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Chapter 1 

INTRODUCTION 

1.1    Introduction 

The primary concern in the analysis of dynamical systems is the determination and prediction of 
steady-state motions and their corresponding stability. A steady-state (or fixed point in state space) 
is defined to be stable if the solution returns to this state after being perturbed from it. This point 
is locally stable if it is stable with respect to small perturbations and globally stable if robust to 
large perturbations. Consider the motion of a general dynamical system described by the following 
ordinary differential equation: 

i = f{z,n),    x£Rd (1.1) 

where x is the state vector and \i represents a collection of parameters on which the motion depends. 
These parameters may or may not depend on time. The vector function f{x,/j.) may contain both 
linear and nonlinear terms. Lyapunov showed that the local stability of a fixed point of Eq. (1.1), 
denoted by x, can be completely categorized by the equations of motion linearized about this point 
provided none of the eigenvalues have zero real part. 

The stability analysis of the system in Eq. (1.1) becomes more difficult when the parameter fi 
depends on a random process. Since most practical dynamical systems are subject to some form of 
noise, this situation cannot be ignored. The determination of conditions under which the resulting 
stochastic system is stable (in some sense) is of great interest to both researchers and practitioners 
in the area of machine and. component vibration as well as system reliability. 

There are several ways of defining the stability of a fixed point x in a stochastic system. The 
two most prevalent definitions are almost-sure stability and moment stability. If the fixed point is 
almost-surely stable, or stable with probability 1 (w.p.l), then as time tends to infinity, the state 
of the system approaches this equilibrium from all starting values except for those contained in a 
set of measure zero. This can be expressed in terms of probabilities as 

P{t!™  ll*(*;3o)-S||<£} = l (1.2) 

where e < 1. If Eq. (1.2) is linear, it is always possible to translate this fixed point to the origin, 
i.e. x = 0. Thus, for an almost-surely stable fixed point, as time progresses, the system response 
decays to zero. However, from the applications viewpoint, one may not be satisfied with such 
guarantees since such a process may still exceed some threshold values or may possess a slow rate 
of decay. Although sample solutions may be stable w.p.l, the mean square response of the system 



for the same parameter values may grow exponentially. For this reason, it is wise to also consider 
the behavior of the moments (of certain order) of the response over time. A fixed point is said to 
be stable in the pth moment if 

\\mE[\\x(t-xo)-x\\?] = 0 

The first portion of this research deals with the determination of the effect of adding parametric 
noise to linear mechanical systems for which the corresponding deterministic system is stable. 
Specifically, the almost-sure and moment stability for the resulting linear stochastic systems will be 
examined. Both two- and four-dimensional systems, parametrically excited by noise, are considered. 
The analysis in two dimensions considers general single-degree-of-freedom systems perturbed by 
noise. The results of this analysis can be applied to study the stability of any two-dimensional 
linear system in which the corresponding deterministic system is exponentially stable. In the 
four-dimensional case addressed here, the corresponding deterministic system is gyroscopic. The 
results obtained have a wide range of applications including rotating shafts (drive shafts, helicopter 
rotor shafts, etc.), pipes conveying fluid, moving belts (such as band saws) and cylinders in a 
cross flow. In the most realistic cases, these gyroscopic systems are subject to some type of noise. 
The methods developed through this research provide a means of determining the almost-sure and 
moment stability of these four-dimensional system as a function of the system parameters. In all 
cases, the amplitude of the noise is assumed to be small. 

While current research efforts are continuously providing a greater understanding of the be- 
havior of autonomous nonlinear dynamical systems, much work remains to be done in the area of 
deterministic nonautonomous nonlinear dynamics. In particular, the study of global bifurcations 
and the analytical prediction of chaotic dynamics in such systems is an area which is still evolving. 
Most realistic models of physical systems contain nonlinear terms in the ordinary (or partial) differ- 
ential equations governing the evolution of the states. In the study of the response and stability of 
nonlinear dynamical systems, the location and characterization of bifurcation points is of primary 
importance. A bifurcation refers to a qualitative change in the response of a dynamical system as a 
parameter passes some critical value. The parameter value at which this qualitative change takes 
place is the bifurcation point. 

The focus of the deterministic portion of this research is the study of the bifurcation behavior of 
nonlinear gyroscopic systems. In the absence of dissipation and nonconservative forces, a gyroscopic 
system is Hamiltonian. Throughout this work, it is assumed that the dissipation, imperfections 
and amplitudes of parametric excitations are small. Thus, one can treat these problems as weakly 
Hamiltonian systems. Most of the analysis is based on the recent work of perturbed Hamiltonian 
systems. Since in the Hamiltonian treatment, the momenta p and coordinates q constitute In 
independent variables, Hamilton's equations allow a much wider range of transformations than the 
point transformations. This enlargement of the class of possible transformations, which includes all 
Id independent variables p and q, is one of the important advantages of the Hamiltonian treatment. 

The study of the bifurcation behavior in a small region of state space surrounding the fixed point 
(or limit cycle) or in a small neighborhood of the bifurcation point is referred to as local analysis. 
In a local bifurcation, the stability of one fixed point or limit cycle is lost and a branching, or 
bifurcating, solution emerges. These local bifurcation scenarios arise in the dynamics governed by 
the variational equations. 

There are many phenomena which cannot be explained by local analysis alone. These solutions 
are, for the most part, global in the sense that they do not lie in the small neighborhood of state 
space or in a small neighborhood of the parameter at which the fixed point or the limit cycle 



goes through a local bifurcation. Recent results on persistence of quasiperiodic motions facilitate 
the development of global techniques to detect such complicated dynamics. It is imperative to 
understand the response, stability and both local and global bifurcation behavior of such nonlinear 
dynamical systems prior to their use as integral and reliable elements of mechanical systems. 

The analytical techniques developed in this research are used to predict the local and global 
bifurcation behavior of the dynamical system and estimate the nontrivial response in the post- 
critical regions. While these techniques seem to provide researchers with the ability to predict 
the behavior of many practical dynamical systems without the expense and delay of complicated 
experiments, the accuracy of the approximations (as well as that of the mechanical models). is 
not fully known. Before relying on the results of such modeling and reduction techniques in the 

. analysis of complex systems, it is imperative to verify the local and global behavior of simple 
(lower dimensional) dynamical systems through direct experimentation. Thus, the final phase of 
this research involves the design and construction of an experimental rig. This rig will serve as 
a test bed for direct experimental verification of results obtained from the various approximation 
techniques employed in the analysis of nonlinear differential equations. The theoretical results 
will serve as a guideline for locating stability boundaries and predicting post-critical behavior. 
The extent to which the theoretical and experimental results match will provide an insight into 
the accuracy of the mathematical models and theoretical approximations. The experiments will, 
in turn, guide the development and refinement of the theories developed to incorporate any new 
phenomena observed. 

1.2 Objectives 

The current research addresses both the stability and dynamics of mechanical systems in the pres- 
ence of deterministic as well as stochastic parametric excitations. The overall goal of this research 
is two-fold: 

• In the case of deterministic excitations, the primary objective is the development of techniques 
to detect the nonlinear behavior of a class of gyroscopic systems including experimental 
verification of theoretical results. 

• The second part of this investigation involves the formulation and development of methods 
to analyze the complex interactions between noise, stability, and nonlinearities inherent in 
mechanical systems. 

1.3 Impact of This Research 

The work performed under this grant will have direct impact on the design of advanced mechani- 
cal/structural components and system reliability. The following points highlight the primary con- 
tributions of the completed work: 

• analytical prediction of stability limits (or limits of "safe" operation), 

• analytical prediction of regions of parameter space in which chaotic motions may exist, 

• experimental verification of the accuracy of these predictions and 



• understanding of instability mechanisms necessary for development of techniques to control 
unwanted dynamics. 

The techniques developed throughout this research should provide a deeper insight into the dy- 
namics of more complicated systems and will, ultimately, lead to the design of more efficient and 
reliable components. 
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1.8    Outline of the Report 

In Chapter 2, conditions on the almost-sure stability of a general four-dimensional gyroscopic system 
subjected to parametric real noise excitation is examined. In the absence of noise, the system 
under consideration in Chapter 2 is critical and possesses two pairs of purely imaginary eigenvalues 
with non-commensurable frequencies. In this chapter, a perturbative technique is developed which 
involves solving a series of forward Kolmogorov equations to obtain higher and higher orders in 
the formal expansion for the invariant density. In this case, no restrictions on the structure of the 
stochastic terms are imposed and all possible singularities of the invariant density are examined. 
The results of the perturbative method developed in this chapter are applied to the prediction of 
lateral vibration instability in rotating shafts subject to stochastic axial loads and stationary shafts 
in cross flow with randomly varying flow velocity. 

Throughout this research, the dynamics and stability of a rotating shaft, one of the most funda- 
mental components of mechanical and power generating systems, will be the motivating problem. 
In Chapter 3, the partial differential equations of motion of the rotating shaft are derived. The 
dynamics and stability of this structure may be affected by a time-dependent force imparted by the 
action of nearby components. These inputs are included as time-dependent parameters in the equa- 
tions of motion of the component under investigation and may lead to large amplitude vibrations 
or chaotic motion. The partial differential equations are reduced to ordinary differential equations 
via a Galerkin approximation assuming only the first mode to be excited. These equations are then 
checked using the Rayleigh-Ritz technique. 

An investigation of the stability and local bifurcation behavior of the rotating shaft is carried 
out in Chapter 4. The method of averaging is applied to the Hamiltonian. This yields a set of 
autonomous differential equations governing the transverse motion of the shaft. The stability of the 
trivial (non-vibratory) solution is examined and the stability boundaries under various parametric 
resonance conditions are presented. These boundaries are given in terms of the amplitude and 
frequency of the parametric excitation. The post-critical nontrivial solution branches and their 
corresponding stability are also calculated. 



In one of the parametric resonance cases of Chapter 4, the system at criticality (and in the 
absence of dissipation) possesses two coincident pairs of purely imaginary eigenvalues. The linear 
system is in non-semisimple 1:1 internal resonance and the trivial solution loses stability through 
a Hamiltonian Hopf bifurcation. 

Chapter 5 describes The global dynamics of a shallow arch structure subjected to a spatially and 
temporally varying force is investigated under the conditions of principal subharmonic resonance 
and various conditions of internal resonance near single mode periodic motions. We describe two 
different mechanisms leading to chaotic behavior in the class of systems under consideration. The 
method of averaging is used to obtain the first order approximation of the system response for 
one-to-two internal resonance and a second order averaging procedure is used to study the system 
response under one-to-one resonance conditions. In the first part, a higher dimensional Melnikov 
type perturbation method is used to analytically show that the arch structure, in the absence of any 
dissipation mechanism, may exhibit chaotic dynamics in the sense of Smale horseshoe for one-to- 
two internal resonance case. These chaotic motions result from the existence of orbits heteroclinic 
to a normally hyperbolic invariant torus which corresponds to the hyperbolic periodic orbit in 
the averaged system. In this case, the presence of small dissipation causes the the phase flow to 
get attracted to the trivial solution. In the second part, the effect of dissipation is also included 
to study the global dynamics associated with one-to-one internal resonance case, where using a 
new perturbation technique (due to [48]) we show the existence of Silnikov type homoclinic orbit 
to a fixed point in the perturbed system, and consequently the chaotic behavior. The numerical 
simulations are also performed to confirm the theoretical predictions and hence the existence of 
complicated dynamics in the shallow arch system. 

Chapter 6 describes the set-up of the rotating shaft experiment. Finally, in Chapter 7, the results 
and contributions of this work are summarized. Suggestions for future research in deterministic as 
well as stochastic dynamics are also included. 



Chapter 2 

ALMOST-SURE ASYMPTOTIC 
STABILITY OF SYSTEMS 
DRIVEN BY REAL NOISE 

2.1    Introduction 

One of the primary concerns in the analysis of dynamical systems is the determination of the 
stability of the steady state solutions. This analysis becomes more difficult when these systems 
are excited by a stochastic process. The stability of a linear stochastic system can be defined in 
several ways. The weakest, or least conservative, definition is that of stability in distribution. A 
more conservative estimate of the stability boundary is described by stability in probability. Thus, 
if a system is stable in probability, it is also stable in distribution. The last two definitions of 
stability in the stochastic sense are stability in the rth mean and almost-sure stability, or stability 
with probability one. If a dynamical system excited by noise is stable according to either of these 
definitions, it is stable in distribution and in probability, as well. However, rth mean and almost- 
sure stability do not imply each other, i.e. a system can be almost surely stable while its 2nd 

moments grow exponentially. Kozin and Sugimoto [50], with extensions by Arnold [5], established 
a characterization between moment stability and almost-sure stability for linear Itö stochastic 
differential equations when the process is ergodic on the entire surface of the n-sphere. It was 
shown that the region of sample stability is the limit of the regions of rth moment stability for r 
approaching zero. 

Stability in the almost-sure sense is determined by the sign of the maximal Lyapunov exponent. 
It was shown by Arnold and Kliemann [6] that, for a linear system with stochastic parametric exci- 
tation, the Lyapunov exponents are analogous to the real part of the eigenvalue of the corresponding 
deterministic system. Thus, the maximal Lyapunov exponent yields the almost-sure asymptotic 
stability of the linear system. One can also define the stochastic analog of the imaginary part of the 
eigenvalue; the rotation number determines the asymptotic rate of rotation for the stochastically 
perturbed system. 

In this chapter, the maximal Lyapunov exponent and rotation number for a general four- 
dimensional linear system excited by noise are approximated. For the case when the noise is 
white, Khas'minskii [46] presented necessary and sufficient conditions under which the system is 
stable with probability one without explicit mention of the Lyapunov exponent.  The studies by 



Kozin and Prodromou [49] and Mitchell and Kozin [59] yielded results for second order systems 
and a complete examination by Nishioka [67] considered the effects of all possible singularities that 
may be present in a one-dimensional diffusion process. 

In the case of ergodic but non-white noise excitation, few results are available. The existing 
results are due to Arnold et al. [7] and Pardoux and Wihstutz [70]. A survey paper of 1991 by 
Pinsky and Wihstutz [71] summarizes the previous work on this topic. A more recent investigation 
was performed by Sri Namachchivaya [79] in which the almost-sure stability of dynamical systems 
under the combined influence of stochastic and harmonic excitation was examined. 

As in most of the studies involving multidegree-of-freedom systems reported to date, the an- 
alytical results in [79] were derived under the condition that only one mode is critical while the 
.remaining modes are strongly stable. This, however, is not necessarily true in all physical systems. 
For this reason, it is imperative to determine the almost-sure asymptotic stability of multidegree- 
of-freedom dynamical systems with more than one critical mode. The maximal Lyapunov exponent 
and rotation number for stochastically perturbed codimension two bifurcations have been calcu- 
lated via the method of averaging by Sri Namachchivaya and Talwar [82]. In [82], averaging was 
applied to obtain a set of approximate Itö equations for amplitudes and phases. However, in order 
to completely decouple the amplitude and phase equations, certain restrictive conditions on the 
manner in which the noise entered the equations were imposed. 

The focus of this chapter is to approximate the maximal Lyapunov exponents for a four- 
dimensional system with two critical modes perturbed by a small intensity multiplicative real noise 
process. The approach adopted here is the perturbation method developed by Sri Namachchivaya 
and Van Roessel [83]. Using this approach, no restrictions on the structure of the stochastic terms 
in the equations of motion are necessary to decouple the amplitude and phase equations. Thus, 
the results presented here are for a general four-dimensional system parametrically perturbed by 
a real noise process. The frequencies are assumed to be non-commensurable in order to obtain a 
unique invariant measure. Furthermore, to make the problem tractable, the infinitesimal generator 
associated with the noise process is assumed to have an isolated simple zero eigenvalue. 

Section 2.2 describes the formulation of the mathematical problem. General results for the 
probability density for all possible singular cases are presented in section 2.3 and the maximal 
Lyapunov exponent is evaluated in section 2.4 and the rotation number for each case in section 2.5. 
Section 2.7 summarizes the contributions of this research. 

2.2    Statement of the Problem 

The problem under investigation is a general two-degree-of-freedom mechanical system with two 
critical modes in the absence of damping. Physically, this represents a deterministic system at 
the point of a Hopf bifurcation. The addition of small dissipation shifts the eigenvalues of the 
deterministic system slightly into the left half plane. In the most realistic cases, all mechanical 
systems are acted on by noise. Depending on the mechanical parameters, the effects of this noise 
on a system near a deterministic bifurcation point may be catastrophic. The goal of this chapter 
is to determine the effects of small amplitude multiplicative noise on the almost-sure stability of a 
dynamical system near criticality. To this end, consider a linear stochastic system governed by the 
following equations of motion: 

x = Ax + ef($(t))Bx ,    x e R4 (2.1) 
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Appropriate scaling of the matrix A yields 

A = A0 - e2Ai 

where 

A0 = 

0 OJl 0 0 
-Ui 0 0 0 

0 0 0 w2 

0 0 -U>2 0 

and A-i = 

*1 0 0 0 
0 Si 0 0 
0 0 s2 0 
0 0 0 s2 

The matrix B is described by B = [bij] and the quantities Si and 82 are damping parameters. The 
matrix A\ describes the versal deformation of the deterministic linear system. In this analysis, it is 
assumed that the frequencies u)\ and u>2 are non-commensurable. The term £(£) is a small intensity 
real noise process defined on a smooth connected one-dimensional Riemannian manifold M (with 
or without boundary). The smooth function / : M —>■ R is assumed to have zero mean. 

Before proceeding, a brief description of some of the results of Oseledec's Multiplicative Ergodic 
Theorem [68], as related to four-dimensional systems, is necessary. Consider the linear stochastic 
system in Eq. (2.1) under the assumption that £(£) is ergodic. According to the Multiplicative 
Ergodic Theorem, the Lyapunov exponent of the solution of Eq. (2.1), x(t;xo), for the the initial 
condition XQ (XO / 0) is 

A(z0)=Hm j\og\\x(t;x0)\\ (2.2) 

where X(x0) takes on one of r fixed or non-random values Ai < ••• < Ar. Which A,- is realized 
depends on the initial condition XQ. The multiplicities of the Lyapunov exponents sum to the 
dimension of the system, n (in this case, n = 4). Associated with each A,- there exists a random 
linear invariant subspace Ei, known as an Oseledec space, such that E\ ©£?2© • ■ ■ © Er = Rn, with 

tÜioo t l0g " X(t; X°) "= Xi iff *(*''Xo) G Ei ^ {°* 

The dimension of each Oseledec space Ei is given by the multiplicity of the associated Lyapunov 
exponent, A,-. 

The effects of deterministic detuning and noise on the Lyapunov exponents of the system under 
consideration are depicted in Figure 2.1. In the absence of noise and detuning, all eigenvalues 
lie on the imaginary axis. The addition of negative detuning stabilizes the system. In this case, 
as shown, all Lyapunov exponents are negative. In the presence of both deterministic detuning 
and noise, generically one expects four distinct Lyapunov exponents. The maximum of these, Aj, 
determines the almost-sure stability of the stochastic system. 

The stability of the system described by Eq. (2.1) was studied by Sri Namachchivaya and Talwar 
[82] using the method of stochastic averaging to derive a set of approximate Itö equations for the 
amplitudes and phases. Using that method, it is necessary to impose certain restrictive conditions 
on the matrix B in order to completely decouple the amplitude and phase equations which was 
essential for the calculations. Employing the following notation 

Hij = &2i-i,2j ± hi,2j-i    and    jf- = b2i,2j ± &2i-i,2j-i 

these restrictions are given as 

HÜJ+ + HÜJ+ = 0    and    H+Jr2-H+J^ = 0 (2.3) 

11 



RJt 
1 

R.N. R.N. 

L.E L.E. L.E. 

(a) (b) (c) 

Figure 2.1:   Effect of detuning and noise on system stability:   (a) zero noise and detuning,  (b) 
detuning only, (c) noise and detuning. (R.N.= Rotation number, L.E.= Lyapunov exponent) 

and either 
ffii = ff2-2 = 0    or    J+=J+=Q (2.4) 

Examples of systems in which these conditions are satisfied include the double oscillator described by 
Sri Namachchivaya and Ariaratnam [80] and Ariaratnam and Xie [4] and problems with a symmetric 
B matrix. These conditions are also satisfied by the system considered by Sri Namachchivaya and 
Van Roessel [83]. In the present analysis, no restrictions on the structure of the B matrix are 
required to decouple the amplitude and phase equations. Thus, the results obtained here are for 
the most general case of Eq. (2.1). The analysis presented in this chapter is based heavily on the 
work completed by Sri Namachchivaya and Van Roessel in [83]. 

Let G denote the infinitesimal generator of £(£) in|Stratonovich form, i,e. 

o(0-M0| + i»>(fl^ 

The generator may be rewritten as 

G(0 = Xo(t) + t;Ex?(0 
»=i 

This is known as the Hörmander form for the differential generator. As in [83], assume that G has 
an isolated simple zero eigenvalue. This implies that u = constant is the only solution of Gu = 0. 
Consequently, the adjoint operator G* must also have an isolated simple zero eigenvalue. The 
results obtained from this analysis are applicable when the manifold M is of arbitrary dimension. 
For the case in which M is one-dimensional, the normalized invariant measure v(£) d£ satisfying 
the Fokker-Planck equation G*v(£) = 0 can be written in terms of scale measure and speed density 
as 

v(t) = rn(0[ciSh + C2] 
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where 

S(0 = f s(V)drj ,    m(fl = [^(O^O]'1 

•®—{-/3M 
The constants c\ and c2 are determined using boundary and normality conditions, respectively. 

The usual transformation, i.e. 

Z2t-i = ri cos fa ,   x2i = r.sin^i and />,• = log(rt)  ,   i = 1,2 

yields amplitude and phase equations of the form 

Pi = e2 \pi(<f>)] + e [Pi (e^-"'\ <(,)] f (£(*)) (2.5) 

fr = [ui + €%((/>)] + e [hi (c<">-«U)] / (£(*)) (2.6) 

In this form, the amplitude and phase equations are coupled by the presence of terms of the 
form e('>-") for i ^ j. Since e^'^ is always positive, one can introduce a one-to-one mapping 
e(Pj-Pi) = tan ßf Q e (o, IT/2). Thus, applying the following transformations to the original system 

xi = e^cos^cosö ,      x2 = -ep sin <f>i cos 0 

x3 = ep cos <fo sin 0 ,      i4 = -epsin<fosin 0 

yields the following set of equations for the amplitude p, phase variables {<t>i,<t>2, 0) and noise process 

P   =   £/(O9i(<£i,<£2,0) + £29i(0) (2.7) 

&   =   Ui + e/fOWi»^^3^!,^,*) (2.8) 
*   =   ef(Oq2(<t>i,<t>2,0) + e2q2(e) (2.9) 

de = MO*+*(o ° «w* (2.io) 
The explicit expressions for g;, £ and /i,-, (i = 1,2) used in Eqs. (2.7)-(2.10) are 

qi(4>i,4>2,6)   =   ■^(Jn-Jncos2<l)i-H^1sm2<f>1)cos2e 

+    2 ^22 _ ^2~2cos 2^2 - Hf2 sin 2<f>2) sin2 0 

+    2 [(•7il2 + J2i)cos(^i-^2)-(Jri~2 + J2"1)cos(^1 + ^2) 

+(#f2 - iy2~i) sin(& - <£2) - (#& + H+) sm(<f>i + (f>2)} cos0sin 0 

ji (0)    =    -^ cos2 0 - £2 sin2 0 

h(4>i,<f>2,e)   =    - (Hü - #+ cos 2<f>i + J- sin 2<£x) 

+    2 I^1"2 cos^1 ~ ^ ~ H™ cos(^ + fa) 
-jf2 sin(& - 4>2) + Jü sin(^! + <£2)] tan 0 
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M01>02,#)     =     2^22~ H^COs2(^2 + «722sin202) 

+     2 i^2"1 COS(,?i,1 ~ ^2) ~ ^21 cos(01 + 02) 

+J^i sin(0i - (f>2) + J2~i sin(0i + 02)] cot 0 

92(01, 02,0)    =    2 I"7» - Jii + Jn cos 20i + ffÄ sin 20! 

—«72~2 cos 202 - #22 sin 202 cos 0 sin 0 

+      2  [-J12 COS(0! - 02) + Ji2 COS(01 + 02) 

-tff2sin(0i - 02) + ^ sin (0i + 02)] cos2 0 

J-tl COS (01 - 02) - J^ COS(0X + 02) 

-H21 sin(0i - 02) - #21 sin(0i + 02)j sin2 0 

1 
+ 5 

ft(0)    =    (ft -S2)sin0cos6> 

Given the structure of the A\ matrix, it can be shown that hi = 0 for i = 1,2. 
The processes (01,02,0,0 are independent of the amplitude p and form a diffusive Markov 

process with associated generator 

2r2 

where, in general 

Le = L° + eL1+e2L 

= £>&+°«>' 
L'   =   /(f) 

-2   _ 

»=1 

For this particular Ai matrix, £2 = q2-§g. Next, define the function £?e(0i, 02, 0,0 to be the right 
hand side of Eq. (2.7) such that 

Qe = Q° + eQ1+e2Q2 

In the present analysis, Qc can be written in terms of /(0, ft and ft as follows: 

QC(01, 02, 0,0=^/(0*1 (01, 02, 0)+^VlW 

Then, according to Oseledec's multiplicative ergodic theorem [68], assuming the operator LE to be 
ergodic, the maximal Lyapunov exponent is given by 

rir/2   r     r2ir   /•2TT 

Ae = (Qff,Pe)=/     /  /    /   QV#!#2^ 
Jo     JMJO   JO 

d0 
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where ps is the unique ergodic invariant measure associated with the generator Ls, i.e. pe solves 
the Fokker-Planck equation given by 

L£V = 0 
provided the process £ is strongly elliptic. The strong ellipticity condition guarantees that there 
exists a smooth and everywhere positive invariant measure p£ on M. The condition for strong 
ellipticity is given by 

dimLA(Xi, ■ ■ ■, Xr) (£) = dimM   Vf e M 

where LA denotes the Lie algebra associated with the vector fields. 
Construct a formal expansion of the invariant measure, i.e. 

p'=p° + ep1 + --- + eNpN + --- 
Substituting this expansion and the expansion for LE into the Fokker-Planck equation yields the 
following sequence of Poisson equations to be solved for p°, p1, p2, ...: 

L°'p°   =   0 

.       L°y   =   -Ll*p° 
L°'p2   =    -LV-iV (2.11) 

This yields the following expression for the maximal Lyapunov exponent: 

Ae   =   (Q0,P°) + e[(Q\p0) + (Q0,p1)] + 

e2[(Q2,P°) + (Q\p1) + (Q°,p2)}+--- 
A proof that this expansion is, in fact, asymptotic begins with the construction of the adjoint 
problem LeF£ = Qe with Fs = F° + eFl + -- - + eNFN as in [7]. In this expression, F°,F1,---,FN 

are such that 
(L° + ehx + e2L2) (F°+eF1 + ... + eNFN) 

= Q*- (f + eq1 + • - + ^) +eN+1 {L*F
N
 + L2FN~l} + eN+2 {L

2
F

N
} 

The functions q°, q1, ■ ■ •, qN are independent of 0, fa and <f>2 and satisfy the equations 

L°F°   =   Q°-q° 

L°Fl    =   Q'-q'-L'F0 

L°F2   =   Q2-q2-L1F1 -L2F° 

L°FN   =   -qN - L1FN~1 - L2FN~2 

Next, define the truncated density pe = p° + ep1 -\ (- eNpN and assume v{£) is the marginal of 
both pe and pe on M. Employing Eqs. (2.11), the error introduced by truncating A£ at an arbitrary 
order iV > 0 is given by 

(Qs,Ps)-(Qe,Ps) = 

- sN+1 [(L1^^ L2FN~\f - f) + (LimpN + L2'pN-\F*) 

-{Q\P
N
)-{Q\P

N
-

1
)} 

- eN+2[(L2FN,?-F) + (L2'pN,F')-{Q2,pN) 
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Suppose that the functions p°,pl, ■ ■ -,pN and F^F1, • • -,FN are such that all inner products 
above are well defined. Since pe is unknown, one can assume that p°,p1,---,PN are constructed 
such that 

sup L1FN + L2FN~l   <Ki<oo    and     sup L2FN  < K2 < oo 

Applying the above estimate, it is clear that the expansion for a fixed N > 0 is a valid asymptotic 
expansion. These results are summarized in the following theorem. 

Theorem 1 Assume the operator U to be hypoelliptic and pe to be the unique ergodic invariant 
measure associated with the generator U, i.e. pe solves the Fokker-Planck equation given by 

L£'pe = 0 

Then, by constructing a formal expansion for pe and the function F£ such that the adjoint problem 
becomes L£F£ = Qe, the expansion for the maximal Lyapunov exponent can be written as 

\' = (Q',f)   =   <QV)+*[<QV> + <QV> 
C

2
[{Q\P°) + {Q\P

1
) + {Q°,P

2
) 

Moreover, this expansion is asymptotic provided 

sup ■ITPN LlF" + L2F 2rpN-l < Ki < oo    and     sup 2i?N LZF 

+ 
+ ••• 

< K 2 < oo 

Since Q° = 0, the expression for the maximal Lyapunov exponent reduces to 

\e = e(Q\p0)+e2[(Q\p°) + (Q\pi)] + ... 

where p° and p1 satisfy the Poisson equations above with the periodic boundary conditions 

P°(<f>u<f>2, 0,0 = P°(<t>i + 2ff, <t>2, 6,0 = p°((f>u 4>2 + 2TT, 0, o 

Pl(4>i,<l>2,0,t) = p1(<l>i+2ir,<t>2,O,t) = p1{<f>i,<l>2 + 2ic,O,$) 

Solving the 0(1) Poisson equation with appropriate boundary conditions and considering the non- 
commensurability condition on the natural frequencies yields 

where v(£) is the invariant measure satisfying G*v = 0. Note that for arbitrary F(0), the inner 
product {Ql,p°) = 0 due to the periodic boundary conditions on <f>x and <f>2 and the zero mean 
assumption on /(^). The maximal Lyapunov exponent, up to 0(s2), reduces to 

(Q2,p°)+(Qly)} Xs = s2 

The 0(e) Poisson equation and its adjoint are 

iTp^-Vp0    and    L°u = 0 

(2.12) 
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and the associated solvability condition is 

(Ll'p°,u) = 0    Vueker{L°) 

Due to the assumption on G and the boundary conditions on fa and fa, 

ker(L°) = {C(9) : C is an arbitrary function of 9} 

The solvability condition of Eq. (2.13) reduces to 

f7r/2 

(2.13) 

r   F(0)C(9)d0 = O 
Jo 

where 
/•27T     /-25T 

m = / nov(o fn j 
JM JO    JO 

which must hold for arbitrary C{6). This implies 

F{0) = 0 

£feF)+f!Hj dfadfad£ 

This condition is automatically satisfied due to the periodicity of fa and fa. Thus, it is not possible 
to determine F{9) using the 0(e) solvability condition. One can, however, find an expression for 
p1 in terms of F(9). To do so, rewrite the 0(e) Poisson equation as 

[G -^L.dj.jp -—^-R(fa,fa,9) (2.14) 

where 

R(fa,fa,9) = 

~    2(
J
M"

J
») (cj-sj)F+-82e 

OF 

1      dF 
39 

J   (^22c202 + H22s2<t>2) l-^29)F-\s2e
d-^\ 

+ 

+ 

Q 771-1    . 

