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Abstract 

Requirements envisaging is the process of transforming vague and informal re- 

quirements into precise descriptions. Envisaging evokes ideas, project criteria, and 

the explanation of alternative solutions which are refined or discarded. At the en- 

visioning stage of system development, complex systems are typically described in 

a fragmentary and highly contextual manner. This conflicts with the abstract and 

decontextualized formal languages used by software experts. As a consequence, re- 

quirements envisaging, which seeks to bridge this gap, is a challenging phase of 

system development in which to provide automated support. 

In requirements envisaging, domain experts will often convey partial descriptions 

of system and environment behavior arising in restricted situations, namely, scenar- 

ios. Scenarios play an important role in envisaging by mediating communication 

and by describing alternative situations and rationale explored during design. De- 

spite this importance, scenarios are not, in general, formally captured as part of 

requirements documentation. 

This dissertation is a step toward automated support for envisaging with sce- 

narios. For this task, the representation used to capture scenarios must support 

human-tool collaboration. The tool described herein supports capturing scenarios 

in a formal manner despite their fragmentary and contextual nature. The goal is 

to let people who are not necessarily computer experts create scenarios easily and 

allow other people to readily understand the concepts conveyed in these scenarios. 

The main accomplishments reported in this thesis are: an observational study 

of domain and software experts utilizing scenarios, the development of a formal 

representation for scenarios, an automated tool that allows people to create scenarios 

xii 



in that representation, and evaluation of the representation and tool in a real world 

domain outside those studied during development. 

These accomplishments are a step toward: bridging the communication gap be- 

tween domain experts and system design experts, moving some of the burden of 

work from people to machines, the documentation of domain knowledge and ratio- 

nale, and the traceability between requirements and implementation by providing a 

formal means to capture scenarios. 

xm 





Chapter 1 

Introduction 

Human intelligence almost always thrives on context while computers 

work on abstract numbers alone. A subtraction problem cast in terms of 

apples is easier for a student, but a programmer must do precisely the 

opposite thing, convert concrete problems into context-free mathematics, 

because that is easier for the machine. - Arno Penzias 1989, p.49 

Requirements envisaging is the process of transforming peoples' informal notions 

of what is desired into a precise description. These descriptions may then be suitable 

for mediating communication with oneself over time, one's own community, other 

communities, and even automated tools. 

During envisaging people are best able to describe complex systems in a fragmen- 

tary and highly contextual manner. People need the context. This conflicts with the 

abstract and decontextualized formal languages used by software experts. In par- 

ticular, what people state in a fragmentary and contextual manner is not entirely 

ready to be transformed into a decontextualized formal language. As a consequence, 

requirements envisaging, which seeks to bridge this gap, is a challenging phase of 

system development in which to provide automated support. 

During envisaging, people can and do easily express scenarios which are partial 

descriptions of system and environment behavior arising in restricted situations. 

That is, people are able to think about the desired behavior in terms of situations 

that might arise, by stating when they might arise, and by stating what ought to 

happen or ought not to happen in those situations.   In general, scenarios are not 



formally captured as part of the requirements documentation although scenarios 

play an important role in envisaging by mediating communication and by describing 

alternative situations and rationale explored during design. 

This dissertation is a step toward providing automated support for envisaging 

with scenarios. In order to do this, the representation used to capture scenarios 

must be understandable by automated tools. The tool should support capturing 

scenarios in a formal manner despite their fragmentary and contextual nature. It is 

also important that such a tool let people who are not necessarily computer experts 

be able to create scenarios easily, and that other people be able to understand the 

concepts conveyed in these scenarios. 

The benefits that are expected to accrue from providing automated support in- 

clude: better communication between people, particularly domain experts and soft- 

ware experts; better distribution of work between people and machines by providing 

automated support for manipulation and analysis; better preservation of the design 

history and rationale for others to understand the details considered and the context 

of use; better traceability between the requirements and the implementation since 

having a formal means to capture scenarios can provide the inputs into the next 

generation of automated tools for software engineering. 

As a step towards such benefits, the main accomplishments reported here are 

• an observational study of scenario-based communication between software ex- 

perts and domain experts. 

• the development of a domain-independent representation for scenarios 

• an automated tool allowing creation of scenarios in that representation 

• evaluation of the representation and tool in a real-world context which was not 

studied as part of development. 



1.1    Why scenarios 

Scenarios are used in such diverse fields as architecture, engineering, and human fac- 

tors. In such fields, requirements envisaging involves detailed thought about some- 

thing wanted or needed. Envisaging is an important part of design which evokes ideas 

and criteria with which alternatives are explored, refined or discarded. Researchers, 

trying to understand the nature of individuals engaged in design, have reported that 

people will naturally engage in scenario activity when detailed thought is required 

by their subjects [31, 37]. From separate protocols of architects, mechanical engi- 

neers, and instructional trainers engaged in design, Goel coins the phrase "scenario 

immersion" to describe the "frequently occurring episodes in which designers recall 

and immerse themselves in rich, intricate images from their past experience." Fur- 

thermore, he states that across task domains and external representations (suitable 

for the task) the scenario episodes seemed to play a crucial role in the generation 

and evaluation of the design [31]. 

For software design, second generation object-oriented methods [49, 32, 88, 91] 

and the user interface design community [13, 55, 3] advocate the use of scenar- 

ios. These communities advocate the use of scenarios in the context of a variety of 

project tasks (e.g. user interface design, requirements acquisition, test case gener- 

ation). In addition, they advocate various informal representations (e.g. use cases, 

scripts, story-boards) and formal representations (e.g. interaction diagrams, path 

expressions, message sequence charts). 

The informal representations contain much more useful information than the ex- 

isting formal representations were designed to capture. That is, the formal represen- 

tations have reflected the abstract decontextualized languages, rather than concrete 

detailed scenarios. This is especially problematic when domain experts communi- 

cate detail which should be considered but is never formally captured by software 

experts. 

Given the uses of scenarios in diverse fields, one contribution of this work is a 

unifying representation of scenarios.  This representation is called, REBUS, which 



Stands for Requirements Envisaging By Utilizing Scenarios.1 The representation is 

formal, yet captures useful domain knowledge conveyed by domain experts. REBUS 

is intended to unify the best properties of the various informal and formal represen- 

tations by being a representation which meets the desiderata described in chapter 

2. 

1.2    Who writes scenarios 

The typical practice in software engineering is for systems analysts to develop ab- 

stract requirements documentation based on discussions with domain experts. Gen- 

erally, an analyst has some experience in the application domain and with software 

systems, but does not have all the needed expertise in either. The typical documen- 

tation tends to abstract away many concrete details needed for people to understand 

the domain. 

For example, domain experts including air-traffic controllers were a part of the 

design and review team for the Federal Aviation Administration's 3.6 billion dollar 

Advanced Automation System [45]. The typical requirements documentation was 

produced, though requirements changes continued to plague the project [94]. The 

project is nearly a billion dollars over budget and more than two years late. Thus, 

in spite of serious efforts to involve domain experts, requirements envisaging proved 

inadequate. 

In typical practice, there is little opportunity for envisaging on the part of the 

domain experts or software experts when reading analysts' documentation. Reading 

is not as active a process as writing. In this typical practice, the detailed thought 

doesn't occur until an implementation is developed. In the case of the AAS, require- 

ments changes occurred as more detailed thought went into the implementation. 

Consider two categories of scenario writers, domain experts and software experts. 

Domain experts have spent years learning both the complex vocabulary of their 

Webster's Dictionary defines rebus as "a representation of words or syllables by pictures of 
objects or by symbols whose names resemble the intended words or syllables in sound; also: a 

riddle made up of such pictures or symbols" ( e.g. RE «==§?) 



domain and how to react in the complicated situations arising in this domain. This 

is also true for software experts who have spent years learning the formality of 

programming and formal logic. 

When domain and software experts communicate with each other during meet- 

ings, they predominantly use their own domain-specific vocabularies. While trying to 

establish connections, they will actually mix their terminology with the terminology 

from others' outside their area of expertise, and by doing so leave the communication 

open to misinterpretation. 

One finds senior project members taking the lead as "translators," i.e software 

experts who know the domain and its vocabulary, or domain experts who have 

learned the software experts' vocabulary. These people are in short supply and they 

tend not to do much of the programming, so the knowledge the programmers need 

remains indirect. Domain experts and software experts need to collaborate 2 with a 

common representation and vocabulary when writing scenarios. 

In a few application domains (for example financial analysis), natural paradigms 

have been devised (such as spreadsheets) that enable the domain experts to them- 

selves play the role of software experts, i.e to specify and build many of their own, 

typically small, software applications. In general, however, we are far from the goal 

of having domain experts directly develop large, complex behavioral systems without 

considerable intervention and assistance from software experts. Even with spread- 

sheets we know that beginners tend just to use forms made by others and gradually 

acquire skills. They also ask software experts for help when the programming effort 

exceeds their desire to do it themselves [68]. 

Domain experts need certain skills to use any computer-based support. The 

assumption is that our scenario writers are familiar with using direct manipulation 

and forms-based computer interface techniques and that scenario writers are a subset 

of scenario users. These human computer interface techniques form the basis for the 

scenario capture tool that will be described in this dissertation. 

2A tenet of Participatory Design. 



This thesis addresses the communication problems that exist between domain 

experts and software experts by considering each of their needs and by considering 

the impact of adding computers into the communication process to assure that 

automated support can be utilized. 

1.3    Designer activities 

The dynamics of software design activity are iterative, ill-structured [93] and oppor- 

tunistic [36]. The nature of any design session is that it is dynamic, and does not 

proceed in a strictly top-down or bottom-up fashion. In the case of systems design, 

the process is knowledge (or lack of knowledge) and representation (artifact) driven. 

The dynamic nature is manifested in the design activity of individuals or groups 

with single or multiple media. 

Guindon reports on activities of individual system analysts engaged in the design 

of an elevator control system [36]. This is a domain in which the analysts were 

not experts, but with which they were familiar. Figure 1.1 illustrates the design 

activities of an individual analyst. This analyst is opportunistically shifting between 

the application domain (elevator control) and solution details throughout the design 

session. Notice that there is a continued need for domain specific considerations (the 

upper levels of the figure) as well as continued envisaging activity into the solution 

details. 

Shifting focus to groups of designers involved in design meetings, clarification is 

a time consuming activity. Olson et al. state [75], "clarification of ideas - a cross- 

cutting classification - took one third of the time, indicating how much time was 

spent in both orchestrating and sharing expertise among group members." Further- 

more they state, "Clarification time is interesting. On the one hand, it certainly 

represents a coordination activity, in that it represents time devoted to establishing 

common ground (e.g., Clark k Brennan, 1991). On the other hand, it also con- 

tributes to the problem solving involved in design, because it helps the participants 

develop their ideas and make them clearer." 



Figure 3. Shift« in design activities and levels of abstraction of Designer 1. Plus 
signs indicate newly inferred or added requirements. Light bulbs indicate sudden 
discovery of partial solutions or requirements. The region marked by R indicates 
the period of solution review. 
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Figure 1.1: The shifting of a designers focus over time. Reprinted by permission of 
Lawrence Erlbaum Associates, Inc. From Guindon [36], figure 3, p. 319. 

Introducing a new media or methodology for communication changes the nature 

of the collaboration. A general consensus is that multiple media and methodologies 

are needed with an understanding of when to use them [54]. Further studies by Olson 

et al. were performed to see how automated support affects group design meetings 

[77]. They studied how a synchronously shared text editor changed the character of 

a design meeting as well as its outcome [76]. They report that the designs produced 

by the groups supported by the editor were of a higher quality than those who 

worked with conventional white-board and paper and pencil. They were surprised 

by the fact that those supported by the tool did less extensive exploration of the 

design space. The tool helped the group keep more focused on the core issues in the 

emerging design, to waste less time on less important topics, and to capture what 

was said as the discussion progressed. 

This thesis introduces a new media into the collaborative process of scenario 

writing. Although I will not be reporting on a controlled study like the Olson's, I 

will be describing a formative evaluation done in the context of a real world project. 
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1.4    Automated support 

Developing automated support for scenario writing is a central contribution of this 

thesis. Tools specifically for scenarios don't generally exist. As a result scenarios 

are rarely captured in any automated tools, and even fewer are captured in a formal 

manner. In software practice, the few scenarios that are captured are for the purposes 

of testing or user documentation. 

There are tradeoffs of different forms of automated tools: we can look at the va- 

riety of tools that are useful for general or domain-specific tasks as well as consider 

tool characteristics. A tool can be characterized along the following scales: learnabil- 

ity which depends on the scenario writers background and skills; expressivity from 

the standpoint of what concepts can be explicitly represented in a scenario; and 

formality which depends on the syntax and semantics available for scenario analysis. 

These characterizations are not easily quantifiable, but they serve as a means to 

distinguish between different forms of support and to discuss the tradeoffs. To our 

knowledge, previous work has not adequately resolved these tradeoffs in a manner 

which meets the needs of people during requirements envisaging. 

What is currently used most are domain-independent, task support tools (e.g. 

a drawing program, which can support structured graphics for drawing aircraft in 

different air-spaces). Such tools are completely independent of application domain 

knowledge and have relatively high learnability. They vary from editing text and 

graphics, to outlining and story-boarding, to composing animations and multi-media 

presentations. Unfortunately, these tools do not support formality. Therefore, the 

tools leave domain specifics open to misinterpretation when such presentations are 

passed along to programmers. For example, a air-traffic controller might draw an 

aircraft in-route to LAX with a drawing tool. In such a depiction, problems arise 

when the attributes associated with the aircraft (such as, wide-body) can not be 

formally tied to the aircraft. 

To pass designs along to programmers, computer-aided software engineering 

(CASE) tools are generally advocated. If we consider programming as a domain 

of expertise then CASE tools are a form of domain-specific (i.e.   software design) 
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task supporting tool with higher degrees of formality. Their learnability is limited to 

software experts since they require substantial programming expertise. CASE tools 

and object-oriented methods employ specialized vocabularies and representations. 

Such vocabularies are arcane to domain experts. These representations are also bi- 

ased towards the expression of abstractions, inhibiting their usefulness at capturing 

the contextual details and semantics of the application domain knowledge. 

Some tools were developed for recording design rationale (e.g. IBIS [19, 84] and 

QOC [61]). The goal of capturing design rationale is to retain the "why" of the 

design. Such tools provide hypertext support for structuring links to nodes which 

separate the design space into issues, alternatives, and criteria. Scenarios can be 

placed in the nodes, complementing the design rationale. The structured links and 

nodes have little value in terms of automated analysis of the design. Recent work 

focuses on integrating design rationale with scenarios because design rationale had 

limited value without being attached to the designed artifact [82]. 

Alternatively, approaches that take advantage of a-priori knowledge of the ap- 

plication domain exist. They rely upon software experts to build domain-specific 

tools for scenarios [25, 56, 11] (e.g. a fighter-plane simulator which has built-in 

plane objects and behavior for firing missiles) . While the result, if well designed, is 

eminently acquirable by domain experts, such a tool is of little use for a different do- 

main, and of course requires that the software experts must already have understood 

the domain in order to have built the tool. 

As part of the evolution of the ideas presented in this thesis, I considered vi- 

sual languages and end-user programming tools, especially those which made use 

of demonstrational techniques for specification. Taking a domain specific approach, 

the initial effort was to provide support for animation with domain specific objects. 

In this context a prototype was developed for vehicle traffic-control which was im- 

plemented by integrating the ARIES specification environment [52] which supports 

various specification languages and the Polka [99] framework designed for novice 

programmers to develop their own algorithm animations. 



This initial effort developed with the idea that it would have to be useful for 

critiquing behavior. The problem arose that behavior was encoded in parameterized 

procedures, difficult for non-programmers to understand. It became clear that this 

approach had two other major problems: (1) it required a great deal of domain 

knowledge by the software experts and it would be codified in a manner no longer 

suitable for envisaging; (2) a great deal of effort would be spent in coding scenarios. 

The effort in writing parameterized procedures for every object's behavior was es- 

pecially problematic. Software experts would be spending too much time worrying 

about the implementation issues and easily lose track of the application domain as 

well as validation with the domain experts. Some end-user programming systems 

solve this problem by providing forms for non-programmers to write "before-after" 

rules [4, 95]. To write such rules, one specifies the criteria for applying the rule on 

the 'left-side' and the behavior to follow on the 'right-side'. 

This thesis takes a domain independent, but scenario-writing specific approach. 

It has the advantages of the domain-independent, task support tools, without their 

disadvantages. Also, before-after rules were extended to increase their expressivity 

with temporal information. 

1.5    Example scenarios 

For an initial illustration of some scenarios, figure 1.2 contains three scenarios in a 

telephony domain. In this domain, objects or agents interact simultaneously within 

the context of an environment. Scenarios are only meant to contain a certain amount 

of information (this is of course subjective and dependent on the scenario writers' 

skills). For an example of what has been omitted in the example telephony scenarios, 

we do not see the division between the system and environment. This division is 

less important for conveying a contextualized representation of the domain, because 

both the system and environment are elaborated to the level of detail necessary. 

In the telephony scenarios, I've placed myself in the situation of calling Lewis 

at his workplace.   By placing myself in the scenario, I am setting the stage for a 
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Figure 1.2: Telephony example 
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personalized, contextual view of the system. I am personalizing it to make it more 

detailed and more interesting by considering myself to be a participant (scenario im- 

mersion) as opposed to specifying some abstract role, such as "telephone customer." 

Alternatively, I could create elaborate characters with which to demonstrate usage 

[104]. Such concrete personification is helpful for people during envisaging. 

Scenario 1 — This scenario shows a future goal. I would like to be able to pick-up 

a phone anywhere in the world and just say "call Lewis." The system would be able 

to recognize my voice and take the appropriate action. 

Scenario 2 - This scenario depicts the current method of calling Lewis from a 

phone in North America. I just dial the area code, his phone number, and extension. 

With this simple scenario's partial context we can elaborate and discuss further 

details with a domain expert. The contextual nature of the scenario helps to evoke 

some questions to ask a domain expert such as: Do I need a country code when 

calling ISI from Toronto? Does the general rule about international calls apply? In 

telephony, service charges depend on the locations of caller and callee, so envisaging 

these spatial contexts is important. Of course, new mobile services are rapidly 

changing the way service is charged. 

Scenario 3 - In the first frame of this scenario, I've dialed Lewis from my office 

when his phone is idle. The second frame describes a state following the first frame, 

namely, I hear ring-back and his phone is ringing. These were the result of my 

dialing Lewis's extension. This scenario could continue with, for example, Lewis 

answering his extension or my hanging up. Notice that the behavior is fragmentary 

and at different levels of abstraction, for example "dial 210" is a sequence of temporal 

ordered actions, i.e. pressing the different buttons. This sequence differs from an 

actual state, i.e. Lewis's idle phone. 

The three scenarios contain roughly the same objects, namely myself, Lewis, 

and two telephones. It is the spatial context and the details of behavior (temporal 

context) which differentiate the concepts conveyed. Time and space are important 
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themes to convey via scenarios. They are fundamental to all interesting real world 

domains.3 

Any scenario support in scenarios like these will need to be considered along 

two dimensions, between and within. Different scenarios will have between-scena.no 

properties. For example, the differences between what is stated in scenario one 

and two are different regions, like "anywhere" versus "North America" and differing 

activities, like saying and dialing. In scenario three the scenario has two frames and 

the behavior described is within-scenaiio. The focus is on the behavior, such as the 

details about what has occurred leading to the triggering of what will occur. This 

between frame behavior can be expressed in the form of the before-after rules. 

In general, scenarios have a wide variety of uses such as those illustrated in sce- 

narios one and two: expressing a goal of some future system or just describing the 

current state of a system to others. People use scenarios to communicate effectively 

especially when they are addressing people with different backgrounds from them- 

selves. People also use formal languages for communication effectiveness when they 

convey information to others in the same field. Formality adds precision to a de- 

scription. Formal scenarios can help domain experts and software experts achieve 

communication effectiveness and precision. 

The requirements for automated support for scenarios rest upon having a pre- 

cise representation or language for describing scenarios. The representation should 

support envisaging. Tools make it easier for people to actively engage in the task 

by allowing them to easily compose and construct scenarios. This is true especially 

when people can be involved in scenario writing by directly creating and manipu- 

lating the domain concepts. Tools for scenarios can support such tasks as editing, 

sorting, and filtering of information. 

Programming languages have also been explained via notions of time and space [29]. 
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1.6    Real world basis 

As part of this dissertation, a study of communication between software experts 

and domain experts was needed to understand both what people actually convey 

via scenarios and what information software engineers need from these scenarios. 

Borrowing from methods of ethnography [83], an observational study was performed. 

This study involved the videotaping of knowledge acquisition sessions between 

software experts and former fighter pilots. They were developing a training envi- 

ronment simulating air-combat. They wished to include automated pilots which 

behaved and reasoned like human pilots. 

This project exemplifies real world multi-site group development and is a more 

complex domain than the ones reported in the design studies of individuals and 

groups described in section 1.3. The scenarios in this domain are concrete examples 

of combat tactics. One of the major outcomes of this study was the recognition that 

these scenario representations were found to be richer than scenarios in the software 

design literature. 

1.7    Scope of domains 

The application domains considered in this thesis include ones in which objects are 

involved in complex and ongoing interactions with their environment. In order to 

achieve domain independence, several domains were investigated with differing levels 

of access to domain expertise. The five studied were vehicle-traffic control, air-traffic 

control, telephony, intelligent forces and satellite control. 

Vehicle traffic-control and air-traffic control were early sources of example scenar- 

ios. While there was some communication with domain experts, these domains were 

studied mostly by direct observation of vehicle-traffic control and of requirements 

specifications for air-traffic control. However, merely reading the specifications of 

the the FAA advanced automation system, was not sufficient for understanding how 

planes were "handed-off". Visiting an FAA control center was necessary for seeing 
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how hand-offs are currently handled. The controllers readily explained this domain 

concept as a scenario. 

Telephony is another domain accessible by artifact. The telecommunications in- 

dustry has produced much of the related work in scenarios for object-oriented meth- 

ods. Scenarios are very important in this domain since many telephony problems 

are highly contextual. 

The Intelligent-Forces project [25, 101] (an air-combat domain) provided the 

opportunity to study and capture meetings between domain experts and software 

developers in the context of an actual project. Videotapes were taken of meetings in 

which rapport was established and scenarios of fighter-pilot decisions were used to 

allow the software engineers to develop an understanding of the application domain. 

Finally, NASA's deep space network ground control provided another opportu- 

nity to evaluate my work in a domain not considered during the development of 

REBUS. 

1.8    Summary 

Requirements envisaging is the process of transforming informal descriptions of soft- 

ware requirements into the precise language necessary for designing a software sys- 

tem. 

Domain experts frequently express their requirements in terms of scenarios: par- 

tial descriptions of behavior in restricted situations. These scenarios frequently are 

not formally captured in the resulting requirements documentation. Thus, some, 

possibly essential information is lost in the translation of requirements between do- 

main and software experts. As with the FAA's Advanced Automation System, this 

can result in costly and time consuming iterations of the requirements writing pro- 

cess. 

This dissertation is a step in the automation of the requirements acquisition 

process. It provides a mutually-understandable, easily-learned, language, named 

REBUS, for communication between domain and software experts. REBUS enables 
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the use of scenarios in this acquisition process, taking advantage of the way domain 

experts naturally express their requirements. 

REBUS' design was guided by concepts found in a number of domains, including 

auto and air traffic control, telephony, and fighter pilot simulations. REBUS is 

evaluated in a new domain, NASA's deep space network ground control, which was 

not considered during REBUS' design process, thus providing a formative evaluation 

of REBUS's ability to facilitate requirements acquisition in a new domain. 

1.9    Thesis outline 

Chapter 2 contains the desiderata of automated support for scenarios based on the 

ethnographic study in the intelligent forces domain. Chapter 3 contains further 

examples of IFOR scenarios, and compares them to existing scenario representa- 

tions and automated support. Chapter 4 contains the REBUS language description. 

