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FINAL REPORT 

Abstract 

This report provides a technical overview of research on the nonlinear control the- 
ory of complex mechanical systems, conducted under support of the U.S. Air Force 
Office of Scientific Research. The period of support has been June 15, 1990 through 
December 14, 1995. The research has had both theoretical and experimental compo- 
nents aimed at development of new approaches for controlling the motions of complex 
mechanical systems. The work has been principally concerned with classes of physical 
systems wherein the salient dynamical features cannot be understood in terms of linear 
models. Applications of interest include the control of molecular dynamics, microelec- 
tromechanisms, aerospace structures, rotating shafts, turbine dynamics, etc. Common 
elements in models of such systems form the basis of a general theory of control. 

The principal focus of this report is on control strategies using tuned oscillatory 
forcing. Two papers in particular—"Stable Average Motions of Mechanical Systems 
Subject to Periodic Forcing" and "Energy Methods for Stability of Bilinear Systems 
with Oscillatory Inputs" provide a detailed account of some of our research. The 
broader scope of our research is indicated by the list of references which concludes the 
report. 



1     Introduction and Report Summary 

During the period of performance covered by this report, basic research concerned with the 
nonlinear control theory of complex mechanical systems was carried out at Boston Univer- 
sity. Results of the research have been reported in (i) 28 technical papers appearing in 
the open literature (references [15-42] cited at the end of the report) and in (ii) numerous 
technical presentations at conferences, AFOSR contractors' review meetings, and lectures at 
educational institutions throughout the world. In May, 1993, two doctoral students who had 
been supported on the subject grant received Ph.D. degrees from Boston University. These 

were: 

1. Daniel P. Martin, B.U. Ph.D. Thesis:  "Mathematical Methods for Problems of Kine- 
matic Redundancy in Robotics," and 

2. Danbing Seto, B.U. Ph.D. Thesis:   "Stabilization Problems in the Control of Super- 
Articulated Mechanical Systems." 

The research covered by this report has been focused on several different problem areas: 

(a) Robotic devices with redundant degrees of freedom (Refs. [16], [18],[22],[27-29],[32]). 

Some of the early research sponsored under the subject grant dealt with planning 
motions for robotic mechanisms which simultaneously exhibit features of joint elasticity 
and kinematic redundancy ([27], [28], and [29]). It has been shown that for idealized 
models of mechanisms with certain congenial geometries, it is possible to plan motions 
which never store energy in their elastic degrees of freedom. Such motions follow 
acceleration constraints which are most naturally described in a coordinate system 
attached to some component of the mechanism. Results to date point to two lines for 
further study: (i) It is apparently only highly idealized (non-physical) models which 
admit the possibility of moving without storing energy. We wish to develop a rational 
basis for associating such models to actual systems with the aim of ascertaining whether 
"ideal" motions which result in no energy storage in the model also prescribe motions 
which minimize energy storage in the actual system, (ii) Current research by us and 
others seeks to develop control strategies which implement the motion plans that have 
been proposed. 

(b) Modeling and control of the rotational dynamics of complex multibody systems and 
mixed structures (Refs. [20],[24],[33]). 

Our early work in developing a control theory of mechanical systems concentrated on 
development of models of rotating mixed structures having multiple interconnected 
elastic and rigid components. Large mechanically complex earth satellites were the 
primary applications focus of this research.   While there had been a great deal of 



prior work on the control of space structures, there was little literature treating the 
application of ideas from geometric mechanics and nonlinear control theory to problems 
where such ideas were of apparent importance. In [3], we proposed a general Lagrangian 
formulation for the dynamics complex mechanisms capturing the general effects of 
inertial forces created by spatial rotations. Using Rayleigh type dissipation models, 
we developed a simple geometric formalism for modeling rotating viscoelastic systems. 
This theory was applied to analyze the dynamic behavior of a simple spatially rotating 
structure consisting of a rigid body with a viscoelastic beam attachment. Asymptotic 
steady state behavior of the model was determined, and a complete stability and 
bifurcation analysis was given for a closely related model having only one rotational 
degree of freedom. It is noted that parallel research on the modeling and analysis of 
mixed structure dynamics was also carried out with greater emphasis on Hamiltonian 
methods by Krishnaprasad, Marsden and others. 

(c) Adaptive and robust control of super-articulated (underactuated) mechanical systems 
(Refs. [31],[34],[36]). 

Some of the research cited in the references at the end of the report has been aimed 
at classifying multibody systems in terms of their topology and mechanical intercon- 
nections (joint types between bodies). (See, e.g., [31] and [36].) By assigning a certain 
digraph, which we call a control flow diagram (CFD), to each super-articulated mechan- 
ical system, we develop a formal notion of control complexity which provides informa- 
tion on how control design may be usefully approached. Certain "chain" systems, for 
instance, are shown to be feedback controllable using a backstepping controller design 
whose stability properties are easily deduced from the backstepping algorithm itself. 
More complex structures call for greater design effort, but the graphical methods that 
have been studied are useful in prescribing decoupling control laws which effectively 
transform certain structures into systems of chains to which our design methods apply 
directly. The CFD also points to a classification of mechanical systems, for which we 
may design stable adaptive feedback control laws to treat parametric uncertainties. 
(See [34].) 

(d) Stability and control of mechanical systems using oscillatory actuator inputs (Refs. 
[17],[25],[26],[30],[37-41]). 

Motivated by our early work on the control and bifurcation theory of equilibrium rota- 
tions in multibody systems (See [1-6], [11], and [24].), we have turned our attention to 
the broader issue of open-loop control designs tailored to exploiting key the intrinsic 
dynamical behavior in systems of interest. More specifically, we have been studying the 
use of oscillatory forcing to produce stable motions in a variety of mechanical systems, 
including rotating and vibrating kinematic chains as well as in the axial compressor 
problems discussed below. The mathematical mechanism underlying this approach to 



stabilization involves the nonholonomic relationship between input and state variables 
in a fundamental way. (See [40] and [37] for details.) Using various extensions of 
classical averaging methods, it has been shown that the stabilizing effects of oscillatory 
forcing may be identified and analyzed in terms of an energy-like quantity call the 
averaged potential. (See [30] [40], and [37].) Under certain reasonable assumptions, 
forcing by periodic inputs produces dynamic responses in which states of the system 
are confined to neighborhoods of local minima of the averaged potential. While use of 
the averaged potential to analyze the stabilizing effect that can be produced by appro- 
priately designed oscillatory forcing of conservative (Hamiltonian) mechanical systems 
highlights the geometric character of the phenomenon, we have also begun looking at 
this approach for influencing the stability characteristics of dissipative systems. The 
main body of this report consists of two papers we have published on the use of oscil- 
latory forcing for stabilizing finite dimensional mechanical systems. 





Stable Average Motion of Mechanical Systems Sub- 
ject to Periodic Forcing 



Stable Average Motions of Mechanical Systems Subject 
to Periodic Forcing 

J. BAILLIEUL 

Abstract: There is a rapidly growing body of literature devoted to the study of anholonomy in the 
motions of nonlinear systems forced by periodic inputs. While a great deal of recent work has treated 
the case of systems without "drift", the emphasis in our treatment will be the controlled dynamics of 
mechanical systems in which "drift" terms play an important role. Our main application will be to 
controlling the dynamics of "super-articulated" mechanical systems—systems having fewer controls 
than configuration-space dimensions. Using classical averaging theory, it is shown that the stability 
of motion for such forced systems may be analyzed using energy methods together with the adroit 
introduction of dissipation into the models. For systems where the control inputs are applied directly 
only to cyclic coordinates, we define a simple but important quantity called the averaged potential. 
It is shown that under certain reasonable assumptions, forcing by periodic inputs produces dynamic 
responses which are confined to neighborhoods in the phase space associated with local minima of 
the averaged potential. We conclude with a discussion of linearization of the forced system about 
critical points of the averaged potential. While the critical points of the averaged potential may 
not correspond to equilibrium points of the original forced system, averaging theory implies that 
trajectories of the forced system will "hover" around such points. For an example problem in 
which there is an energy-like quantity which is conserved, it is shown by purely geometric means 
that Lyapunov stability may be deduced from a critical point analysis of the averaged potential. 
Hence, although the role of the averaged potential in our stability analysis is initially established 
by a classical averaging argument applied to an appropriate dissipative system, it is shown to be a 
geometric quantity which describes the effects of anholonomy and is independent of stability in the 
presence of dissipation. 

1. INTRODUCTION 

Consider a cart which is free to move on a frictionless track and to which there is attached a 

pendulum with a frictionless hinge whose axis is aligned with gravity. (Thus we have a two degree 

of freedom mechanical system in which there are no potential forces which influence the motion.) 

'The author gratefully acknowledges the support of the U. S. Air Force through grant AFOSR-90-0226. 
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Figure 1: Phase portrait of (2) under periodic forcing x = s'm(9t). 

Suppose the mass of the cart is mc, and the pendulum consists of a rigid massless rod of length I 
together with a tip of mass mp. Assume further that we may apply a control force u to move the 
cart along its track, and no other exogenous forces are applied. Let x denote the distance (from 
some arbitrary reference point) that the cart has moved along the track, and let 9 denote the angle 
of the pendulum with respect to the positive direction of the track, x and 9 together comprise a 
system of generalized coordinates in terms of which we may write the dynamics of the system 

(mc + mp)x — mp£0 sin 9 — mpi cos 99   = u 

19 - 'x sin 6 = 0. 

(1) 

(2) 

With the single scalar control entering the dynamics in this way, the cart-pendulum system is 
a member of the class of mechanical systems which we have called super-articulated. (A super- 
articulated mechanical systems is a controlled mechanical system wherein the number of controls 
is strictly less than the dimension of the configuration space.) Broadly speaking, the goal of the 
present paper is to develop the elements of a control theory of super-articulated mechanical systems 
which will explain the behavior of (l)-(2) which is illustrated in Figure 1. This shows a phase 
portrait of (2) under periodic forcing x = —^ cos at with initial conditions (9,0) = (•,•). The point 

(9,9) = (0,0) appears to be Lyapunov stable, and a proof of the fact that it is will emerge from our 

theory. 

The remainder of the paper is organized as follows. In Section 2, we define what is meant by a 
generalized mechanical control system. This includes both classical finite-dimensional mechanical 
control systems (e.g. robots with rigid components) and "super-articulated" mechanical systems 
(e.g. robots with elastic joints) as special cases. Various examples are discussed. In Section 3, 
we apply classical averaging theory to the study of periodically forced generalized control systems. 
The averaged potential is defined in Section 4. This function is shown to be useful in characterizing 
the stability of motions in which classical potential forces interact with inertial forces created by 
the motion produced by the periodic forcing. While the properties of the averaged potential are 
illuminated using classical averaging theory in Section 4, Section 5 pursues a geometric analysis 
which shows that the averaged potential provides a simple measure of nonholonomic effects produced 

by periodic forcing of the class of systems under study. 
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This paper presents a geometrical framework within which the types of mechanics problems typically 
treated by classical averaging theory may also be solved using methods suggested by geometric non- 
linear control theory. Advantages of this approach include a sharper characterization of dynamical 
behavior and more direct treatment of conservative (Hamiltonian) systems. Our geometric analysis 
in Section 5 is aimed at understanding the effects of anholonomy in certain periodically forced non- 
linear systems, and in this work we have drawn inspiration from the recent work of Sussmann (e.g. 
[17], [18]), Sastry ([13]), their coworkers, and others ([10]). The problems we treat, however, differ 
significantly from "kinematic control" problems in that "drift" terms are present in the dynamics 
we treat, rendering both our methods and results quite different from those reported in [17], [18], 
and [13]. 

