 

and the shear stresses in the upper and lower left regions to be lower than those of the 

axisymmetric flow past a sphere, thus reducing the drag. The lift and moment are zero 

for this symmetric configuration. 

The interactions between a sphere and like-rotating a pair of cylindrical vortex tubes 

initially located ten radii upstream from the center of the sphere were investigated. The 

lift and moment coefficients of the sphere interacting with a pair of vortex tubes as a 

function of time are nearly identical, respectively, to those of the sphere interacting with 

a single vortex tube if the separation distance between the tube centers is less than 2 y/ä 

vortex tube diameter for the lift coefficient and less than \fö vortex tube diameter for 

the moment coefficient; here, vmaxi instead of vmax is used in the case of a pair of vortex 

tubes, where vmax is the maximum induced velocity due to one vortex without presence of 

the other and vmaxt is the total maximum induced velocity due to the pair of vortices. In 

particular, lift and moment coefficients are linearly proportional to the maximum induced 

velocity. The moment coefficient is negligible compared to the lift coefficient. 

The two-dimensional trajectories of a spherical particle interacting with an array of 

vortices whose sizes are comparable to the sphere size have been examined. The time- 

dependent drag and lift forces (KES) for the case of a spherical particle interacting with a 

single vortex were used to calculate the two-dimensional trajectory of a moving spherical 

particle interacting with an array of vortex tubes of like rotation. The present results 

show that the shear flow across the sphere induced by a vortex tube is responsible for 

the net deflection of a sphere interacting with an array of vortex tubes. Thus, the sphere 

eventually deflects in the direction of increasing relative velocity. The deflection ratio 

(ratio of sphere final location in z and x directions) of the sphere increases with decreasing 

initial Reynolds number and with decreasing density ratio. However, the total deflection 
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increases with increasing the initial Reynolds number and the density ratio because higher 

momentum causes the sphere to travel farther. 

A turbulent flow possesses a wide spectrum of eddy sizes. In order to enhance the 

understanding of particle motion in a turbulent flow, we are currently investigating the 

motion of a freely moving particle interacting with a large vortex tube whose size is of 

the order of an integral length scale, i.e. at the other end of the spectrum relative to the 

present case. Preliminary results of the large vortex study show that the lift force on the 

particle is much smaller than that due to the small vortices (in the present paper) with 

the same maximum induced velocity (Kim, Elghobashi k Sirignano (1996)). Our direct 

solution of the three-dimensional Navier-Stokes equations over a freely moving particle 

confirms that due mainly to the drag force, the particle travels in a curved trajectory 

that depends on the direction of vortex rotation and the Stokes number of the particle. 

This indicates that the mechanism of particle dispersion due to the interaction with small 

vortices is quite different from that due to the interaction with a large vortex. 
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a ^L,maxl Cl,max2 ^L,rms ^M,Tnax ^M,rms 

4 0.111 -0.186 0.103 0.011 0.0051 

3 0.111 -0.196 0.102 0.013 0.0053 

2 0.108 -0.197 0.094 0.013 0.0053 

1 0.088 -0.162 0.070 0.011 0.0043 

0.5 0.058 -C.116 0.046 Ü.0065 G.0023 

0.25 0.034 -0.070 0.027 0.0034 0.0012 

Table 1.   Maximum positive and negative lift coefficients, 
rms lift coefficient, maximum moment coefficient, 
and rms moment coefficient as a function of 
the size of vortex tube for Re = 100 and 
d0ff = 1.5 with vmaxt = 0.1. 



Figure Captions 

Figure 1. Flow geometry and coordinates 

Figure 2. Pseudo-streamlines (left column) and contour lines of y-component vorticity 

(right column) in the principal plane at (a) t = 0, (b) 3, (c) 6, (d) 9, (e) 12, 

and (f) 15 for Re = 100, doff = ±1.5, a = 1, and vmaxt = 0.738 

with top-positive and bottom-negative circulations. 

Figure 3.  Drag coefficients of the sphere as a function of time and vmaxt 

for Re = 100, dofJ = ±1.5, and a = 1. 

with top-positive and bottom-negative circulations. 

Figure 4. Pseudo-streamlines (left column) and contour lines of y-component vorticity 

(right column) in the principal plane at (a) t = 0, (b) 3, (c) 6, (d) 9, (e) 12, 

and (f) 15 for Re = 100, doii = ±1.5, a = 1, and vmaxt = 0.738 

with top-negative and bottom-positive circulations. 

Figure 5. Drag coefficients of the sphere as a function of time and vmaxt 

for Re = 100, doff = ±1.5, and a = 1. 

with top-negative and bottom-positive circulations. 

Figure 6. Pseudo-streamlines (left column) and contour lines of y-component vorticity 

(right column) in the principal plane at (a) t = 1, (b) 6, (c) 10, (d) 15, 

(e) 21, and (f) 30 for Re = 100, doJS = ±1.5, a = 1, 

and vmaxt = 0.59. 

Figure 7. A view of three-dimensional contour surfaces of uy = 0.2 at (a) t = 6 

and (b) t = 21 for the flow depicted in figure 2 

Figure 8. Lift coefficients of the sphere as a function of time and vmaxt 

for Re = 100, doff = ±1.5, and a = 1. 



Figure 9.  Moment coefficients of the sphere under the same conditions as figure 7. 

Figure 10. Drag coefficients of the sphere under the same conditions as figure 7. 

Figure 11. Rms lift coefficients of the sphere as a function of \d0jf\ 

for Re = 100 and a = 4. 

Figure 12. Rms moment coefficients of the sphere as a function of \d0jj\ 

for Re = 100 and a = 4. 

Figure 13. Rms lift coefficients of the sphere as a function of \d0ff\ 

for Re = 20 and a = 4. 

Figure 14. Rms moment coefficients of the sphere as a function of |rf0//| 

for Re = 20 and a = 4. 

Figure 15. Initial flow geometry for a sphere injected into an array of 

infinite number of vortex tubes. 

Figure 16   Two trajectories of the sphere during the time period between 0 and 24 

for initial Reynolds numbers 50 and 100 with density ratio 200. 

Figure 17   Two trajectories of the sphere traced from the initial injection until 

Reynolds number reaches unity for initial Reynolds numbers 50 and 100 with 

with density ratio 200. 

Figure 18   Four trajectories of the sphere during the time period between 0 and 24 

for the density ratio 25, 50, 100, and 200 with initial Reynolds number 100. 

Figure 19   Four trajectories of the sphere traced from the initial injection until 

Reynolds number reaches unity for the density ratios 25, 50, 100, and 200 

with initial Reynolds number 100. 
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The Motion of A Spherical Particle in Unsteady Flows at 
Moderate Reynolds Numbers * 

I. KimJ S. Elghobashi* and W. A. Sirignano§ 

Department of Mechanical and Aerospace Engineering 
University of California, Irvine 

Abstract 

The equations governing the motion of a spherical 
particle proposed by previous workers are examined 
and compared with the results of the numerical solu- 
tion of the full Navier-Stokes equations for unsteady, 
axisymmetric flow around a freely moving sphere ini- 
tially injected into an oscillating flow and for unsteady, 
three-dimensional flow around a freely moving sphere 
interacting with a large vortex tube. As a result, we 
propose a modified equation of the particle motion and 
demonstrate its superiority to the previously proposed 
equations for both rectilinear and two-dimensional mo- 
tion over a wide range of Reynolds number and of den- 
sity ratio. 

Nomenclature 

a sphere radius 
CD drag coefficient 
Ci lift coefficient 
CM moment coefficient 
g gravity vector 
mj mass of the fluid displaced by the sphere 
rrip mass of the spherical particle 
Ni,Ni, JV3 numbers of grids in £, r), £ directions 
Ret Reynolds number based on sphere diameter 
u velocity vector of the fluid 
v velocity vector of the sphere 
u'maxo initial maximum induced velocity due to 

the vortex tube normalized by v0 

v0 initial injection velocity of the sphere 
t' dimensionless time normalized by a/v0 

t* dimensionless time normalized by u> 
X, E inertial cylindrical coordinates 
x,cr noninertial cylindrical coordinates 
X, Y, Z inertial Cartesian coordinates 
X'0,Yg initial particle position 

x,y,z 
normalized by the particle radius 
noninertial Cartesian coordinates 

•Copyright ©1996 by the authors. Published by the Amer- 
ican Institute of Aeronautics and Astronautics, Inc. with 
permission. 

t Research Associate, Member AIAA. 
'Professor of Mechanical and Aerospace Engineering, 
member AIAA. 

5 Professor of Mechanical and Aerospace Engineering, 
Fellow AIAA. 

Greek symbols 

Pi fluid density 

PP particle density 

VJ fluid viscosity 
v! fluid kinematic viscosity 

*,*C nonorthogonal generalized coordinates 

(To initial radius of vortex core 
«' dimensionless frequency normalized by a/v0 

Superscript 
7 

Subscript 

/ 
o 
P 

nondimensional quantity 

carrier fluid 
initial quantity 
spherical particle 

1. Introduction 

Accurate prediction of particle (or droplet) disper- 
sion is important in many turbulent two-phase flows 
such as spray combustion and atmospheric dispersion 
of pollutants. Since a general analytical solution of the 
Navier-Stokes equations for a flow around a sphere is 
not possible, only a numerical solution of these equa- 
tions can provide accurate information about the flow 
field. The forces on the particle can then be computed 
by integrating the normal and shear stresses around the 
particle, and then Newton's law is applied to obtain the 
acceleration of the particle. However, since these equa- 
tions are unsteady and three-dimensional, they require 
excessive computing time. It is not possible to use this 
method to predict the simultaneous motion of many 
particles in a typical two-phase flow with the present 
and foreseeable computing capabilities. 

