
University
of Southern
California

Requirements Envisaging by Utilizing
Scenarios (REBUS)

Loma A. Zorman

USC/Information Sciences Institute

August 1995
ISI/RR-95-430

PBTBI5ÜTIOW BTATEMECn H
Apptoraci tat puahe MIMMI „

19960611 126
INFORMATION

SCIENCES 'MI. INSTITUTE / I / / 310/822-1511
4676 Admiralty Way/Marina del Rex I California 90292-669?

Requirements Envisaging by Utilizing
Scenarios (REBUS)

Lorna A. Zorman

USC/Information Sciences Institute

August 1995
ISI/RR-95-430

Apprevsc tor pucisa reieoMl
_J^«aouaoa ürüiautodl

DTIC QUALITY INSPECTED 3

REPORT DOCUMENTATION PAGE
FORMAPPROVED
OMB NO. 0704-0188

Pubterepc^ngburden lor ml. collet
•OUR»*, «Shering and maintaining the data needed and compMine^ «nd"X.lewlng th«'^^^^M^^tAan Services/Directorate for Information Operations

Washington," DC 20503.

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

2. REPORT DATE

August 1995
3. REPORT TYPE AND DATES COVERED

Research Report

Requirements Envisaging by Utilizing Scenarios (REBUS)

6.AUTHOR(S)

Lorna A. Zorman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

6. FUNDING NUMBERS

ARPA/TTO:
F33615-94-1-1402
U. of Michigan:
Subcontract PO#V08985
Rome Laboratory:
F30602-89-C-0103

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)
Avionics Directorate

ARPA/TTO Wright Laboratory
3701 N. Fairfax Drive 2185 Avionics Circle, Bldg. 620
Arlington, VA 22203 Wright-Patterson AFB, OH 45433

(CONTINUED ON
FOLLOWING PAGE)

8. PERFORMING ORGANIZATON
REPORT NUMBER

ISI/RR-95-430

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTION/AVAILABIUTY STATEMENT

UNCLASSIFIED/UNLIMITED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) . . , .,
Requirement, envisaging* the pnKess of t™sformmg va™^

prcpt criteria, and the expWn of alternative fohihons w^ch.are,«J^*™^^|^SSIct and decontextualizeS formal Ian-

Ju^u^Äa^

tions?namdy, scenarios. tcerarios play an important role «J^S^S1^*&£*?toXSred a£ pS requirements documentation.

the concepts conveyed in these scenarios. ura„r!1M~,«i ShiHv nf domain and software experts utilizing scenarios, the development

sentation and tool in a real world domain outside those studied during development ^ ^^ of

implementation by providing a formal means to capture scenarios.

14. SUBJECT TERMS ,
knowledge acquisition, representations, requirements engineering, scenarios, tools,
use cases

17. SECURITY CLASSIFICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15.NUMBER OF PAGES

170

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 DTIC QUALIK INSPECTED 8
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102 '

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program

element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE - Program

Element

PR - Project
TA -Task
WU -WorkUnit

Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

- See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

- See authorities.
- See Handbook NHB 2200.2.
- Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

- Leave blank.
- Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

Leave blank.
- Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

Report Documentation Page, Form SF298, Continued

9. Sponsoring/Monitoring Agency Name(s) and Addresses, continued

University of Michigan
2044 Wolverine Tower
3003 S. State Street
Ann Arbor, Michigan 48109-1273

Rome Laboratory (C3CA)
525 Brooks Road
Griffiss AFB, NY 13441-4505

REQUIREMENTS ENVISAGING BY UTILIZING SCENARIOS (REBUS)

by

Lorna Ann Zorman

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(Computer Science)

August 1995

Copyright 1995 Lorna Ann Zorman

Acknowledgements

I would like to express my thanks to the people who encouraged and aided me

in this work:

My Advisor and committee: My advisor, Lewis Johnson, helped give me direc-

tion when I needed it most. He worked with me to develop an interesting and

enjoyable thesis topic. Martin Feather, who unofficially joined my committee

when I moved in to the office next door and officially joined my committee

just before my defense. Paul Rosenbloom, for providing the opportunity to

study air-combat scenarios and for his diligence toward clarity and evaluation.

Michael Noll, an outstanding external counselor and teacher.

Proofreading: Brian Lau for spending his free time removing superfluous little

words and phrases from this dissertation.

The folks at JPL: Trish Santos, Roland Bevan, Richard Chen, and Randy Hill.

Friends, collegues, helpers, scenario folks, etc. Richard Angros, Bob Balzer,

Kevin Benner, Dave Bridgeland, Don Cohen, Ali Erdem, Yolanda Gil, Neil

Goldman, Raymonde Guindon, Bob Hall, Ellis Horowitz, Ken Kahn, John

Karat, Patti Koenig, Robin Lampert, Yingsha Liao, Ping Luo, Lee Magnone,

Tony Marston, Chris McClenaghan, Linda Mizushima, Bonnie Nardi, Robert

Neches, Colin Potts, Shankar Rajamoney, Pam Rothman, Jim Rhyne, Kenny

Rubin, Rodney Ruddock, Tom Russ, Karl Schwamb, John Stasko, Sergio So-

carras, K. Swamy, Bill Swartout, Pedro Szekely, Milind Tambe, Brenda Tim-

merman, Dave Wile, Tom Wisniewski, Cathy Wolf, Karen Zand.

The GoPATH team at Bull S.A.

iii

The people I met at various CHI, CSCW, IWSSD, and OOPSLA conferences

and workshops.

My Family: I'd like to thank the two people who helped me most - my parents,

Rosalie and Maurice Zorman. They provided the freedom to let me pursue

whatever directions I chose, as well as the support and encouragement when

times were tough. I'm very proud to dedicate this dissertation to them and

my brothers, Barry and Jack, and my sister-in-law, Caren.

IV

Contents

Acknowledgements iii

List Of Figures ix

List Of Tables xi

Abstract xii

1 Introduction 1
1.1 Why scenarios 3
1.2 Who writes scenarios 4
1.3 Designer activities 6
1.4 Automated support 8
1.5 Example scenarios 10
1.6 Real world basis 14
1.7 Scope of domains 14
1.8 Summary 15
1.9 Thesis outline 16

2 Automated Support for Communication Using Scenarios 17
2.1 Introduction 17
2.2 Communication 18

2.2.1 Between people 18
2.2.2 Between people and external representations 23
2.2.3 Between people and automated tools 27

2.3 Representational matters 28
2.3.1 Semantics 28
2.3.2 Graphical and textual presentation 32
2.3.3 Degree of structure 33
2.3.4 Building blocks - neither too few nor too many 36
2.3.5 Behavioral specification 40

2.4 Chapter summary • • • 40

Scenario Representations 43
3.1 Introduction 43
3.2 A comparative 43
3.3 Survey of existing representations and automated support 47

3.3.1 Natural language 47
3.3.2 Domain specific depiction 50
3.3.3 Table representations 52
3.3.4 Formal specification languages 55
3.3.5 Diagrammatic notations 55

3.4 Multi-scenario notations 58
3.4.1 J3e£i£?een-scenario support 60
3.4.2 Views and composite scenarios . . . 66

3.5 Chapter summary 67

The REBUS Building Blocks 68
4.1 Introduction 68
4.2 REBUS notation and terminology 70

4.2.1 Names and categories 70
4.2.1.1 Discussion 70

4.2.2 Annotations 72
4.2.3 Mathematics 73

4.2.3.1 Discussion 73
4.3 Objects 73

4.3.1 Discussion on modeling concepts 74
4.4 Units of measurement and types 75

4.4.1 The unit type 75
4.4.2 List type 77
4.4.3 Coordinate system 78
4.4.4 Named quantities 78
4.4.5 Conversions 78
4.4.6 Discussion of units and types 79

4.4.6.1 Other work on measurements/types 79
4.5 Spatial elements 80

4.5.1 Regions, boundaries, landmarks 81
4.5.2 Spatial composite 82
4.5.3 Examples 82
4.5.4 Spatial relations 82
4.5.5 Discussion 84

4.6 Temporal elements 86
4.6.1 Duration specification 87
4.6.2 Temporal relations 87
4.6.3 Paths 89

4.6.3.1 Composite paths 89

vi

4.6.3.2 Examples 90
4.6.4 Path discussion 90

4.6.4.1 Spatial paths 90
4.6.4.2 Paths in animation 90
4.6.4.3 Relationship to methods 91
4.6.4.4 Path usage 92

4.7 Behavioral elements 92
4.7.1 Stimulus 94
4.7.2 Inhibitor 94
4.7.3 Prohibitor 95
4.7.4 Discussion 96

4.7.4.1 Execution semantics 96
4.7.4.2 Temporal specification 96

4.8 Scenarios 97
4.9 Chapter summary 97

5 An automated tool for scenarios 99
5.1 Introduction 99
5.2 Implementation information 101

5.2.1 Initial dialog 102
5.2.2 Catalogs 102
5.2.3 Scenario editor 104

5.2.3.1 Each frame 106
5.2.4 Object editor 108
5.2.5 Measurement and types editors 108
5.2.6 Spatial concepts editors 113
5.2.7 Path Editors 115
5.2.8 Triggers and restrainers editors 115

5.3 Chapter summary 116

6 Evaluation 121
6.1 Introduction 121
6.2 The application domain 122
6.3 JPL's need for REBUS/SCtool 124
6.4 The temporal dependency network (TDN) 126
6.5 The Voyager TDN - specific context for the meeting 127
6.6 The room, equipment, and participants 131
6.7 Training in REBUS and SCtool 133
6.8 Timeline/background of JPL meetings 133
6.9 Data captured in SCtool from the meeting 134
6.10 What else was captured - paper meeting notes 140
6.11 Data summary 141
6.12 Experience of evaluation and analysis 145

vii

6.12.1 Able to map domain knowledge to REBUS/SCtool 145
6.12.2 Domain knowledge captured and verified 146
6.12.3 Achieved shared understanding 147
6.12.4 Occurrence of side-scenarios 147
6.12.5 Interpretation of triggers and restrainers 148
6.12.6 Use of depictive abstraction 149

6.13 Chapter summary 151

Conclusion and future work 152
7.1 Summary of dissertation 152
7.2 Future work 154

7.2.1 Between-scena,no support 155
7.2.2 Connection to automated tools for software experts 155
7.2.3 Automated support for multiple users 155
7.2.4 Automated support for agendas 157
7.2.5 Automated support for variation generation 157
7.2.6 REBUS as a query language 157

Vlll

List Of Figures

1.1 The shifting of a designers focus over time 7
1.2 Telephony example 11

2.1 Air combat scenario written by a pilot 22
2.2 Depiction of situation in which F-pole is performed 26
2.3 Two depictive interpretations of the sentence, "the tree in front of the

car." 32
2.4 One page from a tactic map 34
2.5 Example ill-structured coloring book 35
2.6 "Objects" 37

3.1 Interactions between a radar intercept officer and ä pilot 45
3.2 Elements of interaction diagrams 46
3.3 Telephony scenario 48
3.4 Scenario writing guide 49
3.5 Simulacrum-2 elevator scenario 51
3.6 Script - concrete version 53
3.7 Script - abstract version 54
3.8 OBA/D Script 54
3.9 OBA/D Script with conditional rule 55
3.10 Telephony scenarios from Hall 56
3.11 Path expression scenarios from Benner 57
3.12 Visual design language (VDL) 59
3.13 VDL payroll scenario 60
3.14 Better object notation (BON) scenario 61
3.15 Scenario tree 62
3.16 Booch object message diagram and corresponding interaction diagram 63
3.17 Between scenario considerations 64
3.18 Objectory - extends and uses relations 65

4.1 Conceptual framework and building blocks 69
4.2 KRSL hierarchy of noun measurement types 79
4.3 REBUS's spatial relations 85
4.4 Allen's temporal relations . 88

ix

4.5 REBUS's temporal relations 88

5.1 SCtool overview 100
5.2 The GoDraw graphics editor 101
5.3 The initial SCtool dialog 102
5.4 The scenario catalog 103
5.5 A catalog pulldown menu . 103
5.6 A Scenario Editor Dialog 105
5.7 The "Add from Catalog" pulldown menu 106
5.8 Selecting an object 107
5.9 Default depictions - object, region, boundary, landmark 107
5.10 Editing the attribute values of an object 107
5.11 Selecting an annotation 108
5.12 Object Editor and Object Depiction Editor 109
5.13 Unit type editor 110
5.14 List type editor Ill
5.15 Named quantity editor Ill
5.16 Conversion editor 112
5.17 Coordinate system editor 112
5.18 Region editor 113
5.19 Spatial relations editor 114
5.20 Simple path editor 116
5.21 Composite path editor 117
5.22 Temporal relations editor 118
5.23 Stimulus editor 119
5.24 Inhibitor editor 119
5.25 Prohibitor editor 120

6.1 REBUS in the context of JPL's tools 125
6.2 The Voyager track TDN 129
6.3 Examples of blocks in Voyager TDN 130
6.4 The meeting room (a lab) 132
6.5 The scenario named "Acquire Carrier" 136
6.6 The unit, "db-Hz" and list/enumerated type named "loop type" . . . 137
6.7 The stimulus "acquire carrier command entered" 137
6.8 Scenario catalog (Voyager track data) 138
6.9 Object catalog (Voyager track data) 138
6.10 Measures/types catalog (Voyager track data) 139
6.11 Path catalog (Voyager track data) 139
6.12 Triggers and restrainers catalog (Voyager track data) 140
6.13 Voyager track TDN after modification 142

7.1 Example of scenario composition from fighter-plane domain 156

List Of Tables

2.1 Mapping between ToonTalk™ building blocks and computational ab-
stractions 30

4.1 Prepositions of English 83

6.1 Summary of building blocks collected during meeting 143
6.2 Time between scenario creations 144

XI

Abstract

Requirements envisaging is the process of transforming vague and informal re-

quirements into precise descriptions. Envisaging evokes ideas, project criteria, and

the explanation of alternative solutions which are refined or discarded. At the en-

visioning stage of system development, complex systems are typically described in

a fragmentary and highly contextual manner. This conflicts with the abstract and

decontextualized formal languages used by software experts. As a consequence, re-

quirements envisaging, which seeks to bridge this gap, is a challenging phase of

system development in which to provide automated support.

In requirements envisaging, domain experts will often convey partial descriptions

of system and environment behavior arising in restricted situations, namely, scenar-

ios. Scenarios play an important role in envisaging by mediating communication

and by describing alternative situations and rationale explored during design. De-

spite this importance, scenarios are not, in general, formally captured as part of

requirements documentation.

This dissertation is a step toward automated support for envisaging with sce-

narios. For this task, the representation used to capture scenarios must support

human-tool collaboration. The tool described herein supports capturing scenarios

in a formal manner despite their fragmentary and contextual nature. The goal is

to let people who are not necessarily computer experts create scenarios easily and

allow other people to readily understand the concepts conveyed in these scenarios.

The main accomplishments reported in this thesis are: an observational study

of domain and software experts utilizing scenarios, the development of a formal

representation for scenarios, an automated tool that allows people to create scenarios

xii

in that representation, and evaluation of the representation and tool in a real world

domain outside those studied during development.

These accomplishments are a step toward: bridging the communication gap be-

tween domain experts and system design experts, moving some of the burden of

work from people to machines, the documentation of domain knowledge and ratio-

nale, and the traceability between requirements and implementation by providing a

formal means to capture scenarios.

xm

Chapter 1

Introduction

Human intelligence almost always thrives on context while computers

work on abstract numbers alone. A subtraction problem cast in terms of

apples is easier for a student, but a programmer must do precisely the

opposite thing, convert concrete problems into context-free mathematics,

because that is easier for the machine. - Arno Penzias 1989, p.49

Requirements envisaging is the process of transforming peoples' informal notions

of what is desired into a precise description. These descriptions may then be suitable

for mediating communication with oneself over time, one's own community, other

communities, and even automated tools.

During envisaging people are best able to describe complex systems in a fragmen-

tary and highly contextual manner. People need the context. This conflicts with the

abstract and decontextualized formal languages used by software experts. In par-

ticular, what people state in a fragmentary and contextual manner is not entirely

ready to be transformed into a decontextualized formal language. As a consequence,

requirements envisaging, which seeks to bridge this gap, is a challenging phase of

system development in which to provide automated support.

During envisaging, people can and do easily express scenarios which are partial

descriptions of system and environment behavior arising in restricted situations.

That is, people are able to think about the desired behavior in terms of situations

that might arise, by stating when they might arise, and by stating what ought to

happen or ought not to happen in those situations. In general, scenarios are not

formally captured as part of the requirements documentation although scenarios

play an important role in envisaging by mediating communication and by describing

alternative situations and rationale explored during design.

This dissertation is a step toward providing automated support for envisaging

with scenarios. In order to do this, the representation used to capture scenarios

must be understandable by automated tools. The tool should support capturing

scenarios in a formal manner despite their fragmentary and contextual nature. It is

also important that such a tool let people who are not necessarily computer experts

be able to create scenarios easily, and that other people be able to understand the

concepts conveyed in these scenarios.

The benefits that are expected to accrue from providing automated support in-

clude: better communication between people, particularly domain experts and soft-

ware experts; better distribution of work between people and machines by providing

automated support for manipulation and analysis; better preservation of the design

history and rationale for others to understand the details considered and the context

of use; better traceability between the requirements and the implementation since

having a formal means to capture scenarios can provide the inputs into the next

generation of automated tools for software engineering.

As a step towards such benefits, the main accomplishments reported here are

• an observational study of scenario-based communication between software ex-

perts and domain experts.

• the development of a domain-independent representation for scenarios

• an automated tool allowing creation of scenarios in that representation

• evaluation of the representation and tool in a real-world context which was not

studied as part of development.

1.1 Why scenarios

Scenarios are used in such diverse fields as architecture, engineering, and human fac-

tors. In such fields, requirements envisaging involves detailed thought about some-

thing wanted or needed. Envisaging is an important part of design which evokes ideas

and criteria with which alternatives are explored, refined or discarded. Researchers,

trying to understand the nature of individuals engaged in design, have reported that

people will naturally engage in scenario activity when detailed thought is required

by their subjects [31, 37]. From separate protocols of architects, mechanical engi-

neers, and instructional trainers engaged in design, Goel coins the phrase "scenario

immersion" to describe the "frequently occurring episodes in which designers recall

and immerse themselves in rich, intricate images from their past experience." Fur-

thermore, he states that across task domains and external representations (suitable

for the task) the scenario episodes seemed to play a crucial role in the generation

and evaluation of the design [31].

For software design, second generation object-oriented methods [49, 32, 88, 91]

and the user interface design community [13, 55, 3] advocate the use of scenar-

ios. These communities advocate the use of scenarios in the context of a variety of

project tasks (e.g. user interface design, requirements acquisition, test case gener-

ation). In addition, they advocate various informal representations (e.g. use cases,

scripts, story-boards) and formal representations (e.g. interaction diagrams, path

expressions, message sequence charts).

The informal representations contain much more useful information than the ex-

isting formal representations were designed to capture. That is, the formal represen-

tations have reflected the abstract decontextualized languages, rather than concrete

detailed scenarios. This is especially problematic when domain experts communi-

cate detail which should be considered but is never formally captured by software

experts.

Given the uses of scenarios in diverse fields, one contribution of this work is a

unifying representation of scenarios. This representation is called, REBUS, which

Stands for Requirements Envisaging By Utilizing Scenarios.1 The representation is

formal, yet captures useful domain knowledge conveyed by domain experts. REBUS

is intended to unify the best properties of the various informal and formal represen-

tations by being a representation which meets the desiderata described in chapter

2.

1.2 Who writes scenarios

The typical practice in software engineering is for systems analysts to develop ab-

stract requirements documentation based on discussions with domain experts. Gen-

erally, an analyst has some experience in the application domain and with software

systems, but does not have all the needed expertise in either. The typical documen-

tation tends to abstract away many concrete details needed for people to understand

the domain.

For example, domain experts including air-traffic controllers were a part of the

design and review team for the Federal Aviation Administration's 3.6 billion dollar

Advanced Automation System [45]. The typical requirements documentation was

produced, though requirements changes continued to plague the project [94]. The

project is nearly a billion dollars over budget and more than two years late. Thus,

in spite of serious efforts to involve domain experts, requirements envisaging proved

inadequate.

In typical practice, there is little opportunity for envisaging on the part of the

domain experts or software experts when reading analysts' documentation. Reading

is not as active a process as writing. In this typical practice, the detailed thought

doesn't occur until an implementation is developed. In the case of the AAS, require-

ments changes occurred as more detailed thought went into the implementation.

Consider two categories of scenario writers, domain experts and software experts.

Domain experts have spent years learning both the complex vocabulary of their

Webster's Dictionary defines rebus as "a representation of words or syllables by pictures of
objects or by symbols whose names resemble the intended words or syllables in sound; also: a

riddle made up of such pictures or symbols" (e.g. RE «==§?)

domain and how to react in the complicated situations arising in this domain. This

is also true for software experts who have spent years learning the formality of

programming and formal logic.

When domain and software experts communicate with each other during meet-

ings, they predominantly use their own domain-specific vocabularies. While trying to

establish connections, they will actually mix their terminology with the terminology

from others' outside their area of expertise, and by doing so leave the communication

open to misinterpretation.

One finds senior project members taking the lead as "translators," i.e software

experts who know the domain and its vocabulary, or domain experts who have

learned the software experts' vocabulary. These people are in short supply and they

tend not to do much of the programming, so the knowledge the programmers need

remains indirect. Domain experts and software experts need to collaborate 2 with a

common representation and vocabulary when writing scenarios.

In a few application domains (for example financial analysis), natural paradigms

have been devised (such as spreadsheets) that enable the domain experts to them-

selves play the role of software experts, i.e to specify and build many of their own,

typically small, software applications. In general, however, we are far from the goal

of having domain experts directly develop large, complex behavioral systems without

considerable intervention and assistance from software experts. Even with spread-

sheets we know that beginners tend just to use forms made by others and gradually

acquire skills. They also ask software experts for help when the programming effort

exceeds their desire to do it themselves [68].

Domain experts need certain skills to use any computer-based support. The

assumption is that our scenario writers are familiar with using direct manipulation

and forms-based computer interface techniques and that scenario writers are a subset

of scenario users. These human computer interface techniques form the basis for the

scenario capture tool that will be described in this dissertation.

2A tenet of Participatory Design.

This thesis addresses the communication problems that exist between domain

experts and software experts by considering each of their needs and by considering

the impact of adding computers into the communication process to assure that

automated support can be utilized.

1.3 Designer activities

The dynamics of software design activity are iterative, ill-structured [93] and oppor-

tunistic [36]. The nature of any design session is that it is dynamic, and does not

proceed in a strictly top-down or bottom-up fashion. In the case of systems design,

the process is knowledge (or lack of knowledge) and representation (artifact) driven.

The dynamic nature is manifested in the design activity of individuals or groups

with single or multiple media.