2. GENERALIZED MECHANICAL CONTROL SYSTEMS 

Following Fliess ([7]) we state the following: 

Definition 1  A generalized second-order control system is prescribed by an evolution equation of 
the form 

q(t) = F(q(t),q(t)]U,ii,...,u^) 

where q takes values in a configuration manifold M and control-input curves u(t) are bounded and 
piecewise analytic with values in a control-input manifold U. 

NOTE: Assuming that the control u is only piecewise analytic means that the derivatives ü,. . . may 
not be defined at all times t. This is a technicality which may be addressed by arbitrarily redefining 
u{t) and it derivatives at points of ambiguity. 

Since we shall be interested in local behavior, there is no loss of generality in assuming M and U 
are finite dimensional vector spaces of appropriate dimensions. As in [7], we further assume that 
for each (g, q) € TM, F(q, q;u,..., u^) is a polynomial in u and its derivatives. 

Definition 2 A generalized mechanical control system is a generalized second order control system 
which has second-order polynomial dependence jointly on x and u and which has polynomial depen- 
dence on ü which is at most first order. Hence the equations of a mechanical control system take 
the following form: 

q = g0(q, q) + gx (q)ii + g2(q, q)u + g3(q)u[2]. (3) 

where w2' denotes the symmetric second tensor power of the vector u (See [6] for details!), and 
where for each q, go(q,q) has at most second order polynomial dependence on q, and g2(q1q) has at 
most first order polynomial dependence on q. 
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Remark 1 To emphasize the polynomial dependence on q we write out the velocity terms in (3) 

as 

go(q,q) = 90o(q)+91o(q)q + g2o(q)q[2\ (4) 

g2(q,q)=90
2(q) + g12(q)q- (5) 

It is useful to examine some examples of mechanical control systems. 

Example 1 (Cart-pendulum 1) Equation (2) may be viewed as a specialization of (3) in which 0 
is the configuration variable, x is the control (i.e. u = x), g0 = gx - g3 = 0, and g2 is a function of 

6 alone with g2(0) = sin6. 

Example 2  (Cart-pendulum 2) Equation (2) may also be viewed as a specialization of (3) in which 
6 is the configuration variable, x the control (i.e. u = x), g0 = g2 = #3 = 0, and gi(6) - -sin0. 

Remark 2 The structure (3) is sufficiently rich that there may be multiple ways in which to 
represent a particular physical system of interest. The choice of representation will be guided by 
the advantages afforded in applying the theory. 

Example 3 (Lagrangian control systems) Let M be a real analytic differentiate manifold of di- 
mension n. Following Nijmeijer and van der Schaft ([14]), we define a Lagrangian control system on 
M to be a dynamical system with inputs whose equations of motion are prescribed by applying the 
Euler-Lagrange operator to a function L : TM x U -> R, L = L(q,q;u), whose dependence on the 
configuration q, the velocity q, and the control input u is smooth. The set U in which the control 
input functions u(-) take values is assumed to be a closed convex subset of Rm which we further 
assume is symmetric with respect to the origin. (I.e., u € U => —u £ U.) 

A nondegenerate Lagrangian is one for which f^ = (gf^F~) is nonsingular for a11 (<?, 9!u) e ™ x U- 
The equations of motion for a control system arising from a nondegenerate Lagrangian may be 

written 
,d2L^,d2L .      d2L .     dL. 

Defined in this way, a Lagrangian control system is a generalized mechanical control system precisely 
when L has the proper polynomial dependence on the variable u. 

A wide class of interesting mechanical control systems arise from Lagrangian functions of the form 
L(q, q; u) = \qTM(q)q - V(q) + qTBu where q € Rn, u E Rm, and B is an n x m matrix. 
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Example 4 (Reduced-order symmetric Lagrangian systems) Consider a Lagrangian control system 
with configuration variables {qi,q2) € R"1 x R"2. The variable qx will be called cyclic if it does 
not enter into the Lagrangian when u = 0, i.e. if §^{qi, <?2, ?i,<?2; 0) = 0. We shall be interested in 
Lagrangian control systems with cyclic variables in which it is precisely the cyclic variables which 
may be directly controlled. Specifically, we shall consider systems of the form 

where dim^i = nj, dimg2 = «2, and m and M are symmetric positive definite matrices of dimension 
?7i x iii and n2 x n2 respectively. To emphasize the distinguished role to be played by the cyclic 
variable, we write v = q\. 

Applying the usual Euler-Lagrange operator to this function, we find the equations of motion are 

d_ 

dt 
{m(q2)v + A(q2)

Tq2) = u (7) 

h + M{q2y
l (T(q2, q2) + — + A{q2)v + Q{q2, q2)v - ~vT~v) = 0 (S) 

Oq2 Z      Oq2 

where the fc-th component (1 < k < n2) 

r{q2,q2)k = T;2^(-TT + ^rr ~ ^nr^tii 2 ,-,,•     dql Oq\ dq$ 

and the A;-th component 
^^,dakj      datJ..t 

Noting that u and v have the same dimensions and that m(q) is nonsingular for all q, it is an 
immediate consequence of existence and uniqueness theorems for ordinary differential equations 
that for any continuous trajectory q2{t), any smooth trajectory v(-) may be generated by (7) by 
means of an appropriate choice of control input u(-). This means that in principle, it is immaterial 
in controlling (7)-(8) whether we view u as the control with v being determined by integrating 
the differential equation (7) or take v to be the control with u then simply determined by (7). If 
v is viewed as the control input, (8) clearly has the form of a mechanical control system (3). It 
is interesting to note that (8) itself prescribes the dynamics of a Lagrangian control system with 
associated reduced Lagrangian 

L(q%, &, v) = ~q2M{q2)q2 + q2 A(q2)v - Va(q; u), 

where Va is the augmented potential defined by Va(q;v) = V(q) — ^vTm(q2)v. The terms G(q2,q2)v 
which are linear in the generalized velocities are called gyroscopic terms. Many physical systems 
admit this type of reduction, including the cart-pendulum system (l)-(2) and the rotating kinematic 
chain systems studied in [2] and [12]. For more details on the role played by gyroscopic terms in 
the dynamics of mechanical systems, the reader is referred to [3] and [9]. 
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3. AVERAGING AND THE STABILITY OF MOTION 

Although many interesting physical systems may be described by models of the form (3), the 
control theory of such systems is presently incomplete. While it is generally unclear where to turn 
for inspiration in classical geometric nonlinear control theory, recent work by Murray and Sastry, 
[13], suggests that the geometry of noncommuting vectorfields may be systematically exploited by 
using carefully selected time-periodic inputs to induce desired motions. (See also related work by 
Sussmann, [18].) Such results are not immediately applicable to systems of the form (3), however, 
and it is our goal in the remainder of the paper to develop the appropriate theory. In the present 
section, our principal mathematical tool will be classical averaging theory. 

Suppose the input u(-) appearing in (3) is a periodic function of time with fundamental period 
T > 0. To put (3) into a form to which standard results in averaging theory may be applied, we 
convert to first order form and rewrite the equations in the time scale r = t/T. (Cf. [8], p. 166.) 
Letting y(r) — x(t), the resulting differential equations take the form 

— (yi\=T-( Vl \]) (9) 
dr \y2/ Wo(s/i,2/2) +gi{yi)üs + g2(yuy2)us + g3{yi)uw J ' 

where US(T) = U{TT), US(T) = U(TT). AS the frequency of the forcing is varied, we find the 
amplitude of iis grows like ^. (Think of varying the frequency of a sinusoid.) Hence, averaging 
theory does not immediately apply unless g1 = 0. Fortunately, a simple time-varying coordinate 
transformation eliminates the dependence on the derivative of the input. 

Definition 3  Given the mechanical system (3), the L-transformation is defined by the equation 

x2J    \q-gi{q)uJ 

Important features of this transformation are given in the following. 

Proposition 1  (i) The L-transformation is invertible. (ii) In (x1,x2)-coordinates (3) is rendered 

d_(xA _ ( ar2+5i(^i)" ^ (11) 
dt\x2) ~ \Go{x1,x2) + G1(x1,x2)u + G2{x1)uW)' 

where G0(x1,x2) = ^0(^1,^2), and Gi has first order polynomial dependence on x2.   The G,- 's are 

given explicitly by equating coefficients in 

G0{xux2) + G^xux^u + G2{Xl)u^ = g0{x1,X2 + gi{xi)u) + g2(x1,x2 + gi(xi)u)u 

+g3{xi)u [2] 
(s'lC^i)«) dxi 

(x2 + 01(x1)u). (12) 
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Proof: It is easy to see that the inverse L-transformation is given by 

qj     \x2 + gi{xi)uj 

Using the formulas for the forward and inverse L-transformations, it is a straightforward calculation 
to show that in terms of (x1,x2)-coordinates (3) is rendered as (11). 

Remark 3 In the case that our system is given by (8), the L-transformation is the ordinary Leg- 
endre transformation provided that M(q) — I. 

It is not difficult to see that (11) inherits a polynomial dependence on u and x2 which is similar to 
(3). The main feature of the L-transformation is that it eliminates the dependence on the derivative 
of the input it. We shall next see that if u(-) is a high frequency periodic input, then by appropriately 
scaling time the equations (11) may be rendered in a form to which averaging theory applies. 

Indeed, suppose u(-) is a bounded piecewise continuous Rm-valued function defined on ( — 00,00) 
which is periodic of fundamental period T > 0. Write 

00 

«;(0 =   E   cifce^'\ (13) 

and let 

ü 
1   fT 

2 ,• (14) 

and 

a2 = \[ u(tf\lt. 
The corresponding averaged version of (11) is 

±(Zi\ = ( 6 + <7I(6)ü 

It is interesting to note that if we change the frequency of the input function u(-), the form of 
the averaged equations remains unchanged. Specifically, writing u\(t) = u(\t) we see that u\ has 

period T\ = T/X and the same mean ü = T^1 f0 
x u\ dt and r.m.s. value a2 = T^"1 J0

X ux dt. In 
the next theorem, we shall view frequency as a control parameter. 

Suppose (£i,£°) is an equilibrium solution of (14). Classical averaging theory yields the following. 

Theorem 1 Let u(-) be an Rm-valued bounded piecewise continuous periodic function of period 
T > 0 whose j-th entry is given by (13) for 1 < j < m. Let (^j,^) ^e an equilibrium solution of 
(14), and suppose that when evaluated at (^,^2) ^ie %n x 2n-matrix 

(       It* '    ) 
Ifc + f^ + fg*' H + &W 
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has all its eigenvalues in the left half-plane. Then for every e > 0 there is a 8 > 0 and A0 such that 
for all A > A0| if (11) is forced by the input u\(t) = u(Xt), we find the solution (x1(t),x2(t)) of (11) 

is such that \\x(t) - f°|| < e provided ||x(0) - £°|| < 6. 