The simplest method to describe the forces on a par- 
ticle would be using the steady drag from the standard 
drag curve plus the net gravitational force on the par- 
ticle according to 

mp-£ = -CD,td™ PJ I« v | (u- v) + (mp-mJ)g 

(1) 



where Cßstd is the drag coefficient from the (steady) 
standard drag curve, u is the carrier fluid velocity, v 
is the sphere velocity, a is the sphere radius, and mj 
is the mass of the fluid displaced by the sphere. Many 
application-oriented studies of dilute particle dispersion 
are based on Equation (1). In the case of unsteady flow, 
this relationship is an approximation that can be valid 
only if the response time of the particle is much larger 
than that of the flow. 

Several equations accounting for the unsteadiness of 
the particle motion have been developed wherein a su- 
perposition of the steady drag and the unsteady (his- 
tory) drag is used to obtain the forces on the particle. 
The available particle equations are reviewed next. 

Basset1, Boussinesq2, and Oseen3 studied the un- 
steady rectilinear motion of a sphere in a stagnant in- 
compressible, viscous fluid. They solved the Navier- 
Stokes equations for a creeping flow by neglecting the 
advective acceleration terms and derived the following 
expression for the acceleration of the sphere: 

dv 1      dv 
— = -6iranjv - ^rrif— + (mp - ms)g 
dt di 

- 6a2^/WJTfpJ 
Jo 

i dv/dr 
dr (2) 

y/t^T 

Maxey and Riley4 re-derived from first principles 
the following equation for the motion of a sphere in 
a nonuniform creeping flow: 

Du 
dt 

dv , .1      d(u — v)   
mp-^ = faanf(u - v) + -m, -  + my — 

dt 

„ ,  ,  /' d(u — v)/dr , .       .„. 
+ 6a2

y/WjIJpjJ n~z^     dr+{mp-ms)g, (3) 
f* d(u - v)/dT 

D       y/t-T 

where the Faxen forces are not shown here. 
Based on the above two expressions (2) and (3), one 

may write an equation for the motion of a sphere for 
finite Reynolds number: 

dv 1 2     i if \ mp-£    =    -CD,td^a£ps | u - v \ (u - v) + 

1      d(u — v) Du       , . 
2m'—dT~ + m'-dT + (m> ~ m<)9 + 

D 2   ,   r d(u - v) dr . 
Ga'y/itfifpj  I   —^—-—dr, 

with Ca and C/, obtained experimentally and given by 

Ca    =    2.1 - 0.132AfJi/(l + 0.12M2!!) 

Ch    =    0.48 + 0.523/^/(1 + MA1f , 

where MAI is the dimensionless acceleration defined by 

2a        d\u-v\ 

(4) 

where the first term is an empirical modification. 
Odar and Hamilton5 and Odar6 experimentally ex- 

amined the force on a guided sphere rectilinearly oscil- 
lating in an otherwise stagnant fluid for 0 < Re < 62. 
They proposed an equation for the motion of a sphere 
in a flow of finite Reynolds number based on their ex- 
perimental study as: 

m 
dv 

'It 
1 1      dv 

-    -7;cDttd™ Pj \v\v - Ca r"»/-jr - 

„ „ ,   ,  f* dv/dr   , 
Ch Ga^TTfifPf /     r dr , 

Jo v' ~ r 

dt 

(5) 

MA1 = -«|2 \u-v\ dt I • 

Mei et. al.r studied an unsteady flow over a station- 
ary sphere with small fluctuations in the freestream 
velocity at finite Reynolds number (0.1 < Re < 40) 
using a finite difference method and found that the 
Basset-force term in the equation of particle motion 
should have a kernel which must decay much faster 
than l/\/t — T at large time. Mei and Adrian8 and 
Mei9 considered the same problem as Mei et. al.7 but 
for St « Re « 1 using a matched asymptotic expan- 
sion, where St is Strouhal number based on the angu- 
lar frequency of the freestream and the sphere radius. 
They proposed a modified expression for the Basset- 
force term on the basis of the analytical result at small 
Reynolds number for low frequency, the numerical re- 
sult at finite Reynolds number for low frequency, and 
the unsteady Stokes' result for high frequency. Their 
proposed equation is: 

dv 
■zCD,td*a2pj | u - v | (u - v) + 

2m> 

Du     dv\ 
Dt ~ dt) 

+ mj 
Du 
Dt 

+ 

67r/i/a I    K(t - r, r)  ^",       dr + 
J—oo dr 

(mp -ms)g, (6a) 

with the broad-frequency-range approximation for the 
integral kernel given by 

K(t-T,T) ■I 
7T(< — T)V] 

0.25 

■K \U(T) - V(T)\3 

2   avjft(Ret) 

+ 

(t - rf 1  } 
-2 

(6b) 

where fii(Ret) = 0.75 + 0.105Äct(r); Ret = |«(r) - 
v{r)\2a/Vs. 

Maxey10 included the effect of the initial velocity dif- 
ference between the sphere and the carrier fluid in the 
particle motion equation of Maxey and Riley.4 The ad- 
ditional term is: 6a2

y/Trp.fpj(u(0) — v(0))/y/i. 
In Section 2, the numerical solutions from the above 

equations will be compared with those from the full 
Navier-Stokes equations for unsteady, axisymmetric 
flow around a freely moving sphere initially injected 
into an oscillating fluid, and a new equation for arbi- 
trary rectilinear particle motion is proposed. In Section 



3, the numerical solutions from the above equations 
will be compared with those from the full Navier-Stokes 
equations for unsteady, three-dimensional flow around 
a freely moving sphere interacting with a large vortex 
tube, and a new equation for arbitrary two- and three- 
dimensional particle motion will be proposed. Section 
4 provides a summary of the work. The gravity force is 
neglected in the computation in the following sections. 

2. Unsteady, axisymmetric flow around a sphere 
injected into an oscillating fluid 

2.1 Flow description 

Consider an unsteady, axisymmetric, incompressible, 
laminar flow generated by a spherical particle injected 
into a constant property Newtonian fluid oscillating 
with time in the same direction as that of the parti- 
cle motion as shown in Figure 1. The net gravity force 
acting on the particle is neglected. The origin of a non- 
rotating noninertial reference frame is chosen at the 
center of the particle. 

Three coordinate systems are used in our formula- 
tion: the inertial (fixed in space) cylindrical coordinates 
(X, E), the noninertial cylindrical coordinates (x,cr), 
and the generalized coordinates (£,T]). The origin of 
the coordinates (x, <r) coincides with the sphere center. 
The coordinate £ gives the radial and rj gives the an- 
gular direction with respect to the sphere and are used 
for the numerical solution of the Navier-Stokes equa- 
tions. The generalized coordinate system can be easily 
adapted to two-dimensional or axisymmetric arbitrary 
geometries. 

The base flow in the far field oscillates with time in 
X-direction and is expressed as 

MO 
a\\v\ sinut 

0, 

where c*i is a constant controlling the amplitude and 
u is the angular frequency. The associated far pressure 
field can be obtained from the Navier-Stokes equations 
and is given as 

Pb(x,t) - -pai(-j-Uinw*+ \v\u coswt)X +prej , 
dt 

0.  X is where pre/ is the reference pressure at X 
related to x as X = x + X1 

travelled by the particle and measured from the origin 
of the inertial coordinates (X, E). 

.p, where Xp is the distance 

2.2 Governing equations and boundary condi- 
tions 

The  continuity  and  momentum equations  to be 
solved are: 

V-V = 0 (7) 

"(f + f + v-vr) = -vP + „v>v. (8) 

The governing equations (7) and (8) are are nondi- 
mensionalized using the sphere radius a as the charac- 
teristic length and the initial injection velocity of the 
sphere v0 as the characteristic velocity. The nondimen- 
sionalized equations are cast in terms of the generalized 
coordinates (£, T)) to treat an axisymmetric body of ar- 
bitrary shape. The numerical integration is performed 
using a cubic computational mesh with equal spacing 
(6£ — br\ = 1). In the present study, a spherical do- 
main is used, and the grid reduces to an orthogonal, 
spherical grid. The grids are denser near the surface of 
the spherical particle, and the grid density in the radial 
direction is controlled by the stretching function devel- 
oped by Vinokur.11 The domain of the flow is bounded 
by 1 < i < Nu 1 < T} < N2, where £ = 1 and Ni 
correspond, respectively, to the sphere surface and the 
farfield boundary surrounding the sphere; r\ — 1 and N2 

denote, respectively, the positive x-axis (downstream) 
and the negative x-axis (upstream). 

The velocities on the sphere surface are zero due to 
the no-slip condition, and the pressure on the sphere is 
obtained from the momentum equation. The boundary 
conditions are 

dp       d2Vn dvn .   . 

P = pb V- - n. - v. V„ = 0 at f ^"<N2 

'   (9b) 

p = Pl, ^ = ^ = 0 at £ = Ni, 1 < r, < N2m 
ox       ox 

(9c) 

!? = §* = 0, V„ = 0 at T) = 1 and N2        (9d) 
otj      orj 

where V^ and Va are the fluid velocities with respect to 
the sphere in the x and a directions, respectively, Vn 

is the fluid velocity with respect to the sphere in the 
direction normal to the sphere surface, and v„ is the 
sphere velocity in the direction normal to the sphere 
surface, n denotes the direction normal to the sphere 
surface, d/dn = v^Uffl/ÄC, and »7 = N2m denotes 
the mid-plane between TJ = 1 and N2. 