Guindon reports on activities of individual system analysts engaged in the design

of an elevator control system [36]. This is a domain in which the analysts were

not experts, but with which they were familiar. Figure 1.1 illustrates the design

activities of an individual analyst. This analyst is opportunistically shifting between

the application domain (elevator control) and solution details throughout the design

session. Notice that there is a continued need for domain specific considerations (the

upper levels of the figure) as well as continued envisaging activity into the solution

details.

Shifting focus to groups of designers involved in design meetings, clarification is

a time consuming activity. Olson et al. state [75], "clarification of ideas - a cross-

cutting classification - took one third of the time, indicating how much time was

spent in both orchestrating and sharing expertise among group members." Further-

more they state, "Clarification time is interesting. On the one hand, it certainly

represents a coordination activity, in that it represents time devoted to establishing

common ground (e.g., Clark k Brennan, 1991). On the other hand, it also con-

tributes to the problem solving involved in design, because it helps the participants

develop their ideas and make them clearer."

Figure 3. Shift« in design activities and levels of abstraction of Designer 1. Plus
signs indicate newly inferred or added requirements. Light bulbs indicate sudden
discovery of partial solutions or requirements. The region marked by R indicates
the period of solution review.

Lift Scenario -j <'
D
e
s
i Requirement -
n
A
c
t Solution High

t Solution Medium -
i
e
s

Solution Low

Time (minutes)

Figure 1.1: The shifting of a designers focus over time. Reprinted by permission of
Lawrence Erlbaum Associates, Inc. From Guindon [36], figure 3, p. 319.

Introducing a new media or methodology for communication changes the nature

of the collaboration. A general consensus is that multiple media and methodologies

are needed with an understanding of when to use them [54]. Further studies by Olson

et al. were performed to see how automated support affects group design meetings

[77]. They studied how a synchronously shared text editor changed the character of

a design meeting as well as its outcome [76]. They report that the designs produced

by the groups supported by the editor were of a higher quality than those who

worked with conventional white-board and paper and pencil. They were surprised

by the fact that those supported by the tool did less extensive exploration of the

design space. The tool helped the group keep more focused on the core issues in the

emerging design, to waste less time on less important topics, and to capture what

was said as the discussion progressed.

This thesis introduces a new media into the collaborative process of scenario

writing. Although I will not be reporting on a controlled study like the Olson's, I

will be describing a formative evaluation done in the context of a real world project.

7

1.4 Automated support

Developing automated support for scenario writing is a central contribution of this

thesis. Tools specifically for scenarios don't generally exist. As a result scenarios

are rarely captured in any automated tools, and even fewer are captured in a formal

manner. In software practice, the few scenarios that are captured are for the purposes

of testing or user documentation.

There are tradeoffs of different forms of automated tools: we can look at the va-

riety of tools that are useful for general or domain-specific tasks as well as consider

tool characteristics. A tool can be characterized along the following scales: learnabil-

ity which depends on the scenario writers background and skills; expressivity from

the standpoint of what concepts can be explicitly represented in a scenario; and

formality which depends on the syntax and semantics available for scenario analysis.

These characterizations are not easily quantifiable, but they serve as a means to

distinguish between different forms of support and to discuss the tradeoffs. To our

knowledge, previous work has not adequately resolved these tradeoffs in a manner

which meets the needs of people during requirements envisaging.

What is currently used most are domain-independent, task support tools (e.g.

a drawing program, which can support structured graphics for drawing aircraft in

different air-spaces). Such tools are completely independent of application domain

knowledge and have relatively high learnability. They vary from editing text and

graphics, to outlining and story-boarding, to composing animations and multi-media

presentations. Unfortunately, these tools do not support formality. Therefore, the

tools leave domain specifics open to misinterpretation when such presentations are

passed along to programmers. For example, a air-traffic controller might draw an

aircraft in-route to LAX with a drawing tool. In such a depiction, problems arise

when the attributes associated with the aircraft (such as, wide-body) can not be

formally tied to the aircraft.

To pass designs along to programmers, computer-aided software engineering

(CASE) tools are generally advocated. If we consider programming as a domain

of expertise then CASE tools are a form of domain-specific (i.e. software design)

8

task supporting tool with higher degrees of formality. Their learnability is limited to

software experts since they require substantial programming expertise. CASE tools

and object-oriented methods employ specialized vocabularies and representations.

Such vocabularies are arcane to domain experts. These representations are also bi-

ased towards the expression of abstractions, inhibiting their usefulness at capturing

the contextual details and semantics of the application domain knowledge.

Some tools were developed for recording design rationale (e.g. IBIS [19, 84] and

QOC [61]). The goal of capturing design rationale is to retain the "why" of the

design. Such tools provide hypertext support for structuring links to nodes which

separate the design space into issues, alternatives, and criteria. Scenarios can be

placed in the nodes, complementing the design rationale. The structured links and

nodes have little value in terms of automated analysis of the design. Recent work

focuses on integrating design rationale with scenarios because design rationale had

limited value without being attached to the designed artifact [82].

Alternatively, approaches that take advantage of a-priori knowledge of the ap-

plication domain exist. They rely upon software experts to build domain-specific

tools for scenarios [25, 56, 11] (e.g. a fighter-plane simulator which has built-in

plane objects and behavior for firing missiles) . While the result, if well designed, is

eminently acquirable by domain experts, such a tool is of little use for a different do-

main, and of course requires that the software experts must already have understood

the domain in order to have built the tool.

As part of the evolution of the ideas presented in this thesis, I considered vi-

sual languages and end-user programming tools, especially those which made use

of demonstrational techniques for specification. Taking a domain specific approach,

the initial effort was to provide support for animation with domain specific objects.

In this context a prototype was developed for vehicle traffic-control which was im-

plemented by integrating the ARIES specification environment [52] which supports

various specification languages and the Polka [99] framework designed for novice

programmers to develop their own algorithm animations.

This initial effort developed with the idea that it would have to be useful for

critiquing behavior. The problem arose that behavior was encoded in parameterized

procedures, difficult for non-programmers to understand. It became clear that this

approach had two other major problems: (1) it required a great deal of domain

knowledge by the software experts and it would be codified in a manner no longer

suitable for envisaging; (2) a great deal of effort would be spent in coding scenarios.

The effort in writing parameterized procedures for every object's behavior was es-

pecially problematic. Software experts would be spending too much time worrying

about the implementation issues and easily lose track of the application domain as

well as validation with the domain experts. Some end-user programming systems

solve this problem by providing forms for non-programmers to write "before-after"

rules [4, 95]. To write such rules, one specifies the criteria for applying the rule on

the 'left-side' and the behavior to follow on the 'right-side'.

This thesis takes a domain independent, but scenario-writing specific approach.

It has the advantages of the domain-independent, task support tools, without their

disadvantages. Also, before-after rules were extended to increase their expressivity

with temporal information.

1.5 Example scenarios

For an initial illustration of some scenarios, figure 1.2 contains three scenarios in a

telephony domain. In this domain, objects or agents interact simultaneously within

the context of an environment. Scenarios are only meant to contain a certain amount

of information (this is of course subjective and dependent on the scenario writers'

skills). For an example of what has been omitted in the example telephony scenarios,

we do not see the division between the system and environment. This division is

less important for conveying a contextualized representation of the domain, because

both the system and environment are elaborated to the level of detail necessary.

In the telephony scenarios, I've placed myself in the situation of calling Lewis

at his workplace. By placing myself in the scenario, I am setting the stage for a

10

-Anywhere

Me

1 Phone

Lewis's office

Lewis-

9

A

I say "call Lewis" TT
USC/ISI

Me
3f

North America

I Phone

Lewis's office

Lewis-

9
\/
A

TZ
I dial 131082215101210

USC/ISI

Me
^

My office

Lewis -

My phone

Lewis's office

ext 210

-o T
\/
A

I dial 210 ^
Lewis's phone is Idle
Lewis is in his office

USC/ISI

o
Triggers

Me
^

My office

Lewis-

My phone

Lewis's office

-Lewis's
phone

-o T
\/
A

I hear ring-back
Lewis's phone is ringing

C USC/ISI

Figure 1.2: Telephony example

11

personalized, contextual view of the system. I am personalizing it to make it more

detailed and more interesting by considering myself to be a participant (scenario im-

mersion) as opposed to specifying some abstract role, such as "telephone customer."

Alternatively, I could create elaborate characters with which to demonstrate usage

[104]. Such concrete personification is helpful for people during envisaging.

Scenario 1 — This scenario shows a future goal. I would like to be able to pick-up

a phone anywhere in the world and just say "call Lewis." The system would be able

to recognize my voice and take the appropriate action.

Scenario 2 - This scenario depicts the current method of calling Lewis from a

phone in North America. I just dial the area code, his phone number, and extension.

With this simple scenario's partial context we can elaborate and discuss further

details with a domain expert. The contextual nature of the scenario helps to evoke

some questions to ask a domain expert such as: Do I need a country code when

calling ISI from Toronto? Does the general rule about international calls apply? In

telephony, service charges depend on the locations of caller and callee, so envisaging

these spatial contexts is important. Of course, new mobile services are rapidly

changing the way service is charged.

Scenario 3 - In the first frame of this scenario, I've dialed Lewis from my office

when his phone is idle. The second frame describes a state following the first frame,

namely, I hear ring-back and his phone is ringing. These were the result of my

dialing Lewis's extension. This scenario could continue with, for example, Lewis

answering his extension or my hanging up. Notice that the behavior is fragmentary

and at different levels of abstraction, for example "dial 210" is a sequence of temporal

ordered actions, i.e. pressing the different buttons. This sequence differs from an

actual state, i.e. Lewis's idle phone.

The three scenarios contain roughly the same objects, namely myself, Lewis,

and two telephones. It is the spatial context and the details of behavior (temporal

context) which differentiate the concepts conveyed. Time and space are important

12

themes to convey via scenarios. They are fundamental to all interesting real world

domains.3

Any scenario support in scenarios like these will need to be considered along

two dimensions, between and within. Different scenarios will have between-scena.no

properties. For example, the differences between what is stated in scenario one

and two are different regions, like "anywhere" versus "North America" and differing

activities, like saying and dialing. In scenario three the scenario has two frames and

the behavior described is within-scenaiio. The focus is on the behavior, such as the

details about what has occurred leading to the triggering of what will occur. This

between frame behavior can be expressed in the form of the before-after rules.

In general, scenarios have a wide variety of uses such as those illustrated in sce-

narios one and two: expressing a goal of some future system or just describing the

current state of a system to others. People use scenarios to communicate effectively

especially when they are addressing people with different backgrounds from them-

selves. People also use formal languages for communication effectiveness when they

convey information to others in the same field. Formality adds precision to a de-

scription. Formal scenarios can help domain experts and software experts achieve

communication effectiveness and precision.

The requirements for automated support for scenarios rest upon having a pre-

cise representation or language for describing scenarios. The representation should

support envisaging. Tools make it easier for people to actively engage in the task

by allowing them to easily compose and construct scenarios. This is true especially

when people can be involved in scenario writing by directly creating and manipu-

lating the domain concepts. Tools for scenarios can support such tasks as editing,

sorting, and filtering of information.

Programming languages have also been explained via notions of time and space [29].

13

1.6 Real world basis

As part of this dissertation, a study of communication between software experts

and domain experts was needed to understand both what people actually convey

via scenarios and what information software engineers need from these scenarios.

Borrowing from methods of ethnography [83], an observational study was performed.

This study involved the videotaping of knowledge acquisition sessions between

software experts and former fighter pilots. They were developing a training envi-

ronment simulating air-combat. They wished to include automated pilots which

behaved and reasoned like human pilots.

This project exemplifies real world multi-site group development and is a more

complex domain than the ones reported in the design studies of individuals and

groups described in section 1.3. The scenarios in this domain are concrete examples

of combat tactics. One of the major outcomes of this study was the recognition that

these scenario representations were found to be richer than scenarios in the software

design literature.

1.7 Scope of domains

The application domains considered in this thesis include ones in which objects are

involved in complex and ongoing interactions with their environment. In order to

achieve domain independence, several domains were investigated with differing levels

of access to domain expertise. The five studied were vehicle-traffic control, air-traffic

control, telephony, intelligent forces and satellite control.

Vehicle traffic-control and air-traffic control were early sources of example scenar-

ios. While there was some communication with domain experts, these domains were

studied mostly by direct observation of vehicle-traffic control and of requirements

specifications for air-traffic control. However, merely reading the specifications of

the the FAA advanced automation system, was not sufficient for understanding how

planes were "handed-off". Visiting an FAA control center was necessary for seeing

14

how hand-offs are currently handled. The controllers readily explained this domain

concept as a scenario.

Telephony is another domain accessible by artifact. The telecommunications in-

dustry has produced much of the related work in scenarios for object-oriented meth-

ods. Scenarios are very important in this domain since many telephony problems

are highly contextual.

The Intelligent-Forces project [25, 101] (an air-combat domain) provided the

opportunity to study and capture meetings between domain experts and software

developers in the context of an actual project. Videotapes were taken of meetings in

which rapport was established and scenarios of fighter-pilot decisions were used to

allow the software engineers to develop an understanding of the application domain.

Finally, NASA's deep space network ground control provided another opportu-

nity to evaluate my work in a domain not considered during the development of

REBUS.

1.8 Summary

Requirements envisaging is the process of transforming informal descriptions of soft-

ware requirements into the precise language necessary for designing a software sys-

tem.

Domain experts frequently express their requirements in terms of scenarios: par-

tial descriptions of behavior in restricted situations. These scenarios frequently are

not formally captured in the resulting requirements documentation. Thus, some,

possibly essential information is lost in the translation of requirements between do-

main and software experts. As with the FAA's Advanced Automation System, this

can result in costly and time consuming iterations of the requirements writing pro-

cess.

This dissertation is a step in the automation of the requirements acquisition

process. It provides a mutually-understandable, easily-learned, language, named

REBUS, for communication between domain and software experts. REBUS enables

15

the use of scenarios in this acquisition process, taking advantage of the way domain

experts naturally express their requirements.

REBUS' design was guided by concepts found in a number of domains, including

auto and air traffic control, telephony, and fighter pilot simulations. REBUS is

evaluated in a new domain, NASA's deep space network ground control, which was

not considered during REBUS' design process, thus providing a formative evaluation

of REBUS's ability to facilitate requirements acquisition in a new domain.

1.9 Thesis outline

Chapter 2 contains the desiderata of automated support for scenarios based on the

ethnographic study in the intelligent forces domain. Chapter 3 contains further

examples of IFOR scenarios, and compares them to existing scenario representa-

tions and automated support. Chapter 4 contains the REBUS language description.

Chapter 5 contains the implementation of REBUS in an automated scenario cap-

ture tool called, SCtool. Chapter 6 contains the case-study performed to evaluate

REBUS and SCtool. Chapter 7 contains conclusions and future work.

16

Chapter 2

Automated Support for Communication Using

Scenarios

DILBERT reprinted by permission of UFS, Inc.

THE PROTECT REQUIRE-
HENTS ARE FORMING
IN W MIND.

NOW THEY'RE CHANGING..
CHANGING... CHANGING..
CHANGING... OKAY. NO,
WAIT.. . CHANGING.
CHANGING... DONE

NATORALLY, I
ÜON'T BE
SHARING ANY
OF THESE.
THOUGHTS
CJITH

I BUDGETED
FOR SOME
GOONS TO
BEAT IT
OUT OF YOU

ENGINEERING.
4M)

Ä S\ tff^ \\sÄÄ£ I\\

2.1 Introduction

The central theme of this chapter is to identify the desiderata of automated support

of scenarios. We are interested in providing support for effective communication

between domain experts and software experts using automated tools. These people

with different backgrounds and expertise need to communicate through time and

space in order to understand and resolve problems. Scenarios are an important part

of this communication and they should be captured in a persistent representational

medium. So, we must examine what features scenarios must have so that, when

incorporated in automated tools, effective communication can be facilitated.

17

In order to provide people with automated support for communication via scenar-

ios, the scenarios need to be in a external representation that is domain-independent,

evocative and precise. That is, for the representation to be effective for communica-

tion: (1) it must vividly evoke understanding from the scenario readers; (2) it must

be eminently expressive for the scenario writers; (3) it must be readily manipulable

and analyzable by people and automated tools with out a-priori domain knowledge.

This chapter is divided into a section on communication and a section which

further addresses representational matters. Throughout, it contains examples from

an observational study in the tactical air-combat domain.

2.2 Communication

Communication is used to transfer knowledge and understanding from one person

to another [105]. Of particular concern is communication between people; between

people and external representations; and finally between people and computers.1

2.2.1 Between people

Establishing good communication and collaboration between people is a complex

process. One key problem that occurs when people with different backgrounds work

together is that they need to establish a shared understanding of vocabulary. Such

terminology will need to be expressible and precise within representations of scenar-

ios.

To illustrate the problem of not having shared terminology, we first present dialog

which comes from the observational study in the tactical air-combat domain. The

participants can be grouped into pilots and software developers. The pilots were

initiating the software developers in their domain at the request of the software

developers. The software developers wished to ascertain the scope of the knowledge

they needed of the application domain in order to develop a prototype simulation

with which to demonstrate their software agent reasoning technology.

absent from this discussion is computer to computer communication.

18

The pilot has been asked to explain a long-range mission involving his plane

and one enemy plane. He was asked to explain concepts from "first principles"

and to describe his "plans." The dialogue was transcribed from the videotape of

the meeting and it shows the pilot's attempt to incorporate the software expert's

request for plans.

Pilot: Your plan is... say for this intercept you want thirty degrees of target

aspect when you fire the missile. You want to, at twelve and a half miles be on your

reciprocal heading. You want to turn hard into the target at forty degrees. If you do

that and you set yourself up at thirty thousand feet then you 11 just turn hard, hard

into it at forty degrees and then all of the things that change, the steering dots, the

things that you're using to shoot a missile.

The software experts request for "plans" was rather unsuccessful, since, to the

pilots, a plan is a rather abstract term, and, to the software experts, a plan has a

more precise meaning. The pilot might have used this term because the software

developers and pilots are participating in a process of establishing "shared under-

standings." In order to develop shared understanding, people elaborate on ideas

to a point where each participant believes she understands what the others mean

[17]. Other activities for this process include: pointing to objects, repeating what

has been said in a different way, and asking questions. If people had appropriate

automated support for scenarios, they could let other people directly manipulate the

concepts found in the scenarios, so that they can progress by pointing to concrete

scenarios of their questions or of alternative situations.

Abstract software domain terminology is pervasive in the following statement by

a software developer who is expressing concern for what is being said by the pilot.

Software developer: It seems to me that part of what we need is a place where

the descriptions that you 're giving can be factored into sort of reusable components.

... so that this maneuver is constructed out of these components. So this little thing

that's different here... we get to reuse all these components but suddenly we've got

some other component to plug in. I'm not sure how to get that idea. It's not all

19

the steps in the plan, that's not what we're decomposing, it's the pieces of knowledge

that go into determining the steps.

The software developer is still engaging in activity for shared understanding by

gesturing to elements of the pilot's description, but uses terminology more natural

to the software domain. It is a lengthy process to come to shared understandings.

What is needed is a domain independent shared vocabulary which can serve as a

more precise basis for communication and automated support. Such a vocabulary

will need to include, for example, the concrete notions of measurement expressed

by the pilots, such as "thirty degrees" and "thirty thousand feet." It should help

people describe temporal and behavioral aspects in a more precise way, such as the

exact conditions for firing a missile and the steps that follow, such as a 40 degree

hard turn.

There is more to the communication and coordination process than establishing

a shared vocabulary. When people are trying to engage in "win-win" negotiations

[18, 9], they must also develop rapport. Advice for developing rapport includes such

things as matching or mirroring other's physiology, vocal tone and tempo, and their

choice of words [2]. Such behavior is not amenable to automated support.

After walking away from such a meeting, a participant might believe that she

understands what the other is saying, but this may be a false sense of shared un-

derstanding. When it comes time for the action to be taken, or even when one

returns to discussion in the follow-on meeting, it becomes obvious that not every-

thing was understood. The details were not clear, forgotten, or never stated. Even

during meetings, people have a limited capacity to understand and remember the

others' terminology and knowledge. People need to return to concepts previously

discussed for clarification. What helps people remember and validate knowledge

from such meetings are persistent external representations. The next section will

include a brief description of the external output of the meeting between the pilots

and software developers; and a detailed examination of the interaction of people and

external representations.

20

We note that during the meeting the communication process was dynamic, ill-

structured, and spanned multiple media. Little beyond personal notes was captured

during the meeting (except for the videotape which was used for this dissertation).

Towards the end of the meeting, the developers asked the pilot to document via

electronic mail the mission he presented so that it could be used as a basis for

software development. That is, they requested the scenario which comprised nearly

two hours of meeting discussion time. Figure 2.1 contains much of this scenario.2

The pilot has clearly envisaged the scenario and presented it in an organized

manner. Although it misses some details found on the videotape, it does contain

details not stated explicitly during the meeting. The first part of the text contains

the initial situation, which includes rich details of the domain, such as the blue

force (United States military force) - F-14B Tomcat, the missiles it is carrying,

its radar modes, and its mission. Some details were omitted because of assumed

context, an "F-14B Tomcat" is an American plane; and "LRMs" are long-range

missiles, although the maximum and minimum ranges are given in detail and the

radar modes are explained in further detail on the videotape. Some notions are not

explained. For example, the pilot has switched viewpoints in step 2: What was the

Mig-29 in step 1, is a "bogey" which is later confirmed to be a "bandit" in step 2.

Such terminology needs to be captured in a manner that is manipulate, so that

those who need further detail, such as the software developers, can find it. Such

problems of detail and explicitness can be ameliorated with an appropriate shared

external representation and automated tool.

It has been edited with ellipses to fit on a single page.

21

1 v 1 Air Combat Scenario Discussion, 9/17/92

Blue force - F-14B Tomcat, 2 AIM-54C LRMs (40 NM max.

range forward quarter (FQ) and 5 NM min. range FQ, 2 AIM-7M

MRMs (25 NM max. FQ and 3 NM min FQ ranges), 2 AIM-9M
SRMs (6 NM max FQ and 2 NM min FQ ranges), 656 rounds

20mm, chaff tc flares. All radar modes available with full capabil-

ity. Radar Warning Receiver (RWR) operational but not capable
of detecting Airborne Intercept (AI) radars illuminating the F-14

at a range greater than 10 NMs.

Blue mission: Barrier Combat Air Patrol (CAP) and High

Value Unit (HVU) CAP, 100 NMs north of USS Boat and 70 NMs
south of one hostile country shore line. Under E-2C control (the

HVU).

Red force- MiG-29 Fulcrum, 2 AA-10C radar LRMs (35 NM

FQ max and 5 FQ min ranges), 2 AA-10D IR MRMs (10 NM FQ

max. and 3 NM FQ min ranges), and 4 AA-11 SRMS (6 NMs FQ
max and 2 NM FQ min ranges). All radar modes available with

similar RWR performance as the F-14.

Red mission: Destroy American imperialist aggressor's E-

2C early warning aircraft, and if necessary, it's fighter protection.

Under Ground Control Intercept (GCI) site control.