(2ces9 + t9)F + s2
e— j (j+C- - Jr2C

+ + H^2S~ - H+S+) 

(2cese + ^)F~ ce%\ {^ - J21C+ - tf" S~ - H+S+) 

In the above expression, c(.) = cos(-), s(.) = sin(-), t^ = tan(-), C* = cos^ ± u>2) and S± = 
sin(wi ± u)2). 

Introduce an auxiliary time t such that Eq. (2.14) becomes 

[dt~
G +">2L,dj.)Pt-^2— R{<t>ufa,o) (2.15) 
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The density p1 is the stationary solution of Eq. (2.15) and solves Eq. (2.14), i.e. 

P1 (<t>i, <h, 0,0 = t|im [pj(<f>i,<t>2,6, £, t)] 

Employing the transformation 

1 1 
T=2 « + K- + -; 2 \u>i      UJ2J. 

s = 
2 \wi      w2 

and T = wi^2 — ^2^1 in Eq. (2.15) yields 

(h ~G*)pl*= i$R {MT' S> T)' ^T> S' T)' v (2.16) 

where H(£) = /(£)v(0- Equation (2.16) is an inhomogeneous boundary value problem. This 
problem can be transformed into a homogeneous initial value problem using Duhamel's principle 
with zero initial conditions (see, for example, [92]). The solution to Eq. (2.16) can then be written 
as 

pJ(r,S|T,0= ^2 [ R(<f>i(-r-T,s,?),<f>2(T-T,s,r),8)K(Z,T)dT 

where g(£, T; 77,0) is the transient density which solves 

dg 
ft=

G*9>  5(e,0;7?,0) = ^-??) 

and 

K{£,T)= I  H(V)g(Z,T;V,0)dr1 
JM 

The final form of pl((j>\, <j>2,9,0 is found by taking the limit as r ->■ 00: 

l    r°° 
p\<t>i,4>2,9,0 = ^2 J    R(uiT-<f>i,U2T-<f>2,9,T)K(Z,T)dT (2.17) 

In Eq. (2.17), R(u]T - <f>i,u2T - <j>2, 9,T) contains F{9) and its derivatives which have yet to 
be determined. This can be accomplished with the aid of the 0(e2) solvability condition. Recall 
the 0(e2) Poisson equation 

\G* - ^Y,~:JP
2
 = XO(4>U <h,e,Z) + xi (<t>i,4>2,o,o (2.18) 

where 

This yields 

Xo 
d 

L°'p2 = Xo + Xi 

and the corresponding solvability condition 

(Xo + Xi, t>(OC(0)> = 0   V C{9) e ker(L°) 
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Evaluating the solvability condition for arbitrary C(9) yields the following ordinary differential 
equation for F(0): 

- j-e mO)F{6)] + \^ [*2(0)F(0)] = 0 (2.19) 

where 
*2(0) = ,4cos220 + .Bcos20 + C 

$(0) = -i(Äj - Ä2) sin 20 + V2{0) cot 29 

This is indeed the diffusion equation in 9. This describes the stochastic coupling between p\ and 
p2 in Eq. (2.5). 

Throughout the remainder of this chapter, the following notation will be used: 

aij   = I [{H--  + jg)S{ST) + {Ht-  + J^)S(Q+)] 

ft   =    l(Hf+J-i
2)S(2ui) 

M   =   I [(^M + JüJn)S(tt+) - (HüHü - J+J+)S(Ü-) 

7i = ^(^2-i^
+2 + ^V2+i)r(fi-) 

72 = \(H+Jü - H1y2-1)r(n+) 

7   =    ^i+i-^+2)25(0) + i(^ + /32)-j(a12 + «21)-|/i 

The sine and cosine spectrums are defined, respectively, as 

'    R(T)smuTdT and S(u) = 2 /    R(T)cosuTdT 
o Jo 

where #(T) is the autocorrelation of /(£), i.e. 

R(T)= I f(OK(Z,T)d£ 
JM 

and 12* = wi ± u>2- Employing this notation, one can write 

A   =    —j 

°    =    ~2 (ai2-»2i) = --a 

C   =   7+2 (ai2 + «2i) =T+ 2a+ 

A,- = -£; + ft   and   Xi = Xi + 7,- 

where Ai and A2 are the Lyapunov exponents for the case when the modes in Eq. (2.1) are decoupled. 
Equation (2.19) can be rewritten as 

1 |-*(*)F(*) + 11 [*2(0)F(0)]} = 0 (2.20) 
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Let Ast(0) be the term in the brackets. Then, Ast{6) must be constant with respect to 0, i.e. 
Ast{0) = Ast. By examining Eq. (2.20), one can see that there may be singularities in the open 
interval (0,7r/2). All possible singular cases must be considered when attempting to solve this 
expression for F(6). The location of the singular points and the behavior of the diffusion process 
in the presence of these singularities will be examined in the next section. 

2.3    Evaluation of Solutions 

The solution to the Fokker-Planck equation can be written as 

F(0) = m(0)[2AstS(0) + c] (2.21) 

where the scale and speed measures are defined in terms of $ and \P as 

m(0) = [V2(9)8(9)]-1 

(re2$(n)     1 r9 

-J *4i)dT]j and s{e)=js{ri)di1 

and F(0) satisfies boundary and normality conditions. The boundary conditions for F(0), as well 
as the evolution of the process when singularities exist, will be discussed in this section. One can 
rewrite s(0) as 

s(0) = ebW 

where 

~  '   ^jdr, = ln\sm20\ + (\2-X1)ß(0) 
f6 

In terms of the parameters A, B and C, 

r cos 26 dt l   rc 

At2 + Bt + C 

The last integral can be broken down into the following 6 cases: 

1. A, B, C^O 
2. B = 0 and (i)   A, C + 0 ,   (ii)    A = 0, C £ 0 ,    (iii)    A ± 0, C = 0 
3. C = 0 and A, B ^ 0 
4. A = 0 and B, C # 0 
5. A = C = 0 and B £ 0 
6. A = B = C = 0 

Singularities in the F(0) process are 0 values satisfying either 

#2(0) = 0    or    $(0) = oo 

These singularities can be classified according to Feller's scheme as entrance, exit, natural or regular 
boundaries of a region of state space [25].  The following definitions, summarized by Karlin and 
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Taylor in [45], are needed in order to classify the behavior of a stochastic process at a singular point 
9S and to determine the type of boundary present: 

S(9S,9]=  I s(r,)dr,,    M{0S,9] = fem(T])dr, 
Je, Je, 

E(9S) = j' S(9S, Z]dM(t) = J° lj° m(y) dy\ s(r,) dr, 

N(9S) = j' M(6s,Z]dS(t) = j° if s{y) dy\ m(rj) dr, 

In the above definitions, S(0S,6] and M(0S,6] are the scale and speed measures, respectively. The 
explicit dependence on 9S is dropped. In this case, the notation S(9) and M{9) is used. The last two 
quantities defined above measure the time it takes to reach the boundary of the state space starting 
from the interior {T.(9S)) and the time required to reach the interior beginning at the boundary 
(N(9S)). In the above definitions, 0S is a left boundary. Analogous definitions are employed when 
9S is a right boundary. 

An entrance boundary cannot be reached from the interior of the state space but it is possible 
for the process to begin at such a point. The singular point is an entrance boundary if and only if 

S{9S, 9] = oo    and    N(0S) < oo 

Once the process reaches an exit boundary, it is impossible to re-enter the interior. The necessary 
and sufficient conditions for a singular point to be an exit are 

M(0S, 9]<oo    and    E(0S) < oo 

An exit boundary within the state space implies that the process eventually exits a portion of the 
space and enters another region. The direction in which this boundary is traversed depends upon 
the sign of the drift term $(0) as follows: 

< 0   left (backward) shunt 

*(0) = {   > 0   right (forward) shunt 

= 0   trap 

A diffusion process can neither reach in finite mean time nor be started from a natural (Feller) 
boundary. A singular point is a natural boundary if and only if 

N(6S) = oo    and    E(0S) = oo 

Finally, a regular boundary allows the diffusion process to both enter and leave. The criteria for a 
regular boundary are 

S(9S, 9] <oo    and    M(9S, 6] < oo 

21 



Entrance 

Figure 2.2: Boundary behavior for singular cases 1, 2i (AC > 0), 2ii and 4. 

In this investigation, all possible singular cases will be examined. The function F(0) will be com- 
puted and the behavior of the process at the singular points will be determined. 

Employing the above criteria, it can be shown that for all 6 cases, the boundary points 0 = 0, n/2 
are entrance boundaries. Since 5(0) = -co and S(n/2) = co, in order for F(0) to remain positive 
throughout the interval, it must be that Ast = 0 in Eq. (2.21), i.e. the zero-flux property. This 
leaves 

F{0) = c m(0) (2.22) 

where c is the normalizing parameter. The expressions for m(0) and the normalizing constant c for 
each case are given below. 

Case 1: A, B, C^O 

*2(#) = -7cos2 20 - - (a12 - a21) cos 20 + 7 + ^ (<*i2 + <*2i) 

The only singularities for this case are the entrance boundaries 8 = 0 and 6 = n/2 as shown in 
Figure 2.2. Define the discriminant A = AAC - B2 and consider the cases: A > 0, A = 0 and 
A<0. 

For A > 0: 

and 

sin 20 \-{\2-\x)       . 
m(*) = ^(0)eXp{       VÄ       Un 

■( 
2Acos2e + B" 

M{9) = 
1          J-(A2-A1)4    _! /2Acos20 + B' 

For A = 0: 
. .      sin 20 m(ö) = i^yexp (Ä2-ÄQ 

2Acos20 + B 
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and 

M{0) 
Ao — Ai 

exp (Ä2-Ä1) 
2Acos20 + B 

For A < 0: 

and 

m{0) = 

M{6) = 

v=z -(; 

sin 20 j(A2-Ai)i    ,_, /2Acos20 + 5 
— exp^       ^    tanh 

1 
exp (Ä2-Ä1)       L_1/2Acos26' + ßv 

 ■ tanh     ' 
A2 - Ai      '   [    \/-Ä          V       \/-Ä 

In all of the above cases for A, the normalizing constant c is 

c=[M(7r/2)-M(0)]-1 

where the appropriate M{6) must be used. 

Case 2i: £ = 0 and A, C # 0 

#2(0) = _Tcos22Ö + 7 + a 

£ = 0 implies «12 = 0:21 = a. As in Case 1, the singularities at 0 = 0,7r/2 are entrance boundaries. 
There is, however, an additional singularity in this case at 

•=•■ •*--!=£ 
which is valid only when AC < 0. The function m(0) is given by 

#Ä«p{=feiatan-I(^«»2ö; 
m{0) 

AC>0 

sin 20 W) exp {SÖc tanh_1 (^FC0S29^    AC<0 
')} 

In order to determine the normalizing constant c, it is necessary to consider the two cases 
AC > 0 and AC < 0 separately. For AC > 0, since no singularity exists in the open interval 
(0,7r/2), C is simply 

H^-Mw^ff)} 
When AC < 0, it can be shown that the point 0 = 0S is a left or right shunt, depending on the sign 
of $(0S) where 

*('.) = 5(Äa-Ä,)ih + | 
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Entrance Entrance 
(a) 0>) 

Figure 2.3: Boundary behavior for singular case 2i (AC < 0) and case 2iii: (a) Xx > Ä2, (b) Xi < Ä2. 

For Äi > A2: 

F(9) = < 
cm(«)    0G(O,0S) 

0 6e(0s,n/2) 

In this case, the point 9 = 9S is a left shunt. A process starting from a point in the region 
0 € (0s,7r/2) will eventually leave this region and be shunted over to the portion of state space 
bounded by 9 G (0, 9S). This leads to a build up of probability in the region 9 G (0, 6S). 

For Ai < A2: 

F{6) = 
0 *e(o,0.) 

cm(O)    0€ (e.,7r/2) 

Here, Ö = ös is a right shunt. A process starting from a point in the region 6 G (0, 6S) will eventually 
be shunted over to the region bounded by 6 G (9s,n/2) and the probability accumulates in this 
region. In both cases, 

A2 — Ai 
c= A2 exp 

2A 

The singular behavior for this case is summarized in Figure 2.3. 

Case 2ii: B = 0 and  A = 0, C ^ 0 
#2(0) = a 

As in Case 1, the only singularities are at 9 = 0, TT/2 (see Figure 2.2) and m(9) and c are given by: 

...      sin 20 f—(A3 — Äi) J 
m{0) = exp{—i-i ^cos20> 

a 2a 

24 



and 

c = csch 
A2 - Xi 

2a 

Case 2iii: B = 0 and A ^ 0, C = 0 

#2(0) = a cos2 20 

In addition to the singularities at the boundaries 9 = 0,7r/2, there is also a singular point at 
9 = 7T/4. As in Case 2i, the sign of $(0S) determines the behavior of the process at this point. In 
this case 

For Ai > A2: 

F(9) = 
' cm(9)   9 e (0,7r/4) 

0 9 £ (TT/4, TT/2) 

Thus, the point 9 = 7r/4 is a left shunt.   This leads to a build up of probability in the region 
0€(O,7r/4). 

For Ai < A2: 

F{9) = 
0 9 e (0, TT/4) 

cm{9)   9 e (TT/4, TT/2) 

Here, 9 = n/4 is a right shunt and the probability accumulates in the region 9 € (7r/4,7r/2).  In 
both of the above cases, 

and 

...      sin 20 f(X2-Xi) 

c = A2 — Ai exp 
A2 — Ai 

2a 

Figure 2.3 summarizes the behavior of the diffusion process for this case. 

Case 3: C = 0 and A, B ^ 0 

$2(0) = A cos2 29+ B cos 29 

In this case, the singular points are located at 

7T 
0 = —    and    9 = 9S — - cos" 

4 2 
1      _i (-B\      1 .-i a 

A y      2 V a+ 

as well as at the boundaries 9 = 0, n/2. 
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For Ai > A2 and B < 0: 

F(9) = a { 
m(6)        ee(o,es 

{ 6(9-TT/4)   9£(9s,n/2) 

By Feller's scheme, the point 9 = 9S is an entrance and 6 = n/4 is an exit boundary. 

For Xi > A2 and B > 0: 

F(0) = ci < 
, *(ö-ö.)    öe(7r/4)7r/2) 

The singularity at 0 = 9S is an exit and 9 — ir/4 is an entrance boundary. 

m(9) 9 e (0, TT/4) 

For Ai < A2 and ß < 0: 

F(0) = c2 < 
*(0 - 9S)   9e (0, TT/4) 

. m(9) 9 € (TT/4, TT/2) 

6(9 -TT/4)   9e(Q,9s) 

The point 9 = 9S is an exit and Ö = 7r/4 is an entrance 

For Äi < Ä2 and B > 0: 

F(0) = c2 « 
. m{9) 9e(9s,ir/2) 

The singular point 9 = 9S is an entrance boundary and 0 = 7r/4 is an exit. The boundary behavior 
for this case is depicted in Figure 2.4.   In all cases, 

sin 20,      , .*i-*3 
mW = ^27m|-a+ + a_sec2öl   a 

and 

ci 

#2(0) 

A2 — Ai 
Xi-X 

A2 - Ai - (2o;2i)   a 
l-*2 

c2 = 
A2 - Ai 

A2 — Ai + (2ai2)   a 
'—»2 

Case 4: A = 0 and B, C ^ 0 

tf2(0) = i«+- ^a" cos 20 

The only singular points for this case are at the boundaries 0 = 0,7r/2 (see Figure 2.2) since the 
singular point defined by 

1 
2 

9S = r cos  1 a 

or 

,+ 

can be shown to coincide with either 9 = 0 or 9 = n/2 due to the condition 

0< 
an 

a" 
< 1 

26 



e=*/4 

Entrance 

Entrance 

It/2 

e=e 

e=n/4 

Entrance 

00 (b) 
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e=»c/4 

Entrance 

(d) 

Figure 2.4:   Boundary behavior for singular case 3:   (a) Äj > X2,  B < 0,  (b) Äx > X2,  ß > 0, 
(c) Ai <\2, B < 0, (d) Äi < Ä2, B > 0 
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In this case, 
...      sin 26.      ,        _      n„.h=h. 

and 
A2 — Ai c = 

A?—A; A2—A) 

(2ai2)   "-    - (2a2i)   a_ 

Case 5: A = C = 0 and ß^O 
Satisfying A = C = 0 requires the following conditions: 

7 = 0   and   a+ = 0 

Since a+ = ai2 + «21) where ai2 and a21 are non-negative quantities, the second requirement 
implies a12 = a2\ = 0. For 5^0, the following condition must hold 

These cannot be satisfied simultaneously. Thus, the case 5 singularity is not possible. 

Case 6: A = B = C = 0 

#2(0) = o V0e (o,7r/2) 

This corresponds to the case of two uncoupled oscillators. In this case, the diffusion process is 
singular for all values of 0 and a function F{9) satisfying the normality condition over the interval 
(0, 7T/2) cannot be found. However, as stated previously, the Lyapunov exponents for this situation 
are Ai and A2. The maximal Lyapunov exponent is simply the greater of the two. 

2.4    Maximal Lyapunov Exponents 

The maximal Lyapunov exponent given by Eq. (2.12) can now be calculated. Letting 

J(Ö) = ^2(ö) + i(Ä1-Ä2)cos2Ö 

and 

C = 2^1 +^2)- -(7l+72)+/i 

and considering terms up to 0(e2) only yields the following for the expansion in Xe: 

XS = £\L2 J{~e)F{-9) M + cjj FW de) (2-23) 
Integration by parts and substitution of the appropriate F{9) yields the maximal Lyapunov expo- 
nent for each of the singular cases. 
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Case 1: A, B, C ^ 0 For all cases (A > 0, A = 0, A < 0), using the appropriate M(0): 

\'-r*!h\      * ,m*/2) + M(0)]  ,  ,1 A  ~e  U{X>-Xl)[M(n/2)-M(0))+CJ 

Case 2i: B = 0 and A, C jL 0 

For AC > 0: 
'l 

AI = e^-(A2-Ai)coth 
VAC {  c , + c 

For AC < 0, recall, there is an additional singularity at 6 = 0S. The maximal Lyapunov exponent 
is given by 

A2 - Ai 

+ 

2 

A2 - Aj 

exp 
A2-A 2 — Al 

1- 
1 

V-ÄC 
tanh -1 yf^ÄC 

C 

(Ä, - Ä2) 
y/^ÄC 

•exp 
A2 — Ai 

2A + c 

Case 2ii: B = 0 and A = 0,C^0 

l,r 
A' = e  1 ö(A2 ~ Ai) coth 

A2 — Ai 

2a + c 

Case 2iii: 5 = 0 and A ^ 0, C = 0 

-«■{iMii+a} 

Case 3: C = 0 and  A, B ^ 0 

For Äi > Ä2 and B < 0: 

A£ = e2 I \{X2-XX) (2a2i)   - 
<—V2 

A2 — Ai - (2a2i)   a- 
+ c 

For Ai > A2 and B > 0: 

A£ = e2 «J ^(Ä2-Äi) 
(2tt2l)   "-    ~^(Ä2-ÄI) 

1-^ 
A2 — Ai — (2a2i)   o- 

+ c 
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For Ai < A2 and B < 0: 

\ (*' " *0 
(2a12)^-fi(Ä2 - Ä\) 

i-A? 
A2 - Ai + (2aJ2)   a- 

+ c 

For Ai < A2 and B > 0: 

Ae = £2 < i(Ä2-Äi) 

Al~*2 
(2«i2)   -" 

1~A2 
A2 — Ai + (2ai2)  a- 

+ c 

Case 4: .4 = 0 and B, C ^ 0 

A£ = e2 ^ ^(Ä2-Äi) 

i2=±L 2-Aj_ 

(2a12)   °-   +(2a2i)   a- 

(2ai2)   «-    - (2a2i)   «»- 
+ c 

Case 6: A- B = C = 0 

Xe = £2 max (Ai, A2) 

It is important to note that when the conditions of Eq. (2.3) are imposed, 71 = 72 = 0, the maximal 
Lyapunov exponent given by Eq. (2.23) is identical to that obtained via the method of averaging 
(refer to [82]). 

2.5    Rotation Numbers 

The Multiplicative Ergodic Theorem for rotation numbers is given in a recent paper by Arnold 
and San Martin [8] in which a general'method for calculating the rotation numbers, />,-_,-, of the 
canonical planes p,j = span(£?,-, Ej) is given. The spaces £,• and Ej are the Oseledec spaces 
described earlier. The rotation number of any other plane will pick the value pij whenever this 
plane has ptJ- as the strongest component. In the current calculations, three angles have been 
introduced. Thus, by definition, there would be a rotation number associated with each angle 
giving the exponential rotation rate. Since these angles are not defined with respect to canonical 
bases, the rotation numbers cannot be readily related to those given in [8]. However, it is clear 
that if the plane of 2i-a:2 corresponds to any of the py's, then one can relate ctx to pij, where on is 
the rotation number corresponding to the first degree-of-freedom. A similar relation exists for a2. 
The relationship between the results of Arnold and San Martin and those presented here must be 
further investigated. 

In terms of the invariant measure p£, the rotation numbers are given as 

<*f = <#f,P£> (2.24) 
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where 
Hftfufa, 6,0 = ui + efiOhiifa, fa, 6) +£2hi(<j>1,<f>2, 6) 

Again, for Ax as given, hi = 0. The rotation number given by Eq. (2.24) can be rewritten as 

a\ = (Ui,p°) +e [(^p1) + </(0 hi,p0)] + s2 [(ui,p2) + </(£) h^p1) + <&,-lP°>] (2.25) 

where u>; is a constant and ps is scaled such that p1 and p2 have mean zero. The last term is zero 
due to the structure of the A\ matrix. Due to the periodic boundary conditions on cf)\ and 4>2, as 
well as the zero mean assumption on /(£), one has 

(f(0hhp
0) = 0 

Hence, Eq. (2.25) reduces to 
^ = uJi + s2{f(0hi,p

1) (2.26) 

Making use of the following definitions: 

&i2 = l[(Hr2+Jt2)w-) + (Ht2+Jü2)m+)} 

«2i = I [(tf2i
2 + Jgnn-) - {H+; + J2i

2)r(Q+)j 

Ai  = l [(-HUHU + «/iV2
Hi)r(fr)] 

ß2 = ^[(^i+2^2+i + «/iV2-i)r(fi
+)J 

Ti  = ^(tf2Vi+2 + tfiV2+i)S(fn 

72   =   \(H}1Jr2-H+Jü)S(tl+) 

the rotation numbers may be written as 

.ai    =   u1-e2lß1 + -(y2-j1) + (ß1+ß2) + -än\\mJsec(e)F(0)]\ (2.27) 

a2    =   w2 - e2 |/?2 - -(72 + Ti) - (Ai - £2) + 2«2i lim[csc(0)F(0)]} (2.28) 

By substituting the appropriate F{6) into the above expressions, the rotation numbers can be 
explicitly determined for each of the possible singular cases. 

2.6    Applications 

The focus of this section is to apply the results of the perturbation method described in the 
preceding sections to investigate the almost-sure stability of general four-dimensional mechanical 
systems. The applications presented here include a gyroscopic system and a nonconservative system 
involving fluid-structure interaction. Specifically, the examples considered are: a rotating shaft 
subjected to a small amplitude stochastic axial load and a stationary cylinder under the influence 
of a stochastically fluctuating lift force. It will be shown in the first of these that Ax need not be 
strictly diagonal. 
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Figure 2.5: Pinned-pinned rotating shaft subjected to time-dependent axial load. 

2.6.1    Rotating Shaft Subject to Random Axial Load 

Rotating systems are an integral part of modern machinery. Much work has been done to examine 
the stability and response of such systems subjected to periodic excitations. The dynamics and 
response of rotating systems have been studied extensively. Sri Namachchivaya and Ariaratnam [2, 
3] examined the general conservative linear and nonlinear gyroscopic systems. Yazici [91] analyzed 
the general problem of such stability in the presence of damping. In most practical situations, 
the system is subjected to excitations which are not purely deterministic. The combined effects of 
harmonic and stochastic excitations on the mean square stability of rotating systems was examined 
by Sri Namachchivaya [78]. The almost-sure stability of rotating systems under the influence of 
white or real noise excitation has been studied by Sri Namachchivaya and Talwar [82] using the 
method of averaging. In this system, the amplitude and phase equations decouple. Thus, no 
restrictions on the stochastic terms are necessary. 

In this first application, consider a shaft pinned at each end and rotating at constant rate Q and 
study the almost-sure stability of the trivial solution of Eq. (2.1). The system is shown in Figure 
2.5. The shaft is subjected to a compressive axial load P(t) which is composed of a mean load P0 

plus a small amplitude, zero mean real noise excitation f(t). The linear equations of motion are 
[2] 

Mq+(2G + e2D) q + Kq = ef(t)q (2.29) 

where q = (qx, q2)
T, the vector of generalized coordinates representing the displacement of the shaft 

center-line in the two principal directions. M, G, K and D are 2 x 2 constant matrices: M contains 
mass-like terms, G represents the gyroscopic terms (G = -GT), K contains stiffness terms and D 
arises from internal damping. These matrices have the following forms: 

K = 
tf-n2 o 

o 

M = 
0 

0 ' 
/ 

,   G = 
j 
o  -n ' 
1   0 

0 
wf - Q2 

' h  o 
0    fcs 

and D = 
' dt 

0 
0 
d2 _ 

where 
7T* 

Eli 
n 

-Pa i = 1,2 

Letting j/2i-i = 9i and y2i = q% yields the state space representation 

y= (Ä0-e2Ä1)y + ef(t)By 
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where 

Ao = 

0 1           0 0 
-kx 0           0 2fi 

0 0           0 1 
0 -29. -k2 0 

Ai = 

0 0 0 0 " 
0 dx 0 0 
0 0 0 0 
0 0 0 d2 

and   B = 

0   0 0   0 
10 0   0 
0   0 0   0 
0   0 10 

Transforming to real Jordan form yields the following equations: 

X=(AO- e2Ai) x + ef{t)Bx 

with 

A0 = 

0 wi      0 0 
-tux 0        0 0 

0 0        0 u2 

0 0 -u>2 0 

Al = ux — w, 

d\{u\ 0 
di{u\ - hi) 

dx%M-k2) 0 

-dx%(u22-k2)    0 

and 

B = 
ut — w. 

dr(w?-*i)   o Ul 

-dr(w?-*i) ° 
M - fc) U/2 

Wl 

-di(w| -fc2) 

0 

-i("aa-*i) 

d2(w|- Äi) 

0 
-d2{ul-kx) 

-£■(«?-*a) 
0 

i^22 - *2) 

The eigenvalues of ylo, ±iwr(r = 1,2), are given by 

^ = V 5 {"* + Ö2 + 2Q2 ± \/(^l-^22)2 + 8fi2(ö2+ä>2
2)) 

where "+" corresponds to wj and "-" to u2. Note that if the matrix Ax = [a,-j] is full, £ is then 

& = 2 (°2»-i,2i-i + O2,-,2J) ,    i = 1, 2 

The off-diagonal terms in Aj introduce additional damping terms in the equations of motion for 
P,<t>\,<f>2 and 6. However, in the calculation of the maximal Lyapunov exponent, the coefficients of 
these new terms are periodic in <f>x and <f>2 and drop out in the course of the analysis. Thus, the 
presence of these off-diagonal terms does not alter the expressions for the top Lyapunov exponent 
obtained in [23]. In this example, 

Si = 
-•n*+i (-1) 

2(W»-a£ 
{{dx + d2)(uf + ft2) - d&l - d2ü\) ,    » = 1,2 
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For the general case, 

H± = 
1 

w2 - wf 
-^M - *2) ± £(<"? - *i)   -^(w2 - k2) ± £(w2 - kt) 

and 

J± = 
0   0 
0   0 

Consider the case of band limited, or band-pass, noise. In this situation, S(u) has significant 
values only for w in the range 0 < w0 - 6/2 < w < w0 + 6/2 where 6 is the bandwidth and w0 is 

.the central frequency.   The correlation time of a band limited stochastic process is 0(1/6).  The 
relaxation time of the amplitude process is 0(1/e2). If 6 > e, the Markov approximation remains 
valid. 

For Wo = 2a;,-: 

A W ~ *1) ■7,2\2 

32w2(a;2-a;2)2 
S(2w,) 

B   =   0 

C   = (Pi ~ "I) ,-.2\2 

32a;? (a;2- a;2)2 
5 (2a;,) 

A,-   =   A,- = -6{ + 
8a;?(a-2-a;2

2)2 
5 (2a;,) 

with i = 1,2. For wo = Wi ± w2: 

A 
32(a;2 - u\Y l6^2 * "^ + ^f^2 + "*)<*? + *»') 

wiw2 

5(n±) ̂
K + ^)-3(a;lTa;2)

2(Ä;i + Ä;2) 

 (^2 ~ *l) 

16wiw2(w2 — w2) [    wja;2 

-S(fi±) 

T (*i - h) 

32(w2 - 4)2 I2("2 ± "l)2 " ^f(U,? + ^ + kl) 

]-[2(k2 + kl)-(u;1^u2)
2(k1+k2) 

B   = 

C   = 

U>lU>2 

and A,- = A; = -<$,-. The stability boundaries for the above cases are plotted in Figure 2.6 for 
the following parameter values: wj = 1.0, w2 = <J2, £ = 0.1 and 5(wo) = 0.02. The damping 
parameters d\ and d2 can be defined in terms of a single parameter Q as (, = d;/(2w,). 

Next, consider the case of broadband excitation, i.e. 5(2wx) = S(2w2) = 5(fi±) = 5.   This 
yields 

A     - S f("?+"3) 
32(w2-w2) T^T^i + k2)

2 + 12(w2 + a;2) - 12(*x + *2) 1 a;1a;2 j 
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Figure 2.6: Stability boundaries for the rotating shaft for UJ0 = u>i, u>2 and u\ + u2. 

B 

C   = 

_      — J(«I — k2) 

S fHui+v*) 
32(W» - Ulf \     ut^^1 + ® ~ 6<w? + W') + «fa + *») 

A,     _    A, _ -d, +  — ,     »=1,2 
8uf (ojf - ul) 

When the shaft is symmetric, üi = ü>2 = ü, di = d2 = d and the eigenvalues reduce to 

u>i = ü> + J2   and   ^2 = w — £2 

The matrices A\ and £ become 

A, = 

*i 0 J2 0 
0 5i 0 -<52 

*i 0 S2 0 
0 -Ji 0 S2 

and   B = — 
2w 

0-10-1 
10-10 
0-10-1 
-10       10 

where <5,- = du>i/(2u). This yields 

A;   =   A,- = —Si ,   i = 1,2 
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Figure 2.7: Stability boundary for the rotating shaft under broadband excitation 

Since wx > u2, one can easily show A2 > Äi and the top Lyapunov exponent reduces to 

-f -d(v - Q) 

2ü 
+ S^<n+>} 

The resulting stability boundaries for the symmetric (with ü = 1.0) and unsymmetric cases are 
depicted in Figure 2.7 in the Q-( space. This system was examined by Sri Namachchivaya and 
Talwar [82] using the method of stochastic averaging. The results obtained by the two methods 
are identical. 