Chapter 5 contains the implementation of REBUS in an automated scenario cap- 

ture tool called, SCtool. Chapter 6 contains the case-study performed to evaluate 

REBUS and SCtool. Chapter 7 contains conclusions and future work. 
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Chapter 2 

Automated Support for Communication Using 

Scenarios 

DILBERT reprinted by permission of UFS, Inc. 
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2.1     Introduction 

The central theme of this chapter is to identify the desiderata of automated support 

of scenarios. We are interested in providing support for effective communication 

between domain experts and software experts using automated tools. These people 

with different backgrounds and expertise need to communicate through time and 

space in order to understand and resolve problems. Scenarios are an important part 

of this communication and they should be captured in a persistent representational 

medium. So, we must examine what features scenarios must have so that, when 

incorporated in automated tools, effective communication can be facilitated. 
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In order to provide people with automated support for communication via scenar- 

ios, the scenarios need to be in a external representation that is domain-independent, 

evocative and precise. That is, for the representation to be effective for communica- 

tion: (1) it must vividly evoke understanding from the scenario readers; (2) it must 

be eminently expressive for the scenario writers; (3) it must be readily manipulable 

and analyzable by people and automated tools with out a-priori domain knowledge. 

This chapter is divided into a section on communication and a section which 

further addresses representational matters. Throughout, it contains examples from 

an observational study in the tactical air-combat domain. 

2.2    Communication 

Communication is used to transfer knowledge and understanding from one person 

to another [105]. Of particular concern is communication between people; between 

people and external representations; and finally between people and computers.1 

2.2.1     Between people 

Establishing good communication and collaboration between people is a complex 

process. One key problem that occurs when people with different backgrounds work 

together is that they need to establish a shared understanding of vocabulary. Such 

terminology will need to be expressible and precise within representations of scenar- 

ios. 

To illustrate the problem of not having shared terminology, we first present dialog 

which comes from the observational study in the tactical air-combat domain. The 

participants can be grouped into pilots and software developers. The pilots were 

initiating the software developers in their domain at the request of the software 

developers. The software developers wished to ascertain the scope of the knowledge 

they needed of the application domain in order to develop a prototype simulation 

with which to demonstrate their software agent reasoning technology. 

absent from this discussion is computer to computer communication. 
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The pilot has been asked to explain a long-range mission involving his plane 

and one enemy plane. He was asked to explain concepts from "first principles" 

and to describe his "plans." The dialogue was transcribed from the videotape of 

the meeting and it shows the pilot's attempt to incorporate the software expert's 

request for plans. 

Pilot: Your plan is... say for this intercept you want thirty degrees of target 

aspect when you fire the missile. You want to, at twelve and a half miles be on your 

reciprocal heading. You want to turn hard into the target at forty degrees. If you do 

that and you set yourself up at thirty thousand feet then you 11 just turn hard, hard 

into it at forty degrees and then all of the things that change, the steering dots, the 

things that you're using to shoot a missile. 

The software experts request for "plans" was rather unsuccessful, since, to the 

pilots, a plan is a rather abstract term, and, to the software experts, a plan has a 

more precise meaning. The pilot might have used this term because the software 

developers and pilots are participating in a process of establishing "shared under- 

standings." In order to develop shared understanding, people elaborate on ideas 

to a point where each participant believes she understands what the others mean 

[17]. Other activities for this process include: pointing to objects, repeating what 

has been said in a different way, and asking questions. If people had appropriate 

automated support for scenarios, they could let other people directly manipulate the 

concepts found in the scenarios, so that they can progress by pointing to concrete 

scenarios of their questions or of alternative situations. 

Abstract software domain terminology is pervasive in the following statement by 

a software developer who is expressing concern for what is being said by the pilot. 

Software developer: It seems to me that part of what we need is a place where 

the descriptions that you 're giving can be factored into sort of reusable components. 

... so that this maneuver is constructed out of these components. So this little thing 

that's different here... we get to reuse all these components but suddenly we've got 

some other component to plug in.   I'm not sure how to get that idea.   It's not all 
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the steps in the plan, that's not what we're decomposing, it's the pieces of knowledge 

that go into determining the steps. 

The software developer is still engaging in activity for shared understanding by 

gesturing to elements of the pilot's description, but uses terminology more natural 

to the software domain. It is a lengthy process to come to shared understandings. 

What is needed is a domain independent shared vocabulary which can serve as a 

more precise basis for communication and automated support. Such a vocabulary 

will need to include, for example, the concrete notions of measurement expressed 

by the pilots, such as "thirty degrees" and "thirty thousand feet." It should help 

people describe temporal and behavioral aspects in a more precise way, such as the 

exact conditions for firing a missile and the steps that follow, such as a 40 degree 

hard turn. 

There is more to the communication and coordination process than establishing 

a shared vocabulary. When people are trying to engage in "win-win" negotiations 

[18, 9], they must also develop rapport. Advice for developing rapport includes such 

things as matching or mirroring other's physiology, vocal tone and tempo, and their 

choice of words [2]. Such behavior is not amenable to automated support. 

After walking away from such a meeting, a participant might believe that she 

understands what the other is saying, but this may be a false sense of shared un- 

derstanding. When it comes time for the action to be taken, or even when one 

returns to discussion in the follow-on meeting, it becomes obvious that not every- 

thing was understood. The details were not clear, forgotten, or never stated. Even 

during meetings, people have a limited capacity to understand and remember the 

others' terminology and knowledge. People need to return to concepts previously 

discussed for clarification. What helps people remember and validate knowledge 

from such meetings are persistent external representations. The next section will 

include a brief description of the external output of the meeting between the pilots 

and software developers; and a detailed examination of the interaction of people and 

external representations. 
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We note that during the meeting the communication process was dynamic, ill- 

structured, and spanned multiple media. Little beyond personal notes was captured 

during the meeting (except for the videotape which was used for this dissertation). 

Towards the end of the meeting, the developers asked the pilot to document via 

electronic mail the mission he presented so that it could be used as a basis for 

software development. That is, they requested the scenario which comprised nearly 

two hours of meeting discussion time. Figure 2.1 contains much of this scenario.2 

The pilot has clearly envisaged the scenario and presented it in an organized 

manner.  Although it misses some details found on the videotape, it does contain 

details not stated explicitly during the meeting. The first part of the text contains 

the initial situation, which includes rich details of the domain, such as the blue 

force (United States military force) - F-14B Tomcat, the missiles it is carrying, 

its radar modes, and its mission.   Some details were omitted because of assumed 

context, an "F-14B Tomcat" is an American plane; and "LRMs" are long-range 

missiles, although the maximum and minimum ranges are given in detail and the 

radar modes are explained in further detail on the videotape. Some notions are not 

explained. For example, the pilot has switched viewpoints in step 2: What was the 

Mig-29 in step 1, is a "bogey" which is later confirmed to be a "bandit" in step 2. 

Such terminology needs to be captured in a manner that is manipulate, so that 

those who need further detail, such as the software developers, can find it.   Such 

problems of detail and explicitness can be ameliorated with an appropriate shared 

external representation and automated tool. 

It has been edited with ellipses to fit on a single page. 
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1 v 1 Air Combat Scenario Discussion, 9/17/92 

Blue force - F-14B Tomcat, 2 AIM-54C LRMs (40 NM max. 

range forward quarter (FQ) and 5 NM min. range FQ, 2 AIM-7M 

MRMs (25 NM max. FQ and 3 NM min FQ ranges), 2 AIM-9M 
SRMs (6 NM max FQ and 2 NM min FQ ranges), 656 rounds 

20mm, chaff tc flares. All radar modes available with full capabil- 

ity. Radar Warning Receiver (RWR) operational but not capable 
of detecting Airborne Intercept (AI) radars illuminating the F-14 

at a range greater than 10 NMs. 

Blue mission: Barrier Combat Air Patrol (CAP) and High 

Value Unit (HVU) CAP, 100 NMs north of USS Boat and 70 NMs 
south of one hostile country shore line. Under E-2C control (the 

HVU). 

Red force- MiG-29 Fulcrum, 2 AA-10C radar LRMs (35 NM 

FQ max and 5 FQ min ranges), 2 AA-10D IR MRMs (10 NM FQ 

max. and 3 NM FQ min ranges), and 4 AA-11 SRMS (6 NMs FQ 
max and 2 NM FQ min ranges). All radar modes available with 

similar RWR performance as the F-14. 

Red mission: Destroy American imperialist aggressor's E- 

2C early warning aircraft, and if necessary, it's fighter protection. 

Under Ground Control Intercept (GCI) site control. 

Scenario: 

1. F-14 in 20 NM racetrack CAP pattern oriented 

north/south with a threat axes 60 degrees wide (from 330 degrees 
to 030 degrees magnetic). Speed 250 knots inbound (north), 400 
knots outbound to maximize independent search capability. E-2 

is in an orbit 50 NMs south of the F-14 CAP station and 50 NMs 
north of the carrier providing high detection probability coverage 
to the shoreline and 50detection probability over land due to ter- 
rain masking. Mig-29 is approaching from over land using terrain 
masking until 90 NMs north of the F-14 and then pops up to 30K' 
to optimize search and acquisition capability and accelerates to 

.9 Indicated Mach Number (IMN). 

2. F-14 and E-2C both detect the bogey as soon as he pops 
up out of masking terrain. F-14 receives a vector for intercept call 
from the E- 2C and confirmation the bogey is a bandit and the 
F-14 has a cleared to fire as per the Rules of Engagement (ROE) 

currently in force. The F-14 goes to collision course with less 
than 20 degrees Target Aspect (TA), accelerates to .9 IMN, and 

begins to climb to 30K' while sanitizing (through radar search) 
the volume of space 40 degrees left and right and over the entire 
altitude band around the bandit's position using the Track While 
Scan (TWS) mode of the radar.  No other targets are detected. 

3. The GCI site passes the F-14 and E-2C positions to the 
MiG. The MiG begins a radar search and acquires the F-14 at 80 
NMs then goes to a single target track radar mode to determine if 

the F-14 is on an intercept vector. The MiG determines the F-14 
is a definite threat and initiates an intercept profile by turning to 
place the F-14 on it's nose to see if the F-14 will react. At this 
point all comm channels are jammed which prevents the F-14 from 
communicating with the E-2 and the MiG from communicating 

with the GCI site. 

4. The F-14 sees the MiG turn 20 degrees to starboard 

(right) at a range of 70 NMs which reduces the TA to 0 degrees. 
The F-14 then turns to place the MiG on his nose. Intercept time 

elapsed is now 1 minute. 

5. The MiG sees the F-14 turn to counter the MiG's aspect 

change turn which verifies the F-14 is on a hot vector for the MiG. 

6. The F-14 switches radar mode at 50 NMs to Pulse 

Doppler Single Target Track (PDSTT), the mode which allows 
the longest range LRM firing Launch Acceptability Region (LAR). 

Elapsed intercept time is now 2 minutes. 

7. The MiG switches to a single target track radar mode at 

45 NMs in anticipation of firing his LRM just inside max range. 

8. The F-14 fires a LRM at 38 NMs and turns 50 degrees 

right (must stay within 65 degree radar antenna limit) to decrease 

relative closure which increases the range between the F-14 and 

MiG at missile intercept. 

9. The MiG observes the F-14 turn and assumes a LRM 
has be launched so initiates a hard 90 degree turn to the right 
to place the F-14 in the beam to defeat the missile, if launched, 

and to deny the F-14 the ability to detect the MiG in a PD radar 
mode. However, this causes the MiG to lose his radar lock and 

information on the F-14 as the turn exceeds the antenna azimuth 

limits of the MiG's radar. After maintaining a beam heading for 

15 seconds the MiG continues the hard right turn (to complete a 

circle) and steadies up on a heading equal to the last bearing of 

the F-14 prior to the MiG performing the 90 degree turn. 

10. The F-14 observes the MiG making a hard turn into 

the beam (90 degree TA) which defeats the LRM ($500K down 
the tubes). To complicate the MiG's intercept task and decrease 

the validity of the MiG's Situational Awareness (SA), the RIO 
calls for a 20 degree nose down descent to an altitude of 10K'. He 

then locks the MiG up in Pulse Single Target Track (PSTT) which 
allows the F-14 to maintain radar lock on the MiG throughout the 
complete turn (PSTT is not affected by aspect as is PDSTT. The 
descent and resulting speed increase serve to move the F-14 out 
of the piece of sky (about 5-7 degrees lower than the last position 
relative to the MiG) the MiG will begin to search given the MiG 
continues the turn and heads back into the F-14 to reinitiate the 
intercept. As the MiG turns back into the F-14 and decreases 
TA to less than 45 degrees the F-14 switches radar mode back to 
PDSTT and fires it's last LRM then makes another F-pole type 
50 degree hard turn to the right to decrease closure and maximize 

relative range at missile intercept. 

11. The MiG commences a search at the F-14's last altitude 

and azimuth but does not detect the F-14 for 10 seconds due to 
the increased volume of space necessary to search since the F-14 
descended and gained speed (the descent increases the elevation 
angle which the antenna must depress to and the speed increase 
from converting altitude to energy increases the closure which 

also increases antenna depression angle as a function of time). As 
soon as the MiG detects the F-14, it turns to put the F-14 on it's 

nose and launches it's LRM. 

14. The F-14 pursues the MiG until the MiG crosses the 

shoreline. The F-14 then breaks away and heads south toward 

CAP station. 

Figure 2.1: Air combat scenario written by a pilot 
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2.2.2    Between people and external representations 

To enable the effective communication over time and space, persistent external rep- 

resentations must be used. These representations should be suitable to the task of 

scenario writing and manipulation between domain and software experts. In fact, 

when the building blocks3 of the representation are sufficiently expressive the rep- 

resentation can aid the sharing of knowledge and elicit the asking of appropriate 

questions. Thus the representation helps to develop a precise record of shared un- 

derstandings. 

External representations play an important role in the social science frameworks 

of Activity Theory and Distributed Cognition [66]. In Activity Theory a key idea 

is the notion of mediation [58]. Nardi states [66], "Artifacts, such as instruments, 

signs, and machines mediate activity, and are created by people to control their own 

behavior. Artifacts carry with them a particular culture and history [58], and are 

persistent structures that stretch across activities through time and space." Scenar- 

ios need to be persistent because they are important for illustrating and explaining 

design decisions. Later, these decisions may change and may need to be traced back 

to the scenario. 

Changing design decisions is a natural part of the process. During design, un- 

planned information from external representations can enter the focus of attention, 

trigger knowledge rules, and modify the designer's plans [36]. Guindon's study of 

systems analysts doing an elevator design task discusses the fact that domain spe- 

cific depictions are an essential element of the external representations used by the 

analysts. Such depictions evoke human understanding and are an important part of 

scenarios in the air-combat domain. 

Another aspect of communication that is important is the relationship between 

internal and external representations. A fundamental tenet of Distributed Cognition 

[28] is that problem solving behavior results from the interaction between external 

3The primitive units used for modeling. 
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and internal (to each individual) representational structures. During the commu- 

nication process, internal or tacit knowledge needs to be externalized as persistent, 

manipulable artifacts. 

There are fundamental discussions in psychology over people's abilities to de- 

scribe tacit knowledge. In The Tacit Dimension, Polanyi states [80]: 

I shall reconsider human knowledge by starting from the fact that we 

can know more than we can tell. This fact seems obvious enough; but it 

is not easy to say exactly what it means. Take an example. We know a 

person's face, and can recognize it among a thousand, indeed among a 

million. Yet we usually cannot tell how we recognize a face we know. So 

most of this knowledge cannot be put into words. But the police have 

recently introduced a method by which we can communicate much of 

this knowledge. They have made a large collection of pictures showing 

a variety of noses, mouths, and other features. From these the witness 

selects the particulars of the face he knows, and the pieces can be put 

together to form a reasonably good likeness of the face. This may suggest 

that we can communicate, after all, our knowledge of a physiognomy, 

provided we are given adequate means for expressing ourselves. But the 

application of the police method does not change the fact that previous 

to it we did know more than we could tell at the time. Moreover, we 

can use the police method only by knowing how to match the features 

we remember with those in the collection, and we cannot tell how we 

do this. This very act of communication displays a knowledge that we 

cannot tell. 

Polyani's example illustrates three requirements towards bringing forth tacit 

knowledge. 

1. The use of depictive external representations. The pictures showing noses, 

mouths and other features are external representations which are suitable for 

the activity. These pictures are variations on the basic building blocks (eyes, 
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a nose, etc..) of human faces. Some aspects of envisaging a domain are 

similar to face recognition by being highly depictive. Since scenarios convey 

behavior and other aspects of domain knowledge, symbolic and descriptive 

aspects of external representations are also important. The need for depiction 

and description will be described further in section 2.3.2. 

2. The use of compositional building blocks. Manipulable, highly expressive lan- 

guages start with a basic set of concepts. People compose them to represent 

and create other concepts. Such building blocks are not only the basis for 

supporting people with an adequate means for representing domain concepts, 

they are fundamental to the development of any automated support for sce- 

nario manipulation. One could not begin to develop a automated tool for 

such a collection of facial features without knowledge of the building blocks. 

A central tenet of this thesis is that scenarios have a common set of building 

blocks. During envisaging one needs to map domain concepts onto building 

blocks, and one needs the ability to compose and decompose such knowledge 

in a manner other people can understand. Building blocks will be further 

discussed in 2.3.4. 

3. The act of actively doing: the witnesses and the police are actively engaged in 

an activity producing shared knowledge. The active and iterative engagement 

in a task by a domain expert is what Schön [90] calls "reflection-in-action." 

To support and evoke human understanding involves actively engaging domain 

and software experts in iterative, collaborative scenario writing. 

Actively engaging in "reflection-in-action" is important to the requirements en- 

visioning process. For example, in modeling the scenario presented in figure 2.1, a 

software expert focuses on the turning behavior of the F-14 in step 8. This example 

is an instance of a software developer leaving a meeting with a superficial under- 

standing of a concept. It also illustrates the value of domain specific depiction for 

evoking tacit knowledge. 

8.     The F-14 fires a LRM at 38 NMs and turns 50 degrees right   (must 
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Figure 2.2: Depiction of situation in which F-pole is performed 

stay within 65 degree radar antenna limit) to decrease relative 

closure which increases the range between the F-14 and MiG at missile 

intercept. 

Note that the domain expert wrote step 8 in a cursory manner by stating that 

the pilot wants to decrease relative closure and increase range. The details of such 

knowledge are left unstated by the pilot. 

In the case study, the software experts were responsible for further understanding 

and verifying the details of such tacit knowledge. The depiction in figure 2.2 illus- 

trates the combat situation. The software expert understood, from the meeting, that 

the F-14 was performing an "F-pole" after firing the missile. One software expert 

thought that F-poles were performed to avoid debris. In drawing the depiction, she 

realizes that this knowledge was incomplete, since the F-pole was being performed 

for long range missiles. By asking additional questions, further reasons became ap- 

parent. What would happen if the MiG were firing at the F-14? The F-pole would 

help the F-14 avoid the MiG's missile range. What would happen if the missile 

misses? The F-pole would help the F-14 quickly turn around and fire. What would 
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happen if there were already enough relative angle? Then further turning would not 

be required. 

After engaging in such questioning, a definite description for an F-pole emerged. 

It is a composite of two simultaneous activities, that is, both a turn and missile 

support. The turn involves improving the fighter's position and velocity relative 

to the opponent and missile support involves making sure that the opponent stays 

within blue's radar volume at all times. 

2.2.3    Between people and automated tools 

To manipulate and analyze a representation, the choice of media is important. Au- 

tomated tools provide added value for manipulating representations. The limits of 

the medium used to capture scenarios impacts further use of the scenarios. Instead 

of losing scenarios in the informal communication process, the goal is to capture 

scenarios in a manner which affords modification, maintenance, and analysis. It is 

generally difficult to modify, maintain, and analyze requirements for complex sys- 

tems and the use of computer-based media is inevitable. 

The air-combat scenarios observed in meetings spanned multiple media. The 

content of the communication was distributed across spoken, written (both text and 

drawings), gestural, as well as computational presentations [102] - all of which are 

perceivable and can be captured on videotape. The problem with videotape as a 

capture medium for scenarios is that it is unwieldy as an organizational structure. 

Techniques for searching and indexing are limited to linear visual search or require 

knowledge-engineered annotation (e.g. hyper-media). Videotape does not capture 

or structure the aspects of scenarios which are important without also capturing the 

meeting noise. For example, one can not easily search the videotape for situations 

in which a plane performs an F-pole or a plane performing an f-pole is discussed. 

Consider using a drawing/text editor (one was used to create figure 2.2). Using 

such a tool we can manipulate text and graphics, but not F-14's or MiG's. At some 

point, the scenario writer will need to manipulate text and graphics to create the 

F-14's depiction, but this can be done in a more precise manner (e.g. the graphics 
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could be specifically associated with the plane). The drawing/text editor doesn't 

support the task of editing F-14's, since the editor's view of the primitive building- 

blocks are structured graphics and characters. That is, the building blocks which 

the tool manipulates are at a different (lower) level of abstraction. Any tool which 

supports scenario writing will need to address such different levels of abstraction. 

2.3    Representational matters 

In developing automated support for a representation of scenarios, five dimensions 

are significant: 1) semantics: How can a representation have flexible semantics to 

support the scenario writers' conceptual intent and still support various domains. 

2) graphical and textual presentation: Scenarios contain both, can one support 

both? 3) degree of structure: Scenarios can be written during ill-structured thought 

processes in order to uncover structure, so how much structure should a scenario 

representation provide? 4) building blocks: How many and what should they be? 

5) and behavior. Scenarios contain behavior. How can it be represented? 

2.3.1     Semantics 

Semantics play an important role in human understanding and in determining au- 

tomated support for a representation. For example, in the tactical air-combat do- 

main, an "F-14B Tomcat" has precise meaning to the pilots in terms of the plane's 

characteristics. This meaning is vastly different to the software experts or to a com- 

putational system in which the formal meaning is only reflected in the encoding to 

the elements of a representation (e.g. as an object with attributes or as a string of 

characters.). 

One basic way to avoid misunderstandings is to define terminology. So, for every 

term used between the domain and software experts there would be a item in the 

dictionary. This is problematic. These people with different backgrounds may not 

know how the terms relate to each other or to the physical world. 
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Consider three ways in which semantics can be embodied in a representation:4 

1. Conceptual categorization is a basic approach with which to convey mean- 

ing. Concepts have meaning when they fit into one category as opposed to 

some other category. Categorization is one of the fundamental mechanisms 

for organizing knowledge. Lakoff [59] describes how categorization is a matter 

of human experience and imagination. Furthermore, he describes how some 

categories are "in the middle of the taxonomic hierarchy" and are learned first 

by children; who work up the hierarchy, generalizing, and down the hierarchy, 

specializing. The following hierarchy illustrates abstract to specific categories: 

object - animal - mammal - dog - beagle - Snoopy. Conceptual categories re- 

quire the representation user to do some work. For example, the user must 

map domain concepts like "F14B Tomcat" onto a category provided by the 

representation, for instance, an "object" or furthermore, as a subcategory of 

another domain concept which has already been categorized. 

2. Analogy or metaphor can be used to associate meaning with concepts. 

Some end-user simulation development environments have been designed and 

developed so people will map domain concepts to the environment's built in 

concepts. For example, Rehearsal World [27] uses a theater metaphor. In the 

case of an "F14B Tomcat" then a plane is a "performer" which moves around 

on a "stage". Another environment, ToonTalk™ [53], uses cartoon character 

analogies. Table 2.1 shows the mapping between ToonTalk's concepts and 

computation abstractions. For example, a pilot would be encoded as a house, 

the control tower as a nest, and birds would be used to transfer messages 

between the pilot and the control tower. 

3. Domain specificity is the final way considered to embody meaning. For ex- 

ample an "F14B Tomcat" would be a concept built into the representation. 

4Not included in this discussion are various mathematical, formal languages due to the sophis- 
tication needed for their use. 
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ToonTalk™ Computational  
city computation 

house agent (or actor or process or object) 

robots (with thought bubbles) methods (or clauses or program fragments) 

contents of thought bubble method preconditions 

actions taught to robot inside thought bubble     method actions 

cubbies tuples (or arrays or vectors or messages) 

loaded trucks agent spawning 

bombs agent termination 

number pads, text pads, pictures constants 

birds channel transmit capabilities 

nest channel receive capabilities 

notebooks program storage 

Table 2.1:  Mapping between ToonTalk™ building blocks and computational ab- 
stractions from Kahn [53]. With the permission of Ken Kahn. © 1994 Ken Kahn 

Thus, the term has meaning to the reader by a-priori definition. This is prob- 

lematic when people have different backgrounds. 

The domain specific approach appears to have the advantage because the user 

of the representation is skipping any mapping, but in the reality of building a tool 

to support such a representation, a mapping has been fixed a-priori and is no longer 

a flexible representation in the face of new knowledge. Domain specificity can also 

be considered to a degree. For example, instead of building in a "F-14 Tomcat" a 

more abstract domain concept like "fighter-plane" might be built in. This would 

introduce the need for mapping, as in the conceptual category approach. If we are 

willing to consider building in fighter-plane, what about the more abstract "plane." 