Scenario:

1. F-14 in 20 NM racetrack CAP pattern oriented

north/south with a threat axes 60 degrees wide (from 330 degrees
to 030 degrees magnetic). Speed 250 knots inbound (north), 400
knots outbound to maximize independent search capability. E-2

is in an orbit 50 NMs south of the F-14 CAP station and 50 NMs
north of the carrier providing high detection probability coverage
to the shoreline and 50detection probability over land due to ter-
rain masking. Mig-29 is approaching from over land using terrain
masking until 90 NMs north of the F-14 and then pops up to 30K'
to optimize search and acquisition capability and accelerates to

.9 Indicated Mach Number (IMN).

2. F-14 and E-2C both detect the bogey as soon as he pops
up out of masking terrain. F-14 receives a vector for intercept call
from the E- 2C and confirmation the bogey is a bandit and the
F-14 has a cleared to fire as per the Rules of Engagement (ROE)

currently in force. The F-14 goes to collision course with less
than 20 degrees Target Aspect (TA), accelerates to .9 IMN, and

begins to climb to 30K' while sanitizing (through radar search)
the volume of space 40 degrees left and right and over the entire
altitude band around the bandit's position using the Track While
Scan (TWS) mode of the radar. No other targets are detected.

3. The GCI site passes the F-14 and E-2C positions to the
MiG. The MiG begins a radar search and acquires the F-14 at 80
NMs then goes to a single target track radar mode to determine if

the F-14 is on an intercept vector. The MiG determines the F-14
is a definite threat and initiates an intercept profile by turning to
place the F-14 on it's nose to see if the F-14 will react. At this
point all comm channels are jammed which prevents the F-14 from
communicating with the E-2 and the MiG from communicating

with the GCI site.

4. The F-14 sees the MiG turn 20 degrees to starboard

(right) at a range of 70 NMs which reduces the TA to 0 degrees.
The F-14 then turns to place the MiG on his nose. Intercept time

elapsed is now 1 minute.

5. The MiG sees the F-14 turn to counter the MiG's aspect

change turn which verifies the F-14 is on a hot vector for the MiG.

6. The F-14 switches radar mode at 50 NMs to Pulse

Doppler Single Target Track (PDSTT), the mode which allows
the longest range LRM firing Launch Acceptability Region (LAR).

Elapsed intercept time is now 2 minutes.

7. The MiG switches to a single target track radar mode at

45 NMs in anticipation of firing his LRM just inside max range.

8. The F-14 fires a LRM at 38 NMs and turns 50 degrees

right (must stay within 65 degree radar antenna limit) to decrease

relative closure which increases the range between the F-14 and

MiG at missile intercept.

9. The MiG observes the F-14 turn and assumes a LRM
has be launched so initiates a hard 90 degree turn to the right
to place the F-14 in the beam to defeat the missile, if launched,

and to deny the F-14 the ability to detect the MiG in a PD radar
mode. However, this causes the MiG to lose his radar lock and

information on the F-14 as the turn exceeds the antenna azimuth

limits of the MiG's radar. After maintaining a beam heading for

15 seconds the MiG continues the hard right turn (to complete a

circle) and steadies up on a heading equal to the last bearing of

the F-14 prior to the MiG performing the 90 degree turn.

10. The F-14 observes the MiG making a hard turn into

the beam (90 degree TA) which defeats the LRM ($500K down
the tubes). To complicate the MiG's intercept task and decrease

the validity of the MiG's Situational Awareness (SA), the RIO
calls for a 20 degree nose down descent to an altitude of 10K'. He

then locks the MiG up in Pulse Single Target Track (PSTT) which
allows the F-14 to maintain radar lock on the MiG throughout the
complete turn (PSTT is not affected by aspect as is PDSTT. The
descent and resulting speed increase serve to move the F-14 out
of the piece of sky (about 5-7 degrees lower than the last position
relative to the MiG) the MiG will begin to search given the MiG
continues the turn and heads back into the F-14 to reinitiate the
intercept. As the MiG turns back into the F-14 and decreases
TA to less than 45 degrees the F-14 switches radar mode back to
PDSTT and fires it's last LRM then makes another F-pole type
50 degree hard turn to the right to decrease closure and maximize

relative range at missile intercept.

11. The MiG commences a search at the F-14's last altitude

and azimuth but does not detect the F-14 for 10 seconds due to
the increased volume of space necessary to search since the F-14
descended and gained speed (the descent increases the elevation
angle which the antenna must depress to and the speed increase
from converting altitude to energy increases the closure which

also increases antenna depression angle as a function of time). As
soon as the MiG detects the F-14, it turns to put the F-14 on it's

nose and launches it's LRM.

14. The F-14 pursues the MiG until the MiG crosses the

shoreline. The F-14 then breaks away and heads south toward

CAP station.

Figure 2.1: Air combat scenario written by a pilot

22

2.2.2 Between people and external representations

To enable the effective communication over time and space, persistent external rep-

resentations must be used. These representations should be suitable to the task of

scenario writing and manipulation between domain and software experts. In fact,

when the building blocks3 of the representation are sufficiently expressive the rep-

resentation can aid the sharing of knowledge and elicit the asking of appropriate

questions. Thus the representation helps to develop a precise record of shared un-

derstandings.

External representations play an important role in the social science frameworks

of Activity Theory and Distributed Cognition [66]. In Activity Theory a key idea

is the notion of mediation [58]. Nardi states [66], "Artifacts, such as instruments,

signs, and machines mediate activity, and are created by people to control their own

behavior. Artifacts carry with them a particular culture and history [58], and are

persistent structures that stretch across activities through time and space." Scenar-

ios need to be persistent because they are important for illustrating and explaining

design decisions. Later, these decisions may change and may need to be traced back

to the scenario.

Changing design decisions is a natural part of the process. During design, un-

planned information from external representations can enter the focus of attention,

trigger knowledge rules, and modify the designer's plans [36]. Guindon's study of

systems analysts doing an elevator design task discusses the fact that domain spe-

cific depictions are an essential element of the external representations used by the

analysts. Such depictions evoke human understanding and are an important part of

scenarios in the air-combat domain.

Another aspect of communication that is important is the relationship between

internal and external representations. A fundamental tenet of Distributed Cognition

[28] is that problem solving behavior results from the interaction between external

3The primitive units used for modeling.

23

and internal (to each individual) representational structures. During the commu-

nication process, internal or tacit knowledge needs to be externalized as persistent,

manipulable artifacts.

There are fundamental discussions in psychology over people's abilities to de-

scribe tacit knowledge. In The Tacit Dimension, Polanyi states [80]:

I shall reconsider human knowledge by starting from the fact that we

can know more than we can tell. This fact seems obvious enough; but it

is not easy to say exactly what it means. Take an example. We know a

person's face, and can recognize it among a thousand, indeed among a

million. Yet we usually cannot tell how we recognize a face we know. So

most of this knowledge cannot be put into words. But the police have

recently introduced a method by which we can communicate much of

this knowledge. They have made a large collection of pictures showing

a variety of noses, mouths, and other features. From these the witness

selects the particulars of the face he knows, and the pieces can be put

together to form a reasonably good likeness of the face. This may suggest

that we can communicate, after all, our knowledge of a physiognomy,

provided we are given adequate means for expressing ourselves. But the

application of the police method does not change the fact that previous

to it we did know more than we could tell at the time. Moreover, we

can use the police method only by knowing how to match the features

we remember with those in the collection, and we cannot tell how we

do this. This very act of communication displays a knowledge that we

cannot tell.

Polyani's example illustrates three requirements towards bringing forth tacit

knowledge.

1. The use of depictive external representations. The pictures showing noses,

mouths and other features are external representations which are suitable for

the activity. These pictures are variations on the basic building blocks (eyes,

24

a nose, etc..) of human faces. Some aspects of envisaging a domain are

similar to face recognition by being highly depictive. Since scenarios convey

behavior and other aspects of domain knowledge, symbolic and descriptive

aspects of external representations are also important. The need for depiction

and description will be described further in section 2.3.2.

2. The use of compositional building blocks. Manipulable, highly expressive lan-

guages start with a basic set of concepts. People compose them to represent

and create other concepts. Such building blocks are not only the basis for

supporting people with an adequate means for representing domain concepts,

they are fundamental to the development of any automated support for sce-

nario manipulation. One could not begin to develop a automated tool for

such a collection of facial features without knowledge of the building blocks.

A central tenet of this thesis is that scenarios have a common set of building

blocks. During envisaging one needs to map domain concepts onto building

blocks, and one needs the ability to compose and decompose such knowledge

in a manner other people can understand. Building blocks will be further

discussed in 2.3.4.

3. The act of actively doing: the witnesses and the police are actively engaged in

an activity producing shared knowledge. The active and iterative engagement

in a task by a domain expert is what Schön [90] calls "reflection-in-action."

To support and evoke human understanding involves actively engaging domain

and software experts in iterative, collaborative scenario writing.

Actively engaging in "reflection-in-action" is important to the requirements en-

visioning process. For example, in modeling the scenario presented in figure 2.1, a

software expert focuses on the turning behavior of the F-14 in step 8. This example

is an instance of a software developer leaving a meeting with a superficial under-

standing of a concept. It also illustrates the value of domain specific depiction for

evoking tacit knowledge.

8. The F-14 fires a LRM at 38 NMs and turns 50 degrees right (must

25

Figure 2.2: Depiction of situation in which F-pole is performed

stay within 65 degree radar antenna limit) to decrease relative

closure which increases the range between the F-14 and MiG at missile

intercept.

Note that the domain expert wrote step 8 in a cursory manner by stating that

the pilot wants to decrease relative closure and increase range. The details of such

knowledge are left unstated by the pilot.

In the case study, the software experts were responsible for further understanding

and verifying the details of such tacit knowledge. The depiction in figure 2.2 illus-

trates the combat situation. The software expert understood, from the meeting, that

the F-14 was performing an "F-pole" after firing the missile. One software expert

thought that F-poles were performed to avoid debris. In drawing the depiction, she

realizes that this knowledge was incomplete, since the F-pole was being performed

for long range missiles. By asking additional questions, further reasons became ap-

parent. What would happen if the MiG were firing at the F-14? The F-pole would

help the F-14 avoid the MiG's missile range. What would happen if the missile

misses? The F-pole would help the F-14 quickly turn around and fire. What would

26

happen if there were already enough relative angle? Then further turning would not

be required.

After engaging in such questioning, a definite description for an F-pole emerged.

It is a composite of two simultaneous activities, that is, both a turn and missile

support. The turn involves improving the fighter's position and velocity relative

to the opponent and missile support involves making sure that the opponent stays

within blue's radar volume at all times.

2.2.3 Between people and automated tools

To manipulate and analyze a representation, the choice of media is important. Au-

tomated tools provide added value for manipulating representations. The limits of

the medium used to capture scenarios impacts further use of the scenarios. Instead

of losing scenarios in the informal communication process, the goal is to capture

scenarios in a manner which affords modification, maintenance, and analysis. It is

generally difficult to modify, maintain, and analyze requirements for complex sys-

tems and the use of computer-based media is inevitable.

The air-combat scenarios observed in meetings spanned multiple media. The

content of the communication was distributed across spoken, written (both text and

drawings), gestural, as well as computational presentations [102] - all of which are

perceivable and can be captured on videotape. The problem with videotape as a

capture medium for scenarios is that it is unwieldy as an organizational structure.

Techniques for searching and indexing are limited to linear visual search or require

knowledge-engineered annotation (e.g. hyper-media). Videotape does not capture

or structure the aspects of scenarios which are important without also capturing the

meeting noise. For example, one can not easily search the videotape for situations

in which a plane performs an F-pole or a plane performing an f-pole is discussed.

Consider using a drawing/text editor (one was used to create figure 2.2). Using

such a tool we can manipulate text and graphics, but not F-14's or MiG's. At some

point, the scenario writer will need to manipulate text and graphics to create the

F-14's depiction, but this can be done in a more precise manner (e.g. the graphics

27

could be specifically associated with the plane). The drawing/text editor doesn't

support the task of editing F-14's, since the editor's view of the primitive building-

blocks are structured graphics and characters. That is, the building blocks which

the tool manipulates are at a different (lower) level of abstraction. Any tool which

supports scenario writing will need to address such different levels of abstraction.

2.3 Representational matters

In developing automated support for a representation of scenarios, five dimensions

are significant: 1) semantics: How can a representation have flexible semantics to

support the scenario writers' conceptual intent and still support various domains.

2) graphical and textual presentation: Scenarios contain both, can one support

both? 3) degree of structure: Scenarios can be written during ill-structured thought

processes in order to uncover structure, so how much structure should a scenario

representation provide? 4) building blocks: How many and what should they be?

5) and behavior. Scenarios contain behavior. How can it be represented?

2.3.1 Semantics

Semantics play an important role in human understanding and in determining au-

tomated support for a representation. For example, in the tactical air-combat do-

main, an "F-14B Tomcat" has precise meaning to the pilots in terms of the plane's

characteristics. This meaning is vastly different to the software experts or to a com-

putational system in which the formal meaning is only reflected in the encoding to

the elements of a representation (e.g. as an object with attributes or as a string of

characters.).

One basic way to avoid misunderstandings is to define terminology. So, for every

term used between the domain and software experts there would be a item in the

dictionary. This is problematic. These people with different backgrounds may not

know how the terms relate to each other or to the physical world.

28

Consider three ways in which semantics can be embodied in a representation:4

1. Conceptual categorization is a basic approach with which to convey mean-

ing. Concepts have meaning when they fit into one category as opposed to

some other category. Categorization is one of the fundamental mechanisms

for organizing knowledge. Lakoff [59] describes how categorization is a matter

of human experience and imagination. Furthermore, he describes how some

categories are "in the middle of the taxonomic hierarchy" and are learned first

by children; who work up the hierarchy, generalizing, and down the hierarchy,

specializing. The following hierarchy illustrates abstract to specific categories:

object - animal - mammal - dog - beagle - Snoopy. Conceptual categories re-

quire the representation user to do some work. For example, the user must

map domain concepts like "F14B Tomcat" onto a category provided by the

representation, for instance, an "object" or furthermore, as a subcategory of

another domain concept which has already been categorized.

2. Analogy or metaphor can be used to associate meaning with concepts.

Some end-user simulation development environments have been designed and

developed so people will map domain concepts to the environment's built in

concepts. For example, Rehearsal World [27] uses a theater metaphor. In the

case of an "F14B Tomcat" then a plane is a "performer" which moves around

on a "stage". Another environment, ToonTalk™ [53], uses cartoon character

analogies. Table 2.1 shows the mapping between ToonTalk's concepts and

computation abstractions. For example, a pilot would be encoded as a house,

the control tower as a nest, and birds would be used to transfer messages

between the pilot and the control tower.

3. Domain specificity is the final way considered to embody meaning. For ex-

ample an "F14B Tomcat" would be a concept built into the representation.

4Not included in this discussion are various mathematical, formal languages due to the sophis-
tication needed for their use.

29

ToonTalk™ Computational
city computation

house agent (or actor or process or object)

robots (with thought bubbles) methods (or clauses or program fragments)

contents of thought bubble method preconditions

actions taught to robot inside thought bubble method actions

cubbies tuples (or arrays or vectors or messages)

loaded trucks agent spawning

bombs agent termination

number pads, text pads, pictures constants

birds channel transmit capabilities

nest channel receive capabilities

notebooks program storage

Table 2.1: Mapping between ToonTalk™ building blocks and computational ab-
stractions from Kahn [53]. With the permission of Ken Kahn. © 1994 Ken Kahn

Thus, the term has meaning to the reader by a-priori definition. This is prob-

lematic when people have different backgrounds.

The domain specific approach appears to have the advantage because the user

of the representation is skipping any mapping, but in the reality of building a tool

to support such a representation, a mapping has been fixed a-priori and is no longer

a flexible representation in the face of new knowledge. Domain specificity can also

be considered to a degree. For example, instead of building in a "F-14 Tomcat" a

more abstract domain concept like "fighter-plane" might be built in. This would

introduce the need for mapping, as in the conceptual category approach. If we are

willing to consider building in fighter-plane, what about the more abstract "plane."

This alludes to the issue of what and how many concepts are built in. This issue

will be discussed in section 2.3.4.

Analogy and metaphor approaches can be used as a very evocative part of the

design process [62], but consider using them in the representation which one uses for

making domain concepts precise. The metaphors in Rehearsal World and ToonTalk

were both designed to let non-programmers (teachers and children, respectively)

write programs in which objects interact in a simulated microworld. But the use

of metaphor and analogy can conflict with the application domain. It can fail as a

30

means to achieve precise communication, since built in metaphors rely on concepts

which can either conflict with the problem domain or provide the communicator

with an unnatural vocabulary.

The conceptual categories of a representation have to be easy to understand

and useful for the task, but still independent of the participants' background and

experience. To help software experts understand the application domain, domain

experts have to provide an encoding to the categories of a representation. Dvorak

and Moher performed a study [24] in which programmers were asked "to design

object-oriented class hierarchies based on lists of properties similar to those which

might be extracted from a software project requirements document." They found

that "Differences in domain experience resulted in qualitative differences in their

approaches to the problems and substantially impacted inter-subject agreement on

the structure of the resultant hierarchies." Thus, it is very important for domain

experts to be involved in the mapping of domain concepts to categories.

Consider a hybrid approach of definition, categories,- domain-specificity and

metaphor. The most successful end-user programming environment, the spread-

sheet, is a hybrid. It has the abstract conceptual categories of sheets with rows and

columns of textual cells which are related by formulas. It uses these in combination

to embody a spatial metaphor. The meaning of a particular row and column comes

from definition. The reason spreadsheets only partially provide semantics from such

categories is that domain specificity towards financial calculations restricts the rep-

resentation.

With respect to avoiding communication problems and providing automated sup-

port for scenarios, a balance must be achieved between definition, conceptual cate-

gories, domain independence, and analogy and metaphor. The REBUS representa-

tion provides a domain-independent conceptual framework based on notions found

in real-world scenarios, namely objects, units of measurement and types, time, space

and behavior. We are interested in the framework serving as a basis with which do-

main concepts are understood by the various scenario readers (including automated

tools).

31

■p -6
Figure 2.3: Two depictive interpretations of the sentence, "the tree in front of the

car.

2.3.2 Graphical and textual presentation

Neither graphical nor textual presentations alone can serve as the ideal format for

scenarios. Any generally useful (i.e. domain/task independent) external representa-

tion for scenarios must support graphical as well as textual presentations. Wurman

states [105], "There is some consensus that pictures about concrete objects and

events are understood more quickly, while words are favored when depth and clarity

of comprehension are demanded, such as communicating abstract ideas. But this

isn't enough to decide between the two. A rule that could be applied to informa-

tion in general just doesn't exist. What has come through in many studies is that

combinations of pictures and words are more effective than either alone."

With more than a few objects, depiction in the context of a spatial layout can

aid precision compared to stating such information textually. A simple illustration

of this is the natural language statement, "the tree in front of the car." Depictions

(like the ones in figure 2.3) provide a more precise view of the various valid spatial

configurations between the tree, car, and viewer. Although text can provide further

precision in the spatial information, such as the distance between the tree and the

car (e.g. five meters).

32

In scenarios in which multiple objects are interacting with their environment,

graphical depiction is common in the external representations of domain knowledge.

For example, figure 2.4 contains a page in the middle of a tactical air-combat sce-

nario written by the pilots and shown to the software experts. There are graphical

depictions of planes and textual descriptions of behaviors. In fact certain conceptual

categories were frequently depicted, such as planes and spatial regions while others

were generally conveyed with textual or spoken description. The simultaneous ac-

tivity depicted in the context of this representation is used to convey behavior, in

terms of spatial as well as temporal aspects of the domain.

2.3.3 Degree of structure

While support for graphical and textual descriptions is important, consider another

cognitive dimension, the degree of structure or formality in a representation. Sce-

narios can be used during idea exploration (an ill-structured activity) as well as

requirements validation (a more well-structured activity). So, an automated tool

should be supportive of the intertwining of well-structured and ill-structured activ-

ities. Design involves iteration between well-structured and ill-structured processes

[93]. To support the process, the scenario representational structure, must support

different degrees of structure.

To illustrate different degrees of representational structure, consider four exam-

ples. First, consider a paint-by-the-numbers kit. This exemplifies a well-structured

representation. Consider the other extreme, a blank page, as an unstructured rep-

resentation. Finally, consider two intermediate degrees of representation structure:

One, a child's coloring book with its scenes and characters already on the page; The

other a coloring book [106] in which a pattern or doodle exists on the page (see

figure 2.5). To use the latter, one envisions concepts (like one envisions patterns in

clouds) and uses markers to bring forth the vision.

For further motivation to provide support for different degrees of structure, Goel's

[30] work more formally defines the properties of ill-structured and well-structured

representations and processes. In the context of ill-structured problem solving (e.g.

33

"Bagdad Taxi Drill" # 9b2b
Assumptions:

Enemy fighters taucnh counter fire at 1 & 2

High Cap f
39,000'

Low Cap
30,000*

1,2

*~+rJ
5,6

3.4

High Cap
39.000*

t = 4:45 minutes High Level Task Analysis for GCI Weapons Controller

25 Direct first element (1 &2) to execute a hard
180° turn away from the second element (3 & 4)
26. Direct second element (3 & 4) to launch
weapons on acquisition of IR target and r< z ran
27. Direct third element (5 & 6) to turn to intercept
heading for enemy fighters (approximatey 180° In
direction of enemy).
28. Monitor enemy fighters and assess reaction

Vector Compute heading, velocity, (cGmb/dive) to desired point
(relative to target projected location)

Morion Compare actual to planned; recompute if projected result
exceeds n miles and/or m° and/or t seconds

Assess: assign a rationale to detected enemy maneuvers that exceed
N* heading change, M 7sec turn rate, or significant change in speed

Vector 2nd group: based on timing ans/or spacing from first group
according to planned tactic

Command Preplanned Maneuver: Based ontarget range and/or aspect;
initiate maneuver; direction of turn; final heading; degree of turn; vertical
maneuver
Command constant speed 4 g level turn
Command 'hard' 5 g leyeitum
Command •weapons launch

Assess Enemy Response:(to maneuver) evaluate enemey state
approximately 5-30 seconds after initiation of maneuver; maybe
trun toward, away, continue on course, or split formation, climb or dive;
accelerate

Figure 2.4: One page from a tactic map

34

Figure 2.5: Example ill-structured coloring book. With permission of Karen Zand.
© 1991 Karen Zand

graphic and industrial design), Goel's experiments, in which he restricted graphic de-

signers to well-structured representations, indicate that ill-structured representations

are needed by designers to facilitate the generation and exploration of alternatives.

One problem with having just a single level of structure, is that the resulting

representation is less flexible for various tasks (note that it may be more supportive

of a particular task). That is, what is well-structured and what is ill-structured

is highly dependent on what is desired from the problem solving context. For ex-

ample, to just capture the whiteboard sketches the fighter pilots made, one could

provide automated support via a drawing program and pen-computer interface. The

sketch can be stored in a well-structured representation (e.g. a stroke or pixmap)

which can be further processed towards some forms of character/gesture recogni-

tion. The representation, via pictures alone, of all the possible spatial and temporal

configurations of fighter-planes would require millions of different pictures. Without

the ability to manipulate the level of abstraction, it would take a computationally

infeasible amount of time to process all the pictures.