In order to start the numerical solution of equations 
(7) and (8), we provide initial velocity by superposing 
the initial velocities of the base flow and the sphere, 
and the no-slip condition on the sphere surface: 

Po=Pb,   Vxo = -v0,   Vao = 0,    except at £ = 1 
(10a) 

Po = Pb,  Vxo = Vco = 0       at £ = 1, (10b) 



2.3 Numerical solution 

The three-dimensional algorithm to be used in pre- 
dicting the unsteady, three-dimensional flow around 
a sphere interacting with a large vortex (Section 3) 
has been described in References 12 and 13. Here, 
an axisymmetric, implicit, finite-difference algorithm 
has been developed to solve simultaneously the set 
of the discretized partial differential equations. The 
method is based on an Alternating-Direction-Predictor- 
Corrector (ADPC) scheme to solve the time-dependent 
Navier-Stokes equations. ADPC is a slight variation of 
Alternating-Direction-Implicit (ADI) method and im- 
plemented easily when embedded in a large iteration 
scheme. The control volume formulation is used to de- 
velop the finite-difference equations from the governing 
equations with respect to the generalized coordinates 
(£, J/). An important part of solving the Navier-Stokes 
equations in primitive variables is the calculation of the 
pressure field. In the present work, a pressure correc- 
tion equation is employed to satisfy indirectly the con- 
tinuity equation. The pressure correction equation is of 
the Poisson type and is solved by the Successive-Over- 
Relaxation (SOR) method. 

The overall solution procedure is based on a cyclic 
series of guess-and-correct operations. The velocity 
components are first calculated from the momentum 
equations using the ADPC method, where the pressure 
field at the previous time step is employed. This esti- 
mate improves as the overall iteration continues. The 
pressure correction is calculated from the pressure cor- 
rection equation using the SOR method, and new es- 
timates for pressure and velocities are obtained. This 
process continues until the solution converges at each 
time step. 

We now test the accuracy of the solution procedure 
by predicting the axisymmetric flow over a solid sphere. 

Here we examine the flow generated by an impul- 
sively started solid sphere in a quiescent fluid at two 
Reynolds numbers: 20 and 100. The time-dependent 
solution converges asymptotically to a steady-state 
which is in good agreement with the available experi- 
mental data and correlations as shown in Table 1. Table 
1 lists the drag coefficient as a function of the compu- 
tational grid density at Reynolds numbers 20 and 100 
respectively, and compares them with the correlations 
of Clift et a/.14 Table 1 also shows the separation angle 
measured from the front stagnation point as a func- 
tion of grid density at Reynolds number 20 and 100, 
in comparison with the data of Taneda15 and also with 
the correlations of Clift et a/.14 The calculations were 
performed for four different grids, (N1XN2) = (21x21), 
(31 x 31), (41 x 41), and (51 x 51) in a computational 
domain with an outer boundary located at 21 sphere 
radii from the sphere center. The 51 x 51 grid is used 
in the following calculations. 

We tested the solution procedure by varying the far- 

field boundary condition and by changing the location 
of the outer boundary. In the first test, the far-field out- 
flow boundary condition was changed from d<j>/dx = 0 
(<j> — Vx and Va). to d<j>/dr = 0 There was almost no 
difference in the drag coefficient and the near wake size 
(the separation angle and length of the recirculation 
eddy) at Reynolds numbers 20 and 100. Our calcula- 
tion shows that separation does not occur at Reynolds 
number 20. In the second test, the location of the outer 
boundary in downstream was changed from 21 to 41 
sphere radii. There was virtually no change in the drag 
coefficient and the near wake size at both Reynolds 
numbers. 

2.4 Comparison of the solution of the previous 
equations with that of the Navier-Stokes 
equations 

We now compare the numerical solutions from the 
equations introduced in Section 1 with those from the 
full Navier-Stokes equations for unsteady, axisymmetric 
flow around a. freely moving sphere initially injected into 
a still fluid (the case of w = 0 in Section 2.1). 

Figure 2 shows the drag coefficients of the sphere as 
a function of time (0 < t' < 200) with initial particle 
Reynolds number Rei0 = 150 and the sphere/fluid den- 
sity ratio pr = 5. At t' = 200, the particle Reynolds 
number reduces to 4. The Basset history term in Equa- 
tions (4) and (5) causes too low a value for the drag 
coefficient compared with the Navier-Stokes solution. 
The drag coefficient from Equation (6a) proposed by 
Mei and Adrian (1992) is the closest to that from the 
Navier-Stokes equations, but with increasing discrep- 
ancy as t' increases. 

Figure 3 shows the drag coefficients of the sphere as 
a function of time (0 < t' < 400) with the same particle 
Reynolds number as in Figure 2 but with the density 
ratio pr = 200. At t' = 400, the particle Reynolds num- 
ber becomes 84. The Basset history term in Equations 
(4) and (5) still results in lower values for the drag coef- 
ficient. Now, the solution of Equation (6a) gives a good 
approximation to that of the Navier-Stokes equations. 
However, it is noted that the solution of Equation (1) 
also gives a good approximation and is very close to 
that of the Navier-Stokes equations. Thus, it is seen 
that for high density ratio (pT) the deviation from the 
Navier-Stokes solution is reduced. 

2.5 New improved equation for particle motion 

We now investigate the restrictions imposed on the 
derivation of Equation (6a) proposed by Mei and 
Adrian8 and propose an improved equation for the par- 
ticle motion. 

Two restrictions were imposed on the derivation of 
Equation (6a). First, the integral kernel was developed 
under the assumption of small amplitude oscillation of 
the free stream.   Secondly, the effect of the drag due 



to the initial relative velocity between the particle and 
the carrier fluid was neglected. 

As seen in the previous section, Equation (6a) pro- 
duces a better solution for the drag of a sphere with 
higher density ratio than for the case with low density 
ratio; in other words, Equation (6a) produces a better 
solution for the drag of a sphere with lower deceleration 
than with higher deceleration. 

The above analysis indicates the need for the sphere 
motion equation to account for the initial velocity dif- 
ference and to have an integral kernel weighted by the 
acceleration magnitude. The weighting function con- 
tains the time derivative of the relative velocity MAX 

and the ratio <f>r of MAI to MAX- MAI was defined 
before in Equation (5) and MAI and <f>r are defined by 

MA2(t) = 
(2a)2    , d2\u-v MAi 

\u — v\ di>      ^^=MAx 

These dimensionless groups can be introduced through 
dimensional analysis to obtain the forces on the particle 
of unsteady motion. 

Now, we propose the following equation for particle 
motion. 

1       (Du     dv\ Du 

6*fifa /   K(t - T, T)-± L 

Jo dr 

6jr/i/aüfi(*)[«(0)-t>(0)] + 

(mp - mj)g 

with the integral kernel K(t - T,T) given by 

dr + 

(11a) 

K(t-r,r)    = 
ir(t — T)V] 

•I0.5/CJ 

G(r) 

G(T)   = 

ß   = 

7T \U(T) — v(r)f 
2  av}f%(Ret) 

1 

(t-rf 

1  + 0y/MAl(T) 
(lie) 

l   +  tfrtfVtefor + tf7» (lld) 

fH    =    0.75 + c5Ret(r), (lie) 

and with the function Ki(t) given by 

W)    = irtvj 
0.5/d 

+ 

Gi 
^|«(0)-r(0)l3

f2 

2 avjpH{Ret0)    . 

l/ci -e» 

Gx   = 
1 + c6ßero°-25(Pr + 0.5)-0-5 

(llf) 

(Hg) 

where Ret = |u(r) — v{T)\2a/vj and Ret0 = |«(0) — 
ü(0)|2a/i//. 

The six constants c,- (i = 1, ..,6) in the above equa- 
tions are determined by comparing the solutions from 
Equation (11a) with those from the Navier-Stokes equa- 
tions and given for 0 < u>' < oo by 

ci = 2.5,  c5 = 0.126,  c6 = 15, 

c2 = 45.5,  c3 = 0.03,  c4 = 0.1 (llh) 

For low frequencies u' < 0.3, the following values of 
C2, C3, and C4 provide slightly better results than those 
of Equation (llh). The values of c\, c5, and ce are kept 
fixed as in (llh). 

c2 = 13.9,  es = 0.12,  c4 = 0.5 . (Hi) 

When G(T) equals unity, the present integral kernel 
(Equation (lib)) is similar to Equation (6b) by Mei 
and Adrian,8 but the values of c\ and C5 in the present 
integral kernel are different from those used in Equa- 
tion (6b). The values 2 and 0.105 in Equation (6b) cor- 
responding to cj and C5 were determined respectively by 
an interpolation and a curve fitting (Mei and Adrian8). 

Equation (lie) shows that as MAX is reduced, 
G{T) approaches unity, and the present kernel (Equa- 
tion (lib)) becomes similar in form to the kernel of 
Equation (6b). On the other hand, as MAI becomes 
large, G(T) approaches zero, and the present kernel 
becomes of the same form as that of Basset1 (Equa- 
tion (4)). The ß in the expression of G(r) is not a con- 
stant but a function of <j>r, the ratio of MAI to MAI- 

This function behaves as follows, ß ~ c2(l — <f>r/cz) for 
<j>r « 1, and ß ~ czcz/fö* for <j>r » 1. Also, it can 
be shown that G(T*) ~ u'~0A as u' » 1 when r is 
normalized by u (r* = TU). 