This alludes to the issue of what and how many concepts are built in. This issue 

will be discussed in section 2.3.4. 

Analogy and metaphor approaches can be used as a very evocative part of the 

design process [62], but consider using them in the representation which one uses for 

making domain concepts precise. The metaphors in Rehearsal World and ToonTalk 

were both designed to let non-programmers (teachers and children, respectively) 

write programs in which objects interact in a simulated microworld. But the use 

of metaphor and analogy can conflict with the application domain. It can fail as a 
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means to achieve precise communication, since built in metaphors rely on concepts 

which can either conflict with the problem domain or provide the communicator 

with an unnatural vocabulary. 

The conceptual categories of a representation have to be easy to understand 

and useful for the task, but still independent of the participants' background and 

experience. To help software experts understand the application domain, domain 

experts have to provide an encoding to the categories of a representation. Dvorak 

and Moher performed a study [24] in which programmers were asked "to design 

object-oriented class hierarchies based on lists of properties similar to those which 

might be extracted from a software project requirements document." They found 

that "Differences in domain experience resulted in qualitative differences in their 

approaches to the problems and substantially impacted inter-subject agreement on 

the structure of the resultant hierarchies." Thus, it is very important for domain 

experts to be involved in the mapping of domain concepts to categories. 

Consider a hybrid approach of definition, categories,- domain-specificity and 

metaphor. The most successful end-user programming environment, the spread- 

sheet, is a hybrid. It has the abstract conceptual categories of sheets with rows and 

columns of textual cells which are related by formulas. It uses these in combination 

to embody a spatial metaphor. The meaning of a particular row and column comes 

from definition. The reason spreadsheets only partially provide semantics from such 

categories is that domain specificity towards financial calculations restricts the rep- 

resentation. 

With respect to avoiding communication problems and providing automated sup- 

port for scenarios, a balance must be achieved between definition, conceptual cate- 

gories, domain independence, and analogy and metaphor. The REBUS representa- 

tion provides a domain-independent conceptual framework based on notions found 

in real-world scenarios, namely objects, units of measurement and types, time, space 

and behavior. We are interested in the framework serving as a basis with which do- 

main concepts are understood by the various scenario readers (including automated 

tools). 
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■p -6 
Figure 2.3: Two depictive interpretations of the sentence, "the tree in front of the 

car. 

2.3.2    Graphical and textual presentation 

Neither graphical nor textual presentations alone can serve as the ideal format for 

scenarios. Any generally useful (i.e. domain/task independent) external representa- 

tion for scenarios must support graphical as well as textual presentations. Wurman 

states [105], "There is some consensus that pictures about concrete objects and 

events are understood more quickly, while words are favored when depth and clarity 

of comprehension are demanded, such as communicating abstract ideas. But this 

isn't enough to decide between the two. A rule that could be applied to informa- 

tion in general just doesn't exist. What has come through in many studies is that 

combinations of pictures and words are more effective than either alone." 

With more than a few objects, depiction in the context of a spatial layout can 

aid precision compared to stating such information textually. A simple illustration 

of this is the natural language statement, "the tree in front of the car." Depictions 

(like the ones in figure 2.3) provide a more precise view of the various valid spatial 

configurations between the tree, car, and viewer. Although text can provide further 

precision in the spatial information, such as the distance between the tree and the 

car (e.g. five meters). 
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In scenarios in which multiple objects are interacting with their environment, 

graphical depiction is common in the external representations of domain knowledge. 

For example, figure 2.4 contains a page in the middle of a tactical air-combat sce- 

nario written by the pilots and shown to the software experts. There are graphical 

depictions of planes and textual descriptions of behaviors. In fact certain conceptual 

categories were frequently depicted, such as planes and spatial regions while others 

were generally conveyed with textual or spoken description. The simultaneous ac- 

tivity depicted in the context of this representation is used to convey behavior, in 

terms of spatial as well as temporal aspects of the domain. 

2.3.3    Degree of structure 

While support for graphical and textual descriptions is important, consider another 

cognitive dimension, the degree of structure or formality in a representation. Sce- 

narios can be used during idea exploration (an ill-structured activity) as well as 

requirements validation (a more well-structured activity). So, an automated tool 

should be supportive of the intertwining of well-structured and ill-structured activ- 

ities. Design involves iteration between well-structured and ill-structured processes 

[93]. To support the process, the scenario representational structure, must support 

different degrees of structure. 

To illustrate different degrees of representational structure, consider four exam- 

ples. First, consider a paint-by-the-numbers kit. This exemplifies a well-structured 

representation. Consider the other extreme, a blank page, as an unstructured rep- 

resentation. Finally, consider two intermediate degrees of representation structure: 

One, a child's coloring book with its scenes and characters already on the page; The 

other a coloring book [106] in which a pattern or doodle exists on the page (see 

figure 2.5). To use the latter, one envisions concepts (like one envisions patterns in 

clouds) and uses markers to bring forth the vision. 

For further motivation to provide support for different degrees of structure, Goel's 

[30] work more formally defines the properties of ill-structured and well-structured 

representations and processes. In the context of ill-structured problem solving (e.g. 
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"Bagdad Taxi Drill" # 9b2b 
Assumptions: 

Enemy fighters taucnh counter fire at 1 & 2 

High Cap   f 
39,000' 

Low Cap 
30,000* 

1,2 

*~+rJ 
5,6 

3.4 

High Cap 
39.000* 

t = 4:45 minutes High Level Task Analysis for GCI Weapons Controller 

25 Direct first element (1 &2) to execute a hard 
180° turn away from the second element (3 & 4) 
26. Direct second element (3 & 4) to launch 
weapons on acquisition of IR target and r< z ran 
27. Direct third element (5 & 6) to turn to intercept 
heading for enemy fighters (approximatey 180° In 
direction of enemy). 
28. Monitor enemy fighters and assess reaction 

Vector Compute heading, velocity, (cGmb/dive) to desired point 
(relative to target projected location) 

Morion Compare actual to planned; recompute if projected result 
exceeds n miles and/or m° and/or t seconds 

Assess: assign a rationale to detected enemy maneuvers that exceed 
N* heading change, M 7sec turn rate, or significant change in speed 

Vector 2nd group: based on timing ans/or spacing from first group 
according to planned tactic 

Command Preplanned Maneuver: Based ontarget range and/or aspect; 
initiate maneuver; direction of turn; final heading; degree of turn; vertical 
maneuver 
Command constant speed 4 g level turn 
Command 'hard' 5 g leyeitum 
Command •weapons launch 

Assess Enemy Response:(to maneuver) evaluate enemey state 
approximately 5-30 seconds after initiation of maneuver; maybe 
trun toward, away, continue on course, or split formation, climb or dive; 
accelerate 

Figure 2.4: One page from a tactic map 
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Figure 2.5: Example ill-structured coloring book. With permission of Karen Zand. 
© 1991 Karen Zand 

graphic and industrial design), Goel's experiments, in which he restricted graphic de- 

signers to well-structured representations, indicate that ill-structured representations 

are needed by designers to facilitate the generation and exploration of alternatives. 

One problem with having just a single level of structure, is that the resulting 

representation is less flexible for various tasks (note that it may be more supportive 

of a particular task). That is, what is well-structured and what is ill-structured 

is highly dependent on what is desired from the problem solving context. For ex- 

ample, to just capture the whiteboard sketches the fighter pilots made, one could 

provide automated support via a drawing program and pen-computer interface. The 

sketch can be stored in a well-structured representation (e.g. a stroke or pixmap) 

which can be further processed towards some forms of character/gesture recogni- 

tion. The representation, via pictures alone, of all the possible spatial and temporal 

configurations of fighter-planes would require millions of different pictures. Without 

the ability to manipulate the level of abstraction, it would take a computationally 

infeasible amount of time to process all the pictures. 

The user-interface of a scenario capture tool will have to support various degrees 

of structure in the scenario writing process. This can be accomplished with direct- 

manipulation graphical interfaces. The goal is to provide a representation which can 
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support several degrees of structure. To some extent, this can be done by supporting 

building blocks and informal annotations. 

2.3.4    Building blocks - neither too few nor too many 

A scenario representation should have neither too few nor too many concepts. Con- 

sider a representation with too few building blocks, for example, Shlaer-Mellor's [92] 

object-oriented representation in which "everything is an object." Objects are the 

means with which to encapsulate behavior. One might consider objects to be a "min- 

imal" set of building blocks, but the single-notion "object" representation system 

lacks rich semantics. The notion of an object is certainly compositional, but there is 

no conceptual framework with which to guide people. There are no distinctions in 

the representation with which to provide much in the way of semantic support for 

the domain or software experts. 

Consider figure 2.6, the list of "things" which Shlaer and Mellor [92] recommend 

system analysts to look for as objects. This set of concepts is much larger than the 

set domain experts might intuitively consider as objects. As long as the modeling 

is non-intuitive to the domain experts, it will be difficult to get the domain experts 

involved. There needs to be enough semantic distinctions in the representation to 

guide the modeling. 

One reason for such a minimal building block is to get a uniform representation 

for computer-based tools. Identifying everything as an object lets such tools support 

manipulation in a uniform manner, but the tools can't do much in terms of semantics. 

The semantics have to be distilled by the analysts when they decide on the objects. 

Objects are still a reasonable building block for a large set of domain concepts, and 

are useful in cases where the domain concept is not directly mapped to any of the 

other building blocks. 

Having a larger set of building-blocks (as opposed to a single one), allows com- 

puters to handle a wider range of distinctions. Although too many building blocks 

may make it difficult to build and maintain a tool which supports these large num- 

bers of building blocks. As long as the building blocks are primitive to a computer, 
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• Tangible objects are abstractions of the actual existence of some thing in the 
physical world. 
> In a juice bottling plant: Pipe, Pump, Valve, Tank 
> In a shipping application: Package, Delivery Vehicle 

• Roles are abstractions of the purpose or assignment of a person, piece of equip- 
ment, or organization. 
> In a university: Student, Instructor, Advisor 
> In a chemical plant: Isolation Valve, Tank Inlet Valve 
> In county government: Taxpayer, Jury Member, Voter 

• Incidents are abstractions of some happening or occurrence. 
> Accident (in a insurance application) 
> Earthquake 
> Election 
> Delivery 

• Interactions are objects that result from associations between other objects. 
> Connection: the meeting of two pipes 
> Contract: an agreement between two parties 
> Intersection: the place where two or more streets meet 

• Specification objects are used to represent rules, standards, or quality criteria 
(as opposed to the tangible object or role that meets these standards). 
> A recipe represents the rules for making a certain quantity of a certain food 
(as opposed to the batch of food prepared according to the recipe). 
> A compound represents the composition of a chemical (but not a particular 
sample of that compound). 

Figure 2.6:   "Objects" from Shlaer and Mellor [92].   Reprinted by permission of 
Prentice-Hall, Inc., Englewood Cliffs,NJ. 
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it is possible to provide more meaningful computer-based assistance and analysis 

than existing CASE tools can provide. For example, consider a CASE tool which 

supports data-flow diagrams. Data-flow diagrams have two building-blocks: nodes 

and edges. Such a tool can only check for consistency at the level of incoming and 

outgoing edges. Primitiveness is the significant feature needed to perform analysis. 

One issue with larger numbers of building blocks is the possibly steeper learning 

curves to learn these blocks. The steepness of these curves depends, in part, on the 

the user's familiarity with the vocabulary and organization of the building blocks. 

This is the issue of domain-specific or domain-independent vocabularies discussed 

earlier. It is also dependent on the availability of good tools for finding and filtering 

the knowledge. Let's consider the Penman [63] and Cyc [35] representations used 

in the context of requirements engineering (which is not their developers' intended 

use). 

Penman uses a large set of linguistic building blocks for organizing linguistic 

knowledge. The ARIES project [52] attempted to use Penman for requirements 

engineering in the domain of air-traffic control. Though many linguists consider it 

to be understandable and usable, the analysts who gained familiarity with Penman 

found its use difficult [50]. A smaller set of initial building blocks might provide more 

flexibility for organizing domain knowledge. 

The use of Penman by linguists represents the case of providing a large domain 

specific vocabulary for use by domain experts. This approach is problematic for 

requirements engineering when it comes to communication between domain experts 

in the same field. Each may understand and use the vocabulary in slightly different 

ways in different contexts. Given a large vocabulary this approach may delay the 

process of uncovering misunderstandings. 

Cyc provides a large number of building blocks. These building blocks are in- 

tended to be domain independent and to embody common sense knowledge about 

the world. The developers of Cyc believe that if they provide a representation with a 

rich set of well organized and layered building blocks then it could be used by others 
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as a shared basis for developing knowledge-based systems. This effort has been un- 

derway for nearly ten years and while they have developed tools to let a knowledge 

engineer find and filter the knowledge, the current learning curve is several weeks. 

This seems too long for those engaged in requirements engineering. 

To make its large representation more manageable, Cyc uses "microtheories" and 

"contexts" to organize and group the various building blocks. The solution provided 

for spatial concepts is thus, 

to use a number of globally inadequate but locally adequate theories of 

space. For example, we are working on (1) simple diagram-like represen- 

tations, (2) computer-aided design-like representations that build solids 

and surfaces out of a small number of primitives, and (3) device-level 

representations that primarily deal with the topology of a device by us- 

ing a number of primitive components and using a small number of ports 

for each primitive and a small number of ways in which two primitives 

can be connected. Although none of these abstractions is sufficient as 

a general approach to representing space, for any given problem, one of 

these (plus a few more that we are developing) is often adequate. These 

various abstractions of space are organized into a hierarchy because some 

are just refinements of others. 

As they later state, there is the problem of determining "when to use which 

context, when a context is insufficient, when we need to enter a new context, and so 

on." 

For REBUS, the small number of spatial concepts is based upon a small set of 

building blocks. These building blocks were derived from the study of scenarios 

which contained map-like sketches and from work in linguistics and cognitive sci- 

ence. REBUS users can group concepts into categories as necessary. This is further 

described in section 4.5. 

Even the "right" number of building blocks requires some training to use. The 

goal is to try to make the set at natural as possible, perhaps enabling people to 

learn the tool in hours or minutes instead of weeks. Also using an appropriate set of 
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building blocks opens the possibility of providing rich automated support for analysis 

of scenarios and of scenario collections. 

2.3.5    Behavioral specification 

Within a large body of computer science, a behavioral specification takes shape in 

abstract representations as data flow (e.g. data-flow diagrams, Petri nets) or con- 

trol flow (e.g. state-transition diagrams, StateCharts). In either case, the formal 

computational system is in a single well defined state at any given time and tran- 

sitions instantaneously change the system from one state to the next (i.e. a Turing 

Machine). In the real world, time has also passed. 

For all but simple behaviors, these abstract representations of behavior are at 

odds with the notions used to describe behavior in a natural, fragmentary manner. 

Specifically, in scenarios, people express behavioral notions which encapsulate partial 

descriptions of state, time, and causality. In addition, people also need to express 

notions with concrete examples while having only partial or fragmentary knowledge 

of the overall behavior. 

The high expressivity of formal languages for behavior still makes them good 

candidates for understanding what fragments of behavior are needed in scenarios for 

expressivity. StateCharts [41, 42] and Petri nets [85] are expressive formal represen- 

tations with which we adopt some ideas for behavior fragments. A fragment that 

is useful from StateCharts is the historical state. Petri Nets have causal notions. 

That is, they support the expression of causal transition firings and they also have 

inhibitor arcs to restrain a firing. The goal is to provide a relatively small set of 

behavioral primitives that have semantics, and are understandable and expressive. 

2.4    Chapter summary 

Since scenarios are a means to facilitate communication between domain and soft- 

ware experts, our objective is to provide suitable tool support for scenarios in this 
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complex communication process. This chapter focuses on explaining the desiderata 

of automated support for scenarios. 

Throughout the chapter, examples are used from an observational study of do- 

main experts (pilots) and software experts involved in the design of intelligent au- 

tomated air-combat agents. These examples are used to convey aspects both of the 

requirements for automated support for scenarios and of the communication that 

takes place between domain and software experts. 

This chapter began with a discussion of three types of communication: between 

people; between people and external representations; and between people and auto- 

mated tools. The central issue in this discussion is achieving shared understanding 

between people and automated tools. Persistent and precise external representations 

are a means to achieve shared understanding. This discussion was a step toward un- 

derstanding the strengths and limitations of external representations and automated 

support. 

The chapter also establishes a set of target desiderata for a scenario representa- 

tion and its automated support: 

• The semantics of the representation should relate to the problem domain, 

without being domain specific. One cannot assume a tool has a-priori domain 

knowledge. 

• The semantics should be understandable to people with different backgrounds. 

People will need some training to use any tool. 

• The representation should support both depiction and description. Some con- 

cepts are best conveyed with depiction, while others require description. 

• The representation needs to be flexible enough to support a range of structure. 

To support the design process the tool will need structured building blocks and 

less structured annotations. 

• The representation should provide a set of building blocks with which domain 

knowledge is modeled. Building blocks are the basis for automated tools. 
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• The representation should have expressive behavioral constructs.   A set of 

expressive notions for describing temporal and causal behavior are needed. 
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Chapter 3 

Scenario Representations 

There are only 5 ways of organizing information: by alphabet, category, 

time, magnitude, and location. Not 500, not 5000, but only 5. And it's 

the beginning place in communication. And in information display. 

- Richard Saul Wurman 1992, p.xxxv 

3.1 Introduction 

It is important to consider the various scenario representations. A number of repre- 

sentations are relevant, but they do not meet all the desiderata described in chapter 

2. This chapter begins by comparing a scenario representation from the air-combat 

domain to a scenario representation from the literature. Then, we present and cri- 

tique the organization and encodings of various scenario representations found in the 

literature. Any automated support for these representations will also be described. 

Finally, we present a section which discusses the boundary between concepts found 

"within" scenarios (the focus of this work) and concepts found "between" scenarios. 

3.2 A comparative 

The concepts which naturally occur in scenarios written by domain experts can be 

compared to what is explicit in the building-blocks of the existing scenario represen- 

tations. The "natural" scenario representations of the pilots contain rich semantic 

43 



detail relative to the representations used in software design. Figure 3.1 contains a 

scenario from the air-combat observational study and figure 3.2 contains the elements 

of object interaction diagrams [49]. The two formats were chosen for comparison 

because they are pictorially similar. 

The air-combat scenario in figure 3.1 was not designed for the software experts. 

In the observational study, it was presented during a meeting to show the commu- 

nication between a pilot and a radar intercept officer (RIO). The diagram contains 

a mixture of parallel activities and interactions between the RIO and the pilot. It 

appears similar to an object interaction diagram, but appearances can be deceiving. 

For example: 

• Notice the units on the left, they are in nautical miles, not time (although, 

this is still a temporal ordering). Spatial language was used to delineate the 

time intervals. 

• In the videotape of the meeting, the pilot explained how this diagram is read, 

bottom to top.1 

• The squiggly line through the long vertical arrow corresponds to the maneu- 

vering for altitude. 

• A third object (a bogey) is referred to by this diagram, but it is not readily 

perceived as important. That is, the bogey doesn't have its own column. 

• Another object (the fighter-plane) and its attributes are left implicit. 

As presented, the details are unclear to software experts or domain novices. Fur- 

ther detail should be represented explicitly. Without background various statements 

are unclear such as "20K'/300-325Kts" which is the plane's altitude and velocity. 

The K' stands for thousand feet and Kts stands for knots (nautical mile per hour). 

Such a diagram is not readily transcribed to an object interaction diagram without 

more collaboration between the software and domain experts. 

1There was quite an audible reaction to this explanation. This seems to indicate that people 
expected to read the diagram top to bottom. 
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Figure 3.2: Elements of interaction diagrams 
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Object interaction diagrams are used in several software engineering methodolo- 

gies, albeit under several names and variations, e.g. event trace diagrams, timing 

diagrams, message sequence charts [16, 49, 10, 32]. Such diagrams contain a tempo- 

ral ordering of interactions (a.k.a stimuli or messages) between objects. As shown 

in figure 3.2, objects are positioned across the top, horizontally. The sequence of 

messages between the objects is read vertically (top to bottom). This sequence, gen- 

erally corresponds to the advancement of time.2 Other layouts (e.g. objects - top to 

bottom and time - left to right) are also used, but what is significant is the building 

blocks. In this notation, the building blocks are objects and messages.3 Another 

explicit concept is the separation between the system and its environment.4 Given 

only such building blocks, the tools for editing interaction diagrams do not meet all 

the desiderata and they do not explicitly support the rich semantic detail found in 

the scenarios written by the domain experts. 

3.3    Survey    of   existing    representations    and 

automated support 

In this section, examples of scenario representations are categorized by their pre- 

vailing visual structure: natural language, domain/task-specific depiction, tabular, 

formal specification languages, and diagrammatic notations. The examples come 

from a variety of sources and were used for different purposes. They illustrate var- 

ious organizations and encodings of scenarios and the use of scenarios in various 

domains. 

3.3.1    Natural language 

Based on the desiderata both text and graphics are needed, but since the building 

blocks are different, this section will focus on text and the next section will focus on 

2The exception, for example, can occur when the descriptive text on the left indicates a loop. 
3A variant, with more building-blocks, is described in section 3.3.5. 
4It's possible that such a separation would make the missing bogey and plane, more explicit. 
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First Jack is on-hook and Jack goes off-hook, 
then Jack gets a dial-tone. 

Next Jack dials Barry, 
then Jack requests a connection to Barry 
and Barry rings 
and Jack hears ring-back. 

Next Barry goes off-hook 
then Jack gets connected to Barry. 

Next Jack goes on-hook 
then Jack gets disconnected from Barry. 

Figure 3.3: Telephony scenario adapted from Kelly and Nonnenman [57] 

graphics in the form of domain specific depiction. Note that they are both inadequate 

as the sole medium of communication and that they need to be supplemented with 

more structured notation. Natural language will be in a scenario representation. It 

is needed to meet the desideratum of support for varying degrees of structure. 

The length of a textual scenario ranges from a couple of sentences to several 

pages. For longer scenarios, display technology imposes some limits on what can be 

seen simultaneously. An example of a natural language scenario from the telephony 

domain appears in figure 3.3. Examples from the air-combat domain are shown in 

chapter 2. From the standpoint of automated support, the building blocks are at 

the character, word, sentence, and paragraph levels. Thus, there are no explicit 

semantic constructs that automated tools can readily exploit (except for natural 

language recognition, which is discussed in this section) and that scenario readers 

can all assume are agreed upon and understood. 

Organization can be used to impose structure on a natural language represen- 

tation, as for example, in the paragraph numbering in the lvl combat scenario of 

figure 2.1. In this case, there is some temporal ordering conveyed by the numeric 

ordering of paragraphs, but the activities are still occurring in parallel. A scenario 

representation, like Karat and Bennett's [55] adds structure to the text that makes 
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Scenario Component Level of Detail 
Name A short label used when referring to a scenario. 
Situation Description Running prose giving a concrete illustration of a 

situation. 
Logical Essentials With respect to the system, information that must 

be supplied in order to achieve the desired result 
within the system. With respect to the user, the 
representations and actions that must be made avail- 
able by the system to the user. Information at this 
level is intended to be implementation-independent, 
what would be needed regardless of methods used to 
achieve the result. 

Generic Steps The sequence of user steps (sometimes ordered) 
that must be performed regardless of implementation 
method. 

Specific Steps A particular design will presume a series of user steps 
with particular devices and with system feedback to 
the user as each step is taken. Error analysis (what 
happens if a user makes a misstep or if information 
needed by the system is missing) can also be consid- 
ered at this level. 

Figure 3.4: Scenario Writing Guide from Karat and Bennett [55]. With the permis- 
sion of Academic Press, Inc. © 1991 Academic Press, Inc. 

up a natural language scenario. They use scenarios to describe user interfaces. In 

this context, they suggest that scenarios should contain the information described in 

figure 3.4. In the Objectory object-oriented method [49], there are natural language 

descriptions5 and object interaction diagrams. The natural language descriptions 

have some structure. They include a name, a brief description, and a description 

of the scenario's basic course and alternative courses. These "courses" as well as 

Objectory's between-scenario relations are described in more detail in section 3.4.1. 