The user-interface of a scenario capture tool will have to support various degrees

of structure in the scenario writing process. This can be accomplished with direct-

manipulation graphical interfaces. The goal is to provide a representation which can

35

support several degrees of structure. To some extent, this can be done by supporting

building blocks and informal annotations.

2.3.4 Building blocks - neither too few nor too many

A scenario representation should have neither too few nor too many concepts. Con-

sider a representation with too few building blocks, for example, Shlaer-Mellor's [92]

object-oriented representation in which "everything is an object." Objects are the

means with which to encapsulate behavior. One might consider objects to be a "min-

imal" set of building blocks, but the single-notion "object" representation system

lacks rich semantics. The notion of an object is certainly compositional, but there is

no conceptual framework with which to guide people. There are no distinctions in

the representation with which to provide much in the way of semantic support for

the domain or software experts.

Consider figure 2.6, the list of "things" which Shlaer and Mellor [92] recommend

system analysts to look for as objects. This set of concepts is much larger than the

set domain experts might intuitively consider as objects. As long as the modeling

is non-intuitive to the domain experts, it will be difficult to get the domain experts

involved. There needs to be enough semantic distinctions in the representation to

guide the modeling.

One reason for such a minimal building block is to get a uniform representation

for computer-based tools. Identifying everything as an object lets such tools support

manipulation in a uniform manner, but the tools can't do much in terms of semantics.

The semantics have to be distilled by the analysts when they decide on the objects.

Objects are still a reasonable building block for a large set of domain concepts, and

are useful in cases where the domain concept is not directly mapped to any of the

other building blocks.

Having a larger set of building-blocks (as opposed to a single one), allows com-

puters to handle a wider range of distinctions. Although too many building blocks

may make it difficult to build and maintain a tool which supports these large num-

bers of building blocks. As long as the building blocks are primitive to a computer,

36

• Tangible objects are abstractions of the actual existence of some thing in the
physical world.
> In a juice bottling plant: Pipe, Pump, Valve, Tank
> In a shipping application: Package, Delivery Vehicle

• Roles are abstractions of the purpose or assignment of a person, piece of equip-
ment, or organization.
> In a university: Student, Instructor, Advisor
> In a chemical plant: Isolation Valve, Tank Inlet Valve
> In county government: Taxpayer, Jury Member, Voter

• Incidents are abstractions of some happening or occurrence.
> Accident (in a insurance application)
> Earthquake
> Election
> Delivery

• Interactions are objects that result from associations between other objects.
> Connection: the meeting of two pipes
> Contract: an agreement between two parties
> Intersection: the place where two or more streets meet

• Specification objects are used to represent rules, standards, or quality criteria
(as opposed to the tangible object or role that meets these standards).
> A recipe represents the rules for making a certain quantity of a certain food
(as opposed to the batch of food prepared according to the recipe).
> A compound represents the composition of a chemical (but not a particular
sample of that compound).

Figure 2.6: "Objects" from Shlaer and Mellor [92]. Reprinted by permission of
Prentice-Hall, Inc., Englewood Cliffs,NJ.

37

it is possible to provide more meaningful computer-based assistance and analysis

than existing CASE tools can provide. For example, consider a CASE tool which

supports data-flow diagrams. Data-flow diagrams have two building-blocks: nodes

and edges. Such a tool can only check for consistency at the level of incoming and

outgoing edges. Primitiveness is the significant feature needed to perform analysis.

One issue with larger numbers of building blocks is the possibly steeper learning

curves to learn these blocks. The steepness of these curves depends, in part, on the

the user's familiarity with the vocabulary and organization of the building blocks.

This is the issue of domain-specific or domain-independent vocabularies discussed

earlier. It is also dependent on the availability of good tools for finding and filtering

the knowledge. Let's consider the Penman [63] and Cyc [35] representations used

in the context of requirements engineering (which is not their developers' intended

use).

Penman uses a large set of linguistic building blocks for organizing linguistic

knowledge. The ARIES project [52] attempted to use Penman for requirements

engineering in the domain of air-traffic control. Though many linguists consider it

to be understandable and usable, the analysts who gained familiarity with Penman

found its use difficult [50]. A smaller set of initial building blocks might provide more

flexibility for organizing domain knowledge.

The use of Penman by linguists represents the case of providing a large domain

specific vocabulary for use by domain experts. This approach is problematic for

requirements engineering when it comes to communication between domain experts

in the same field. Each may understand and use the vocabulary in slightly different

ways in different contexts. Given a large vocabulary this approach may delay the

process of uncovering misunderstandings.

Cyc provides a large number of building blocks. These building blocks are in-

tended to be domain independent and to embody common sense knowledge about

the world. The developers of Cyc believe that if they provide a representation with a

rich set of well organized and layered building blocks then it could be used by others

38

as a shared basis for developing knowledge-based systems. This effort has been un-

derway for nearly ten years and while they have developed tools to let a knowledge

engineer find and filter the knowledge, the current learning curve is several weeks.

This seems too long for those engaged in requirements engineering.

To make its large representation more manageable, Cyc uses "microtheories" and

"contexts" to organize and group the various building blocks. The solution provided

for spatial concepts is thus,

to use a number of globally inadequate but locally adequate theories of

space. For example, we are working on (1) simple diagram-like represen-

tations, (2) computer-aided design-like representations that build solids

and surfaces out of a small number of primitives, and (3) device-level

representations that primarily deal with the topology of a device by us-

ing a number of primitive components and using a small number of ports

for each primitive and a small number of ways in which two primitives

can be connected. Although none of these abstractions is sufficient as

a general approach to representing space, for any given problem, one of

these (plus a few more that we are developing) is often adequate. These

various abstractions of space are organized into a hierarchy because some

are just refinements of others.

As they later state, there is the problem of determining "when to use which

context, when a context is insufficient, when we need to enter a new context, and so

on."

For REBUS, the small number of spatial concepts is based upon a small set of

building blocks. These building blocks were derived from the study of scenarios

which contained map-like sketches and from work in linguistics and cognitive sci-

ence. REBUS users can group concepts into categories as necessary. This is further

described in section 4.5.

Even the "right" number of building blocks requires some training to use. The

goal is to try to make the set at natural as possible, perhaps enabling people to

learn the tool in hours or minutes instead of weeks. Also using an appropriate set of

39

building blocks opens the possibility of providing rich automated support for analysis

of scenarios and of scenario collections.

2.3.5 Behavioral specification

Within a large body of computer science, a behavioral specification takes shape in

abstract representations as data flow (e.g. data-flow diagrams, Petri nets) or con-

trol flow (e.g. state-transition diagrams, StateCharts). In either case, the formal

computational system is in a single well defined state at any given time and tran-

sitions instantaneously change the system from one state to the next (i.e. a Turing

Machine). In the real world, time has also passed.

For all but simple behaviors, these abstract representations of behavior are at

odds with the notions used to describe behavior in a natural, fragmentary manner.

Specifically, in scenarios, people express behavioral notions which encapsulate partial

descriptions of state, time, and causality. In addition, people also need to express

notions with concrete examples while having only partial or fragmentary knowledge

of the overall behavior.

The high expressivity of formal languages for behavior still makes them good

candidates for understanding what fragments of behavior are needed in scenarios for

expressivity. StateCharts [41, 42] and Petri nets [85] are expressive formal represen-

tations with which we adopt some ideas for behavior fragments. A fragment that

is useful from StateCharts is the historical state. Petri Nets have causal notions.

That is, they support the expression of causal transition firings and they also have

inhibitor arcs to restrain a firing. The goal is to provide a relatively small set of

behavioral primitives that have semantics, and are understandable and expressive.

2.4 Chapter summary

Since scenarios are a means to facilitate communication between domain and soft-

ware experts, our objective is to provide suitable tool support for scenarios in this

40

complex communication process. This chapter focuses on explaining the desiderata

of automated support for scenarios.

Throughout the chapter, examples are used from an observational study of do-

main experts (pilots) and software experts involved in the design of intelligent au-

tomated air-combat agents. These examples are used to convey aspects both of the

requirements for automated support for scenarios and of the communication that

takes place between domain and software experts.

This chapter began with a discussion of three types of communication: between

people; between people and external representations; and between people and auto-

mated tools. The central issue in this discussion is achieving shared understanding

between people and automated tools. Persistent and precise external representations

are a means to achieve shared understanding. This discussion was a step toward un-

derstanding the strengths and limitations of external representations and automated

support.

The chapter also establishes a set of target desiderata for a scenario representa-

tion and its automated support:

• The semantics of the representation should relate to the problem domain,

without being domain specific. One cannot assume a tool has a-priori domain

knowledge.

• The semantics should be understandable to people with different backgrounds.

People will need some training to use any tool.

• The representation should support both depiction and description. Some con-

cepts are best conveyed with depiction, while others require description.

• The representation needs to be flexible enough to support a range of structure.

To support the design process the tool will need structured building blocks and

less structured annotations.

• The representation should provide a set of building blocks with which domain

knowledge is modeled. Building blocks are the basis for automated tools.

41

• The representation should have expressive behavioral constructs. A set of

expressive notions for describing temporal and causal behavior are needed.

42

Chapter 3

Scenario Representations

There are only 5 ways of organizing information: by alphabet, category,

time, magnitude, and location. Not 500, not 5000, but only 5. And it's

the beginning place in communication. And in information display.

- Richard Saul Wurman 1992, p.xxxv

3.1 Introduction

It is important to consider the various scenario representations. A number of repre-

sentations are relevant, but they do not meet all the desiderata described in chapter

2. This chapter begins by comparing a scenario representation from the air-combat

domain to a scenario representation from the literature. Then, we present and cri-

tique the organization and encodings of various scenario representations found in the

literature. Any automated support for these representations will also be described.

Finally, we present a section which discusses the boundary between concepts found

"within" scenarios (the focus of this work) and concepts found "between" scenarios.

3.2 A comparative

The concepts which naturally occur in scenarios written by domain experts can be

compared to what is explicit in the building-blocks of the existing scenario represen-

tations. The "natural" scenario representations of the pilots contain rich semantic

43

detail relative to the representations used in software design. Figure 3.1 contains a

scenario from the air-combat observational study and figure 3.2 contains the elements

of object interaction diagrams [49]. The two formats were chosen for comparison

because they are pictorially similar.

The air-combat scenario in figure 3.1 was not designed for the software experts.

In the observational study, it was presented during a meeting to show the commu-

nication between a pilot and a radar intercept officer (RIO). The diagram contains

a mixture of parallel activities and interactions between the RIO and the pilot. It

appears similar to an object interaction diagram, but appearances can be deceiving.

For example:

• Notice the units on the left, they are in nautical miles, not time (although,

this is still a temporal ordering). Spatial language was used to delineate the

time intervals.

• In the videotape of the meeting, the pilot explained how this diagram is read,

bottom to top.1

• The squiggly line through the long vertical arrow corresponds to the maneu-

vering for altitude.

• A third object (a bogey) is referred to by this diagram, but it is not readily

perceived as important. That is, the bogey doesn't have its own column.

• Another object (the fighter-plane) and its attributes are left implicit.

As presented, the details are unclear to software experts or domain novices. Fur-

ther detail should be represented explicitly. Without background various statements

are unclear such as "20K'/300-325Kts" which is the plane's altitude and velocity.

The K' stands for thousand feet and Kts stands for knots (nautical mile per hour).

Such a diagram is not readily transcribed to an object interaction diagram without

more collaboration between the software and domain experts.

1There was quite an audible reaction to this explanation. This seems to indicate that people
expected to read the diagram top to bottom.

44

1 * 1 V/ö

\<p

z ÄOOLOCK/V/C/OO; /\DL

IZ % OFF Mose /ß*/AtT

60 Fo« PSTT

^ *OR= Alose/&*/Air

I fi-oT

£e-r TfltLCy

Fcv ö ro /tat-

Acm ^üA^b Üp

-ISTCU TO Rö

ZS * ORrMcse/^/ALT

DRIFT ANALYSIS

L ISTBO TO £0

30 beT<efAnüe Bo&ey ALT

.3^ TußM IN. PüT RtfCey

OM Nose OR COT Feg

Euvißo»>me«jr . DetecT

I.

ADJUST FQ,TR ALT

i3o6ey AtriTvö€j

Ä>K'/3oo-3as-<Ts

Figure 3.1: Interactions between a radar intercept officer and a pilot

45

System/
Environment

Boundary Object 1 Object 2 Object 3

Time

Figure 3.2: Elements of interaction diagrams

46

Object interaction diagrams are used in several software engineering methodolo-

gies, albeit under several names and variations, e.g. event trace diagrams, timing

diagrams, message sequence charts [16, 49, 10, 32]. Such diagrams contain a tempo-

ral ordering of interactions (a.k.a stimuli or messages) between objects. As shown

in figure 3.2, objects are positioned across the top, horizontally. The sequence of

messages between the objects is read vertically (top to bottom). This sequence, gen-

erally corresponds to the advancement of time.2 Other layouts (e.g. objects - top to

bottom and time - left to right) are also used, but what is significant is the building

blocks. In this notation, the building blocks are objects and messages.3 Another

explicit concept is the separation between the system and its environment.4 Given

only such building blocks, the tools for editing interaction diagrams do not meet all

the desiderata and they do not explicitly support the rich semantic detail found in

the scenarios written by the domain experts.

3.3 Survey of existing representations and

automated support

In this section, examples of scenario representations are categorized by their pre-

vailing visual structure: natural language, domain/task-specific depiction, tabular,

formal specification languages, and diagrammatic notations. The examples come

from a variety of sources and were used for different purposes. They illustrate var-

ious organizations and encodings of scenarios and the use of scenarios in various

domains.

3.3.1 Natural language

Based on the desiderata both text and graphics are needed, but since the building

blocks are different, this section will focus on text and the next section will focus on

2The exception, for example, can occur when the descriptive text on the left indicates a loop.
3A variant, with more building-blocks, is described in section 3.3.5.
4It's possible that such a separation would make the missing bogey and plane, more explicit.

47

First Jack is on-hook and Jack goes off-hook,
then Jack gets a dial-tone.

Next Jack dials Barry,
then Jack requests a connection to Barry
and Barry rings
and Jack hears ring-back.

Next Barry goes off-hook
then Jack gets connected to Barry.

Next Jack goes on-hook
then Jack gets disconnected from Barry.

Figure 3.3: Telephony scenario adapted from Kelly and Nonnenman [57]

graphics in the form of domain specific depiction. Note that they are both inadequate

as the sole medium of communication and that they need to be supplemented with

more structured notation. Natural language will be in a scenario representation. It

is needed to meet the desideratum of support for varying degrees of structure.

The length of a textual scenario ranges from a couple of sentences to several

pages. For longer scenarios, display technology imposes some limits on what can be

seen simultaneously. An example of a natural language scenario from the telephony

domain appears in figure 3.3. Examples from the air-combat domain are shown in

chapter 2. From the standpoint of automated support, the building blocks are at

the character, word, sentence, and paragraph levels. Thus, there are no explicit

semantic constructs that automated tools can readily exploit (except for natural

language recognition, which is discussed in this section) and that scenario readers

can all assume are agreed upon and understood.

Organization can be used to impose structure on a natural language represen-

tation, as for example, in the paragraph numbering in the lvl combat scenario of

figure 2.1. In this case, there is some temporal ordering conveyed by the numeric

ordering of paragraphs, but the activities are still occurring in parallel. A scenario

representation, like Karat and Bennett's [55] adds structure to the text that makes

48

Scenario Component Level of Detail
Name A short label used when referring to a scenario.
Situation Description Running prose giving a concrete illustration of a

situation.
Logical Essentials With respect to the system, information that must

be supplied in order to achieve the desired result
within the system. With respect to the user, the
representations and actions that must be made avail-
able by the system to the user. Information at this
level is intended to be implementation-independent,
what would be needed regardless of methods used to
achieve the result.

Generic Steps The sequence of user steps (sometimes ordered)
that must be performed regardless of implementation
method.

Specific Steps A particular design will presume a series of user steps
with particular devices and with system feedback to
the user as each step is taken. Error analysis (what
happens if a user makes a misstep or if information
needed by the system is missing) can also be consid-
ered at this level.

Figure 3.4: Scenario Writing Guide from Karat and Bennett [55]. With the permis-
sion of Academic Press, Inc. © 1991 Academic Press, Inc.

up a natural language scenario. They use scenarios to describe user interfaces. In

this context, they suggest that scenarios should contain the information described in

figure 3.4. In the Objectory object-oriented method [49], there are natural language

descriptions5 and object interaction diagrams. The natural language descriptions

have some structure. They include a name, a brief description, and a description

of the scenario's basic course and alternative courses. These "courses" as well as

Objectory's between-scenario relations are described in more detail in section 3.4.1.

Tools such as text editors and spelling checkers are relatively easy to use and

they facilitate the manipulation of text. A more automated approach would be to

use a natural language recognition system, but this approach has its limitations. For

example, WATSON and KITSS [70, 71] were research projects aimed at providing

automating tools to specify reactive telephone systems with scenarios (similar to the

5 called "use cases"

49

one shown in figure 3.3). The recognition system required a-priori domain knowledge,

but it was believed that this domain knowledge could be built in because the natural

language used in writing the scripts was constrained enough to make automated

understanding from telephony domain experts possible.

This belief turned out to be incorrect for several reasons. While the natural

language was constrained enough for the syntactic aspects of the English used, the

semantic aspects were wildly unconstrained. Sentence styles varied from simple and

action-centered to elliptic, imprecise, inaccurate, subjunctive, and even metaphorical

[39]. Another problem was that the natural language understanding techniques

required a highly complete and virtually static built in domain model. Change

was the rule rather than the exception and there was high overhead in maintaining

the domain model [39]. Direct capture of natural language was abandoned as the

approach and replaced by analyst transcription of natural language into a formal

specification language (see section 3.3.4).

In REBUS, textual descriptions have structure and are explicit informal elements.

That is, for example, explicit properties of the REBUS building-blocks include a

name, a category, and a description. These are fields which are filled in by the

scenario writer with characters, words, etc.

3.3.2 Domain specific depiction

In chapter 2 the need for domain specific depiction was discussed. The Simulacrum

systems [11] developed at MCC were based on an empirical study of system analysts

designing an elevator control system from a textual specification. The analysts were

not domain experts. The study conducted at MCC and reported on in [37, 36,

38] as well as the storyboard layout of Simulacrum provided some motivation and

inspiration for this work. Simulacrum explored a number of dimensions for design

of a scenario acquisition tool: Domain dependence vs domain independence and

WYSIATI (What you see is all there is) storyboarding.

The first editor, Simulacrum-1 was a domain independent drawing program

with storyboard sequencing support. It suffered from several problems which will

50

 SMULACRUM
Oil laming Omf UH Cmt» Mingir Own Slnml»cn.m for «uMlng. IKBIIIW»

JM Ofl MBBAd IlöDf

Joe y jo»

fiaauojas*.

r
JL

A

y joe

ö
1

FIGURE 2. An elevator svstem CKD.

Figure 3.5: Simulacrum-2 elevator scenario from Bridgeland [11]. With the permis-
sion of Plenum Publishing Corp. and David Bridgeland

arise in any system in which tokens are too low level and have weak semantics. The

following discussion is based on [11].

1. The translation from the conceptual level to the graphic level was both time

consuming and distracting. The sketch editor was domain independent, so

objects manipulated by the editor were generic graphic things, such as lines,

boxes, and lines of text. To make one conceptual change to a sketch, a user

often had to perform many graphic operations.

2. The resulting storyboards often lacked conceptual integrity. A given concep-

tual relationship, for example, the notion that a elevator passenger was bound

for a given floor, could be drawn in many different ways, and was. With

support for a more symbolic approach to capturing concepts (instead of just

graphics), one can at least encourage consistency through re-use of concepts

across and within scenarios.

51

3. The relationship between the graphics and the intended semantics was not

self-evident. There was no way to determine exactly what a given state sketch

meant, except to query the person who had drawn it. This appears to be

due to the WYSIATI restriction. With this restriction, there is just one level

of structure with which to convey all the details. For example, the drawing

of an elevator passenger visually does not expose all its attributes. What is

clearly visible is just the current spatial relationship. This example can easily

be handled in REBUS by a passenger object with an attribute, floor-bound-for.

Simulacrum-2 was built to correct the problems of Simulacrum-1, although

the domain specific approach in Simulacrum-2 (see Figure 3.5) is not satisfactory.

The semantics of objects in the lift problem were isolated and encoded, and direct

manipulation presentations of those objects were built in. This constrained the

editing, simplified the use, and restricted users to only plausible elevator system

states. However this required considerable effort on the part of the analyst and

over-constrained Simulacrum-2 to being a domain specific scenario editor.

REBUS alleviates the problems of Simulacrum-1 by providing more semantics on

the low-level building blocks. REBUS does not include enough domain knowledge to

restrict users to only plausible states (a task for the domain experts to model). An

advantage of not building in domain concepts is greater flexibility and expressivity,

while the disadvantage is the overhead required for the users to do the initial domain

modeling. This modeling would have to be done in any case. REBUS provides a

bridge to the gap between low level abstractions and domain specific concepts.

3.3.3 Table representations

Table based scenario representations (also called scripts), are an organizational varia-

tion of structured textual scenarios and object interaction diagrams. Some examples

are shown in figures 3.6, 3.7, 3.8, and 3.9. The temporal order is explicit and read

top to bottom (no loops). The table's column structure imposes some semantic

support, namely for objects and their actions or responsibilities. Thus, there are

52

Agent Action

Esther Creates new meeting
Esther Determines that Kenji is an important participant
Esther Determines that Annie will be presenting
Esther Determines that Colin is an ordinary participant
Esther Types meeting description
Esther Sets date range to be Mon-Fri next week (it's Wednesday p.m.

now)
Esther Determines drop-dead date is Friday noon
Scheduler Sets time-out to be Fri 9am
Scheduler Sends boilerplate message to Colin requesting constraints
Scheduler Sends boilerplate message to Kenji requesting constraints and

preferred location
Scheduler Sends boilerplate message to Annie requesting constraints and

equipment requirements

Figure 3.6: Script - concrete version from Potts et al. [82]. With permission of
IEEE. © 1994 IEEE

relatively few semantic concepts and there is no support for domain specific depic-

tion. The tabular format also encourages the use of short, cryptic statements of

scenario steps. Additional representation structure is needed to prevent confusion

or misunderstanding of these steps.

Table based representations can support several degrees of representation struc-

ture. This is illustrated with figures 3.6 and 3.7. The first contains abstract objects

and actions, while the latter contains specific and concrete examples. Even though

table representations can support several degrees of structure, it is difficult to in-

corporate depictions or other supplementary information into the table. REBUS

provides support for such depictions and information.

The basic table notation is not very expressive in terms of behavior. Figure 3.9

shows a conditional rule notation which was recently added to the tabular notation

of the Object Behavior Analysis and Design (OBA/D) method. Thus, simple (sin-

gle object) conditionals can be expressed. In REBUS, more complex rules can be

expressed.