Proof: Given e, 6, and A as in the hypothesis of the theorem, we shall write both (11) and (14) in 
the time-scale r = tjTx where T\ = j is the fundamental period of ux(-). Letting y(r) = x(t), (11) 

becomes 
dfyi\-T     ( V2 + 9i(yi)u\(TTx) \ (l5) 

TT W ~  A" Uo(yi,y2) + Gi(yi,y2)«A(rrA) + G^MTTA)^ " l   } 

(Cf. (9).)   Similarly, letting ({r) = ((t), (14) becomes 

^ vc2y ~ A vGo(Ci,C2) + Gi(Ci,c2)ü + c?2(Ci)a 

Note that U(T) = U\{TT\) is a periodic function of period 2n independent of A. 

Now (15) is a nonautonomous equation to which classical averaging theory may be applied. (Specif- 
ically, see [5], p. 497.) Under our hypothesis, the eigenvalues of the Jacobian of the right hand 
side vector field (16), evaluated at (^,(°)5 

a11 nave negative real parts. Hence for all A suffi- 
ciently large (and T\ = T/X correspondingly small), there is a unique periodic (period 27r) solution 
(y1(r),y2('r)) to (15) defined on the entire infinite interval (-00,00) such that ||j/(r) - £°||oo < vW 
for -00 < T < 00 with 77(A) -> 0 as A -> 00. (See [5].) Moreover, if y(r) is any solution to 
(15) which is sufficiently close to £° at some time r = r0, then ||y(r) - y(r)\\ -» 0 exponentially as 
T —> 00. There is no loss of generality in assuming r0 = 0. 

To complete the proof of the theorem, let A be sufficiently large that 77(A) < f. Moreover, let 
n be such that for all r > n we have ||y(r) - T/(T)|| < e/2. Let 6 > 0 be so small that if 
||2/(0) - j7(0)|| < 8, then \\y(r) - y(r)|| < e/2 on 0 < T < n. Now A has been chosen large enough 

to ensure that 77(A) < f, and hence ||y(r) - HU < r Thus if H^°) ~ ^ < 2' we have 

||y(0)-y(0)||   <   ||2/(0)-^o|| + ||y(0)-eo|| 
8     8 

<    2 + 2 
=   8. (17) 

Hence ||y(r) - y(r)\\ < \ for all r > 0, and thus ||y(r) - ^°|| < e. Since x and y are related by a 
change of time scale, this proves the theorem. a 

Remark 4 Under the hypothesis of the theorem, we have proved that solutions of (11) will execute 
motions confined to a neighborhood of (£?, $)• Moreover, as the frequency of the input function u(-) 
becomes larger, this neighborhood to which the motions are confined shrinks. We may relate these 
observations to motions of (3). The variables (q,q) are related to (x1,x2) by means of the inverse 
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L-transformation, and it is not difficult to see that trajectories expressed in these coordinates may 
be expected to execute motions in a neighborhood of the point 

9o\_f tf 

Since the trajectory (q,q) is related to the trajectory (2:1,0:2) by means of this time-varying co- 
ordinate change, the size of the neighborhood to which the (q, g)-motions are confined does not 
necessarily shrink as the frequency of the forcing is increased. 

Remark 5 It is important to note that this theorem does not actually deal with stability of equi- 
libria for systems of the form (11) since ({°,(°) needs only to be an equilibrium (stable) for the 

averaged system (14). It is easy to find examples (See below!) where (xi,x2) = (^,^2) 1S not an 

equilibrium of (11) and yet (11), under the hypotheses of the theorem, executes motions confined 
to a neighborhood of (£?,£°)- 

Example 5  (Example 1 reprise)   The averaged equations (14) in this case take the form 

dtKhJ     VO 

Clearly the hypotheses of the theorem are not met, and no conclusion can be drawn. A possible 
way to further analyze this system is to pass to higher order averaging approximations as discussed 
in [5]. Equivalently, we may also pass to the representation of the system given in Example 2. 

Example 6 (Example 2 reprise) For this representation, the averaged equations (14) take the 
form 

d_(Zi\( 6 + «sin£i 
dt V 6 )      \ —ü cos {1 • (2 - cr2 sin {1 cos £1 

Taking x(t) = — ^ cos at, we have u(t) = sin at, and ü = 0, a2 = |. (^,^°) = (0,0) is clearly an 
equilibrium solution of the averaged equations. The linearized version of this differential equation 
at this equilibrium has eigenvalues on the imaginary axis, and hence the hypothesis of Theorem 1 
is again not satisfied. We may proceed, however, by appealing to physical considerations. 

Returning to the description of the cart-pendulum system in the introduction, we note that if a 
rate-dependent damping term, d6, is included in the model, (2) becomes 

H.6 + de-xsm6 = Q. 

In terms of the general representation (3), u = i, go(9,0) = —d9, g\(6) = sin#, g2 = 0, and g3 = 0. 
The corresponding averaged equations are 

li(£i\( & + Msinfi 
dt V 6 / V -d(6 + ü sin f 1) - ü cos £1 ' 6 _ cr2 sin £1 cos £1 
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Linearizing about the equilibrium (£?,£") = (°'0) yields the variational equation 

±{Hi\_(       ü 1      \(6h 
dtUb)      \-dü-a2    -d-üj\6^2 

the coefficient matrix of which has characteristic polynomial p(s) = s2 + ds + a2 - u2. Noting that 
a2 — u2 > 0, the eigenvalues are seen to lie in the open left half plane. Hence, by our theorem, the 
forced system can be expected to execute stable motions in a neighborhood of the origin. 

This observation is consistent with what we would expect to observe if viscous damping were 
added to the dynamics of a Lyapunov stable system. It remains to show, however, that the origin 
(0,6) — (0,0) is Lyapunov stable for the periodically forced system (2). While the above analysis 
does not directly imply this, it suggests a general approach to stability analysis for conservative 
systems. The idea is to add Rayleigh dissipation (along the lines suggested, say, in [1]) and then 
assess the spectral stability of the resulting averaged system. Similar ideas have recently been 
explored in [4] in connection with the energy-momentum method. We shall provide a brief general 

sketch. 

For systems of the form (3) dissipation enters through the terms g](q)q (see (4)). Indeed, we shall 
assume that gl(q) is a symmetric negative definite matrix so that -qTg](q)q is the usual Rayleigh 
dissipation function. We shall be interested in comparing systems of the form (3) which differ from 
one another precisely according to whether the Rayleigh dissipation function is absent or present. 
Accordingly, we rewrite the equation of interest, (3), in the form 

q = 9o(q) + tgl(q)q + gl{q)q[2] + 9i(q)ü + g2(q, ?)« + <73(<?)«[2], (is) 

where e = 0,1 depending on whether damping is absent or present. Applying the L-transformation 
(10) and averaging, we obtain from (18) 

dt \iJ ~ Wä(6)(6 + tfi(6)ü) + G'o(6,6) + GI(6,6)ö + G2(6)(7V' ^   j 

where the <3,-'s are related to the #'s via equation (12) with e = 0 in #0(6)- Suppose (£?,£°) is 

an equilibrium for this differential equation; i.e. £° + <7i(£i)ü = 0 and Go(^?,^°) + Gi(£i>£2)0 + 
G2(£i')<72 = 0. Then we have the following. 

Theorem 2 For the conservative version of (19) (i.e. when e = 0), let us suppose that for some 
admissible control input u(-) (i.e. for some bounded piecewise analytic u) and corresponding u, a 

there is a function E of the form 

ü;(6,6;ö,a) = i||6 + 0i(6)ö||2 + n6;ö,a) 

which (i) has a strict local minimum at the equilibrium (£?,$), and (ii) is invariant under the 
motion of (19). Then for the dissipative version of (19) (i.e. when we set e = 1) the equilibrium 

(^15 *^2) ?s asymptotically stable. 
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Proof: Differentiating E along trajectories of (19) we obtain 

E = <6 + <7i(6)ü)TÄ)(6 +9i{ti)ü). 

Here E serves as a Lyapunov function, and the right hand side of the equation is nonpositive and 
has a strict local maximum value of 0 at (£x,£5)- By Lyapunov's second method, this equilibrium 
solution is asymptotically stable. ü 

Remark 6 The function E plays the role of total energy for the averaged system (19). This role 
may be emphasized by applying the averaged inverse L-transformation 

«) = ( & 

and expressing E in terms of the transformed variables (q,q): 

E(q,^;u,a) = -\\'q\\2 + V(q;ü,a 

Corollary 1 For the conservative version of (19) (i.e. when t = 0), suppose that for some admissi- 
ble control input u(-) and corresponding ü, a there is a function E{^\ ,t,2]ü, a) as in Theorem 2 which 
has a strict local minimum at the equilibrium (^,^2) an<^ which is invariant under (19). Then for 
every n > 0 there is a S > 0 and XQ such that for all A > A0 if the corresponding dissipative version 
of (11) (derived by applying the L-transformation to (18) with t = 1) is forced by u\(t) — u(Xt), the 
solution x(t) = (xi(t),X2(t)) is such that \\x(t) — £°||oo < V provided \\x(0) — £°|| < 6. 

Proof:   This corollary follows directly from Theorems 1 and 2 and standard Lyapunov stability 
theory. D 

Remark 7 In Lagrangian and Hamiltonian mechanics, the most obvious choice of function which is 
invariant under the dynamics of the system is the total energy. Thus to analyze mechanical systems 
with inputs of the form (3), it is of interest to ask whether there is any systematic procedure for 
relating the corresponding averaged system (14) to a Hamiltonian. (Because inputs are present, the 
usual total energy is not conserved.) In the next section, it will be shown that the reduced-order 
symmetric Lagrangian control systems of Example 4 retain a structure which may be related via 
the Legendre transformation to a Hamiltonian system. Averaging this system leads to another 
Hamiltonian system, so that stability analysis along the lines we have indicated may be carried 
out. Moreover, the analysis will be considerably simplified for this class of systems because, as we 
shall show, there is a natural block-diagonalizing coordinate transformation such that in the new 
coordinates the total averaged energy (=the averaged Hamiltonian) may be expressed as the sum of 
a positive definite averaged kinetic energy function and an averaged potential function. Equilibrium 
points of the averaged system will be found as critical points of the averaged potential, and the 
stable equilibria of interest in our analysis will be local minima of the averaged potential. 
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4. ENERGY METHODS FOR STABILITY AND THE Averaged 
Potential 

Consider a symmetric Lagrangian control system of the form (6) where q\ is a cyclic variable as 
defined in Example 4. Write v = q\. As in the preceding section, we view v as a control, and note 
that (8) arises from applying the Euler-Lagrange operator to the reduced Lagrangian 

£(<?, 95 v) = \qTM{q)q + qT A(q)v - Va(q; t,), (20) 

where Va(q;v) = V(q) — \vTm(q)v is the augmented potential. 

To render the equations of motion in a form suitable for averaging, we apply the Legendre trans- 
formation H(q,p; v) = p • q - L(q,q;v) to obtain 

H(q,p; v) = \{p - vA)TM-\p - vA) + Va(v, q). (21) 

The equations of motion are written in the usual way as 

q = M-\p-vA) (22) 

p = -%-[\(v - vA)TM-\p - vA) + Va(v,q)]. (23) 
aq I 

To pursue averaging theory, we replace all coefficients in (22)-(23) by their time-averages. Assuming 
v(-) is bounded, piecewise continuous, and periodic of period T > 0, we may write 

CO 

v(t)=   £   c,e^. (24) 
k= — co 

(Cf. (13).) (22)-(23) contain terms of order not greater than two in v, and averaging the coefficients 

we obtain 

Proposition 2 Suppose v(-) is given by (24). Then if all coefficients in (22)-(23) are replaced by 
their time averages, the resulting averaged system is Hamiltonian with corresponding Hamiltonian 

function 

H(q,p) = \(P - A{q)v)TM{q)-\p - A(q)v) + VA{q), 

where 

VA(q) = V(q) + -(E(g) - «^(gfMfo)-1 A(g)i;) 

is the averaged potential with 
1   fT 

~V = TL vdt' 
and 

l  rT 

£(?) = i i   v(t)T(A(q)TM(q)-1A(q)-m(q))v(t)dt. 
1 Jo 
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D 

The averaged Hamiltonian H(q,p) may be interpreted as an averaged total energy. Writing this is 
terms of the variables q and q, where q — M~l(p — Av) the averaged energy is 

E(q,q)=1-fA4(q)q+VA(q). 