By setting the noise spectrum to zero in the maximal Lyapunov exponent, the eigenvalues of the 
deterministic system can be recovered. In each of the above cases, the coefficients of the spectra are 
positive. Thus, the maximal Lyapunov exponents are greater than the deterministic eigenvalues. 
Therefore, the effect of noise is always destabilizing in this system. 

2.6.2    Flow-induced Oscillations 

As a final example, consider the wake-oscillator model of Hartlen and Currie [35] which describes 
the influence of a stochastically fluctuating lift force on a stationary circular cylinder normal to 
the flow. Unlike the first example, this system does not satisfy the decoupling conditions necessary 
for the implementation of averaging. The method of averaging, therefore, cannot be applied to 
determine the almost-sure stability of this system. The linear system is described by the following 
second order differential equations 

x + ßx + x = a(Wo + s2r] + ef(0)2CL 
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Figure 2.8: Stability boundary for the case of broadband excitation in the flow-induced oscillation 
problem 

CL-a^W0 + e2rl + ef(0)CL 

+ {W0 + e2T) + £f{Z))2CL = bx 

where W0 is the dimensionless mean flow velocity, ß represents a mechanical damping parameter, a 
is a mass factor, b an interaction parameter and a is a Van der Pol parameter. The quantity r? is the 
deterministic detuning term describing the variation of the mean flow velocity from some critical 
value and /(£) represents a stochastic variation in the flow velocity. The variable x describes the 
dimensionless displacement of the cylinder transverse to both the flow direction and cylinder axis 
and CL represents the instantaneous lift coefficient. Letting y\ = CL, y2 = CL, yz = x and t/4 = x, 
the first order equations of motion become 

y = Ay 

where 

A = 

0 1 0 0 
-w2 

aW 0 b 
0 0 0 1 

aW2 0 -1 -ß 
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and W = W0 + e2Tj + ef(£). Putting this in the form of Eq. (2.1) yields 

An = 

and 

0 1 0 0 0 0      0   0 
-w$ 

0 
aWo 

0 
0 
0 

b 
1 ) Ai = 2WoV 

0 
-aij   0   0 

0      0   0 
aWg 0 -1 ~ß \ _ -2aWoV 0      0   0 

0 0   0   0" 

B = 
-2W0 

0 
a   0   0 
0    0   0 

2aW0 0    0 0 

The characteristic equation for the matrix Ao is given by 

A4 - cjA3 + c2A2 - c3A + A = 0 

where a = aW0 - ß, c2 = 1 + W$ - aßW0, c3 = W0{abWQ + a- ßW0) and c4 = W$. In order 
to insure that A0 possesses two pairs of purely imaginary eigenvalues, the following restrictions are 
placed on the parameter ranges of interest: 

c\ = c3 = 0 ,   c2 > 0 and c\ - 4c4 > 0 

The conditions c\ = 0 and C3 = 0 implies the following parameter relations: 

abWo 
a 

Wg-1 and    ß = aWo 

The eigenvalues are then given by 

±iu>i = ±i 
\ 

and 

±iu>2 = ±t 
\ 

Letting b = 0.4 (as in [35]) and W0 = y/2, the above restrictions yield the following range for the 
mass parameter 0.001 < a < .5177. 

In the deterministic system, when the above conditions are satisfied, the trivial solution || x ||= 0 
is unstable for all flow velocities near W0 (except at W = W0) and for all values of the mass 
parameter a within the specified range. The point W = WQ represents a bifurcation. For W < W0, 
no stable solution exists. However, for W > W0, one stable and one unstable periodic orbit exist. 
Hence, the only point at which the trivial solution is stable is W = WQ, i.e. 7] = 0. 

In the current analysis, the almost-sure asymptotic stability of the trivial solution alone is 
considered. Using the parameter values given above, it can be shown that, under broadband 
excitation, the system falls into the case 1 singularity category with A < 0. The almost-sure 
stability boundary for the trivial solution in r\ - a parameter space is depicted in Figure 2.8. The 
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solid line at TJ = 0 represents the locus of parameter values for which the trivial solution of the 
deterministic system is stable. 

For the stochastic case, the parameter regions for which the non-oscillatory state is stable 
or unstable are labeled in Figure 2.8. Note that for small values of the mass parameter a, the 
addition of broadband noise destabilizes the point 77 = 0. As a increases, 77 = 0 becomes stable. 
Furthermore, the addition of noise creates entire regions of parameter space for which the cylinder 
exhibits no transverse oscillations in the steady state. For higher values of the mass parameter, e.g. 
0.2 < a < 0.5, the stability of the trivial steady state is more robust to variations in the mean flow 
velocity. 

2.7    Conclusions 

In this chapter, an asymptotic expansion for the maximal Lyapunov exponent, the exponential 
growth rate of solutions to a linear stochastic system, and the rotation numbers for a general 
four-dimensional dynamical system driven by a small intensity real noise process were constructed. 
Stability boundaries, defined as the point at which the maximal Lyapunov exponent becomes zero 
can be obtained provided the natural frequencies are non-commensurable and the infinitesimal gen- 
erator associated with the noise process has an isolated simple zero eigenvalue. This last assumption 
was made to make the solution tractable. 

The asymptotic expansion for the maximal Lyapunov exponent was calculated for two practical 
dynamical systems. The advantage of this method over the method of stochastic averaging is the 
applicability of the perturbation approach to problems in the form of Eq. (2.1) without imposing 
any conditions on the form of the B matrix. For systems in which these conditions hold, the 
expressions for the maximal Lyapunov exponent and the rotation numbers calculated here reduce 
to those presented by Sri Namachchivaya and Talwar in [82]. When these conditions are violated, 
as in the example involving flow-induced vibrations of a cylinder, the method of averaging cannot 
be employed. In such cases, the perturbation method described in [23] provides the top Lyapunov 
exponents and, thus, the almost-sure stability boundaries. 

It is worth pointing out that there are some other quantities that may be obtained asymptotically 
employing the current technique. One can use Liouville's theorem to calculate the sum of the 
Lyapunov exponents as the expected value of the trace of the complete linear coefficient matrix, 
i.e. E (Trace[i40 + M + #/(£)]) = YA=I -V- Considering the definition of the matrices A0 and Ai 
and the zero mean assumption on the noise process, the sum of the Lyapunov exponents is simply 
2(^i + £2)- In two-dimensional systems, the trace and the top Lyapunov exponent completely 
describe the spectrum. However, the author is not aware of methods of describing the complete 
spectrum for systems with dimension greater than two. It should also be noted that the smallest 
Lyapunov exponent can be obtained by following the same procedure given here with time reversed. 
In this case, attention must be paid to the various generators describing the noise process. 

The ability to predict the almost-sure stability boundaries of a stationary solution of a random 
dynamical system is of great importance in practical engineering problems. For a system operating 
within the almost-sure stability limits, all sample solutions except for a set of measure zero tend 
to the stationary solution as time goes to infinity. However, one may not be satisfied with such 
guarantees since a sample stable process may still exceed some threshold values or may possess a 
slow rate of decay. 
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Chapter 3 

EQUATIONS OF MOTION OF A 
ROTATING SHAFT 

3.1    Introduction 

Any motion of a rigid body which has a dominant component of its angular velocity about an axis 
of symmetry is called a gyroscopic motion. Gyroscopic systems are integral components in many 
power generating systems. The dynamics and stability of a component modeled as a gyroscopic 
system may be affected by a time-dependent force imparted by the action of nearby components. 
These inputs appear as time-dependent parameters in the equations of motion of the component 
under investigation and may lead to large amplitude vibrations or complicated dynamics. 

One of the most fundamental components of mechanical systems such as turbines, pumps, 
generators, etc., is a rotor. It is, therefore, not surprising that through the years considerable effort 
has been directed toward obtaining a better understanding of rotordynamics. Although for some 
purposes, it is sufficient to model the rotor as a rigid body, it is more appropriate in most situations 
to incorporate deformable rotor models. This investigation deals primarily with shaft-like rotors in 
which the longitudinal axis of the shaft coincides with the axis of rotation. There are two distinct 
motions a rotating shaft may exhibit: rotation and whirling. When a non-whirling shaft rotates, 
the axis of the rotor is stationary but each section of the rotor at right angles to the axis rotates 
about the axis. When a non-rotating shaft whirls, every point in the section executes the identical 
orbital motion without any change in the orientation of the section. Rotation is a necessary function 
of a shaft, while whirling is always an undesirable motion which introduces vibration, noise and 
additional loading on the rotor and its bearings. Whirling, in extreme cases, can cause failure. A 
recent paper by Crandall [17] gives an excellent physical insight into these problems. When the axis 
of the rotating shaft bends, gyroscopic torques are generally created which couple the transverse 
bending vibrations in the orthogonal planes, and thereby promote whirling forms of motion. In 
addition, bending can give rise to mid-plane stretching. Thus, it may be essential to consider 
nonlinear strain-displacement relations in obtaining the equations of motion. 

In the study of the response and stability of dynamical systems, the location and characterization 
of bifurcations points is of primary importance. Consider the system 

x = f(x,fj,),    x£Rd (3.1) 

with solution x(t;xQ) where f(x,fi) is a d-dimensional (possibly nonlinear) vector function which 
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depends on a parameter /x. A bifurcation refers to a qualitative change in the response x(t;xo) as 
the parameter fi passes some value /z0. ß is called the bifurcation parameter and the value of fj, at 
which this qualitative change takes place is the bifurcation point. 

The study of the bifurcation behavior in a small region of state space surrounding the fixed point 
(or limit cycle) or in a small neighborhood of the bifurcation point is referred to as local analysis. 
In a local bifurcation, the stability of one fixed point or limit cycle is lost and a branching, or 
bifurcating, solution emerges. These local bifurcation scenarios are described by the dynamics in 
the variational equations. The results must be interpreted according to the physics of the problem. 
For example, constant amplitude standing or traveling waves correspond to the case of fixed points, 
amplitude modulated standing or traveling waves to the case of limit cycles. In addition to these, 
there are many phenomena which cannot be explained by local analysis alone. These solutions 
are, for the most part, global in the sense that they do not lie in the small neighborhood of state 
space or in a small neighborhood of the parameter at which the fixed point or the limit cycle goes 
through a local bifurcation. 

It is imperative to understand the response, stability and both local and global bifurcation 
behavior of such nonlinear dynamical systems prior to their use as integral and reliable elements 
of mechanical systems. Recently, considerable effort has been directed toward obtaining a better 
understanding of the nonlinear behavior and instability mechanisms of rotating shafts. When 
viewed in a rotating reference frame, the rotating shaft may be classified as a gyroscopic system. 
The dynamics and response of rotating and gyroscopic systems have been studied extensively in 
the literature [2, 3, 43, 76, 77, 91]. 

In this chapter, the dynamics and stability of a rotating shaft subjected to a dynamic axial load 
will be investigated. The Lagrangian equations of motion for simply supported and fixed-end shafts 
are derived in Section 3.2. In Section 3.3, the Hamiltonian equations of motion are obtained from 
the Lagrangian equations via a Legendre transformation. In addition to the rotating shaft, there 
are many examples of engineering systems which are modeled by gyroscopic systems. Problems of 
practical interest include the lateral vibrations of a pipe conveying fluid, the transverse vibrations 
of moving belts (such as band saws), etc. The dynamics of these systems are governed by equations 
very similar to those derived in this chapter. While the motivation for this chapter is the study of 
the dynamics of the rotating shaft, the analysis presented in the two subsequent chapters may be 
applied to any of these problems. 

3.2     Derivation of the Lagrangian Equations of Motion 

In this section, the equations governing the transverse vibrations of a rotating shaft subjected to 
a time-dependent axial load are derived. The geometry of the shaft of length L and constant 
cross-sectional area A is depicted in Figure 3.1. In the subsequent analysis, the time-dependent 
component of the axial load is assumed to be periodic and the shaft is assumed to be free from 
torque. This models a perturbation to the compressive axial load imparted by adjacent components. 
If these components are rotating or reciprocating at a constant rate, the additional excitation they 
impart consists of a small amplitude oscillating force with fixed period. The resulting axial load 
may be written as P(t) = PQ + fj, cos(vt)H(t) where H(t) is the Heaviside function. Thus the 
periodic perturbation is turned on at time t = 0. This corresponds to a step discontinuity in the 
axial load at t = 0. Since the goal of this investigation is to study the steady state behavior of 
the shaft, the transient effects of this discontinuity may be ignored. This model also assumes that 
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P(t)=p0+f(t) 

(a) simply supported shaft 

ii|    {—-:      """— ~~~    ~ ""*—^~L p(o=pn+f(t) 

(b) fixed-end shaft 

Figure 3.1: Geometry of simply supported and fixed-end shafts showing undeformed (solid line) 
and deformed (dashed line) configurations. 

the shaft is rotating in torque-free bearings (e.g. ideal superconducting or magnetic bearings). The 
latter restriction may be relaxed by considering additional terms describing the torque and resulting 
twist in the shaft. For clarity in presenting the method of analysis, the effect of torque has been 
omitted. Two types of end conditions are examined: simply supported ends (pinned-pinned) and 
fixed ends (clamped-clamped). 

The nonlinearities in the final equations of motion stem from the geometry of the mechanical 
problem. The longitudinal displacement of each section of the shaft is a result of axial compression, 
which generates linear terms, as well as the overall shortening effect of lateral displacements, which 
generates cubic terms in the final equations of motion describing the lateral displacement of the 
shaft center line. This shortening effect is due to the fact that the end of the shaft at x = L is free 
to move axially. 

The equations of motion are derived here using the energy method. The potential energy, in- 
cluding the combined effects of bending and compression, and the kinetic energy are calculated and 
combined to form the Lagrangian. Hamilton's Principle of Least Action yields the partial differ- 
ential equations describing the transverse motion of the shaft. Applying a modal approximation 
reduces these to ordinary differential equations governing the amplitude of vibration in each of the 
two principal directions. 

The total strain energy contains contributions from the effects of axial compression and bending 
strain. The strain due to axial compression is simply ecomp = ux(x,t). The bending strain can be 
calculated from the geometry of the deformed center-line with the aid of Figure 3.2. Consider the 
arc length ds of a differential element of the shaft center line. This length is determined by 

ds ^+*»+^ = ^1 +(£)' + (£)' 
where dx is the projection of ds onto the z-axis. Let v be the displacement of the shaft centerline 
along the y axis and w the displacement along the z axis. Then dv and dw represent differential 
changes in the coordinates v and w, respectively. Writing the partial derivatives as vx and wx, where 
the subscript indicates differentiation with respect to the longitudinal variable x, and expanding 
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J 
dw 

dv 

X,x 

Figure 3.2: Differential element of the deformed centerline showing longitudinal displacements due 
to bending alone. 

the square root in a binomial series yields 

ds = [l + vl + wx] 2 dx =   1 + i (yl + w2
x)   dx + h.o.t. 

The effect of bending on this differential element is to shift the points on the center line by an 
amount ds - dx in the direction of x = 0. The overall axial displacement of a point on the shaft 
center line is the sum of the effects of all displacements up to that point. Thus, one can superimpose 
the effects of bending and compression on the axial displacement of a point. For an incompressible 
material, the axial displacement of a point on the shaft originally at x is given (to second order) 
by the integral 

I;(%-¥=\J;^D* 
Including the effects of axial compression u(x, t), the total displacement h(x, t) of a point originally 
at x is 

h(x, t) = u(x, t) + -J" («| + wf) d£ 

Note that this displacement is defined to be positive in the negative z-direction. 
The curvature vector of the deformed center-line is 

-. r^i "ra^t/ T wxxew 

[1 + V* + Wl]2 

where e„ and ew are unit vectors in the v and w directions, respectively. Expanding the denominator 
in a binomial series yields the following second order approximation for the curvature vector: 

3 
2 

K = (vxxev + wxxew) i-!(*+->.) 
The radius of curvature of the center-line is defined to be 

1 
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■dx 

Figure 3.3: Geometry of the deformed center-line. 

where |K| is the magnitude of the vector K. With the aid of Figure 3.3, the bending strain can be 
written as 

_ ds' - dx _ (p - r)d9 - dx      ,        , d6 
e = 

dx      ~ dx ={p-r)dx--1 

de But the term ^ is simply l/p. The strain due to axial bending is given by 

(■bend —       yv"n T Tw^xx) i-|(^ + -ä) — \'V™V     i     ' W""W) 

Assuming constant cross-sectional area A along the length of the shaft, and combining the effects 
of axial and bending strain, the total strain energy is then 

EA  fL 
U = ~ir /    uldx + T / \(rlKl + r2

wK
2

wrvrwKvKw) - 2ux (rvKv + rwKw) 
£    JO *■ Jvolume Lv / J 

dVol 

The area moments of inertia are defined as 

Iv= T2
vdA ,    Iw= r2

wdA and   /„„, =  /      rvrwdA 
Jarea Jarea Jarea 

Assuming e„ and ew define principal axes, Ivw = 0. Furthermore, since the center-line of the shaft 
is the centroid of the cross-sections, 

/      rvdA =  /      rwdA = 0 
Jarea Jarea 

Finally, the total strain energy in the shaft is given by 

An additional contribution to the total potential energy comes from the work done on the 
system by the external force P(t) applied at x = L. This work is defined as follows: 

W(t) = P(t)-h(L,t) = P(t)h(L,t) 
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X,x Z 

Figure 3.4: Stationary, rotating and body-fixed reference frames. 

As defined, the work done by P(t) is positive since P(t) acts in the direction of positive displacement 
h(x,t). The potential energy generated by this force is 

and the total potential energy is 

V = -W(t) 

U = U + V 

The total kinetic energy of the system is the sum of the translational kinetic energy of the center 
of mass Tc.m. and the kinetic energy due to the rotation of the body about its center of mass Trot. 
Consider Figure 3.4 depicting the stationary (X,Y,Z), rotating (x,y,z) and body-fixed (x',y',z') 
coordinate systems. The vector f locates the center-line p' at a particular cross-section. In the 
rotating reference frame, the vector f is 

r = (x - h)ex + vey + wez 

where, again, e represents a unit vector in the specified direction. By definition, 

f-1 \dtJxYZ 

df\ 
dt) 

+ ÜJ x f 
xyz 

where Q = <j>ex = Qex is the angular velocity vector. Taking the appropriate derivative and cross 
product yields 

htex + (vt - Qw)ey + (wt + Qv)ez 
\dt J XYZ 

The kinetic energy of the center of mass is 

T- = \l     '(£)     '«"'If'If   M(T 2 J volume       \dtJxYZ 2 J0     [Jarea J    \dt ts XYZ 
dx 
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In the above expression, p is the density of the shaft material and is assumed constant along the 
length of the shaft. Define m to be the mass per unit length. This yields 

Tc 
_ m f1 

m~jJo 
2 

dt/XYZ 
^       * 

or 
772    f     r 1 Tcm- = JJ    [ht+(vt-^w)2 + (t"t + nv)2\dx (3.2) 

Consider a volume element dVol = dA dx with mass density p.  The distance from the shaft 
center-line to the element is given by the vector 

f=y'eyl + z'ezi 

Note that the unit vectors ey, and ez> in the body-fixed frame are identical to ev and ew, respectively, 
used in the derivation of the potential energy. For consistency with Figure 3.4, ey> and ez, will be 
used in this section to describe the (x', y', z') coordinate system. The rotational kinetic energy is 
described by the expression 

Trot = x / pr2dVol 
£ Jvolume 

where r = u/ x f and u' describes the angular velocity of the element about the displaced center- 
line. In determining this angular velocity, Choi et al. [16] include the effects of tilting cross-sections. 
The resulting angular velocity vector has nonzero components in all three coordinate directions of 
the body-fixed frame. In this analysis, only small deflections in the first mode (in both v and 
w directions) will be considered. In this situation, the contribution to the kinetic energy from 
these additional tilting terms is extremely small. Furthermore, the inclusion of these terms adds 
considerable complexity to the equations of motion. Therefore, in this analysis, the effects of 
tilting will not be considered. Thus, the angular speed of the element about the deformed center- 
line is identical to the angular speed of the deformed center-line about its undeformed position. The 
angular velocity of the element, however, is along ex> and is given by o? = j>exi = Q.ex>. Substituting 
these expressions into Trot yields 

Trot = -UJ' / p [r2ü/ - (f • u>')f\ dVol 

Define the polar mass moment of inertia as 

JP = Jy> + Jz>   where   Jy> = j      pz'2dA ,    Jz> =  f     py'2dA 
Jarea Jarea 

and note that since eyi and ezi are principal axes 

/      pz'y'dA = 0 
Jarea 

Finally, the kinetic energy of rotation is given by 

%ot = \jvSl2 (3.3)- 
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Combining Eqs. (3.2) and (3.3), the total kinetic energy can be written as 

T = f L   N + (u< ~ Qw)2 + (Wt + ÜVA dx + \Jv& (3-4) 
Hamilton's Principle of Least Action states that the motion of a system from time t0 to t\ is 

such that the integral of the Lagrangian L over this interval has a stationary value for the correct 
path of the motion [30]. That is, the most desirable (lowest energy) path is the one which makes 
the variation of this integral zero. 

The Lagrangian is 
L = T-U 

Let 

SJ = s f1 Ldt = s ['{T-n)dt = 0 

Making the appropriate substitutions and integrating by parts yields an integral containing Su, 
5v and 5w. Since these variations are independent, the corresponding coefficients must all be 
identically 0 in order to insure the stationarity of J. The partial differential equations of motion 
are 

- mhtt + EAuxx = 0 (3.5) 

-    m (vtt - 2Slwt - tfv) - (Nvx)x 

-EIV (vxxxx - - [(vl)xxvx]^ - 3 [«**«£]    1 ~ 3EIW [™2
xxvx]x = 0 (3.6) 

-    m (wtt + 2üvt - Q2w^j - (Nwx)x 

-EIW [wxxxx - - [(^2)^«;^ - 3 [toxxvj]! - 3EIV [v2
xxwx]x = 0 (3.7) 

with boundary conditions 

«(0,0 = 0, -EAux(L,t) + P(t) = 0 

v(0,t) = v(L,t) = 0 and   w(0,t) = w(L,t) = 0 

At this point, no assumption is made on the moment or slope at the boundaries. These will be 
determined by the bearing conditions. In Eqs. (3.6) and (3.7), N(x,t) represents the total axial 
force, i.e. 

N(x,t) = P(t)-m f   htt(Z,t)dt 
Jx 

where iV(a;, t) is defined to be positive in the negative x-direction. With the aid of Eq. (3.5), N(x, t) 
may be expressed as a function of u(x, t) instead of h(x, t) as follows: 

N(x,t) = P(t)-EA j  ««(£,*)# 
Jx 
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The equations describing the transverse motion of the shaft depend on the axial displacement 
u(x,t). Equation (3.5) can be written explicitly in terms of u(x,t) as 

un - a2uxx = -f{x, t) (3.8) 

where 
a2 = fr and rt*'*) = |j£jf (»?(*. o+«&,o)# 

The boundary and initial conditions are 

PftX 
W(M)   =    -gÄ   and   «t(M) = 0 (3.9) 

The solution of Eq. (3.8) presents severe difficulties due to the presence of f(x, t). This term arises 
from the motion of the end point where the axial load is applied. As stated above, the longitudinal 
motion of a point on the shaft is the combined effect of compression as well as longitudinal motion 
induced by lateral displacements. The effect of bending is to shift points on the center line toward 
x = 0. The term f(x,t) describes the effect of this lateral motion on the acceleration (in the x 
direction) of a point on the center-line. It is easy to see that this contribution to the longitudinal 
acceleration is on the order of the acceleration in the lateral direction. Since only small center- 
line deflections are being considered here, the velocities and accelerations in the lateral directions 
are extremely small when compared to the velocity ut or acceleration utt of a compression wave 
traveling along the axis of the shaft. Thus, the major contribution to the dynamics in the axial 
direction results from axial compression and not lateral motion. For this reason, the effects of 
lateral displacements in Eq. (3.8) governing the dynamics in the longitudinal direction may be 
neglected. The solution of Eq. (3.8) with f(x,t) = 0, given by Bolotin [14], is 

Pox f    a\i vx 
"(*> *) = pT     ^L    

H(t) cosl/t sin — (3.10) v cos — / a 

In order to simplify the analysis, it is desirable to reduce Eqs. (3.6) and (3.7) from partial 
differential equations to a set of ordinary differential' equations using some a priori knowledge of 
the response. This reduction can be accomplished via several techniques. Two of these techniques, 
the Galerkin method and the Rayleigh-Ritz method, will be employed and the resulting ordinary 
differential equations of motion will be compared. For details of each of these methods, see, for 
example, Forray [29], Stakgold [84] and Zauderer [92]. 

First consider the Galerkin approach in which the following system of (possibly nonlinear) 
partial differential equations of motion are given: 

Jc
i(v{x,t),w(x,t)) = 0 ,    t = 1,2 (3.11) 

with some specified boundary conditions. Suppose v(x,t) and w(x,t) can be approximated by 

vn(x,t) = qi(t)4>(x)   and   wn(x,t) = q2(t)<f>(x) (3.12) 
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where <j>{x) is chosen such that vn(x,t) and wn(x,t) satisfy the given boundary conditions. While 
these approximations satisfy the boundary conditions, they do not necessarily satisfy Eq. (3.11). 
Thus 

FiMx,t),wn(z,t)) = Rmfa) ,    i= 1,2 

where Rni(x) represents the residual, or error. In the vibratory response of a mechanical system, 
all modes of vibration are present. Thus, if instead the functions v(x, t) and w(x, t) are represented 
by infinite series, i.e. 

oo oo 

v(x,t) = ^2qi(t)<f>k(x)   and   w(x,t) = ]T q2{t)(j)k{x) 
k=i fc=i 

where <f>k(x) describes the shape of the kth mode, then the residual term vanishes. However, 
consideration of an infinite number of modes is not feasible. Hence, attention here is focused on 
the loss of stability of the trivial solution of Eq. (3.11) and the subsequent emergence of first mode 
(k = 1) oscillations which dominate the response near subharmonic and combination resonances. 
For this analysis, the approximations given in Eq. (3.12) are sufficient with qi and q2 representing 
the time-dependent amplitudes of vibration of the center-line in the v and w directions, respectively. 

The Galerkin method requires that the residual Rni (x) be orthogonal to the coordinate function 
<j)(x) over the entire coordinate domain. This implies 

/   Rni(x)<f>(x)dx = 0 ,    t = l,2 
Jo 

or equivalently 

/   Fi{vn(x,t),wn(x,t))<f>(x)dx = 0 ,    i = l,2 
JO 

Application of this method to Eqs. (3.6) and (3.7) yields 

m    \q\ - 2tiq2 - ^V    /   <l>2dx 

+EIV 

m 

qijo <f>xxxxHx --qf Jo    [{<t>l)xx<t>x]x<t>dx-Zqiql J    \^>xx<^^dx 

+3EIwqiql [ \(j>lx(t>x\   <f>dx + qi f   [N<j>x]<f>dx = 0 
JO l               Jx                        Jo 

q2 + 2fi?i - fi2g2]   /   <f>2dx 

+EIW   q2 I <f>xxxx<f>dx - -ql f   UtD^fe]   4>dx - Sqjq2  f    Uxx<f>2
x]     <f>da 

JO &      JO     L                    1%                             Jo     L              ixx 

+3EIvq
2q2^ [<j>2

xx(t>x]x(t>dx + q2J   [N<f>x]<f>dx = 0 

Using the following identities 

rL 
I   [<f>xx4>l]xJdx = -Jo   [t>lx<l>x]jdx = j%l<l>lxdx 
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and 

/   MUfa]   <f>dx = 4 [  <j>U2
xxdx 

Jo   l J* Jo 

/   <i>xxxx<l>dx = \   <f>lxdx 
Jo Jo 

J   [N<f>x] <t>dx = -P{t) JL <gdx + EA JL ljL u^dA <&dx 

the above equations of motion may be rewritten as 

m [g'l - 2üq2 - ü2qi]  I   <j)2dx 

+EIV giJo   <t>2xxdx-3qi(2q2 + ql) jf   4>2J2
xxdx   -3EIwqiq

2J   cj>2J2
xxdx 

PqxJo   <f>2xdx + qiEAJo   JjT   u^\<f>2
xdx = 0 (3.13) 

771 q2 + 2tiqi - Q2q2 

L 
-3EL 

u: (f> dx 

A^   <t>l<f>lxdx + EIW   q2Jo   4>2
xxdx - 3q2 (q2 + 2q2) J   <&<&xdx 

-Pq2Jo   <f>2xdx + q2EAJo   \ jL HidA cfcdx = Ü (3.14) 

Next consider the Rayleigh-Ritz approach. Again, assume that only the first mode (in each of 
the principal directions) is excited by the parametric forcing P(t). The above system of partial 
differential Eqs. (3.6) and (3.7) may be reduced to a set of ordinary differential equations by 
employing the approximations 

vn(x,t) = qi(t)<j>(x)   and   wn(x,t) = q2(t)(f>{x) 

where <f>(x) describes the mode shape of the first mode and qi and q2 represent the time-dependent 
amplitudes of vibration of the center-line in the v and w directions, respectively. The function 
<f>(x) is identical to that used in the Galerkin approach. Unlike the Galerkin approach, however, 
application of the Rayleigh-Ritz method requires the existence of a functional in the form of a 
definite integral which is to be made stationary. This is the basis of Hamilton's Principle which 
was employed above in deriving Eqs. (3.6) and (3.7). Therefore, the functional for this problem is 
J, the time integral of the Lagrangian. 

The approximations vn(x,t) and wn(x,t) are then substituted into the Lagrangian for v(x,t) 
and w(x, t). Note that in solving Eq. (3.8) for the axial displacement, the term 

1 d2 

lX(vUt,t) + ™l&t))d* 

was neglected since the longitudinal inertia associated with lateral vibrations is small. This term 
appears in the translational kinetic energy and in the Lagrangian through the square of the axial 
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h2 = u2 + 2ut {qiqi + q2q2) J   <f>\d£ + (q^ + q2q2)
2 (J* 4>\d£, 

velocity, i.e. 

In this expression, ut represents the velocity of the axial compression wave which is, in general, 
very large. The second term is the product of a large quantity (the velocity of the compression 
wave) and a very small quantity resulting from longitudinal motion induced by lateral vibrations. 
For consistency in the derivation, this term will be retained. The last term is small and will be 
neglected in the Lagrangian. The resulting Lagrangian is 

L    =    Jo
L{j[u2 + (qi-nq2)

2<f>2(x) + (q2+nq1)
2cl>2(x) + ^n2Jp 

m 
+7 2ut (qiqi + q2q2) J^   $<% + (qigi + q2q2)

2 (j   (j>\<% 

~~U* ~ 2 V^1 + IwQ2) ^x) I1 ~ 3 (^ + q2) ^X)\ 
+ ~- (?i + d) <&{*)} dx + P(t)u{L, t) (3.15) 

In the above expression, the (') represents the total derivative with respect to time, ()x represents 
the total derivative with respect to the longitudinal coordinate and, as before, ()t denotes the 
partial derivative with respect to time. 