53

No. Agent Action
1 Initiator Request meeting of a specific type, with meeting info.

(e.g. agenda/purpose) and a date range
2 Scheduler Add default (active/important) participants, etc.
3 Initiator Determine 3 participants
4 Initiator Identify 1 presenter as active participant
5 Initiator Identify initiator's boss as important participant
6 Initiator Send request for preferences
7 Scheduler Send appropriate e-mail messages to participants (incl.

additional requests to boss and presenter)
8 Ordinary

participant
Respond with exclusion and preference set

Figure 3.7: Script - abstract version from Potts et al.
IEEE. © 1994 IEEE

[82]. With permission of

Script Name: Modification. 1.example
Author: Donna
Version: 1.0
Precondition: exists(Spreadsheet),displayed(Spreadsheet)
Postcondition: modified(Spreadsheet)
Trace: Core Activity-Modification

Initiator Action Participant Responsibility
User select Dl Spreadsheet select a cell
User type text NEW Dl set content to text
User set text style to bold Dl set text style to bold
User select A2 Spreadsheet select a cell
User type text NAME A2 set content to text

(repeated select and type
text for example)

B2, C2, D2,
A3 through
A10

User select Row 2 Spreadsheet select a row

Figure 3.8: OBA/D Script based on Rubin and Goldberg [88]. With the permission
of the ACM. © 1992 ACM

54

Initiator Action Participant Responsibility
Customer inserts ATM card ATM accept ATM card
Customer enters PIN ATM read PIN
IF "the PIN is valid"

ATM validates PIN PIN Validator validate PIN
THEN "permit transaction"

Customer selects a transaction ATM perform transaction
ELSE "deny transaction"

ATM notifies invalid PIN Customer read notification
ATM returns ATM card Customer takes ATM card

Figure 3.9: OBA/D Script with conditional rule from Rubin et al. [89]. With the
permission of ParcPlace Systems, Inc.

3.3.4 Formal specification languages

Some formal specification languages have been used for scenarios. For example,

see figures 3.10 and 3.11. Hall [40] is using his formalization to explore automated

support for scenario generalization. Benner [6] uses a path expression language to

provide analysts with a means of scoping and constraining a large formal specifi-

cation of a system for the purposes of validation. Such languages are behaviorally

expressive, but they do not meet the other desiderata.

3.3.5 Diagrammatic notations

There are two prevalent forms of diagrammatic scenarios: object interaction dia-

grams and ordered, concrete traces through other types of diagrams or graphs. A

simple version of an object interaction diagrams was described in section 3.2.

Figure 3.12 shows the building blocks of a visual design language called VDL [32].

VDL is to be used by software experts throughout system development. Thus this

notation has less resemblance to the real world and more resemblance to systems

languages. Figure 3.13 shows a scenario in VDL notation. Compared to simple

object interaction diagrams, this notation adds a creation and destruction notation,

and iteration and if-then-else constructs. A VDL scenario should be about the size

of a note-card and it contains a identifying scenario number, a list of authors, a date,

55

SCENARIO PH-i:

INITIALIZATION-SEQUENCE:

(initialize!)

(make-user! ALICE (19))

(make-user! BOB (9 3))

SCENARIO-BODY:

(offhook! BOB)

(press! BOB 1)

(press! BOB 9)

(observe= (ringing? ALICE) true)

GENERALIZED SCENARIO PH-l-G:

ASSUMING INITIALLY:

(equal (mode ?userl) idle)

(equal (mode ?user2) idle)

(not (equal ?userl ?user2))

(equal none (ext->user (list TbuttonO)(ext-map)))

(equal ?user2 (ext->user (list TbuttonO ?buttonl (ext-map)))

BODY:

(offhook! ?userl)
(press! ?userl TbuttonO)

(press! ?userl ?buttonl)

(observe= (ringing? ?user2) true)

Figure 3.10: Telephony scenarios from Hall [40]. With permission of IEEE. (?) 1993

IEEE

56

A validation question:
scenario ensure-trigger-for-set-alarm()

roles(al:alarm, tl:time)
:= [alarm-time(al, tl)];

ring-alarm[al = alarm, tl =current-time]

The revised validation question:
scenario ensure-trigger-for-set-alarm()

roles(tlrtime, t2:time, al:alarm)
:= [alarm-time(al, tl)] ;

(ring-alarm[al = alarm, tl =current-time] +
[alarm-time(al, t2)] ==> terminate-ignore)

Approximation scenarios:
scenario human-scenario-l()

roles(al:alarm)

:= ([alarm-time(al, "07:00:00")];
ack-alarm [al] precondition alarm-ringing(?))*

scenario clock-scenario()
: = ([current-time = "06:00:00"];

[current-time = "07:00:00"];
[current-time = "08:00:00"])*

Figure 3.11: Path expression scenarios from Benner [5]. With permission of IEEE.
© 1993 IEEE

57

a title, a "to do" list, and a grouping descriptor to identify the part of the model or

architecture (e.g. "content model", "reference model", "content architecture") that

is addressed by the scenario.

Interaction diagrams are just one way to organize a diagrammatic scenario. Some

examples of the other types of diagrams or graphs are shown in figures 3.14, 3.15,

and 3.16. Figure 3.16 shows that the building blocks of object's and messages can be

organized in different ways. In the figure, the Booch object message diagram and the

interaction diagram model the same scenario. The scenario begins with an object

labeled "aFOO." A F00 is a "Forward Observation Officer", so in object-oriented

parlance aFOO is an instance of FOO. The first thing aFoo does is to "l:create()" an

object labeled "a Fire Mission Task." The Booch Method notation [10] affords the

presentation of structural relationships (The "has" relationship is shown by the solid

boxes on the line connecting the two objects) in the same diagram as the scenario.

Graph representations have a small set of simple primitives and can be manip-

ulated with automated tools. For example, users would modify requirements by

adding or deleting nodes and edges in the scenario. One problem is that the adding

of a node such as "on-hook and calls forwarded" needs to occur eleven times in

their example. Describing a scenario in which the phone rings four times and is

then forwarded to a receptionist requires several more nodes and edges. Graph

representations either have one level of structure or have nested structuring. This

nested structuring is primarily useful for encouraging abstraction and supporting a

top-down, structured process. We aim to support scenario writers during a more

ill-structured process, so this is at odds with the top-down structured process. Thus,

it does not meet the desiderata.

3.4 Multi-scenario notations

So far, the discussion has been focused on the content im'f/un-scenarios. As intro-

duced in section 1.5, there are also ktoeen-scenario properties and relations. I will

briefly describe between-scenario support because much of the automated support

58

Visual Design Language Symbols

^^ ^^ ^z^ = ̂ .

Object Container Category Attribute

Object Container Class Attribute

£Zf
Abstraction Responsibility Scenario

(a) Elements

 / \ .

V=7^
Time Sequence Selection Iteration

(If-Then/Switch-Case)

(b) Control Flow

Collaboration Creation Destruction

Membership Containment Part/Whole

Implements Replaces Same As

(c) Relationships

Figure 3.12: Visual design language (VDL) from Goldstein and Alger [32].a

"DEVELOPING OBJECT-ORIENTED SOFTWARE FOR THE MACINTOSH: ANALY-
SIS, DESIGN AND PROGRAMMING (pp. 137; 158), ©1992 by Neal Goldstein & Jeff
Alger. Reprinted by permission of Addison-Wesley Publishing Company, Inc.

59

Scenario #: 76
Authors: JVA,NLC
mm

/
Pay Employ«»

Content Model

Compute Pay Print Check

\ \
StorePata Print /

Paycheck Creation and Printing

To Do:
- Detailed scenarios for all responsibilities
- Destruction of paycheck objects

Figure 3.13: VDL payroll scenario from Goldstein and Alger [32].

needed to manipulate and organize scenarios and thus facilitate scalability, is also

needed to support traditional software development artifacts.

3.4.1 ftefaueeri-scenario support

In order to support communication, scenarios should also be viewed within a larger

context. Depending on the project, the number of scenarios can grow quite large.

Scenarios will need to be grouped, archived, organized, composed, and decomposed

(see figure 3.17).

Objectory [49] contains one possible set of relations over "use cases".6 A use

case refers to a complete course of events described in natural language between an

actor and the system. For every complete course of events initiated by an actor, one

use case is identified. The use case is normally divided into one basic course, which

is the most important sequence of events, and several alternative courses which are

variants of the basic course or errors that can occur.

6Jacobson et al. define a scenario as an instance (in the object-oriented sense of the word) of a
use case. To clarify, the definition of scenario presented in chapter 1 encompasses both use cases
and Jacobson's definition of a scenario.

60

CONTRACT 1 CLIENT
2

SET

}

3

RENTAL |

'
4

VEHICLE

A contract is prepared for a client: 1
Requested rented cars are grouped by client: 2,3
A rental plan is established for a specific vehicle: 4
A vehicle model is chosen: 5
Selected model is a two-door manual car: 6

Figure 3.14: Better object notation (BON) scenario based on Nerson [69]. With
permission of ACM. © 1992 ACM

61

<S> < Phone Idle >

I OffJH Pick up phone

<Dial Tone>

On_H/ \ Not9 Dial 5

<S> <lnternal Call>

On_H/ \ digit Dial 1

< Phone Idle > <Third>
On_H/ \ digit D/a/5

<S>, „ <Fourth>
< Phone Idle > / \

On H/ \digit Dial 6

<Ph<ÖSn>eldle> <validating>
_ ,, ^--^/ „ \^---. error_message
On_H^-^/Ring Bus^S^^^-»

<S^^ <Connecting> <Tryagain> ^>onnected>

< Phone Idle > on H/ \^„ ■■ I « u <ulsconnecxea>

un M/ \Callee_pickup I On_H 0n H

A \ T Onhook 1 ~
_ <S> <Connected> <S> 1^

< Phone Idle >njy ^T^ <pho„eldle> <PJ}g>/d/e>

<S> , <Finished>
< Phone Idle > v

n. w / \Callee_OnH
^/ A, Callee-0n n00k

<£ <Disconnected>
< Phone Idle > I On_H

<S>
< Phone Idle >

Figure 3.15: Scenario tree from Hsia et al. [44]. With permission of IEEE © 1994
IEEE

62

a:Satloe«BonTypB[)

5:S»tTyp«otEngagm«rtO

13: CrMtoOrdsr ()

P

Watte Capably

7:yfTMte»(

P

iktyt»()

25: Send () |

Task RMOUR» IM Alocaton

l5:AnlgiTMfc(taih]

::TMkCtwfc«tyt)!

17: LW 17: LMol Suitable R«»ouic<«()

19: C«lcutato RMOWCM Ftequlrad

i
I

23:AwijiT—KH«1<)|

I

Figure 3.16: Booch object message diagram and corresponding interaction diagram.
Diagrams courtesy of Captain Tony Marston, Canadian Forces.

63

Different Viewpoints

Scenario Collections

1
Scenarios with a particular concept
Error scenarios
Alternatives for the same task

Scenario Evolution

O
r*i*r*r*****''***rrTil

Scenario Elaboration

mK

Scenario Disjunction / Alternative Courses

Scenario Composition

Figure 3.17: Between scenario considerations

64

Returning item

I extends

Item is stuck

The use case: Item is Stuck is inserted into Returning Item
when Customer deposits an item that gets stuck in the
recycling machine. Operator is called and Customer can-
not turn in more items until Operator informs him that
the machine can be used again.

<£ Print \

uses ,»* '♦. uses

An abstract use case Print has been identi-
fied to describe common parts between
two other use cases.

Returning item Generate daily report

^ use

<^AICIJQ5^>

A concrete use case uses two abstract use cases
and decides explicitly how the interleaving is
to take place.

Figure 3.18: Objectory - extends and uses relations [49]. With the permission of
ACM. © 1992 ACM

65

The extend and uses relations are used to structure and relate use case descrip-

tions (see figure 3.18). These can be viewed simply as textual inclusion mechanisms.

The "uses" relation is used to reduce the maintenance on large sections of text that

are used in two or more "concrete" use cases. Thus the "used" use case tends to be

abstract, and doesn't have a complete sequence of events initiated by an actor. The

"extends" relation can be used to simplify the description of a complex sequence of

events by removing exceptional or additive behavior to an extending use case. Thus

the "main" use case can be focused on the normal or basic sequence of events.

Alternative courses7 are used to model related sequences which are part of the

overall "class" definition for the use case. Depending on the sequence of events or

other state information, an alternative course may or may not be executed. When

the use of extends would reduce complexity, alternative courses are candidates for

the extends relation. However, extends should not be used lightly. There is the

notion of over extension which leads to a hard to maintain model - intolerant of

change.

These relations are weak semantically since, for example, an explicit formalization

of the behavior between the use cases does not exist. To illustrate this, notice that in

the Returning Item use case (figure 3.18) the check for Item is Stuck does not merely

extend Returning Item. The check must always occur. The events which follow from

item is stuck could have been specified with a strong statement of restraint. That is,

if the state of the system is "stuck" all customer behavior (relating to progress with

the recycling machine) is prohibited, at least until the operator informs the customer

the machine is working. Although further investigation is needed, the between use-

case causality appears to be similar to the within scenario causal notions in REBUS.

3.4.2 Views and composite scenarios

Different users of a scenario capture tool will want their own views on a scenario

collection. A developer may look for scenarios that contain a particular domain con-

cept. Designers might organize them in terms of their design rationale, for example

alternative courses are within a use case.

66

in a graph which shows alternatives that can be taken to solve a problem. Analysts

might organize them around a topic, such as failure scenarios. A domain expert

might organize scenarios temporally like the tactic map in figure 7.1.

Supporting such views is not a central focus in my implementation. Others have

developed tools to support archiving and the ability to query for a concept is the

focus of databases. The most interesting form of support is reflected in the fighter-

plane tactical map shown in figure 7.1. It contains temporal ordering, alternatives,

disjunction as well as context. The notion of a scenario can be fuzzy in this case,

i.e. is this figure also a scenario? We will call such things composite scenarios.

The question of whether a composite scenario is a scenario is one of nomencla-

ture. The answer can depend on the readers' viewpoint, relative to the level of

abstraction of system and environment behavior. For example, when all possible

behavior is described in the composite, then it is no longer a scenario (its not a

partial description). From the standpoint of simple scenarios, the need for a com-

posite can be decided by the notable use of disjunction. The use of disjunction in

scenarios is potentially problematic for the scenario reader because the scenario is

not as concrete a trace of object interactions. Further investigation into when and

how to present disjunction when conveying scenarios is needed.

3.5 Chapter summary

In this chapter, various within-scenario and between-scenario representations are

compared and contrasted. This is done along several dimensions. First a "natu-

ral" scenario written by a pilot was compared with a common software engineering

scenario representation, the object interaction diagram. Then, various scenario rep-

resentations (natural language, diagrammatic, table based, etc) are explored for their

strengths and weaknesses in terms of automated support and uses. Finally, the brief

description and discussion of between scenario support. A richer set of between

scenario support is described and also compared to a well known object-oriented

methodology.

67

Chapter 4

The REBUS Building Blocks

Element - any of the four substances earth, air, fire, and water formerly

believed to compose the physical universe. Webster's Dictionary

4.1 Introduction

This chapter defines the REBUS representation. REBUS is designed to satisfy the

desiderata of chapter 2. REBUS is organized around a conceptual framework and

building blocks. An overview appears in figure 4.1. The conceptual framework is

composed of objects, measures and types, spatial elements, temporal elements, and

behavioral elements. Except for objects, which are also building blocks, the last

four items on the list are further divided into building blocks.1 For example, spatial

building blocks include regions, boundaries, and landmarks. In a particular domain,

like vehicle traffic-control one would map domain concepts like roadway or lane onto

region.

Parts of the REBUS representation are based on other work (e.g. linguistics,

temporal logic, geographic information systems, expert systems, and algorithm an-

imation). In addition to providing details on the building blocks and conceptual

framework, each section contains a discussion of the similarities and differences be-

tween REBUS and other work.

1Note that throughout the representation, there are only 7±2 notions to choose from [64].

68

ü Objects (concepts which have behavior)

o attributes, depictions, formula

Ü Measures/Types

o lists, units, named quantities, coordinate systems

o conversions

□ Spatial Elements

o regions, boundaries, landmarks

o composites

o spatial relations

□ Temporal Elements (behavioral sequence/actions)

o simple paths (single type, order, duration)

o composite paths

o temporal relations

ü Behavioral Elements (causes, conditions, constraints)

o triggers (stimuli, constructors, destructors)

o restrainers (inhibitors, prohibitors)

Figure 4.1: Conceptual framework and building blocks

69

4.2 REBUS notation and terminology

First, some vocabulary common to the definition and explanation of REBUS.

4.2.1 Names and categories

A name is a descriptive sequence of characters. Names are the semantic labels of

concepts reified in a building block. Acronyms tend not to make good names, but

can be associated with a name.

A category is a name under which a concept is grouped or classified. Concepts

have membership relations with their categories. So, concepts can belong to more

than one category. The name of a concept is a category as well (e.g. car is-a car;

WhiteBroncol is-a WhiteBroncol and a car).

Once a concept is named it is considered useful as a REBUS type. A type is

the name or category of another building block. Note that type is also used in the

framework terminology as one of the actual measure/type building blocks, but a

distinction between the two isn't necessary since the measure/type building blocks

have names and categories. Each element of the conceptual framework has its own

set of category graphs, so concepts can be named and categorized according to their

use without conflicting with other uses.

4.2.1.1 Discussion

Naming, categorizing, and describing are intrinsic to interacting with things and

ideas. Naming has been studied in philosophy, linguistics, and psychology [14] and

Carroll states [15], "Whatever underlies naming it is purposeful and achieves a rea-

sonable compromise between competing and independent goals; including brevity,

descriptiveness, inventiveness, differentiation, and complex social goals regarding

self-presentation to and assessment of a communication partner." Names, categories,

and descriptions are a necessary part of communication and modeling.

Names and categories are invented as needed to distinguish one concept from

another or to denote their similarity. Sometimes naming mechanisms can be built

70

into an automated tool, for example, spreadsheets. One of the reasons cited for the

usability of spreadsheets is their built-in naming mechanisms for rows and columns

(i.e. positive integers and the alphabet). One could provide default names for new

building-block instances, but in the context of defining new domain knowledge, there

is little evidence that naming can be done with automated support. In general one

doesn't want to give non-programmers the task of naming things like variables [67],

but most concepts already have names. One issue might be that domain novices will

name and categorize concepts differently than domain experts, but it is important

to encourage the naming activity in order to clarify one's terminology to others.

Carroll's instructions to the subjects in his naming experiments applies:

Don't worry if at first you feel that you cannot distinguish notions like

"categorizing" and "describing" from naming with absolute certainty.

Naming implicitly involves categorizing and names are quite typically

descriptive. However, the three can be distinguished: descriptions in-

volve statements; they typically comprise clauses or even full sentences.

Names, on the other hand, are smaller and syntactically simpler. They

can be only nouns and noun phrases. Thus, "The cup has a chip miss-

ing." is a description, but "the chipped cup" can be a name for that cup.

Names are usually very brief, rarely more than a few words long, often

consisting of only one or two words.

Categories, like names, are also brief. But a categorization like "cup"

may not always sufficiently discriminate a to-be-named entity from oth-

ers, "the cup" could be a good name for a cup, but only in particular

circumstances (for example, if there is only one cup in the immediate

environment). A name like "the apple juice cup" is descriptive, and it

also categorizes, but it is name-like in that it suggests that there is a

unique cup with the outstanding property of being used mostly for ap-

ple juice. If you are still quite uncertain about just what we mean by

naming, discuss this with the experimenter before proceeding with the

experiment.

71

In any case, when people are asked for a name for something, they tend to be

able to invent one, albeit the name could be characterized by others as a bad name.

If the name is bad, it can be changed. Automated support can be provided for

changing names as well as propagating the changes.

4.2.2 Annotations

Annotations are visual or textual notes added to provide further comment or expla-

nation. They are needed to meet the desiderata of support for a mixture of graphical

and textual representations and support for varying degrees of structure.

A description is a textual place to leave comments about a concept.

A depiction contains domain or task specific graphics visualizing a concept. The

depiction can be a sketch, a physical view of a real concept (from a scanned photo or

video clip), a view of the graphical-user interface to a concept, a view of attributes,

etc. To maintain strong semantics, a depiction or description is either tied to a

building block or an explicit annotation.

An attribute is a name, type, value triple. Attributes are a more precise means

to annotate a concept than descriptions and depictions. One can directly refer to

the concepts attribute by name. For example, a concept (car) can have a attribute

with name, color; type, car-color; and value, red. We use dot notation to refer to

the car's color attribute (i.e. car.color). The attribute notion has more structure for

the system than just having a description ("The car's color is red") or a depiction

of a red car.

Attributes also have a convenient notation for collections. For example, a car

dealership would have an attribute of type "car (collection)." The attributes value

field would contain a comma separated list of cars (e.g. mustang57, taurus49) suit-

able for concepts needed in the scenario.

72

4.2.3 Mathematics

A formula is a computed function over attribute values. Formulas are analogous to

spreadsheet formulas. Since there can be any number of mathematical functions in

a domain, the list is not predetermined, but similar to some spreadsheet packages

which provide mathematical functionality specific to particular financial domains.

Mathematical functions include +,-,*,/,...

A logical formula returns a truth value. The operators are equals (=), less-than

(<) , greater than (>), less-than or equals (<=), greater than or equals (>=), and

(V) , or (A), not equal (7^).

4.2.3.1 Discussion

The mathematical aspects of domains were not emphasized in the domain expert

scenarios. Domains with a great deal of mathematics, such as financial analysis

already have a good deal of support in the form of spreadsheets or MathematicarM.

Mathematical functions are still part of the domains considered, but they tend to

play a secondary role in the scenarios. The mathematical libraries provided for use

in automated tools still need to be easy to use.

4.3 Objects

An Object is the REBUS building block used to describe a concept which exhibits

behavior and encapsulates state. Objects model domain-specific agents or compo-

nents that have behavior. The differences between a REBUS object and an object

oriented approach will be explained shortly.

An object is composed of a name, a category, a description, attributes, formulas,

and depictions. Each of an object's attributes has a unique name, because it refers

to a different aspect of the object. An attribute's value field is considered the default

value. The value field may also contain the name of a temporally ordered sequence

of values (i.e. a path which will be described in 4.6.3).

Here are some examples of objects in different domains:

73

Traffic-control domain: Objects include cars, traffic-lights, sensors,...

Fighter plane domain: A plane, a fighter plane, a missile, a F-14, a enemy plane

(bogey), a friendly plane,...

Telephony domain: Telephones(attributes: receiver-status (on-hook,

off-hook),...

REBUS objects are distinct from the object-oriented view of objects: There is

no explicit abstract procedural interface specification (no list of methods). Objects

encapsulate their depictions or views. Objects encapsulate formulas or constraints

between attributes. There are more distinctions in REBUS, so fewer notions map

to objects.