G\ (Equation (Hg)) is obtained from G(T = 
0) (Equation (lie)) as follows. From the equa- 
tion of particle motion Equation (11a), it can be 
shown that dv/dt ~ kt~as as t —* 0, where k = 
(4.5/a) v^Mpr + 0.5)-H«(0) - »(0)). Employing 
this form of dv/dt, the expressions of MAI, -MA2> and 
<f>r as t —► 0 can be also derived. For example, <j>r is ex- 
pressed by <j>r ~ at-1/(u(Q) - v(0)). Finally, G(T -> 0) 
is obtained as 

G(T -► 0) ~ 
1 

1 + ar'--°-25fle-°-250>r + 0.5)"0-5 

where a = C2C3(9/v/?)0-5(|«(0) - v(0)\/a)c*-°-25. This 
equation shows that G(0) = 0 when C4 < 0.25 but 
G(0) = 1 when c4 > 0.25. However, the drag coefficient 
from the numerical computation of Equation (11a) with 
Gx = G(0) = 0 or Gx = G(0) = 1 is too high or low 
for some initial period compared with that from the 
Navier-Stokes equations. The drag coefficient from the 
numerical computation of Equation (11a) with Gx = 
G(T=0, C4=0.25) is also too low for some initial period 
compared with that from the Navier-Stokes equations. 



Therefore, G\ was introduced as Equation (llg) by fol- 
lowing the form of G{r —► 0), and the coefficient ce in 
the expression of Gi is determined by numerical opti- 
mization. 

Figure 4 shows the drag coefficients of the sphere as a 
function of time for the same conditions as in Figure 2, 
but here the drag coefficients were computed from the 
new proposed equation (11a) and the previous equa- 
tions including an initial velocity difference term. We 
note that the initial velocity difference terms are differ- 
ent among the equations because the integral kernels 
are different among the equations. The initial veloc- 
ity difference term added to the BBO equation (Equa- 
tion (4)) is the term given by Maxey10 and shown in 
Section 1. The initial velocity difference term added to 
Equation (6a) by Mei and Adrian8 is the term given by 
setting Gi = 1 with ci = 2 and C5 = 0.105 in Equa- 
tions (llf) and (He). It is shown in Figure 4 that the 
present equation of sphere motion gives the best solu- 
tion. 

Comparing Figures 2 and 4, we see that the initial 
velocity difference term with <-0,5 improves Equation 
(4). However, the appropriate decay of this term is i-2 

for finite initial particle Reynolds number (see Equa- 
tion (llf)). However, it is interesting to note that the 
initial velocity difference term decays as t~05 when 
Ret0 —»■ 0 (see Equations (llg) and (llf)). 

Figure 5 shows the drag coefficients of the sphere as 
a function of time (0 < t' < 50) for the same conditions 
as in Figure 4 except that Ret0 = 38. At t' = 50, the 
particle Reynolds number becomes 2.18. It is shown 
that the new equation (11a) of sphere motion gives the 
best solution for low initial particle Reynolds number 
as well. 

Figures 6 and 7 show the drag coefficients of the 
sphere as a function of time (0 < t' < 200) with 
Ret0 = 150 and the density ratio pr = 5. The base flows 
in Figures 6 and 7 oscillate with u' = 0.4 and ari = 0.02, 
and u' = 0.8 and ai = 0.01, respectively. Both figures 
show that Equation (6a) with an initial velocity differ- 
ence term produces higher drag coefficients (except for 
some initial period) than do the Navier-Stokes equa- 
tions. Again, the new equation (11a) produces very 
good agreement with the Navier-Stokes equations. 

Figures 8 shows the drag coefficients of the sphere 
as a function of time (0 < t' < 200) with Ret0 = 150 
and the density ratio pr = 200. The base flow oscil- 
lates with u' = 0.1 and ai = 0.18. This figure shows 
that Equation (11a) produces slightly better drag co- 
efficient than does Equation (6a) with an initial veloc- 
ity difference term compared with the drag coefficient 
from the Navier-Stokes equations. The better perfor- 
mance of Equation (6a) for the case of higher density 
ratio is due to small dimensionless acceleration M^i in 
the case of higher density ratio as shown in Figure 9, 
which shows MAI as a function of time for the cases of 
pr = 5 (with u' = 0.1 and ai = 0.06) and pr = 200 

(Figure 8). When M^i becomes small, the function 
G(T) in Equation (lib) approaches unity, and thus the 
integral kernel of Equation (11a) approaches that of 
Equation (6a). 

Figure 10 shows the drag coefficients of the sphere as 
a function of time (0 < t' < 200) for the same condi- 
tions as in Figure 8 except that the drag coefficients are 
obtained from different equations. Neglecting the his- 
tory term and the other terms in Equation (11a) causes 
a phase-lag to the drag coefficient. 

3. Unsteady, three-dimensional flow around 
a sphere interacting with a large vortex 

3.1 Flow description 

We consider the time-dependent, three-dimensional, 
incompressible, flow around a small spherical solid par- 
ticle injected into a counter-clockwise rotating large 
vortex which is located at the origin of the coordinates 
(X,Y,Z) fixed in space as shown in Figure 11. The 
net gravity force acting on the particle is neglected. 
The origin of a nonrotating noninertial reference frame 
(x,y, z) is chosen at the center of the particle. 

The initial velocity field induced by the vortex tube 
is analytically computed by considering the evolution 
of a point vortex and is given by 

Us = 
2irR 

[1 - exp(- 
R? 

4vf(i + t„) )] 

U = Av} (1.12)2 

(12a) 

(12b) 

where R = VX2 + Y2, <f> = arctanY/X, and t0 is a 
parameter defined by initial size of the vortex core (<r0) 
and the fluid kinematic viscosity (vj). 

The initial maximum induced velocity umaso due to 
the vortex tube occurs on the edge of the vortex core 
R = a0 at t = 0 and can be obtained from Equa- 
tion (12a). The pressure field due to the vortex tube 
is also analytically computed by integrating the ra- 
dial component of the momentum equation which is 
PUl/R=dp/dR. 

It is assumed that the vortex is so large that the 
flow field induced by the vortex is not affected by the 
moving sphere except locally in the region around the 
sphere. The boundary conditions of the flow field are 
obtained by superimposing the sphere velocity and the 
induced velocity due to the vortex tube at the com- 
putational outer boundary relative to the sphere, and 
the pressure field due to the vortex tube is also im- 
posed at the computational outer boundary. Although 
the flow computation is three-dimensional, the particle 
path remains in the plane of symmetry (X — Y plane). 
Therefore, the trajectory computation is made for the 
case of a freely moving particle in two-dimensions. Af- 
ter computing the forces on the sphere, the deceleration 
(or acceleration) of the sphere is obtained via Newton's 



second law of motion, and then the new location of the 
sphere is obtained. 

The rotation of the sphere due to the torque on the 
sphere is neglected because the torque is very small as 
will be shown in Section 3.2. 

3.2 Equation for particle motion in vector form 

Figure 12 shows the lift and moment coefficients of 
the sphere as a function of time (0 < t' < 600) com- 
puted by solving the Navier-Stokes equations for ini- 
tial particle Reynolds number Ret0 = 108.2 and par- 
ticle position (X'0,Yl) = (250,0) with density ratio 
pr = pp/pj — 200. The vortex tube has initial core 
radius (a'J) equal to 200 and the maximum induced 
velocity due to the vortex {u'maxo) equal to 2. It is 
found that the lift and moment coefficients are small 
(\CL\ < 0.16 and \CM\ < 0.03) compared with the drag 
coefficient, which is shown in Figure 13. The lift and 
moment coefficients are small because the strain rate 
of the flow across the sphere is small when the sphere 
size is much smaller than the vortex tube as in the flow 
considered here. 

Since the lift and moment coefficients are small, we 
postulate that the force due to the history term is 
aligned with the direction of the relative velocity vector 
and propose the following equation for particle motion 
in vector form. 

m'~dl    =    ?CD>idira2p* I u ~ v I (U ~ r) + 

Du 

2m/ Iw 
dv\ Du 

-ä)+m<-DJ + 

(u-v)   f* „, v<*|«-«| 

ox/i/ai^) [u(0)-t>(0)] + 

(mp - m;)g 

with the integral kernel K(t - r, r) given by 

' ■    ,. \      -|0.5/c 
ir(t - T)Vf      ' 

(\T + 

(13a) 

K{t-T,r)    = 

G(r) 

+ 

*\U(T)-V(T)\
3 

.2   avjfjjiRet) 
(t - rf 

and with the function K\(i) given by 

*i(0   = 
TtVj 

T0.5/C! 

+ 

Gi 
x|u(0)-v(0)|3f2 
2   OLVjf%{Rtto) 

1/c.V 
(13c) 

where Ret   =   \u(r) - v{r)\2a/vj;  Ret0   =   |«(0) - 
v(0)\2a/v; and G(r), fHl and Gi are in the same form 

as defined in Equations (lie), (lie), and (llg), respec- 
tively. For rectilinear motion, Equation (13a) reduces 
to Equation (11a). 

The six constants c,- (i = 1,2,.., 6) in the above equa- 
tions are the same as those in Equations (llh) and 
(Hi). 

It should be noted that Equation (13a) does not in- 
clude terms associated with the lift force in cases of a 
rotating particle or a particle in a strong shear flow. 

Figure 13 shows the drag coefficients of the sphere 
as a function of time computed by solving the Navier- 
Stokes equations, Equation (13a), and Equation (1) 
for the same parameters as used in Figure 12. It is 
shown that the drag coefficient from Equation (1) is 
in phase-lag compared with that of the Navier-Stokes 
equations. Neglecting the history term and the other 
terms in Equation (1) causes a phase-lag on the drag 
coefficient. 