Tools such as text editors and spelling checkers are relatively easy to use and 

they facilitate the manipulation of text. A more automated approach would be to 

use a natural language recognition system, but this approach has its limitations. For 

example, WATSON and KITSS [70, 71] were research projects aimed at providing 

automating tools to specify reactive telephone systems with scenarios (similar to the 

5 called "use cases" 
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one shown in figure 3.3). The recognition system required a-priori domain knowledge, 

but it was believed that this domain knowledge could be built in because the natural 

language used in writing the scripts was constrained enough to make automated 

understanding from telephony domain experts possible. 

This belief turned out to be incorrect for several reasons. While the natural 

language was constrained enough for the syntactic aspects of the English used, the 

semantic aspects were wildly unconstrained. Sentence styles varied from simple and 

action-centered to elliptic, imprecise, inaccurate, subjunctive, and even metaphorical 

[39]. Another problem was that the natural language understanding techniques 

required a highly complete and virtually static built in domain model. Change 

was the rule rather than the exception and there was high overhead in maintaining 

the domain model [39]. Direct capture of natural language was abandoned as the 

approach and replaced by analyst transcription of natural language into a formal 

specification language (see section 3.3.4). 

In REBUS, textual descriptions have structure and are explicit informal elements. 

That is, for example, explicit properties of the REBUS building-blocks include a 

name, a category, and a description. These are fields which are filled in by the 

scenario writer with characters, words, etc. 

3.3.2    Domain specific depiction 

In chapter 2 the need for domain specific depiction was discussed. The Simulacrum 

systems [11] developed at MCC were based on an empirical study of system analysts 

designing an elevator control system from a textual specification. The analysts were 

not domain experts. The study conducted at MCC and reported on in [37, 36, 

38] as well as the storyboard layout of Simulacrum provided some motivation and 

inspiration for this work. Simulacrum explored a number of dimensions for design 

of a scenario acquisition tool: Domain dependence vs domain independence and 

WYSIATI (What you see is all there is) storyboarding. 

The first editor, Simulacrum-1 was a domain independent drawing program 

with storyboard sequencing support.   It suffered from several problems which will 
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Figure 3.5: Simulacrum-2 elevator scenario from Bridgeland [11]. With the permis- 
sion of Plenum Publishing Corp. and David Bridgeland 

arise in any system in which tokens are too low level and have weak semantics. The 

following discussion is based on [11]. 

1. The translation from the conceptual level to the graphic level was both time 

consuming and distracting. The sketch editor was domain independent, so 

objects manipulated by the editor were generic graphic things, such as lines, 

boxes, and lines of text. To make one conceptual change to a sketch, a user 

often had to perform many graphic operations. 

2. The resulting storyboards often lacked conceptual integrity. A given concep- 

tual relationship, for example, the notion that a elevator passenger was bound 

for a given floor, could be drawn in many different ways, and was. With 

support for a more symbolic approach to capturing concepts (instead of just 

graphics), one can at least encourage consistency through re-use of concepts 

across and within scenarios. 
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3. The relationship between the graphics and the intended semantics was not 

self-evident. There was no way to determine exactly what a given state sketch 

meant, except to query the person who had drawn it. This appears to be 

due to the WYSIATI restriction. With this restriction, there is just one level 

of structure with which to convey all the details. For example, the drawing 

of an elevator passenger visually does not expose all its attributes. What is 

clearly visible is just the current spatial relationship. This example can easily 

be handled in REBUS by a passenger object with an attribute, floor-bound-for. 

Simulacrum-2 was built to correct the problems of Simulacrum-1, although 

the domain specific approach in Simulacrum-2 (see Figure 3.5) is not satisfactory. 

The semantics of objects in the lift problem were isolated and encoded, and direct 

manipulation presentations of those objects were built in. This constrained the 

editing, simplified the use, and restricted users to only plausible elevator system 

states. However this required considerable effort on the part of the analyst and 

over-constrained Simulacrum-2 to being a domain specific scenario editor. 

REBUS alleviates the problems of Simulacrum-1 by providing more semantics on 

the low-level building blocks. REBUS does not include enough domain knowledge to 

restrict users to only plausible states (a task for the domain experts to model). An 

advantage of not building in domain concepts is greater flexibility and expressivity, 

while the disadvantage is the overhead required for the users to do the initial domain 

modeling. This modeling would have to be done in any case. REBUS provides a 

bridge to the gap between low level abstractions and domain specific concepts. 

3.3.3    Table representations 

Table based scenario representations (also called scripts), are an organizational varia- 

tion of structured textual scenarios and object interaction diagrams. Some examples 

are shown in figures 3.6, 3.7, 3.8, and 3.9. The temporal order is explicit and read 

top to bottom (no loops). The table's column structure imposes some semantic 

support, namely for objects and their actions or responsibilities.   Thus, there are 
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Agent Action 

Esther Creates new meeting 
Esther Determines that Kenji is an important participant 
Esther Determines that Annie will be presenting 
Esther Determines that Colin is an ordinary participant 
Esther Types meeting description 
Esther Sets date range to be Mon-Fri next week (it's Wednesday p.m. 

now) 
Esther Determines drop-dead date is Friday noon 
Scheduler Sets time-out to be Fri 9am 
Scheduler Sends boilerplate message to Colin requesting constraints 
Scheduler Sends boilerplate message to Kenji requesting constraints and 

preferred location 
Scheduler Sends boilerplate message to Annie requesting constraints and 

equipment requirements 

Figure 3.6:  Script - concrete version from Potts et al.   [82].   With permission of 
IEEE. © 1994 IEEE 

relatively few semantic concepts and there is no support for domain specific depic- 

tion. The tabular format also encourages the use of short, cryptic statements of 

scenario steps. Additional representation structure is needed to prevent confusion 

or misunderstanding of these steps. 

Table based representations can support several degrees of representation struc- 

ture. This is illustrated with figures 3.6 and 3.7. The first contains abstract objects 

and actions, while the latter contains specific and concrete examples. Even though 

table representations can support several degrees of structure, it is difficult to in- 

corporate depictions or other supplementary information into the table. REBUS 

provides support for such depictions and information. 

The basic table notation is not very expressive in terms of behavior. Figure 3.9 

shows a conditional rule notation which was recently added to the tabular notation 

of the Object Behavior Analysis and Design (OBA/D) method. Thus, simple (sin- 

gle object) conditionals can be expressed. In REBUS, more complex rules can be 

expressed. 
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No. Agent Action 
1 Initiator Request meeting of a specific type, with meeting info. 

(e.g. agenda/purpose) and a date range 
2 Scheduler Add default (active/important) participants, etc. 
3 Initiator Determine 3 participants 
4 Initiator Identify 1 presenter as active participant 
5 Initiator Identify initiator's boss as important participant 
6 Initiator Send request for preferences 
7 Scheduler Send appropriate e-mail messages to participants (incl. 

additional requests to boss and presenter) 
8 Ordinary 

participant 
Respond with exclusion and preference set 

Figure 3.7:   Script - abstract version from Potts et al. 
IEEE. © 1994 IEEE 

[82].   With permission of 

Script Name: Modification. 1.example 
Author: Donna 
Version: 1.0 
Precondition: exists(Spreadsheet),displayed(Spreadsheet) 
Postcondition: modified(Spreadsheet) 
Trace: Core Activity-Modification 

Initiator Action Participant Responsibility 
User select Dl Spreadsheet select a cell 
User type text NEW Dl set content to text 
User set text style to bold Dl set text style to bold 
User select A2 Spreadsheet select a cell 
User type text NAME A2 set content to text 

(repeated select and type 
text for example) 

B2,   C2,   D2, 
A3     through 
A10 

User select Row 2 Spreadsheet select a row 

Figure 3.8: OBA/D Script based on Rubin and Goldberg [88]. With the permission 
of the ACM. © 1992 ACM 
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Initiator Action Participant Responsibility 
Customer inserts ATM card ATM accept ATM card 
Customer enters PIN ATM read PIN 
IF "the PIN is valid" 

ATM validates PIN PIN Validator validate PIN 
THEN "permit transaction" 

Customer selects a transaction ATM perform transaction 
ELSE "deny transaction" 

ATM notifies invalid PIN Customer read notification 
ATM returns ATM card Customer takes ATM card 

Figure 3.9: OBA/D Script with conditional rule from Rubin et al. [89]. With the 
permission of ParcPlace Systems, Inc. 

3.3.4    Formal specification languages 

Some formal specification languages have been used for scenarios. For example, 

see figures 3.10 and 3.11. Hall [40] is using his formalization to explore automated 

support for scenario generalization. Benner [6] uses a path expression language to 

provide analysts with a means of scoping and constraining a large formal specifi- 

cation of a system for the purposes of validation. Such languages are behaviorally 

expressive, but they do not meet the other desiderata. 

3.3.5    Diagrammatic notations 

There are two prevalent forms of diagrammatic scenarios: object interaction dia- 

grams and ordered, concrete traces through other types of diagrams or graphs. A 

simple version of an object interaction diagrams was described in section 3.2. 

Figure 3.12 shows the building blocks of a visual design language called VDL [32]. 

VDL is to be used by software experts throughout system development. Thus this 

notation has less resemblance to the real world and more resemblance to systems 

languages. Figure 3.13 shows a scenario in VDL notation. Compared to simple 

object interaction diagrams, this notation adds a creation and destruction notation, 

and iteration and if-then-else constructs. A VDL scenario should be about the size 

of a note-card and it contains a identifying scenario number, a list of authors, a date, 
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SCENARIO PH-i: 

INITIALIZATION-SEQUENCE: 

(initialize!) 

(make-user! ALICE (19)) 

(make-user! BOB (9 3)) 

SCENARIO-BODY: 

(offhook! BOB) 

(press! BOB 1) 

(press! BOB 9) 

(observe= (ringing? ALICE) true) 

GENERALIZED SCENARIO PH-l-G: 

ASSUMING INITIALLY: 

(equal (mode ?userl) idle) 

(equal (mode ?user2) idle) 

(not (equal ?userl ?user2)) 

(equal none (ext->user (list TbuttonO)(ext-map))) 

(equal ?user2 (ext->user (list TbuttonO ?buttonl (ext-map))) 

BODY: 

(offhook! ?userl) 
(press! ?userl TbuttonO) 

(press! ?userl ?buttonl) 

(observe= (ringing? ?user2) true) 

Figure 3.10: Telephony scenarios from Hall [40]. With permission of IEEE. (?) 1993 

IEEE 
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A validation question: 
scenario ensure-trigger-for-set-alarm() 

roles(al:alarm, tl:time) 
:=  [alarm-time(al, tl)]; 

ring-alarm[al = alarm, tl =current-time] 

The revised validation question: 
scenario ensure-trigger-for-set-alarm() 

roles(tlrtime, t2:time,  al:alarm) 
:=  [alarm-time(al, tl)] ; 

(ring-alarm[al = alarm, tl =current-time] + 
[alarm-time(al, t2)]  ==> terminate-ignore) 

Approximation scenarios: 
scenario human-scenario-l() 

roles(al:alarm) 

:=  ([alarm-time(al, "07:00:00")]; 
ack-alarm [al] precondition alarm-ringing(?))* 

scenario clock-scenario() 
: = ( [current-time =  "06:00:00"]; 

[current-time =  "07:00:00"]; 
[current-time =  "08:00:00"])* 

Figure 3.11: Path expression scenarios from Benner [5]. With permission of IEEE. 
© 1993 IEEE 
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a title, a "to do" list, and a grouping descriptor to identify the part of the model or 

architecture (e.g. "content model", "reference model", "content architecture") that 

is addressed by the scenario. 

Interaction diagrams are just one way to organize a diagrammatic scenario. Some 

examples of the other types of diagrams or graphs are shown in figures 3.14, 3.15, 

and 3.16. Figure 3.16 shows that the building blocks of object's and messages can be 

organized in different ways. In the figure, the Booch object message diagram and the 

interaction diagram model the same scenario. The scenario begins with an object 

labeled "aFOO." A F00 is a "Forward Observation Officer", so in object-oriented 

parlance aFOO is an instance of FOO. The first thing aFoo does is to "l:create()" an 

object labeled "a Fire Mission Task." The Booch Method notation [10] affords the 

presentation of structural relationships (The "has" relationship is shown by the solid 

boxes on the line connecting the two objects) in the same diagram as the scenario. 

Graph representations have a small set of simple primitives and can be manip- 

ulated with automated tools. For example, users would modify requirements by 

adding or deleting nodes and edges in the scenario. One problem is that the adding 

of a node such as "on-hook and calls forwarded" needs to occur eleven times in 

their example. Describing a scenario in which the phone rings four times and is 

then forwarded to a receptionist requires several more nodes and edges. Graph 

representations either have one level of structure or have nested structuring. This 

nested structuring is primarily useful for encouraging abstraction and supporting a 

top-down, structured process. We aim to support scenario writers during a more 

ill-structured process, so this is at odds with the top-down structured process. Thus, 

it does not meet the desiderata. 

3.4    Multi-scenario notations 

So far, the discussion has been focused on the content im'f/un-scenarios. As intro- 

duced in section 1.5, there are also ktoeen-scenario properties and relations. I will 

briefly describe between-scenario support because much of the automated support 
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Visual Design Language Symbols 

^^   ^^   ^z^   = ̂ . 

Object Container        Category Attribute 

Object Container Class Attribute 

£Zf 
Abstraction    Responsibility     Scenario 

(a) Elements 

 / \ .      

V=7^ 
Time Sequence Selection Iteration 

(If-Then/Switch-Case) 

(b) Control Flow 

Collaboration Creation     Destruction 

Membership      Containment      Part/Whole 

Implements Replaces Same As 

(c) Relationships 

Figure 3.12: Visual design language (VDL) from Goldstein and Alger [32].a 

"DEVELOPING OBJECT-ORIENTED SOFTWARE FOR THE MACINTOSH: ANALY- 
SIS, DESIGN AND PROGRAMMING (pp. 137; 158), ©1992 by Neal Goldstein & Jeff 
Alger. Reprinted by permission of Addison-Wesley Publishing Company, Inc. 
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Scenario #: 76 
Authors: JVA,NLC 
mm 

/ 
Pay Employ«» 

Content Model 

Compute Pay     Print Check 

\     \ 
StorePata      Print / 

Paycheck Creation and Printing 

To Do: 
- Detailed scenarios for all responsibilities 
- Destruction of paycheck objects 

Figure 3.13: VDL payroll scenario from Goldstein and Alger [32]. 

needed to manipulate and organize scenarios and thus facilitate scalability, is also 

needed to support traditional software development artifacts. 

3.4.1     ftefaueeri-scenario support 

In order to support communication, scenarios should also be viewed within a larger 

context. Depending on the project, the number of scenarios can grow quite large. 

Scenarios will need to be grouped, archived, organized, composed, and decomposed 

(see figure 3.17). 

Objectory [49] contains one possible set of relations over "use cases".6 A use 

case refers to a complete course of events described in natural language between an 

actor and the system. For every complete course of events initiated by an actor, one 

use case is identified. The use case is normally divided into one basic course, which 

is the most important sequence of events, and several alternative courses which are 

variants of the basic course or errors that can occur. 

6Jacobson et al. define a scenario as an instance (in the object-oriented sense of the word) of a 
use case. To clarify, the definition of scenario presented in chapter 1 encompasses both use cases 
and Jacobson's definition of a scenario. 
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CONTRACT 1 CLIENT 
2 

SET 

} 

3 

RENTAL  | 

' 
4 

VEHICLE 

A contract is prepared for a client: 1 
Requested rented cars are grouped by client: 2,3 
A rental plan is established for a specific vehicle: 4 
A vehicle model is chosen: 5 
Selected model is a two-door manual car: 6 

Figure 3.14:  Better object notation (BON) scenario based on Nerson [69].   With 
permission of ACM. © 1992 ACM 
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<S> < Phone Idle > 

I OffJH Pick up phone 

<Dial Tone> 

On_H/ \   Not9 Dial 5 

<S>        <lnternal Call> 

On_H/     \   digit Dial 1 

< Phone Idle > <Third> 
On_H/      \ digit D/a/5 

<S>, „ <Fourth> 
< Phone Idle > /    \ 

On H/       \digit Dial 6 

<Ph<ÖSn>eldle>      <validating> 
_    ,,        ^--^/        „   \^---.   error_message 
On_H^-^/Ring    Bus^S^^^-» 

<S^^    <Connecting> <Tryagain>     ^>onnected> 

< Phone Idle > on H/  \^„       ■■ I «   u      <ulsconnecxea> 

un M/     \Callee_pickup    I On_H 0n H 

A \ T   Onhook 1     ~ 
_ <S> <Connected>       <S> 1^ 

< Phone Idle >njy ^T^     <pho„eldle>      <PJ}g>/d/e> 

<S>   ,        <Finished> 
< Phone Idle > v 

n. w /      \Callee_OnH 
^/ A, Callee-0n n00k 

<£        <Disconnected> 
< Phone Idle > I On_H 

<S> 
< Phone Idle > 

Figure 3.15: Scenario tree from Hsia et al. [44]. With permission of IEEE © 1994 
IEEE 
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Figure 3.16: Booch object message diagram and corresponding interaction diagram. 
Diagrams courtesy of Captain Tony Marston, Canadian Forces. 
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Different Viewpoints 

Scenario Collections 

1 
Scenarios with a particular concept 
Error scenarios 
Alternatives for the same task 

Scenario Evolution 

O 
r*i*r*r*****''***rrTil 

Scenario Elaboration 

mK 

Scenario Disjunction / Alternative Courses 

Scenario Composition 

Figure 3.17: Between scenario considerations 

64 



Returning item 

I extends 

Item is stuck 

The use case: Item is Stuck is inserted into Returning Item 
when Customer deposits an item that gets stuck in the 
recycling machine. Operator is called and Customer can- 
not turn in more items until Operator informs him that 
the machine can be used again. 

<£ Print \ 

uses ,»* '♦. uses 

An abstract use case Print has been identi- 
fied to describe common parts between 
two other use cases. 

Returning item      Generate daily report 

^ use 

<^AICIJQ5^> 

A concrete use case uses two abstract use cases 
and decides explicitly how the interleaving is 
to take place. 

Figure 3.18:  Objectory - extends and uses relations [49].   With the permission of 
ACM. © 1992 ACM 
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The extend and uses relations are used to structure and relate use case descrip- 

tions (see figure 3.18). These can be viewed simply as textual inclusion mechanisms. 

The "uses" relation is used to reduce the maintenance on large sections of text that 

are used in two or more "concrete" use cases. Thus the "used" use case tends to be 

abstract, and doesn't have a complete sequence of events initiated by an actor. The 

"extends" relation can be used to simplify the description of a complex sequence of 

events by removing exceptional or additive behavior to an extending use case. Thus 

the "main" use case can be focused on the normal or basic sequence of events. 

Alternative courses7 are used to model related sequences which are part of the 

overall "class" definition for the use case. Depending on the sequence of events or 

other state information, an alternative course may or may not be executed. When 

the use of extends would reduce complexity, alternative courses are candidates for 

the extends relation. However, extends should not be used lightly. There is the 

notion of over extension which leads to a hard to maintain model - intolerant of 

change. 

These relations are weak semantically since, for example, an explicit formalization 

of the behavior between the use cases does not exist. To illustrate this, notice that in 

the Returning Item use case (figure 3.18) the check for Item is Stuck does not merely 

extend Returning Item. The check must always occur. The events which follow from 

item is stuck could have been specified with a strong statement of restraint. That is, 

if the state of the system is "stuck" all customer behavior (relating to progress with 

the recycling machine) is prohibited, at least until the operator informs the customer 

the machine is working. Although further investigation is needed, the between use- 

case causality appears to be similar to the within scenario causal notions in REBUS. 

3.4.2    Views and composite scenarios 

Different users of a scenario capture tool will want their own views on a scenario 

collection. A developer may look for scenarios that contain a particular domain con- 

cept. Designers might organize them in terms of their design rationale, for example 

alternative courses are within a use case. 
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in a graph which shows alternatives that can be taken to solve a problem. Analysts 

might organize them around a topic, such as failure scenarios. A domain expert 

might organize scenarios temporally like the tactic map in figure 7.1. 

Supporting such views is not a central focus in my implementation. Others have 

developed tools to support archiving and the ability to query for a concept is the 

focus of databases. The most interesting form of support is reflected in the fighter- 

plane tactical map shown in figure 7.1. It contains temporal ordering, alternatives, 

disjunction as well as context. The notion of a scenario can be fuzzy in this case, 

i.e. is this figure also a scenario? We will call such things composite scenarios. 

The question of whether a composite scenario is a scenario is one of nomencla- 

ture. The answer can depend on the readers' viewpoint, relative to the level of 

abstraction of system and environment behavior. For example, when all possible 

behavior is described in the composite, then it is no longer a scenario (its not a 

partial description). From the standpoint of simple scenarios, the need for a com- 

posite can be decided by the notable use of disjunction. The use of disjunction in 

scenarios is potentially problematic for the scenario reader because the scenario is 

not as concrete a trace of object interactions. Further investigation into when and 

how to present disjunction when conveying scenarios is needed. 

3.5    Chapter summary 

In this chapter, various within-scenario and between-scenario representations are 

compared and contrasted. This is done along several dimensions. First a "natu- 

ral" scenario written by a pilot was compared with a common software engineering 

scenario representation, the object interaction diagram. Then, various scenario rep- 

resentations (natural language, diagrammatic, table based, etc) are explored for their 

strengths and weaknesses in terms of automated support and uses. Finally, the brief 

description and discussion of between scenario support. A richer set of between 

scenario support is described and also compared to a well known object-oriented 

methodology. 
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Chapter 4 

The REBUS Building Blocks 

Element - any of the four substances earth, air, fire, and water formerly 

believed to compose the physical universe. Webster's Dictionary 

4.1     Introduction 

This chapter defines the REBUS representation. REBUS is designed to satisfy the 

desiderata of chapter 2. REBUS is organized around a conceptual framework and 

building blocks. An overview appears in figure 4.1. The conceptual framework is 

composed of objects, measures and types, spatial elements, temporal elements, and 

behavioral elements. Except for objects, which are also building blocks, the last 

four items on the list are further divided into building blocks.1 For example, spatial 

building blocks include regions, boundaries, and landmarks. In a particular domain, 

like vehicle traffic-control one would map domain concepts like roadway or lane onto 

region. 

Parts of the REBUS representation are based on other work (e.g. linguistics, 

temporal logic, geographic information systems, expert systems, and algorithm an- 

imation). In addition to providing details on the building blocks and conceptual 

framework, each section contains a discussion of the similarities and differences be- 

tween REBUS and other work. 

1Note that throughout the representation, there are only 7±2 notions to choose from [64]. 
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ü Objects (concepts which have behavior) 

o attributes, depictions, formula 

Ü Measures/Types 

o lists, units, named quantities, coordinate systems 

o conversions 

□ Spatial Elements 

o regions, boundaries, landmarks 

o composites 

o spatial relations 

□ Temporal Elements (behavioral sequence/actions) 

o simple paths (single type, order, duration) 

o composite paths 

o temporal relations 

ü Behavioral Elements (causes, conditions, constraints) 

o triggers (stimuli, constructors, destructors) 

o restrainers (inhibitors, prohibitors) 

Figure 4.1: Conceptual framework and building blocks 
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4.2    REBUS notation and terminology 

First, some vocabulary common to the definition and explanation of REBUS. 

4.2.1    Names and categories 

A name is a descriptive sequence of characters. Names are the semantic labels of 

concepts reified in a building block. Acronyms tend not to make good names, but 

can be associated with a name. 

A category is a name under which a concept is grouped or classified. Concepts 

have membership relations with their categories. So, concepts can belong to more 

than one category. The name of a concept is a category as well (e.g. car is-a car; 

WhiteBroncol is-a WhiteBroncol and a car). 

Once a concept is named it is considered useful as a REBUS type. A type is 

the name or category of another building block. Note that type is also used in the 

framework terminology as one of the actual measure/type building blocks, but a 

distinction between the two isn't necessary since the measure/type building blocks 

have names and categories. Each element of the conceptual framework has its own 

set of category graphs, so concepts can be named and categorized according to their 

use without conflicting with other uses. 

4.2.1.1    Discussion 

Naming, categorizing, and describing are intrinsic to interacting with things and 

ideas. Naming has been studied in philosophy, linguistics, and psychology [14] and 

Carroll states [15], "Whatever underlies naming it is purposeful and achieves a rea- 

sonable compromise between competing and independent goals; including brevity, 

descriptiveness, inventiveness, differentiation, and complex social goals regarding 

self-presentation to and assessment of a communication partner." Names, categories, 

and descriptions are a necessary part of communication and modeling. 