Equilibrium solutions to the averaged Hamiltonian system 

•     dH      .       dH 

will be of the form (q, q) = (qo, 0). We have the following: 

Proposition 3 Let (q,p) = (qo,Po) be an equilibrium solution of the averaged Hamiltonian system 
(25). (qoiPo) is a strict local minimum of the total averaged energy H(q,p) if and only if qo is a 
strict local minimum of the averaged potential V^g). 

Proof: The corresponding equilibrium in (q, ^-coordinates is (qo,0). (qo,Po) is a strict local min- 
imum of H(q,p) if and only if (qo, 0) is a strict local minimum of E(q,q). But the Hessian of E 
evaluated at (qo, 0) has block diagonal form 

/ d2V, 
[ -9,2-(?o)        0     \ 

V       0 M(q0)J- 

The proposition follows from this observation. □ 

To discuss stability, we introduce the Rayleigh dissipation function qTD(q)q where for each q, D(q) 
is an n x n positive definite matrix. Starting from the reduced Lagrangian (20), we are interested 
in the behavior of the system 

The Hamiltonian form of (26) is given by 

.      dH 
q=-dp~ 

P = ~ ~ D(q)M(q)-\p - A(q)v), (27) 

where H is as in (21). Averaging these equations, we obtain the system 

.     dH 
q=~dp- 
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ßrr 
P=~-D(q)M(q)-1{p-A{q)v)i (28) 

Öq 

where the averaged Hamiltonian H is given in Proposition 2. The role of the averaged potential in 

assessing asymptotic stability is summarized as follows. 

Theorem 3 Consider a Lagrangian control system (20) with dissipation entering through a quadratic 
dissipation function qTD(q)q as described above. Let v(-) be given by (24), let v\(t) = v(\t), and for 
each X, consider the averaged potential VA(q; A) corresponding to vx(-) as in Proposition 2. Suppose 
further that there is a A0 and a one-parameter family of configurations q\ depending smoothly on A 
with the property that for each A > A0 the corresponding qx is a strict local minimum ofVA(q;X). 
Then there is a Ai > A0 such that for each e > 0 and A > Ai there is a 8 = 8(e, A) with the property 
that if (27) is forced by v\(-), the solution (q(t),q(t)) satisfies 

||(g,?)-(?A,0)||oo <e 

provided 
IK?(0),g(0))-(gA,0)||<6 

Proof: Let e > 0 be given, and let v(-) be defined by (24) with corresponding v\(-) as in the 
statement of the theorem. Let H\ be the corresponding averaged Hamiltonian. If we let q, q = 
M(q)~1{p - A(q)v) be the corresponding Lagrangian coordinates of the averaged system, H\ may 
be rewritten in these coordinates as 

In (Q, ^-coordinates, (28) is rendered as 

Jt{M{q)q) - ^qTM(q)q + VA(q; A)] + D(q)q = 0. (29) 

Differentiating E\(q,q) along trajectories of this system, we find 

dEx 

dt = -<zJ £(<?)<?• 

D(q) is positive definite for each q, and since (q,q) = (q\,Q) is a strict local minimum of Ex, it 
follows that (qx,0) is an asymptotically stable equilibrium of the averaged system (29). 

It is now more or less straightforward to apply Theorem 1 to determine the behavior of (26). To 
do this, apply the L-transformation to the variables (q,q). Now the L-transformation is related to 
the Legendre transformation by a left multiplication by diag(J, M{q)~x). Hence the asymptotically 
stable equilibrium solution, (q\,0), of (29) corresponds to an asymptotically stable equilibrium 
solution of (14). It thus follows that (26) executes motions in a neighborhood of (q\,0). □ 
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Figure 2: A cart-pendulum system on an inclined track. 

Remark 8 The form of the averaged system (29) may be determined by examining the form of the 
system (26) from which it is derived. Specifically, in passing from (26) to (29), terms of the form 

are replaced by 

i=iL 

.   A . .        rdA,     dAjT^: 

ld_ 

2dq 
[X(q) - vT{A(q)TM{q)-'A{q) - m(q))v). 

(30) 

(31) 

Example 7 (Example 6 reprise.) It is of interest to consider an extension of the cart-pendulum 
problem which serves to illustrate the power of the theory developed so far. Consider a cart to which 
there is a pendulum attached moving along a track in a uniform gravitational field. Suppose the 
track is inclined at an angle a with respect to the horizontal. As in the introduction, the pendulum 
consists of a point-mass attached by a massless link of length £ to the cart which has mass mc. The 
coupled equations of motion for this system are 

(mc + mp)r + mp£cos(6 — a)6 — mp£s'm(6 — a)62 + (mc + mp)gs'ma = u, (32) 

and 

£0 + rcos{e-a)+gsmO = O, (33) 

which reflect the assumption that control of this system is by pushing the cart along its inclined 
track. As in our earlier analysis, we may assume that the motion r(t) can be specified, and taking 
v(t) = r(t), we find that (33) is derivable from the reduced Lagrangian 

1(6,6; v) = l-£62 + v6 cos(6 - a) + g cos 6. (34) 

Assume v{t) is given as in (24). Referring to the formulas in Proposition 2, we write the averaged 
potential corresponding to L: 

VA(0) = -g cos 9 + ^ cos2(0 - a) (a2 - v2) 
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where 

dt 

and 

S = \[v(tfit. 
Stable equilibria of the averaged system correspond to local minima of VA. One interesting special 
case occurs when g = 0 (i.e. the gravitational field is removed), a = 0, and v(t) = smut. This 
corresponds to the example treated in the introduction. Then v = 0 and a2 = |, and 9 — ±| are 
local minima of VA- If there is any dissipation in the hinge on the pendulum, then according to 
Theorem 3, the pendulum may be expected to execute motions confined to a neighborhood of | or 
-f. Another interesting special case is to take a = f with nonzero g and r(t) = -cos(ujt). (The 
cart executes a simple periodic vertical motion along its track.) Then v(t) = UJ s'm(iot), v = 0, and 
a2 = ~ so that the critical points of the averaged potential are solutions of 

u>2 

g sin 9 + — sin 9 cos 9 = 0. 

This equation has solutions 9 = 0,7r for all values of the parameters, and when u2 > 2g£ there are 
also solutions 9 = arccos(-2$). (We shall restrict 9 G (-ir,ir].) Evaluating the second derivative 
of VA at each of these critical points, we find that 9 = 0 is always a local minimum, and 9 = it is a 
local maximum when u2 < 2g£, but it becomes a local minimum when LO

2
 > 2g£. It follows from 

Theorem 3, that there is an Lü0 > 2g£ such that for all LO > LO0 the pendulum can be made to execute 
motions in a neighborhood of the vertical configuration. (Cf. [5], p. 408.) A similar analysis can 
be carried out for other values of the parameter a. We refer the reader to [15] for further details. 

5. THE GEOMETRY OF AVERAGED MECHANICAL SYSTEMS 

If we assume the input function v(-) discussed in the preceding section has the form (24), then 
we see that the averaged potential VA is invariant under a scaling of frequency v(t) —> v(Xt) for 
A ^ 0. Hence the form of VA contains only partial information regarding the stability of the system, 
since the hypothesis of Theorem 3 requires both that A is large enough so that the critical point 
of VA is a strict local minimum, and that A is large enough so that classical averaging theory 
applies. Nevertheless, further analysis may proceed based on knowledge of VA alone. Based on the 
conclusions of Theorem 3, we might conjecture that if the frequency of the forcing is sufficiently 

high and if qo is a strict local minimum of VA, then 

1^-^ = 0 (35) 
dt dq      dq 

will execute motions in a neighborhood of (q, q) = (q0,0). An essential assumption in proving The- 
orem 3 was that dissipation was present, and we are now interested in investigating circumstances 
under which the result also holds for the conservative system. The required analysis must be car- 
ried out along different lines since there is no way to take advantage of asymptotic stability of a 



25 
STABLE AVERAGE MOTIONS OF MECHANICAL SYSTEMS 

linearization. We shall show, for a certain prototypical system, that in the absence of dissipation, 
stability will be the effect of a nonholonomic response of the system to the periodic forcing. To 
pursue our analysis, we linearize (35) about the point (qo,0): Substituting q = q0-\-6q into (35) and 
retaining terms up to first order in Sq, we obtain 

„,.   , ••      dVa,       s     d
2Va. 

M{qo)dq + -Q-{qo, v) + -^-(?o, v)Sq 

r)A ■ r) A ■      FlA T 

+ 27=MMqo) + -öf(qo)6q) + ^^ - ^ )sq = o. (36) 

Two features of this system are of interest: (i) It is jointly bilinear in the inputs v, v and states q, 

q, and (ii) the linearization is about a point which may or may not be an equilibrium of the system. 
When the point q0 is not an equilibrium of the forced system, V. Solo ([16]) has suggested the term 
"hovering motion" replace the term "stable motion." We shall pursue the analysis of both types of 
motion under the general heading of "stability." The advantage of studying the system (36) is that 
stability analysis may be pursued using powerful linear tools such as Floquet theory. This may be 
illustrated in terms of the cart-pendulum problem. 

Example 8 (Example 7 reprise)   Recall (34) 

1(9,6; v) = -182 + vO cos(9 - a) + g cos d. 

Specializing the terms in (36), we have M[0) = I, A(6) — cos(9 — a), and Va(9) = —gcos9. Hence, 
we may write the variational equation corresponding to (33) with v = r as 

dt\SeJ       v-^Vosflo+fsin^o-a)    0) \66) ^ \ -f sinÖ0 - f cos(0o - a) ) ' {0,) 

Pursuing an analysis of the second case considered in Example 6, we set a = | and consider the 
critical point 90 = IT of the averaged potential. The above equations specialize to 

dt{s9) = {s±<L    o)U)- (38) 

In general, if we have a linear differential equation with periodic coefficients of the form 

i(t) = F(t)x(t), (39) 

where the coefficient matrix has entries which are bounded, piecewise analytic, and periodic of 
period T > 0, then Floquet theory implies that the trivial solution to (39) will be (Lyapunov) 
stable if all eigenvalues of the fundamental matrix <&(T, 0) are distinct and lie on the unit circle. 
When this occurs, we have the following 

Proposition 4 Let $(i,0) denote the fundamental matrix solution to (39), and suppose <&(T, 0) 
(T > 0 is the fundamental period of v) has distinct eigenvalues lying on the unit circle. The 
solution to (39) sampled every T units of time evolves on an ellipsoid xTMx = 1. 
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Proof:  If all eigenvalues of $(T, 0) are distinct and lie on the unit circle, there is a nonsingular 
matrix P such that A = P-1$(T,0)P is block diagonal with 0's and 2 x 2 blocks of the form 

/ cos <f>    - sin^ \ on the diagonaL Now AAT = 7j and from this it foUows that $(Tj 0)TM$(T, 0) = 
V sin <f>     cos (p ) 
M where M~l = PPT. With the appropriate scaling of M, the proposition follows. □ 

Suppose we introduce the phase-shift v(t) \-> v(t + e). Then it is easy to show that the time-T 
invariant ellipsoid is defined by the quadratic form Mt = $(0, e)TM$(0, e). The union of the family 
of invariant ellipsoids, U{xTMex = 1 : 0 < e < T}, provides an approximation of the region in 
the state-space through which the trajectories of the forced system (39) pass. Indeed, if x(0) = x0 

and XIMXQ = 1, then since x(s)TMsx(s) = x$Mx0, the solution to (39) with initial conditions 

x(0) = x0 lies in this union of ellipsoids. 