Figure 14 shows the trajectory of the sphere in the 
X -Y symmetry plane. The semi-circle in the figure is 
the initial vortex core. Equation (1) predicts higher Y- 
location of the sphere than do the Navier-Stokes equa- 
tions. However, the deviation of the trajectory from 
Equation (1) is small compared with that from the 
Navier-Stokes equations because the dimensionless ac- 
celeration of the sphere is small (MAI < 0.0195) due 
to the high density ratio and the low frequency of the 
large vortex tube. 

4. Conclusion 

An improved equation for rectilinear particle motion 
has been proposed which includes a modified history 
term and a drag force due to the initial velocity differ- 
ence between the particle and the carrier flow. 

An extension of the equation to a vector form for 
two- or three-dimensional motion has been also pro- 
posed; the first comparison for particle motion in two 
dimensions is favorable. More computations are under- 
way to examine the equation in detail. 

Acknowledgement 

This work has been supported by the Air Force Of- 
fice of Scientific Research under grant No. F49620-93- 
1-0028 with Dr. Julian Tishkoff acting as the technical 
monitor. The support of the San Diego Supercomputer 
Center directly and the San Diego Supercomputer Cen- 
ter under a block grant of the Office of Academic Com- 
puting of UCI are gratefully appreciated. 

References 

1. Basset, A.B. (1888) A Treatise on Hydrodynamics, 
vol 2, p. 285. Dover. 

2. Boussinesq, J.V. (1885) Sur la resistance . . .d'une 
sphere solide. C.R. des Seances de l'Academie 100, 
935. 



3. Oseen, C.W. (1927) Hydrodynamik. Leipzig: 
Akademische Verlagsgesellschaft. 

4. Maxey, M.R. and Riley, J.J. (1983) Equation of 
motion for a small rigid sphere in a nonuniform 
flow. Phys. Fluids 26, 883-889. 

5. Odar, F. and Hamilton W.S. (1964) Forces on a 
sphere accelerating in a viscous fluid. J. Fluid 
Meek. 18, 302-314. 

6. Odar, F. (1966) Verification of the proposed equa- 
tion for calculation of the forces on a sphere ac- 
celerating in a viscous fluid. J. Fluid Mech. 25, 
591-592. 

7. Mei, R., Lawrence, C.J. and Adrian, R.j. (1991) 
Unsteady drag on a sphere at finite Reynolds num- 
ber with small fluctuations in the free-stream ve- 
locity. J. Fluid Mech. 233, 613-631. 

8. Mei, R. and Adrian, R.J. (1992) Flow past a sphere 
with an oscillation in the free-stream and unsteady 
drag at finite Reynolds number. J. Fluid Mech. 
237, 323-341. 

9. Mei, R. (1994) Flow due to an oscillating sphere 
and an expression for unsteady drag on the sphere 
at finite Reynolds number. /. Fluid Mech. 270, 
133-174. 

10. Maxey, M.R. (1993) The equation of motion for 
a small rigid sphere in a nonuniform or unsteady 
flow. ASME/FED, Gas-Solid Flows, Vol. 166, 57- 
62. 

11. Vinokur, M (1983) On one-dimensional stretching 
functions for finite-difference calculations. J. Corn- 
put Phys. 50, 215-234. 

12. Kim, I., Elghobashi S. & Sirignano, W. A. (1993) 
Three-dimensional flow over two spheres placed 
side by side. /. Fluid Mech. 246, 465-488. 

13. Kim, I., Elghobashi S. & Sirignano, W. A. (1995) 
Unsteady flow interactions between an advected 
cylindrical vortex tube and a spherical particle. J. 
Fluid Mech. 288, 123-155. 

14. Clift, R., Grace, J. R. & Weber, M. E. (1978) Bub- 
bles, Drops, and Particles. Academic Press, New 
York. 

15. Taneda, S. (1956) Experimental investigation of 
the wake behind a sphere at low Reynolds num- 
ber. J. Phys. Soc. Japan 11 1104-1108. 

Nxx.N2x JV3 COP CDV CD cD B. s; 
J?e=20 

21 x21 1.087 1.789 2.876 166.3 

31 x31 1.057 1.759 2.816 172.6 

41 x41 1.042 1.733 2.775 180 

51x51 1.038 1.725 2.763 2.74 180 180 

Re = 100 

21 x21 0.558 0.590 1.148 124.1 

31 x31 0.533 0.581 1.114 125.6 

41 x41 0.524 0.580 1.104 126.2 

51 x51 0.521 0.580 1.101 1.09 126.4 126.5 

Table 1.   Drag coefficient and separation angle as a function of 
grid density at Re = 20 and 100, where * denotes 
the data from the correlation of Clift et aL [12] 
and Taneda [13]. 
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Figure 1. Flow geometry and coordinates 
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Figure 2. Drag coefficients as a function of time obtained 
from various equations for Ret0 = 150 with pT = 5. 
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Figure 5. Drag coefficients as a function of time obtained 

from various equations for Ret0 = 38 with pT = 5. 
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Figure 4. Drag coefficients as a function of time obtained 
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Figure 6. Drag coefficients as a function of time 

for Ret0 = 150 and u/ = 0.4 with pT = 5. 
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for Ret0 = 150 with pr = 5 and 200. 

Co 

• Navier-Stokes solution 
■ Eq. (11a) by KES 

Eq. (6a) + Init. vel. diff. 

Eq. (4) + Init. vel. diff. 

40 80 120 160 200 

Navier-Stokes solution 

Eq. (11a) without history term 

Eq- (1) [COM) 

40 80 120 160 200 

Figure 8. Drag coefficients as a function of time 

for Relo = 150 and J = 0.1 with pr = 200. 
Figure 10. Drag coefficients as a function of time for the same 
parameters as in Fig. 8 but with different equations. 

10 



X-Q 

Figure 11. Initial flow geometry for a particle 
injected into a large vortex tube. 
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Figure 12. Lift and moment coefficients as a function of time 
for Rel0 = 108.2 with pr = 200. 
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Figure 13. Drag coefficient as a function of time 
for the same parameters as used in Figure 12. 
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The Influence of an Advecting Vortex on the Heat 
Transfer to a Liquid Droplet * 

M. Masoudi* and W. A. Sirignano* 

Department of Mechanical and Aerospace Engineering 
University of California, Irvine 

Abstract 

The three-dimensional interaction of an initially 
cylindrical vortex tube with a droplet in a uniform 
stream is investigated through a numerical solution 
of the Navier-Stokes equations. Particular attention 
is given to the effect of the vortex on the droplet heat 
transfer. The transient response of the droplet Nus- 
selt number is sensitive to the geometrical factors 
that specify the vortex initial position and struc- 
ture. The time-averaged Nusselt number is approxi- 
mately the value for the axisymmetric case when the 
vortex center approaches the droplet along the base 
flow symmetry axis. Correlation for time-averaged 
values of Nusselt number is reported. The widely- 
used correlation for the droplet heat transfer in an 
axisymmetric flow is corrected to account for the in- 
fluence of the vortex. Based on our findings, it is 
speculated that, in a spray combustion system, the 
vortex-droplet interactions within the Kolmogorov 
scale can have significant effects on the droplet con- 
vective heat transfer. 

Nomenclature 

a' dimensional droplet radius, 
(characteristic length) 

d vortex offset distance from the base flow 
symmetry axis (normalized by a') 

Ni,N2, N3 number of grid points in (£, v,C) 
Nu Nusselt Number 
Pc Peclet number 
Pr Prandtl number 
p pressure 
q heat flux 
r, 6, <j> spherical coordinates 
Re base flow Reynolds number (based on 

droplet diameter) 
t time (normalized by a'/U^) 
T temperature 
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U,V, W 

UL 

Vmax 

v 
x,y,z 

flow velocities in (x,y, z) directions 
(normalized by U^) 

dimensional free stream velocity, 
(characteristic velocity) 

maximum tangential velocity of 
vortex tube (normalized by [/£>) 

velocity vector 
Cartesian coordinates 

Greek symbols 
(£> *?> C)       computational coordinates 

radius of vortex tube (normalized by a') 
vortex tube circulation 
stream function 
kinematic viscosity of the gas-phase 
shear stress 

Superscript 

Subscript 

dimensional quantity 

initial quantity 
quantity in the corresponding 

axisymmetric flow (no vortex) 
quantity in the gas-phase 
quantity in the liquid phase 
droplet surface (gas-liquid interface) 
vortex quantity 

1. Introduction 

The fluid dynamics and heat transport for a cold liq- 
uid droplet in a hot gaseous axisymmetric environ- 
ment is a well-understood phenomenon and there 
exists substantial literature exploring many differ- 
ent aspects of such problems1 . There however is 
a shortage of literature exploring droplet heating 
and vaporization when the far-field flow embracing 
the droplet undergoes temporal and/or spatial vari- 
ations. Existing literature has focused on variations 
due to acoustical waves2-4 . Vortical disturbances 
have not been widely examined. 



* J 
Such a class of problems appears when the droplet 

transport properties are subject to velocity and tem- 
perature fluctuations in a turbulent flow, such as 
might occur in a liquid-fueled combustor. In par- 
ticular, in a spray-droplet system, the droplet size 

is ~ 100 microns. In the turbulence spectrum for 
many continuous combustors, this length-scale cor- 
responds to that of the Kolmogorov scale; thus, the 
droplet transport phenomena can be subject to tur- 
bulent effects primarily associated with those of the 
Kolmogorov scale. Moreover, since turbulence could 
be represented as a manifestation of vortex dynam- 
ics5 , it is useful to study the effect of an array of 
vortices on the droplet where the size of the vortices 
is comparable with that of the droplet. In this work, 
we have studied the effect of one advecting vortex on 
a droplet. 