Names and categories are invented as needed to distinguish one concept from 

another or to denote their similarity. Sometimes naming mechanisms can be built 
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into an automated tool, for example, spreadsheets. One of the reasons cited for the 

usability of spreadsheets is their built-in naming mechanisms for rows and columns 

(i.e. positive integers and the alphabet). One could provide default names for new 

building-block instances, but in the context of defining new domain knowledge, there 

is little evidence that naming can be done with automated support. In general one 

doesn't want to give non-programmers the task of naming things like variables [67], 

but most concepts already have names. One issue might be that domain novices will 

name and categorize concepts differently than domain experts, but it is important 

to encourage the naming activity in order to clarify one's terminology to others. 

Carroll's instructions to the subjects in his naming experiments applies: 

Don't worry if at first you feel that you cannot distinguish notions like 

"categorizing" and "describing" from naming with absolute certainty. 

Naming implicitly involves categorizing and names are quite typically 

descriptive. However, the three can be distinguished: descriptions in- 

volve statements; they typically comprise clauses or even full sentences. 

Names, on the other hand, are smaller and syntactically simpler. They 

can be only nouns and noun phrases. Thus, "The cup has a chip miss- 

ing." is a description, but "the chipped cup" can be a name for that cup. 

Names are usually very brief, rarely more than a few words long, often 

consisting of only one or two words. 

Categories, like names, are also brief. But a categorization like "cup" 

may not always sufficiently discriminate a to-be-named entity from oth- 

ers, "the cup" could be a good name for a cup, but only in particular 

circumstances (for example, if there is only one cup in the immediate 

environment). A name like "the apple juice cup" is descriptive, and it 

also categorizes, but it is name-like in that it suggests that there is a 

unique cup with the outstanding property of being used mostly for ap- 

ple juice. If you are still quite uncertain about just what we mean by 

naming, discuss this with the experimenter before proceeding with the 

experiment. 
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In any case, when people are asked for a name for something, they tend to be 

able to invent one, albeit the name could be characterized by others as a bad name. 

If the name is bad, it can be changed. Automated support can be provided for 

changing names as well as propagating the changes. 

4.2.2    Annotations 

Annotations are visual or textual notes added to provide further comment or expla- 

nation. They are needed to meet the desiderata of support for a mixture of graphical 

and textual representations and support for varying degrees of structure. 

A description is a textual place to leave comments about a concept. 

A depiction contains domain or task specific graphics visualizing a concept. The 

depiction can be a sketch, a physical view of a real concept (from a scanned photo or 

video clip), a view of the graphical-user interface to a concept, a view of attributes, 

etc. To maintain strong semantics, a depiction or description is either tied to a 

building block or an explicit annotation. 

An attribute is a name, type, value triple. Attributes are a more precise means 

to annotate a concept than descriptions and depictions. One can directly refer to 

the concepts attribute by name. For example, a concept (car) can have a attribute 

with name, color; type, car-color; and value, red. We use dot notation to refer to 

the car's color attribute (i.e. car.color). The attribute notion has more structure for 

the system than just having a description ("The car's color is red") or a depiction 

of a red car. 

Attributes also have a convenient notation for collections. For example, a car 

dealership would have an attribute of type "car (collection)." The attributes value 

field would contain a comma separated list of cars (e.g. mustang57, taurus49) suit- 

able for concepts needed in the scenario. 
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4.2.3    Mathematics 

A formula is a computed function over attribute values. Formulas are analogous to 

spreadsheet formulas. Since there can be any number of mathematical functions in 

a domain, the list is not predetermined, but similar to some spreadsheet packages 

which provide mathematical functionality specific to particular financial domains. 

Mathematical functions include +,-,*,/,... 

A logical formula returns a truth value. The operators are equals (=), less-than 

(<) , greater than (>), less-than or equals (<=), greater than or equals (>=), and 

(V) , or (A), not equal (7^). 

4.2.3.1    Discussion 

The mathematical aspects of domains were not emphasized in the domain expert 

scenarios. Domains with a great deal of mathematics, such as financial analysis 

already have a good deal of support in the form of spreadsheets or MathematicarM. 

Mathematical functions are still part of the domains considered, but they tend to 

play a secondary role in the scenarios. The mathematical libraries provided for use 

in automated tools still need to be easy to use. 

4.3     Objects 

An Object is the REBUS building block used to describe a concept which exhibits 

behavior and encapsulates state. Objects model domain-specific agents or compo- 

nents that have behavior. The differences between a REBUS object and an object 

oriented approach will be explained shortly. 

An object is composed of a name, a category, a description, attributes, formulas, 

and depictions. Each of an object's attributes has a unique name, because it refers 

to a different aspect of the object. An attribute's value field is considered the default 

value. The value field may also contain the name of a temporally ordered sequence 

of values (i.e. a path which will be described in 4.6.3). 

Here are some examples of objects in different domains: 
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Traffic-control domain: Objects include cars, traffic-lights, sensors,... 

Fighter plane domain: A plane, a fighter plane, a missile, a F-14, a enemy plane 

(bogey), a friendly plane,... 

Telephony domain: Telephones(attributes: receiver-status        (on-hook, 

off-hook),... 

REBUS objects are distinct from the object-oriented view of objects: There is 

no explicit abstract procedural interface specification (no list of methods). Objects 

encapsulate their depictions or views. Objects encapsulate formulas or constraints 

between attributes. There are more distinctions in REBUS, so fewer notions map 

to objects. 

4.3.1    Discussion on modeling concepts 

Some people [10, 34] believe that the problem of how objects and classes are obtained 

from the requirements document is the most difficult part of object oriented design. 

While some techniques have emerged, there is no agreed upon formal process for 

identifying objects and classes [24]. In Dvorak and Moher's study [24] of analysts 

constructing class hierarchies based on a specification, they found that differences 

in application domain expertise (not object-oriented design experience) resulted in 

qualitative differences in both process and product. Thus it is important to have 

domain experts involved in this modeling activity. 

With automated support, modeling concepts as objects can be done in an in- 

cremental manner, based on the focus of the scenario. For example, in an initial 

scenario one of the attributes of a car object might be that it is a convertible. In 

considering a different scenario, the object named "convertible" is important, since 

the behavior of an significant attribute that is only valid for convertibles would be 

its top-status (i.e. the list type: top-up, top-down, top-moving). 
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In REBUS, spatial building blocks are used for spatial concepts. A car may 

also have an attribute which is its passenger compartment type. The passenger- 

compartment type is an example of a region building block which I describe in 

section 4.5.1 as a spatial building block. 

4.4    Units of measurement and types 

Weights and measures may be ranked among the necessaries of life 

to every individual of human society. They enter into the economical 

arrangements and daily concerns of every family. They are necessary to 

every occupation of human industry; to the distribution and security of 

every species of property; to every transaction of trade and commerce; 

to the labors of the husbandman; to the ingenuity of the artificer; to 

the studies of the philosopher; to the researches of the antiquarian, to 

the navigation of the mariner, and the marches of the soldier; to all the 

exchanges of peace, and all the operations of war. The knowledge of 

them, as in established use, is among the first elements of education, 

and is often learned by those who learn nothing else, not even to read 

and write. This knowledge is riveted in the memory by the habitual 

application of it to the employments of men throughout life. 

John Quincy Adams in a Report to the Congress, 1821 

In REBUS, there are five building blocks for measures and types: the unit type, 

the list type, a coordinate system, a named value or quantity, and conversions. 

4.4.1    The unit type 

The unit type encapsulates the notions of dimensions (e.g. length, time, and temper- 

ature) and units (e.g. 5 meters, 50 seconds, and 20 degrees Celsius), as well as mass 

nouns (e.g. 3 cars, and 7 jars of peanut butter). The unit type consists of a name, 

a category (dimension), and a shorthand view (a symbol or depiction) which has a 
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display option of right side or left side (e.g. $100, 50m). It also has a description, 

quantity restrictions, and component types. 

Quantity restrictions limit the numeric values of a type, e.g. Real numbers 

between 0 and 1. An accuracy restriction is part of the quantity restriction e.g. 

accurate to two decimal places. 

The unit type is one of the few building blocks where it is useful to provide a 

standard system, the international system of units (SI) [72]. SI contains the following 

7 base units and 2 supplementary units: 

- Length meter (m) 

- Time second (s) 

- Electric Current ampere (A) 

- Luminous Intensity candela (cd) 

- Temperature kelvin (K) 

- Mass kilogram (kg) 

- Amount of substance mole (mol) 

- Plane angle radian (rad) 

- Solid angle steradian (sr) 

All other SI units are derived from the above, e.g.: 

- area square meter (m2) 

- volume cubic meter (m3) 

- frequency hertz (Hz) cycle per second 

- speed meter per second (m/s) 

- acceleration meter per second per second (m/s2) 

- electric potential volt (V) 1 V = 1 W/A 

- electric resistance ohm (Ü) 1 Cl = 1 V/A 

- force newton (N) 1 N = lkg*m/s2 
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- pressure pascal (Pa) 1 Pa = 1 N/m2 

- work and energy joule (J) 1 J = 1 N*m 

- power watt (W) 1 W = 1 J/s 

- concentration mole per cubic meter (mol/m3) 

Other units are still expressible and the ability to add other units is needed. For 

example, the pilots use nautical miles as their unit of length. 

4.4.2    List type 

The list type is composed of a name, a category, a description, a optional comparison 

descriptor, and elements. Elements have names and descriptions. Elements can be 

made of named quantities which represent a value or range of values in a unit type 

or coordinate system. A comparison descriptor, if used, indicates that there is a 

total ordering between elements (e.g. short < medium < long). Currently, there 

doesn't appear to be a need for partial orders between elements. 

Examples of list types: 

telephony domain: name:   Telephone-Receiver states, elements:   on-hook, off- 
hook. 

traffic domain: name: Traffic-Light colors, elements: red, amber, green. 

fighter plane domain: name: Missile ranges, elements: short < medium < long. 

The ability to create list types is important since they are domain-specific and 

more intuitive when precise values are not required. A problem with qualitative 

description is that mappings can mean different things in different situations within 

the same application domain. This can occur both by type (e.g. large could imply 

weight greater than 50,000 lbs, height greater than 20 meters, or fluid volume more 

than 8 oz.'s) or by value (e.g. large > 50,000 lbs and later on large > 5 lbs). This 

makes it important to examine list types across scenarios. Such examination may be 

unnecessary in acquiring individual scenarios, but becomes important if one wants 

to combine scenarios and to further clarify the situation. 
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4.4.3    Coordinate system 

Coordinate systems are composed of a name, a category, a description, and one or 

more axes. An axis is similar to an attribute, but composed of a name, a type, and 

a description (instead of a value). An axis's ordering is imposed from its type. A 

specific point in a coordinate system is a list of values corresponding to each axis. 

Examples of coordinate systems: 

name: Cartesian coordinates axes name x type 0..1, name y type 0..1, name z type 
0..1. 

name: Color in RGB axes name Red value type red-value, name Green value, Blue 
value 

name: Date axes Month, Day, Year. 

Examples of points: 

(January, 1, 1993), (0.3,0.2,1.0),... 

Coordinate systems also need support for multiple textual presentation formats 

or depictions. For example, dates and times can be printed in several different ways, 

depending on prevailing custom. Of course, the different formats might be modeled 

as explicit categories. 

4.4.4 Named quantities 

A named quantity is composed of a name, value, type, category, and description, 

for example, Noon, Midnight, PI, BIGNUM, Origin (of screen coordinate system). 

One can even define terminology such as now where now is the smallest unit of time 

considered important (i.e. 1 second, 2 hours). 

4.4.5 Conversions 

While conversions are not apparent in the representations of scenarios, they are 

implicit. Conversions are important for understanding a domain and conversions 

should be explicitly acquired. The description of a conversion consists of a "From" 

type, a "To" type, a function, and a description. 
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Figure 4.2: KRSL hierarchy of noun measurement types 

4.4.6    Discussion of units and types 

Units of measurement need to be explicitly supported as first class REBUS building 

blocks. They are very common in the natural scenario representations and they 

are also representative of knowledge which is not present when reading the existing 

software. In fact, in the intelligent forces project the units of measurement used for 

the fighter planes in a simulator developed at another site had to be re-discovered 

locally. 

4.4.6.1    Other work on measurements/types 

Other efforts at supporting units of measurement/types have produced or used rather 

complex vocabulary and highly detailed mathematical schemas. I will briefly de- 

scribe three relevant efforts and compare and contrast them to REBUS. 

The KRSL [48] hierarchy of measurement types is shown in figure 4.2. It is 

broken into qualitative and quantitative branches. The current effort to support 

units of measurement in KRSL is incomplete and it is not clear when this effort will 

be completed. 
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The Ontolingua knowledge sharing effort has defined "theories" of physical- 

quantities and standard-units [73, 74]. The authors developed an abstract schema 

which formalizes abstract properties at the expense of ease of understanding. For 

example, "Identity-dimension is the dimension of the so-called dimension-less quan- 

tities, including the real numbers." In REBUS, real numbers would be defined as 

a unit type and the notion of a dimension is captured as a category. Another ex- 

ample of the difference between REBUS and Ontolingua is the explicit notion of 

named quantities found in REBUS. Ontolingua organizes named quantities as sub- 

classes of physical-quantities. For example, "zero-quantity" is a defined subclass of 

physical-quantity. In REBUS it would be directly captured as a named quantity. 

Iscoe [47], in his thesis, provided similar measurement/types for domain model- 

ing. In fact he devoted an entire chapter to the subject which maps down to the 

level of detail required to execute and validate type conversions. Iscoe's domains 

were transaction oriented business application domains and his schema is divided 

into scales (from mathematical measurement theory), units, quantities (fundamental 

and derived), granularity (from the physical sciences), population parameters (from 

statistics), and value set transitions. The REBUS list type corresponds to Iscoe's 

nominal and ordinal scales. The REBUS unit type roughly encapsulates interval 

and ratio scales combined with quantities and granularity. Population parameters 

which describe the distribution of values within a value set are currently not part 

of REBUS. Iscoe's work does not have the explicit named quantity or coordinate 

system notions. 

4.5     Spatial elements 

Landau and Jackendoff [60] present a fairly comprehensive account on spatial lan- 

guage. Although there is not a unified theory of spatial representation, they state: 

Understanding our representations of space requires invoking mental el- 

ements corresponding to places and paths, where places are generally 

understood as regions often occupied by landmarks or reference objects. 
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Objects (including oneself) are then located in these places. Paths are 

the routes along which one travels to get from place to place. These 

elements are likely to be critical in any complete theory of spatial repre- 

sentation. 

Spatial representations are common in the pilot's scenarios, the spatial building 

blocks of REBUS are based on the concepts of maps. The primitive spatial concepts 

are: regions, boundaries, and landmarks [7].2 For Landau and Jackendoff, bound- 

aries are implicit in the notion of a region. Boundaries need to be used explicitly 

in order to formalize concepts like boundary crossings as critical components of the 

scenario. While the concept of a path is common in spatial language, in the REBUS 

vocabulary we consider it a temporal notion and describe it in section 4.6.3. 

Maps used for scenarios are more sketch-like than those of cartographers (e.g. 

typical auto-club road maps), but they can still convey the spatial relationships 

between objects and their environment. In fact, for some" domains, such as vehi- 

cle traffic control, spatial concepts are the significant elements of the environment 

considered in the design. Regions are the only primitive with spatial extent. This 

means that they are useful for representing containment. So, regions are the most 

common form of spatial concept. Other non-minimal variations on the spatial con- 

cepts include: composite region, point in region, and point on boundary. All of 

the spatial concepts reflect the elements which people refer to when gesturing or 

describing spatial concepts in front of whiteboards. 

4.5.1    Regions, boundaries, landmarks 

The region, boundary, and landmark building blocks are syntactically the same. 

They are composed of a name, a category, a description, a depiction, and an attribute 

list. They are semantically disjoint. 

2The terminology used in [7] is areas, lines, and points. 
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4.5.2 Spatial composite 

The spatial composite building block is included to support encapsulation of spa- 

tial concepts. A spatial composite has a name, a category, a description, a list of 

components, and a list of spatial relations (see 4.5.4) between components. For 

example, an intersection is composed of roadways, and roadways are composed of 

lanes. Intersections have boundaries such as center dividers. 

4.5.3 Examples 

Telephony domain: customer office, customer house, central office, telephone- 

pole, switching station,... 

Traffic-control domain: Lanes, roads, left-turn lanes, intersections, approaching, 

in, and leaving regions, upstream,... 

Fighter-plane domain: Land, sea, threat sector, shoreline,... 

4.5.4 Spatial relations 

Landau and Jackendoff [60] state "In addition to prepositions, there are many verbs 

that incorporate spatial relations; these can (almost invariably) be paraphrased by a 

simpler verb plus a preposition. For example, enter can be paraphrased by go into, 

approach by go toward, and cross by go across. Thus, the key element in the English 

expression of place is the preposition." They present table 4.1 as a fairly complete 

list of English prepositions. 

The spatial relations and prepositions are highly context dependent and provid- 

ing extremely precise notions is more difficult since one cannot assume that people 

with differing levels of spatial ability will be able to understand and use them [33]. 

One must still provide spatial prepositions since it is an area where visual depiction 

helps resolve communication issues. More precise solutions involve the use of coor- 

dinate systems, though supporting prepositions can delay that design decision. For 

example, depending on the frame of reference, there are three interpretations for the 

phrase, "The ball in front of the car" [86]. The intended frame of reference might 
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about between outside 
above betwixt over 
across beyond past 
after by through 
against down throughout 
along from to 
alongside in toward 
amid(st) inside under 
among(st) into underneath 
around near up 
at nearby upon 
atop off via 
behind on with 
below onto within 
beneath opposite without 
beside out 

Compounds 
far from on top of 
in back of to the left of 
in between to the right of 
in front of to the side of 
in line with 

Intransitive prepositions 
afterwards(s) forward right 
apart here sideways 
away- inward south 
back left there 
backward N-ward (e.g., together 
downstairs homeward) upstairs 
downward north upward 
east outward west 

Non-spatial prepositions 
ago for 
as like 
because of of 
before since 
despite until 
during 

Table 4.1:  Prepositions of English from [60].   Reprinted with permission of Cam- 
bridge University Press, (c) 1993 Cambridge University Press. 
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be the direction of the car, the direction the car is moving, or some outside observer 

perspective [86]. Each interpretation has a unique visual depiction. For many exist- 

ing systems (especially 2-D graphical user-interfaces) the notion of bounding boxes 

is used for making spatial prepositions more explicit. Figure 4.3 contains the explicit 

REBUS spatial relations. 

These relations have been organized into subsets based on the details needed 

to describe them. For example, a common way to consider spatial relationships 

between two concepts is by the alignment of their bounding boxes. To describe the 

relationship the names of the concepts as well as their offsets are needed. Since 

spatial concepts can have spatial attributes, relations between those attributes can 

be expressed with the logical relations: equals, less-than, greater-than, etc. 

• 

4.5.5    Discussion 

Map concepts are also useful as the primitives for network depictions (i.e. nodes are 

regions and edges are boundaries). To talk about the spatial extent of an object, one 

can associate a region as an attribute of the object. If there is a question as to usage 

of an object or spatial building block to represent a domain concept, the decision 

should be made local to the concepts usage in the particular scenario. Context and 

behavior are the two distinctions to look for. 

For the contextual distinction, Landau and Jackendoff state, "the standard lin- 

guistic representation of an object's place requires three elements: the object to be 

located (or figure), the reference object (called ground by Talmy), and their rela- 

tionship. In the canonical English expression of an object's location, the figure and 

reference objects are encoded as noun phrases; the relationship is encoded as a spa- 

tial preposition that, with the reference object, defines a region in which the figure 

object is located. For example, in the sentence, "The cat is sitting on the mat," 

the figure (the cat) is located in the region described by the prepositional phrase on 

the mat. The region is in turn described by the reference object (the mat) and the 

spatial relation on, roughly, "contact with the surface of the reference object." For 
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Figure 4.3: REBUS's spatial relations 
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the cat on mat situation, mat is a region since it merely serves as spatial context for 

the cat. 

For the behavioral distinction, one relies on the notion that spatial concepts 

do not have behavior. This means that spatial concepts that have attributes that 

change over time should be modeled as objects. In the specification of a trigger or 

restrainer, one can still refer to objects contained in a region by including the region 

in the description. 

Only some subsets of spatial relations can be recognized algorithmically. Douglas 

and Novick [23] describe an algorithm for determining a small set of relations (i.e. 

right of, left of, above, below, and between) from a picture, but the meaning of the 

use of the prepositions could become specific to a particular scenario or domain. 

What is occurring in the real world is that instead of natural language, coordinate 

systems (such as the global positioning system GPS) are being standardized to aid 

in pinpointing locations (to some degree of accuracy, e.g. 500 ft). Rimmer [87] 

provides a survey of qualitative spatial reasoning. 

The set of spatial building blocks in REBUS is small compared to the Spatial 

Data Transfer Standard (SDTS) [103]. The SDTS currently has 200 entity types. 

Examples of these entity types include: airport, antenna, road, wall, beach, park. 

4.6    Temporal elements 

This section describes the temporal elements of REBUS. It begins with a definition 

of a duration specification, which is an encapsulation of duration information. Then, 

the set of temporal relations are described. Next, the basic temporal building block, 

a simple path, is defined. Paths provide an explicit means to describe temporal 

concepts. Paths have duration specifications and can be composed via temporal 

relations. These composite paths are also defined. We conclude with a discussion of 

paths: how they are used and how they relate to other work. 
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4.6.1 Duration specification 

A duration specification is a template (not a building block)3 consisting of a min- 

imum duration, maximum duration, minimum begin, maximum begin, minimum 

end, and maximum end. Duration specifications are associated with a scenario, a 

path, or a path point (these terms will be defined shortly). 

Generally the fields are filled in with temporal dimensions such as 1 Hour or 

named quantities such as Noon-Today or Now. Sometimes temporal durations are 

specified with other units of measurement or spatial concepts. For example, in 

describing a trip from New York to Los Angeles, minimum begin/end might be a 

landmark like the Statue of Liberty and maximum begin/end another landmark like 

the Hollywood Bowl. 

Path points as well as paths (see section 4.6.3) can be thought of as 'intervals' 

or 'points' depending on the values in the duration specification. The usage seman- 

tically depends on the level of detail needed for the concept. 

4.6.2 Temporal relations 

Temporal relations are well known. They are specified by Allen's interval algebra 

[1] which provides thirteen relations between intervals (six are inverses). These are 

shown in figure 4.4. Allen's thirteen relations reflect a full characterization of the 

starting and ending of points for the intervals. These intervals are without duration 

specification. For REBUS, the set of relations between end-points is reflected in six 

ordering relations and five logical relations on durations, and a tolerance description 

(See Figure 4.5). One relation can describe, for example, that a combat mission 

finishes before a debriefing meeting starts with a maximum tolerance of eight hours. 

Compared to Allen's list, REBUS uses slightly different vocabulary and depictions 

for readability. Also, Allen's "equals" relation can be composed out of either A and 

B start together and finish together or A and B start together and their durations 

are equal. 

3A duration specification is currently not a building block in REBUS because it is not separate 
from the building blocks which use it as a template. 
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X precedesY (before) 

X preceded-by Y (after) 

X meets Y 

Xmet-byY 

X during Y 

X contains Y 

X finishes Y 

Xfinished-byY 

X overlaps Y 

X overlapped-by Y 

X starts Y 

X started-by Y 

X equals Y 

Figure 4.4: Allen's temporal relations 
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A and B finish togther A and B start together A starts before B starts 

3     1    "'•t- 
A finishes before B finishes B starts before A finishes A finishes before B starts 

Duration Relations 
Duration of A equals the duration of B Dur(A) = Dur(B) 

Duration of A is greater than the duration of B Dur(A) > Dur(B) 
Duration of A is greater than or equal to the duration of B Dur(A) >= Dur(B) 

Duration of A is less than the duration of B Dur(A) < Dur(B) 

Duration of A is less than or equal to the duration of B Dur(A) <= Dur(B) 

Figure 4.5: REBUS's temporal relations 
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Temporal relations can be logically combined, for example A and B start together 

and the duration of A is less than the duration of B. Currently, REBUS does not 

support conditional combinations, such as if A starts before B starts or B starts 

before A starts then A ends before B ends. Sets of temporal relations can be analyzed 

for consistency. (See [8] for research in temporal reasoning.) 