The Lagrangian equations of motion are obtained using 

d (6L\     dL      .        .     , o 

Tt{dq-J-dq-rQ-     l = 1>2 (3.16) 

m 

where <?,- are the generalized coordinates and Qi represent the generalized forces which are not 
derivable from a potential function. This term includes the effects of internal and external damping. 
At this point, only forces derivable from a potential have been considered. In the absence of 
dissipation, the equations of motion become 

q\ — 2Qq2 — fl2<7i    /   <f>2dx 

<7l1   <f>Ldx - 3?i (2q2 + q2) jf   tUljx    - 3EIwqig
2 ^ <&<&xdx 

-Pqi jf   <t>2xdx + EAqx J   (J" uiCdA <f>2xdx = Qx (3.17) 

q2 + 2£lqi - fi292]  /   (j>2dx 

rL 
-3EL 

+EIV 

m 

vq\q2 J   <f>l<f>lxdx + EIW   q2 j   <f>2xxdx - 3q2 (9l
2 + 2?f) J   fy2

xxdx 

-PQ2Jo  <t>2xdx + EAq2J^   QT uadA <&dx = Q2 (3.18) 

In the above equations, the following substitution (found by integrating by parts) was used 

m f (f *«)uttdx=EA / or ^) u-dx=EA r or*«*) +id* 
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The Lagrangian equations of motion are identical to those obtained using the Galerkin approach. 
This is to be expected due to the presence of a functional which is to be minimized in order to 
obtain the governing equations. In such cases, the equations of motion derived via one of these 
methods may be obtained by performing integration by parts on the equations obtained using the 
alternate procedure. 

Letting 

xxdx    I $! = /  <j>2dx ,    $2 = /   ifcdx ,    $3 = /   <t>: 
Jo Jo Jo 

and dividing through by m$i yields 

Mq + 2Gq + Kq + F{q,t) = Q 

$. = /   4>l4>lxdx 

Jo 

(3.19) 

where q is the vector of generalized coordinates (gi,g2)
T, Q is the vector of generalized forces 

(QiiQ2)T, M is the 2x2 identity matrix, G represents terms arising from gyroscopic effects and 
K contains stiffness terms, i.e. 

0    -Ü 
n    0 and   K = fci     0 

0    k2 

The stiffness coefficients may be written as &,- = w,- — Q,2 where 

EIV$3       $2 
Wl      = 

ü>2     = 

m$i       m$i 
EIW$3        $2 

m$x       m$i 

P0 = ü\ - P* 

P0 = ü>\ - P* 

The term w,- corresponds to the natural frequency in the ith direction in the absence of a static 
axial load, i.e. when PQ = 0. 

The function F(q,t) consists of nonlinearities and forces which are derivable from a time- 
dependent potential U(q,t), i.e. 

«? 
The potential U(q,t) is given by 

U(q,t)    = 

with 

3£$ 

2m$ 
$2 

i {lvqi + (/„ + Iw)q\ql + Iwql} 

ipfiH(t) cosvt 
2m$! ll + q\ 

1>= I 
Jo 

^cos^ 

COS 
vL Yx (j)xdx 

In the following section, the effects of internal and external damping on the equations of motion 
will be examined. 
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3.2.1    Dissipation 

In addition to the conservative forces and time-dependent forces which are derivable from a po- 
tential, virtually all mechanical systems contain some mechanism by which energy is dissipated 
during vibration. These mechanisms are not fully understood and, as a result, the mathematical 
models describing the dissipation vary. Ultimately, the problem reduces to the addition of suitable 
terms to the governing equations such that the behavior observed analytically or through numerical 
simulation closely approximates that observed experimentally. 

In the current analysis, the effects of dissipation are decomposed into external and internal 
damping. External damping may refer to the influence of friction, aerodynamic drag or other outside 
forces absorbing energy from the moving body, while internal damping describes the conversion of 
kinetic and strain energy in a vibratory mechanical system into heat. Both effects are included in 
Qi on the right hand side of the Lagrangian equations of motion, Eq. (3.16). Note from Eq. (3.16) 
that Qi corresponds to generalized dissipation forces in the v direction and Q2 to the w direction. 
Furthermore, let Qi-ext describe external damping forces in the ith direction and Qi-int describe 
internal damping forces in the ith direction. 

First consider the effects of external damping. Recall Figure 3.4 and let Fy and Fz be the Y and 
Z components of the external damping. The generalized force Q, associated with the generalized 
coordinate qi is given by 

k dqi 
where n is the number of generalized coordinates and £,- represents the original coordinate system. 
Employ the transformation 

cos Q.t   — sin Sit 
sin Qt     cos Qt 

Assuming the external damping to be proportional to the velocity of the shaft center-line in the 
stationary frame, Fy and Fz can be expressed as 

Fy = -mdeY   and   Fz = -mdeZ ,    de > 0 

where.de is the coefficient of external damping and Y and Z represent the components of the 
center-line velocity in the stationary frame. The negative sign indicates that the force is opposing 
the motion. Note that since m is mass per unit length, Fy and Fz are in units of force per unit 
length. Therefore, in order to determine the overall effect of external damping, the expressions 
for Fy and Fz must be integrated over the entire length of the shaft. The resulting generalized 
external damping forces are 

Qi-ext   =    -mde /    (v — Qw) dx 
Jo 

Qi-ext   =    -mde /    (w + Qv)dx (3.20) 
J o 

Assume a linear internal damping model in which the generalized forces associated with this 
dissipation are proportional to the velocities in the rotating frame, i.e. 

Qi-int = -raCi /    vdx    and    Qi-int = ~mC,2 /   wdx 
Jo Jo 
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In the above expressions, £i and £2 are the coefficients of viscous damping in the two principal 
directions. Finally, the equations of motion including the effects of internal and external dissipation 
are given by Eqs. (3.17) and (3.18) with Qi = Qi-ext + Qi-int, i.e. 

Q\    =    -m[(de + Ci)qi -deQq2] /    <f>da 
Jo 
rL 

Q2   =    -m[(de + C2)g2 + de^qi] /    <f>da 
Jo 

In the following subsections, ordinary differential equations for simply supported and fixed-end 
shafts are derived using appropriate expressions for the shape function 4>(x). 

The choice of a linear internal damping model is justifiable in this situation since only small 
lateral displacements are considered. Thus, the contributions of the nonlinearities in a nonlinear 
model would be negligible. This choice is also convenient from the experimental system identifica- 
tion perspective since the identification techniques generally yield the coefficients of linear damping 
models. 

3.2.2    Simply Supported And Fixed-End Shafts 

The Rayleigh-Ritz or Galerkin approach yields the following general equation for the amplitudes 
qx(t) and q2(t): 

Mq + 2Gq+Kq+F(q,t)=Q (3.21) 

where Q is the vector of generalized forces (Qi,Q2)T, 

M = 
10' 

, G- 
' 0 -n' 

0   1 i> 0 
and   K = 

0 
0 
k2 

The stiffness coefficients may be written as ki = £>,- — Q2 where 

EIV fn\4       $2 
Ui     = 

Ü2     = 

TO 

EIm   /7T\4 $ 
TO 

w  I — 
L 

TO$i 

2 

TO$! 

Po 

Po 

The vector of nonlinear and periodic terms is 

F(q,t)    =    - 
6E$4 
TO$i 

A,       0 
0    /,„ ?23 

3£$4 

TO$! 
(h + h) 91 ?2 

9i92 

$, q\ ■{tpucosut) 
m&i I   q2 

The dissipation terms are given by 

Q\   =   -m[(de + Ci)?i-deng2]*o 
Q2   =    -m[(de + Q2)q2 + denq{\$o 
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where 
,L 

o = /   (f>da 
Jo 

The boundary conditions on the lateral motion determine the shape functions for each mode of 
vibration. The shape functions, in turn, provide the values for the coefficients in the equations 
governing qi(t) and ft(0- *n tne current analysis, the equations of motion for both simply supported 
(or pinned-pinned) and fixed-end (clamped-clamped) rotating shafts are presented. In subsequent 
chapters, the local and global stability of the shaft under both end conditions will be presented. 

Pinned-Pinned Shaft 

The simply supported shaft is one for which the ends are allowed to pivot in all directions. Hence, 
no moment is applied to the ends of the shaft by the support. A physical representation of such a 
system can be seen in shafts (or pipes) held in universal joints or bearing systems that are allowed 
to rotate with the shaft. 

For this type of end condition, the shape function for the first mode must satisfy the following 
boundary conditions: 

v{0,t) = v(L,t) = 0    and    vxx(0,t) = vxx(L,t) = 0 

w(0,t) = w(L,t) = 0    and    wxx(0,t) = wxx(L,t) = 0 

This leads to the mode shape approximation 

g){x) = sin — 
L/ 

The equations of motion for this system are given by Eq. (3.21) with 

_.        2L L 7T2       ^       /»rX* /TT\
5 

Clamped-clamped Shaft 

The clamped-clamped, or fixed-end, support represents a shaft operating in a rigid bearing which 
prohibits any angular motion at the boundary. For the case in which the ends are clamped, the 
boundary conditions to be satisfied are 

v(0,t) = v(L,t) = 0    and    vx(0,t) = vx(L,t) = 0 

w(0,t) = w(L,t) = 0    and    wx(0,t) = wx{L,t) = 0 

Thus, the shape function for the first mode can be expressed as [65] 

(f>(x)    =   cn (cos — - cosh -j- J (sin 77 - sinh 77) 

rjx      .     r/x\ 
—— sinh — 1 (cos 7? - cosh 77) 

where 77 satisfies 
cos 77 cosh 77 = 1 
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and cn is a normalizing constant, i.e. cn<f>(L/2) = 1. It can easily be shown that rj2 = <*>yfi§f. 
For the first mode of vibration of a clamped shaft, 77 = 22.37 corresponds to a first mode natural 

• frequency of u = 22.37yjjjr^ where the appropriate moment of inertia must be used to obtain the 
natural frequency of vibration in the desired direction. The equations of motion for this system are 
given by Eq. (3.21) with 

$0 = 0.5322 L,    $x = 0.3965 L,    $2 = ^^ 
L/ 

$3 = if) $1 ' $4 = 6'°497 \2L)     and Cn = °-010923 

3.3    Hamiltonian Equations of Motion 

In deriving the Lagrangian equations of motion, it was not necessary to make any assumptions 
on the magnitude of the excitation or dissipation terms. However, if these quantities are assumed 
to be small, i.e. 0(s), \s\ < 1, then the system is nearly conservative and its dynamic response 
may be investigated via a Hamiltonian approach. The advantage of this approach lies in the 
fact that, under this formulation, the canonical structure of the undamped equations of motion is 
preserved. This structure is desirable since, in many cases, it significantly reduces the amount of 
algebraic manipulation required. Furthermore, the integrable structure of the Hamiltonian system 
of equations lends itself to the application of certain perturbation techniques used in predicting the 
global behavior of the system. 

Throughout this work it is assumed that the dissipation, imperfections and amplitudes of para- 
metric excitations are small. Thus, one can treat the proposed problems as weakly Hamiltonian 
systems. Most of the analysis is based on the recent work of perturbed Hamiltonian systems. 
Since, in the Hamiltonian treatment, the momenta p and the coordinates q constitute In inde- 
pendent variables, Hamilton's equations allow a much wider range of transformations than the 
point transformations. This enlargement of the class of possible transformations, which includes 
all In independent variables p and q, is one of the important advantages of the Hamiltonian treat- 
ment. Recent results on persistence of quasiperiodic motions will also enable us to develop global 
techniques to detect complicated dynamics. 

Employing a Legendre transformation yields a set of 2n first order equations for the generalized 
coordinates q and conjugate momenta p. These equations are given by 

dp r dq ^ 

where Q consists of all generalized forces which are not derivable from a potential. The Hamilto- 
nian H(q,p,t) represents the total energy of the system when all the forces are derivable from a 
conservative potential. The function H(q,p,t) is determined by first calculating the Lagrangian. 
Let the kinetic and potential energies of the system be given by 

T=-qTMq + qTGq    and     V = \qTKq + U(q, t) 

where M, G, K and U(q,t) are given above. In terms of these quantities, the Lagrangian of 
Eq. (3.15) becomes 

L = T-V= \qTMq + qTGq - l-qTKq - U(q, t) 
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The momenta may then be obtained from the Lagrangian as 

dL(q,q,t) 
P = dq 

= Mq + Gq 

Rearranging yields 
q = M~l[jp-Gq) 

Substituting this expression for the generalized coordinate back into the Lagrangian and noting the 
relationship 

H{q,P,t)=pTq- L(q,q(q,p),t) 

the Hamiltonian, a scalar function of q and p, is 

H(q, p, t) = \pTM~lp - pTGq + \qrCq + U(q, t) (3.22) 

where C = GTM  !G+ K. The equation for the momenta can be obtained from the Hamiltonian 
as 

p = GT(M-Yp-Cq-™^ + Q 
dq 

Let z = (qi, q2,Pi,P2)T- The time dependent Hamiltonian can be decomposed into a quadratic 
autonomous component and a component consisting of quadratic nonautonomous as well as higher 
order autonomous terms, i.e. 

H(z,t) = H0{z) + H1(z,t) 

where 
wi     0    0   -n 

Ho(z) = ±zTSz,    S = o   ü2 n   o 
o     ft    1     o 

-ft    o    0     1 

and H(z, t) = U(q(z),t). The equations of motion in the z coordinates are 

oz (3.23) 

where J is the symplectic matrix 

J = 
0     / 
-/    0 

/ is the 2 x 2 identity matrix and 0 is a 2 x 2 zero matrix. The matrix B represents the forces not 
derivable from a potential, i.e. 

0      0 
D2   Ä B = - 

where 
de + Cl 0 

0        de + C2 
and   D2 = 

$5n 0   -d 
C2    0 
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3.4    Conclusions 

In this chapter, the equations governing the longitudinal and transverse vibrations of a rotating shaft 
subject to a time dependent axial load were derived. Although similar equations have been obtained 
previously by various authors, as indicated by the references cited in Section 3.1, this derivation 
is presented here for completeness. These equations were derived with the specific example of the 
rotating shaft in mind, yet the results are fairly general in the scope of gyroscopic systems. For 
example, these equations may also describe the transverse vibrations of a pipe conveying fluid with 
non-steady flow velocity. Hence, a wide variety of mechanical systems may be modeled by these 
equations with only slight modifications. 

The primary motivation for deriving mathematical models of dynamical systems is the hope that 
these will provide valuable insight into the behavior, reliability and failure mechanisms of practical 
devices. Since the functionality of a component is the over-riding concern of designers, these 
models play an important role in predicting system behavior as well as outlining the limits of safe, 
or stable, operation. To this end, the derivation outlined in this chapter is only a starting point for 
the stability analysis to be presented in Chapters 4. In Chapter 4, the stability of the system in the 
neighborhood of a fixed point or limit cycle (local stability) will be examined. Parametric excitation 
terms are known to induce instabilities at certain resonant frequencies. Thus, in Chapter 4, the 
stability of the system developed in this chapter will be analyzed when the frequency of parametric 
excitation is near a system resonance. The results obtained are valid only in a small neighborhood 
of state space surrounding the fixed point, or in a small neighborhood of the parameter at which a 
fixed point or limit cycle undergoes a bifurcation. 
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Chapter 4 

LOCAL NONLINEAR ANALYSIS 
OF GYROSCOPIC SYSTEMS 

4.1    Introduction 

In dynamical systems theory, it is often possible to bring a set of time-dependent equations to an 
equivalent set of autonomous equations via an asymptotic approximation. The theory of averaging, 
originally due to Krylov and Bogoliubov [52], provides such a method. The resulting set of averaged 
equations are equivalent to the original equations in the sense that the essential dynamics of the 
original system are preserved. Intuitively, this implies that the response of a given system to 
external excitation is determined more by the average influence than the fluctuations about the 
average. The aim of the averaging method is to establish the fact that the exact solution and the 
first approximation remain within 0(e) of each other over time intervals of length 0(l/e) where 
£<1. It is important to note that the results obtained from the method of averaging are valid only 
in a small region surrounding the fixed point. For detailed discussions of the method of averaging, 
see Hale [34], Sanders and Verhulst [75], Guckenheimer and Holmes [32] and Murdock [64]. 

The method of averaging, as described in Chapter 1, applies to T-periodic systems of the form 

x = ef(x,t) (4.1) 

This is known as the standard form for this method. In such systems, the time evolution of solutions 
is "slow" in comparison to the T-periodic excitation due to the 0(e) vector field. Averaging brings 
the above equations to the following set of autonomous differential equations: 

y = ef0(y),    f0(y)= ^{/(y,t)} (4.2) 

where j   {•} is the averaging operator defined as 

^H=  Um  UT{-}dt 
T-Kx> 1   Jo 

The study of the bifurcation behavior in a small region of state space surrounding the fixed point 
(or limit cycle) or in a small neighborhood of the bifurcation point is referred to as local analysis. 
In a local bifurcation, the stability of one fixed point or limit cycle is lost and a branching, or 
bifurcating, solution emerges. These local bifurcation scenarios are described by the dynamics in 
the variational equations. 
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In this chapter, the local stability and bifurcation behavior of a gyroscopic system subjected 
to periodic parametric excitation will be analyzed. Although the results obtained are valid for 
general parametrically excited gyroscopic systems, the motivating engineering problem is the lateral 
vibration of a rotating shaft. This example will be employed to interpret the general results. The 
method of averaging will be applied to obtain a set of autonomous ordinary differential equations. 
The stability of the trivial (non-vibratory) solution will be examined and the stability boundaries 
under various parametric resonance conditions will be determined. These boundaries are given in 
terms of the amplitude and frequency of the parametric excitation P(t). The post-critical nontrivial 
solution branches will also be calculated. 

4.2    Stability of the Linear System 

The Hartman-Grobman Theorem (see, for example, Guckenheimer and Holmes [32]) states that 
if the Jacobian of the linear part of a set of nonlinear ordinary differential equations has no zero 
or purely imaginary eigenvalues, i.e. if the fixed points are hyperbolic, then the eigenvalues of this 
Jacobian are sufficient to determine the stability of the full nonlinear system.- Hence in computing 
the stability boundaries, it is only necessary to consider the linear terms in the averaged equations 
of motion. 

In the absence of a time dependent parameter, the stability of the linear system is determined 
simply by the location of the eigenvalues. Consider the linear system given by 

x' = Ax,    x G Rd 

The only steady state associated with this system is the trivial solution. If the eigenvalues of the 
matrix A are A,-, i = 1, • • •, d, the characteristic equation can be written as 

d 

*d + 52(-i)ici\
d-i = o 

«=i 

For the four-dimensional system under consideration, this reduces to 

A4 - cjA3 + c2A2 - c3A + c4 = 0 

where 

c3     =     zZ^i^j^k, C4 = AiA2A3A4 

(see, for example, Abramowitz and Stegun [1]). The manner in which the system loses stability de- 
pends on how the eigenvalues cross into the right half plane. The various scenarios are summarized 
in Table 4.1. In Table 4.1, the spectrum of the critical eigenvalues is given along with necessary 
and sufficient conditions on the coefficients such that this eigenvalue configuration is attained. It is 
assumed that the rest of the eigenvalues have negative real parts where the notation §R(A) denotes 
the real part of A. 
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Critical Eigenvalue Spectrum Condition (necessary & sufficient) 
Aj =0 c4 = 0 
Ax = A2 = 0 c3 = c4 = 0 
»(A,-) = 0, » = 1,2 ci # 0, c3 # 0 

ci/c3 > 0 and 
cic2c3 - cfc4 - c§ = 0 

»(A,-) = 0, t= !,-••,4 d = c3 = 0, 
C2 > 0 and 
c\ - 4c4 > 0 

Table 4.1: Critical Eigenvalue Conditions 

In Hamiltonian systems, the stability conditions are somewhat different. The characteristic 
polynomial of a Hamiltonian system is an even polynomial. Thus, if A is an eigenvalue of the 
system, then so is -A, A and -A, where A denotes the complex conjugate of A. The eigenvalue 
spectrum is symmetric with respect to both real and imaginary axes. Thus, the existence of a 
single zero eigenvalue is not possible. The necessary condition for stability is that the spectrum 
lies entirely on the imaginary axis. This type of stability is referred to as orbital stability. In 
this situation, it is impossible for all solutions to decay since all eigenvalues cannot be in the left 
half plane. Therefore, the origin cannot be an asymptotically stable fixed point of a Hamiltonian 
system. 

The work of Krein [51] is the first to describe how the eigenvalues move in a generic non- 
symmetric Hamiltonian system as the system parameters are varied. In such generic nonsymmetric 
situations, simple eigenvalues remain on the imaginary axis under Hamiltonian perturbations. How- 
ever, the multiple (coincident) eigenvalues split and leave the imaginary axis. The generic families 
of symmetric Hamiltonian systems are affected by their symmetry type as shown by Dellnitz et al. 
[22]. The instability that takes place in a flexible rotating shaft is shown in Figure 4.1 where S 
denotes a stable region, D a divergence region (one eigenvalue has passed to the right half plane 
along the real axis) and F a region of flutter instability (a pair of eigenvalues has passed into the 
right half plane away from the real axis). Due to the symmetry of Hamiltonian systems, the 
divergence boundary represents two zero eigenvalues at every point. 

In Figure 4.1(a), the system possesses S1 (rotational) symmetry and the eigenvalues simply pass 
at the origin. As two pairs of eigenvalues meet on the imaginary axis, they may either pass or split 
according to Krein's analysis. The case of splitting is known as a Hamiltonian Hopf bifurcation. 
Figure 4.1(b) depicts the case in which the S1 symmetry has been broken. The eigenvalues no longer 
pass at the origin inducing a saddle-center type fixed point configuration for that parameter value. 
The system loses then regains stability as the parameters are varied. The subsequent occurrence of 
coincident eigenvalues in the nonsymmetric case necessarily implies a Hamiltonian Hopf bifurcation. 
In the study of gyroscopic systems, the properties of symmetric systems will be used to examine 
these two bifurcation scenarios in more detail. 

When the effect of damping is added, the system becomes quasi-Hamiltonian. The eigenvalue 
spectrum is then symmetric with respect to the real axis only. The stability boundaries for the 
dissipative system are depicted in Figure 4.2.   Figures 4.2 (a-i) and (b-i) represent the divergence 
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Figure 4.1: Stability boundaries of a rotating flexible shaft without dissipation. 

Figure 4.2: Stability boundaries of a rotating flexible shaft with dissipation. 
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and flutter boundaries in the presence of internal dissipation only. Compare these to the boundaries 
drawn in Figure 4.1 and note that the divergence boundary is unaffected by the addition of internal 
damping. The reason for this is simple. The internal dissipation as it is modeled here (linear 
proportional damping) enters the equations of motion multiplying a velocity term, not in the 
stiffness matrix. Hence, it cannot affect the static (divergent) bifurcations. Also note that since 
internal damping is complete, i.e. affects all modes, the restabilization region present in Figure 4.1 
(above the divergent region) no longer exists. This is to be expected due to the results of Chetaev 
[15]. 

Figures 4.2 (a-ii) and (b-ii) show the effects of both internal and external dissipation. The 
addition of external damping affects both divergence and flutter boundaries since these terms 
enter into the stiffness matrix as well as the velocity terms. The divergent region of the damped 
system is bounded above and below by the boundaries of the system without damping. One 
important observation is that increasing the amount of external damping drives down the peak of 
the divergence region. The implication is that for the unsymmetric shaft, the initial loss of stability 
is not necessarily through divergence as it is in the conservative case. For the symmetric case, 
however, the initial loss of stability is always through flutter. Up to this point, the effects of the 
time dependent parametric excitation have not been considered. These effects will be examined in 
the following sections. 

4.3    Stability of the Nonlinear System 

In order to apply the method of averaging to the equations of motion of Chapter 3, it is first 
necessary to transform these equations to the standard form. To this end, three separate symplectic 
transformations will be performed. The first diagonalizes the conservative linear part. This will 
greatly simplify the algebra involved in the averaging operations. The second transformation scales 
the state variables and excitation amplitude such that all terms, except for the diagonalized linear 
part, are 0(e). The final transformation employs a type-I (or Fi) generating function to eliminate 
the remaining 0(1) terms. The resulting equations are then in the standard form of Eq. (4.1). 

Although the method of averaging may be applied to the equations of motion of a dynamical 
system beyond the systems critical divergence point, the canonical transformations outlined above 
are no longer valid in this region, i.e. when the eigenvalues of the Hamiltonian system are no 
longer purely imaginary. Therefore, in this study, the P0-ti parameter range is restricted such that 
the eigenvalues remain purely imaginary. For the parameters defined in Chapter 3, this condition 
reduces to 

ki = ü?-&-P* >0,    t = 1,2 

This implies a positive stiffness. These regions of positive stiffness are indicated by Si, the primary 
stable region, in Figure 4.2. When the time dependent axial load is added to P0, the peak value of 
P(t) must also remain in the Si parameter region. 

Recall the Hamiltonian equations of motion given in Chapter 3, 

k = jsz + jd-Mlill_Bz (4.3) 

where the matrix B represents the forces not derivable from a potential, i.e. 

B = - 
0      0 

D2   Dx 
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and 
de + &        0 

0        de + C2 
and   D2 — — 

£5^ 0   -Ci 
C2    0 

A symplectic transformation which diagonalizes the linear conservative terms is given by 

z = Ty (4.4) 

where 
TTST = S = d\ag{üj1,u2,uuu2}   and   TTJT = J 

J is the symplectic matrix, u\ and u>2 are the eigenvalues of the conservative system and are given 
•by 

w,? = \ («1 + ^2 + 2ft2 ± ^(w! - £2)
2 + 8ß2(wi + wa)} 

where "+" corresponds to wi and "-" to w2. The transformation matrix T is given by 

T = [tij] = 

Oillßl ai2ßi <J\\ß\ (J\2ß2 

«2i/3i ot22ßi a21ßi a22ß2 

"31/5l a32/?l 0-31/Ö1 032/32 

_ a^ßi a42ßi cr41/?i (T42/92 

with 

au   =    1 , <TU = -1 

«2»    =    0"2i = — 
LJJ — k-i 

Oi3i     =     &3i = Wt- - 

2w,-ft 

2u>i 
U), 

a4i   =   —(T4i = £2  
2~*i 

2£2 

* - if♦ w »=1,2 

The new Hamiltonian is simply 

K(y, t) = H(z(y), t) = -yTSy + Kx(y, t) 

The Hamiltonian equations of motion are 

dK 
y = JSy + J—± - By 

oy (4.5) 

where B = T~1BT. 
The second transformation rescales the state variables and the excitation amplitude.  To this 

end, introduce the nondimensional time r = vt and the detuning parameter A such that 

v = w0(l - eX) 
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Next, note that the Hamiltonian K(y,r) can be decomposed as follows: K0(y), generating the 
linear conservative terms in the equations of motion; Kin(y), generating nonlinearities of order M 
in y; and K1T, containing the parametric terms of order N in y. This yields 

K(y,T) = KW + Kl^ + Kl^ficosT 

Note that KQ is quadratic and K\T 
+l' is a homogeneous term of degree TV + 1. 

The state variables and excitation amplitude are scaled as follows: 

y = erx     and     fi = e"h 

Substituting the scaled quantities into Eq. (4.5) and solving for r and s such that the nonlinearities 
and parametric terms are 0(e) yields r = 1/2, 5 = 1. The equations of motion in terms of x are 

x' = JSx + ei[XJSx + ^-  JdKl^,T) -S*Bx\\ (4.6) 

where eS* = 1 and 

S= —S = diag{(Ti,a2,(Ti,(T2} ,    07 = — ,     « = 1,2 
w0 Wo 

and x = (fi,f2,7?i,7?2)T or, more concisely, x = (f, rj)T. Differentiation with respect to the new 
time T is denoted by ()'. 

In order to eliminate the 0(1) terms in the Hamiltonian K(x,t), one additional transformation 
is needed. The new Hamiltonian (with s = 0) can be written as 

k - K + ds 
A0 — Ao+ -r— 

or 

where S(a,^,r) is an Fi-type generating function and 

2 

K0=
1-xTSx=1-J2ai(t? + r]?) 

The function S(a,£, r) relates the old variables x to the new amplitude and phase variables (a, fa)T 

through 
dS        A    J. 9S 
o& oai 

and S(a,£, r) is chosen such that K0 = 0. Thus, S(a,£, r) must solve the Hamilton-Jacobi equation 

lp     A*     fdS\2\     ÖS 

Solving yields 

& = v^cos^r - fa)    and    7?,- = -V
/2ÖIsin(cr,r - fa) ,        i = 1,2 
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The transformation is described by 

«u 
tfi 

= R 
<t>'i 

+ 0 
(4.8) 

where, for $, = OiT - -4>i (* = i,; 2), 

R = 
■   9ii     9£i  ■ 

7fcrcos($i) 0 \/2at sin($j) 0 
0 7kcos(*2) 0 •v/2a2sin($2) 

^rsin($i) 0 \/2ai cos($i) 0 
0 -7fesin($2) 0 V5iÖ2"cOs($2) 

Using Eq. 4.7, it can be easily verified that K0 = 0 and the symplectic condition RTJR = J holds. 
The new Hamiltonian is 

k = k0 + K1 = —Kr (£(a, 4>), 77(0, <f>), r) 

The equations of motion in standard form are 

dK, 

<t>'i _^_ni-^&<«.*>> (4.9) 

where B = R lB. It is also possible to obtain Eq. (4.9) directly from Eq. (4.6) via the transfor- 
mation (4.8). 

Since the equations of motion are obtained from the Hamiltonian through a linear operation, 
the system may be averaged in one of two ways: the equations of motion may be averaged directly 
or one can apply averaging to the Hamiltonian and obtain the averaged equations from the resulting 
autonomous Hamiltonian. The latter approach is generally simpler since it implies performing the 
averaging calculations only once. 

Application of the method of averaging yields a set of equations of the form 

4>\ 
= £ 

0       1+J^l-i     fi 
-ACT,-  J dvi      j   -gi (4.10) 

where u; = (a,-,<fc)T. In the above equations, the notation (") indicates an averaged quantity and 

Kl=M {Kx}    and 4- N-i" {*•**(«>*)} 9t   I       ^o 

where <    is the averaging operator defined above. 
The system described by Eq. (4.10) represents a first approximation of an asymptotic method. 

In some situations, the first approximation does not contain all the essential information that was 
present in the original set of equations. The influence of quadratic nonlinearities, for example, is 
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not retained in this first approximation. In such cases, in order for the resulting averaged equations 
to be equivalent to the original system, it is necessary to proceed to a second order approximation. 
Details of this procedure may be found in the book by Bogoliubov and Mitropolsky [13]. For the 
system under consideration, a first order approximation is sufficient to capture all the essential 
dynamics. 