A general theory of how well this set describes the set of points through which the solution passes 
does not presently exist. The cart-pendulum problem illustrates what is involved, however. 

Example 9 (Example 8 reprise) Consider the linearized dynamics for the cart-pendulum problem 
(38). Letting u(t) = -{g + v(t))/£ and y = (yi,y2) = (SO, SO), this represents the well-studied 
Hill's equation. (See e.g. [11].) We shall conclude this section with a discussion of the relationship 
between the geometry of solutions of (37) and the averaged potential introduced in the preceding 
section. Suppose the input u is a square wave 

' -7 if 0 < t < h; 
u(t) = \ß ith<t< 2h; 

{ u(t - 2/i)    if 2h < t, 

(ß, 7 > 0). The fundamental matrix $(*,0) has determinant 1 for all t, and at time T = 2h may 

be explicitly written as 

*(2äO)=(   cosV^     7ßa[nyßh)( cosh^h    *sinh^M 1     '   ;      {-^ßsmVßh       cosi/ßh    ) {^smh^fh       cosh ^h   ) 

As our previous analysis suggests, the solution (j/i,y2) = (0,0) will be stable precisely when the 
eigenvalues of $(2/i,0) are on the unit circle. The characteristic polynomial of $(2/i,0) is 

p(s) =s2-^(/?,7,/i)s + l 

where /i{ß, 7, h) = 2 cos y/ßh cosh ^h + (^- J&) sin yfßh sinh yfih. The roots of this polynomial 

will be on the unit circle precisely when |/i(/?,7, h)\ < 2. When ß - 7 = 1, for example, one sees 
that there is a sequence of roots of the equation ^(1, l,/i) =2: h0 = 0, hi = 1.8751, h2 = 4.73004,... 
with hn -> 00 as n -»■ 00. In the interval (h2k,h2k+i), the trivial solution to Hill's equation ((38) 
will be stable, while for h € {h2k+i, h2k+2), the solution will be unstable. 

Applying the analysis of the preceding section to this system, Theorem 3 implies that for all suffi- 
ciently small h > 0, the origin will be a stable equilibrium for (38). A more refined picture emerges 

from an analysis of the invariant ellipsoids. 
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Proposition 5   Given a 2 x 2 matrix $ = ( J/1    ^12 ) w7/i ifce property that det $ = 1, i/iere is a 

symmetric 2x2 solution M = I     n        12 j to i/ie matrix equation 
\m12    m22/ V™12 m22J 

$TM$ = M 

37'uen explicitly by 
(rnn\       (   —2^21 
™12       =        011 ~ ^22 

\™22/           \       2012 

77ns solution is unique to within a scale factor. 

Proof: A direct computation, using the hypothesis det $ = 1, verifies that the solution we have 
proposed does indeed satisfy the equation. To prove that this solution is unique up to a scale factor, 
it is only necessary to show that the linear mapping M i-> §T M$ has rank 2. To do this, we shall 

prove that the images off j and ( j are linearly independent. Suppose we have scalars 

a and b such that 

hU 011012 \    ,,(     021 021022 \   _   / 0      0 

V 011012 02
2     / V 021022 022     J VO      0 

It is straightforward to show that this equation is equivalent to 

ui    fai\ f a<t>u\ _ / <f>n    02i Wa0i2\ = /0' 
^12      022/   \b(f>2l) V012      022/   \^022/   _   \0. 

Since det $ = 1, this is equivalent to 

/a0n\ _ /a0i2\       /0' 
\b<j>2i)      \b(f>22)      \0. 

Since we cannot have 0n = 021 = 0, we must have a = 0. Similarly, 6 = 0, proving the rank of the 
linear mapping is 2, as claimed. This proves the proposition. D 

Remark 9 Given $(2/i,0) as in Example 9, let M be the corresponding invariant quadratic form 
specified by Proposition 5. The condition that M may, after a multiplication by a suitable scalar, 
be taken to be positive definite is that miim22 - rn\2 > 0. Note that this is equivalent to the 
condition that $(2h,0) has distinct eigenvalues on the unit circle: i.e. to (0n + 022)

2 - 4 < 0.     □ 

Given a square wave input u(-) as prescribed above, we write the corresponding solution to 

$(2/i,0)TM$(2/i,0) = M, 

and normalize M with respect tothe initial conditions such that y(0)TMy(0) = 1. If M is positive 
definite, solutions {yuy2) = {89,86) of (38) which satisfy this equation evolve on the union of ellipses 
U{yTMcy = 1 : 0 < e < T}. A typical motion is shown in Figure 3, where the ellipses yTM0y = 1 
and yTMhy = 1 are also depicted. 
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Figure 3: Phase portrait of solution to Hill's equation with two members of the family of invariant 
ellipsoids. Forcing is by square wave function u(t) as described in the text with parameters a = 

ß = 1 and h = 0.3. 

Our final objective will be to return to the question of how our results vary as the the frequency 
of the forcing is changed.   This will provide an important complement to the discussion in the 
previous section where it was noted that the averaged potential VA is invariant under a change in 
the frequency of the forcing.   Returning to (38), it will be useful to now assume v(t) (instead of 

u(t)) is the square wave 
[-7 if0<t<h; 

v(t) = \ß \(h<t< 2h; (40) 
[v(t-2h)    ii2h<t, 

(ß, 7 > 0). To study the effect of scaling the frequency, we define v\(t) = v(\t) so that 

vx(t) 

-A7 

Xß i 

k ix(t - 2h/\)    if t > 

if 0 < t < f; 
if T < t < 

2h 
A ' 

2h. 
A ' 

From Proposition 2, we write the averaged potential for the cart-pendulum system (34) in the case 
Q = | and the input has 7 = ß: 

VA(9) = -gcos6 + ^sm29-(a2-v2). 

A straightforward computation to evaluate v, a yields 

ß2h2 

VA{0) = -9 cos 9 + -^jj sin 

9 = 7T is a critical point of this function for all values of the parameters, and for g£ < -^-, it is 
a local minimum. This may be compared with the analysis of Example 7, and it is re-emphasized 
that the result is independent of the frequency parameter A. 

2 9. (41) 

On the other hand, we may explicitly write the fundamental matrix solution $\{t,0) to (38) corre- 
sponding to the input vx. Assuming again that 7 = ß, we evaluate this at the fundamental period 
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i — Ik- 
—   A ' 

2/i /     1  _ 2*1 2A       \ i 

According to Proposition 5, there is a corresponding invariant quadratic form specified by the 
symmetric 2x2 matrix 

M-(w(ß2h2-W)   - 
~ \        -Mal 

\ i 

It is easy to check that this is positive definite for all sufficiently large A precisely when ß2h2 > YlgL 
We summarize this observation in the following. 

Proposition 6 Consider the cart-pendulum system (34) with inclination ■parameter value a = | 
and periodic forcing v(-) defined as in (40) with 7 = ß. Suppose the dynamics are linearized about 
the equilibrium 6 = ir of the averaged system to yield (38). Then the origin is stable (in the sense 
of Lyapunov) for (38) under all forcing v\(t) = v(Xt) with A sufficiently large if and only if 6 = TV 

is a strict local minimum of the averaged potential (41)- a 

Remark 10 One might carry out a similar stability analysis with the assumption 7 = ß relaxed. 
Any persistent bias of this type in the forcing, however, seems to destroy the stability we have 
observed. Thus, the shape of the wave-form forcing the system seems to be crucial. It is worth 
pointing out that numerical experiments indicate that the conclusions of Proposition 6 remain valid 
for any sufficiently regular periodic input of the form (24) (e.g. v\(t) = sin At). 

Remark 11 Proposition 6 represents a remarkable confluence of an analytical and geometrical 
analysis of stability. The fact that local minima of the averaged potential can be shown to be 
Lyapunov stable for motions of the forced system serves to further inspire the efforts we are pursuing 
to simply characterize the nonlinear response of mechanical systems to regular forms of forcing. It 
is worth noting that even for cases where a ^ | and 6Q is a local minimum of the averaged potential 
VA which does not correspond to an eqilibrium of the system (33), an extension of the argument 
used to prove Proposition 6 shows that the linearization (37) of (33) about 60 will execute bounded 
motions. A more complete treatment of stability of systems of the form (36) will appear elsewhere. 
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Abstract: A large body of recent literature has been devoted to the topic of motions of mechanical systems 
forced by oscillatory inputs. (See, e.g. [7], [12], [15], [17], and [29]!) A common feature in most of this work 
(with [7] being the exception) is that the results apply principally to kinematic problems, and the equations of 
motion do not involve drift terms. The main object of study in the present paper is the class of bilinear control 
systems with oscillatory (periodic) inputs. We shall show that included in this class are models of mechanical 
system dynamics which are obtained through a process of reduction and linearization about operating points. 
In particular, we study the stability of such systems under high frequency, periodic forcing. The averaged 
■potential is defined for linearizations of the systems on the (reduced) configuration space, and it is shown that 
stable motions of the forced system are associated with minimum values of this quantity. We use both classical 
averaging theory as well as a novel geometric argument to provide parallel but independent assessments of the 
use of the averaged potential in carrying out a stability analysis. A salient feature of the geometric approach is 
that we are able to justify the use of an energy like quantity to determine Lyapunov stability in conservative 
mechanical systems. This makes contact with a growing body of literature on the use of energy methods for 
stability and control design (e.g. [7], [8], [18], [24], [26], [27]). We briefly describe the connection with previous 
work on the averaged potential. 

1. INTRODUCTION 

Although geometric nonlinear control theory has achieved a high degree of maturity over the past two 
decades, no substantial body of research on nonlinear control designs systematically utilizing the geometry 
of noncommuting vector fields had been reported until quite recently. (We cite Haynes and Hermes, [13], 
as a notable early effort along these lines, however.) Recently a number of researchers (e.g. [12], [15], 
[17], [20] [16], and [29]) have reported progress in the use of open-loop, oscillatory controls to steer certain 
classes of systems that are of interest in path-planning problems in robotics. The present paper is written 

in the same spirit, but our focus is on systems arising in dynamic rather than kinematic models. 

In previously reported work ([4]-[7]), we studied stability of the dynamics of mechanical systems subject 

to oscillatory forcing. The overall goal of the research has been to understand system dynamics which are 

*The author gratefully acknowledges the support of the U. S. Air Force through grant AFOSR-90-0226. 
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the net result of applying periodically varying forcing to a set of noncommuting vectorfields. One result 
has been our characterization of stable operating points as critical points of an energy-like quantity called 
the averaged potential. In particular, in [7], it was shown that critical points of the averaged potential 
which are also strict local minima are stable provided the frequency of the periodic forcing is sufficiently 
high. The results were established using classical averaging theory together with the adroit introduction 
of damping into the models. In the present paper, we show that the stability of motions in conservative 
dynamical models may be assessed in terms of the averaged potential with no assumption of dissipation in 
the system. 