4.3.1 Discussion on modeling concepts

Some people [10, 34] believe that the problem of how objects and classes are obtained

from the requirements document is the most difficult part of object oriented design.

While some techniques have emerged, there is no agreed upon formal process for

identifying objects and classes [24]. In Dvorak and Moher's study [24] of analysts

constructing class hierarchies based on a specification, they found that differences

in application domain expertise (not object-oriented design experience) resulted in

qualitative differences in both process and product. Thus it is important to have

domain experts involved in this modeling activity.

With automated support, modeling concepts as objects can be done in an in-

cremental manner, based on the focus of the scenario. For example, in an initial

scenario one of the attributes of a car object might be that it is a convertible. In

considering a different scenario, the object named "convertible" is important, since

the behavior of an significant attribute that is only valid for convertibles would be

its top-status (i.e. the list type: top-up, top-down, top-moving).

74

In REBUS, spatial building blocks are used for spatial concepts. A car may

also have an attribute which is its passenger compartment type. The passenger-

compartment type is an example of a region building block which I describe in

section 4.5.1 as a spatial building block.

4.4 Units of measurement and types

Weights and measures may be ranked among the necessaries of life

to every individual of human society. They enter into the economical

arrangements and daily concerns of every family. They are necessary to

every occupation of human industry; to the distribution and security of

every species of property; to every transaction of trade and commerce;

to the labors of the husbandman; to the ingenuity of the artificer; to

the studies of the philosopher; to the researches of the antiquarian, to

the navigation of the mariner, and the marches of the soldier; to all the

exchanges of peace, and all the operations of war. The knowledge of

them, as in established use, is among the first elements of education,

and is often learned by those who learn nothing else, not even to read

and write. This knowledge is riveted in the memory by the habitual

application of it to the employments of men throughout life.

John Quincy Adams in a Report to the Congress, 1821

In REBUS, there are five building blocks for measures and types: the unit type,

the list type, a coordinate system, a named value or quantity, and conversions.

4.4.1 The unit type

The unit type encapsulates the notions of dimensions (e.g. length, time, and temper-

ature) and units (e.g. 5 meters, 50 seconds, and 20 degrees Celsius), as well as mass

nouns (e.g. 3 cars, and 7 jars of peanut butter). The unit type consists of a name,

a category (dimension), and a shorthand view (a symbol or depiction) which has a

75

display option of right side or left side (e.g. $100, 50m). It also has a description,

quantity restrictions, and component types.

Quantity restrictions limit the numeric values of a type, e.g. Real numbers

between 0 and 1. An accuracy restriction is part of the quantity restriction e.g.

accurate to two decimal places.

The unit type is one of the few building blocks where it is useful to provide a

standard system, the international system of units (SI) [72]. SI contains the following

7 base units and 2 supplementary units:

- Length meter (m)

- Time second (s)

- Electric Current ampere (A)

- Luminous Intensity candela (cd)

- Temperature kelvin (K)

- Mass kilogram (kg)

- Amount of substance mole (mol)

- Plane angle radian (rad)

- Solid angle steradian (sr)

All other SI units are derived from the above, e.g.:

- area square meter (m2)

- volume cubic meter (m3)

- frequency hertz (Hz) cycle per second

- speed meter per second (m/s)

- acceleration meter per second per second (m/s2)

- electric potential volt (V) 1 V = 1 W/A

- electric resistance ohm (Ü) 1 Cl = 1 V/A

- force newton (N) 1 N = lkg*m/s2

76

- pressure pascal (Pa) 1 Pa = 1 N/m2

- work and energy joule (J) 1 J = 1 N*m

- power watt (W) 1 W = 1 J/s

- concentration mole per cubic meter (mol/m3)

Other units are still expressible and the ability to add other units is needed. For

example, the pilots use nautical miles as their unit of length.

4.4.2 List type

The list type is composed of a name, a category, a description, a optional comparison

descriptor, and elements. Elements have names and descriptions. Elements can be

made of named quantities which represent a value or range of values in a unit type

or coordinate system. A comparison descriptor, if used, indicates that there is a

total ordering between elements (e.g. short < medium < long). Currently, there

doesn't appear to be a need for partial orders between elements.

Examples of list types:

telephony domain: name: Telephone-Receiver states, elements: on-hook, off-
hook.

traffic domain: name: Traffic-Light colors, elements: red, amber, green.

fighter plane domain: name: Missile ranges, elements: short < medium < long.

The ability to create list types is important since they are domain-specific and

more intuitive when precise values are not required. A problem with qualitative

description is that mappings can mean different things in different situations within

the same application domain. This can occur both by type (e.g. large could imply

weight greater than 50,000 lbs, height greater than 20 meters, or fluid volume more

than 8 oz.'s) or by value (e.g. large > 50,000 lbs and later on large > 5 lbs). This

makes it important to examine list types across scenarios. Such examination may be

unnecessary in acquiring individual scenarios, but becomes important if one wants

to combine scenarios and to further clarify the situation.

77

4.4.3 Coordinate system

Coordinate systems are composed of a name, a category, a description, and one or

more axes. An axis is similar to an attribute, but composed of a name, a type, and

a description (instead of a value). An axis's ordering is imposed from its type. A

specific point in a coordinate system is a list of values corresponding to each axis.

Examples of coordinate systems:

name: Cartesian coordinates axes name x type 0..1, name y type 0..1, name z type
0..1.

name: Color in RGB axes name Red value type red-value, name Green value, Blue
value

name: Date axes Month, Day, Year.

Examples of points:

(January, 1, 1993), (0.3,0.2,1.0),...

Coordinate systems also need support for multiple textual presentation formats

or depictions. For example, dates and times can be printed in several different ways,

depending on prevailing custom. Of course, the different formats might be modeled

as explicit categories.

4.4.4 Named quantities

A named quantity is composed of a name, value, type, category, and description,

for example, Noon, Midnight, PI, BIGNUM, Origin (of screen coordinate system).

One can even define terminology such as now where now is the smallest unit of time

considered important (i.e. 1 second, 2 hours).

4.4.5 Conversions

While conversions are not apparent in the representations of scenarios, they are

implicit. Conversions are important for understanding a domain and conversions

should be explicitly acquired. The description of a conversion consists of a "From"

type, a "To" type, a function, and a description.

78

_
I Measurement 1

(Qualitative A f Quantitative ^
Measurement J I Measurement J

(Set J f Count j (Mass J

f Size ") (" Weight ") (TimeJ

Figure 4.2: KRSL hierarchy of noun measurement types

4.4.6 Discussion of units and types

Units of measurement need to be explicitly supported as first class REBUS building

blocks. They are very common in the natural scenario representations and they

are also representative of knowledge which is not present when reading the existing

software. In fact, in the intelligent forces project the units of measurement used for

the fighter planes in a simulator developed at another site had to be re-discovered

locally.

4.4.6.1 Other work on measurements/types

Other efforts at supporting units of measurement/types have produced or used rather

complex vocabulary and highly detailed mathematical schemas. I will briefly de-

scribe three relevant efforts and compare and contrast them to REBUS.

The KRSL [48] hierarchy of measurement types is shown in figure 4.2. It is

broken into qualitative and quantitative branches. The current effort to support

units of measurement in KRSL is incomplete and it is not clear when this effort will

be completed.

79

The Ontolingua knowledge sharing effort has defined "theories" of physical-

quantities and standard-units [73, 74]. The authors developed an abstract schema

which formalizes abstract properties at the expense of ease of understanding. For

example, "Identity-dimension is the dimension of the so-called dimension-less quan-

tities, including the real numbers." In REBUS, real numbers would be defined as

a unit type and the notion of a dimension is captured as a category. Another ex-

ample of the difference between REBUS and Ontolingua is the explicit notion of

named quantities found in REBUS. Ontolingua organizes named quantities as sub-

classes of physical-quantities. For example, "zero-quantity" is a defined subclass of

physical-quantity. In REBUS it would be directly captured as a named quantity.

Iscoe [47], in his thesis, provided similar measurement/types for domain model-

ing. In fact he devoted an entire chapter to the subject which maps down to the

level of detail required to execute and validate type conversions. Iscoe's domains

were transaction oriented business application domains and his schema is divided

into scales (from mathematical measurement theory), units, quantities (fundamental

and derived), granularity (from the physical sciences), population parameters (from

statistics), and value set transitions. The REBUS list type corresponds to Iscoe's

nominal and ordinal scales. The REBUS unit type roughly encapsulates interval

and ratio scales combined with quantities and granularity. Population parameters

which describe the distribution of values within a value set are currently not part

of REBUS. Iscoe's work does not have the explicit named quantity or coordinate

system notions.

4.5 Spatial elements

Landau and Jackendoff [60] present a fairly comprehensive account on spatial lan-

guage. Although there is not a unified theory of spatial representation, they state:

Understanding our representations of space requires invoking mental el-

ements corresponding to places and paths, where places are generally

understood as regions often occupied by landmarks or reference objects.

80

Objects (including oneself) are then located in these places. Paths are

the routes along which one travels to get from place to place. These

elements are likely to be critical in any complete theory of spatial repre-

sentation.

Spatial representations are common in the pilot's scenarios, the spatial building

blocks of REBUS are based on the concepts of maps. The primitive spatial concepts

are: regions, boundaries, and landmarks [7].2 For Landau and Jackendoff, bound-

aries are implicit in the notion of a region. Boundaries need to be used explicitly

in order to formalize concepts like boundary crossings as critical components of the

scenario. While the concept of a path is common in spatial language, in the REBUS

vocabulary we consider it a temporal notion and describe it in section 4.6.3.

Maps used for scenarios are more sketch-like than those of cartographers (e.g.

typical auto-club road maps), but they can still convey the spatial relationships

between objects and their environment. In fact, for some" domains, such as vehi-

cle traffic control, spatial concepts are the significant elements of the environment

considered in the design. Regions are the only primitive with spatial extent. This

means that they are useful for representing containment. So, regions are the most

common form of spatial concept. Other non-minimal variations on the spatial con-

cepts include: composite region, point in region, and point on boundary. All of

the spatial concepts reflect the elements which people refer to when gesturing or

describing spatial concepts in front of whiteboards.

4.5.1 Regions, boundaries, landmarks

The region, boundary, and landmark building blocks are syntactically the same.

They are composed of a name, a category, a description, a depiction, and an attribute

list. They are semantically disjoint.

2The terminology used in [7] is areas, lines, and points.

81

4.5.2 Spatial composite

The spatial composite building block is included to support encapsulation of spa-

tial concepts. A spatial composite has a name, a category, a description, a list of

components, and a list of spatial relations (see 4.5.4) between components. For

example, an intersection is composed of roadways, and roadways are composed of

lanes. Intersections have boundaries such as center dividers.

4.5.3 Examples

Telephony domain: customer office, customer house, central office, telephone-

pole, switching station,...

Traffic-control domain: Lanes, roads, left-turn lanes, intersections, approaching,

in, and leaving regions, upstream,...

Fighter-plane domain: Land, sea, threat sector, shoreline,...

4.5.4 Spatial relations

Landau and Jackendoff [60] state "In addition to prepositions, there are many verbs

that incorporate spatial relations; these can (almost invariably) be paraphrased by a

simpler verb plus a preposition. For example, enter can be paraphrased by go into,

approach by go toward, and cross by go across. Thus, the key element in the English

expression of place is the preposition." They present table 4.1 as a fairly complete

list of English prepositions.

The spatial relations and prepositions are highly context dependent and provid-

ing extremely precise notions is more difficult since one cannot assume that people

with differing levels of spatial ability will be able to understand and use them [33].

One must still provide spatial prepositions since it is an area where visual depiction

helps resolve communication issues. More precise solutions involve the use of coor-

dinate systems, though supporting prepositions can delay that design decision. For

example, depending on the frame of reference, there are three interpretations for the

phrase, "The ball in front of the car" [86]. The intended frame of reference might

82

about between outside
above betwixt over
across beyond past
after by through
against down throughout
along from to
alongside in toward
amid(st) inside under
among(st) into underneath
around near up
at nearby upon
atop off via
behind on with
below onto within
beneath opposite without
beside out

Compounds
far from on top of
in back of to the left of
in between to the right of
in front of to the side of
in line with

Intransitive prepositions
afterwards(s) forward right
apart here sideways
away- inward south
back left there
backward N-ward (e.g., together
downstairs homeward) upstairs
downward north upward
east outward west

Non-spatial prepositions
ago for
as like
because of of
before since
despite until
during

Table 4.1: Prepositions of English from [60]. Reprinted with permission of Cam-
bridge University Press, (c) 1993 Cambridge University Press.

83

be the direction of the car, the direction the car is moving, or some outside observer

perspective [86]. Each interpretation has a unique visual depiction. For many exist-

ing systems (especially 2-D graphical user-interfaces) the notion of bounding boxes

is used for making spatial prepositions more explicit. Figure 4.3 contains the explicit

REBUS spatial relations.

These relations have been organized into subsets based on the details needed

to describe them. For example, a common way to consider spatial relationships

between two concepts is by the alignment of their bounding boxes. To describe the

relationship the names of the concepts as well as their offsets are needed. Since

spatial concepts can have spatial attributes, relations between those attributes can

be expressed with the logical relations: equals, less-than, greater-than, etc.

•

4.5.5 Discussion

Map concepts are also useful as the primitives for network depictions (i.e. nodes are

regions and edges are boundaries). To talk about the spatial extent of an object, one

can associate a region as an attribute of the object. If there is a question as to usage

of an object or spatial building block to represent a domain concept, the decision

should be made local to the concepts usage in the particular scenario. Context and

behavior are the two distinctions to look for.

For the contextual distinction, Landau and Jackendoff state, "the standard lin-

guistic representation of an object's place requires three elements: the object to be

located (or figure), the reference object (called ground by Talmy), and their rela-

tionship. In the canonical English expression of an object's location, the figure and

reference objects are encoded as noun phrases; the relationship is encoded as a spa-

tial preposition that, with the reference object, defines a region in which the figure

object is located. For example, in the sentence, "The cat is sitting on the mat,"

the figure (the cat) is located in the region described by the prepositional phrase on

the mat. The region is in turn described by the reference object (the mat) and the

spatial relation on, roughly, "contact with the surface of the reference object." For

84

A is in/on B A is between B and C

fB >

I*) \ 1

fB 1 f A i
V . J m n

v J

Bounding box alignment between A and B

 offsetd B

Compass direction between A and B
North

West East

South

Relationships between A and B viewed from C

A is in front ofB by a min/max distance d

in back of far from above to the left of
close to beneath to the right of

B
I /

Attribute measurement relations

a = b a<b a<=b
a > b a >= b

<■ A1

a f^\ f
c

c^

v ■ ■ j V J V: J

a<b<c
a <= b <= c
a>b>c

Figure 4.3: REBUS's spatial relations

85

the cat on mat situation, mat is a region since it merely serves as spatial context for

the cat.

For the behavioral distinction, one relies on the notion that spatial concepts

do not have behavior. This means that spatial concepts that have attributes that

change over time should be modeled as objects. In the specification of a trigger or

restrainer, one can still refer to objects contained in a region by including the region

in the description.

Only some subsets of spatial relations can be recognized algorithmically. Douglas

and Novick [23] describe an algorithm for determining a small set of relations (i.e.

right of, left of, above, below, and between) from a picture, but the meaning of the

use of the prepositions could become specific to a particular scenario or domain.

What is occurring in the real world is that instead of natural language, coordinate

systems (such as the global positioning system GPS) are being standardized to aid

in pinpointing locations (to some degree of accuracy, e.g. 500 ft). Rimmer [87]

provides a survey of qualitative spatial reasoning.

The set of spatial building blocks in REBUS is small compared to the Spatial

Data Transfer Standard (SDTS) [103]. The SDTS currently has 200 entity types.

Examples of these entity types include: airport, antenna, road, wall, beach, park.

4.6 Temporal elements

This section describes the temporal elements of REBUS. It begins with a definition

of a duration specification, which is an encapsulation of duration information. Then,

the set of temporal relations are described. Next, the basic temporal building block,

a simple path, is defined. Paths provide an explicit means to describe temporal

concepts. Paths have duration specifications and can be composed via temporal

relations. These composite paths are also defined. We conclude with a discussion of

paths: how they are used and how they relate to other work.

86

4.6.1 Duration specification

A duration specification is a template (not a building block)3 consisting of a min-

imum duration, maximum duration, minimum begin, maximum begin, minimum

end, and maximum end. Duration specifications are associated with a scenario, a

path, or a path point (these terms will be defined shortly).

Generally the fields are filled in with temporal dimensions such as 1 Hour or

named quantities such as Noon-Today or Now. Sometimes temporal durations are

specified with other units of measurement or spatial concepts. For example, in

describing a trip from New York to Los Angeles, minimum begin/end might be a

landmark like the Statue of Liberty and maximum begin/end another landmark like

the Hollywood Bowl.

Path points as well as paths (see section 4.6.3) can be thought of as 'intervals'

or 'points' depending on the values in the duration specification. The usage seman-

tically depends on the level of detail needed for the concept.

4.6.2 Temporal relations

Temporal relations are well known. They are specified by Allen's interval algebra

[1] which provides thirteen relations between intervals (six are inverses). These are

shown in figure 4.4. Allen's thirteen relations reflect a full characterization of the

starting and ending of points for the intervals. These intervals are without duration

specification. For REBUS, the set of relations between end-points is reflected in six

ordering relations and five logical relations on durations, and a tolerance description

(See Figure 4.5). One relation can describe, for example, that a combat mission

finishes before a debriefing meeting starts with a maximum tolerance of eight hours.

Compared to Allen's list, REBUS uses slightly different vocabulary and depictions

for readability. Also, Allen's "equals" relation can be composed out of either A and

B start together and finish together or A and B start together and their durations

are equal.

3A duration specification is currently not a building block in REBUS because it is not separate
from the building blocks which use it as a template.

87

X precedesY (before)

X preceded-by Y (after)

X meets Y

Xmet-byY

X during Y

X contains Y

X finishes Y

Xfinished-byY

X overlaps Y

X overlapped-by Y

X starts Y

X started-by Y

X equals Y

Figure 4.4: Allen's temporal relations

Order Relations

5T
«

A and B finish togther A and B start together A starts before B starts

3 1 "'•t-
A finishes before B finishes B starts before A finishes A finishes before B starts

Duration Relations
Duration of A equals the duration of B Dur(A) = Dur(B)

Duration of A is greater than the duration of B Dur(A) > Dur(B)
Duration of A is greater than or equal to the duration of B Dur(A) >= Dur(B)

Duration of A is less than the duration of B Dur(A) < Dur(B)

Duration of A is less than or equal to the duration of B Dur(A) <= Dur(B)

Figure 4.5: REBUS's temporal relations

88

Temporal relations can be logically combined, for example A and B start together

and the duration of A is less than the duration of B. Currently, REBUS does not

support conditional combinations, such as if A starts before B starts or B starts

before A starts then A ends before B ends. Sets of temporal relations can be analyzed

for consistency. (See [8] for research in temporal reasoning.)

4.6.3 Paths

Paths enable domain experts to express and encapsulate domain-specific sequences

of behavior (activities). Simple paths consist of a name, a category, a description,

an optional elaboration description, a point type, a duration specification, and path

points. Path points are combinations of values of 'type' and duration specification.

An elaboration description is a second form of categorization.

For example, consider a path named 'dial number' and category 'dialed number

histories.' This path's points are '12138221511' and '18005551212'. This path could

represent a history of phone numbers dialed. A second path, at a more detailed

level of abstraction, could be named 'buttons pressed' and category, 'button pressed

histories'. The paths have different categories. The elaboration-of field denotes a

relationship between the two path 'types.' 'Buttons pressed' could be an elaboration-

of 'dial number' and have the single digits of one of the phone numbers as its path

points. The path, 'dial number' and 'buttons pressed' are composed of points typed

as 'phone number' and 'button number,' respectively. A phone number is formed

from a list of button numbers.

Simple paths are used to express a total ordering on an objects' attribute val-

ues. This means that in combination the duration specification of path points are

restricted. Simple paths do not support the expression of temporal order indetermi-

nacy. This can be conveyed with composite paths.

4.6.3.1 Composite paths

Composite paths are used to combine value sequences of multiple types and to specify

temporal relations between concepts. A composite path has a name, a description, a

89

category, an elaboration description, a list of component paths, and a list of temporal

relations (defining the composition, see figure 4.5). The list of component paths is

composed of paths which are referred to by their names and types.

4.6.3.2 Examples

Elevator domain: Simple path of elevator requests, (Floor 1, Floor 2, Floor 3,

Floor 2)

Telephony domain: Simple path of telephone buttons pressed, (1, 3, 1, 0, 8, 2,

2, 1, 5, 1, 1). This could also be described as a composite path which would

focus on the fact that different buttons are pressed.

Fighter-plane domain: A composite path: 1 G turn which combines velocity with

turning.

4.6.4 Path discussion

4.6.4.1 Spatial paths

Spatial paths can convey spatial movement. If we require a spatial path, the path

type would correspond to direction and the duration specification corresponds to

distance. Spatial paths are likely to have a line depiction on whiteboard sketches

(see figures 2.2,2.4). There is currently no explicit way to convey a curved spatial

path. Subsequent frames or animation can also be used to convey movement.

4.6.4.2 Paths in animation

The term, path, has a history of use in computer animation. This use provided the

inspiration for the notion of paths in REBUS, since at one time the goal was to

animate scenarios. The particular work which was influential was Stasko's systems

Tango and Polka [97, 98]. These systems provide programmers (especially beginning

programmers) with a simple way to annotate their programs with procedure calls.

This can support a clean separation of the algorithm and the algorithm animation

90

code. With the focus of supporting animation, a set of predefined path types (e.g.

fill, scale, move, color) are provided. In this approach, all paths are uniform in that

they are a sequence of real valued pairs of numbers. The values only have meaning

when associated with their path type. These typed paths are used as general means

to change the appearance of a graphical object's depiction. This means that if we

wish to support scenario animation, one thing we would need to provide is a means

to map an object's attributes to the predefined path types of Stasko's paths.

4.6.4.3 Relationship to methods

In object-oriented design "methods" are associated with objects. In REBUS, paths

are associated with the concrete orderings of an object's attribute values. Paths do

not take the place of parameterized procedures like "methods", but if we consider

some subset of the object's attributes as the parameters to "methods" we can use a

path to describe the sequence of values passed to the method. That is, for an object,

car, with an attribute, location, the abstract method might be "move(location)"

while the simple path, "move", would be of type location and for example, have the

path point, "garage."4

Parameterized procedures are the lingua franca of programmers. They are ex-

plicit and organize behavior from a programming/mathematical standpoint, but they

are inappropriate for non-programmers and did not occur in the natural scenarios.

Without procedural notions from programming languages, there is some work

that must be performed by the analysts to transform paths into methods. This can

be done within the framework of a software engineering environment like ARIES

[51]. Paths provide a basis for the traceability of methods. That is, an abstract

method can be traced to one or more paths. Because paths encapsulate temporal

information, one can even trace several procedure invocations to a single path.

4The car could also be modeled with another attribute, action. In this case a composite path
would have both the "move" action and the "garage" location.