2. Flow Description, Governing Equations, 

and Vortex Characteristics 

The solution for the velocity field in this problem has 
been reported in previous publications6'7 . Below, 
we present a summary of our approach including the 
governing equations, the boundary and initial condi- 
tions, the computational approach, and the reasons 
necessitating a parameter study. 

Consider the three-dimensional, unsteady flow 
field surrounding and within a cold droplet impul- 
sively injected in a hot gaseous environment with the 
droplet subsequently subjected to an unsteady inter- 
action with an advecting vortex tube. The problem 
is non-linear by nature. Fundamental fluid dynamic 
aspects such as lift, drag, and moment coefficients of 
the vortex-droplet interaction were reported6,7 and 
thus, here, we concentrate on our recent findings on 
variations in the droplet heat transfer. Constant 
properties are assumed in both the gas and the liquid 
domain and the droplet experiences no vaporization. 
The deceleration of the droplet due to the drag force 
is not considered. 

Since our goal is to study the flow interaction with 
a liquid droplet, we solve the governing equations 
for both the gas and the liquid phase. These are 
the Navier-Stokes and the thermal energy equations 
in both phases; the continuity equation is satisfied 
through pressure correction. The equations and the 
boundary conditions are non-dimensionalized using 
the droplet radius a' as the characteristic length, the 
undisturbed free stream velocity U'^ as the charac- 
teristic velocity, and the ambient gas temperature 
T'g as the characteristic temperature. The governing 
equations are: 

Gas phase 

DV. 

V-Vg = 0 

Dt 
£ = -VP9   +   — V% Re a 

DT £_ _ 
Dt       RegPrg 

VT« 9' 

(1) 

(2) 

(3) 

Liquid phase 

V'V, = 0 (4) 

^=-"+£*•« (5) 

DT,          2     „„ 
—            V Ti (6) Dt       ReiPr, "  "' 

These governing equations are transformed to the 
coordinates (£,77,C); see Fig. 1. £ is the radial, n is 
the angular, and £ is the azimuthal direction. The 
numerical integration of the equations is performed 
using a computational cubic mesh with equal spac- 
ing (6t = 6r, = 6<; = 1). 

Gas/Liquid Interface Conditions 

The conditions at the interface axe based on the prin- 
ciple of continuity of shear stresses (the discontinu- 
ity in shear stress across the surface due to surface 
tension gradient has been shown to be negligible in 
its impact on droplet heating), zero normal veloc- 
ity, continuity of tangential velocities, continuity of 
the heat flux, and continuity of temperature. Since 
the interface in our flow is always spherical (un- 
der the assumption of small Weber number), these 
conditions are conveniently cast in terms of spher- 
ical coordinates (r, 6, <f>) with its origin at the cen- 
ter of the droplet. The (£, t], Q coordinates have the 
same orientation as the spherical coordinates (r, 0, <j>) 
but obey an imposed stretching allowing a relatively 
denser grid concentration near the gas-liquid inter- 
face (droplet surface). 

Tl,r8,s      =      Tg,r8,t 

Tl,r<f> 

V,,e 

T, 

Tg,r(j>,3 

V9,0,. 

V9,<t>,' 

T„ 

=    1 

9,' 
," 

■9,* 

Here, rrS|J and rr,^ are respectively the shear 
stresses on a positive r-plane in the positive 0 and <f> 
direction and q" is the heat flux from the hot am- 
bient gas into the cold liquid droplet. The interface 
condition for pressure is obtained from the momen- 
tum equation. 



Gas-Phase Boundary Conditions 

(Ni,N2,N3) and (Nu,N2,Na) are the number of 
grid points in the gas and liquid domain, respec- 
tively, in (£,v>0 coordinates, f at Nu and Ni are 
the droplet surface and the gas far-field, respectively. 
The imposed far-field pressure, gas velocities in the 
x,y,z directions and gas temperature are 

p = 0, u = v = 0, w - 1, T = 1        at £ = Nt and 

N2mid < f] < N2 (upstream) 

Next, we use the interface conditions to solve for 
the liquid-phase boundary values, followed by the se- 
quential, iterative solution of the liquid-phase equa- 
tions of motion and thermal energy until conver- 
gence is achieved for each time step of the calcu- 
lation. 

At each time step, the drag, lift, and moment co- 
efficients and Nusselt number are evaluated. The 
entire procedure is then repeated for the next time- 
step. Further details may be found in previous publi- 
cations of this research group6-8 . All the executions 
were pursued on a Dec-alpha, a Convex 240 and a 
Convex 3840. 

n du    dv    dw    er 

1 < i] < N2mid (downstream) 

The imposed initial conditions inside the liquid 
droplet are a quiescent liquid phase and a uniform 
temperature T/o < Tgo- 

Symmetry Conditions 

Since the cylindrical vortex tube advects with its 
axis of symmetry parallel to the y-axis, symmetry 
is maintained such that we solve for half the spheri- 
cal domain rather than the entire domain, and thus 
reduce the computational time. 

dp      du      dw      dT 
dC = dC=-dC=-dC=0'V = 0     *< = l,*a 

Numerical Solution 

A three-dimensional implicit finite-difference al- 
gorithm solves the set of discretized partial differ- 
ential equations. The control volume formulation 
is used to develop the finite-difference equations. 
The method of solution employs an Alternating- 
Direction-Predictor-Corrector (ADPC) scheme to 
solve the time-dependent equations. 

The overall solution procedure is based on a cyclic 
series of estimate-and-correct operations. At each 
time-step, we first regard the solution in the gas- 
phase; the velocity components are first calculated 
from the momentum equations using the ADPC 
method, where the pressure field at the previous 
time step is employed. This estimate improves as 
the overall iteration continues. The pressure is cal- 
culated from the pressure correction equation using 
the successive overrelaxation method. The new es- 
timates of pressure and velocities are then obtained. 
These known quantities are used in the energy equa- 
tion to solve for the gas-phase temperature field. 

The Vortex Tube Features 

The vortex is introduced upstream of the droplet, 
advects with the superimposed uniform flow, and 
has a relatively simple configuration—it is an ini- 
tially cylindrical tube whose axis of symmetry is ini- 
tially normal to the uniform flow and parallel to the 
y— axis. The vortex tube has a relatively small cen- 
tral core. Within this core, the initial velocity dis- 
tribution in the vortex tube is that of solid body ro- 
tation reaching an imposed vmax at radius a. vmax 

and cr are specified at time t = 0. Outside this inner 
core, the vortex induces a velocity field of a potential 
vortex; thus, the velocity induced by the vortex van- 
ishes as r —* 00. This two-dimensional vortical tube 
is known as Rankine vortex9 , and has the following 
stream function10 : 

Mx> z,t = o) = -7r'ni(x - x°)2 + (z 
lit 

*o)2 + 0-0] 

(7) 

where To is the initial non-dimensional vortex circu- 
lation at radius CTQ. TO is positive when the vortex 
tube has counterclockwise rotation, and XQ and ZQ 

denote the initial location of the center of the vortex 
tube. Note the vortex tube circulation at radius a 
is T = 2%<Tvmax- More fundamental information on 
the vortex tube such as temporal changes in its tan- 
gential velocity and vorticity are given in Ref. [6] . 

Flow Interaction 

The droplet is placed in a uniform flow (here also 
called the 'base flow') and thus gradually develops a 
standing vortex ring in its aft position. Note that, in 
the absence of the vortex, the flow remains axisym- 
metric with respect to the z—axis (Fig. 1). The 
vortex is introduced 10 droplet radii upstream of 
the droplet and advects with the superimposed uni- 
form flow; it takes about 10 residence time units for 
the vortex to arrive at the vicinity of the droplet; 



there, we observe vortex stretching in the cross- 
flow direction and thus a full unsteady and three- 
dimensional interaction occurs between the vortex 
and the droplet. The dynamic interaction is the 
strongest when the vortex is initially introduced 'on' 
the base flow symmetry axis of Fig. 1; here, a 'head- 
on' collision between the droplet and the vortex is 
observed, resulting in vortex stretching in the cross- 
flow direction. When the vortex advects 'off' the 
axis, the dynamic interaction between the two is rel- 
atively weaker. It takes nearly 25 Residence time 
units for the vortex to arrive at the droplet, interact 
with it, and then travel sufficiently far downstream 
to have insignificant influence. Many details of the 
interactions have been reported in Ref. [6]. Figs. (2) 
show how the velocity and thermal boundary layers, 
both in the gas phase and within the droplet interior, 
could be affected due to the advection of the vortex 
near the droplet. Naturally, and as observed, a more 
pronounced departure from the axisymmetric case is 
expected in the gas phase. 

The Droplet Convective Heat Transfer 

The droplet convective heat transfer, represented 
by its Nusselt number, is computed through Nu(t) = 
2a'h'/k'g (with b! and k'g being the convective 
heat transfer coefficient and the gas conductiv- 
ity) which after a standard simplification and non- 
dimensionalization yields 

Nu(t) Jo Jo 
3^0) I 

dr     I sin0d9d<t> 

*(i-r.) 

where T, is the droplet temperature at the interface 
averaged over the surface. Since the cold droplet is 
injected impulsively in the hot ambient gas, it ini- 
tially experiences a stronger heat transfer. In the 
base axisymmetric flow, it takes nearly 5 resident 
time units for the droplet Nusselt number to reach 
a steady value. However, when the vortex is su- 
perimposed on the base flow, the Nusselt number 
fluctuates continuously due to the advection of the 
vortex and can not attain a steady value. It is there- 
fore more convenient to regard overall estimates by 
considering time-averaged values according to 

  1       rn 

Nu=   / 
h -h Jn 

Nu{t) dt (8) 

It is further advantageous to normalize ~Nu us- 
ing its corresponding value in an axisymmetric flow 
Nuax; we will thus consider Nu/Nuax in our results. 
Also, in the above estimates, <j = 2 and i2 = 25; 
i.e. we disregard the data for / G (0,2); this is the 

time needed for the initial computational fluctua- 
tions in the pressure drag to vanish. Since we also 
estimate the normalizing value Nuax after this ini- 
tial data exclusion, the final quantity Nu/Nuax is 
barely changed; (sample comparison shows the effect 
of the initial data exclusion in Nu/Nuax is less than 
.05%). 