The paper is organized as follows. In Section 2, we study general bilinear systems forced by oscillatory 
inputs. It is shown that if periodic inputs are scaled by the same factor in frequency and amplitude, that 
given a certain assumption on average dissipation in the model, the long term behavior will be described 
by an averaged model involving mean and r.m.s. values of the input signal. This is a more-or-less direct 
consequence of the classical averaging theorem. In Section 3, a special class of mechanical systems models 
is considered. The models are obtained through a process of (Lagrangian) reduction and linearization 
about operating points. Such models, with oscillatory coefficients, have been treated extensively in the 
Russian literature. (See, for instance [11] and [30].) For the models which are of interest to us, it is shown 
that stable motions may be found in terms of a quantity we have called the averaged potential. Section 4 
employs Floquet theory to prove that the averaged potential may be used to identify stable motions under 
oscillatory forcing even when dissipation is not present in the model. 

The use of energy methods for analyzing the stability of mechanical systems has been pursued recently in 
a number of problem areas arising in the mechanics of rotating systems (for example, [3], [8], [18], [24], 
[26], and [27]). In [8] and [24], energy methods are employed to design control laws for the stabilization of 
rotating rigid bodies. While our idea of using the averaged potential for studying the stability of systems 
with inputs is fairly recent (See [4], [5], and [7] for details on the averaged potential), there are antecedents of 
the concept in the analytical mechanics literature from the nineteenth century. Omohundro ([22]) describes 
efforts by Helmholz, Hertz, and others to develop a "kinetic theory of matter" wherein potential forces 
would arise from "hidden or forgotten degrees of freedom." Omohundro interprets forces attributable to 
such motions in terms of quantities he calls pseudo-potentials. Percival and Richards ([23]) briefly mention 
such quantities under the name effective potentials. 

2. BILINEAR SYSTEMS 

Consider the bilinear control system 
m 

x = (A + Y,<t)Bi)x, (1) 

where A,B\,.. .,Bm are constant n x n matrices, x(t) G Rn. For much of the analysis which follows, we 
shall only assume that the u,-(-)'s are piecewise continuous functions defined on some interval [0,tj) where 
0 < tj < oo. This serves to distinguish our results from some of the published work on classical averaging 
where it is assumed that the forcing is continuous ([25]) or even C2 ([14]). We shall also assume a strong 
nilpotency condition, namely that B{Bj = 0 for all i,j = l,...,m. While this might appear to limit the 
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generality of our results, we shall find that the condition is always satisfied for a wide class of systems 
arising from models of mechanical system dynamics. 

Certain elements of the control theory of such systems are well developed (see, e.g. [21]), but there are 
few general methods for design of control laws to achieve particular motion objectives. Exceptions to this 
include the optimal control laws studied in [2] and also the use of oscillatory inputs to approximate desired 
motions in [15] and [29]. While systems such as (1) are not amenable to treatment using the methods 
of [15] and [29] due to the presence of the "drift" term A, these results nevertheless suggest studying the 
effect of applying oscillatory inputs to (1). 

Assume üi(-),..., üm(-) are periodic functions with (common) fundamental period T > 0. In order to apply 
classical averaging theory to study the motion of (1) we consider the effect of increasing the frequency of 
the forcing. Specifically, we study the dynamics of 

x(t) = (A + 5^«,-(o;<)5t-)x(0 

as u becomes large. The analysis proceeds by scaling time and considering r = ut. Let Z{T) = x{t). This 
satisfies the differential equation 

^ = -(A+x;fi.-w5I->. (2) 
(IT      to ^ 

Assuming w > 0 is large, and writing e = £, we see that (2) is in a form to which classical averaging theory 
applies. 

Proposition 1  Consider the bilinear system (1) with «,(•) = ü,-(-) where for i = 1,..., m, ü,-(-) is contin- 
uous on 0 < t < tj < oo and periodic of period T<</. Let 

1   fT 

ui = 7f \    w«'(*) di> 1 Jo 

and let y(r) be a solution of the constant coefficient linear system 

y(T) = e(A + J2üiBi)y(T). (3) 

If ZQ and 2/o ß^ respective initial conditions associated with (2) and (3) such that \ZQ — j/o| = 0(e), then 
\Z(T) — y(r)\ = 0(e) on a time scale T ~ \. 

This proposition is a straightforward application of classical averaging theory; see [25]. Unfortunately, it 
doesn't capture the full range of behaviors that are possible with different scalings of the magnitudes of 
the inputs ü,-. For instance, consider the following second order system 

x(t) + (a + ßu(t))x(t) = 0. (4) 

When written in first order form, this is a special case of systems of the form (1). If we simultaneously 
scale the frequency and magnitude, u(t) H-> uu{ut), the first order form of (4) becomes 

x2 -a - ßuu(ut)   0/Va;2/' 



38 BAILLIEUL 

Hill's equation stability regions 

Figure 1: Stability of Hill's equation (4) with square-wave forcing (7). 

and direct appeal to Proposition 1 is not possible.   Nevertheless, re-writing the second order system in 
terms of the "slower" time scale r = ut and Z(T) = x(t), we obtain 

£z_ 
dr2 -2  + -U(r))2 

U! L) 
0. (6) 

When U(T) = COST, (6) is a standard rendering of Mathieu's equation (See, e.g. [28].), and in this case, the 
classical theory states that the origin is Lyapunov stable for sufficiently large ui provided a > — ^-. This 
result will appear as a special case of the theory to be developed in the remainder of the paper. 

Remark 1 The stability of (4) under periodic forcing has been most widely studied for the specific case 
u(t) = cost. There is growing interest in other types of inputs. (See, e.g., [19].)   For square wave input 

u(t) = •1, 
1, 

if 0 < t < |; 
if \ < t < 1, (7) 

the regions in the (a,/3) parameter space for which the origin (x,x) = (0,0) is a stable rest point for 
(4) are depicted in Figure 1. Qualitatively, this picture is quite similar to the classical rendering of the 
stability regions corresponding to the forcing u(t) = cos 2. The boundary of the left-most stability region 
is approximately parabolic near the origin and satisfies a = —j%ß2 + °{.ß2)- (Cf. [28], pp. 208-213.) 

A particularly simple approach to averaging systems with high-frequency and high-amplitude inputs in- 
volves making a time-varying change of coordinates which replaces the inputs «,-(•) with their integrals. 
The coordinate transformation will turn out to have an especially simple form in the case that B{Bj = 0 
for all pairs i,j = 1,.. .,m. Moreover, this condition will always be satisfied by the mechanical systems to 
be considered in the next section. We shall now further suppose that each «;(•) is a zero-mean periodic 
function of period T. This assumption involves no loss of generality. If we wish to study a system (1) in 
which the mean of the inputs u,-(-) is not zero, we may write U{(t) = ü,- + Vi(t), where ö,- = ^ f0 U{(s) ds. 
The dynamics of (1) will be the same as for the system x = (A + J2v,i^i)xi where A = A + Y^üiBi and 
which satisfies our assumption on the mean of the inputs. Letting 

Vi(t) = /   Ui(s)ds, 
Jo 
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it is easy to see that each u,-(-) is also a periodic function of period T. Given that x(-) satisfies (1), we 
transform to new coordinates q(-) using the formula 

?(<) = (/-£*>.■(*) W)- (8) 

A straightforward calculation shows that 

q(t) = (A + 5>t-(i)[A,5,-] -'EviWvjWBiAB^qit), (9) 

where [i4,5,-] denotes the usual matrix Lie bracket AB{ - B{A. 

The utility of changing to ^-coordinates follows from the fact that in the slow time scale r = ut, (9) 
assumes a form to which classical averaging theory applies, provided the scaling factor u is taken to be 
sufficiently large. 

Theorem 1   Consider the dynamical system 

m 

i=[A + ^uul(ut)Bl)x, (10) 
! = 1 

where for i = 1,..., m «;(•) is a piecewise continuous periodic function with period T and mean 0, and for 
i,j = l,...,m, BiBj = 0. Lete - ~j. Define for each i = l,...,m, the periodic function Vi(t) = f0 Ui(s)ds, 
and let 

TJ 

i rT 

i /•-< 
V'~T Vi(S)ds> 1=1,... ,171 

, m. 
l   r1 

(?ij = — /     Vi(s)vj(s) ds,        i,j = 1,. 

Let y(t) be a solution of the constant coefficient linear system 

y=(A + T,(Wi ~ <rn)BiAB3) y. (11) 
hi 

Suppose the eigenvalues of (11) have negative real parts. Then there is a t\ > 0 such that for OJ > 0 
sufficiently large (i.e. for e > 0 sufficiently small), if x0 and y0 are respective initial conditions for (10) 
and (11) such that \x0 - yQ\ = 0(e), then \x(t) - y(t)\ = 0(e) for all t>tx. 

Proof: Given the system (10) and the functions V{(-) defined in the statement of the theorem, define the 
new state coordinates 

m 

t=i 

in terms of which the dynamics are expressed by (9). Changing to time variable r = ut and state variable 
Z(T) = q(t), we have dynamics 

dz 
~aW 

= e(A + Y,Vi(T)[AtBi] -^Vii^Vj^BiAB^z. (12) 
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It is this system to which the averaging theorem ([25], Theorem 4.2.1, p. 71) applies, with the corresponding 
averaged dynamics given by 

£: = e{A + E^[A' Bl] -J2aiJBiABj)*- (13) 

Specifically, if ZQ» ^O 
are respective initial conditions of (12) and (13) such that \z0 — zQ\ — 0(e), then 

\Z(T) - Z(T)\ — 0(e), on a time scale r ~ K If the spectrum of (13) is in the left half-plane, then the 
conclusion is valid on the time interval [0,oo). 

Reverting to the original time-scale, and writing q(t) = z(ut), we find that q satisfies 

? = (A + E ^ B^\ ~ E °ijBiABj)q{t), 

and given |g(0) - g(0)| = 0(e), it follows that \q(t) - q(t)\ = 0(e), and provided the spectrum is in the left 
half-plane, this is valid on the time scale [0,oo). 

Let x(t) = (I + ^ZviBi)q(t). This satisfies the constant coefficient linear differential equation 

x = (A + 2j(^jUj — (Tij)BiABjjx. 