91

4.6.4.4 Path usage

Paths are used for describing object behavior in scenarios, so the ability to simply

assign an object a path is needed. This is possible since the path types can be

modeled as object attribute types. It is also reasonable to want to support paths

organized in a hierarchy. For example, turns can be further divided into right turns

and left turns.

Paths of length one are expected to be common since they are useful for re-

using single states or events. Paths convey concrete sequences at a single level of

abstraction over time. We do not assume there is any behavioral rationale or causal

implication between points on the path and it is reasonable for the duration to be

under-specified. It is not reasonable for a scenario writer to leave out a significant

point in the path when expressing a scenario.

There are two ways to look at the attribute type, namely, continuous and discrete.

For continuous types, ignoring details at the attribute level is necessary, but they

still need to appear continuous in the animation. This can be handled with trails

which are used in a manner closer to the use of paths in Stasko's [97] algorithm

animation system. Spatial trails can be defined interactively and are useful for

conveying smooth animation when the model is defined in terms of regions.

4.7 Behavioral elements

In REBUS behavioral elements are provided to model causal or conditional rules

that are communicated in scenarios. There are two semantic formats for these rules:

Triggers are used to convey the semantic notion of causal activation and restrainers

convey the semantic notion of causal impedance. In REBUS, behavioral building

blocks are classified as either triggers or restrainers. More specifically the term

stimulus is used to define a building block classified as a trigger5 and the terms

inhibitor and prohibitor are building-blocks classified as restrainers.

5The rationale for two terms is that REBUS may evolve to have more than one form of trigger
(e.g. explicit constructor, destructor, and messaging building-blocks).

92

Triggers and restrainers are used to express a conditional or constraining rela-

tionship between the current state6 (with paths used for historical states) and the

next state (with paths used for the future states). Note that paths add significant

semantic expressivity when used in conjunction with triggers and restrainers.

Before defining the details of the stimulus, inhibitor and prohibitor building

blocks, there are some common components called "sides." The term "side" reflects

a partial spatial layout for the components. Thus "left-side" and "right-side" are

the basic sides. The layout is partial because a prohibitor also has an "until-side."

These sides are composed of concepts which have attributes (e.g. objects, regions,

etc.). When located in the context of a trigger or restrainer, a concept has two other

fields: a count, which reflects quantification and a naming label which can be used

to distinguish multiple concepts of the same type.

The count field supports a variety of notions. For example, 'there exists' is

reflected in a count of 1 or more and 'Does not exist' is a count of 0. Count can be

built as logical formula. For example, There exists more-than four of an object is

expressed with count greater than 4.

The notion of 'For all' is implicit. Anytime a left side is true about the concrete

world model, the trigger or restrainer conditional has been satisfied for all the unique

occurrences in the world model. This is because of the execution semantics which is

described in section 4.7.4.1.

The concepts (e.g. objects, regions, etc.) in any of the 'sides' of a trigger or

restrainer have an extra field for local naming. Also, the concept attributes have a

'significance' flag. Given a concept has many attributes, this flag is used for focus.

Thus, only when the flag is set is an attribute's value (or path, for objects) considered

important to the condition. For right sides there is an additional qualifier, namely,

comes from. This qualifier is useful for stating that the value/path on the right side

is the result of a copy or formula applied to some attributes' value from another

side.

sState is meant to include system and environment state

93

In REBUS paths can be used in the side of triggers and restrainers to represent

histories and futures. Left and until side conditions for objects can only hold at the

end of all the attribute paths. Paths on a right side reflect future values.

4.7.1 Stimulus

A stimulus has a name, category, description, and two 'sides'. The left-side is the

triggering situation for the right-side to occur. That is the stimulus left side is the

triggering condition and the stimulus right side describes the behavior triggered.

This is temporally formalized as:

If left-side is true at time t then do right-side at time t + At, At > 0.

Create and Destroy: In REBUS construction and destruction of domain con-

cepts are specified as a stimulus. They are handled by setting the count value for

the object on the left side. If the right side does not have an object on the left side,

then the object on the right side is created when its count is set to 1 or more. To

destroy an object the right side and left side contain the same object, but the right

side has count zero.

This approach has the limitation that construction and destruction are not ex-

plicit building blocks of REBUS. The rationale for not making them building blocks

comes from their absence in the concepts seen in the domain expert's scenarios. Soft-

ware experts place more importance on such constructs. Automated support could

be provided for the software experts to filter the stimuli for instances of construction

and destruction.

4.7.2 Inhibitor

A inhibitor has a name, category, description, and two 'sides'. The left side is a

restraining description for preventing the right side. That is the inhibitor left side

is the inhibiting condition for the inhibitor right side which describes the behavior

immediately restrained. This is temporally formalized as:

94

If left-side is true at time t then can't do the right-side at time t.

4.7.3 Prohibitor

A prohibitor has a name, category, description, and three 'sides'. The left side causes

the restraint of the right side until the until-side occurs. That is the prohibitor left

side is the prohibiting criteria for the prohibitor right side which describes the be-

havior restrained until the prohibitor until side is true. This is temporally formalized

as:

If left-side is true at time t, until-side is true at time t' (t' > t), and

until-side is false at times p such that t < p < t' then can't do the

right-side at anytime t" (t < t" < t').

Inhibitors and prohibitors convey different meanings. To illustrate this, compare

statements 1 and 2.

1. If the gauge's pressure is greater than 50 psi prohibit the valve from opening

(until the gauge's pressure is not greater than 50 psi).

2. While the gauge's pressure is greater than 50 psi prohibit the valve from open-

ing until the operator checks it.

It would be awkward to state some forms of restraint without both inhibitor and

prohibitor constructs. This is illustrated by stating the prohibitor as the inhibitor:

If (the operator has not checked the valve since its gauge's pressure was last greater

than 50 psi) prohibit the valve from opening.

95

4.7.4 Discussion

4.7.4.1 Execution semantics

The basic execution semantics of triggers and restrainers is that they should "fire"

simultaneously when the condition described by the left side is met. Expert or pro-

duction systems have the same basic execution semantics [12]. With this execution

semantics, there is the problem of conflict. That is, what is the correct right side

behavior when two or more triggers or restrainers have satisfied their left sides and

their right sides would impose conflicting outcomes. To actually execute a set of rules

a variety of solutions to this exist, including ordering, heuristics, and most specific

left side. For REBUS, restrainers have precedence over triggers. For the purposes

of requirements envisaging, the approach taken is identifying and discussing such

conflicts with the domain experts. This can be done by discussing and capturing

scenarios which illustrate the conflict.

4.7.4.2 Temporal specification

One issue unique to REBUS triggers and restrainers is temporal specification. That

is, paths and duration specifications make triggers and restrainers temporally ex-

pressive.

There are two ways that duration specifications are associated with triggers and

restrainers. Both are via paths. First, a duration specification is part of a path's

associated with an object's attribute fields. These objects are in the 'sides' of a

trigger or restrainer. Second, triggers and restrainers can be thought of as events

or activities (by abstracting away from 'side' details) which have duration. When

consideration of the duration of a trigger (or restrainer) is important the trigger (or

restrainer) should be modeled (with the same name) as a path or path-point which

has a explicit duration specification.

We note that in order to achieve actual execution of triggers and restrainers,

one will have to decide a-priori a smallest unit of time (At) at which to model

the execution. The obvious choice is to base time on the smallest unit provided

96

by the system clock, but different domains have different requirements. It appears

inappropriate to impose such a choice during requirements envisaging, especially

since more than one time point can be represented by a path and we believe spatial

units can also be used to delineate time.7

4.8 Scenarios

As defined in chapter 1, scenarios are partial descriptions of system and environment

behavior. The organization of a scenario in REBUS takes its form from storyboards.

Each scenario has a name, category, description, duration specification, and one of

more frames. Each frame has a name, number, description, and depiction area.

The depiction area contains the concepts, e.g., domain objects, spatial regions, and

possibly further annotations.

The objects in the depiction area have an extra field for local naming and their

attributes can have values or paths associated with them. With these paths, a frame

can encapsulate more than a single state or time step.

Frames are related temporally, i.e. they are a temporal ordering.8 Frames are

also related causally, that is, triggers and restrainers occur between frames.9

4.9 Chapter summary

This chapter contains a detailed definition of a central contribution of this thesis: a

domain-independent, semantically rich, representation for within-scenario concepts.

It also contains a definition of a scenario, organized as a storyboard, which contains

the within-scenario concepts. The representation was designed with concern for the

target characteristics described in chapter 2. Its organization follows the conceptual

7In order to animate behavior, a smallest unit for the spatial coordinate system must be defined.
This is a similar decision to that of smallest temporal elements. For raster displays, this amounts
to the dimensions of the addressable pixels.

8There is symmetry between frames and simple paths. In viewing ftetoeen-scenario notions,
abstraction realizes this symmetry i.e. use the scenario name to correspond to a path name, and
the frame names, to correspond to the paths values.

9It appears that there can also be triggers and restrainers in Uetoeen-scenarios relations.

97

framework of objects, units of measurement and types, spatial elements, temporal

elements, and behavioral elements. These are further divided into building blocks.

To use the representation, one maps a concept from the application domain

onto an appropriate building block. The coverage provided by this representation

is also considered relative to concepts found in natural language and other relevant

representations.

98

Chapter 5

An automated tool for scenarios

5.1 Introduction

This chapter describes a program, called SCtool, for capturing and manipulating

scenarios. SCtool is a prototype which demonstrates the feasibility of providing

scenario writers with suitable automated support. SCtool instantiates the REBUS

representation as an automated tool with a graphical interface.

SCtool provides the scenario writer with a collection of editor and catalog di-

alogs. Each of the REBUS building blocks has its own editor (e.g. an object editor,

a region editor, a simple path editor, a stimulus editor). To organize the domain

concepts modeled with REBUS, catalogs are provided for each aspect of the concep-

tual framework (e.g. an object catalog, a spatial catalog, a triggers and restrainers

catalog). There is also a scenario editor and a scenario catalog.

99

Graphic Objects

Drawing tool

Scenario Capture tool (SCtool)

Editor dialogs for building blocks
(e.g. object editor, list/enum editor
region editor, simple path editor)

Catalog dialogs for categories
(e.g. object catalog, spatial catalog,

triggers and restrainers catalog)

Scenario Editor and Scenario Catalog

-185 C++ classes, -26,000 LOC

Scenarios,
Domain concepts =>
objects, units

Software development

Knowledge Based Software
Engineering Environment

Figure 5.1: SCtool overview

Since the goal is to support an iterative, opportunistic and ill-structured process,

editors and catalogs are available to the scenario writer at any time (i.e. they are non-

modal). The implementation currently provides one instance of each catalog, but

multiple editors can be opened as needed to support the viewing and manipulation

of domain concepts and scenarios.

An overview of SCtool is shown in Figure 5.1. The figure shows domain and

software experts collaboratively working with SCtool and a drawing tool. It also

illustrates the idea that SCtool could someday connect to knowledge based software

development tools.

The next section contains implementation information. It is followed by descrip-

tions of the various dialogs. This description includes details of the prototype's

usage and "rough edges" as well as discussion of implementation decisions and ra-

tionale. Throughout this chapter, the figures illustrate SCtool with example domain

knowledge from the telephony scenarios described in chapter 1.

100

o
□
D
o
O
o
O

düzia

l>

File Creation Selection Edit Structure Attributes Named Attributes Associations View Options Help

File name: /autD^arWsoarl^gnarlySCtool/rebusftelephony/depictionsl^dw lawm

&

£■ ±M

m
Command Report 1

Figure 5.2: The GoDraw graphics editor

5.2 Implementation information

SCtool was implemented in the C++ programming language [100]. The follow-

ing supporting libraries were used: The X Window System libraries [20], the

OSF/Motif™ Widget set [78], the Wcl Table Widget [96], and the GoPATH [21, 22]

structured graphics libraries. SCtool has about 185 C++ classes and 26,000 lines

of code (not including the libraries, but including code generated by a interface

builder).

A part of GoPath, the GoDraw editor, was used as a stand alone graphical

drawing tool (See figure 5.2). GoDraw was used as a basic drawing program with

101

I: Scenario
if Catalog

New
\ Scenario

} j

j Help (Exit

|

Figure 5.3: The initial SCtool dialog

which depictions could be created, manipulated and then imported and exported to

SCtool. The GoPath library was also used for saving and restoring data to textual

files in an object-oriented format.

5.2.1 Initial dialog

SCtool has an initial dialog which supports the basic functionality of accessing sce-

narios and exiting the program. As shown in Figure 5.3, SCtool also has a button

for "Help." While "help" is a standard button in many of the dialogs, it is not an

implemented feature of the prototype. Thus, the users in the evaluation which will

be described in chapter 6 must ask for help or guess. Selecting "Scenario Catalog"

from the initial dialog creates1 the scenario catalog dialog.

5.2.2 Catalogs

SCtool has a basic catalog dialog for scenarios as well as for objects, units of mea-

surement/types, spatial elements, temporal elements, and behavioral elements. Min-

imally, each catalog provides functionality to browse and retrieve existing concepts.

To illustrate a catalog dialog, the "Scenario Catalog" appears in figure 5.4.2 The

figure shows a list of scenarios. The upper portion has a "Catalogs" menu bar item

(which will be explained shortly). Below that there are four buttons. The first

updates the catalog's list of entries.3 The next two buttons are used in reference to

xIf the catalog has already been created, the catalog is raised to the forefront.
2The telephony concepts presented in the figures are for illustrative purposes, so, for example,

initially there are no scenarios in the scenario catalog.
3Currently, there is no database beneath SCtool and the catalog is not notified when new items

have been created and saved.

102

II»P<P%%%!^^^
1 Catalogs

«pda^&«fe^C9«featÄtl tatffit rmiimnimimM'z] JnToggle AHJ \ teonify Catalog |

m Scenario Name Scenario Category Scenario Description

a Anywhere Scenario (future scenario \
\ Illustrate future telephony scenario. \ 1

m ;; ;•; i^

D IrtortJi America Scenario | [current situation j Illustrates cad from anywhere in North America 1
%E —^-O;

K
flSIscenario |

i

bfffice scenario f I've dialed Lewis from my office. He is in and his phone is idle. Hs|J

-. """ **

N ',;;;;;;;;;,;;;;;..■ . ' '*?

Create anew scenarii J | OK

Ö Create new tram se lee ted

Figure 5.4: The scenario catalog

Objects.

Measures/Types...

Spatial (Regions,...)...

Temporal (Paths) ...

Triggers/Restrainers...

Scenario Catalog >

INorth America Scenario

Figure 5.5: A catalog pulldown menu

103

the toggle buttons next to each scenario in the list. One is the command to open

all the toggled scenario's. The other is a command to "un-toggle" all the toggled

items. The last button iconifies the dialog. The lower portion of the catalog dialog

has an area to selectively create concept editor dialogs. For example, the scenario

catalog has a button to create a new scenario.

Throughout SCtool, there is a "Catalogs" menu bar item. This pulldown menu

is shown in figure 5.5. This menu allows the user to create and then raise catalog

dialogs to the forefront.4

Future versions of SCtool should provide more features in terms of catalog sup-

port. Currently, the list of catalog items is in the order the items were first saved,

but other orderings or presentations could be provided. As the number of items in

a catalog gets large, mechanisms to query and retrieve subsets will be needed. Since

catalogs are also the means with which users create new concepts, facilities to create

or modify concepts based on existing concepts should also be provided, thus allowing

the user to easily create specializations and variants. We envision that the scenario

catalog, in particular, will need to support the various 6e£ween-scenario relations.

5.2.3 Scenario editor

The Scenario Editor is shown in figure 5.6 with data based on scenario 3 from chapter

1. The top part of the dialog allows the scenario writer to name, categorize, and

textually describe the scenario. The middle section of the dialog is the frame editor.

Frames can be added or removed as needed. In the current implementation, a newly

created scenario starts without any frames. Two frames are visible in the figure.

The lower section of the editor contains buttons for saving changes to the scenario,

closing the dialog (with the option of saving when modified), as well as restoring the

scenario from the last saved version.

technically, in the X window system, this duplicates functionality provided by a window
manager.

104

^^S^S^i^S^^aBj^^Msfeiigi^ffil^-iL]
Catalogs

Scsnarto NHTM

r]

Figure 5.6: A Scenario Editor Dialog

105

et I) Add from Catalog Edit Triggers
SÄ5SKfKSÄS3SJKS!SS!KffiS?

Paste Tog. Object Catalog

fl
Paste Tog. Spatial Catalog

Import GoDraw Annotation

* Show/Hide Annotation

Figure 5.7: The "Add from Catalog" pulldown menu

5.2.3.1 Each frame

The top part of each frame allows the writer to enter a name, a number and a

description. Frames contain the details of the concepts participating in the scenario

as well as annotations.

To add items to the frame's depictive area one would ideally locate it from a

catalog, drawing editor, or even another scenario then select, drag and drop a copy

onto the frame. Currently, only cut and paste is supported for this task.

Each frame has a menu bar which contains four pulldown menus: Add from

catalog, Edit, Triggers and Restrainers, and Relations. In figure 5.7, The Add

from Catalog pulldown is shown. The writer has selected Lewis from the Object

Catalog by toggle selecting the button in the left most column of the catalog and

then pressing the button labeled "Paste Tog. Object Catalog." The writer can then

interactively place the selected object (or objects) in the frame's depiction area.

Default depictions (e.g. for objects two rounded boxes with the concept's name) are

provided for the initial paste operation. See figure 5.9. The user can change the

depiction via the object's popup menu.

The concepts in a frame's depiction area can be selected and manipulated. Fig-

ure 5.8 shows a popup menu associated with an object's depiction. The popup

provides description information about a concept, e.g. its classification in REBUS,

its name, its category, and its local name (if needed). It also provides access to a

local values/path editor and a list of depictions. An example of the values/path

editor is shown in figure 5.10. The attribute value/path editor provides a view of

the object "Lewis." This editor allows the user to associate specific values or paths

106

Lewis

Object
Lewis

telephone user

\ Edit values/paths...

| Change depiction to >

Figure 5.8: Selecting an object

O Select I Add from Catalog Edit Triggers and Restrainers Relations

Figure 5.9: Default depictions - object, region, boundary, landmark

Lewis

Reset 1st from concept Open concept for editing

» Current Value Attribute Type Attribute Name

a

a

1 !
location 1 location

Lewis's phone office phone { office phone

o i I

\

phone > home phone |

m
Name Description

Lewis

Category(s)

teiepiioiie user

Representative telephone user, cailed Lews.

m.

Figure 5.10: Editing the attribute values of an object

107

*

Figure 5.11: Selecting an annotation

to the attributes of an object. Paths are associated with an object by typing the

path name (instead of an actual value) into the column labeled "Current Value."

The figure illustrates that the object "Lewis's phone" is the current value of Lewis's

office phone.

Annotation of the frame with structured text or graphics is supported with cut

and paste operations between the GoDraw editor and the frame via the menubar item

labeled "Import GoDraw Annotation." These annotations can be shown or hidden.

Annotations are especially useful for visually highlighting parts of a concept's state.

5.2.4 Object editor

The Object Editor is shown in Figure 5.12. Attributes can be added or removed.

Selecting the Edit Depictions button opens the Object Depiction Editor. The object

depiction editor lets the writer add and remove views. The graphics in each view

are created with GoDraw.

5.2.5 Measurement and types editors

The units of measurement and types dialogs are shown in figure 5.13 and in the sub-

sequent figures. The unit type, list/enumeration, named quantity, conversion, and

coordinate system editors are relatively straightforward implementations of REBUS.

Each dialog has save and restore functionality. The list /enumeration and coordinate

system dialogs support the addition and removal of list elements or axes, respectively.

108

Edit Depictions... Edit Formula...

Object Name Object Description

phone

Object Category(s)

Any telephone

]

Add itrribute \ at end u j 1 0K 5 \ Remove toggled attributes

m Attributs Type Attribute Name Default value or Path/Concept name Attribute Descrlpl

a jjphofte number j phone number ! | Ftane number 1

 i a*...: '.■■:.■.:..■:: : ?

ö
J location | location T

i
?

Where the phone is physically located j

 i S5M *

D
receiver status | receiver status bn-hook i

1 sa ,""', ä

O
lone status j »one status ho-tone | Fltone is quiet

I i m \

HE

| Save Changes Restore Help

8EEKSS

Add depletion j at end a | | OK Remove

View Description View Name

phone bitmap

View Category(s)

A phone picture

phone
«_ ™ , ,—4*9

P Select s Edtt View Criteria GoDraw Connection

View Description \

ringing phone bitmap

View Category(s)

phone

The phone is depicted as ringing

=JB^
O Select | Edit View Criteria GoDraw Connection

w.
JHeip"

Figure 5.12: Object Editor and Object Depiction Editor

109

Unit name Unit Description

3-digit extension

Category(s)/Dimension

phone extension's

A 3-digit telephone extension

^jg: i>
Shorthand view for unit: (Left or Right side of numeric value)

I O Left #■ Right

Composed of types (Top) over (Bottom)

Top (numerator) type

Bottom (denominator) type

Quantity/Value Restrictions for Unit

Minimum value 100

Maximum value 999

Restriction Description (if needed):

Other limits depend on site preference, such as not using frequently dialed
area code's, so that the extension owner doesn't get a lot wrong numbers from within;
Emergency numbers, like 911. 0 is the operator's extension.

>l. m
Save €h«ft§*>s Close Res1»r& Help

Figure 5.13: Unit type editor

110

List/Enumeration name list/Enumeration Description

tone status

Category(s)

The different tone states which emulate from the phone.

B» J8
P Select for enumeration (ordered 1st)

Add item I atend i~T| \ OK Remove toggled item

l Save Changes Close | Restore Help

Figure 5.14: List type editor

The quantity/value being named 12:00 pm

Save Changes Close Restore Help

Figure 5.15: Named quantity editor

111

Name for conversion (fromrto name) Description

inches/millimeters

Category(s)

length p-

From (type name)

To (type name)

inches

millimeters

Formula describing conversion

A

/

-U

1 in = 25.4 mm

I Save Ch«r«j»s Close Restore Help

Figure 5.16: Conversion editor

Coordinate System Name Description

Category(s)

dates, temporal

A US date

K
Add axis ! ate j Remove toggled

ZM

Axis Name Axis Type Description

One of Jan, Feb. Mar, Apr, May, Jim, Jul, Aug.

IDay [Day

I Save Changes Restore "Hejji |

Figure 5.17: Coordinate system editor

112

«Marts Typo

ilSI room number

Attributa Man»

ilSI roam number

Description

phone (collection) phones The phone(s) In the ornce. There may not be one..

Save Chang»« ^ ReslDn> Help

Figure 5.18: Region editor

5.2.6 Spatial concepts editors

Figure 5.18 shows the region editor. The region editor supports the naming and

description of a region and the addition and deletion of attributes. Selecting the

edit depiction button on the dialog brings up a spatial depiction editor. Spatial

concepts have a single depiction.5 Boundary and landmark editors are similar.