3. Results 

There are four parameters that characterize the 
quantitative significance of the vortex-droplet inter- 
action: the vortex initial core size (a-0), its initial 
maximum tangential velocity (v0max), the offset dis- 
tance do between the vortex initial position and the 
base flow symmetry axis (d0), and the base flow 
Reynolds number (Re). We place the initial posi- 
tion of the vortex center 10 droplet radii upstream 
the droplet, either 'on' the base flow symmetry axis 
(do = 0) or slightly 'off' it (d0 = ±1, ±2,....). A pos- 
itive or negative do means an offset distance from the 
2—axis in the x, z symmetry plane in the positive or 
negative x direction, respectively; this is shown in 
Fig. 1 with do non-dimensionalized by the droplet 
radius. 

We specify an initial radius (a0) for the vortex 
which defines the vortex core within which vorticity 
is uniformly distributed; we pick the strength of this 
vorticity so that the maximum velocity at the core 
of the vortex (vomax) represents an acceptable fluc- 
tuation from the uniform flow. This fluctuation is 
taken to be less than the free stream velocity. For 
example, to represent a 20% fluctuation in the base 
flow, we pick v0max = .2. Outside the inner core, the 
velocity pattern is that of a potential vortex. Thus, 
the vortex structure and strength are initially fully 
characterized by the two parameters a0 and vomax, 
non-dimensionalized by the droplet radius and the 
strength of the uniform stream, respectively. Fig. 1 
shows the vortex location upstream of the droplet. 
Since in the absence of the vortex the base flow re- 
mains axisymmetric at all times, a change in the 
orientation of the vortex circulation only rotates the 
spatial orientation of the events; so, we arbitrarily 
pick the counterclockwise orientation for the vortex 
in all our simulations. A counterclockwise rotation 
with a positive offset distance is the mirror image of 
a clockwise rotation with a negative offset distance 
so that clockwise rotation need not be considered. 

In order to investigate the droplet heat trans- 
fer influenced by the flow fluctuations due to the 
passage of the vortex, we pursue a parameter 
study to determine the role of each of the four 
above characteristics on the droplet Nusselt num- 
ber. In the following sections, we report obser- 
vations and resulted correlation for Nusselt num- 



ber affected by these four parameters. The con- 
sidered ranges are d0 = 0,±1,±2,±3,±4,±5; 
(To = .25,-5,1,2,3,4; t0mM = .1, .2, .3, .4, and 
20 < Re < 100. 

The Effect of the Offset Distance 

Figures 3(a,b) show the temporal changes in Nus- 
selt number as a function of vortex center initial po- 
sition (do) upstream the droplet. The droplet Nus- 
selt number in an axisymmetric flow (i.e. having 
the same Reynolds number and without a vortex) 
is also shown for comparison. The substantial dif- 
ference in the temporal response is apparent. The 
droplet Nusselt number increases for do > 0 and de- 
creases for do < 0; a vortex with a counterclockwise 
circulation, when positioned at an initial do > 0, in- 
creases the relative gas-droplet velocity in the vicin- 
ity of the droplet and thus increases its convective 
heat transfer; by contrast, one with do < 0 decreases 
the convective heating of the droplet. 

An interesting case is that of do = 0 where the 
droplet Nusselt number goes through a pattern of 
increase-decrease-increase depending upon the vor- 
tex location while advecting. This pattern for do = 0 
is seen in Figs. 3(a,b). When the vortex is upstream 
of the droplet, its counterclockwise circulation in- 
creases the convective effect, and thereby the droplet 
Nusselt number; very near the droplet, viscous inter- 
actions force it to pass 'underneath' the droplet6 . 
('underneath' means in the lower half of the x, z sym- 
metry plane in Fig. 2.) In the droplet vicinity, the 
vortex reduces the convective effect decreasing the 
droplet Nusselt number. When downstream of the 
droplet, the vortex once again strengthens the con- 
vective effect and increases the droplet Nusselt num- 
ber. 

Moreover, when the vortex is initially positioned 
on the base flow symmetry axis (do = 0), an increase 
in Nusselt number is followed by a decrease and thus 
the summed variations yielding Nu are small; by 
contrast, the non-trivial changes in Nu occur when 
do ^ 0. The measured values in such case suggest 
that Nu/Nuax — 1 ~ tanh(do); this is shown in 
Fig. 3(c). 

Note also that, in spite of sensitivity of Nu(t) 
to the passage of the vortex (Fig. 3(a,b)), 
Nu/Nuax — 1 is nearly invariant to the vortex for 
2 <| do |< 5 (Fig. 3(c)). 

The Effect of the Vortex Tangential Velocity 

Figures 4(a,b) show the influence of vomax on tem- 
poral Nusselt number when the vortex advects on 
(d0 = 0, Fig. 4(a)) or off (d0 # 0, Fig. 4(b)) the 
base flow symmetry axis; the corresponding pattern 
in an axisymmetric flow with the same Reynolds 

number has been also shown for comparison. Since 
T„ a vmax, vortices with larger vmax induce a 
stronger secondary flow in the uniform stream; thus, 
droplet Nusselt number shows sensitivity to the vor- 

tex VQ^nax • 
However, changes in Nu due to voraoi appear to 

be small for as long as do = 0; (see Fig. 4(a)). This 
is the same as the previous observation that, as long 
as d0 = 0, the vortex effect on Nu(t) is sometimes 
augmenting and sometimes decreasing, yielding triv- 
ial changes from the axisymmetric value in Nu. This 
was also seen when studying the effect of do. The ob- 
served negligible changes in Nu should not be inter- 
preted as the insensitivity of the droplet heat trans- 
fer to the passage of the vortex or the vortex vomax', 
simply stated, at do = 0, we find cancellations in the 
averaging process. This cancellation is not encoun- 
tered in computing Nu when do ^ 0, such as the 
cases shown in Fig. 4(b); later, we will discuss this 
more interesting effect of vortex velocity that occur 
when do ^ 0. 

Data indicate that, overall, Nu/Nuax — 1 nearly 
follows a linear dependence on vomax ■ 

The Effect of the Vortex Radius 

Figures 5(a,b) show the influence of (To on tem- 
poral Nusselt number when the vortex advects on 
(d0 = 0, Fig. 5(a)) or off (d0 # 0, Fig. 5(b)) the base 
flow symmetry axis; the corresponding pattern in an 
axisymmetric flow with the same Reynolds number 
has been also shown for comparison. 

Analogous to the previous observation, since T„ oc 
(T, vortices with larger radii introduce stronger sec- 
ondary flow in an otherwise uniform stream near the 
droplet; thus, droplet Nusselt number appears sensi- 
tive to change in the vortex radius. When the vortex 
advects on the base flow symmetry axis (do = 0), 
in spite of the clear temporal sensitivity, the time- 
average values of Nusselt number compared to those 
in an axisymmetric flow (having the same Reynolds 
number) change by only .5% when vomax = -2 and 
by about 1% when vomax = .4 so that we may note 
Nu/Nuax = 1 ± 1%. Similar to the case in the pre- 
vious section, the trivial net change in the computed 
Nu in such cases is due to a combined effect of do = 0 
in the simulation and the nature of time-averaging 
of Eqn. (8); it should not be interpreted as the in- 
sensitivity of the droplet convective heat transfer to 
the passage of the vortex, (see Fig. 5(a)). 

Thus, when studying the effect of <TQ on Nu/Nuax, 
larger values are resulted when the vortex advects off 
the base flow symmetry axis, (Fig. 5(b)); later, we 
shall discuss this effect of vortex radius at do ^ 0. 
Data indicate that Nu/Nuax — 1 has a slightly 
stronger dependence on <r0 than it does on Vomax- 



The Effect of the Flow Reynolds Number 

Figures 6(a,b) show the influence of the base flow 
Reynolds number on the temporal Nusselt number 
when the vortex advects on (do = 0, Fig. 6(a)) or off 
(do ^ 0, Fig. 6(b)) the base flow symmetry axis; the 
corresponding pattern in an axisymmetric flow with 
the same Reynolds number has been also shown for 
comparison. 

The higher the Reynolds number, the stronger 
the heat transfer fluctuations induced by the vor- 
tex, even though the strength of the vortex re- 
mains the same; thus, for example, a 30% fluctu- 
ations (i.e. vomax = -3) in a uniform flow with 
Re = 100 has a stronger effect on the droplet Nus- 
selt number than the same fluctuation does in a 
flow with Re = 20. The reason is simple: flows 
with lower Reynolds numbers are relatively more 
viscosity-dominated and thus vortex-induced iner- 
tial changes are relatively more damped. 