It can be shown (see, for example, Murdock [64]) that averaging to the first order is equivalent 
to removing terms from the Fourier series expansion of an equation. Complete averaging removes 
all but the constant term, i.e. the average, from the right hand side. In the presence of certain 
degeneracies, or resonances, however, additional terms will remain in the averaged system. A 
dynamical system is said to be in internal resonance if the parameter values are such that the 
following relation between the natural frequencies holds: 

Y^ rriiUi = 0 

for some set of integers m = (mi, m2, • • •, mn). The system is said to be in parametric resonance if 
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for some set of integers m = (mt, m2, • • •, mn) and some excitation frequency u>0. In the local anal- 
ysis presented here, the effects of the parametric excitation are to be examined. Thus, to simplify 
the analysis, only the case of parametric resonance in the original equations will be considered. It 
will be shown in Section 4.4.3 that the averaged system of equations may exhibit internal resonance 
under certain conditions on the parameter values. 

In the subsequent local analysis of Eqs. (4.10), the stability of the fixed point and the emergence 
of limit cycles will be examined. As discussed in Section 4.1, one of the frequencies of the system 
has been removed. Hence, a fixed point in the averaged system corresponds to a periodic orbit in 
the original nonautonomous system. Similarly, a limit cycle in the averaged equations, corresponds 
to a 2-torus in the response of the original system. 

4.4    Local Analysis of the Averaged Equations 

In this section, the stability of the averaged equations will be examined under various parametric 
resonance conditions. As the frequency v of the parametric excitation approaches some multiple 
of the natural frequency of one of the modes of vibration, the amplitude of vibration of that 
mode will dominate the dynamics of the response. If the excitation frequency approaches some 
algebraic combination of two or more modes, the response is more complicated and couples the 
modes involved. As stated above, the parametric resonance condition is 

" n 

/] miu>i = u)0    or     ^ mi°» = 1 
*'=i »=i 

where a, = w,/wo and u>o is the resonance frequency. 
Under first order averaging, it can be shown that the only possible parametric resonance con- 

ditions are those for which £"=i m,- = 2, i.e. resonances of order 2. If the averaging procedure was 
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carried out to second order, one would see resonances of order 3 as well. The resonance conditions 
possible in the present analysis are: subharmonic resonance (w0 = 2w,- for i = 1,2) and combination 
resonance (u0 = u\ ±w2). The stability of the equilibrium in the absence of parametric resonance 
will also be examined. 

The following quantities are used in the analysis: 

7«   =   2 [lvt
2

u (3t?,- + t22i) + Iwt
2

2i (3*1,- + t2
u)] 

7i2   =   2 [/„ (t?1(3t?2 + t\2) + t2
2(3t2

u + t2
x)) + Iw (t

2
22(3t221 + t2n) + t221(3t222 + t2

2))' 

Ti3   =    \(t2u-t2
2i) 

1. 
7«'4     =     i:\hlh2 + *21*22j 

1, , 
7»'5     =     2^11<12 ~~ *21^22J 

Tit"     =     ^- {{tiitAi ~ hihi)de + tlt-*2,-fi(Cl + C2) + *2t*4t<2 - hit3iCl}   ,     t = 1, 2 

3£$4 ,        . $2 a,,    =    -——      and      o„ = 
2m$, *      2m$] 

where tij are terms in the transformation matrix T defined for Eq. (4.4). 

4.4.1    Nonresonant Case 

First consider the case in which the resonance condition is not satisfied for any set of integers m,-. 
The averaged equations of motion in polar coordinates are given by 

< - '{(^M. («■"> 
4>i    =   sl-X(Ti + —^{ynai +712<X2)| (4.12) 

for i = 1,2. The fixed points of the system are found by setting a\ = 0 and $ = c;. The constant 
c; can be included in the detuning parameter A. Thus, the latter equilibrium equation may be 
replaced by $ = 0. Since the amplitude equations are linear, the only possible fixed point is the 
trivial solution, i.e. (ä0i,ä02) = (0,0). It is important to note that in deriving Eq. (4.12), a factor 
of ö, was divided out. Thus, in analyzing the resulting expressions, care must be taken not to 
omit the origin as a possible solution. In order to examine the stability of the trivial solution, it is 
necessary to transform Eqs. (4.11) and (4.12) to rectangular coordinates via 

Xi = y/äl cos <f>i    and    y{ = -y/ö^sin 4>i ,     i = 1, 2 

In rectangular coordinates, Eqs. (4.11) and (4.12) become 

y'i   =   £{{^-)yi-(^i)xi + XiTi(x,y)\ 
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The function Ti(x,y) contains the nonlinear terms and is given by 

Fifa, y) = —2L (71*01 + 7.202) 
Wo 

The stability of the trivial solution can be completely determined by the location of the eigen- 
values of the system linearized about the origin. To this end, the linear system is given in matrix 
form by 

0 ^^       0 
n      Atrium 

0 

712 

7n 
0 

8' 
0 

712 
0 

8' 

7n 
0 

The eigenvalues of this system are 

eS* 
\r = 

Wo 
(yir + i-^jp)    and   Ar+2 = ^(7ir 

. Xaru>o 
r= 1,2 

Since 6*/u0 > 0, the sign of jir determines the stability of the linear, and therefore, the nonlinear 
system. It can be shown that 7ir < 0 for r = 1,2. Thus, in the absence of parametric resonance, 
the trivial solution remains stable for all values of the excitation amplitude and frequency in the 
parameter range of interest. 

4.4.2    Subharmonic Resonance: u0 = 2u>i 

The subharmonic resonance case corresponds to a parametric excitation with frequency near twice 
the frequency of one of the modes of the shaft. The averaged equations of motion for this situation 
are 

-,   =   4(^^00,2^+(2^) a,-} 

{{■ wo 

#    =   .{-Aal + ^(7Ha1+7l,a2)-(^^sin2^)} 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

From the amplitude equations, it is easy to see that one equilibrium solution is the trivial one, 
i.e. {ä0i,ä0j) = (0,0). As in the nonresonant case, it is necessary to transform Eqs. (4.13) through 
(4.16) to rectangular coordinates. This yields 

x'j = e{(^)^ + (A^-^-(^)} 

y'j  = e{(-^i)w-(^)*i + *,-^(iB,y)} 
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For u>o = 2ur, the eigenvalues of the system linearized about the origin are 

Xa =  ^{7lr±t-F~)'    r*s 

K   =   ^ (s*ylr±i^J(Xaru0)
2 - (bu7r3hj>)2) 

The first set of two eigenvalues, Xs (s ^ r), correspond to the mode that is not in resonance and 
possess negative real parts. This implies that äs —»• 0 as r —»■ oo. Since the dynamics of the 
stable mode are only of interest in the manner in which they affect the mode in resonance, one can 
apply the Center Manifold Theorem outlined in Chapter 1. One can approximate the stable mode 

• variables xs and ys as series expansions in xr and yr, each starting with a quadratic term. Since 
the resulting function Ti{x,y) is fourth order, to a first approximation, it is reasonable to take 
xs = ys = 0 in the analysis of the stability of the mode in resonance. This decouples the modes. In 
order to determine the steady state nontrivial solution, one only needs to examine the equations 
for xr and yr. 

The second set of eigenvalues, Ar, correspond to the mode that is in resonance. These eigenvalues 
can be complex, real or zero but not purely imaginary. Thus, the trivial solution loses stability 
through divergence. The condition for stability of the trivial solution, after dividing through by e, 
can be expressed as 

As stated above, if the stability condition is violated for some value of excitation amplitude \x 
or frequency u, the system loses stability through divergence. Beyond the bifurcation point, the 
averaged set of equations exhibits a nonzero fixed point for each v (or /i). Since fixed points of the 
averaged equations correspond to periodic orbits in the original system, this indicates that once 
the trivial solution loses stability, the shaft will begin to oscillate in the rth mode (with period uir). 
The amplitude of this oscillation may be determined by examining Eqs. (4.13) and (4.15) for the 
case in which är ^ 0. Setting a'r = 0 yields two possible solutions for the steady state angle (f>0r 

Substituting this into <j>'r = 0 yields an expression for the nontrivial steady state amplitude ä0r, 

«Or = 2^- {^r ± \J{bu1rzhi>)2 - (<S*Tlr)2} 

It can be shown that the solution branch corresponding to the "+" in the expression for sin 2<f>0r 

is stable for all values of h and A and, therefore, for all values of fi and v. The solution branch 
corresponding to the "-" is unstable for all values of /i and v beyond the primary bifurcation 
point. Figures 4.3 and 4.4 depict the stability boundaries (in fi-v parameter space) and subsequent 
nontrivial solutions for a rotating shaft which is pinned at each end. Figures 4.5 and 4.6 depict the 
stability boundaries and nontrivial solutions for a rotating shaft which is clamped at each end. 
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Figure 4.3: First subharmonic (w0 = 2u{) stability boundaries and nontrivial response of pinned- 
pinned rotating shaft (a = oio). 

3 

O. 
E < 

u 
X 

0 
■ 

8 \ UNSTABLE      / - 

6 

\                 / 

- 

4 STABLE 
\            / 

STABLE - 

2 
:                  \\   // 
_     undamped   \: ■'/ 
 damped         \    / - 

0 ' ,  ( • 
144 145 146 147 148 

Excitation Frequency v 
149 

8 i          ■ i ■ ■ ■y 

Htnhle . 
O unstable ■ 

•   6 - 
•o . 
3 

•r4. / a. * 
i?4 / - 
V / 
m a 
O / - 
a« p - 
V / K . 

n ....... 
i 
 t   .   . 

• 

145.5 146.0 146.5 147.0 147.5 
Excitation Frequency v 

148.0 

Figure 4.4: Second subharmonic (w0 = 2u;2) stability boundaries and nontrivial response of pinned- 
pinned rotating shaft (a = 020). 

71 



20 

•8   15 
3 

E 
<   10 

x 
Ed 

5 - 

  " 1 ■ ■ ■ "I 
% :)' . 

. i\UNSTABLE // ■ 

- V        -7 - 

STABLE \\ //' STABLE       J 

: \ v / • 

  undam] 
 damped 

>ed \    / - 

- - 
. . . . V  . 

650 651 652 653 
Excitation Frequency v 

654 

9  2 

0 
651 

  stable 
 unstable 

8        652.0        652.2 652.4        652.6 652.8 
Excitation Frequency v 

Figure 4.5: First subharmonic (w0- = 2wi) stability boundaries and nontrivial response of clamped- 
clamped rotating shaft (a = OJO). 

25 

* 20 v 
■a 
3 -*> 
ft 15 
E < 

I lo 
STABLE 

. undamped 
damped 

0[ 
318 

STABLE 

320 322 324 
Excitation Frequency v 

a 

•o 
3 

  stable 
.. unstable 

0 
321.0 321.5 322.0 322.5 

Excitation Frequency v 
323.0 

Figure 4.6:   Second subharmonic (u0  =  2u2) stability boundaries and nontrivial response of 
clamped-clamped rotating shaft (c = 020). 

72 



4.4.3    Additive Combination Resonance: w0 = w; + Uj 

The next resonance case to be considered is that of additive combination resonance. In contrast 
to the subharmonic case discussed in the previous section, this resonance condition involves both 
modes instead of a single mode. As a result, the bifurcation behavior is more complicated than in 
the previous case. In this case, the averaged equations of motion in polar coordinates are 

ä' e{^^cos^ + ^)VE^+(26-^. 
W0 u0 

aA 

ft   =   e{ -ACT,- + ^ (ylißl + li2a2) - (^tülsin(^. + ^   ß 
w0 V    w0 

J'J V a-i 

(4.17) 

(4.18) 

(i = 1,2) for which the trivial solution (ä0;,ä0j) = (0,0) is an equilibrium.   Transformation to 
rectangular coordinates yields 

*.H<-^+(^)*-(^)»+«*M 
The eigenvalues of the system linearized about the origin are complicated. However, it is possible 

to simplify the expressions for these eigenvalues via an additional coordinate transformation. To 
this end, let 

Xi    =    xi + iyx ,    xi = xi - iyx 

X2   -   x2 + iy2 ,    X2 = x2- iy2 

Note that this transformation is not symplectic. However, this is not detrimental to the analysis 
at this point since this new coordinate system is only used to calculate the eigenvalues, which are 
independent of the coordinates. The linear system in the new coordinates is 

xi 
x'2 
xi 

I   X2    ) 

w0 

6*ju — i\u>i 
hbuil}j24 

0 
0 

hbutpju 0 
<S*Ti2 + *'Aw2 0 

0 £*Tn + iAa>i 
0 hbutl}j24 

0 
0 

hbutpj14 

S*Jl2 - i\u2 

This can be expressed as 

xi f             \ 
Xi 

.    X2 
xi 

> =A< X2 

Xi 

. X2 , I   X2   J 
The characteristic equation is obtained from 

det[.4 - pi] = det n  0 
0  n - det(ft) det(ft) = 0 

Xi 
X2 

Xi 
I   X2   ) 
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where the roots of det(TZ) = 0 are denoted by p and the roots of det(TZ) = 0 are p. Evaluating the 
determinant yields 

det(ft)   =    -2   (6*yn - iXcvi - p) {8*yl2 + iXu2 - p) - {hbui>)2 y14y24] 

=    (n - isi - p) (r2 + is2 - p) - 
"A 

where, for convenience, n = eS*yu/oj0, se = eXue/uo (£ = 1,2) and % = (hbuip)2 y14y24.   The 
characteristic equation is given explicitly by 

P*    -P 

+     — 

s8* . .     .eX . 
— (Tu + T12) +«— (u>2 - wi) 
WQ WQ 

(^*2Tii7i2 + X
2

UJIU2 - (hbutp)2y14y24^ + i5*X (yuuj2 - y12ui)   = 0        (4.19) 

The characteristic equation (4.19) contains coefficients which are complex. In determining the sign 
of the real part of the eigenvalues, a complex version of the Routh-Hurwitz stability criterion will 
greatly simplify the analysis. 

The condition for stability of the trivial solution is $(p) < 0. Let p — in. The stability condition 
becomes 

»(/>) < 0     =► S(K) > 0 

where 9(/c) denotes the imaginary part of K. In terms of K, the characteristic equation is 

-K2   + 
\sX 

K    — (< 

2 

+^2 [(<**27ii7i2 + A2wi«2 - (hbuil>)2y14y24) + i6*X (ynu2 - yuu>i)} = 0 

W2-WX) -1 (711+712) 

This is the characteristic equation of the following matrix: 

n = 
-1 s2-si rir2 + sis2-h 0 
0 -(ri + r2) ris2-s1r2 0 
0 -1 s2 - si rir2 + sis2-h 
0 0 -(ri + r2) r1s2-s1r2 

The condition ö(K) > 0 is satisfied if and only if 

A2    =    r\ + r2 < 0   and 

A4    =    {ri + r2)[(s2-s1)(r1s2-s1r2) + (r1 + r2)(r1r2 + s1s2 - k)] 

+(r1s2 - sxr2)
2 > 0 

Since yn < 0 and yl2 < 0, A2 < 0 is automatically satisfied. Thus, the stability condition for the 
trivial solution comes from satisfying A4 < 0. The final stability condition for the trivial solution 
is 

1-^ 
w0 

> •(711 + 7i2)2(7n7i2 ~ P2(buHi4)2) 
711712^ 
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Alternatively, this condition can be expressed as 

V 1 
> — 

W0 Wo 
7l±Y + f712^* 
in J        \7n \J {nK^7uY T11T12 (4.20) 

In the absence of damping, this condition becomes 

1-Ü 
U0 

> 
2p,(buj>yl4) 

w0 

In the presence of damping, the characteristic equation along the stability boundary is 

w0 
P [(in + 712) + ie\{u2 - wi)] 

+ e2X2 (wiW2(7n + 712)2 - W0T11712) 

Thus 

and 

W6H711 + 712)2 

+ie\ (711W2 - 712W1) (711 + 712)2] = 0 

Pi + P2 = — [(711 + 712) + ie\(u2 - u>i)] 
WQ 

(4.21) 

P1P2 
w5(7n + 7i2)2 e2X2 (wiw2(7n + 712)2 - wg7n7i2) 

+ieX {jnuj2 - 712W1) (711 + 712)
2] 

At A = 0, one (and only one) of these eigenvalues is identically 0. The other root is given by 

P- —(7n + 7i2) <0 
Wo 

This implies that two of the four system eigenvalues are zero.  The other two have negative real 
parts. 

For A 7^ 0, none of the eigenvalues may possess a zero real part. Along the stability boundary, 
the characteristic equation can be written in the form 

p4 - clP
3 + c2p

2 ~c3p + c4 = 0 

where 

2  ,_ 
c\    = (711+712) 

Wo 

2e2A2 

C2 w0
2(7n + 7i2)2) [WlWa^n +7l2)2 -wo7ii7i2] + ^ [(711 + 7i2)2 + £2A2(w2 - utf] 

c3   =   2 

2A2 

wg(7n+7i2) 
(7nw2-712wi)2 

c4 e4A4 (wiW2(7n + 712)2 - WoTnTia)' 
w4(7n+7i2)4 

+£2^2 (7n^2 - 712W1)2 (7U + 712)
4] 
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It can be shown that cj ^ 0, C3 7^ 0, Ci/cz > 0 and 

cic2c3 - CjC4 - c| = 0 

Thus, according to Table 4.1, this system possesses a single pair of purely imaginary eigenvalues. 
Therefore, the loss of stability in this case is through a Hopf bifurcation, i.e. a pair of eigenvalues 
passes into the right half plane after crossing the imaginary axis away from the origin. The nontrivial 
solution resulting from a Hopf bifurcation is periodic. Thus, the averaged equations possess periodic 
solutions beyond the bifurcation point. This motion in the averaged system corresponds to motion 
on a 2-torus in the original system. One of the frequencies involved in the oscillations of the original 
system is the response frequency u\ +u2. The second frequency relates the coupling between the 

• modes. 
In the undamped case, the system is purely Hamiltonian and the four eigenvalues are given by 

p = ±i^~ |A(W2 - Wl) ± y/\*U,*-4h} 

When the stability condition is satisfied, i.e. when \2
UQ > 4h, there are two conjugate pairs of 

purely imaginary eigenvalues. For X2ul = 4K, these pairs coalesce at 

p = ±i—{u>2 - Wi) 

When \2u>l > 4%, the eigenvalue spectrum is symmetric with respect to both real and imaginary 
axes and two of the eigenvalues possess positive real parts. This loss of stability is known as a 
Hamiltonian Hopf bifurcation. 

For certain parameter values, either two or four eigenvalues of the nondissipative system will 
be located at the origin. Although the behavior of the system near all of these points will not 
be studied in detail here, certain characteristics of the system may be noted. Consider Figure 
4.7. At the point (X,p) = (0,0) on the stability boundary, all four eigenvalues are located at the 
origin. As p. is increased while A remains constant at 0 (along the dotted line), the quantity 4k 
becomes positive, two equal eigenvalues move into the right half plane along the real axis (point 
F). Similarly, an equal pair moves into the left half plane at the same rate along the real axis. 

For A ^ 0, as p is increased from zero, all four imaginary eigenvalues begin to move toward the 
origin (point A). Along the dashed line corresponding to 2h = X

2
üJIU>2, or, equivalently, 

Pd = 
V2WiW2  , 1_ 
2&u^7i4 V      OJQ 

two eigenvalues are located at the origin (point B). The other two are purely imaginary. No splitting 
occurs in this region. As p is increased further, the first pair of eigenvalues is moving away from 
the origin and the second pair is approaching the origin (point C). These two pairs meet at the 
stability boundary (point D). The unfolding and global dynamics of this internal resonance will be 
the focus of the next chapter. 

The nontrivial solution may be determined by examining Eqs. (4.17) and (4.18) for the case 
in which a,- ^ 0 (z = 1,2). Setting a'{ = 0 yields two possible solutions for the steady state angle 
<t>o = <f>oi + <f>02- Letting M = \hbuipji4\ = \hbuipy24\ (since ju = 724) yields 

sin<£o = ±M^J
M2

 ~ **aTn7i2 = ±jj 
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Figure 4.7: Eigenvalue location in i/-fj, parameter space for the nondissipative case. 
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Figure 4.8: Combination resonance (w0 = wi + w2) stability boundaries and nontrivial response of 
pinned-pinned rotating shaft (a = ajo). 

Substituting this into <$>\ + fy = 0 yields the following relation between the nontrivial steady state 
amplitudes and the excitation frequency (and amplitude): 

l-7T = 7T \2a" NT" + 7i2)aoi + (Ti2 + T22)a02] T ^_ +JUv\ 
Wo      w0 I T11T12       J 

The stability and bifurcation behavior of these nontrivial periodic solutions can also be determined. 
It can be shown that the periodic solution corresponding to "+" in the expression for sin </>0 is 
unstable for all values of \i and v beyond the primary bifurcation point. The periodic solution 
corresponding to "-" is shown to be a stable nontrivial solution. Furthermore, it can be shown 
that the steady state amplitudes are related through 

a0j Tii 

The stability boundaries for the trivial solution, along with the nontrivial response amplitude a^2, 
are presented in Figures 4.8 and 4.9 for the rotating shaft. Figure 4.8 shows the boundaries and 
response amplitude for a shaft which is pinned at each end; Figure 4.9 depicts this information for 
a clamped shaft. 

4.4.4    Difference Combination Resonance: UJQ = U>i — Ulj 

Now consider the final resonance case.   Assuming the excitation frequency is near w; - UJ, the 
averaged equations of motion are 

< - •{(  sin(^-^)L/^H-+   2—J— 
w0 w0 

a,-> (4.22) 

#■    =   ^{^^^(^^^^-(^^cos^-^))^} (4.23) 
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Figure 4.9: Combination resonance (w0 = u>i +w2) stability boundaries and nontrivial response of 
clamped-clamped rotating shaft (a = aio)- 

Again, one equilibrium solution is the trivial one, i.e. (äoi,äoj) = (0,0). Transforming Eqs. (4.22) 
to (4.23) to rectangular coordinates yields 

Xi   =   e Xi + (ACT,) y{ + ( — j yj - y. 
OJQ w0 

iTi(x,y)\ 

y. = £{(_A,)li-(^)I, + (^),1+^(l,y)| 
As in the case of additive combination resonance, the expressions for the eigenvalues are compli- 
cated. Introducing the transformation 

Xi    =   zi + iyi ,    Xi = xi - iyx 

X2    =   x2 + iy2 ,    X2 = x2- iy2 

and proceeding as in the previous analysis, it can be shown that the conditions for stability of the 
trivial solution are always satisfied. Thus, in the difference combination resonance case, the trivial 
solution remains stable for all parameter values in the range of interest. 

4.5    Conclusions 

The method of averaging provides a powerful tool in the analysis of nonlinear systems with time- 
dependent parameters. In this chapter, the method of averaging was applied to the equations of 
motion derived in Chapter 3. The resulting set of autonomous ordinary differential equations were 
then examined to determine the limits of stability in the excitation amplitude/frequency parameter 
space. Depending on the excitation frequency, it was shown that the trivial (non-oscillatory) 
solution may lose stability through divergence or flutter. The subsequent nontrivial response for 
each case is also described. 
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In the case of combination resonance in the absence of dissipation, the system at criticality pos- 
sesses two coincident pairs of purely imaginary eigenvalues. The linear system is in nonsemisimple 
1:1 internal resonance and the trivial solution loses stability through a Hamiltonian Hopf bifurca- 
tion. The unfolding of this resonance and the global behavior near the stability boundary for this 
case is the subject of the next chapter. 
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Chapter 5 

GLOBAL DYNAMICS OF 
SHALLOW ARCH STRUCTURES 

5.1     Introduction 

Shallow arch structures subjected to various load conditions have been investigated by many authors 
in the past. A large amount of literature exists on the stability behavior of shallow arch structures 
subjected to conservative static loads. It is well-known that such structures may go through snap 
through instability when the statically applied load exceeds a certain critical value. This instability 
behavior involves a sudden transition of the structural response from one stable equilibrium state 
to another non-adjoining stable equilibrium state. For a detailed review of snap through buckling 
and postbuckling behavior of thin-shell structures one is referred to Koiter [47] and Hutchinson and 
Koiter [39]. Under dynamic load conditions, the stability investigation requires the determination 
of the dynamic response as described by its nonlinear equations of motion. Mettler [56, 57, 58] 
investigated the dynamical behavior of a beam structure with small initial curvature under periodic 
loading, and demonstrated the occurrence of dynamic snap through, which is analogous to the 
jump phenomenon in the theory of nonlinear vibrations. Hsu [36], Humphreys [38], and Lock [53] 
examined the dynamic responses of shallow arches and spherical shells under step and impulsive 
loading. Huang [37] investigated the dynamic response of elastic shallow structures subjected to 
high frequency periodic loading. Plaut and Hsieh [72] numerically examined the nonlinear response 
associated with 1-DOF shallow arch system under two-frequency excitation. They studied the 
effects of arch rise and the excitation frequencies on the critical load, and observed various types 
of limit cycle behavior including the chaotic response. 

Recently Sri Namachchivaya and Doyle [81] and Tien et al. [86, 87] studied the bifurcation 
behavior and the chaotic dynamics of a shallow arch subjected to small amplitude periodic exci- 
tation. Tien et al. [86, 87] examined the dynamic response of an initially deformed shallow arch, 
which is subjected to a spatially and temporally varying force, using analytical as well as numeri- 
cal techniques. They considered a two-degree-of-freedom (2-DOF) nonlinear model governing the 
two fundamental modes of the transverse motion of the shallow arch. In the presence of initial 
deformations and nonlinear strain-displacement relationships, this model contains both quadratic 
and cubic nonlinearities. Assuming a very small forcing amplitude (/i = 0(e2)), they obtained 
nonlinear variational equations corresponding to the forced system in the small neighborhood of 
single mode equilibrium solutions (7/0,0).  Next they investigated the global bifurcation behavior 
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associated with the averaged variational equations in the presence of 1:2 and 1:1 internal resonances 
near the harmonic frequency (y = U]). 

In this study we examine the dynamics associated with the 2-DOF shallow arch system near the 
principal subharmonic frequency (v = 2^), in addition to the presence of internal resonances. Here 
we take a more realistic approach owing to the observation that the forced system (3) allows single 
mode time dependent (periodic) solutions {r)(t), 0) in the presence of external excitation. Assuming 
the forcing amplitude to be of 0(e), the single mode periodic solutions for the forced case are 
obtained using a power series expansion. We obtain the nonlinear variational equations governing 
the small perturbations in the neighborhood of the single mode periodic solutions. The external 
forcing appears as a parametric term in these perturbation equations. This approach allows one to 
.use higher values of excitation amplitude, and is more consistent for solving this class of problems 
as opposed to obtaining variational equations near the single mode equilibrium solutions. 

By using the method of averaging [13], the first order approximation of the response of the 
perturbation equations is obtained in the presence of 1:2 internal resonance. We use the second 
order averaging to study the system response for the 1:1 internal resonance case. If one uses the 
approach used by Tien et al. [86, 87] to examine the response of the system near v = 2wi, one finds 
that the forcing amplitude appears at a higher order than the lowest order nonlinear terms in the 
averaged equations. This suggests that the scaling used by [86, 87] is not appropriate to investigate 
the dynamics near v = 2u\. 

We use standard Melnikov type perturbation methods [89] to analytically show that the shallow 
arch structure, in the absence of any dissipation mechanism, may exhibit chaotic dynamics in 
the sense of Smale horseshoe for 1:2 internal resonance case. In this case it is shown that no 
attracting sets persists on the invariant manifold even in the presence of very small dissipation 
effects. However, the effect of dissipation can be examined in 1:1 internal resonance case where, 
using a perturbation technique due to [48], we show the existence of Silnikov type homoclinic orbit 
to a fixed point in the perturbed system, and consequently the chaotic behavior. 

The organization of this chapter is as follows: A brief outline of the derivation of the 2-DOF 
model governing the two fundamental modes of the transverse motion of the shallow arch is given in 
section 2. The global bifurcation behavior associated with this model is investigated for 1:2 internal 
resonance case in section 3. In this section, first the perturbation equations are obtained in the 
neighborhood of single mode periodic solutions, and next we examine the averaged perturbation 
equations for the existence of complex behavior using analytical as well as numerical tools. In 
section 4, the 2-DOF shallow arch model is reconsidered for 1:1 internal resonance case and the 
perturbation equations are similarly obtained using a different scaling of variables and parameters. 
In this case, the effect of dissipation is examined on the global dynamics associated with the 
averaged perturbation equations, and the restrictions on the system parameters are obtained for 
the occurrence of Silnikov type homoclinic chaos. The physical interpretation of the results is given 
for the shallow arch dynamics in section 5. Finally the results are summarized in section 6. 

5.2    Equations of Motion 

The shallow arch is assumed to be subjected to a lateral loading p(x,t), as shown in Figure 5.1. 
The equation of motion governing the lateral deflection w(x,t) of a shallow arch, subjected to a 
lateral loading p(x,t) as shown in Figure 5.1, can be derived by using the energy method, and is 
given as: 
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w(x,t) 

w(x) 

Figure 5.1: Geometry of the shallow arch structure subjected to lateral loading p(x, t). 

where 

mwu + ßwt + EIwxxxx - E A h(w, t) (wxx + wxx) = p(x, t) 

1 /"' 1 
h(w,t)    =    j[u{l,t) + J {-w2

x + wxxwxx)dx} 

w(x)    =    -g0 sin — 

7TX 
p(x,t)   =   (po +/(*)) sin — 

(5.1) 

Here w(x) represents the initial deflection of the unloaded arch, q0 is the initial rise parameter, p0 

is the static loading, and f(t) is time dependent part of the lateral loading. Here it is assumed that 
the external forcing is periodic, i.e., f(t) = ficosut, where fi and v represent the amplitude and 
frequency of the harmonic excitation, respectively. The arch is subjected to the following boundary 
conditions: 

w = 0,     wxx = 0 at  x = 0,1 

The Galerkin method is used to reduce the equation of motion to the ordinary differential equations 
by selecting appropriate shape functions. The transverse motion w(x, t) of the arch is approximated 
by the following expression: 

27TX 
w(x, t) = qx (t) sin — + q2(t) sin — (5.2) 

The non-dimensional equations of motion describing the evolution of the amplitudes of two funda- 
mental modes can be written in (Qx = qx - q0,Q2 = q2) coordinates as: 

Q\    +    ßlQl+Qi+Qi{Ql-ql+AQl) + {q0-\Q)=ncosvt 
Q2   +   ß2Q2 + 16Q2 + 4Q2(Ql-ql + 4Q2

2) = 0 (5.3). 
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where ßx and ß2 are the viscous damping parameters for the first and second mode respectively, 
and A0 represents the non-dimensional loading parameter. The details of this derivation and the 
definitions of non-dimensional variables and parameters can be found in [85]. The linearized fre- 
quencies corresponding to the first and second modes are represented by u>i and u2, respectively 
(see next section). 