4.6.3    Paths 

Paths enable domain experts to express and encapsulate domain-specific sequences 

of behavior (activities). Simple paths consist of a name, a category, a description, 

an optional elaboration description, a point type, a duration specification, and path 

points. Path points are combinations of values of 'type' and duration specification. 

An elaboration description is a second form of categorization. 

For example, consider a path named 'dial number' and category 'dialed number 

histories.' This path's points are '12138221511' and '18005551212'. This path could 

represent a history of phone numbers dialed. A second path, at a more detailed 

level of abstraction, could be named 'buttons pressed' and category, 'button pressed 

histories'. The paths have different categories. The elaboration-of field denotes a 

relationship between the two path 'types.' 'Buttons pressed' could be an elaboration- 

of 'dial number' and have the single digits of one of the phone numbers as its path 

points. The path, 'dial number' and 'buttons pressed' are composed of points typed 

as 'phone number' and 'button number,' respectively. A phone number is formed 

from a list of button numbers. 

Simple paths are used to express a total ordering on an objects' attribute val- 

ues. This means that in combination the duration specification of path points are 

restricted. Simple paths do not support the expression of temporal order indetermi- 

nacy. This can be conveyed with composite paths. 

4.6.3.1    Composite paths 

Composite paths are used to combine value sequences of multiple types and to specify 

temporal relations between concepts. A composite path has a name, a description, a 

89 



category, an elaboration description, a list of component paths, and a list of temporal 

relations (defining the composition, see figure 4.5). The list of component paths is 

composed of paths which are referred to by their names and types. 

4.6.3.2    Examples 

Elevator domain: Simple path of elevator requests, (Floor 1, Floor 2, Floor 3, 

Floor 2) 

Telephony domain: Simple path of telephone buttons pressed, (1, 3, 1, 0, 8, 2, 

2, 1, 5, 1, 1). This could also be described as a composite path which would 

focus on the fact that different buttons are pressed. 

Fighter-plane domain: A composite path: 1 G turn which combines velocity with 

turning. 

4.6.4    Path discussion 

4.6.4.1 Spatial paths 

Spatial paths can convey spatial movement. If we require a spatial path, the path 

type would correspond to direction and the duration specification corresponds to 

distance. Spatial paths are likely to have a line depiction on whiteboard sketches 

(see figures 2.2,2.4). There is currently no explicit way to convey a curved spatial 

path. Subsequent frames or animation can also be used to convey movement. 

4.6.4.2 Paths in animation 

The term, path, has a history of use in computer animation. This use provided the 

inspiration for the notion of paths in REBUS, since at one time the goal was to 

animate scenarios. The particular work which was influential was Stasko's systems 

Tango and Polka [97, 98]. These systems provide programmers (especially beginning 

programmers) with a simple way to annotate their programs with procedure calls. 

This can support a clean separation of the algorithm and the algorithm animation 
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code. With the focus of supporting animation, a set of predefined path types (e.g. 

fill, scale, move, color) are provided. In this approach, all paths are uniform in that 

they are a sequence of real valued pairs of numbers. The values only have meaning 

when associated with their path type. These typed paths are used as general means 

to change the appearance of a graphical object's depiction. This means that if we 

wish to support scenario animation, one thing we would need to provide is a means 

to map an object's attributes to the predefined path types of Stasko's paths. 

4.6.4.3    Relationship to methods 

In object-oriented design "methods" are associated with objects. In REBUS, paths 

are associated with the concrete orderings of an object's attribute values. Paths do 

not take the place of parameterized procedures like "methods", but if we consider 

some subset of the object's attributes as the parameters to "methods" we can use a 

path to describe the sequence of values passed to the method. That is, for an object, 

car, with an attribute, location, the abstract method might be "move(location)" 

while the simple path, "move", would be of type location and for example, have the 

path point, "garage."4 

Parameterized procedures are the lingua franca of programmers. They are ex- 

plicit and organize behavior from a programming/mathematical standpoint, but they 

are inappropriate for non-programmers and did not occur in the natural scenarios. 

Without procedural notions from programming languages, there is some work 

that must be performed by the analysts to transform paths into methods. This can 

be done within the framework of a software engineering environment like ARIES 

[51]. Paths provide a basis for the traceability of methods. That is, an abstract 

method can be traced to one or more paths. Because paths encapsulate temporal 

information, one can even trace several procedure invocations to a single path. 

4The car could also be modeled with another attribute, action. In this case a composite path 
would have both the "move" action and the "garage" location. 
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4.6.4.4    Path usage 

Paths are used for describing object behavior in scenarios, so the ability to simply 

assign an object a path is needed. This is possible since the path types can be 

modeled as object attribute types. It is also reasonable to want to support paths 

organized in a hierarchy. For example, turns can be further divided into right turns 

and left turns. 

Paths of length one are expected to be common since they are useful for re- 

using single states or events. Paths convey concrete sequences at a single level of 

abstraction over time. We do not assume there is any behavioral rationale or causal 

implication between points on the path and it is reasonable for the duration to be 

under-specified. It is not reasonable for a scenario writer to leave out a significant 

point in the path when expressing a scenario. 

There are two ways to look at the attribute type, namely, continuous and discrete. 

For continuous types, ignoring details at the attribute level is necessary, but they 

still need to appear continuous in the animation. This can be handled with trails 

which are used in a manner closer to the use of paths in Stasko's [97] algorithm 

animation system. Spatial trails can be defined interactively and are useful for 

conveying smooth animation when the model is defined in terms of regions. 

4.7    Behavioral elements 

In REBUS behavioral elements are provided to model causal or conditional rules 

that are communicated in scenarios. There are two semantic formats for these rules: 

Triggers are used to convey the semantic notion of causal activation and restrainers 

convey the semantic notion of causal impedance. In REBUS, behavioral building 

blocks are classified as either triggers or restrainers. More specifically the term 

stimulus is used to define a building block classified as a trigger5 and the terms 

inhibitor and prohibitor are building-blocks classified as restrainers. 

5The rationale for two terms is that REBUS may evolve to have more than one form of trigger 
(e.g. explicit constructor, destructor, and messaging building-blocks). 
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Triggers and restrainers are used to express a conditional or constraining rela- 

tionship between the current state6 (with paths used for historical states) and the 

next state (with paths used for the future states). Note that paths add significant 

semantic expressivity when used in conjunction with triggers and restrainers. 

Before defining the details of the stimulus, inhibitor and prohibitor building 

blocks, there are some common components called "sides." The term "side" reflects 

a partial spatial layout for the components. Thus "left-side" and "right-side" are 

the basic sides. The layout is partial because a prohibitor also has an "until-side." 

These sides are composed of concepts which have attributes (e.g. objects, regions, 

etc.). When located in the context of a trigger or restrainer, a concept has two other 

fields: a count, which reflects quantification and a naming label which can be used 

to distinguish multiple concepts of the same type. 

The count field supports a variety of notions. For example, 'there exists' is 

reflected in a count of 1 or more and 'Does not exist' is a count of 0. Count can be 

built as logical formula. For example, There exists more-than four of an object is 

expressed with count greater than 4. 

The notion of 'For all' is implicit. Anytime a left side is true about the concrete 

world model, the trigger or restrainer conditional has been satisfied for all the unique 

occurrences in the world model. This is because of the execution semantics which is 

described in section 4.7.4.1. 

The concepts (e.g. objects, regions, etc.) in any of the 'sides' of a trigger or 

restrainer have an extra field for local naming. Also, the concept attributes have a 

'significance' flag. Given a concept has many attributes, this flag is used for focus. 

Thus, only when the flag is set is an attribute's value (or path, for objects) considered 

important to the condition. For right sides there is an additional qualifier, namely, 

comes from. This qualifier is useful for stating that the value/path on the right side 

is the result of a copy or formula applied to some attributes' value from another 

side. 

sState is meant to include system and environment state 
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In REBUS paths can be used in the side of triggers and restrainers to represent 

histories and futures. Left and until side conditions for objects can only hold at the 

end of all the attribute paths. Paths on a right side reflect future values. 

4.7.1 Stimulus 

A stimulus has a name, category, description, and two 'sides'. The left-side is the 

triggering situation for the right-side to occur. That is the stimulus left side is the 

triggering condition and the stimulus right side describes the behavior triggered. 

This is temporally formalized as: 

If left-side is true at time t then do right-side at time t + At, At > 0. 

Create and Destroy: In REBUS construction and destruction of domain con- 

cepts are specified as a stimulus. They are handled by setting the count value for 

the object on the left side. If the right side does not have an object on the left side, 

then the object on the right side is created when its count is set to 1 or more. To 

destroy an object the right side and left side contain the same object, but the right 

side has count zero. 

This approach has the limitation that construction and destruction are not ex- 

plicit building blocks of REBUS. The rationale for not making them building blocks 

comes from their absence in the concepts seen in the domain expert's scenarios. Soft- 

ware experts place more importance on such constructs. Automated support could 

be provided for the software experts to filter the stimuli for instances of construction 

and destruction. 

4.7.2 Inhibitor 

A inhibitor has a name, category, description, and two 'sides'. The left side is a 

restraining description for preventing the right side. That is the inhibitor left side 

is the inhibiting condition for the inhibitor right side which describes the behavior 

immediately restrained. This is temporally formalized as: 
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If left-side is true at time t then can't do the right-side at time t. 

4.7.3    Prohibitor 

A prohibitor has a name, category, description, and three 'sides'. The left side causes 

the restraint of the right side until the until-side occurs. That is the prohibitor left 

side is the prohibiting criteria for the prohibitor right side which describes the be- 

havior restrained until the prohibitor until side is true. This is temporally formalized 

as: 

If left-side is true at time t, until-side is true at time t' (t' > t), and 

until-side is false at times p such that t < p < t' then can't do the 

right-side at anytime t" (t < t" < t'). 

Inhibitors and prohibitors convey different meanings. To illustrate this, compare 

statements 1 and 2. 

1. If the gauge's pressure is greater than 50 psi prohibit the valve from opening 

(until the gauge's pressure is not greater than 50 psi). 

2. While the gauge's pressure is greater than 50 psi prohibit the valve from open- 

ing until the operator checks it. 

It would be awkward to state some forms of restraint without both inhibitor and 

prohibitor constructs. This is illustrated by stating the prohibitor as the inhibitor: 

If (the operator has not checked the valve since its gauge's pressure was last greater 

than 50 psi) prohibit the valve from opening. 
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4.7.4    Discussion 

4.7.4.1 Execution semantics 

The basic execution semantics of triggers and restrainers is that they should "fire" 

simultaneously when the condition described by the left side is met. Expert or pro- 

duction systems have the same basic execution semantics [12]. With this execution 

semantics, there is the problem of conflict. That is, what is the correct right side 

behavior when two or more triggers or restrainers have satisfied their left sides and 

their right sides would impose conflicting outcomes. To actually execute a set of rules 

a variety of solutions to this exist, including ordering, heuristics, and most specific 

left side. For REBUS, restrainers have precedence over triggers. For the purposes 

of requirements envisaging, the approach taken is identifying and discussing such 

conflicts with the domain experts. This can be done by discussing and capturing 

scenarios which illustrate the conflict. 

4.7.4.2 Temporal specification 

One issue unique to REBUS triggers and restrainers is temporal specification. That 

is, paths and duration specifications make triggers and restrainers temporally ex- 

pressive. 

There are two ways that duration specifications are associated with triggers and 

restrainers. Both are via paths. First, a duration specification is part of a path's 

associated with an object's attribute fields. These objects are in the 'sides' of a 

trigger or restrainer. Second, triggers and restrainers can be thought of as events 

or activities (by abstracting away from 'side' details) which have duration. When 

consideration of the duration of a trigger (or restrainer) is important the trigger (or 

restrainer) should be modeled (with the same name) as a path or path-point which 

has a explicit duration specification. 

We note that in order to achieve actual execution of triggers and restrainers, 

one will have to decide a-priori a smallest unit of time (At) at which to model 

the execution.   The obvious choice is to base time on the smallest unit provided 
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by the system clock, but different domains have different requirements. It appears 

inappropriate to impose such a choice during requirements envisaging, especially 

since more than one time point can be represented by a path and we believe spatial 

units can also be used to delineate time.7 

4.8 Scenarios 

As defined in chapter 1, scenarios are partial descriptions of system and environment 

behavior. The organization of a scenario in REBUS takes its form from storyboards. 

Each scenario has a name, category, description, duration specification, and one of 

more frames. Each frame has a name, number, description, and depiction area. 

The depiction area contains the concepts, e.g., domain objects, spatial regions, and 

possibly further annotations. 

The objects in the depiction area have an extra field for local naming and their 

attributes can have values or paths associated with them. With these paths, a frame 

can encapsulate more than a single state or time step. 

Frames are related temporally, i.e. they are a temporal ordering.8 Frames are 

also related causally, that is, triggers and restrainers occur between frames.9 

4.9 Chapter summary 

This chapter contains a detailed definition of a central contribution of this thesis: a 

domain-independent, semantically rich, representation for within-scenario concepts. 

It also contains a definition of a scenario, organized as a storyboard, which contains 

the within-scenario concepts. The representation was designed with concern for the 

target characteristics described in chapter 2. Its organization follows the conceptual 

7In order to animate behavior, a smallest unit for the spatial coordinate system must be defined. 
This is a similar decision to that of smallest temporal elements. For raster displays, this amounts 
to the dimensions of the addressable pixels. 

8There is symmetry between frames and simple paths. In viewing ftetoeen-scenario notions, 
abstraction realizes this symmetry i.e. use the scenario name to correspond to a path name, and 
the frame names, to correspond to the paths values. 

9It appears that there can also be triggers and restrainers in Uetoeen-scenarios relations. 

97 



framework of objects, units of measurement and types, spatial elements, temporal 

elements, and behavioral elements. These are further divided into building blocks. 

To use the representation, one maps a concept from the application domain 

onto an appropriate building block. The coverage provided by this representation 

is also considered relative to concepts found in natural language and other relevant 

representations. 

98 



Chapter 5 

An automated tool for scenarios 

5.1    Introduction 

This chapter describes a program, called SCtool, for capturing and manipulating 

scenarios. SCtool is a prototype which demonstrates the feasibility of providing 

scenario writers with suitable automated support. SCtool instantiates the REBUS 

representation as an automated tool with a graphical interface. 

SCtool provides the scenario writer with a collection of editor and catalog di- 

alogs. Each of the REBUS building blocks has its own editor (e.g. an object editor, 

a region editor, a simple path editor, a stimulus editor). To organize the domain 

concepts modeled with REBUS, catalogs are provided for each aspect of the concep- 

tual framework (e.g. an object catalog, a spatial catalog, a triggers and restrainers 

catalog). There is also a scenario editor and a scenario catalog. 
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Graphic Objects 

Drawing tool 

Scenario Capture tool (SCtool) 

Editor dialogs for building blocks 
(e.g. object editor, list/enum editor 
region editor, simple path editor ) 

Catalog dialogs for categories 
(e.g. object catalog, spatial catalog, 

triggers and restrainers catalog ) 

Scenario Editor and Scenario Catalog 

-185 C++ classes, -26,000 LOC 

Scenarios, 
Domain concepts => 
objects, units  

Software development 

Knowledge Based Software 
Engineering Environment 

Figure 5.1: SCtool overview 

Since the goal is to support an iterative, opportunistic and ill-structured process, 

editors and catalogs are available to the scenario writer at any time (i.e. they are non- 

modal). The implementation currently provides one instance of each catalog, but 

multiple editors can be opened as needed to support the viewing and manipulation 

of domain concepts and scenarios. 

An overview of SCtool is shown in Figure 5.1. The figure shows domain and 

software experts collaboratively working with SCtool and a drawing tool. It also 

illustrates the idea that SCtool could someday connect to knowledge based software 

development tools. 

The next section contains implementation information. It is followed by descrip- 

tions of the various dialogs. This description includes details of the prototype's 

usage and "rough edges" as well as discussion of implementation decisions and ra- 

tionale. Throughout this chapter, the figures illustrate SCtool with example domain 

knowledge from the telephony scenarios described in chapter 1. 
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Figure 5.2: The GoDraw graphics editor 

5.2    Implementation information 

SCtool was implemented in the C++ programming language [100]. The follow- 

ing supporting libraries were used: The X Window System libraries [20], the 

OSF/Motif™ Widget set [78], the Wcl Table Widget [96], and the GoPATH [21, 22] 

structured graphics libraries. SCtool has about 185 C++ classes and 26,000 lines 

of code (not including the libraries, but including code generated by a interface 

builder). 

A part of GoPath, the GoDraw editor, was used as a stand alone graphical 

drawing tool (See figure 5.2).  GoDraw was used as a basic drawing program with 
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Figure 5.3: The initial SCtool dialog 

which depictions could be created, manipulated and then imported and exported to 

SCtool. The GoPath library was also used for saving and restoring data to textual 

files in an object-oriented format. 

5.2.1 Initial dialog 

SCtool has an initial dialog which supports the basic functionality of accessing sce- 

narios and exiting the program. As shown in Figure 5.3, SCtool also has a button 

for "Help." While "help" is a standard button in many of the dialogs, it is not an 

implemented feature of the prototype. Thus, the users in the evaluation which will 

be described in chapter 6 must ask for help or guess. Selecting "Scenario Catalog" 

from the initial dialog creates1 the scenario catalog dialog. 

5.2.2 Catalogs 

SCtool has a basic catalog dialog for scenarios as well as for objects, units of mea- 

surement/types, spatial elements, temporal elements, and behavioral elements. Min- 

imally, each catalog provides functionality to browse and retrieve existing concepts. 

To illustrate a catalog dialog, the "Scenario Catalog" appears in figure 5.4.2 The 

figure shows a list of scenarios. The upper portion has a "Catalogs" menu bar item 

(which will be explained shortly). Below that there are four buttons. The first 

updates the catalog's list of entries.3 The next two buttons are used in reference to 

xIf the catalog has already been created, the catalog is raised to the forefront. 
2The telephony concepts presented in the figures are for illustrative purposes, so, for example, 

initially there are no scenarios in the scenario catalog. 
3Currently, there is no database beneath SCtool and the catalog is not notified when new items 

have been created and saved. 
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Figure 5.5: A catalog pulldown menu 
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the toggle buttons next to each scenario in the list. One is the command to open 

all the toggled scenario's. The other is a command to "un-toggle" all the toggled 

items. The last button iconifies the dialog. The lower portion of the catalog dialog 

has an area to selectively create concept editor dialogs. For example, the scenario 

catalog has a button to create a new scenario. 

Throughout SCtool, there is a "Catalogs" menu bar item. This pulldown menu 

is shown in figure 5.5. This menu allows the user to create and then raise catalog 

dialogs to the forefront.4 

Future versions of SCtool should provide more features in terms of catalog sup- 

port. Currently, the list of catalog items is in the order the items were first saved, 

but other orderings or presentations could be provided. As the number of items in 

a catalog gets large, mechanisms to query and retrieve subsets will be needed. Since 

catalogs are also the means with which users create new concepts, facilities to create 

or modify concepts based on existing concepts should also be provided, thus allowing 

the user to easily create specializations and variants. We envision that the scenario 

catalog, in particular, will need to support the various 6e£ween-scenario relations. 

5.2.3     Scenario editor 

The Scenario Editor is shown in figure 5.6 with data based on scenario 3 from chapter 

1. The top part of the dialog allows the scenario writer to name, categorize, and 

textually describe the scenario. The middle section of the dialog is the frame editor. 

Frames can be added or removed as needed. In the current implementation, a newly 

created scenario starts without any frames. Two frames are visible in the figure. 

The lower section of the editor contains buttons for saving changes to the scenario, 

closing the dialog (with the option of saving when modified), as well as restoring the 

scenario from the last saved version. 

technically, in the X window system, this duplicates functionality provided by a window 
manager. 
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Figure 5.7: The "Add from Catalog" pulldown menu 

5.2.3.1    Each frame 

The top part of each frame allows the writer to enter a name, a number and a 

description. Frames contain the details of the concepts participating in the scenario 

as well as annotations. 

To add items to the frame's depictive area one would ideally locate it from a 

catalog, drawing editor, or even another scenario then select, drag and drop a copy 

onto the frame. Currently, only cut and paste is supported for this task. 

Each frame has a menu bar which contains four pulldown menus: Add from 

catalog, Edit, Triggers and Restrainers, and Relations. In figure 5.7, The Add 

from Catalog pulldown is shown. The writer has selected Lewis from the Object 

Catalog by toggle selecting the button in the left most column of the catalog and 

then pressing the button labeled "Paste Tog. Object Catalog." The writer can then 

interactively place the selected object (or objects) in the frame's depiction area. 

Default depictions (e.g. for objects two rounded boxes with the concept's name) are 

provided for the initial paste operation. See figure 5.9. The user can change the 

depiction via the object's popup menu. 

The concepts in a frame's depiction area can be selected and manipulated. Fig- 

ure 5.8 shows a popup menu associated with an object's depiction. The popup 

provides description information about a concept, e.g. its classification in REBUS, 

its name, its category, and its local name (if needed). It also provides access to a 

local values/path editor and a list of depictions. An example of the values/path 

editor is shown in figure 5.10. The attribute value/path editor provides a view of 

the object "Lewis." This editor allows the user to associate specific values or paths 
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Figure 5.10: Editing the attribute values of an object 
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* 

Figure 5.11: Selecting an annotation 

to the attributes of an object. Paths are associated with an object by typing the 

path name (instead of an actual value) into the column labeled "Current Value." 

The figure illustrates that the object "Lewis's phone" is the current value of Lewis's 

office phone. 

Annotation of the frame with structured text or graphics is supported with cut 

and paste operations between the GoDraw editor and the frame via the menubar item 

labeled "Import GoDraw Annotation." These annotations can be shown or hidden. 

Annotations are especially useful for visually highlighting parts of a concept's state. 

5.2.4    Object editor 

The Object Editor is shown in Figure 5.12. Attributes can be added or removed. 

Selecting the Edit Depictions button opens the Object Depiction Editor. The object 

depiction editor lets the writer add and remove views. The graphics in each view 

are created with GoDraw. 

5.2.5    Measurement and types editors 

The units of measurement and types dialogs are shown in figure 5.13 and in the sub- 

sequent figures. The unit type, list/enumeration, named quantity, conversion, and 

coordinate system editors are relatively straightforward implementations of REBUS. 

Each dialog has save and restore functionality. The list /enumeration and coordinate 

system dialogs support the addition and removal of list elements or axes, respectively. 
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Figure 5.12: Object Editor and Object Depiction Editor 
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Figure 5.13: Unit type editor 

110 



List/Enumeration name list/Enumeration Description 

tone status 

Category(s) 

The different tone states which emulate from the phone. 

B» J8 
P Select for enumeration (ordered 1st) 

Add item I     atend      i~T|    \ OK Remove toggled item 

l Save Changes Close |     Restore Help 

Figure 5.14: List type editor 
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Figure 5.15: Named quantity editor 
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Figure 5.16: Conversion editor 
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Figure 5.17: Coordinate system editor 
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Figure 5.18: Region editor 

5.2.6     Spatial concepts editors 

Figure 5.18 shows the region editor. The region editor supports the naming and 

description of a region and the addition and deletion of attributes. Selecting the 

edit depiction button on the dialog brings up a spatial depiction editor. Spatial 

concepts have a single depiction.5 Boundary and landmark editors are similar. 

The spatial composite editor was not completed in the prototype, but it provides 

a dialog of spatial relations. The spatial relations dialog is shown in Figure 5.19. This 

dialog is currently accessible when editing a scenario's frame. The user of this dialog 

selects a spatial relation and then fills in the details of concepts for which the relation 

holds. Each scenario frame's spatial relations editor contains statements about the 

visual relationships that are important to the scenario writer in the frame. So in a 

frame, there may be visible spatial relations that are not considered important to 

the scenario writer. 

5The rationale for only a single depiction is that spatial concepts do not have behavior, so their 
depiction shouldn't change. 
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Figure 5.19: Spatial relations editor 
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5.2.7 Path Editors 

The simple path editor and composite path editor (with its associated temporal 

relations editor) are shown in figures 5.20 and 5.21, respectively. The simple path 

editor allows the user to add and remove path points. Path points are arranged in a 

list which is temporally ordered from top to bottom. In the figure, the path "pick-up 

receiver" is defined by the temporal ordering of points with the values "on-hook" 

and "off-hook". A button is provided to access a dialog for editing the total path 

duration specification. Each path point also has a duration specification. The field 

of the duration specification are located in the rows to the right of the point value 

column. Currently there is no support for checking the consistency of a path. 