Analogous to the previous observations, when 
do = 0 (Fig. 6(a)), there is barely change in time- 
averaged values of Nusselt number due to change in 
base flow Reynolds number; Nu/Nuax — 1 changes 
over the range of Reynolds number by only .1% when 
vomax = -2 and by .5% when v0max = A. Again, this 
is mostly the consequence of the choice do = 0 and 
the nature of time-averaging in Eqn. (8). Naturally, 
when dp ^ 0 (Fig. 6(b)), the computed changes in 
Nu/Nuax — 1 are stronger; such effects are seen in 
Fig. 6(b) and will be discussed in the next section. 

Data indicate that Nu/Nuax — 1 ~ Re °5; note 
since Nuax ~ Re", where the exponent ranges from 
■427 to .573 (see Appendix), so that approximately 
Nu — Nuax ~ Re. This implies that the time- 
averaged perturbations in Nusselt number have a 
stronger dependence on Reynolds number than Nus- 
selt number itself does. 
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within the range of our parameter study, 20 < Re < 
100; .25 < (To < 4,.l < v0max < .4,-5 < d0 < 5. 
All our simulations are for an n-octane droplet and 
so Pri = 8.527. (For all values of Re in the given 
range, we have verified the above correlation for 
| do/co |< 2; work is under way to confirm fully 
the correlation for | d0/co |> 2, as well.) Modest 
modification ( < 10%) to the exponents is made 
by a least-squares fit. The correlation coefficient 
for the above fit is .985. A plot of this correla- 
tion and its comparison with our data is shown in 
Figs. 7(a,b). 

The significance of the our observation should not 
be underestimated for the following reason: note 
that the problem at hand is unsteady by nature; 
by contrast, it has been well-established that ma- 
jority (but not all) of self-similar patterns in fluid 
flows and their coupled heat transfer mechanisms es- 
tablish themselves when the transient response has 
vanished and only when the equilibrium stage has 
established itself. The observation made from Eqn. 
(10) and Figs. 7(a,b) reveals however that, in spite 
of the unsteady nature of vortex-droplet interaction, 
self-similar correspondence nevertheless exist in the 
time-averaged behavior. 

Global Self-Similarity 

In the absence of the vortex, Nu and Nuax are 
identical, and one may approximate the Nusselt 
number correlation from Ref.[ 11] for a spherical 
droplet in an axisymmetric flow by using the solid 
sphere correlation4 

Nu = 1 + (1 + Pr Re)1'3Re 077 
(9) 

or one may use the new correlation for axisymmetric 
flow past liquid spheres presented in the Appendix. 
With the vortex present near the droplet, however, 
the axisymmetric flow correlation loses its applica- 
bility and a new correlation accounting for the effect 
of the advecting vortex on the droplet heat transfer 
is to be used. 

We have produced a correlation that includes such 
effects; all our data collapse into the functional form 

4.  Conclusions 

We have investigated the unsteady interaction be- 
tween a cylindrical vortex tube and a liquid droplet 
in a uniform flow by pursuing a study of each of 
the four parameters affecting the strength of this 
interaction and the modification of the droplet Nus- 
selt number. We have paid particular attention to 
the effect of these parameters on the transient and 
time-averaged values of the droplet Nusselt number. 
A correlation quantifying the effect of the advecting 
vortex on the droplet heating has been produced. 
The reported correlation compliments the existing 
ones for droplet heating in axisymmetric flows that 
occur in the absence of an advecting vortex n . 

When the vortex advects towards and then past 
the droplet starting upstream 'on' the symmetry 
axis of the base flow, the droplet Nusselt number 
first increases and then decreases in time; thus, the 



time-averaged Nusselt number is nearly equivalent 
to that in an axisymmetric flow even when the vor- 
tex simulates up to 40% fluctuation in the base flow. 
Conversely, when the vortex advects 'off' the base 
flow symmetry axis, time-averaged Nusselt number 
is changed due to the vortex-induced fluctuations; 
whether this has an augmenting or inhibiting effect 
on the droplet heating depends on two factors: the 
vortex circulation orientation and also whether it ad- 
vects 'above' or 'below' the symmetry axis in the 
plane of symmetry. Time-averaged Nusselt num- 
ber monotonically varies with the ratio of the vortex 
initial offset distance to the vortex initial core size 
varying from 0 to 2 (i.e. 0 <| do/^o |< 2); when 
this ratio is greater than 2, time-averaged Nusselt 
number remains nearly unchanged (Figs. 7). 

In the range 0 <| do/00 |< 2, change in the droplet 
Nusselt number has a linear dependence on the vor- 
tex circulation, a weak dependence on the vortex 
initial core size, and ~ tanh(do/ffo). We believe this 
occurs because, when the vortex arrives at the vicin- 
ity of the droplet, the droplet is encompassed, partly 
or wholly, within the vortex inner core; thus, the per- 
turbations in flow configuration depend on both the 
vortex core size and its circulation. (Dependence 
on the vortex initial maximum tangential velocity 
is embedded within the dependence on the vortex 
circulation.) 

The situation is different when | do/co |> 2 : when 
the vortex arrives at the vicinity of the droplet, the 
droplet is totally outside the vortex inner core and 
thus it is 'only' the vortex circulation that matters 
to the droplet. Thus, it is not surprising that the 
computed fluctuations in this range in Eqn. (10) 
only depend on the vortex circulation. 

We emphasize that, in parallel studies investi- 
gating changes in fluid dynamic properties of solid 
spheres (lift and moment coefficients)6 , similar de- 
pendence of fluctuations in fluid dynamic properties 
on vortex parameters have been observed. When the 
vortex advects near the sphere, the induced fluctua- 
tions appear to depend both on the vortex size and 
its circulation; by contrast, with the vortex advect- 
ing relatively far from the sphere, the changes ap- 
pear to depend only on vortex circulation. Marked 
dependence of Nusselt number fluctuations on the 
fluid dynamics variations explains the similarity be- 
tween the conclusions of the two studies. 

A rather surprising observation here is that, 
while in the absence of vortical structures Nuax sa 
0(Re ° 5) thus prompting one to anticipate its per- 
turbations Nu - Nuax « 0(Re °-5) as well, our ob- 
servations here show that this is not the case; in- 
stead, the induced perturbations follow ss O(Re) . 

Based on our findings, it is speculated that, in a 
spray combustion system, the vortex-droplet inter- 
actions within the Kolmogorov scale can have signif- 

icant effects on the droplet convective heat transfer. 
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Appendix 

In an axisymmetric flow, and following the as- 
sumption that the effect of the droplet internal cir- 
culation on the droplet heating is small, one may use 
the Nusselt number correlation from Ref.[ 11] for a 
rigid sphere 

Nu = 1 + (1 + Pr Re)ll*Re° 077 
(11) 

for fie < 400. This correlation has been recom- 
mended for spray combustion computations4 . For 
particles having Re > 10 in media with Pr » 1, this 
suggests Nu - 1 ~ fie0410. 

We have modified this suggested correlation by 
accounting for the droplet internal circulation. Our 
calculations (n-octane droplet in air, 10 < Re < 100) 
suggest that a fit of the form 

Nu-1 = .927 Re 0A27 10 < Re < 100.    (12) 

The authors note, however, that this form is some- 
what clumsy since one should expect Nu = 2 at 
Re = 0. A preferred fit therefore is 

Nu - 2 = .412 Re 0573 10 < Re < 100.    (13) 

Each of these fits has a correlation coefficient 
greater than .99. 

It is suggested that the slight increase in the expo- 
nent of Re (compared to the exponent .410 resulted 
from Eqn. (11)) is a contribution of the droplet in- 
ternal circulation. That is, the boundary layer and 
thermal layer thicknesses are decreased slightly due 
to the motion along the interface. This results in an 
increase in heat transfer rate from the hot ambient 
gas to the cold droplet. 
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Fig. 1. Flow geometry and coordinates. 

Fig. 2. (Previous page.) Influence of an advecting vortex on the velocity and thermal boundary 
layers of a moving cold droplet in a hot gas {d0 = 2,a0 = 4, v0max = .4, Re = 100, t = 10.5). 

(a) gas phase velocity field, axisymm. case, (e) liquid interior velocity field, axisymm. case. 
(b) same, affected by an advecting vortex. (f) same, affected by an advecting vortex. 
(c) gas phase thermal field, axisymm. case, (g) liquid interior thermal field, axisymm. case. 
(d) same, affected by an advecting vortex. (h) same, affected by an advecting vortex. 
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Figs. 3. (Previous page.) Influence of the vortex initial offset distance (d0) on Nu(t): 

(a) vortex advecting with d0 in -5 < d0 < 5, {cr0 = l,Re= 100, v0max = .2); 
(b) same, v0max = .4;  
(c) appearance of   Nu/Nuax - 1 ~  tanh(d0)- 
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Figs. 4. Influence of the vortex initial tangential velocity (v0max) on Nu(t) 

(a) vortex advecting with d0 = 0, (Re = 100, a0 = 1): ; 
(b) same, d0 = 1. 
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Figs. 5. Effect of the vortex initial radius (<r0) on Nu(t) 

(a) vortex advecting with d0 = 0, (Re = 100, v0max = .2); 
(b) same, d0 = 1. 
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Figs. 6. Effect of the flow Reynolds number on Nu(t): 

(a) vortex advecting with. dQ = 0, {v0max = .2,a0 = 1); 
(b) vortex advecting with d0 = +2, (v0max = .3,cr0 = 3). 
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Figs. 7. Existence of self-similarity in time-averaged fluctuations in Nusselt number (Eqn. 10): 

(a) in the range 0 < | d0/cro | < 2; 

(b) in the range   | d0/a0 | > 2.   Both figures include -5 < d0 < +5,    0.1 < v0max < 0.4, 
1 < cr0 < 4,   20 < Re < 100. 
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