5.3    One-to-Two Internal Resonance 

This study deals with the dynamics, stability and bifurcation behavior of system described by Eqs. 
(5.3) in the presence of internal resonances. Resonances have long been known to cause complex or 
chaotic behavior in both dissipative and Hamiltonian dynamical systems. Since these resonances 
provide near-integrable structure in the governing equations, one can use certain analytical methods 
to study their global behavior. To this end, in this section, we consider Eqs. (5.3) in the presence 
of parametric subharmonic and 1:2 internal resonance. 

5.3.1    Scaling and Averaged Equations 

In order to investigate the dynamics of arch for 1:2 internal resonance, we assume the damping and 
the external forcing amplitude to be small as compared with the other terms, i.e., 

^ = £7,        ßi = €Su        ß2 = e62 (5.4) 

where e is a small parameter, i.e., 0 < e « 1. As mentioned previously that the equations of 
motion (5.3) permit (Qi(t) = rj(t),Q2(t) = 0) as one of the solutions. The following form of r)(t) in 
the powers of e is assumed, 

r)(t) = rjo + e m{t) + e2 Tj2{t) + 0{e3) (5.5) 

Next consider the small perturbations xi and x2 in the neighborhood of single mode periodic 
solutions (rj(t),0): 

Qi=v(t) + e*i,        Q2 = 0 + cx2 (5.6) 

The nonlinear variational equations governing the perturbations can be written as: 

x\+u\xi    +   e [Siii + Gtfornxi + T/0(3X? + Ax\)] 

+e2 [3xx{rft + 2//07/2) + Vl(3x2 + Ax2) + x\ + AxlX
2] + 0(e3) = 0 

x2 + ujx2   +   e [82x2 + 87707?!x2 + 87/0X1X2] 

+e2 [4x2(7/!2 + 2T/O7/2) + 8rnxlX2 + A{x\x2 + Ax2
2)) + 0(e3) = 0 (5.7) 

where uj = 3r/g + (1 - q$) and w| = 4[T/0
J
 + (4 - q*)]. Here T/0 is governed by a third order algebraic 

equation and the particular solutions for 77^ 772 etc. are obtained in terms of known parameters 
and time as follows: 

*/o   +(1 - ?o)»fc + fao - A0) = 0 
771    = bx cos(vt) (5.8) 

m   = a0 + ai cos(vt) + a2 cos(2*4) 
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where 6X = ^_v2) and ao, a,i,a2 can be similarly expressed in terms of known quantities. We 

notice that the complementary solution (in rjU r\2 etc.) is set to zero since we are only interested 
in periodic orbits with period ^f. The Hamiltonian corresponding to (5.7) can be expressed as: 

tf(xp,xq)   =   Ho + eHi+Oie2) 

=    2 [XP> + *& + wi xli + w2 XÜ (5-9) 

+* [r}0x
3

qi + 4r]ox2
qixq2 + W7i(3a£ + 4z2

2)] + 0(e2) 

where x?1 = zj, zg2 = x2, xPl = xx and xP2 = i2. The steady state behavior and bifurca- 
tion analysis of the system is best described when the following canonical change of variables is 
introduced: 

xqi = y/2äicaa{uit + -j),        xPi = -u4 v^sin(w,-t + —),        V i = 1, 2 (5.10) 

The following detuning parameters are introduced in order to examine the dynamics of the system 
in the presence of principal subharmonic resonance and 1:2 internal resonance. 

Wl = 4(^-^1), W2
2=—(l/2-€(T2) •     (5.11) 

where ax is the measure of deviation of the forcing frequency from twice the natural frequency of 
the first mode, and (cr2 - o\) is proportional to the deviation from the 1:2 internal resonance. At 
this stage, the method of averaging [13] is applied to simplify the system. The averaged equations, 
giving the first order response of the system, can be expressed in terms of canonical variables 
(a\, 0i, a2, 02) as following: 

f\ A 

öi    =   c [-Mi + -ai&i7/osin(20i) + -v/^a27?osin(0i -202)] + O(e2) 

13 2 
ai&1    =    € ^~(4^T<7iai + -ai6i7?ocos(2Ö1) + -v/2^"a27?ocos(Öi - 202)] + O(e2) 

■I f* 

a2   =   €{-52a2-—y/2ä[a2r}Qsm{0i-202)} + O{e2) (5.12) 

18 
a202   =   € [—7^r°2a2 + -v/2Ö7a27?0cos(Öi - 202)] + 0(e2) 

where 0,- = &. In order to analyze the trivial equilibrium solutions, the averaged equations can 
be transformed to the rectangular coordinates. One finds that the trivial solution (ai = 0, o2 = 0) 
may lose its stability only through a simple bifurcation and may give rise to one or two coupled 
mode nontrivial equilibrium branches or one single and one coupled solution branch. 

5.3.2    Analytical Investigation of Chaotic Dynamics 

In order to examine the possibility of the chaotic dynamics in the system, the higher dimensional 
Melnikov analysis is employed. The details of the framework of this method can be found in [89]. 
Originally this method is due to [55] who considered a two-dimensional non-autonomous system 
with a completely integrable unperturbed part and small (0(e)) time periodic terms. The non- 
resonant higher dimensional Melnikov method assumes the homoclinic structure of the unperturbed 
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system, along with arbitrary perturbations. Generically, certain invariant sets may persist under 
perturbations and thus, the knowledge of the global dynamics of the unperturbed integrable system 
can be used to develop a measure of the distance between the stable and unstable manifolds of 
that invariant set in the perturbed system. This measure is called the Melnikov Function, which 
provides crucial information on the possibility of the presence of chaotic behavior in certain class 
of nonlinear systems. 

Reduction to the standard form 

Consider the following canonical transformation in order to reduce the averaged system of equations 
to the form appropriate for applying the higher dimensional Melnikov theory as described in [89]: 

(f>l <f>2. <f>2 1 
q1 = ( —-2—), q2 = 2—,        P\ = a\uu        p2 = ~{a2 +4ai)o;2 (5.13) 

This transformation leads to the following set of equations in {pi,qi,p2, q2) coordinates: 

Pi    =   c [SiPi + —r- VP~i (P2-Pi)sing!+ —^-Plsin2(q1 + q2) ] + 0(e2) 
1/2 V 

9i 
r    °X  -L °2 _L 16r>°   (P2 ~ 3pi) 36!77Q 2 [~4^ + 17 + 7T y/pl COS(gl) + T   COS2^ + ^ + °(€   ) 

p2    =   e[-52p2-(S1-62)Pl + —^-Plsm2(q1+q2)] + 0{e2) (5.14) 

r   <?2   ,   32T/O     ,— ,  ,   _ . 2v 
q2    =   e[ + —— y/picosqt ] + 0(c*) 

v 1/2 

In these equations the effect of excitation is present through the terms involving the coefficient 6j, 
as one recalls bx = ^Z„2y This system (5.14) attains the desired form if the time is rescaled in 

addition to assuming the forcing terms to be smaller compared with the nonlinear terms. For this 
purpose, rescaling the variables and parameters in the following manner: 

where A = (16 T?0 V~2) and t' denotes the slow time. For the sake of less cumbersome notation 
the prime (') is dropped from the rescaled variables and parameters. The rescaled equations up-to 
0(e) can now be written as: 

1/2 
Pi = 2px (p2-pi)smql + e[-61p1+2pp1sm2(qi + q2)] 

qi = Ml+M2+Pi"1/2 (P2-3pi)cos9i+e [/i cos2(q1 + q2) ] 

p2    =    e [ -£2P2 - (<*i - <*2)pi + 2/ipx sin 2{qx + q2) ] (5.16) 
1/2 q2    =    -fi2 + 2p1'   cos ft 

where 
0\ a2 3 , 

86 



In these equations (5.16) the dot indicates differentiation with respect to t'. The objective is to 
study the global dynamics associated with this system (5.16). As a first step, the structure of the 
unperturbed system (obtained by setting e = 0) is examined, which can be expressed as: 

Pi    =    2pj/2 (p2-pi)smqi 
— 1/2 

Qi    =   Pi + P2 + Pi       (P2 - 3pi) cos qi 

i>2    =   0 (5.17) 
1/2 

92   =    -M2 + 2pj'  cosqi 

It is clear that the first two equations are completely independent of q2, and p2 = p2o = constant, 
and thus it is sufficient to study the phase flow in (pi, qi) coordinates only. The canonical transfor- 
mations (5.13) and the periodicity of qi suggests that the range of interest in (pi,qi) coordinates 
is: 0 < pi < p2o and 0 < qi < 2w. The Hamiltonian corresponding to the two-dimensional (pi,qi) 
vector field is given as: 

H{pi,qi) = (/ii+/i2) Pi + 2p\/2 (p2-pi)cosq! (5.18) 

It is obvious that the orbits in (pi,qi) phase space depend only on the three parameters (p20, Pi, fa)- 
The fixed points of the reduced vector field in the range of interest are: 

(P20,qi), (P20,27r-q!), (pt,0), {Pi,2w), {pf,K) 

where 

-1     a 

qi    =   cos     —■— 
2y/p2ü 

Pf    =    ^2 + 6p20±ay/^ + 12p20] 

a   =    (/*! + /*2) 

The linear stability analysis indicates that the phase flow has the qualitatively different behavior 
in region III as compared with regions / and 77 (Figure 5.2). These three regions are defined in 
the following manner: 

I 

II 

III 

{(<r,P2o) I a > 0, (a2 - 4p20) < 0} 

{(<r,P2o) I a < 0, (a2 - 4p20) < 0} (5.19) 

{(o-,P2o) I   {(T2-4p20) >0} 

One can easily check that the equilibrium points {p20,qi) and (p20, 2ir - qi) exist as saddle type 
fixed points in regions I and 77, and the equilibrium points (pf,0), (pf,2ir) and (pf,7r) exist as 
center type fixed points everywhere in (a, p2Q) parameter space. One also notices that there are 
no saddle points in region 7/7, thus there do not exist any homoclinic/heteroclinic connections in 
region 777. The phase portraits corresponding to these global bifurcation sets (7 and 77) are shown 
in Figure 5.3 These phase portraits indicate the existence of a heteroclinic cycle (A-A') connecting 
the two saddle points (p20, gx) and (p20,2n-q{). The condition for the existence of this heteroclinic 
cycle is given as: 
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(a). 

(P2.<li) (P2.2jt-q,) 

2Jt      Qi 

(b). 

(p2.q,) (P2.2n-q,) 

2rt   q, 

Figure 5.3:   (a).   Unperturbed phase-flow in (pi.ft) phase-space in region I (i.e., a > 0), (b). 
Unperturbed phase-flow in (pi,qi) phase-space in region II (i.e., a < 0). 
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a2 

P20 > -j (5.20) 

Hence it can be claimed that the Smale horseshoe type chaotic behavior is not possible for this 
system when the system parameters lie outside of region I and 77. In the subsequent part of this 
section we assume that the above mentioned condition is satisfied for 1:2 internal resonance case. 

The Invariant Manifolds and Associated Dynamics 

As noted previously, the equilibrium points (p2o,9i) and (p20, 2TT - qi) exist as hyperbolic fixed 
points in (pi,qi) phase space. However, in the four dimensional phase space these fixed points 
represent a two-dimensional invariant manifold which is normally hyperbolic: 

2 

Mo = {(pi,?i,P2»02) I Pi =P20, q\ = 9i or (27r-q1),oo> p2 = p2o > y, q2 € T1} 

It is obvious that the unperturbed manifold M0 has a lower boundary at p2 = ^- and no upper 

boundary. In general M0 consists of periodic orbits for all values of p2 > ^ as long as q2 / 0. We 
assume the non-resonant condition (i.e., q2 ^ 0) to be valid in this case. 

Under small perturbations (e ^ 0), the manifold M0 persists as Mt due to its normal hyperbol- 
icity property, 

2 

Me = {(pi,gi,P2ift) I P[ =P20 + O(e), q\ = 910 + 0(6), oo > p\ > p2 > p\ > ?-, q2 e T1} 

where 910 = qi or (27T - qi). The flow restricted to Mt is described by the following equations 
(assuming &\ = S2 = S for the sake of simplicity): 

p2    =   € [ -Sp2 + 2^2 sin 2(q1 + q2) } 

92    =    —A*2 + 2p2
/2 cos qx + O (e) = m + O (e) 

Mt is a locally invariant manifold with boundaries. Under small perturbations the periodic orbits 
on M0 get destroyed, and in the absence of any attracting invariant sets on Mt the trajectories may 
escape from the manifold by crossing the upper or lower boundary. It is easy to see that there are 
no invariant sets present on Mt for fii ^ 0. On averaging the p2 equation with respect to q2, we 
calculate the average rate of change of p2 as -eS. Thus for positive dissipation p2 ->• 0 as t -)• 00, 
and hence all the trajectories with initial conditions on Mt leave the manifold by crossing the lower 
boundary, and eventually get attracted to the trivial solution. 

The Melnikov Function for Non-Dissipative Case 

It is well known that in the absence of dissipation the nonlinear system (5.16) is non-integrable even 
for very small values of the forcing amplitude fi. It is also clear that in the presence of dissipation 
the Melnikov method can not be applied to obtain restrictions for the transversal intersection of the 
stable and unstable manifolds of Mt. However, if we assume the dissipation to be zero (i.e., Sit2 -»■ 
0), then all the periodic orbits on Mt persist for the perturbed system and the Melnikov Function 
(for the non-integrable Hamiltonian system) gives the distance between the stable and unstable 
manifolds of Mt for some p2 corresponding to the attracting set in the domain.   In this case the 
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Melnikov Function M provides a measure to ascertain whether the heteroclinic connections (A 
and A') break under small perturbations, and is given as follows [89]: 

J-co  dpi Oqi dp2 dp2  (p20i(?1)   J-oo v ' 

where, the integrand has been evaluated at any arbitrary point on the heteroclinic cycle. In the 
above expression, gPl, gqi, gP2, and g92 are the 0(e) terms in four-dimensional perturbed system of 
equations (5.16), 

gPl = 2fip1sm2(q1+q2) 

gqi = fi cos2(gi +q2) 

gP2 = 2npisin2{qi+q2) (5.22) 

gq2 = 0 

and H, the Hamiltonian corresponding to the four-dimensional unperturbed phase space, is given 
as: 

H(pi,qi,P2,q2) -a Pi+2p\/2 (p2-pi)cosq1 - fj,2 p2 (5.23) 

On substituting (5.22) and (5.23) in (5.21), the Melnikov Function for our system can be expressed 
as following, 

M= I [     {°- + Pi1/2 (P2-3p1)cosqi}{2np1sm2(q1 + q2)} 
J — OO 

1 /2 
-    {2p/   {P2-Pi) sin q^ifj, cos2(q1 + q2)} 

+    {-[i2 + 2p\/2cosq1}{2np1sm2(q1+q2)}]dt (5.24) 
/oo 

[2ßplsin2(qi+q2)] dt 
•oo 

Time parameterized expressions for heteroclinic orbits 

In order to evaluate the Melnikov Function the explicit expressions for the heteroclinic orbits are 
required. The heteroclinic orbit A' is the horizontal line connecting the two saddle points as shown 
in Figure 5.3. This orbit is described by the following set of equations: 

Pi(0 = P20 

qi{t) = cT-2^p-20cosqi(t) 

P2(t) = P20 (5.25) 

92 (t) = -Hi + 2y/pm cos qi (t) 

To evaluate the Melnikov Function for the heteroclinic orbit A' one does not require the explicit 
expressions for qi(t) and q2{t). On substituting px(t) = p20 in (5.24), and further simplifying the 
integrand one gets 

MA>    = / [    {<7-2v/P2o"cosg1}{2/ip2osin2(9i+92)} 
J—oo 

+    {-Mi -V2 + 2p1
2(?cosq1}{2iip2osm2(qi + q2)} ] dt (5.26) 
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using a = (fit + /J2) in (5.26), it is trivial to show MJ',7/ = 0, which means the 0(e) distance 
between the stable and unstable manifolds of A' is always zero and hence, it can be concluded that 
the heteroclinic orbit A' does not break under order 0(e) perturbation. 

The parameterized expression describing the heteroclinic orbit A can be obtained as: 

H(pi,qi) = H(p20,qi) 

which implies, 

Pi(t) = -A 5—77T (5.27) 4 cos2qi(t) v       ' 

substituting this in the unperturbed equations of qx and q2, one can get the explicit expressions for 
qi(t) and q2(t), hence the heteroclinic orbit A can be described by 

o2 er2 / a2 

Pi(0   =    -r + (P20 - —) tanh2 \ (p20 - —) t 

qi (t)  . =    tan   x [- J (p20 - ^-) tanh V (P20 - y) t ] + q10 

P2(t)    =   p20 ■    (5.28) 
q2(t)    =   ßit + q20 

where qi0 is the initial value of qx(t). For region / (0 < a < 2y^}, q10 = 0 and for region 
II (-2y^20 < cr < 0), gio = n. q2Q is the initial value of q2(t) and is used as another parame- 
ter. Using these expressions in (5.24), and after some algebraic manipulation one can obtain the 
Melnikov Function for the heteroclinic orbit A as following, 

M1/1   =   2/x sin 2q20   [     Jprfjj {p20 - Pl (t)} cos (qi (t) + 2m t) dt 
J—oo 

+   2^cos2g2o   /     Jpi{t) {P20-Pi(t)} sm(q1(t)+2/j,1t) dt (5.29) 

One observes that the integrand associated with the second integral in this expression is an odd 
function of t, and thus the contribution due to this part is zero. The first integral can be computed 
easily using (5.27) and (5.28) to give 

Afi'// = C(/*i.A*2,/*,P2o) sin 2?20 (5.30) 

where 
C(f*i,M2iMiP2o) = 2fii (ii2 - m) fi n csc{    J-HL=} (5.31) 

V^o-f) 
C depends upon the system parameters /zx,/i2,^ and p20, and it is in general non-zero. Hence 
under the circumstances when C is non-zero, the Melnikov Function (M1/1) will have a simple 
zero with respect to q20 at q20 = 'a~. In this case, the heteroclinic orbit A may break under small 
perturbation with transversal intersection and the system may exhibit chaotic dynamics in the 
sense of Smale Horseshoe. 
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Figure 5.4: (a). The phase trajectories for the unperturbed system (e = 0) in {pi,qi) plane with 
a = -1.0,^2 = 0.5, and p2 = 1.0, (b). The Poincare map for the perturbed system in (pi,?i) plane 
with a = -1.0,^2 = 0.5, and e = 0.01, (c). Same as part (b) except the parameter e is increased 
to 0.1. 

Numerical Results 

In order to examine the effect of small perturbations on the dynamics of unperturbed system in more 
detail one often resorts to the numerical simulations. As noted previously, in the absence of any 
perturbations the system dynamics can be studied completely in (pi.^i) phase space (Figure 5.4). 
The introduction of small perturbation couples the dynamics of all the variables (pi,qi,I,6) and 
in four-dimensional phase space this dynamics can be very complicated. Although the analysis 
considered earlier provides some insight on the global dynamics of the perturbed system but in 
general it does not yield the complete picture. However, the trajectories in the four-dimensional 
phase space can be numerically computed on a two-torus. Using the fact that q2 € T1 is a phase 
variable with period n, three-dimensional Poincare maps can be constructed in (pi,gi,p2) phase 
space, with q2 = q20 mod it, where 920 can be set to zero without loss of generality. Futhermore, 
the variable p2 varies very slowly for small perturbations, hence the Poincare map can be easily 
represented in (pi, qi) space. 

Figure 5.4 (b) shows a Poincare map in (puqi) space for a = -1.0, fi2 = 0.5, and e y. = 0.01. 
In this diagram one finds that most of the periodic orbits of the unperturbed system survive as 
quasi-periodic orbits with non-commensurable frequencies on a 2-tori, while the initial conditions 
taken very close to the unperturbed heteroclinic orbit lead to chaotic dynamics in the perturbed 
system. As the perturbation strength (e fi) is increased to 0.1, the extent of the chaotic attractor 
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increases and various small secondary regions appear in a symmetric fashion about qi = 0 axis 
(Figure 5.4 (c)). These secondary regions are small islands of quasi-periodic motion embedded in 
the layer of stochastic motion. The global dynamics of this system was studied for various values 
of the system parameters. It was observed that for a given perturbation strength the extent of 
chaotic layer is rather small for the non-zero values of the detuning parameter a as compared with 
the case where a — 0. The number, location and appearance of the secondary regions are also 
sensitive to the values of the detuning parameters. The influence of small perturbations arising 
from dissipation effects were also examined. It was found that even a very small damping causes 
the secondary regions to disappear, and the quasi-periodic orbits and the chaotic attractor shrink 
towards the trivial solution. 

In this section the conditions on system parameters are examined for which the shallow arch 
system can exhibit chaotic dynamics under small harmonic excitations and in the absence of any 
dissipation mechanism. Under these circumstances it is shown that the equations governing shallow 
arch system can have heteroclinic connections for certain values of system parameters. Higher 
dimensional Melnikov's Method is used to show that one of the heteroclinic orbits may break under 
small time periodic excitations and thus leading to Smale Horseshoe type chaos. The drawback of 
this method is that one can not examine the effect of perturbations arising from the dissipation 
effects. In real life systems where the such effects are omnipresent, the application of Melnikov type 
perturbation methods may not provide strong enough restriction on the system parameters. 

We next consider an alternative approach [48] that would allow us to consider the dissipation 
effects on the global dynamics of arch structures and thus provide more restrictive criterion for the 
existence of complicated dynamics in the class of system under consideration. 

5.4    One-to-One Internal Resonance 

In this case, it is possible to find orbits homoclinic to the fixed points that are created in resonance 
as a result of small perturbations arising from dissipation and excitation. We shall show that 
a resonance structure exists for some range of parameter values in the shallow arch system. The 
standard Melnikov type perturbation methods can not be used in these resonance problems without 
further refining the scaling of various dynamics that co-exist. An alternative technique which uses 
such scaling has been provided by Kovacic and Wiggins [48]. Their method gives conditions for the 
existence of a Silnikov type homoclinic orbit to a saddle-focus type fixed point that may be created 
near resonance structure under small perturbations. The existence of such a homoclinic orbit 
implies chaotic dynamics. A countably infinite number of unstable periodic orbits and aperiodic 
orbits exist in every neighborhood of this homoclinic orbit by a theorem of Silnikov [88]. 

5.4.1     Second order response of the shallow arch system 

In order to examine the dynamics of shallow arch system in the presence of 1:1 internal and principal 
subharmonic resonance, we use a different scaling (as compared with 1:2 case) of parameters and 
obtain variational equations in the neighborhood of single mode time dependent solutions, and 
then these equations are averaged using the second order averaging. We proceed in a similar way 
as before, and introduce the following scaling in the system parameters. 

M = e 7,    ßi = eSi,    and    ß2 = e S2 
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Also, assuming the following expansion of r)(t) in the powers of e, 

ri(t) = 7l0 + erh+O(e2) 

where 770 and 771 are same as given previously.  Now consider the perturbations xy and x2 in the 
neighborhood of the state (Qi(t) = ri(t),Q2(t) = 0) of (5.3) in the following fashion: 

Qi = V(t) + Ve xi,        Q2 = 0 + y/ex2 (5.32) 

In this case, the nonlinear perturbation equations governing xx and x2 are given as: 

x\ + u2 xi + y/e [ 3 770 x\ + 4 r/o x\ ] 

+ c[61i1+6T]0rnx1+x3
1+4x1xl] + O{e3/2) = 0 (5.33) 

x2 + u\x2 + y/e[8 r)o xi x2] 

+ e [ S2 x2 + 8 770 7/1 x2 + 4 a:2 z2 + 16 x\ ] + 0(e3/2) = 0 

where wj and w2 are same as before. For the corresponding undamped system of (5.33), the 
Hamiltonian function can be expressed as: 

tf(xp,xq)    =    ffo + V£#i+etf2 + 0(£3/2) 

=    \ K + x2
P2 + wi2 *?, + "2 *l ] (5.34) 

+ sTe [770 x3
qi +4770 xqix

2
q2 ] 

+ £ l\< + K + 2xl 4 + tt> r?1(3x2
i + Axl) ] + 0(63/2) 

where xqi = xi, xq2 = x2, xPl = ii and xP2 = x2. Introducing the following canonical change of 
variables given by (5.10), the following detuning parameters in order to examine the dynamics of 
the system in the vicinity of principal sub-harmonic resonance and 1:1 internal resonance. 

W? = -(|/2-£ff1), u* = -(u2 - ea2) 

where o\ and a2 are the deviations of excitation frequency from twice the natural frequency of first 
and second mode, respectively. In other words, ax represents the measure of deviation from principal 
subharmonic resonance with respect to the first natural frequency, while (a2 - cr{) represents the 
deviation from 1:1 internal resonance. At this stage, we apply the second order averaging to obtain 
the following system of equations in canonical variables (a,-,<&) using the transformation given by 
(5.10): 

oj = e[-Siai - 2k3a1a2sin2(e1 - 92) + -a1b1r]0sm2ei ] + 0(e2) 

Mi = ei~^ai ~ 2*iai ~ {k2 + kA)axa2 - kzaxa2 cos 2(0i - 62) 
3 

+-ai&i?7ocos20i ]+0(e2) 
o 

ä2 = e[-S2a2 + 2k3a1a2 sin 2(6>i - 92) + -a^rjosin 202 ] + 0(e2) (5.35) 

a202 = e[-^a2 - 2k5aj - (k2 + k4)aia2 - k3axa2 cos2(0X - 92) 
4 

+-a26i77o cos 202] + O(e2) 
v 
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where 

-.2 
jfe, - HIS. _ JL k  _ 

13 V2o     1 ,       14 %2     2 

_ 55 77g     3                  20ijg     12 J     n      fa 
k* = T7X ~ -.        *6 = -T—^ ,    and     0,- = ^  V * = 1, 2. 

5.4.2    Canonical change of variables 

Consider the following canonical transformation to bring the averaged system to the appropriate 
form in order to apply the perturbation method given by Kovacic and Wiggins [48]: 

„    _ / 01        02 v 02 
91 ~ V" ~^~2

h        q2 = ^'        Pl = aiWl'        P2 = (ai + fl2)W2 (5.36) 

In addition to this transformation, we re-scale the variables and parameters in the following manner 
to further simplify the system, 

<*1,2 = e2^)2  , <Tl,2 = €4I/<TJ2  , bi = £2&i  , 
2p'h2 „  , „  „v       , t' 

Pl'2 = €_N" ' qi'2 = (1 + S9Tl^3^ 4 + ?l-2 ' '-? 
As we recall, 61 is like the amplitude of the forcing. On dropping the prime (') from the rescaled 
variables and parameters, the rescaled equations up-to 0(e) can be expressed as: 

Pi = 4 Pi (p2 - Pi) sin 2qx + e [-*lPl + QflPl sin 2(gx + g2) ] 

gi = -2/3 +'2(2pi - p2)(a - cos 2gx) - 27lP2 

+e [3/i cos 2(ft + q2) - 4/2 cos 2g2 ] (5.37) 

P\ = e [-S2P2 + (62 - Si)pi + 6fipi sin 2(9l + q2) + 8/2(p2 - Pl) sin 2g2 ] 

q2 = -e2 - 2(7! + a - cm2qx)px - 272p2 + e [4/2 cos2g2 ] 

where 

Ha + kt-k,- h ,„_,„ , *i - *s 2h 
Ifal '       2"-(".-^).       ^> = -py-.       72=s, 

/1 - -^-, h = sgn(k3) 

This system depends upon various parameters. The parameters a, 7l and 72 are expressed in terms 
of nonlinear terms and other physical characteristics of the original system, and hence these can be 
fixed. The parameters <r2 and ß denote detuning terms, Sx and S2 are the dissipation coefficients 
and /i and f2 are proportional to the amplitude of the external excitation. Systems similar to (5.37) 
have been studied by Feng and Sethna [26] and for the nonresonant case and Feng and Sethna [27] 
and Feng and Wiggins [28] for the resonant case. The presence of the parameter Tl makes the 
averaged equations of motion governing the shallow arch dynamics different than those considered 
by [28] in connection with investigation of global dynamics of parametrically excited almost square 
plates. The results obtained here are same as those obtained by [27] except a correction introduced 

95 



by parameter ji in the results. In the absence of any damping, the equations of motion given by 
(5.37) represent a four-dimensional Hamiltonian system with the Hamiltonian function H expressed 
in (pi)<7i,P2)92) coordinates as following: 

H(Pi, qi,P2, ?2) = H0(pi,qi,p2, q2) + tHi(pi,q1,p2, q2) (5.38) 

where 

Ho(pi,qi,P2, 92)    =    -[2/3 pi + <T2p2 + 2j!Pip2 + T2P1 + 2pi (p2 - pi)(a - cos 2q{)] 

Hi(pi,qi,p2,q2)    =    3 fi Pi cos (q1+q2)+4 f2 (p2-px) cos2q2 

We observe that the coordinate system (pi,qi,p2, q2) is singular at px = 0. Thus we introduce the 
following canonical transformation in order to avoid such singular behavior as we will soon see that 
the fixed points at pt = 0 play an important part in defining the dynamics of this system in our. 
domain of interest. 

x = ^/2fis\uqu        y = y/2p~[cosq1,        I = p2,        6 = q2 (5.39) 

The integrable and non-integrable components of the Hamiltonian H assume the following form in 
the new coordinate system. 

H0(x,y,I,6)   =    -[ß(x2 + y2) + a2I + 7lI(x2 + y2)+72I
2 

1 
2 

+ ^(2/ - x2 - y2) [(a + l)x2 + (a - l)y2] ] 

3 
Hi(x, y, 1,6)   =    - /x [{y2 - x2) cos26-2x y sin 26] 

+ 2 /2 {21 -x2- y2) cos 26 (5.40) 

and thus the corresponding equations of motion are expressed as, 

X   =    -W + ^X 

V
   =   -dx- + €9y 

i dHo I 1 = ~~w + eg (5-41) 
f)    _     dHo    ,   '   J 
v -  irr + e9 

where 

9     =   ~J
X
 
+
 -Q-  =  -Jx + 3fi{ycos26 - xsin26) - 4f2ycos26 

<*i        dHt Si 
9V   =   —2~y--fa    =  -jy + 3fi(xcos26 + ysm26) + 4f2xcos26 

gi   =   -<52/+i(^-<51)(x2 + r/2)- dHi 

=   -*3/+2(*2-*i)(a!2 + y2) + 3/i [(y2 - x2) sin 26 + 2xy cos26] 

+ 4/2(2/ -x2 -y2) sin 26 
s dHi 

9     =    -Jf  = 4/2cos2t9. 
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In the subsequent analysis, we will use the system of equations in the above mentioned two coor- 
dinate systems alternately. 