Noting also that x(t) = (I + J2 vi(t)Bi)q(t), we write 

\x(t)-x(t)\  =  |(/ + Ev.-5.-M0-(^ + E^«)?(0l 

<  \q{t) - q(t)\ + 15>5«-(?(0 - ?(0)l + E K - ^ll5«-9(0l 
<    MMt)-m\ + M2\q(t)l 

where Mi = su-p0<t<T(l + \vi(t)Bi\) and M2 = suPo<t<r(X] \vi(t)-Vi\\Bi\). The norms of vector quantities 
in this case are the ordinary finite dimensional Euclidean norms, and the matrix norms are the induced 
norms. Under the hypothesis that the spectrum of (11) lies in the left half-plane, it is also the case that the 
spectrum of (13) lies in the left half-plane. Hence, from the above, \q(t) - q(t)\ = O(e), for e > 0 sufficiently 
small. Moreover, if the eigenvalues of (13) are in the left half-plane, it follows that the equilibrium point 
q = 0 is asymptotically stable, and \q(t)\ —> 0 as t increases. This proves the theorem. □ 

Remark 2 Although Theorem 1 is of some interest in characterizing the response of bilinear systems 
to periodic forcing, a limitation may be uncovered by re-examining (5). Again suppose u(t) = cost. 
Then T = 2ir and v(t) = sin/.   Hence v = 0,a = 1/2, and the coefficient matrix appearing in (11) is 

( _        I/?2    n ) • Since the eigenvalues are purely imaginary, Theorem 1 does not apply.   On the other 

hand, as remarked earlier, the origin is stable in the sense of Lyapunov for all sufficiently large values of u. 
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3. LINEAR LAGRANGIAN SYSTEMS 

Consider a Lagrangian control system prescribed by a Lagrangian 

1 1 m 

L(x, x; v) = -xTMx + xTSx - -xTKx + ^ ViiTCiX 
2 l %=\ 

where M, K, and C; are n X n symmetric matrices with M and K positive definite, and S is an n X n 
skew-symmetric matrix. (See [21] and [7] for details on Lagrangian control systems.) The corresponding 
dynamics are 

Mx + 2Sx + Kx + J2 Ui(t)dx = 0 (14) 

where Ui(t) = ii(t) for i = 1,..., m. 

Remark 3 Linear Lagrangian systems arising from a class of super-articulated mechanical system models. 
Linear Lagrangian control systems of the form (14) arise as partially linearized models of so-called super- 
articulated mechanical systems. (See [4]-[7] for an introduction to super-articulated mechanical systems.) 
The starting point for a study is a Lagrangian L(q, q) defined on the tangent bundle TQ of the configuration 
space of a mechanical system. Suppose that the generalized coordinates can be partitioned as q = (91,92) 
and that exogenous generalized forces (control inputs) can be applied to only the coordinates q2, while the 
coordinate variables comprising q\ evolve freely.  Specifically, we assume the equations of motion for the 
system take the form 

d_ÖI_0£ (15) 

dt dq\      dq\ 

d dL      dL ,-,-N, 

:777>^ - TT" = u' (16) 
dt Oq2      oq2 

where u is a p-vector of controls, and we suppose the mapping q2 •->• §^ is invertible. For the purposes 
of the model, we assume that the components «;(•) are each piecewise analytic functions on [0, 00). For a 
wide variety of interesting physical systems, the terms on the left hand side of (15) depend explicitly on 
the generalized velocity q\ but not on the generalized coordinate q2 itself. It is to such models that we 
direct our attention. 

The problem we wish to consider is that of specifying u(-) to steer the state (qi,qi) in some desired 
fashion. While it is natural to view the velocities q2 as intermediate variables which transmit the effects of 
the controls to the states via the coupled equations (15)-(16), it will more be useful in what follows to view 
the variables q2 themselves as inputs, with the states {qi,qi) being determined by (15) and the required 
generalized forces u(-) determined by (16). 

To treat a fairly general class of systems which will lead to models of the prescribed type, we further 
partition q2 = (921,922), and assume that the velocities 921 are held to certain constant values while 
922 = v(t) is assumed to be a vector of inputs, trajectories of which may be chosen to control the system. 
By holding certain velocities (q2\) constant, it will be seen that gyroscopic coupling is introduced among 
the components of the states (91,91). Physical examples of such coupling may be found in multibody 
system in which certain component bodies are driven to turn at a constant angular velocity relative to 
some body coordinate system. The mechanics of systems with gyroscopic coupling have been studied by 
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a number of researchers. See, for example Bloch, et al. [9]. For simplicity of exposition, we shall assume 
g21 = l = (l,...,l)T. 

Suppose the Lagrangian has the form L(q,q) = \qTM{q)q - V(q) where M(q) may be partitioned con- 

formably with (<7i\ 921,922) as 

/Mu(qi)    M12{qi)    M13(<7i)' 
M(q) = \ M&fa)    M22{qx)       M23 

\M[3(qi)       Ml M33 

We assume 91 is n-dimensional, as is a; in (14), q2X is ^-dimensional for some v > 0, and 922 is m-dimensional, 
the dimension of the control input space in (14). Then (15) may be rendered 

Ttlh   ~^qf + iMqi) " J°fa)Tta + E[**(0^i*3(?i) + Vk(t)(Jk(qi) - J*(?i)r)?i] = 0 (17) 

where LR is the reduced Lagrangian 

1  T 
LR(qi,qi) = 2?i ^n(9i)9i - Vß(?i) 

with VR(9I) = F(9i) - ^lTM22(9i)l- Jo(?i) is the n x n matrix whose (i, j)-th entry is the partial 
derivative with respect to qj of the sum of entries in the i-th row of the sub-block M12(9i), M^3(qi) is the 

fc-th column of the sub-block M13(^i), and Jk(qi) is the Jacobian matrix -JT
11

*   ■ Suppose qw G R" and 
• oqi  m 

(9i, 9i) = (9io, 0) is a rest point of (15) for all values of q2. If we expand the dynamics (17) about the rest 
point and retain terms which are jointly first order in 91,91, we obtain 

Mq + Sq + Kq + Y\vk(t)Ckq + vk{Ck - C%)q] = 0, (18) 

where q =  6qx is the variational term, M = Mu(q10), K =  ^^(910), S = J0(9io) - Jo(qio), and 

Ck = -5^(910). 

Note that in (18), the matrices Ck are not necessarily symmetric. The presence of terms Ck — Cj. / 0 
indicates a form of "inertial coupling" between the inputs v and the states which is not present in (14), 
and systems of the form (18) thus appear to be more general and to include (14) as a special case. Indeed, 
the case in which the above linearization leads to symmetric coefficient matrices C; is somewhat special, 
although it includes a number of interesting sub-cases including systems in which dim qx = 1. There 
appear to be some fundamental differences between the cases of symmetric and non-symmetric C,'s. While 
a parallel theory of systems with non-symmetric C,-'s as described in this section (where the models include 
the effects of dissipation) could be described, we shall not do this. The results of the following section do 
not generalize as easily, and we shall conclude the paper with a remark detailing the differences between 
the two cases. D 

Example 1 A well known physical phenomenon which may be used to illustrate our theory is stabilization 
of the inverted pendulum by means of oscillatory forcing of the point of suspension. (Cf. Arnold et aL, [1], 
pp. 152-153.)   The equation for this system is 
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where £ is the length, g is the gravitational acceleration, and y(t) is the vertical height of the point of 
suspension at time t. While y could be viewed as a physical coordinate, we shall instead view y as a 
control input, which we rename u. (0,6) = (TT,0) is a rest point for the system for all choices of u, and 
carrying out the above linearization, (14) specializes to 

e-(i±l)9 = 0. (19) 

D 

To make contact with the preceding section, we rewrite equation (14) in first-order form: 

+£><o(_„v S)(::)       («» 0 /       Wn\,A    ,J       0 0\ fXl 

M~lK    -2M-*S    \x2rHA,\-M-xCi    OJU 
i=i 

where x1 = x and x2 = i. One would expect that systems of this form do not meet the hypotheses of 
Theorem 1, since such models apply to conservative mechanical systems. It is fairly standard, however, 
to introduce dissipation to such models by means of a quadratic (Rayleigh) dissipation function \xTDx, 
where D is a positive definite symmetric matrix. With such dissipation included (20) is rewritten as 

For i - 1,..., m, let «;,-(•) be a piecewise continuous periodic function of period T, having zero mean, and 
consider the dynamical system (20) (resp. (21)) forced by u,-(i) = uw{(ut) for some u > 0. Both (20) and 
(21) have the form (10). The averaged system corresponding to (21) takes the form 

\yl) = {-M-iR + Zi,j(vii>j - <rij)M-1CiM-1Cj    -M~1(2S + D)) \y2) ' (22) 

(Cf. (11).)   Note that this system is associated with the constant coefficient Lagrangian 

L(y,y) = \fMy - ±xT
(K + ^ij ~ vivj)CiM-1Cj)y + yTSy, 

with Rayleigh dissipation function \yJDy. The quantity 

plays the role of a potential and we are lead to the following. 

Definition 1 For the Lagrangian system (21) with periodic inputs u,-(t) = wwj(wt) as prescribed above 
and given the related averaged quantities v{ (i = 1,..., m) and a^ (i,j = 1,..., m) as defined in Theorem 

1, we define the averaged potential 

VA(x) = ]-xT{K + ^(atj - ViV^QM-'C^x. 
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Remark 4 It is easy to see that this quantity coincides with the averaged potential defined previously for 
mechanical systems in [7] 

As in [7], the averaged potential may be used to determine the stability characteristics of the dynamical 
system (21) under the influence of oscillatory forcing. The following theorem gives the result more precisely. 

Theorem 2  Let w;(-) be a piecewise continuous periodic function of period T and mean 0 for i = 1,..., m. 
Define for each i = 1,..., m, the periodic function V{(t) = f0 W{(s) ds, and let 

T 

1   f1 

— I    Vi(s)ds,       i = l,...,m 

1   fT 

°ij = -j, I    Vi(s)vj(s) ds,       i,j=l,...,m. 

Suppose D is positive definite, and let the system (21) be forced by the oscillatory inputs U{{t) = uiWi(ut) 
for i = 1,..., m. If the averaged potential 

VA(X) = \xT(K + ^K- - ViV^dM-'C^x 

is a positive definite quadratic form, the state (.x'i,X2) = (0,0) is (asymptotically) stable for all sufficiently 
large u. 

Proof: Suppose the averaged potential is positive definite. Then the "energy" 

E = ^ylMy2 + -2/f (A' + £(<r,j - ViV^dM^C^yi 

is a positive definite quadratic form on (j/x, ?/2)-space.   Differentiating this along trajectories of (22), we 
obtain 

d „ T ^ 
diE = -y?Dy>- 

Thus E serves as a Lyapunov function, and invoking LaSalle's invariance principle, all trajectories of (22) 
approach the set of points where t/2 = 0. Since the only solution to (22) with y2 = 0 is (2/1,2/2) = (0,0), we 
conclude that the origin is an asymptotically stable equilibrium. Hence the eigenvalues of (22) must lie in 
the left half-plane, and the conclusion of the theorem follows from Theorem 1. □ 

Theorem 2 relies on classical averaging theory to establish the connection between the averaged potential 
and stability of forced systems. It will be shown in the next section that the result is geometric in nature, 
and the stability analysis may be applied to conservative systems as well. 
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4. A GEOMETRIC THEORY OF AVERAGING 

As pointed out in [7], the averaged potential provides useful information about the stability of motion 
even in the absence of dissipation. A natural tool in this study is Floquet theory, and while it may be 
inconvenient to analyze an explicit representation of the time-T mapping associated with a system of the 
form (10), the following lemma provides a useful approximation. The hypotheses adopted in this section 
are essentially the same as in the preceding two, but no assumptions are made regarding the asymptotic 
stability of the origin for the averaged system. 

Lemma 1  Consider the dynamical system 

m 

x = (A + J2u)wl(ujt)B1^x, 

where for i = 1,..., m w;(r) is a piecewise continuous periodic function with period T and mean 0 and 
continuous from the right for all r e [0, T]. Suppose further that for i, j - 1,..., m, B{B2 - 0. Lei e = K 
Define for each i = 1,..., m, the periodic function Vi(t) = f0 tu;(s) ds.  Then 

$£(T, 0) = / +  /    exp [- Y, ViW-Bi] • A ■ exP [H vi(v)Bl\ dr]-e + o(e) 

is the transition matrix of 

^=(A€ + Y,Mr)Bi)y{T). (23) 

Proof: Let r = ut and define y{r) = x(t). If §t(T,s) is the transition matrix of the system (23), then 

with the derivative being taken from the right at points of discontinuity of any of the wt's. Differentiating 
both sides with respect to e, we find 

g| = AUr, s) + (Ae + £ u,,-(r)fi,-) ^(r, s). 