The composite path editor allows the user to add and remove paths from a list. 

This list's temporal ordering is defined by the temporal relations defined in the 

temporal relations editor. To use this editor the user selects a temporal relation 

and a template is provided to fill in the details of the corresponding paths. The 

example composite path in figure 5.21 joins two simple paths with the relation that 

one finishes before the other starts, thus picking up the receiver precedes hanging it 

up. This composite path defines the more abstract "Minimal call" temporal ordering 

of simple paths. The relation "A finishes before B starts" is specified by editing the 

dialog as shown in figure 5.22. This dialog is an editor for the temporal relations 

between the elements of a composite path. 

The temporal dialogs illustrate the temporal concepts that can be expressed with 

REBUS, but further user interface work can be done. Currently, complex paths 

(ones with longer sequences of values or many relations) are difficult to visualize 

and manipulate. Alternative visual organizations such as timelines or graphs may 

facilitate the readability of complex paths. 

5.2.8 Triggers and restrainers editors 

The implemented triggers and restrainers dialogs are the stimulus, inhibitor, and 

prohibitor editors. The stimulus editor is shown in figure 5.23 and the inhibitor and 

prohibitor editors are shown in figures 5.24 and 5.25, respectively. The top part of 
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Figure 5.20: Simple path editor 

each dialog has the name, category and description fields and the majority of the 

dialog is used to edit the left, right, or until "sides." 

The sides section is read from left to right. Due to limited screen space, this 

part of the dialog is implemented as a paned window with scrolled areas for the 

components of each "side." Currently, each side has limited functionality. The user 

must add concepts by selecting the location in the side and clicking on OK. This adds 

a template which the user then fills in with the concept's name, count, attributes, 

etc. Thus, the dialog is far from ideal. 

Further work to support the selection of concepts from other locations (such as 

scenarios or catalogs) and place and edit them with the appropriate side specific 

information will be needed. In addition, graphical depiction can be used as a visual 

filter when textual details are consuming too much screen space. 

5.3     Chapter summary 

This chapter shows the prototype implementation of an automated tool for scenario 

capture (SCtool) based on REBUS. This prototype is intended to demonstrate the 
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Figure 5.21: Composite path editor 
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Figure 5.22: Temporal relations editor 
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Figure 5.24: Inhibitor editor 
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Figure 5.25: Prohibitor editor 

feasibility of providing a scenario capture tool which has a forms-based interface, has 

strong semantics, and is domain independent, but still structured around domain 

knowledge. The SCtool graphical user interface is presented and described. 
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Chapter 6 

Evaluation 

Colin Potts [81] suggests that researchers who wish to be taken seriously by practi- 

tioners need to adopt an "industry as laboratory" research methodology. 

6.1    Introduction 

It is important to get feedback on the use of REBUS and its prototype implementa- 

tion, SCtool, in real world situations. While an evaluation of REBUS could utilize 

contrived tasks or controlled situations, valuable things can be learned from a study- 

emphasizing external validity. SCtool was used by people carrying out their own 

tasks. This chapter describes the use of REBUS and SCtool in a real world appli- 

cation domain driven by the needs of a real world knowledge acquisition problem. 

This application domain is the operational control of NASA's Deep Space Net- 

work (DSN). This domain was not among the domains studied while developing 

REBUS, but since it fits the overall characterization of a domain in which objects 

interact with their environment, it is an appropriate setting in which to use REBUS. 

The evaluation presented here is formative in that we are trying to obtain infor- 

mation about the design of the prototype, rather than to measure outcomes such as 

improvements in resulting requirements documents. REBUS and SCtool's strengths 

and weaknesses are evaluated in a real knowledge acquisition meeting, by having 
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someone other than myself use REBUS and SCtool, and by using REBUS and SC- 

tool in a different context of acquiring scenarios when compared to the intelligent 

forces observational study. 

There are several differences in context. In the case of intelligent forces, agents 

were to be developed from scratch and integrated with a graphics simulator also 

under development. For the DSN, operational systems exist and knowledge of the 

existing systems is gathered from various sources for the development of domain and 

task specific simulation capabilities. Also in the videotaped meetings of pilots and 

software experts, some of the software experts were at the early stages of understand- 

ing the domain, while the software experts in DSN have more domain experience 

and the domain experts have more programming experience. 

First, this chapter will briefly describe the DSN application domain. Then further 

details of the requirements acquisition situation, i.e. the participants'1 background 

and training, the preparation prior to the meeting, and the background context and 

scenarios which needed to be collected during the meeting in which SCtool was used. 

This meeting was videotaped to capture the communication between the domain and 

software experts. This chapter also documents and summarizes the data which were 

collected with SCtool. Finally, we present details and analysis of the evaluation 

experience. 

6.2     The application domain 

The following description comes from Hill et al.[43]: 

The Deep Space Network (DSN) is a worldwide network of deep space 

tracking and communications complexes located in Madrid, Spain, Can- 

berra, Australia, and Goldstone, California. Each of these complexes is 

capable of performing multiple missions simultaneously, each of which in- 

volves operating a communications link. A DSN communications link is 

1a.k.a the subjects 
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a collection of devices used to track and communicate with an unpiloted 

spacecraft. 

Currently, most of the tasks requiring the control of a DSN com- 

munications link are performed by human operators on a system called 

the LMC (Link Monitor and Control) system. The Operators are given 

tasks that involve configuring and calibrating the communications equip- 

ment, and then they monitor and control these devices while tracking a 

spacecraft or celestial body. The Operators follow written procedures to 

perform their mission tasks. A procedure specifies a sequence of actions 

to execute, where the actions are usually commands that must be entered 

via the link's monitor-and-control system keyboard. 

Once issued, a command is forwarded to another subsystem, which 

may accept or reject it depending on the state of the subsystem at the 

time that the command is received. The Operator receives a message 

back from the subsystem indicating whether the command was accepted 

or rejected, and in cases where there is no response, a message saying 

that the command "timed out" is sent. These messages do not indicate 

whether the action was successful or what the results of the action were. 

Rather, the Operator has to monitor subsystem displays for indications 

that the action completed successfully and that it had its intended effects. 

It is common for commands to be rejected or for commands to fail due 

to a number of real-world contingencies that arise in the execution of a 

block or procedure. 

For further project context, from 1991-1993 JPL developed a prototype, the 

"Link Monitor and Control Operator Assistant (LMCOA)" to improve Operator 

productivity by automating some of the functions of the LMC. 

Hill et al. state that the LMCOA performs tasks by: (1) selecting a set of blocks 

which contain commands to execute, (2) checking whether a block's preconditions 

have been satisfied, (3) issuing the commands, and (4) subsequently verifying that 

the commands had their intended effects. The Operator interacts with the LMCOA 
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by watching the blocks as they are being executed and pausing or skipping portions 

of the block that need to be modified for some reason. When a block fails, the 

LMCOA lacks the ability to recover on its own. Instead, the Operator is left to 

figure out how to recover from the failure. 

6.3    JPL's need for REBUS/SCtool 

Under development at JPL is a new version of the LMCOA that will include a com- 

ponent, REACT-P. This component will reactively generate new plans in response 

to failures or changes in goals initiated by the Operator. 

JPL's knowledge acquisition problem is in gathering and validating the domain 

knowledge. The domain knowledge needed by REACT-P includes the following: (1) 

the blocks and their actions, (2) the preconditions for each action, (3) the effects 

or postconditions for each action, (4) the goals of each set of blocks, (5) a partial 

order among blocks, and (6) the dependencies among blocks. This knowledge is 

normally only found in an expert's skill base and not recorded in a declarative form. 

Fragments of this information exist in the procedure manuals and operating guides 

for the various devices, but much of it is undocumented and can only be deduced 

from experience interacting with the devices. 

JPL saw REBUS/SCtool to be of potential benefit toward alleviating the knowl- 

edge acquisition problems encountered in developing the knowledge base for REACT- 

P. They surveyed various knowledge acquisition tools and representations. The ex- 

isting tools and representations did not meet their needs so they chose to participate 

in this evaluation of REBUS/SCtool. 

An overview of how JPL viewed REBUS/SCtool can be seen in figure 6.1 taken 

from [43]. In the figure, REBUS is shown to connect to two boxes, labeled "RIDES" 

and "TDN". These components were designed for knowledge acquisition prior to 

JPL's introduction to REBUS/SCtool. SCtool was seen as an additional tool to be 

placed in front of the others since it could be used to express the knowledge needed by 

both components. SCtool was not to take the place of the other components. Many 
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Figure 6.1: REBUS in the context of JPL's tools 
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of the features of these other tools are used to express programming level details (e.g. 

the screen location for an object is expressed as a pair of integers.). The collection 

of components (RIDES/TDN/REACT-P) are analogous to the possible connection 

that SCtool would have with a knowledge-based software engineering environment. 

For example, the box labeled "RIDES" is the RIDES simulation authoring tool 

[65]. Hill et al. state that the RIDES graphical simulation authoring toolkit is 

being used to develop working models of the devices. JPL envisions the domain- 

specific simulations to serve two purposes: (1) to communicate with the subsystem 

engineers about how their system works, and (2) to test experimental prototypes 

for the DSN. RIDES is used to recreate the graphical user-interface to the LMC 

system and to model the devices with objects and attribute-values (represented at 

the detailed programming level, i.e. integers and characters). The simulations built 

in RIDES will be connected to REACT-P to provide a domain specific interface with 

which to evaluate the behavior of REACT-P. The testing of experimental prototypes 

is necessary, since access time to the DSN will be quite costly and extreme safety 

measures must be observed. 

The second box labeled "TDN" is the Temporal Dependency Network (TDN) 

authoring tool. The TDN as a representation plays a significant role in the contexts 

in which REBUS/SCtool were used. Thus, TDNs will next be described in further 

detail. 

6.4    The temporal dependency network (TDN) 

The following details are from [26, 43]. 

For encoding knowledge of the operator's tasks, JPL has developed 

a representation called a Temporal Dependency Network. It is used by 

the system engineers in order to express the basic block structure and 

control flow of the system directives used in operating the DSN LMC 

interface. 
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A TDN is a directed graph that incorporates temporal and behavioral 

knowledge and also provides optional and condition paths through the 

network. The directed graph represents the steps required to perform 

an operation. Precedence relations (step A has to happen before step 

B) are specified by the nodes and arcs of the network. The behavioral 

knowledge identifies system-state dependencies in the form of pre- and 

post- conditions. Temporal knowledge consists of both absolute (e.g. 

Acquire the spacecraft at time 02:30:45) and relative (e.g. Perform step 

Y 5 minutes after step X) temporal constraints. Conditional branches in 

the network are those performed only under certain conditions. These are 

the IF (this condition) THEN (do/don't do that action). Optional paths 

are those which are not essential to the operation, but may, for example, 

provide a higher level of confidence in the data if performed. Each node 

in the TDN is called a block and contains actions to be performed. A 

block also has goals, pre- and postcondition constraints and temporal 

constraints associated with it. 

The TDN is used as a general representation of an operational se- 

quence of tasks. An instance of a TDN is created from the general 

representation and parameterized for the specific track.2 The TDN acts 

as a template for operations, and individual parameters (time, frequency, 

file names) are filled in at execution time to perform operations. 

6.5    The Voyager TDN - specific context for the 

meeting 

In this section we begin to describe the specific context for the knowledge acquisition 

meeting in which REBUS/SCtool was used. During the meeting, the software expert 

was to acquire and verify knowledge from a domain expert about a receiver subsys- 

tem called the telemetry processor (TP13). For background information, TP13 (also 

2 A track is a mission in which is a spacecraft or celestial body is being observed. 
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called arx2) was removed from the DSS-13 receiver in Goldstone, so the operators 

had little experience with it. The TP13 would be needed for the tracking of the 

Voyager Spacecraft, thus the software expert needed to interview the developer of 

the TP13 and the focus was on the Voyager TDN. 

The knowledge of this TDN came from a trip to Goldstone by the software 

expert two days prior to the meeting. The purpose of this trip was to discuss the 

overall mission and to gather the knowledge which was later encoded in an initial 

TDN.3 The TDN played a significant role in the meeting by focusing on candidate 

scenarios (corresponding to TDN blocks) which needed discussion with the TP13 

domain expert.4 

Figure 6.2 contains the TDN which was present in paper form during the meeting. 

The seven starred blocks are ones which were identified as needing discussion with 

a domain expert at the meeting.5 The reason a block, instead of an entire TDN, 

was chosen as the unit of abstraction for mapping a scenario, was that a block 

corresponded to a manageable unit which might be re-used in other missions. Note 

also that the entire TDN contains conditionals and loops and alternative courses 

which also seem closer to between-scenaxio relationships. 

To illustrate the TDN directives, figure 6.3 contains three blocks. The detail of 

the three blocks was entered/modified after the meeting. They are presented here 

for background. The block "Connect M&C to subsystems" has several commands 

to connect to various subsytems (e.g. "arx2@connect" is the command to connect 

to TP13). The block "Set Receiver(s) for Track Configuration" shows several com- 

mands to set attributes of TP13 (e.g. arx2@setvar@arxCarPredPwrl_D@15@Y is 

used to set the Pc/No - predicted carrier power). The block "Acquire Carrier" shows 

a manual action to be performed by the operator. 

3I did not find out about this knowledge acquisition at Goldstone until the morning of the 
evaluation with the domain expert. 

4The task of knowing which scenarios to write or on which to focus is highly dependent on 
domain knowledge and project objectives. 

5The first six were identified by the software expert and the last by the domain expert during 
the meeting. 
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Figure 6.2: The Voyager track TDN - used during the meeting (rotate page) 
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Connect M&C 
to subsystems 

#Block 2 

# 
!SS.CONNECT 
ICOMMAND 
!wx@connect 
uwc34@connect 
sdrQconnect 
ant34@connect 
arx2@connect 
#ifs@connect 
!inspect-SS 
IPRINT.TRACK-FILES 
CONFIGJF.S WITCH- 
LOAD JPO.FILES 
!0 
!NIL 
!NIL 

Set Receiver(s) 
for Track Configuration 

#Block 15 

# 
ICONFIG-RCVR 
[COMMAND 
!arx2@setvar®arxCarPredPwrlJ)@15@Y 
arx2@setvar@arxCarPredFreql_D@269000000@Y 
arx2@setvar@arxCarBWlJ)@0.5@Y 
arx2@setvar@arxCarRatelJD@500@Y 
arx2@setvar@arxCarLoop.S@2@Y 
arx2 @sendvar@arx2 xonfig 
ILOAD-ANT.PREDICTS 
ICHK.TLMJDECODE 
!0 
!NIL 
!NIL 

Acquire 
Carrier 

#Block 20 

# 
!ACQUIRE.CARRIER 
ÜNPUT 
IType 'acquire carrier' at the Receiver; 
!Press<cr> When Finished; 
ISTART .RECORDING 
1ACQUIRE.TLM 
!0 
!NIL 
!NIL 

Figure 6.3: Examples of blocks in Voyager TDN 
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6.6    The room, equipment, and participants 

The meeting room (see figure 6.4) was a lab containing various workstations and 

equipment. SCtool was running on a Sun Workstation in the right corner of the 

room. It was equipped with two monitors and was running XVan, a virtual X 

server. This server made it possible to move SCtool windows between the monitors. 

This extra monitor was thought important given the limited screen space and the 

number of dialog boxes for SCtool's catalogs and editors. Despite this, early in the 

meeting, the 8.5x11 page which contained the Voyager TDN (described in section 

6.2) was placed in front of the second monitor. The second monitor was used later 

in the meeting to move some of the dialogs out of direct focus. Trish stated that she 

didn't have much trouble managing the dialogs. Although, I noticed that SCtool 

needs support for keeping multiple editor dialog's (when open to the same concept) 

consistent.6 This is an area for further implementation work. 

The video camera used to record the meeting was placed high on a tripod, facing 

a workstation two meters away. There were four people present throughout the 

meeting: Trish, Roland, Richard, and Lorna. Trish was in a workstation chair in 

front of the primary monitor. She operated SCtool. Roland was seated to the right of 

Trish. Richard was behind and right of Roland, mostly out of camera view. Finally, 

Lorna was seated behind Trish, also mostly out of camera view. 

The major participants' backgrounds and roles are as follows: 

Trish is the software expert and the scenario writer using SCtool during the meet- 

ing. She holds a B.S. in computer science and has two years of DSN automation 

research support experience. She has done the knowledge acquisition for two 

other tracks (one, called KaAP, was used for practice with REBUS) which she 

encoded in RIDES and the TDN editor. Trish is the developer of the TDN 

editor. Except to arrange the meeting, she has not worked with Roland prior 

to the meeting. 

6This occurred during the training/review meeting, but it did not occur during the meeting 
with the domain expert. 
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Figure 6.4: The meeting room (a lab) 

Roland is the domain expert. He has "Approximately seven years experience work- 

ing with prototype DSN receivers, testing with station equipment, and integra- 

tion and testing with the research station (DSS-13)." He is the lead designer 

and developer of the telemetry processor (TP13). His educational background 

includes a M.S. in Electrical Engineering. He has computer programming ex- 

perience. 

Richard was asked to attend the meeting by Trish. He has worked with Roland 

before, has a M.S. in Computer Science, and six years of development experi- 

ence with the DSN. Richard was free to ask and answer questions during the 

meeting. 

Lorna is the developer of REBUS and SCtool. 

The next section describes the background of the participants with REBUS and 

SCtool. 
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6.7    Training in REBUS and SCtool 

Irish's training in REBUS/SCtool was informal, unguided and use-oriented. It 

seemed best to teach REBUS/SCtool in the course of trying to write scenarios 

(reflection-in-action). Thus, over the course of the case study, learning is occurring 

for both the student and the instructor. Trish was learning to write scenarios and 

to use SCtool and I was learning about the domain as well as about improvements 

which could be made to SCtool. 

Three weeks prior to the meeting, SCtool was installed at JPL and Trish was 

given an informal demonstration. Over the course of a week Trish entered the KaAP 

TDN (about 4 hours of total time, over 3 days). She described 18 blocks of the KaAP 

TDN as scenarios. Also created were 12 objects and 10 units/types (5 list, 5 unit, 1 

coordinate). 

The following week I met with Trish to go over the scenarios and I attempted to 

address any problems. Two SCtool bugs needed to be fixed (both were known to 

randomly occur) and one simple feature was added (Trish requested a pushbutton 

to iconify the catalogs. This was in addition to the iconify button supplied by the 

Motif window manager). This meeting was videotaped and questions and issues 

raised are documented in section 6.12.1. 

Richard and Roland were introduced to REBUS/SCtool during the first 13 min- 

utes of the meeting. They were presented with hardcopies of the REBUS conceptual 

framework (as shown in figure 4.1) and a brief (9 min) demonstration of SCtool with 

data from the KaAP scenarios. 

6.8    Timeline/background of JPL meetings 

To clarify, several meetings are being referred to. 

Set-up meeting A meeting in which SCtool was installed at JPL and then infor- 

mally demonstrated to Trish. This occurred on Wednesday, November 23rd. 
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Training/review meeting A meeting to review Irish's KaAP scenarios and track 

the SCtool bugs. This occurred on November 30th and was videotaped. It 

lasted approximately 1.5 hours. Trish and Lorna were present. For this meet- 

ing, I performed most of the interaction with SCtool. 

The meeting This is the meeting in which the REBUS/SCtool evaluation data 

was collected. It occurred on December 9th and was videotaped. The meeting 

was scheduled for 9:00am and started about 9:05am. In the beginning, Lorna 

sat at the console to explain REBUS/SCtool. After describing REBUS and 

SCtool, neither Roland nor Richard had questions, so Lorna exited SCtool. 

Trish then took control of the workstation. Then Trish began a new scenario 

corresponding to the block in figure 6.2 labeled Connect M&C to subsystems. 

This meeting was approximately two hours. At the end of the meeting Richard 

and Trish requested a copy of the videotape. I provided a copy to them at the 

follow-up meeting. 

The follow-up/review meeting In this meeting Trish, Lorna, and Martin (a 

member of my dissertation committee and a requirements engineering re- 

searcher) reviewed the videotape. This meeting occurred on Dec 22. 

6.9    Data captured in SCtool from the meeting 

This section describes the data captured with SCtool for the Voyager track. Further 

analysis and discussion follows this section. For background, most of the following 

data was captured during the meeting. After the meeting, Trish continued to edit 

the scenarios adding five stimuli and associating them with scenarios. Trish also 

modified the list of "operator actions." What is presented here is the data after 

these modifications. 

Figure 6.5 contains an example scenario captured during the meeting. The sce- 

nario is named "Acquire carrier" and it corresponds to the block of the TDN in 

figure 6.2 which is starred and labeled "Acquire Carrier." As stated in the scenario 
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description, the operator needs to lock onto the carrier. In this scenario there are 

two objects, the telemetry_processorl3 and the operator. 

Inspecting the values of each object shows that, for the operator, the current 

value of the attribute "operator actions" is set to "type acquire carrier" and for the 

object, telemetry_processorl3, the current value the attribute "carrier acquire state" 

is set to "acquire carrier." Trish has chosen to use a single frame to show more than 

one point in time. In this case she has actually presented causality within a frame. 

This could be considered an incorrect use of REBUS semantics (causality is between 

frames), but the circumstances of the evaluation don't lead us to believe this is a 

problem. 

Specifically, Trish was asked to document any triggers and restrainers with the 

scenario frames' description due to SCtool limitations. She was not told that causal- 

ity should be presented to the scenario reader between frames and this was not part 

of the REBUS language description she received prior to the meeting. Given she 

associated the causality of the trigger, "acquire carrier command entered" with the 

frame's description, this still conveys the correct notion. Further work is needed to 

investigate this issue of readability of scenarios written with causality in the frame 

versus between frames, since it is possible that both are equally understandable to 

scenario readers. Both also make explicit use of triggers and restrainers for seman- 

tics. 

Another limitation of the prototype shows also shows up in this scenario. That 

is consistency checking. "Type acquire carrier" is meant to be the same as the 

actual item, "enter 'acquire carrier' command", in the list of operator actions. To 

provide automated support for consistency checking requires comparing the current 

attribute value against the attribute type and/or the path catalogs. Ideally, if the 

value entered for the attribute is not found then the system would recognize and 

track the inconsistency on a to-do list. 

Figure 6.6 shows a unit of measurement "db-Hz" and a list type called "loop 

type" collected during the meeting. There are some interesting exchanges between 

the meeting participants about these types. For example, Richard said to Roland, 
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Figure 6.5: The scenario named "Acquire Carrier" 

"I forget. What are the three types?" This occurred as Trish was editing the 

"loop type" list/enumeration dialog. Trish then proceeded to verify and correct the 

descriptive details of this dialog. The discussion of loop type is further described in 

section 6.12.2. The type "db-Hz" is significant to the revelation described in section 

6.12.4. 

Figure 6.7 shows the stimulus "acquire carrier command entered." It is associated 

with the scenario "Acquire carrier." As written by Trish, this dialog's left-side does 

not conform to what was expected. This issue is further analyzed in section 6.12.5. 

To document the data captured with SCTool, figures 6.8, 6.9, 6.10, 6.11, and 

6.12 contain the SCtool catalogs with all the concepts collected. I've also shown the 

catalog column "foid" which is the file identifier for each concept. This should not 

normally be shown as part of the user-interface to SCtool, but it is useful to show 

the foid details here because it is the time-stamp used to save the meeting data as 

files. A summary of the data and further discussion is in section 6.11. 
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SI |Ob|ect Catalog! 