5.4.3    The unperturbed system 

First, we examine the dynamics of the unperturbed system.   Setting e = 0 in (5.41) yields the 
following set of completely integrable equations describing the unperturbed system: 

x   = = -2[ß+(j1 + a-l)I]y + 2ax2y + 2(a-l)y3 

y   = 2\ß+(yl + a+l)I]x-2{a + l)x3-2axy2 

/   = 0 

6   = -<72 - 272/ - [(TI + a + l)x2 + (Tl + a - l)y2] 
(5.42) 

We observe that the first two equations are completely independent of 0, and I = constant, and 
thus we need to study the phase flow in (x,y) phase space only. We recall that pi < p2 and thus 
we are interested in the behavior of our system inside the paraboloid described by the following 
equation: 

x2 + y2  <  2 1 (5.43) 

Also, the periodicity in 0 implies that we need to consider the system dynamics in the interval 
0 < 0 < IT. All possible fixed points of the unperturbed vector field in (x,y) phase space, in the 
desired range of interest, can be classified as following: 

1- (0,0) 

2. (±x,0) = (±^(/ -/!)(! +a), 0) (5.44) 

3. (0,±y) = (0,±^/(/-/2)(l + 6)) 

where 

h = Zl  Ti "  a = 
(a+l)(l + a)' (a+1) 

/,-,   :'    ,   b= * 
(a-l)(l + 6)' (a-1) 

In the following analysis we restrict ourselves to the cases where a > 1, ß < 0 and |7i| < (a - 1), in 
order to ensure that 0 < h < I2. It is obvious that all the fixed points given in (5.44) may not exist 
for every value of I. In fact, there are three distinct ranges of I where dynamics of the unperturbed 
system is qualitatively different. In the first case where 0 < I < Ilt only trivial solution exists and 
it is of center type stability. At I = Ix, this trivial solution goes through a pitch fork bifurcation 
and gives rise to two branches of center type stability, while the trivial solution assumes the saddle 
type stability for h < I < I2. The two center type solution branches are described by type 2 fixed 
points (5.44). The saddle type zero solution goes through another pitchfork bifurcation at I - I2 

and this time it gives rise to two branches of saddle type stability. These nontrivial branches are 
given by type 3 fixed points (5.44). The zero solution itself adopts the center type stability behavior 
for I > I2. The global bifurcation diagram for the unperturbed system in (x,y,I) space is shown 
in Figure 5.5.   The phase portraits for three different ranges of I are shown in Figure 5.6 in (x, y) 
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Figure 5.6: Phase portraits in (x, y) space corresponding to the unperturbed bifurcation diagram 
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phase space. We notice that for 0 < 7 < Ii, the flow consists of periodic orbits about the origin. 
For h < I < 72 we have two centers at (±x, 0) and a saddle at the origin. In this range, the origin 
is connected to itself by a pair of symmetric homoclinic orbits, each of which is described by: 

(ß + 7lI)(x2 + y2) + 1(2/ - x2 - y2) [(a + l)x2 + (a - l)y2]  =  0 (5.45) 

For I > I2, all five fixed points (5.44) exist. The two saddles at (0,±y) are connected to each 
other by heteroclinic connections in a complicated way as shown in Figure 5.6 (c). In this study 
we examine the conditions under which a Silnikov type homoclinic orbit may exist for I e (h, h)- 

5.4.4    Structure of the invariant manifolds 

In the previous section we notice that for the unperturbed system the origin is a hyperbolic fixed 
point of saddle type stability for any I e (h,I2). Thus in full four-dimensional phase space this 
fixed point is a two-dimensional invariant manifold M, and is given as follows: 

M = {{x,y,I,9) \x = 0, y = 0, I e (h,I2), OeT1} (5.46) 

This invariant manifold M is normally hyperbolic i.e., the rate of expansion and contraction normal 
to M is dominant as compared to the rate tangent to M. M has a three-dimensional stable WS(M) 
and a three-dimensional unstable manifold WU{M). These manifolds intersect nontransversely 
along a three-dimensional homoclinic manifold T, which is given as: 

r = {(x,y,I,9)\     x   =xh(t,I),y = yh(t,I), Ie(h,I2), 

6   = f DIHQ(x
h{t,I),yh(t,I),I)ds + 9Q} (5.47) 

where (xh(t, I),yh{t, I)) is the time parameterized expression for the homoclinic orbit. Any trajec- 
tory on T approaches MasM ±oo. 00 E T1 is a constant, which is determined from the initial 
conditions. Due to normal hyperbolicity property, M persists under small perturbations along with 
its stable and unstable manifolds. The dynamics restricted to the invariant manifold M is described 
by:    . 

7   =   0 

9   =    -a2-2j2I (5.48) 

We can see that 9 = 75/77(0,0,7) = 0 for 7 = 7r where 

/ =-£L 
2T2 

This represents the resonant value of 7, and it corresponds to a circle of fixed points in 7 - 9 plane. 
If DjH(0,0,I) ^ 0 then 7 = constant represents a periodic orbit. Since we require a positive 7 
value, thus if we assume j2 > 0 then we must have a2 < 0 for 7r > 0. In addition, we must ensure 
that 7r lies within the domain (h,I2). This gives the following restriction on the system parameters 
as shown in Figure 5.7. 

2T2 , <r2, 279 

^T^+T < 'J1 < ^T^T <5-49> 
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Figure 5.7: Region of existence of the resonant I value Ir e [h,h]- 

Following [48], we define a phase shift A6 such that, 

A0 = 0(+oo, Ir) - 0(-oo, Ir) 

At the resonant value of /, by using the unperturbed equations in (pi, ft,p2, q2) coordinates we can 
show that, 

6 = q2 = -ft - 2jipi 

Hence the phase shift can be obtained by integrating this equation with respect to the time variable 
from —oo to +00. 

A0 
r°°   . roo 

= /     9dt = -[ ft (+00, /r) - ft(-00, Ir) ] - 2Ti /     Pl dt 
J-°° J-00 

(5.50) 

In order to calculate A9 we need to obtain the explicit expressions for the homoclinic orbit. The 
system of equations describing the unperturbed phase flow is integrable, and thus it is possible to 
obtain the time explicit expressions for the homoclinic manifold T. For this purpose, we write the 
unperturbed system in (pi,ft) phase space: 

Pi    =   4pi (/-pi) sin 2ft 

ft    =    -2ß + 2(2p1-I)(a-cos2ql)-27lI (5.51) 

The phase portraits for for different I values (as shown in Figure 5.6) are reconstructed in (pi,ft) 
space and are shown in Figure 5.8. In this space we are interested in the dynamics associated 
with the heteroclinic connections B and B' for / 6 (/1, h)- The two saddle points in this space are 
located at (0,ft) and(0,7r-ft) and the center is located at (pi,f). This implies ft (00) = (71--ft) 
and ft(—00) = ft, where 

1 -l, ßs ft = 2COS     (7i + a+y) (5.52) 

Figure 5.9 shows the variation of ft as the detuning parameters cr2 is varied. It is easy to see that 
the hyperbolic fixed point at the origin in (x,y) phase space is same as the heteroclinic connection 
B   in (pi,ft) space.   While the homoclinic orbits A and Ä in (x,y) phase space (as shown in 
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(c). I>I2 

(b). l^IKIt 

(*-qi) 

(a).  0<I<I, 

Figure 5.8: Phase portraits in (p1)9l) space corresponding to the global bifurcation diagram 
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Figure 5.9: Variation of qx as the detuning parameter cr2 is varied while a, 71,72, and ß are fixed 
at 1.75, 0.25, 0.5, and -1.0, respectively. 

Figure 5.6 (b)) coincide with the heteroclinic connection B in (pi,qi) phase space. The heteroclinic 
orbit B is characterized by H0(pi,qi) — Ho(0, qx), which gives: 

ß + yilr Pi(t) = I + (5.53) 
a — cos 2qi 

This leads to the following differential equation in qi, 

qi = 2I{cos2ql - cos2g!) (5.54) 

which can be integrated to give, 

tan ft (i) = - tan gj coth (c t) (5.55) 

where c = 2 I sin 2ft, and we assume ft(0) = f. On substituting (5.55) in (5.53) and after some 
algebraic manipulation we obtain the time explicit expression for pi(t). 

E 

where 

E = 

Pi(t) = 

I sin2g1" 

cos / + cosh 2ct (5.56) 

cos/ = 
1 — a cos 2<7i 

a - cos 2qi a — cos 2qr 

Hence the phase shift (5.50) can be easily calculated using (5.56) as: 

2ji Ef 
A0 = (2ft - n) - 

c sin/ 
(5.57) 

Figure 5.10 shows the phase shift (A6) as a function of the system parameters a2. This quantity 
(phase shift) has a special significance. In fact the homoclinic orbit in (x,y) space is in general a 
heteroclinic connection in full four dimensional phase space (x,y,I,0), and the phase shift gives 
the difference in 6 value as a trajectory leaves and returns to the invariant manifold M. 
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Figure 5.10: The phase shift (A0) as a function of the detuning parameter a2. 

5.4.5    Effect of Small Perturbations 

Next we examine the effect of small perturbations on the normally hyperbolic manifold M and 
the associated dynamics. The normal hyperbolicity property of the manifold M implies that it 
persists along with its stable and unstable manifolds under sufficiently small perturbations. But 
in general, the dynamics within these manifolds changes dramatically. In this problem we notice 
that the hyperbolic fixed point at (x = 0, y = 0) remains invariant for the perturbed system and 
thus the manifold M persists as Mt for e ^ 0. The dynamics on Mt is described by the following 
equations m I — 6 plane. 

/   =   e [8/2 sin 20 - 62] I 

0   =    -a2- 2j2I + e [4/2 cos 20] (5.58) 

The fixed points of this system (5.58) are given as: 

r2/2 

2.    (I3,0s) = (-^-e[2Jl^—5il i [rr - sin"1 *]) (5.59) 

where 6 = •£%■ The Jacobian matrix corresponding to (5.58) at the fixed points is given as follows: 

J c.s  — 
0       ±e (16/2 /CjS VT-P) 

-272 -€ S2 
(5.60) 

The trace of the Jacobian matrix is given by -eS2) and for j2  > 0 it is trivial to show that 
Det(Jc) > 0 and Det(Js) < 0.  Using this information, the eigenvalues of the Jacobian matrix J 
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corresponding to each of these fixed points is shown to be: 

\c
h2   =   62 [ ±iy/Det(Jc) + €2(-±62) + 0(ef) ] 

Xs
lt2   .=   ei [ ±y/\Det(Ja)\ + et(-±62) + 0(€f) ]. 

Thus we conclude that (Ic, 6C) is an asymptotically stable fixed point in 1-6 subspace while (Is, 6S) 
is a hyperbolic saddle. A more refined study of the dynamics on Mt in the vicinity of the resonant 
/ value is performed in [48], which not only provides a more detailed description of the phase flow 
but also suggests a reasonable estimate for the domain of attraction of stable focus (Ic, 6C). This is 
achieved by introducing the following localized coordinates in the neighborhood of Ir. 

I = Ir + y/e~h,        6 = 6,        t=^= (5.61) 

where r is the slow time. We can obtain the following equations describing the slow dynamics on 
Mt near I = Ir, 

h'   =   [8/2 sin 29 - S2] Ir + £ [8/2 sin 26 - S2] h 

0'    =    -2y2h + 6 2[4/2cos20] (5.62) 

The prime (/) in (5.62) indicates differentiation with respect to the slow time variable r. We notice 
that the unperturbed system (e ->• 0) in h - 6 phase space is integrable, and the corresponding 
Hamilton's function is expressed as: 

K(h, 6) = y2h
2 - (4/2 cos 26 + 62 6) Ir (5.63) 

The integrable Hamiltonian structure at leading order near resonances is a very typical scenario. 
The unperturbed slow system restricted to h - 6 space has two fixed points at p0 = (0,6C) and 
9o = (0, 6S) respectively. The equilibrium point at (0, 6C) has elliptic type stability while (0, 6S) 
has saddle type stability behavior. In addition, the fixed point at (0,0,,) is connected to itself by 
a homoclinic orbit, which encloses infinitely many periodic orbits within. On introducing small 
perturbations, these periodic orbits are destroyed but the saddle type fixed point qQ persists as 
a hyperbolic saddle qt. Using Bendixon's Negative Criterion, we find Dhh + Dg6 = -y/e 62 < 0 
everywhere inside the area enclosed by the homoclinic orbit in unperturbed (h, 6) space, and thus 
we can conclude that the elliptic fixed point at (O,0C) persists as a stable focus pt. It should be 
mentioned that the fixed points pt and qt of the perturbed system (5.62) are same as (Ic, 6C) and 
(IS,6S) respectively. A reasonable estimate of the domain of attraction of pt is provided by the 
area enclosed by the homoclinic orbit given by K(h,6) = K{0,6S). This domain of attraction is 
enclosed with 6 £ [6m,6s], where 6m is determined by solving K(0,0m) = K(0,6S), which leads to 
the following transcendental equation. 

cos 26m + 2 S 6m = cos 26s + 2 5 6S (5.64) 

Defining an annulus At of width 0(e^) near / = Ir, 

At = [(x,y,I,6)\x = 0,y = 0,(Ir-^C) < I < {Ir + Ve~C),6 e T1] 

where C > 0 is a constant, which is chosen sufficiently large such that At encloses the unperturbed 
homoclinic orbit. This annulus At is a small segment of the perturbed invariant manifold Mt 

and the stable and unstable manifolds of At, denoted as WS(A^) and Wu(At), are the subsets of 
Ws{Mt) and WU{MC), respectively. 

104 



5.4.6    Existence of Silnikov type homoclinic orbit 

We are interested in the existence of an orbit that leaves pt while coming out of the annulus At in 
four-dimensional phase space, and under certain circumstances it may return to the annulus and 
eventually completing a Silnikov type homoclinic orbit. The existence of such an orbit connecting 
the saddle focus pt is examined in two steps. First using higher dimensional Melnikov theory, one 
obtains conditions for which Wu(pt) D Wa(Ae) ^ 0, i.e. when a trajectory leaving pt comes back 
in the neighborhood of At. Secondly, whether this orbit (in Wu(pt)) comes back in the domain of 
attraction of pt. If it does not, then the trajectory may leave the annulus (At) by crossing one of 
the boundaries of the annulus. But if it does, then the trajectory asymptotes to pt and a Silnikov 
type homoclinic loop, connecting pt to itself is completed. Here Wu(pt) and W*(At) are one and 
three dimensional manifolds respectively. 

In order to ensure the first condition (Wu(pt) D Ws{At) ^ 0) we evaluate the Melnikov Function 
MIr, which gives a measure of 0(e) distance between Wu(pc) and W'(At), and is computed in the 
following manner: 

where, both the integrand have been evaluated at any arbitrary point on the homoclinic manifold 
T at / = Ir, and gx,gy and g1 the 0(e) terms in x,y and / equations, respectively. For the sake of 
simplicity, let's assume Si = S2. It is obvious that the second integral has no contribution to the 
Melnikov function. After some trivial calculations we can express the Melnikov  Function as: 

/oo       ßff s: 
J—gf + j(xy-xy)-S2Ir0]dt (5.66) 

which can be further simplified to give, 

I So     t°° 
Mu = -A#! - S2 Ir Ad + -f   /     (xdy-y dx) (5.67) 

We can show that 

AHi = #!(oo) - Hi(-oo)    =   4f2I[cos2(6c + A0) - cos20, 

(x dy-y dx)    =    -2 / px dqi 
•oo Jg. 

I- Jqi 
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Pldqi    =    Ir Aqi + (ß + 7ilr) S 

where 

Aft    =    (n-2qi), 

Jfir—qi               1 1 /     j_ 1 
 — dqi    =                   [ir - 2tan_1(W^i-tang,)l 

ft       a-cos2ft                  Va2 - 1                         K]j a - 1       Hl)1 

Using these expressions, the Melnikov Function can be obtained as: 

Mu = -4/2/r [cos2(0c + A6) - cos20c + 25(A9 + A?1) + 25(ji + $-) S] (5.68) 
'r 
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Figure 5.11: The curve representing the simple zeroes of the Melnikov Function in the 8 - a2 

parameter space. 

In order to show the existence of an orbit homoclinic to p£, we first need to examine the parameter 
values for which the Melnikov function has a simple zero. Substituting for 0C in (5.68) we notice 
that MIr has a zero for: 

8 = 
l-cos2A0 

^/(l - cos 2A0)2 + [2(A0 + A9l) + 25(7l + £) - sin 2A0]2 
(5.69) 

It can be verified that the above condition gives a simple zero of MIr. The curve representing the 
simple zeroes of the Melnikov Function (M/r) is shown in Figure 5.11 in 8 - a2 parameters space. 
In addition, The following condition must be satisfied for the orbit in Wu(pt) to return to the basin 
of attraction of pt: 

0m < 0c + A0 + ran < Bs (5.70) 

where m is any integer, and 6c,0s,6m and A0 are given by (5.59), (5.64) and (5.57), respectively. 
The two step calculation effectively determines the restrictions on the systems parameters for the 
existence of a homoclinic saddle focus. 

If we fix a, ju y2,ß and a2 at 1.75, 0.25, 0.5, -1.0, and -0.61, respectively, then it is easily seen 
from Figure 5.12 that the phase condition (given by Eq. 70) is satisfied for 8 < 0.585. The 
corresponding critical value of 8 which leads to a simple zero of the Melnikov function is 0.5224, 
and thus 8 = 0.5224 leads to the existence of a saddle focus or Silnikov type homoclinic orbit in 
the perturbed system. It is interesting to note that a slightly smaller value of a2 (= - 0.6) does not 
lead to the Silnikov type phenomenon (Figure 5.13). In this case, the phase condition is satisfied 
for 8 < 0.545, but the critical value of delta (= 0.5498) leading to a simple zero of MIr is outside 
the domain. 

This mechanism is fundamentally different from homoclinic tangency of a Poincare map (as 
observed in the previous section) as a source of chaotic dynamics. The mere existence of Silnikov 
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Figure 5.12: Graphical representation of the phase condition as given by Eq. 70. Various angle 
coordinates 0S, 6m and (6C + A6 + n) are plotted as the parameter 8 is varied from 0.0 to 1.0. In 
this figure, a, 71,72,/? and a2 are fixed at 1.75, 0.25, 0.5, -1.0, and -0.61, respectively. The phase 
condition is satisfied for S < 0.585. 
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Figure 5.13: Same as figure before with the exception that the detuning parameter a2 is set at -0.6. 
In this case the phase condition is satisfied for S < 0.545. 
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type of homoclinic orbit provides a very robust mechanism for the existence of global chaos in the 
class of systems examined in this chapter. The chaotic behavior exists before, during, and after the 
creation of a Silnikov orbit. 

5.5    Interpretation of Results 

In this section we make an attempt to interpret the results corresponding to the perturbation 
variables xi and x2 in terms of the response of the original system. We shall only discuss the 
one-to-two resonance case, as- the interpretations for the one-to-one resonance case are similar. 
The amplitudes of the two fundamental modes (Qi(t) and Q2(t), respectively) of vibration of the 
shallow arch structure are expressed as: 

QiV)    =   V(t) + c v/2^"cos(^ + ö1) + 0(e2) 

Q2(t)    =   ey/2^cos(^t + 92) + 0(e2) 

where r}{t) = 770+ e (61 cosvt) +0{e2). It is well known that the solutions of the averaged equations 
(12) are related to the solutions of the original system (3), for sufficiently small values of e. We 
make the following comments in regard to the dynamics in ai and c2 variables with the response 
of the original system. 

• The trivial solutions of (12) correspond to the single mode periodic motions (with base period 
of ^) of the original system. 

• The non-trivial equilibrium solutions of (12) correspond to the periodic response of the original 
amplitudes. These additional non-trivial equilibrium solutions are the subharmonic periodic 
solutions with period *f (which is twice the base period) for the first mode and periodic 
solutions with period ^f for the second mode. 

• Similarly the periodic and quasi-periodic solutions of the averaged equations (12) correspond 
to the almost-periodic motions of the original system. One recalls that the periodic solutions 
of the averaged equations are over a slow time scale, thus the almost-periodic solutions of 
the original nonautonomous system shall be in the form of amplitude and phase modulated 
motions. The resulting motions of the shallow arch are slowly modulated periodic motions 
of frequency f which are superimposed on the basic periodic response of frequency v in the 
first mode of vibration. 

• Whenever the system parameters are such that the averaged system has chaotic motions, 
it is expected that the original nonautonomous system will also undergo chaotic amplitude 
modulated motions. 

• The present approach though more realistic can not be applied to study the response of the 
system near the harmonic excitation frequency because the coefficient bx becomes singular at 

We have already described how the results corresponding to the averaged system relate to the 
original system (3). Now we comment on the nature of motions that may appear in the shallow 

108 



arch oscillations. In the remaining part of this section we consider the single mode periodic motions 
(with period of ?f) to be the base state and solutions of the averaged system are superimposed 
over this state. For one-to-two internal resonance case the physical interpretation of the possible 
solutions is as follows: 

• In the unperturbed phase space (see Figure 5.3 ), the elliptic type fixed points represent 
coupled mode constant amplitude motions over the base state, and the phase variable corre- 
sponding to both the modes varies slowly. The two types of elliptic fixed points, at (pj",7r) 
and (pf, 0 or 2K) respectively, have different amplitude and phase structure. In this phase 
space the periodic orbits represent two types of coupled mode amplitude and phase modulated 
motions, which are separated by a different class of dynamics associated with the separatrix 
A (described next). 

• If the initial conditions are chosen on the heteroclinic orbit A, the motion starts off as am- 
plitude and phase modulated coupled mode vibration, and remains in such state for a long 
time (the initial conditions on heteroclinic connection A' start as constant single mode con- 
stant amplitude phase modulated periodic motions). But as the orbits (A or A') approach 
the saddle point, the motion becomes single mode constant amplitude vibration (in the first 
mode). 

• When we introduce small perturbations (due to excitation and dissipation effects) in the 
unperturbed system, first the amplitude and phase modulated motions appear and then 
amplitudes of both modes diminish slowly due to the presence of dissipation effects (no 
matter how small), and finally the motion settles down to the zero solution. This occurs for 
all the initial conditions in the phase space in the absence of any resonant structure on the 
invariant manifold Mt. 

• On introducing small forcing (with no dissipation) in the system, and if the initial point 
is chosen near the unperturbed heteroclinic connection A (i.e., the separatrix), the motion 
remains in the amplitude phase modulated coupled mode forever and never repeats itself. 
The amplitude and the phase of both the modes vary chaotically due to random exchange of 
energy between them. This occurs due to the presence of KAM tori in the perturbed system. 

For one-to-one internal resonance case, a qualitatively different physical phenomena are observed 
for the damped and forced system: 

• For the corresponding unperturbed system (e = 0), if the trajectory is on the invariant 
manifold M (given by Eq. 46) the motion occurs in the second mode only. In this motion 
the amplitude is constant (since ai = 0 and a2 = ^ = const.) and the phase variable 6 varies 
slowly. 

When the flow is outside the invariant manifold M and x2 + y2 < 21 is satisfied, the trajectory 
is either on the elliptic fixed points, periodic manifolds or the homoclinic manifold T. In such 
a case the motions are similar to as described previously for the one-to-two resonance. 

In one-to-one case there exists a certain initial condition (Ir) on the hyperbolic manifold M 
for which the motion occurring in the second mode has constant amplitude and constant 
phase. The associated dynamics of the perturbed system has a very interesting structure on 
Mt in the presence of small perturbations arising from dissipative effects and excitation. 
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For the perturbed system (e ^ 0) we concentrate on the dynamics associated with trajectories 
coming out of hyperbolic sink pt. In this case (x = 0, y = 0) remains an invariant sub-space 
even for the perturbed system. The initial conditions on Me which lie outside the domain of 
attraction of pt lead the phase flow towards the stable trivial solution (which is an attracting 
invariant set in the presence of positive dissipation), and the motion settles down to the base 
state. 

But if the initial conditions lie within the domain of attraction of pt, the motion starts off 
as amplitude and phase modulated single mode vibration with slowly decreasing amplitude, 
and eventually the resulting motion becomes a constant amplitude constant phase vibration 
of the second mode. 

• In the full four-dimensional phase space if the initial conditions are chosen near pt and close to 
Wu(pt), and if the Melnikov Condition and the Phase Criterion are simultaneously satisfied, 
the motion starts as a mixed mode amplitude and phase modulated vibrations, but soon the 
trajectory approaches the annulus disc At and the motions appear to be in almost one mode 
(the second one) for a long time, and as it approaches pt the trajectory takes off again and 
repeats the similar motion in the four-dimensional phase space, and it goes on forever. 

• On the other hand if the Phase Criterion is not satisfied, all the motions die out slowly as 
the trajectories move towards the trivial (zero) attracting set in Mt. 

It is easy to check that one-to-two internal resonance occurs for q0 = X0 = 5, and one-to-one 
resonance takes place for q0 = X0 = y/l. In both the cases the constant part of the response 
(T?0) has two nontrivial solutions under resonant conditions (obtained by solving Eq. 8), which 
are 770 = ±2\/6 for 1:2 resonance, and 770 = ±y/H for 1:1 resonance. One can show that in both 
the cases the value of the loading parameter A0 is far from the critical values, and thus the arch 
oscillates in only one position (either top or bottom), and the motions described in this chapter are 
in the neighborhood of the non-trivial -q0 values. The snap through buckling does not take place 
as a result global bifurcations described in this chapter. 

110 



Chapter 6 

DESIGN AND CONSTRUCTION 
OF LABORATORY FACILITIES 

6.1    Introduction 

Analytical techniques, such as the method of averaging and the theory of normal forms discussed 
in the previous chapters, provide a means of approximating the solutions of nonlinear and nonau- 
tonomous dynamical systems. These approximate solutions are then used to predict the local 
bifurcation behavior of the original system and estimate the nontrivial response in the post-critical 
regions. Furthermore, as in Chapter 5, the reduced equations form the basis for studying more 
complicated global bifurcations. While these techniques seem to provide engineers and scientists 
with the ability to predict the behavior of many practical dynamical systems without the expense 
and delay of complicated experiments, the accuracy of the approximations (as well as that of the 
mechanical models) is not fully known. Before relying on the results of such modeling and reduc- 
tion techniques in the analysis of complex systems, it is imperative to verify the local and global 
predictions of simple (lower dimensional) dynamical systems through direct experimentation. 

Experimental studies in nonlinear dynamics and chaotic motion of mechanical systems have been 
performed by several researchers [18, 61, 62]. Moon and co-workers considered various experimental 
methods to analyze elastic buckling dynamics [18], dry friction oscillators [61], superconducting 
levitation dynamics and fluid-elastic vibrations in an elastic tube [69]. Planar nonlinear motions of 
structural models with 2:1 internal resonance subjected to a harmonic base excitation were studied 
experimentally by Haddow et al. [33] and, recently, by Nayfeh and co-workers [66, 9]. 

In the case of stochastic systems, however, nonlinear experimental studies are scarce. Most of 
the investigations deal with linear stochastic models. Under this modeling restriction, the limits of 
stability (in some sense) of the trivial solution can be determined. However, in order to predict the 
post-critical (nontrivial) behavior, one needs to consider the full nonlinear problem. Some of the 
earliest nonlinear random vibration tests were conducted by Lyon et al. [54] and Bogdanoff and 
Citron [12]. Experimental results of Bogdanoff and Citron were used to substantiate the theoretical 
results that an inverted pendulum can be stabilized in mean square by applying a stationary random 
vertical base excitation with discrete power spectrum. Exploratory studies of liquid behavior in 
randomly excited tanks were reported by Dalzell [19, 20]. However, due to the complex nature 
of the model, no realistic comparisons with theory were possible. The work of Baxter and Evan- 
Iwanowski [10] is another early experimental investigation in which a series of experiments were 
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conducted to measure the stochastic response of an elastic column excited by a random parametric 
loading. In the early eighties, experimental studies on coupled nonlinear oscillators subjected to a 
random excitation were reported by Roberts [74]. 

Recently, some of these experiments on two-degree-of-freedom models with internal resonances 
have been repeated by Ibrahim and co-workers [41, 42]. A survey article by Ibrahim [40] presents an 
up-to-date literature review of experimental work in stochastic dynamics. Most of these experimen- 
tal results were compared to those obtained analytically via the non-Gaussian closure technique. 
This technique, however, was found to predict erroneous behavior for the system near bifurcation 
points which are of primary interest in the determination of stability boundaries for dynamical 
systems [40]. 

The goal of the final portion of this research is the design and construction of an experimental 
rig. This rig will serve as a test bed for direct experimental verification of the validity of the results 
obtained from the various approximation techniques employed in the analysis of nonlinear differ- 
ential equations. The theoretical results will serve as a guideline for locating stability boundaries 
and predicting post-critical behavior. The extent to which the theoretical and experimental results 
match will provide an insight into the accuracy of the mathematical models and theoretical approx- 
imations. The experiments will, in turn, guide the development and refinement of the analytical 
techniques to incorporate any new phenomena observed. 

6.2    Design of Shaft Test Rig 

In Chapter 3, the partial differential equations of motion governing the longitudinal and transverse 
vibrations (in the two principal directions) of a rotating shaft were derived. In the derivation, 
it is assumed that the shaft is rotating at a constant rate tt and subjected to a time-dependent 
compressive load given by P(t) = P0 + fi cos vt. In practical mechanical systems which rely on the 
transmission of power via a rotating shaft, transverse vibrations are unwanted and may even prove 
catastrophic. It is generally desired to operate in a parameter region in which the nonvibratory 
state is stable. The lowest order vibratory modes are the most frequently encountered and exhibit 
the largest amplitude oscillations. For this reason, it is imperative to be able to predict the onset 
of these vibrations in terms of the pertinent system parameters. 

Using a Galerkin approximation and assuming only the first mode (in each lateral direction) of 
the rotating shaft to be excited, the partial differential equations of motion are reduced, in Chapter 
3, to a set of ordinary differential equations. The stability of the trivial solution (the nonvibratory, 
or rest, state) and local bifurcation behavior of the averaged equations are examined in Chapter 
4. The stability boundaries for the trivial solution are mapped out in the \i-v parameter space. 
When the stability conditions for the trivial solution are violated, a stable nontrivial solution of 
the averaged equations emerges. 

The focus of this chapter is to describe the experimental set-up designed to verify the local 
results obtained in Chapter 4. The test model is a brass shaft, rotating at a constant rate and 
parametrically excited by a time-dependent axial load. The model and the experimental subsystems 
are described in detail in this section. The goal of the investigations to be performed using this 
rig is the experimental determination of the local stability boundaries, in terms of the excitation 
amplitude \x and frequency i/, and a quantitative description of the post-critical nontrivial solutions. 

The test shaft is machined from hard naval brass (#464). The published material properties of 
hard naval brass are shown in Table 6.1 along with the shaft characteristics of interest. A schematic 
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Shaft property Characteristic value 
Material 464 hard naval brass 
Young's modulus, E 15.9 x 106 psi 
mass/unit length, \i 7.92 x 10"4 lb/-s2/in4 

yield strength, Sy 60 ksi 
length, L 25.1 in. 
diameter, d 0.25 in. 
1st mode natural frequency, /„ 50 Hz 
buckling load, P^ 191 lb/ 
max. allowable strain, emax 2500 //in/in 
max. allowable deflection, amax 0.3 in 
max. endpoint displacement, (Ax)max 0.018 in 

Table 6.1: Physical Characteristics of the Shaft 

of the shaft assembly is shown in Figure 6.1. The shaft has a clamped length of L = 25.1 in. and 
a diameter of d = 0.25 in. 