It follows from the variation of constants formula that 

^(r, s) = *e(r, s)^f{s, s) + ^ $£(r, rf) A *e(r,, s) dr,. 

Since %^.(s,s) = 0, the first term on the right-hand side of this equation vanishes. 

Letting c = 0, we see that $o0",s) is just the transition matrix associated with the coefficient matrix 
££Li Wi(r)Bi, and under the assumption BiBj = 0 for all i,j, we may write 

$o(r, s) = exp [J  J2 wi(y)Bi drl 
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Hence 
<9$ 
ße .     (^s) = I' exP [ I' E wi(OBi dt]-A- exp [ f J2 MOBi dA drj. 
Ut   U=0 Js LJrj J lJs    ^~^ i 

Note also, since we have assumed each w,-(-) to have zero mean, we have $o(T, 0) = I. The formula for the 
time-T map may thus be given in terms of a series expansion with respect to e: 

$£(T,0)   =   I + JQ   exp[/   YtVtOBidtl-A-explJ^WiiOBidtldri-e + oie) 

=   1 + J    exp [- J2 Vi(r})Bi\ -A-exp [^ V1(J1)B{'\ dn ■ e + o(e). 

This proves the lemma. D 

For linear Lagrangian systems without damping, the expansion derived in Lemma 1 corresponding to 

X2 \-M- * -2M-.5)(:;)+E-.M)(_/1CI »)(::;)     <«> 
! = 1 

takes the form 

$frm = ( i-ZviM^dTe iTe \ 
^   'u;      \-M-\K-2J2vlSM-lCl + j:°1jCiM-1CJ)Te   I - 2M~1S + £ ViM^dTe) + °l6j" 

(25) 
The stability analysis of (24) will be carried out in terms of iterates of the time-T transition matrix, 
$£(T,0). More specifically, it follows from Floquet theory that the origin will be stable under the motion 
(24) when iterates of $£(T,0) are stable. (See Guckenheimer and Holmes, [14], pp. 24-25, for a discussion 
of the relevant Floquet theory.) 

Lemma 2 Let $e(T,0) be the transition matrix associated with (24) via equation (25), where T is the 
common fundamental period of the u?;(-)'s. If $C(T, 0) has distinct eigenvalues lying on the unit circle, 
then there is a symmetric positive definite matrix M such that 

$c(T,0)TM$c(T,0) = M. (26) 

Conversely, if $£(T, 0) leaves a symmetric positive definite M invariant as in (26), then $£(T, 0) has 
eigenvalues on the unit circle, and iterates <bc(T,0)n remain bounded as n —► 00. 

Proof: If all eigenvalues of $(T, 0) are distinct and lie on the unit circle, there is a nonsingular matrix P 

such that A = P-1$(T,0)P is block diagonal with 0's and 2 x 2 blocks of the form ( C°Sf ~ smf) on 

the diagonal. Now AAT = I, and from this it follows that §(T,Q)TM$(T,0) = M where M'1 = PPT. 

On the other hand, if $£(T, 0) leaves invariant a symmetric positive definite M, let M1/2 be the unique 
positive definite symmetric square root of A4. It is easy to see that A41/2$t(T, 0)A4-1/2 is an orthogonal 
matrix. Hence A41/2$e(T, 0)A4-1/2 has eigenvalues on the unit circle, and the same conclusion for $£(T, 0) 
is an immediate consequence. D 

The remaining results complete our stability theory by establishing conditions under which <f?£(T, 0) given 
in (25) leaves a symmetric positive definite quadratic form invariant. 
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Lemma 3 For the system (24) evolving in R2n, let $£(T,0) as given in (25) be partitioned into four nxn 

blocks .,    . 

V*21      $22/ 

Suppose $<• is symplectic, satisfying $f J$£ = J, where J = ( ) is the standard symplectic bilinear 

form on K2n.   Then $e also leaves a symmetric bilinear form M invariant.   This form may be explicitly 

written T       T 
/-*„-#&   ^-^2\ (2?) 

Proof: The proof is a straightforward verification that the linear (in M) equation $T' M§ = M is satisfied. 
D 

Theorem 3 Consider (21) and the corresponding averaged system (22) (with D = 0). Assume that the 
inputs Ui(t) = uwi(u>t) and the averaged quantities v, and a^ are as in Theorem 2, and suppose further 
that 5 = 0. If the averaged potential is positive definite, the origin is stable in the sense of Lyapunov under 
the motion of (20) provided u is sufficiently large. 

Proof: Change variables to Zj = M^X{ where Mi is the unique symmetric, positive-definite square-root 
of the matrix M. The equation (20) becomes 

22/      \-K    0/ \z2/     j^{  l     \-Ci    0/ \Z2 

where K = M~2.Z1.M~2, C{ = M'^CiM'^. Letting Ui(t) = ojWi(ut), the time-T map $e of Lemma 1 for 
this system takes the form 

*<(r.°> = (o ?) + (-(*;£&«;,.) E^)'T£+O(E)' 
We must find necessary and sufficient conditions under which it is possible to to solve §jM$e = M for a 
symmetric, positive definite M. Since all coefficient matrices appearing in (28) belong to the symplectic 
Lie algebra sp(n,K), $e = $£(T,0) belongs to the group of 2n X 2n symplectic matrices, which satisfy 
$~J$ = J. Hence from Lemma 3, we conclude that $e(T,0) also leaves the symmetric quadratic form 
(27) invariant. Using this explicit representation, we write 

Me = ( R + Zai&Öi    " ^'riÖi) 2Te + o(e). 
\      -l^Vid 1       J 

Now Me will be positive definite for all sufficiently small e (large u) precisely when the the matrix 

K + E^iACj    -EviCi 
-ZviCi I 

is positive definite. This is more easily analyzed in the coordinate system 

ii\ _ //    IZviCA (z{ 
M)      V0        /     )\Z2. 
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with the transformation from z to z changing the expression of the matrix in question to 

K + £ (Vij ~ V{ VJ ) C{ Cj    0 
0 / 

The positive definiteness of this matrix is clearly equivalent to the positive definiteness of the sub-block 
K + J2(aij - ViVj)CiCj. This matrix is obviously positive definite if and only if the z-coordinate averaged 
potential matrix K + YKaij - ViVj)CiM~lCj is positive definite. This proves the theorem. D 

Remark 5 The assumption that 5 = 0 appears to be needed for the construction of the invariant quadratic 
form in terms of which we determine the stability of this system. Beyond this, however, it has been shown 
that the stability of linear systems with gyroscopic terms is ambiguous. In particular, it was shown in [6] 
and also [9] that in cases where K (or K+ J2(°~ij ~ ViVj)CiM-lCj) is not positive definite, the system (14) 
will have right half plane eigenvalues if small amounts of dissipation are formally introduced, as was done 
in Section 3. Thus, the conditions of the theorem would stand no chance of being necessary and sufficient 
in the presence of non-zero S. 

Example 2 (Example 1, reprise.) In Example 1, the linear Lagrangian system corresponding to the 
inverted pendulum with oscillatory support, was written (19): 

*-(2±i)« = o. 
Identifying the standard terms in (14) for this example we have K = -g/£, M = 1, and C = -l/l. For 
the oscillatory input u(t) — uj2sm(ui), we have v = 0 and a2 = w2/2. The averaged potential for this 
system is (-^ + jp)62. The criterion for stability is that the point 6 = 0 is a strict local minimum of this 
function, and this will obviously be the case precisely when u2 > 2g£. This, of course, coincides with the 
classical stability result, (Cf. [1], p. 153.)   for this problem. D 

Example 3 Consider the electric circuit in Figure 2. The current in the circuit satisfies the second order 
differential equation 

L^I(t) + u(t)I(t) = 0 

where u(t) depends on the position of the switch. Specifically, suppose, the switch obeys a periodic 
switching law 

ri/Ci,    \f0<t<\h; 
u(t) = I l/C2,   if Xh <t< h, 

I Extend to be   /z-periodic, 

where 0 < A < 1 determine the fraction of each duty cycle the switch is closed to the left. Following the 
methods of the paper, we can write down the averaged potential for this system. This is reflected in the 
evolution equation for the averaged system: 

^I+(ü/L + ß2/L2)I = 0, 

where 

^ + ^   and    ß2 = a2 - v2 = ^^h2(l/C2 - l/d)a.G 
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Figure 2: A switched LC-circuit. 

In this case, the averaged potential together with the mean of the input reflects the effective capacitance 
of the switched circuit. 

5. CONCLUDING REMARKS ON CONNECTIONS WITH PROBLEMS IN MECHANICS 

While the theory we have developed applies directly to provide an approach to stability analysis for classical 
bilinear control systems, and thus applies to models describing electrical networks, it has also been shown in 
Section 3, that certain models arising Lagrangian mechanics can also be analysed by our averaging method, 
and in particular stability could be analyzed in terms of an energy-like quantity call the averaged potential. 
In Section 3, we imposed a certain symmetry restriction on the mechanical systems being considered. We 
conclude by discussing how this restriction can be relaxed. 

Remark 6 (The case of non-symmetric C{.): In the case of a system of the form (18), in which the C;'s 
are not symmetric, we may nevertheless apply the coordinate transformation (8), which in this case is 
rendered , .    .     . 

When 5 = 0, the dynamics, written in terms of g-coordinates evolve according to 

0 SHU"-*    +*> -M-'d 0      \   , ^        ( 0 0 
M-'CTJ+^ViVj\M-1CfM-1Cj    0 

hj 
Ail      I\-M   'A     0 J   ' ^-r1"' V       0 

Averaging the coefficients over one period and applying the "inverse" coordinate transformation, 

I 0 
-Y,ViM-ld    I 

the "averaged system" dynamics take the form 

0 
-M-\K + E(^i - ViVi)CjM-xCj)    -M-:(£ vi[Ci - Cj)) 
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The quadratic form defining the averaged potential for this system is thus seen to be K + Yl{aij ~ 
v;Vj)CfM~1Cj. If this is positive definite, stability results along the lines of Theorem 2 may be ob- 
tained for the case in which a positive definite damping term (associated, say, with a Rayleigh dissipation 
function as described in Section 3) enters the dynamics. For the case in which there is no dissipation 
present, the constructions presented in Section 4 are less straightforward, and the stability theory for the 
case of non-symmetric C,-'s remains incomplete. □ 

Remark 7 (The relationship with earlier work on the averaged potential.) In [7], we introduced a more 
general version of the averaged potential aimed at analyzing the motions of a large class of classical me- 
chanical systems. For this larger class of systems, it can be shown that the results of the present paper 
may be applied directly to linearizations of the dynamics about rest points coinciding with local minima of 
the averaged potential as introduced in [7]. A geometric averaging theory of mechanical system responses 
to oscillatory forcing in more general settings (e.g. capable of treating the "hovering" motions identified 
in [7]) remains to be fully developed. It also remains to explore the role of energy methods in developing 
a constructive controllability theory along the lines of [10]. 
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