Catalogs 

| Update/Restore object Catalog |   [Eat ft Toggled Objects... [   | UnToggte«] fconify Catalog 

B Object Name Object Category Object Description torn 

B ]telemetryjirDcessor13 fTl ;vGR_Track this Is tba Receiver subsystem atTPIS; sometimes referred to as. im:787019212u:354072.obJ   j 

a carrier >GR track m £n:787020T19u:SluT.ob]       I 

a jsubcamer 

1                                1 
VGR track forTPI3 

i 
jn:7S70Z0E81u£S4C2ljiaj   1 

a Symbol rate 

1                                       =1 

yGR track for TPI 3 configuration 

\ 
pi:7o7u2087Su.-196SE4.obJ   1 

a Operator 

1                                          =i 
VGR track 

 1 
LMC operator 

a=. == ,  i 
\ 

ni:7n70Z4eS6u:751180.obj   1 

Create a new object 

Q Create new from selected 

Figure 6.9: Object catalog (Voyager track data) 
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Figure 6.10: Measures/types catalog (Voyager track data) 

Figure 6.11: Path, catalog (Voyager track data) 
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Figure 6.12: Triggers and restrainers catalog (Voyager track data) 

6.10    What else was captured - paper meeting 

notes 

Trish took one page of paper notes during the meeting. The whiteboard was not 

used during the meeting. Trish later threw away her paper notes, but here is what 

she remembers them containing: 

1. Options that we can take if we decide to decode telemetry data without a 

MCD (Maximum Likelihood Convolutional Decoder): 

a) acquire known data and compare received data with it 

b) decode off-line (maybe at DSS-14 where there is a MCD) 

c) use the DHT (Data Handling Terminal) 

2. a graphical representation of the CONFIG_RCVR, CHK_TLM_DECODE, and 

START-TRACK blocks to indicate a change in block ordering 

3. arx2 is TP13 
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In looking at the three items: 

Item one describes three alternatives that were part of a "what-if" discussion 

that occurred during the meeting. This discussion was about the possibility 

that decoding would be done in addition to recording. The three items on the 

paper notes reflects the total persistent record (except for the video) about 

the MCD discussion. The discussion accounts for about thirty minutes of the 

meeting and some of the break time. During the break Trish explained these 

options to her project leader, Randy. Randy, verified these with Roland. Since 

the discussion was important enough to tell Randy, I asked Trish later about 

why she didn't document it with SCtool. Trish stated that she specifically 

didn't document these components because they would not be needed for the 

Voyager Track. Of course, it turned out that the discussion was important 

since decoding is now needed. A tool can not capture information that the 

tool user chooses not to enter or express. 

The results of modifying the TDN to reflect item two is shown in figure 6.13. A 

conditional branch was added to the TDN and the original block was divided 

into two blocks. 

Item three, arx2 is simply another name for TP13 and it is documented in the 

description of object TP13. 

6.11     Data summary 

The data collected is summarized by table 6.1. It shows the number and type of 

the SCtool building blocks that were collected. The building block concepts that 

were not used are: coordinate systems, conversions, composite paths, inhibitors, 

prohibitors, and all the spatial concepts. The fact that some building blocks were 

not used could be a sign that REBUS has too many concepts. However, it is more 

likely a result of the limits of this evaluation. On the positive side, it is an indication 

that more building blocks were not needed for this domain. 
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building block count 

scenarios 7° 
objects 5 
unit type 1 
list/enumerated type eb 

simple path 6 
stimulus 6 
Total: 31 

°These were all written as one frame with two or three objects. 
^Ranging from 2 to 8 values (not included in count is a duplicate for "operator actions") 

Table 6.1: Summary of building blocks collected during meeting 

The flow of scenario creation is shown in table 6.2. The first column contains a 

scenario name followed by the name of the next scenario created (this corresponds to 

the TDN block order). The second column is the amount of time from the beginning 

of the first to the begining of the second scenario. The third column shows what 

building blocks were created after the first scenario was started and before the second 

was started. The data is based on the file names (foid's) SCtool used to save and 

restore concepts. The file name for each scenario is formed when the Scenario Editor 

Shell is created after selecting "new scenario". The filenames have two parts (m: - 

seconds u: - microseconds). 

The average time between scenario creations was 13 minutes (79/6). Based on 

the videotape and this average, the meeting appears to be moving at a reasonable 

pace. Trish stated that her knowledge acquisition meetings are generally scheduled 

for about one hour. It is clear that it takes time to type in data and typing is slower 

than speech. The evidence of re-use of concepts across the scenarios suggests that 

it is certainly possible to take advantage of automated support for manipulation of 

the concepts found in scenarios. The next section contains further analysis. 
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scenario name / 
next scenario name 

time 
between 
creates a 

building blocks 
created during 

connectToTP13 / 
TLMStartRecording 

3 min. 
(object) telemetry_processorl3 
(simple path) connectTP13 

TLMStartRecording / 
configureRCVR 

7 min. (simple path) recordingState 

configureRCVR / 
Acquire Carrier 

22 min. 

(object) carrier 
(unit type) db-Hz 
(list/enum) loop type 
(object) subcarrier 
(object) symbol rate 

Acquire Carrier / 
acquire telemetry 

35 min.6 (list/enum) carrier acquire state 
(list/enum) recording state 

acquire telemetry / 
TLMEnd recording 

9 min. 
(simple path) acquire carrier 
(simple path) acquire telemetry 

TLMEnd recording / 
turn off receiver loop 

6 min. (simple path) end recording 

Total: 79 min. 

aTime is calculated as (next scenario file creation time - scenario file creation time) 
/ 60 sec. 6There was a morning-break of about 15 of the 35 minutes reported for 
the meeting. 

Table 6.2: Time between scenario creations 
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6.12    Experience of evaluation and analysis 

As part of the intelligent forces project, a videotape was made of a meeting in which 

the domain specific scenario acquisition tool (KBET) was used for the first time with 

a new pilot. The pilot used the whiteboard to explain new concepts which the tool 

could not easily capture: evidence that the domain-specific tool was too brittle for 

new knowledge. Furthermore, in trying to represent the new knowledge, the pilot 

had to discuss terminology used to build and represent new behaviors in the KBET. 

Relative to this, REBUS/SCtool was successful, since: (1) The whiteboard was 

not used during the meeting and what little knowledge that needed to be captured 

with pencil and paper was not the within-scenaxio domain knowledge needed to 

document the Voyager TDN. (2) During the meeting, no one raised questions about 

the REBUS/SCtool vocabulary or its use. 

Although this indicates that SCtool was more successful than KBET, it's difficult 

to tell if the difference is a result of the tools themselves or the context in which they 

were used. It might be that SCtool worked better because the domain experts had 

more engineering background. But at least we can point to this as an encouraging 

result. The next sections provide more detailed examples and analysis. 

6.12.1    Able to map domain knowledge to REBUS/SCtool 

In this new domain, no new concepts needed to be added to REBUS for it to be used. 

While the DSN did not stress all the elements of REBUS, Trish did not have any 

difficulty in using the conceptual framework. The few indications of difficulty were 

minor and can be attributed to SCtool's prototype implementation, the building 

block editors, or between-scena.no notions. 

For example, instances of difficulty or questions that occurred in the train- 

ing/review meeting are as follows: 

1. Trish was modelling an object with three attributes, which were all objects of 

the same type.  She gave each a unique name and a unique type.  She asked 
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about this, and I clarified that one did not need a new type for every object 

attribute. 

2. For fields in the list/enumerated types editor, there was some confusion as to 

which column should contain the items. As seen in figure 6.6, the first column 

is labeled "name" and the second "Enumeration value (if needed)." Changing 

the textual label to "element name" should improve this dialog. 

3. Trish wanted to know if there was a way to delete or search for items from a 

catalog. This functionality was not implemented in the prototype. 

4. At one point, Trish is engaging in what seems to be "thinking out loud." She 

is considering default values for the various predict points (planetary, sideal, 

and local) and states that the default values should be the last ones entered 

by the user. She seems to realize that this is not a true default and states, 

"if planetary has a value the others should be zero." I told her that what she 

wanted to express was a rule and I proceeded to model her statement as a 

stimulus. 

During the actual evaluation meeting with the domain expert, Trish did not need 

to ask any modeling questions. She asked only one user interface question which 

was about the location of a scroll bar. 

6.12.2    Domain knowledge captured and verified 

Trish was able to capture and verify the domain knowledge she needed for the 

Voyager TDN. REBUS/SCtool were used in a process which was more than a simple 

review of a textual document, it also involved uncovering further details which are 

then captured. For example, when reviewing the attributes of the carrier object, 

Trish asks Roland, "Are there any default values?" While looking at the screen, 

Roland says, "For frequency, no; loop type there is an enumerated type. I, II, III. (I 

use Roman numerals)" Richard asks, "I forget what are the three types?" Roland 

explains in parallel with Trish creating a list/enumerated type named "loop type." 
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Roland and Richard proceed to clarify and verify the explanation Trish has recorded 

in the description field. The loop type can be seen in figure 6.6. 

6.12.3 Achieved shared understanding 

The videotape contains evidence that REBUS/SCtool was successfully used to 

achieve shared understanding between Trish and Roland. Relative to Richard's 

questioning of Roland during the meeting, there was much less reliance on speaking 

during the meeting to clarify understanding between Roland and Trish. The RE- 

BUS/SCtool dialogs focused the communication between Trish and Roland, so that 

Roland would just look at the screen, and point or gesture at the details that needed 

to be changed or discussed. A small example illustrating the value of having the 

shared external representation is relevant. In response to one of Richard's questions, 

Roland has lost the context of his conversation with Richard and asked "Where are 

we?" This did not occur with Trish's question. 

6.12.4 Occurrence of side-scenarios 

Side-scenarios were an unexpected part of the communication during the real-world 

use of REBUS/SCtool. A side-scenario occurred in an episode in which one of 

the attributes, Pc/No (the signal to noise ratio), of the carrier object was being 

defined. In this context, Trish created a unit type with Roland's feedback. Roland 

explained that the unit of measurement is db-Hz. In filling out the range of values 

for the dialog, Roland hesitated in stating the range of values as between -10 and 

80. Sensing this, Lorna asked if it was the normal range. Roland's response was 

"As a unit there would be no real min or max for it, but that's sort of the range the 

receiver will expect to see and it doesn't operate outside that range. It's designed 

for that kind of range." Lorna then asked, "So what happens? Can someone enter 

a value outside the range." Roland responded with a side-scenario. Roland said, 

"You can enter a value outside the range. Since it's not designed at that value, for 

instance 80 db-Hz, the scaling can't accommodate a signal that strong.   So, even 
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if you had a signal that strong it wouldn't be operating properly. You would have 

internal overflow happening. So a signal less than -10 db-Hz is too weak for it to 

track." 

Side-scenarios are close to being &efu;een-scenario relations. It's just that the 

situation in which this example arose was the context of defining a building block. 

This is more than the simple connection of a building block as participant in a 

scenario. It suggests a rational link between a concept and its side-scenarios. 

6.12.5    Interpretation of triggers and restrainers 

Figure 6.7 contains an example of a stimulus written by Trish. In looking at this 

dialog and the scenario "acquire telemetry" in figure 6.5, a difference of interpretation 

occurred. Specifically, one should be able to look at the objects in the scenario and 

the trigger and see how they relate causally. In connecting the <sides> to the 

phrase in the dialog, Trish's stimulus is read as: The <left side = TP13 is not 

acquired> is a triggering condition for the behavior described in the <right side = 

TP13 is acquired>. The causally oriented version would be written as: <left side = 

operator is enter 'acquire carrier' and TP13 is not acquired> <right side = TP13 is 

acquired >. 

To explain this Trish states: 

I interpreted the left/right side as the state of the object before and 

after the occurrence of the stimulus. Stimulus name: acquire carrier 

command entered. State of TP13 before this action/stimulus occurred: 

carrier not acquired. State of TP13 after the action/stimulus occurred: 

carrier acquired. 

This parallelism between the two sides made more sense to me at 

the time I was learning how to use the triggers and restrainers editor. 

Also, I completely left out the operator because I didn't really care where 

the stimulus was coming from as the state of the object (tpl3) is only 

dependent on the stimulus itself, not on the source of the stimulus. 
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The manner in which the stimulus was written does show causality, it just places 

semantic importance on the stimulus name. The alternative interpretation of how 

to write a stimulus could have resulted from the following three alternatives expla- 

nations. 

1. Training/User Interface. I never explained to Trish that she should read a 

stimulus from left to right based on the text in the user interface. 

2. The influence of the TDN pre- and post- conditions for a block. In the follow-up 

meeting Trish explained that the left side corresponded to the pre-condition 

for a block and the right side, the post-condition. So, Trish's background 

influenced her use of the dialog. 

3. There needs to be a division between the internal and external system interface. 

Alternative 3 has the most significant consequences for the interface. Other 

scenario notations, such as the message-flow diagram, make a distinction between 

external and internal events. In terms of changes to REBUS/SCtool, this would 

mean that triggers and restrainers would need to separate out external activity, 

such as the Operator's command, from the internal state. 

6.12.6    Use of depictive abstraction 

The scenarios collected for the DSN domain appear rather abstract compared to the 

IFOR scenarios. The DSN domain is a much more human designed domain than the 

air-combat scenarios which take place in the natural world, so the higher levels of 

abstraction may be more readily known. So, they appear to be sufficiently concrete 

for this domain. 

To illustrate the use of abstraction, Trish's use of an object named "operator" 

indicates greater use of abstraction than had she used a real name for an operator. 

She also decided to use the SCtool abstract default depiction, the round-cornered 

boxes of the system component and its textual name (see the acquire carrier scenario 

in figure 6.5). 
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This can be explained by considering that it may have been a combination of the 

following alternative explanations: 

1. As a software expert, Trish considered the role and the abstract system de- 

piction sufficient. Also, given Roland's computer experience, more abstract 

depiction was sufficient. 

2. The features of the task domain are naturally abstract (i.e. the domain depic- 

tion an expert would draw is a box). 

3. The DSS-13 graphical user-interface was not running locally, so it was not easy 

to capture the concrete screens associated with a component. 

4. Trish did not receive any training in evocative communication to encourage 

her to use concrete notions. 

In considering explanations 1 and 2 for most of the meeting the abstract depiction 

was sufficient. Item 3 is important because at one point Trish asked Roland a 

question about the DSS-13 user-interface. She stated, "When I saw the UI there 

were two buttons. Does it matter which one you click-on?" Roland's response was, 

"I don't remember those screens, Richard do you remember?" Richard says, "No, 

I'll bring it up." Richard proceeded to bring up the system on another computer 

in the meeting room7. The task of setting up this program actually took about 

twenty minutes, since there were various problems in starting the software. While 

it is speculative to consider what would have happened had an evocative screen 

snapshot been readily available in SCtool, it is likely that Trish's question could 

have been answered as easily as it was asked. 

The role of 3 and 4 in combination can't easily be determined from the one 

meeting. Trish had insufficient time before the meeting to even prepare scenarios 

a-priori much less capture screen snapshots. Before advocating further training to 

address explanation 4, as Pott's et al. point out [82], further research and experi- 

ments should be done on the role of concreteness in scenarios. Overall, SCtool has 

7This computer was to the left of the workstation used for SCtool 
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the necessary features to support concrete and abstract depiction. For future work, 

automated support might analyze a collection of scenarios and provide some critique 

of a scenario collection which relied heavily on default depictions. Furthermore, the 

critic could post this to an agenda or "to-do" list mechanism. 

6.13    Chapter summary 

This chapter documents the experience of using REBUS and SCtool in the context 

of a real-world project at JPL. The evaluation was driven by the needs of JPL. This 

project provided an opportunity to formatively evaluate REBUS and SCtool. This 

was done by placing REBUS and SCtool in the context of a new application domain 

and letting potential users of scenario support tools evaluate REBUS/SCtool for 

their needs. 

In the context of a meeting which was videotaped, the software expert used 

SCtool to collaborate with a domain expert. The software expert was involved in 

acquiring domain knowledge from the system engineer about a particular system 

object, called telemetry processor 13, and how it would be used in the context of a 

particular mission to track the Voyager spacecraft. 

The domain knowledge collected during the meeting is summarized and pre- 

sented. Within the limitations of the prototype, REBUS and SCtool were found 

to be useful for gathering domain knowledge during the meeting. REBUS provided 

sufficient conceptual coverage for the concepts needed in the new domain, although 

some REBUS concepts, such as the spatial concepts, were not needed for the evalu- 

ation. 

The evaluation highlighted the need to develop SCtool further. Support for 

organizing scenarios, searching for concepts, and checking consistency are needed in 

the next version of the prototype. 
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Chapter 7 

Conclusion and future work 

This chapter highlights the accomplishments of this dissertation and illuminates 

possibilities for future research. 

7.1     Summary of dissertation 

Scenarios are one of the most natural methods of communicating domain knowledge 

between domain and software experts. Based on an observational study of scenarios 

communicated between such people and a literature survey, I found the existing sce- 

nario representations inadequate for precisely describing the richness of the domain 

knowledge contained in the natural scenarios written by domain experts. The nat- 

ural scenarios illustrated multiple objects engaged in simultaneous behavior. They 

contained a mix of depictions, descriptions, objects, units of measurement and types, 

spatial concepts, temporal concepts, and behavioral concepts. Existing conceptual 

frameworks either provided too little coverage or far too many categories with which 

to classify domain knowledge. 

In surveying potential tools to provide automated support for scenarios, what 

existed was found to be inadequate in light of the use of scenarios for precise com- 

munication. When scenarios are captured in the current practice, scenario writers 

are primarily using text editors and drawing tools to capture and manipulate the 

domain knowledge. Such tools do not specifically focus on the scenario writing task 
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and do not specifically support the semantic definition and manipulation of the ac- 

quired domain knowledge. Alternatively, tools exist for the semantic definition and 

manipulation of domain knowledge but they are focused on the details needed for 

the software domain and don't relate back to the application domain. 

For this dissertation, a new representation (REBUS) for scenarios was developed 

and embodied in a automated tool (SCtool). REBUS was designed to support the 

richness of the domain knowledge contained in the natural scenarios written by 

the domain experts. This coverage was demonstrated: by examples from various 

domains; by considering the requirements for a expressive scenario representation; 

and by an evaluation in an application which was not considered prior to REBUS's 

development. The design of REBUS and the graphical user-interface to SCtool 

considered how concepts could be organized within a conceptual framework and as 

building blocks. The conceptual framework served as a basis for the tool's catalogs 

and each building block was provided as an editor. 

In evaluating REBUS and SCtool in a new domain, REBUS was able to pro- 

vide the support for the conceptual coverage, the depiction and description, and 

the multiple object behavior. All of which are needed by the scenario writer. Al- 

though the domain was not highly spatial, the whiteboard was not needed during 

the meeting and the personal notes that were taken were focused on a topic which 

was tangential to the scenarios and concepts which the scenario writer wanted to 

model. Compared to text and drawing tools, SCtool's output contained a more pre- 

cise record of domain concepts identified in the meeting. The domain concepts were 

captured in a structured manner at an appropriate semantic level of abstraction. 

During the course of the evaluation, SCtool was easily used to create new scenarios, 

objects, units of measurement, and paths. Only one question was asked about the 

user-interface, specifically, concerning the location of a scroll bar. The domain in- 

dependence of REBUS/SCtool was not a hindrance. The participants were able to 

actively engage in modeling their domain and they were not distracted or confused 

by the terminology of REBUS. 

153 



REBUS/SCtool was evaluated in the domain of operational control of the Deep 

Space Network (DSN). It was chosen to be different from the Intelligent Forces 

(IFOR) domain which served as initial motivation for REBUS' design. While success 

in this different domain shows the domain-independence of REBUS, it does not serve 

to demonstrate that REBUS is suited to any domain for any domain experts. It 

would be great to try SCtool back in the IFOR domain, but this work is not part of 

this thesis. 

In light of this, the evaluation in this thesis could be thought of as a pilot study 

to show the potential effectiveness of REBUS and SCtool. Further development and 

evaluation should follow to characterize the range of tasks and range of expertise for 

which a tool such as REBUS/SCtool is suited. This is best started after between- 

scenario support is implemented. 

The DSN study was done with experts who have more systems background than 

the pilots. The required domain knowledge stressed only a part of the REBUS 

conceptual framework, namely objects, units/types, simple paths, and triggers. The 

fact that other aspects of REBUS were not stressed, does not indicate that they are 

not needed. 

As with any prototype system, SCtool falls short of an ideal implementation. 

Many details were not implemented due to lack of time. To implement these details 

one would need a robust, object-oriented database and graphical interface frame- 

work. 

7.2    Future work 

There are several directions for further research. We need to continue to improve 

REBUS and SCtool based on the weaknesses identified in chapters 5 and 6. Such 

as providing facilities to query and retrieve concepts and improvements to the path 

editors, and triggers and restrainers building blocks. The use of REBUS and SCtool 

for real work highlighted the need to implement between-scenano support (sec 7.2.1). 

In addition SCtool can be extended in several directions (sec 7.2.2-7.2.6). 
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7.2.1 Betw^en-scenario support 

Section 3.4 described many of the relations potentially needed for between scenario 

support. Further work is needed to investigate how such relations are realized and 

used in an automated tool. One interesting direction from the air-combat domain 

is shown in figure 7.I.1 As well as showing scenario composition and conveying 

temporal order and disjunction, the figure illustrates a more abstract scenario which 

still contains concrete detail (e.g. "The target turns 180° and runs") and informal 

annotation, such as the comment "this is trivial" in box BDT 8b2a. 

7.2.2 Connection to automated tools for software experts 

We believe that the REBUS building blocks are transformable to and from an au- 

tomated knowledge based software development environment. Consider a tool for 

software experts which could accept REBUS as input or output. That is, if do- 

main knowledge modeled with REBUS is input, the system provides the user with a 

graphical user interface to transform building blocks to programming-specific knowl- 

edge. If programming-specific knowledge is input, the tool could provide the user 

with the ability to associate that knowledge to REBUS concepts. The tool would 

support traceability by maintaining the mapping between scenarios and detailed sys- 

tem specifications. For example, a unit of measurement like nautical miles could be 

transformed to an appropriate "class" or a programming type like "integer" could 

be mapped back to nautical miles. 

7.2.3 Automated support for multiple users 

To support multiple scenario readers and writers on a project both synchronous 

and asynchronous automated support can be used. A non-intrusive mechanism for 

the synchronous editing of the scenarios is the replication of the interface dialogs 

to multiple workstations for simultaneous viewing and editing. To do this in an 

X Window System environment, one could use a commercial tool such as HP's 

1 Figure 2.4 contains the page corresponding to the box labeled 9b2b. 
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Navigation 
& 

Conventions 

1. "Scene" 1 al a = standard initial conditions; 3x2 ship elements on CAP vs 2 x enemy fighters €> 100 nm range. 
2. Target assignment and commit decision are presumed. 
3. Branches occur at significant decison points. 
4. The "al a" trace represents the stereotype version, (desired, simplest outcome) 
5. Traces (currently) conclude at a "high Pk" launch against the target. 

"Bagdad Taxi Drill" tactic map 

What are some likely variations? 

• The target changes course < 45* 
^The target accelerates to supersonic speed 

• The target alters its formation (splits n") 
■ The target changes course < 90* 
pJJietarget accelerates to supersonic speed at this point 

■ target is able to prevent 3 & 4 from 
BOT 
4a1a 

BOT 
5a1a 

BDT 
6ala 

dosing to range y (speed and 
maneuver) 
one or more missiles fail 

BDT 
Sbla 

• target turns away from lead element ~ 
• The target accelerates to supersonic 

speed at this point 
• taget launches missiles at lead element 

prior to SOnm 

• The target alters its formation (splits n") 
• The target pursues 3 & 4 
• The target accelerates to supereonc speed 

at this point 
• The target turns 180* and runs. 

Figure 7.1: Example of scenario composition from fighter-plane domain. 
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SharedX. Tool-specific synchronization support can also occur at the user-interface 

to provide visual context for users sharing scenarios. At the knowledge-base level, 

one needs to prevent inconsistent changes to the knowledge-base. 

For asynchronous support, we could consider tools such as Lotus Notes™ which 

tie together and filter semi-structured messages sent via electronic mail. Scenarios 

could be sent via e-mail for comment. Thus, the work-flow could be monitored, 

leading to automated support for agendas or "to-do" lists. 

7.2.4 Automated support for agendas 

Agenda mechanisms are another means to support individuals or groups. Scenarios 

or building blocks that are incomplete or that have open questions could be docu- 

mented and tracked in a meaningful fashion. That is, agenda items could have links 

to building blocks, scenarios, or between-scenario concepts. 

7.2.5 Automated support for variation generation 

REBUS lends itself to automated support for the generation of scenario or building- 

block variants. Because of the conceptual framework's strong semantics, one can 

generate interesting variations which differ along one or more semantic dimensions. 

For example, variations on the temporal situation could be generated by varying 

the duration specifications of paths or varying the frame order. Some criteria for 

"interesting" scenario variations could be developed as a means to support analysis 

and validation of the system under development. 

7.2.6 REBUS as a query language 

Domain descriptions expressed in terms of REBUS could be used as a language to 

allow users to query and retrieve information from multimedia knowledge bases. The 

key issues here include the mapping between REBUS and the database schema and 

an appropriate graphical user interface. 
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