As shown in Table 6.1, the critical static buckling load of the shaft is F«. = 191 lb/ and the 
angular natural frequency is /„ = 50 Hz. Assuming a safety factor of 1.5 {amax = ayield/1.5), the 
maximum allowable strain is smax = 2500/i in./in. corresponding to a centerline deflection of 0.3 
in. 

The bearing assemblies are designed to closely approximate clamped-clamped boundary condi- 
tions. With the use of super-precision bearings, the maximum angular deflection of the shaft at 
the bearings is calculated to be 0.013 degrees. In practice, perfectly clamped or pinned boundary 
conditions are difficult to achieve. To this end, the boundary conditions for a shaft rotating in a 
bearing may be described by 

EId*+CLte = 0 

where the factor C£, is included to describe a condition between a pinned boundary condition and a 
clamped boundary condition. The coefficient cL ranges from zero to infinity. If the shaft is perfectly 
clamped, CL = oo. To satisfy the above condition, the slope dy/dx must be identically zero. For 
a pinned end, CL = 0. Thus, as one would expect, the above condition requires d2y/dx2 = 0. The 
value of CL can be determined in such a way that an experimentally measured first mode natural 
frequency is equal to the theoretical value for such boundary conditions. This implies an altered 
mode shape which must be obtained theoretically using the above boundary condition with the 
appropriate value of cL. However, the form of the temporal equations which describe the motion 
of the rotating shaft remain unchanged. 

The detail of the motor-end bearing assembly is shown in Figure 6.2. The brass shaft is held 
in the motor-end bearing hub using a slit clamp, two bolts and four set screws. The large steel 
bearing blocks and large thrust bearing take the full load transmitted by the shaft, the bearing 
hub has eight port holes tapped through to allow for passage of strain gage leads from the shaft 
to the slip ring which is mounted on the bearing hub. The bearing hub is then passed through a 
radial bearing and coupled to the flywheel and motor. 
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Figure 6.2: Detail of the motor-end bearing assembly 

The detail of the shaker-end bearing assembly is shown in Figure 6.3. The bearing hub 
is mounted in two bearings, one of which is a thrust bearing used to provide increased axial 
rigidity. Three 0.375 in. linear-rotary bearings are mounted inside the bearing hub to allow for axial 
movement of the shaft. The hardened stainless steel sleeves on which the linear-rotary bearings act 
are attached to the shaft using a shrink fit. The sleeves act as inner races for the ball bearings and 
also increase the stiffness of the shaft through the bearings. The major subsystems are described 
in detail below. Photographs of the existing setup and the excitation system are displayed in 
Figures 6.9 and 6.10 at the end of this chapter. 

Loading/Excitation System 

The axial load (static plus dynamic) is monitored by a Cooper Instruments LFS-230-200 shear 
beam load cell mounted to the lower end of the shaft as shown in Figure 6.3. This device has a 
200 lb/ capacity (for tension or compression) and is connected to a Cooper Instruments model 460 
Bridgesensor signal conditioning module with a cutoff frequency of 2000 Hz. The gain range for 
the 460 signal conditioner is 40-250. The bridge excitation is set to 9.5 Vdc and the amplifier gain 
to approximately 221. These values are chosen to obtain a high resolution signal from the analyzer. 
The raw output ("Load cell output") for a bridge excitation of 9.50 Vdc is 0.095 mV/lb/. The load 
cell was mounted as close to the test shaft as possible to obtain the most accurate measurement of 
the actual static load. The calibration curve obtained for this load cell is shown in Figure 6.4. This 
data was obtained for both increasing and decreasing loads. No hysteresis effects were observed. 

The static load is supplied by a double-acting Bimba air cylinder pressurized from a 125 psig 
capacity air tank. The cylinder has a power factor of 2.4, i.e. the maximum force exerted is 2.4 
times the air line pressure. Thus, to achieve a 200 lb/ axial load, the line must be pressurized to 
83.33 psig. The stroke length (7 in.) and bore diameter (1.75 in.) were selected using the ideal gas 
law to maintain pressure (i.e. applied static load) within acceptable limits as the end point of the 
shaft and, correspondingly, the piston head are displaced.  The cylinder acts directly on the load 
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cell which transmits this load to the shaft through a small thrust bearing. 
The time-dependent component of the axial load is provided by a Briiel k Kjaer model # 4801T 

Exciter Body with a Briiel & Kjaer model # 4812 Exciter Head. This shaker acts directly on the 
shaft of the air cylinder. Originally, it was desired to use the shaker to generate both static and 
dynamic forces simultaneously. The Briiel & Kjaer 4801T/4812 is capable of generating a 30 lb/ 
static load as well as a superimposed oscillating load. However, the DC current required to generate 
such an offset may, over a short period of time, cause the shaker to overheat. For this reason, the 
air cylinder described above was chosen to supply the static load. 

The shaker is powered from a Briiel & Kjaer # 2707 low distortion power amplifier. The 
frequency range of the amplifier is 40 Hz to 10 kHz at full capacity (220 VA) and DC to 100 kHz at 
reduced capacity. This shaker/amplifier system is capable of a 100 lb/ peak sine excitation. The 
excitation amplitude required for the current tests, however, is well below this limit. 

The 2707 amplifier may be set for High or Low output impedance, corresponding to constant 
drive current or constant drive voltage, respectively. The High impedance mode keeps the generated 
force unchanged when changes occur in the test object. This mode is particularly useful when 
monitoring force input rather than displacement. The Low impedance mode keeps the voltage 
applied to the exciter independent of changes in the test object, i.e. this regulates displacement of 
the exciter head. In the present investigation, the shaker operates in the High impedance mode 
since the force generated by this system is of primary importance. 

Motor/Drive/Controller 

The test shaft, auxiliary shaft, bearing system and flywheel are rotated by a Toshiba SMR-1-200 
DC brushless servo motor/drive. The rated operating speed of this motor/drive system is 3000 
rpm, the maximum is 4000 rpm. Quoted speed regulation of this system is "0.2% or better". The 
drive is controlled by a Motion Plus EDC 100 Encoder Digital Controller. The EDC 100 is a 
servo controller which allows full programming or direct operator control. The controller display 
screen also provides instantaneous position/velocity monitoring as well as error measurements. The 
rotation rate is also monitored by a tachometer consisting of a Pepperl+Fuchs inductive proximity 
probe sensing a 5-tooth gear mounted on the auxiliary shaft. 

The motor shaft is connected to the motor-end bearing hub through a Gerwah #DK45/47 
miniature metal bellows coupler. This coupler allows for both angular (± 1.2 degrees) and axial 
(0.2 mm) misalignment. Directly below this coupler is a 6 in. diameter (1 in. thick) carbon steel 
flywheel used to regulate the rotation speed in the presence of any perturbations. 

In order to eliminate torque in the test shaft, a timing belt/pulley system is employed. This 
system is depicted in Figure 6.1. The upper timing belt connects the motor-end hub to a 3/4 
in. diameter steel shaft mounted parallel to the test shaft. The lower timing belt connects this 
auxiliary shaft to the shaker-end hub. The auxiliary shaft and timing belts are used to synchronize 
the rotation rate of the shaker end bearing hub with that of the motor-end hub in order to minimize 
torque in the experimental model. Therefore, the shaft will experience only axial movement with 
respect to the linear-rotary bearings, insuring that they do not bind. To include the effects of 
torque (due to bearing friction), the timing belts may be removed. 
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Figure 6.5: Axial view of the brass shaft showing strain gage configuration and the Wheatstone 
bridge corresponding to one pair of gages. 

Lateral Displacement Measurements 

The goal of the experiments is to measure the lateral displacement of the centerline of the brass 
test shaft. This quantity is measured indirectly through the strain. This is accomplished using 
four strain gages mounted directly on the test shaft. The gages are arranged in two half-bridge 
configurations as shown in Figure 6.5. Each pair (A or B) of gages constitutes two arms of the 
Wheatstone bridge. In this situation, there are two active gages with equal and opposite strains. 
Since the magnitudes of these signals are summed, this configuration provides a higher signal-to- 
noise ratio than the quarter bridge configuration. 

The gages used are Measurements Group constantan foil gages with a gage factor of F = 2.05. 
The gage factor of a piezoelectric material is defined as 

= AR/Rp 

AL/Lo 

where AR/R0 is the change in resistance divided by the initial resistance of the gage (R0 = 350 
Q, in this case), AL/LQ is the change in length divided by the initial length, i.e. strain, in the test 
object. In Figure 6.5, V represents the bridge excitation voltage, V0, the output voltage and e, the 
strain. These quantities are related through the gage factor by 

VQ      Fe , 

^ = Txl° 
where V0 is measured in milliVolts, V in Volts and e in microstrain (/zin./in.). 

Each pair of gages (A or B) is connected to a Measurements Group 2311 Signal Conditioning 
Amplifier. The signals are passed from the rotating to the stationary frame through a Fabricast 
8-ring slip ring assembly. As stated, two gages make up two arms of the Wheatstone bridge. The 
remaining two arms are internal to the amplifier. The amplifier provides the bridge excitation V 
and filters and amplifies the incoming signal Vö. 

Signal Analysis and Data Reduction 

The signals obtained from the load cell, the tachometer proximity probe and the two strain gage 
amplifiers are fed into the four input channels of a Tektronix 2630 Fourier Analyzer run from a 
Gateway 486 PC. The analyzer implements the following standard data analysis functions: 

• time domain waveform and orbit (x-y) plots 
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Channel Signal 
1 
2 
3 
4 

strain gage: bridge A 
strain gage: bridge B 

load cell 
tachometer 

Table 6.2: Data acquisition channel designation 

• averaged and instantaneous power spectrum 

• averaged and instantaneous auto- and cross-correlation 

• impulse response function, transfer (frequency response) function and FFT 

• real, imaginary, magnitude, phase and Nyquist displays 

The analyzer also contains a signal generator which is used to give the Brüel k Kjaer shaker/amplifier 
system the oscillatory signal which is translated into the time-dependent portion of the axial load. 
Both input and output channels process data at frequency ranges from DC to 5 Hz up to DC to 
20 kHz. 

The data assigned to each of the four input channels is given in Table 6.2. For reference, the 
strain gages are labeled (A or B) on the shaft according to the Wheatstone bridge, i.e. the 2311 
amplifier, to which they are connected. Channels 1, 2 and 4 are AC coupled to filter out any DC 
offset since only dynamic signals are of interest in these measurements. Channel 3 monitors the 
axial load which contains both static and dynamic components. Hence, channel 3 is DC coupled 
to allow the DC component of the signal (the static load) to pass through the analog-to-digital 
converters. 

Experimental Procedure 

For the first set of experiments, the cross section of the test shaft used is symmetric (to within 
machining tolerances). An additional unsymmetric shaft has been machined for use in future 
tests. The first step in the experimental procedure is to determine an appropriate rotation rate 
Q and static load P0. Figure 6.6 shows the primary stable and restabilized regions described in 
Chapter 4 for a symmetric shaft in the absence of parametric excitation (and dissipation). The 
parameter region in which the experiments are to be conducted is the primary stable region since 
the mathematical model is no longer valid outside this region, i.e. beyond the buckling limit which 
separates the regions. Moreover, the static load and rotation rate are chosen such that the shaft 
is near the buckling limit. By choosing Ü and P0 near this boundary, the stiffness of the shaft is 
effectively reduced. 

Figure 6.7 shows a typical stability boundary for the case of additive combination resonance 
taken from Chapter 4. In this figure, Q = 132.22 rad/sec and P0 = 162.35 lb/. The predicted 
boundary provides a guide for locating the actual (experimental) stability boundary. For a given 
amplitude of parametric excitation ß, the frequency of excitation is gradually increased from some 
initial value vA until a change (a nonzero RMS value) is noticed in the steady state measurement 
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Figure 6.8: Hysteresis loop in the lateral vibration response. 

of the strain. A qualitative description of the expected response amplitude a is given in Figure 
6.8. The inferred shape of this curve is derived from experimental results on models described by 
similar equations of motion. As v is increased, the frequency uB at which this nontrivial solution 
first exists marks the lower (frequency) bound of the stability boundary for that value of /i. As v is 
increased beyond this point, the RMS amplitude will continue to grow. At some point, denoted by 
vD, the amplitude drops back down to zero. This occurs at a value of v which is greater than that 
corresponding to the higher (frequency) bound of the stability boundary for that particular value of 
/x. If the frequency is increased beyond this point, the trivial solution remains stable until another 
such resonance band is encountered. The next resonance for the symmetric shaft corresponds to 
excitation of the second mode. The dynamics of this mode will not be considered in the current 
investigation. If this process is started from the point vE a nontrivial solution first begins to appear 
near the higher (frequency) bound of the stability boundary for the same //. This point is denoted 
by vc. This increase, however, is not a smooth transition as is seen when the path is traversed in 
the original direction. In this case, a jump occurs at vc. The resulting RMS amplitude at point C 
is the same as when the path is traversed with increasing frequency. As the frequency is decreased 
further, the amplitude of oscillation dies down smoothly to zero. 

The average and RMS value of any channel may be obtained at any time during the experiments. 
However, in the actual data analysis, frames of instantaneous temporal and spectral data are saved 
to a data file and reduced via post processing in Matlab. The RMS values of the time series obtained 
from channels 1 and 2 (the strain gage measurements) will be used to determine the stability of 
the trivial solution, approximate the location of the stability boundaries and record the growth of 
the nontrivial solutions. Any effects of hysteresis will also be noted. 

6.3    Nonstandard Analysis of Experimental Data 

Fourier and spectral analysis is indeed the most frequently applied technique for understanding 
experimental data. Such analysis is useful for obtaining the frequency components and power 
distribution as a function of frequency. For a given periodic or nonperiodic signal f(t), one can 
define a frequency spectrum F(u) as the Fourier transform of f(t). Most modern spectral analysis 
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utilizes the discrete version of the above equation with an efficient algorithm called the Fast Fourier 
Transform (FFT). The book by Bendat and Piersol [11] on random data analysis and measurement 
procedures gives a detailed discussion on these and various other data processing techniques. 

While such standard techniques provide useful information regarding frequency content and 
power distribution, some information is generally lost or averaged out. As the system response 
becomes more complicated, more information is lost. Thus, in order to gain a more detailed 
description of the nonlinear dynamics, it is imperative to utilize nonstandard time series analysis. 
Wavelet transforms, Lyapunov exponents, fractal dimensions and probability density functions are 
important examples of such techniques. 

Wavelet Transforms 

The ability to extract useful information from a time series often depends on the representation used 
to examine this data. Wavelet transformation provides an easily interpretable visual representation. 
The most often used methods of power spectral densities and Fourier transforms are essential tools 
for data analysis in many fields. However, these are poor choices when knowledge of spectral 
change over time is desired. The coefficients produced via the Fourier transform reflect the aggregate 
frequency content over the entire signal but say nothing about how the spectrum evolves with time. 
One way around this difficulty is to split the signal into segments to be analyzed separately. This 
is the basis for the procedure known as the windowed Fourier transform (WFT) which computes, 
for a given function /(a;), 

r°° 
G(u, u)= e-lwxf{x)g(x - u)dx 

J—oo 

where G(u),u) measures the frequency u around the time point u and g(x - u) is a fixed window 
function. A common choice for g is a Gaussian window but many other window functions may be 
used. In this method, one simply takes a Fourier transform of small pieces of the signal obtaining 
a set of spectra corresponding to different regions of time. However, as these windows of data grow 
smaller and smaller (yielding better resolution in time), the uncertainty principle dictates a loss of 
information about the frequency content in each region. Therefore, based on the type of information 
desired, a choice must be made to either transform short segments in order to understand time 
behavior at the expense of spectral resolution or deal with long segments of data to resolve the 
spectrum well, but lose the ability to pinpoint events in time. Thus, in the WFT method, the 
trade-off between time and frequency resolution is unavoidable. 

For many applications, information is needed on a variety of scales. There may not be a single 
transform length which suitably illustrates small scale characteristics while yielding meaningful 
large scale data. In such cases, computationally expensive multiple transforms using different 
lengths may be performed. However, an inexpensive transformation which changes its resolution 
on different intervals, perhaps using large sections of data to clearly understand certain frequency 
ranges and small segments to nail down the time behavior where spectral accuracy is not that 
important, is needed. This is the basic idea behind wavelet transforms. 

A wavelet is a function h which decays rapidly outside an interval in both time and frequency 
domains. This can be considered as the admissibility condition and is given explicitly by Morlet et 
al. [63] as 

Ch = / du < oo 
Jo       w 
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where h is the Fourier transform of h. This condition forces the frequency response to decay to zero 
at both zero and infinity, restricting the wavelet function to a class of band-pass filters. A detailed 
discussion on the type of functions satisfying this and other conditions is given by Daubechies [21]. 
The wavelet transform is thus a projection of a signal onto a set of functions which are translations 
and dilations of a given wavelet h. This transform was proposed by Morlet as a transformation of 
a function f(x) at scale a and location b as 

w(a,b) = ± r h(?-±)f(x)dx 
y/a J-oo    \   a   ) 

It is clear from these definitions that both the WFT and wavelet transforms are scalar products of 
f(x) with 

9u,,u(x) = e~iwX9(x-u)    and    ha,b(x) - \a\-ll2h (^) 

respectively. These scalar products analyze the function / in a neighborhood of a time-frequency 
point. However, the frequency analysis performed by the wavelet transform is quite different from 
the WFT. The wavelet transform has a selected analyzing waveform modified by a given envelope 
and defined to have a fixed number of oscillations inside this envelope. The width of the envelope 
and the frequency scale work together as the frequency is increased to hold the number of oscillations 
constant. This property gives good resolution in the frequency domain and good localization in the 
time domain. Furthermore, the nonstationarity of the signal becomes less significant in the wavelet 
analysis since it does not depend on the long time behavior of the signal. This method also proves 
to be an important tool for analyzing the transient behavior of any dynamical system. 

Lyapunov Exponent and Fractal Dimension 

The Lyapunov exponent for a stochastic system is the analog of the real part of the eigenvalue in the 
deterministic case. It is a measure of the exponential divergence of nearby orbits in phase space and 
is, therefore, a characterization of the stability of the system. Lyapunov exponents thus provide a 
qualitative, as well as quantitative,description of the behavior of dynamical systems. In the context 
of deterministic systems, the Lyapunov exponent provides a measure of the system's sensitivity to 
variations in the initial conditions. Thus, any system possessing at least one positive Lyapunov 
exponent is defined to be chaotic. The computation of the spectrum of Lyapunov exponents when 
only a time series is available is difficult. Wolf et al. [90] present general algorithms which yield 
approximate values of the non-negative Lyapunov exponents for a time series. 

There are several measures of the dimension of a set of points. The four most useful definitions 
for time series analysis will be discussed in this section. For detailed discussions on these measures, 
refer to Farmer [24] and the recent books by Moon [60] and Rasband [73]. 

Let A be the set of points of interest and assume that A is a bounded subset of Rn. Let N(e) 
denote the minimum number of n-dimensional cubes of side e needed to cover A. Then one can 
define the Hausdorff or capacity dimension of the set A as 

d'°r-l™   ln[1/£] 

which depends on the metric properties of space only. 
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The information dimension depends on the frequency at which each cell is visited by the map or, 
for the continuous flows, the fraction of time spent in each cell. In order to calculate the information 
dimension one counts the number of points AT,- in each of the N cells and the probability /> of finding 
a point in the ith cell where Pi = Ni/N0 with £ P; = 1 where N0 is the total number of points in 
set A. The information dimension is defined by the expression 

1(e) N{e) 

d/=Sin#i  where   '(*) = E^ln(W) 
The correlation dimension is defined as 

*"- = &   hfe] c(£) = ÄoÄ^     E     H(e-\\Xl-Xk\\) 
L J j,k=l(j*k) 

and represents the number of pairwise correlations in an e neighborhood about points on an at- 
tracting set A. In the above definition, H(-) is the Heaviside function, H(a) = 1 if a > 0, H(a) = 0 
if a < 0 and || Xj - xk || denotes some convenient norm for the distance between XJ and xk. 

For an n-dimensional phase space, the Lyapunov exponents can be ordered as Ax, • • •, A„. Note 
that the sum of Lyapunov exponents is the average convergence which, for a dissipative system, 
must always be negative. The Lyapunov dimension is then 

dr - k I  ^i=1 Xj 

L~     +    I A*! | 
where k labels the last A; for which AH h Xk > 0. If Ax < 0, then define dL = 0 and if k = m, 
define d^ = m. This definition is suggested by Kaplan and Yorke [44]. 

For dissipative dynamical systems exhibiting strange attractors, the fractal dimension defined 
through the various definitions above provides a good measure of the strangeness of the attractor. 
It is important to note that the fractal dimension D is always smaller than the dimension of the 
dynamical system F. One can choose the type of measure used to characterize the chaotic time series 
depending on the nature of the dynamical system. For example, it has been shown by Grassberger 
and Procaccia [31] that the calculation of the capacity dimension is exceedingly hard and, in fact, 
impractical for systems of dimension greater than 2. The correlation dimension appears to be the 
easiest and most useful measure of the fractal dimension. In addition, the correlation dimension 
allows one to distinguish between deterministic chaos and random noise. 

Probability Distribution 

Calculation of the probability distribution and density functions are important in both stochastic 
and chaotic dynamic experiments. In these experiments, the distribution of a signal is obtained 
by determining the length of the time intervals (Aij) the signal record x(t) spent above a specified 
level, say a. The cumulative probability distribution is estimated by using the relation 

P{x(t)>a} = ^Ati 

where T is the whole sample interval. In a two dimensional phase-space, one can determine the 
same by partitioning the phase-space into cells and counting the number of time-sampled points 
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Figure 6.9: Rotating shaft test rig. 
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Figure 6.10: Close-up of excitation system. 
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Chapter 7 

CONCLUSIONS 

The motivation for this research was the determination and prediction of steady-state motions of 
practical dynamical systems and their corresponding stability. Of primary interest was the stability 
and bifurcation behavior of gyroscopic mechanical systems. The specific objectives for this research 
were as follows: 

• develop analytical techniques to yield the almost-sure and moment stability of two- and four- 
dimensional linear systems parametrically excited by noise; 

• investigate the local and global bifurcation behavior of deterministic nonlinear gyroscopic 
systems subject to periodic parametric excitation with application to rotordynamics; 

• develop laboratory facilities in order to verify the local stability results through direct exper- 
imentation. 

The results obtained from this research provide valuable insight into the mechanisms which cause in- 
stability and give rise to more complicated behavior. Moreover, it is hoped that the analytical tech- 
niques developed will have an important impact on the design of advanced mechanical/structural 
components and system reliability. 

The first portion of this research dealt with the determination of the effect of adding para- 
metric noise to linear mechanical systems for which the corresponding deterministic system is 
stable. In Chapter 2, an asymptotic expansion for the maximal Lyapunov exponent, the exponen- 
tial growth rate of solutions to a linear stochastic system, and the rotation numbers for a general 
four-dimensional dynamical system driven by a small intensity real noise process were constructed. 
The almost-sure asymptotic stability boundaries, defined as the point at which the maximal Lya- 

punov exponent becomes zero can be obtained provided the infinitesimal generator associated with 
the noise process has an isolated simple zero eigenvalue. This assumption was made to make the 
solution tractable. In the absence of noise and dissipation, the system under consideration in Chap- 
ter 2 is critical and possesses two pairs of purely imaginary eigenvalues with non-commensurable 
frequencies. By imposing certain restrictive conditions on the manner in which the stochastic terms 
enter the system, the method of stochastic averaging may be applied to determine the top Lyapunov 
exponent. However, in certain important physical examples (such as the problem of flow-induced 
oscillations discussed in Chapter 2), these conditions are unrealistic. The advantage of the current 
method over the method of stochastic averaging is the applicability of the perturbation approach 
to problems without imposing any conditions on the form of the stochastic terms. The results ob- 
tained have a wide range of applications. Specifically, the perturbative technique developed in thi is 
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chapter was applied to study the lateral vibration instability in rotating shafts subject to stochastic 
axial loads and stationary shafts in cross flow with randomly varying flow velocity. 

Sample or almost-sure stability of a stationary solution of a random dynamical system is of 
importance in the context of dynamical systems theory since it guarantees all samples except for 
a set of measure zero tend to the stationary solution as time goes to infinity. However, from the 
applications viewpoint, one may not be satisfied with such guarantees since a sample stable process 
may still exceed some threshold values or may possess a slow rate of decay. Although sample 
solutions may be stable with probability one, the mean square response of the system for the same 
parameter values may grow exponentially. For this reason, it is wise to also consider the behavior 

of the moments of the response over time. To this end, an asymptotic expansion for the moment 
Lyapunov exponent is being derived by the Nonlinear Systems Group at the University of Illinois. 
In the process of calculating the moment Lyapunov exponent, the maximal Lyapunov exponent, 
and thus the almost-sure stability, will also be computed. The moment Lyapunov exponent, based 
solely on the linear operator, provides insight into the response of the full nonlinear equations of 
motion. It provides the parameter value necessary to attain a normalizable density function for 
the nonlinear response and parameter values at which this density function undergoes qualitative 
changes. 

The second portion of this research studies the bifurcation behavior of nonlinear gyroscopic 
systems. Throughout this work, it is assumed that the dissipation, imperfections and amplitudes 
of parametric excitations are small. In this way, it is possible to treat these problems as weakly 
Hamiltonian systems. Most of the analysis presented here was based on the recent work of perturbed 
Hamiltonian systems. 

Although the local and global results presented in Chapters 4 and 5 have a wide range of appli- 
cations, the motivating problems throughout this phase of the research have been the investigation 
of the dynamics and stability of the rotating shaft and structural arch subject to a periodic para- 
metric excitation. Shaft is a fundamental component in many mechanical and power generating 
systems. The parametric excitations in this system arise due to the action of adjacent components 
on the rotating shaft. These inputs are included as time-dependent parameters in the equations of 
motion of the component under investigation and may lead to large amplitude vibrations or chaotic 
motion. In the second problem we examine the dynamics associated with the 2-DOF shallow arch 
system near the principal subharmonic frequency (u = 2^), in addition to the presence of inter- 
nal resonances. Here we take a more realistic approach owing to the observation that the forced 
system (3) allows single mode time dependent (periodic) solutions (??(*), 0) in the presence of ex- 
ternal excitation. In Chapter 3, the partial differential equations of motion of a rotating shaft were 
derived. These equations describe the longitudinal as well as lateral motions (in the two principal 
directions) of the shaft. The equation governing the longitudinal motion decouples from the rest. 
Assuming only the first mode of vibration to be excited in each of the lateral directions, the partial 
differential equations were reduced to ordinary differential equations via a Galerkin approximation. 
The parameter range under consideration must be restricted such that the shaft is not allowed to 
buckle. Once the shaft buckles, the governing equations are no longer valid. 

In Chapter 4, the method of averaging was applied to yield a set of autonomous differential 
equations of motion governing the transverse vibrations of the shaft. These equations were then 
employed to examine the local bifurcation behavior of the shaft in the presence of all possible 
parametric resonance conditions that can exist in the first order averaged equations. The limits of 
stability for the trivial (non-oscillatory) solution of the averaged equations were determined in terms 
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of the excitation amplitude /i and frequency v. The natural frequency of vibration in each direction 
is denoted by ur, r = 1, 2. In the nonresonant case, as well as the difference combination resonance 
case (i.e. for v near |u>i -u>2\), the nontrivial solution remains stable for all values of/x and v in the 
parameter range of interest. It was shown that in the case of subharmonic parametric resonance {y 
near 2wr), the trivial solution loses stability through divergence. Beyond the bifurcation point, the 
averaged set of equations exhibits a nonzero fixed point for each v (or \i). Since fixed points of the 
averaged equations correspond to periodic orbits in the original system, this indicates that once 
the trivial solution loses stability, the shaft will begin to oscillate in the rth mode (with period ur). 
In the presence of additive combination resonance (u near u>i + w2), depending on the excitation 
frequency, it was shown that the trivial solution may lose stability through divergence or flutter. 

.The subsequent nontrivial response for each case was also described. In the case of combination 
resonance in the absence of dissipation, the system at criticality possesses two coincident pairs of 
purely imaginary eigenvalues. The linear system is in nonsemisimple 1:1 internal resonance and 
the trivial solution loses stability through a Hamiltonian Hopf bifurcation. 

The specific goal of Chapter 5 was to determine the effects of non-Hamiltonian perturbations on 
the global behavior of otherwise Hamiltonian dynamical systems. The non-Hamiltonian terms in 
this analysis appear at the linear level only. In Chapter 5, the conditions on system parameters are 
explored for which the shallow arch system can exhibit chaotic dynamics under small perturbations 
arising due to dissipation and external excitation effects. In the first case it is shown that the aver- 
aged system corresponding to the nonlinear variational equations can have heteroclinic connections 
for certain values of system parameters in the absence of any perturbations. For one-to-two reso- 
nant case higher dimensional Melnikov's Method is used to show that one of the heteroclinic orbits 
may break under small time periodic excitations. Under these conditions the averaged system may 
have Smale Horseshoe type chaos whenever the system parameters a and p20 lie inside the domain 
/ and II. Using a standard theorem these results can be extended for the original system. It must 
be noted that the existence of a simple zero of the Melnikov Function only provides the necessary 
condition for the chaotic conditions to occur. The applicability of this method is restricted in this 
class of problems in the sense that one can not examine the effect of perturbations arising from the 
dissipation effects. In this case, the presence of even very small dissipation leads to destroy any 
attracting invariant sets on the perturbed manifold Mt and the phase flow escapes by crossing the 
lower boundary, and the shallow arch system finally settles down to the periodic behavior as t ->• oo. 
The numerical simulations were also performed to confirm the predictions made in the analysis and 
to further explore the effect of small perturbations on the periodic and heteroclinic orbits. These 
simulations reveal very exciting details of the underlying structure of the quasi-periodic orbits and 
chaotic regions in the perturbed system. 

In the second part of this Chapter 5, we have used a perturbation technique due to [48] to study 
the shallow arch dynamics near one-to-one internal resonance. Using this technique the effect of 
small perturbations arising from periodic excitations and dissipative forces are examined on the 
averaged system, and the explicit restrictions on system parameters are obtained which may lead to 
the existence of a Silnikov type homoclinic orbit to a saddle-focus type fixed point in the perturbed 
system, and consequently the complex dynamics is resulted. This mechanism provides a more 
restrictive criterion for the existence of chaotic dynamics in the presence of small dissipation and 
small periodic excitation effects. The results of this analysis are also interpreted in terms of the 
oscillations of the shallow arch system. 
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The final phase of this research was the design and construction of a test rig dedicated to the 
verification of the analytical techniques developed in this research through direct experimentation. 
Chapter 6 describes the laboratory facilities that have been developed. The theoretical results 
will serve as a guideline for locating stability boundaries and predicting post-critical behavior. 
The extent to which the theoretical and experimental results match will provide an insight into 

the accuracy of the mathematical models and theoretical approximations. The experiments will, 
in turn, guide the development and refinement of the theories developed to incorporate any new 
phenomena observed. 
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