The spatial composite editor was not completed in the prototype, but it provides

a dialog of spatial relations. The spatial relations dialog is shown in Figure 5.19. This

dialog is currently accessible when editing a scenario's frame. The user of this dialog

selects a spatial relation and then fills in the details of concepts for which the relation

holds. Each scenario frame's spatial relations editor contains statements about the

visual relationships that are important to the scenario writer in the frame. So in a

frame, there may be visible spatial relations that are not considered important to

the scenario writer.

5The rationale for only a single depiction is that spatial concepts do not have behavior, so their
depiction shouldn't change.

113

A is in/on B

■hiiüÄ!

A is between B and C

1F~
ÜlÄljÜ

Bounding box alignment between A and B

B offset d
M

j«r
B t

;Ä;

Relationships between A and B viewed from C

A is in front cf B by a min/max distance d
inbackof far from above to the left of B

:;*i
close to beneath to the right of

&

Attribute measurement relations
a = b a<b a <= b

a>b a>- b

A:
M m a<b<c

a <-b <-c
a>b>c

3
Concept A's name Concept B's name

Lewis i in zi Lewis's Office

Otog

£E
Concept A's name Concept B's name

Loma's office close to a Lewis's Office

Viewed from:
Concept C's name

Q tog

Loma

AfB Minimum distance {

Close! I Help j

Figure 5.19: Spatial relations editor

114

5.2.7 Path Editors

The simple path editor and composite path editor (with its associated temporal

relations editor) are shown in figures 5.20 and 5.21, respectively. The simple path

editor allows the user to add and remove path points. Path points are arranged in a

list which is temporally ordered from top to bottom. In the figure, the path "pick-up

receiver" is defined by the temporal ordering of points with the values "on-hook"

and "off-hook". A button is provided to access a dialog for editing the total path

duration specification. Each path point also has a duration specification. The field

of the duration specification are located in the rows to the right of the point value

column. Currently there is no support for checking the consistency of a path.

The composite path editor allows the user to add and remove paths from a list.

This list's temporal ordering is defined by the temporal relations defined in the

temporal relations editor. To use this editor the user selects a temporal relation

and a template is provided to fill in the details of the corresponding paths. The

example composite path in figure 5.21 joins two simple paths with the relation that

one finishes before the other starts, thus picking up the receiver precedes hanging it

up. This composite path defines the more abstract "Minimal call" temporal ordering

of simple paths. The relation "A finishes before B starts" is specified by editing the

dialog as shown in figure 5.22. This dialog is an editor for the temporal relations

between the elements of a composite path.

The temporal dialogs illustrate the temporal concepts that can be expressed with

REBUS, but further user interface work can be done. Currently, complex paths

(ones with longer sequences of values or many relations) are difficult to visualize

and manipulate. Alternative visual organizations such as timelines or graphs may

facilitate the readability of complex paths.

5.2.8 Triggers and restrainers editors

The implemented triggers and restrainers dialogs are the stimulus, inhibitor, and

prohibitor editors. The stimulus editor is shown in figure 5.23 and the inhibitor and

prohibitor editors are shown in figures 5.24 and 5.25, respectively. The top part of

115

Simple Path name Path Description

Category (s)

receiver activities

Going from on-hook to off-hook

Baborauon of: (path name)

pEott total duration for path .j

Path type (points of path are same type)

Add path point } at end £S [j OK } Remove

receiver status

i

■ ft»t value Duration Minimum Duration Maximum Earnest Start Latest Start Earfest^

a im-hook ;- \ I j I
I 1: j

a Dfr-hook < 1 j 1 \ 1 j I1 |
IE

Save Changes He*

Figure 5.20: Simple path editor

each dialog has the name, category and description fields and the majority of the

dialog is used to edit the left, right, or until "sides."

The sides section is read from left to right. Due to limited screen space, this

part of the dialog is implemented as a paned window with scrolled areas for the

components of each "side." Currently, each side has limited functionality. The user

must add concepts by selecting the location in the side and clicking on OK. This adds

a template which the user then fills in with the concept's name, count, attributes,

etc. Thus, the dialog is far from ideal.

Further work to support the selection of concepts from other locations (such as

scenarios or catalogs) and place and edit them with the appropriate side specific

information will be needed. In addition, graphical depiction can be used as a visual

filter when textual details are consuming too much screen space.

5.3 Chapter summary

This chapter shows the prototype implementation of an automated tool for scenario

capture (SCtool) based on REBUS. This prototype is intended to demonstrate the

116

Composite path name Description

Minimal call

Category(s)

1 receiver activities

Elaboration of: (path name)

Pick-up receiver and sometime later hang-up.

J
JBZZ

Path type (points of path are same type)

Add path point I atend S3 | | OK | Remove toggled

Path Name Path Type Description

O
pick-up receiver receiver activities:

HE

I Save Changes Close Restore Help

Figure 5.21: Composite path editor

117

Order Relations

A and B finish togther A and B start together
*L

A starts before B starts

"Oä TL ">'t-
A finishes before B finishes B starts before A finishes A finishes before B starts

Duration Relations
Duration of A equals the duration of B

Duration of A is greater than the duration of B
Duration of A is greater than or equal to the duration of B

Duration of A is less than the duration of B

Duration of A is less than or equal to the duration of B

Dur(A)-Dur(B)

Dur(A)>Dur(B)
Dur(A)>=Dur(B)
Dur(A) < Dur(B)
Dur(A)<=Dur(B)

l A finished before B starts a Rath A's name

Otog

pick-up receiver

Path B's name

Duration Minimum t/e

Duration Maximum t/e

hang-up receiver

Close | |Heip"l

Figure 5.22: Temporal relations editor

118

Stimulus Description

Category(s)

Stimulus for Lewis's phone to ring

The <l»rtsldB>Is*«gyringg»wltfcw^

Add concept;! at and Z3 \ -. OK

Conceptn

j Lewis's pnone

Count criteria/f

Add ittributeraw ! aland jj OKI 1 'tamovattgoM I
K Albljuls Nanw Attribute Typa vau or FUh/ancapt name i

a incatvnr slaUia_ lraa(verstaka(jon-hoo* I' i
a tone Statut tomitatua |iH-ton4 |I i

I.....«, —-— ~- , — „ ä

3 tog Count criteria/T

Add attribute raw ; at «id .=a } 1 OK !

■f Attribute Hama Attribute Type Value or PathfConcapt am

o j OCtlVO axtnsiori [extension-nurnbetj [«4 !>
1

Add concept i «t and ^ \ | OK j | Remove toggled]

btofl Coaeaptnama Got)

E Lewis's phone

nvvm ,V~V*~.W~ W -„V -„„V .«, T

Add attributaniw ■ at end 5j i OK i Remove toggled

K Attribute Hama Attribute Type value or PenVConci

ü j tone status; j tone status) ring-tone

Figure 5.23: Stimulus editor

Jte——
]

The «ten std» te a eiMtrona candttion for the bahavior descrtied an trie «tight side> to occur
leftside I rtghta

;3tog Count criterie/P
(nonaV(al) j.;

Add attribute row ! atand a \ \ OK ; Remove toggled j

receiver status

Value or ran/Concept n

d concept ; »tend Z2 j

Otog Concept name

[p*«ne

Add Bttrtwterew ■ at end 3J 'OK j i Remove toggled

fti Attribute Name Attrtbute Type Value or Path*

■3 1 tone status tone status ring-tone?

m

Figure 5.24: Inhibitor editor

119

praMUt ringing ProNbit's phone from ringing witfl

Category (i)

 JSC
The «toft sMe> b a restraining condition for the behavior described on the «right 3de> to occur UhTTlL the condition on the <untt sfcte» fct met

i attribute row ; alaind £1 | \ OK

Attribute Kama

(noneWd)

Value or Rath/Concept name

OK j Remove toggted

Count criteria/f
(non-y(aa) j;

receiver status:

Value or Path/Concept name

Save Changes j

Figure 5.25: Prohibitor editor

feasibility of providing a scenario capture tool which has a forms-based interface, has

strong semantics, and is domain independent, but still structured around domain

knowledge. The SCtool graphical user interface is presented and described.

120

Chapter 6

Evaluation

Colin Potts [81] suggests that researchers who wish to be taken seriously by practi-

tioners need to adopt an "industry as laboratory" research methodology.

6.1 Introduction

It is important to get feedback on the use of REBUS and its prototype implementa-

tion, SCtool, in real world situations. While an evaluation of REBUS could utilize

contrived tasks or controlled situations, valuable things can be learned from a study-

emphasizing external validity. SCtool was used by people carrying out their own

tasks. This chapter describes the use of REBUS and SCtool in a real world appli-

cation domain driven by the needs of a real world knowledge acquisition problem.

This application domain is the operational control of NASA's Deep Space Net-

work (DSN). This domain was not among the domains studied while developing

REBUS, but since it fits the overall characterization of a domain in which objects

interact with their environment, it is an appropriate setting in which to use REBUS.

The evaluation presented here is formative in that we are trying to obtain infor-

mation about the design of the prototype, rather than to measure outcomes such as

improvements in resulting requirements documents. REBUS and SCtool's strengths

and weaknesses are evaluated in a real knowledge acquisition meeting, by having

121

someone other than myself use REBUS and SCtool, and by using REBUS and SC-

tool in a different context of acquiring scenarios when compared to the intelligent

forces observational study.

There are several differences in context. In the case of intelligent forces, agents

were to be developed from scratch and integrated with a graphics simulator also

under development. For the DSN, operational systems exist and knowledge of the

existing systems is gathered from various sources for the development of domain and

task specific simulation capabilities. Also in the videotaped meetings of pilots and

software experts, some of the software experts were at the early stages of understand-

ing the domain, while the software experts in DSN have more domain experience

and the domain experts have more programming experience.

First, this chapter will briefly describe the DSN application domain. Then further

details of the requirements acquisition situation, i.e. the participants'1 background

and training, the preparation prior to the meeting, and the background context and

scenarios which needed to be collected during the meeting in which SCtool was used.

This meeting was videotaped to capture the communication between the domain and

software experts. This chapter also documents and summarizes the data which were

collected with SCtool. Finally, we present details and analysis of the evaluation

experience.

6.2 The application domain

The following description comes from Hill et al.[43]:

The Deep Space Network (DSN) is a worldwide network of deep space

tracking and communications complexes located in Madrid, Spain, Can-

berra, Australia, and Goldstone, California. Each of these complexes is

capable of performing multiple missions simultaneously, each of which in-

volves operating a communications link. A DSN communications link is

1a.k.a the subjects

122

a collection of devices used to track and communicate with an unpiloted

spacecraft.

Currently, most of the tasks requiring the control of a DSN com-

munications link are performed by human operators on a system called

the LMC (Link Monitor and Control) system. The Operators are given

tasks that involve configuring and calibrating the communications equip-

ment, and then they monitor and control these devices while tracking a

spacecraft or celestial body. The Operators follow written procedures to

perform their mission tasks. A procedure specifies a sequence of actions

to execute, where the actions are usually commands that must be entered

via the link's monitor-and-control system keyboard.

Once issued, a command is forwarded to another subsystem, which

may accept or reject it depending on the state of the subsystem at the

time that the command is received. The Operator receives a message

back from the subsystem indicating whether the command was accepted

or rejected, and in cases where there is no response, a message saying

that the command "timed out" is sent. These messages do not indicate

whether the action was successful or what the results of the action were.

Rather, the Operator has to monitor subsystem displays for indications

that the action completed successfully and that it had its intended effects.

It is common for commands to be rejected or for commands to fail due

to a number of real-world contingencies that arise in the execution of a

block or procedure.

For further project context, from 1991-1993 JPL developed a prototype, the

"Link Monitor and Control Operator Assistant (LMCOA)" to improve Operator

productivity by automating some of the functions of the LMC.

Hill et al. state that the LMCOA performs tasks by: (1) selecting a set of blocks

which contain commands to execute, (2) checking whether a block's preconditions

have been satisfied, (3) issuing the commands, and (4) subsequently verifying that

the commands had their intended effects. The Operator interacts with the LMCOA

123

by watching the blocks as they are being executed and pausing or skipping portions

of the block that need to be modified for some reason. When a block fails, the

LMCOA lacks the ability to recover on its own. Instead, the Operator is left to

figure out how to recover from the failure.

6.3 JPL's need for REBUS/SCtool

Under development at JPL is a new version of the LMCOA that will include a com-

ponent, REACT-P. This component will reactively generate new plans in response

to failures or changes in goals initiated by the Operator.

JPL's knowledge acquisition problem is in gathering and validating the domain

knowledge. The domain knowledge needed by REACT-P includes the following: (1)

the blocks and their actions, (2) the preconditions for each action, (3) the effects

or postconditions for each action, (4) the goals of each set of blocks, (5) a partial

order among blocks, and (6) the dependencies among blocks. This knowledge is

normally only found in an expert's skill base and not recorded in a declarative form.

Fragments of this information exist in the procedure manuals and operating guides

for the various devices, but much of it is undocumented and can only be deduced

from experience interacting with the devices.

JPL saw REBUS/SCtool to be of potential benefit toward alleviating the knowl-

edge acquisition problems encountered in developing the knowledge base for REACT-

P. They surveyed various knowledge acquisition tools and representations. The ex-

isting tools and representations did not meet their needs so they chose to participate

in this evaluation of REBUS/SCtool.

An overview of how JPL viewed REBUS/SCtool can be seen in figure 6.1 taken

from [43]. In the figure, REBUS is shown to connect to two boxes, labeled "RIDES"

and "TDN". These components were designed for knowledge acquisition prior to

JPL's introduction to REBUS/SCtool. SCtool was seen as an additional tool to be

placed in front of the others since it could be used to express the knowledge needed by

both components. SCtool was not to take the place of the other components. Many

124

REBUS specification
and
description

objects
types

processes
limits/ranges

attribute/value

TON

goals
blocks
actions

pre/postconditions
partial order of blocks

user authoring
simulation execute TDN actions

react to actions
REACT-P

and LMCOA

from Hill et. al. '94

Figure 6.1: REBUS in the context of JPL's tools

125

of the features of these other tools are used to express programming level details (e.g.

the screen location for an object is expressed as a pair of integers.). The collection

of components (RIDES/TDN/REACT-P) are analogous to the possible connection

that SCtool would have with a knowledge-based software engineering environment.

For example, the box labeled "RIDES" is the RIDES simulation authoring tool

[65]. Hill et al. state that the RIDES graphical simulation authoring toolkit is

being used to develop working models of the devices. JPL envisions the domain-

specific simulations to serve two purposes: (1) to communicate with the subsystem

engineers about how their system works, and (2) to test experimental prototypes

for the DSN. RIDES is used to recreate the graphical user-interface to the LMC

system and to model the devices with objects and attribute-values (represented at

the detailed programming level, i.e. integers and characters). The simulations built

in RIDES will be connected to REACT-P to provide a domain specific interface with

which to evaluate the behavior of REACT-P. The testing of experimental prototypes

is necessary, since access time to the DSN will be quite costly and extreme safety

measures must be observed.

The second box labeled "TDN" is the Temporal Dependency Network (TDN)

authoring tool. The TDN as a representation plays a significant role in the contexts

in which REBUS/SCtool were used. Thus, TDNs will next be described in further

detail.

6.4 The temporal dependency network (TDN)

The following details are from [26, 43].

For encoding knowledge of the operator's tasks, JPL has developed

a representation called a Temporal Dependency Network. It is used by

the system engineers in order to express the basic block structure and

control flow of the system directives used in operating the DSN LMC

interface.

126

A TDN is a directed graph that incorporates temporal and behavioral

knowledge and also provides optional and condition paths through the

network. The directed graph represents the steps required to perform

an operation. Precedence relations (step A has to happen before step

B) are specified by the nodes and arcs of the network. The behavioral

knowledge identifies system-state dependencies in the form of pre- and

post- conditions. Temporal knowledge consists of both absolute (e.g.

Acquire the spacecraft at time 02:30:45) and relative (e.g. Perform step

Y 5 minutes after step X) temporal constraints. Conditional branches in

the network are those performed only under certain conditions. These are

the IF (this condition) THEN (do/don't do that action). Optional paths

are those which are not essential to the operation, but may, for example,

provide a higher level of confidence in the data if performed. Each node

in the TDN is called a block and contains actions to be performed. A

block also has goals, pre- and postcondition constraints and temporal

constraints associated with it.

The TDN is used as a general representation of an operational se-

quence of tasks. An instance of a TDN is created from the general

representation and parameterized for the specific track.2 The TDN acts

as a template for operations, and individual parameters (time, frequency,

file names) are filled in at execution time to perform operations.

6.5 The Voyager TDN - specific context for the

meeting

In this section we begin to describe the specific context for the knowledge acquisition

meeting in which REBUS/SCtool was used. During the meeting, the software expert

was to acquire and verify knowledge from a domain expert about a receiver subsys-

tem called the telemetry processor (TP13). For background information, TP13 (also

2 A track is a mission in which is a spacecraft or celestial body is being observed.

127

called arx2) was removed from the DSS-13 receiver in Goldstone, so the operators

had little experience with it. The TP13 would be needed for the tracking of the

Voyager Spacecraft, thus the software expert needed to interview the developer of

the TP13 and the focus was on the Voyager TDN.

The knowledge of this TDN came from a trip to Goldstone by the software

expert two days prior to the meeting. The purpose of this trip was to discuss the

overall mission and to gather the knowledge which was later encoded in an initial

TDN.3 The TDN played a significant role in the meeting by focusing on candidate

scenarios (corresponding to TDN blocks) which needed discussion with the TP13

domain expert.4

Figure 6.2 contains the TDN which was present in paper form during the meeting.

The seven starred blocks are ones which were identified as needing discussion with

a domain expert at the meeting.5 The reason a block, instead of an entire TDN,

was chosen as the unit of abstraction for mapping a scenario, was that a block

corresponded to a manageable unit which might be re-used in other missions. Note

also that the entire TDN contains conditionals and loops and alternative courses

which also seem closer to between-scenaxio relationships.

To illustrate the TDN directives, figure 6.3 contains three blocks. The detail of

the three blocks was entered/modified after the meeting. They are presented here

for background. The block "Connect M&C to subsystems" has several commands

to connect to various subsytems (e.g. "arx2@connect" is the command to connect

to TP13). The block "Set Receiver(s) for Track Configuration" shows several com-

mands to set attributes of TP13 (e.g. arx2@setvar@arxCarPredPwrl_D@15@Y is

used to set the Pc/No - predicted carrier power). The block "Acquire Carrier" shows

a manual action to be performed by the operator.

3I did not find out about this knowledge acquisition at Goldstone until the morning of the
evaluation with the domain expert.

4The task of knowing which scenarios to write or on which to focus is highly dependent on
domain knowledge and project objectives.

5The first six were identified by the software expert and the last by the domain expert during
the meeting.

128

CO
T-

CO
CO
Q

£<3

C(5§

£ >*-
O (B
©>
03 C

CD

*h

E |

ilf
ill

9]
«sals si

15

*
I!

j ::*i 8568

EOCE

®

*

■«.

:a

*

£?8
Sue

IS

8

0«9

*
511
its

If

Is
JO.

s o z z
Q

>

Figure 6.2: The Voyager track TDN - used during the meeting (rotate page)

129

Connect M&C
to subsystems

#Block 2

!SS.CONNECT
ICOMMAND
!wx@connect
uwc34@connect
sdrQconnect
ant34@connect
arx2@connect
#ifs@connect
!inspect-SS
IPRINT.TRACK-FILES
CONFIGJF.S WITCH-
LOAD JPO.FILES
!0
!NIL
!NIL

Set Receiver(s)
for Track Configuration

#Block 15

ICONFIG-RCVR
[COMMAND
!arx2@setvar®arxCarPredPwrlJ)@15@Y
arx2@setvar@arxCarPredFreql_D@269000000@Y
arx2@setvar@arxCarBWlJ)@0.5@Y
arx2@setvar@arxCarRatelJD@500@Y
arx2@setvar@arxCarLoop.S@2@Y
arx2 @sendvar@arx2 xonfig
ILOAD-ANT.PREDICTS
ICHK.TLMJDECODE
!0
!NIL
!NIL

Acquire
Carrier

#Block 20

!ACQUIRE.CARRIER
ÜNPUT
IType 'acquire carrier' at the Receiver;
!Press<cr> When Finished;
ISTART .RECORDING
1ACQUIRE.TLM
!0
!NIL
!NIL

Figure 6.3: Examples of blocks in Voyager TDN

130

6.6 The room, equipment, and participants

The meeting room (see figure 6.4) was a lab containing various workstations and

equipment. SCtool was running on a Sun Workstation in the right corner of the

room. It was equipped with two monitors and was running XVan, a virtual X

server. This server made it possible to move SCtool windows between the monitors.

This extra monitor was thought important given the limited screen space and the

number of dialog boxes for SCtool's catalogs and editors. Despite this, early in the

meeting, the 8.5x11 page which contained the Voyager TDN (described in section

6.2) was placed in front of the second monitor. The second monitor was used later

in the meeting to move some of the dialogs out of direct focus. Trish stated that she

didn't have much trouble managing the dialogs. Although, I noticed that SCtool

needs support for keeping multiple editor dialog's (when open to the same concept)

consistent.6 This is an area for further implementation work.

The video camera used to record the meeting was placed high on a tripod, facing

a workstation two meters away. There were four people present throughout the

meeting: Trish, Roland, Richard, and Lorna. Trish was in a workstation chair in

front of the primary monitor. She operated SCtool. Roland was seated to the right of

Trish. Richard was behind and right of Roland, mostly out of camera view. Finally,

Lorna was seated behind Trish, also mostly out of camera view.

The major participants' backgrounds and roles are as follows:

Trish is the software expert and the scenario writer using SCtool during the meet-

ing. She holds a B.S. in computer science and has two years of DSN automation

research support experience. She has done the knowledge acquisition for two

other tracks (one, called KaAP, was used for practice with REBUS) which she

encoded in RIDES and the TDN editor. Trish is the developer of the TDN

editor. Except to arrange the meeting, she has not worked with Roland prior

to the meeting.

6This occurred during the training/review meeting, but it did not occur during the meeting
with the domain expert.

131

Figure 6.4: The meeting room (a lab)

Roland is the domain expert. He has "Approximately seven years experience work-

ing with prototype DSN receivers, testing with station equipment, and integra-

tion and testing with the research station (DSS-13)." He is the lead designer

and developer of the telemetry processor (TP13). His educational background

includes a M.S. in Electrical Engineering. He has computer programming ex-

perience.

Richard was asked to attend the meeting by Trish. He has worked with Roland

before, has a M.S. in Computer Science, and six years of development experi-

ence with the DSN. Richard was free to ask and answer questions during the

meeting.

Lorna is the developer of REBUS and SCtool.

The next section describes the background of the participants with REBUS and

SCtool.

132

6.7 Training in REBUS and SCtool

Irish's training in REBUS/SCtool was informal, unguided and use-oriented. It

seemed best to teach REBUS/SCtool in the course of trying to write scenarios

(reflection-in-action). Thus, over the course of the case study, learning is occurring

for both the student and the instructor. Trish was learning to write scenarios and

to use SCtool and I was learning about the domain as well as about improvements

which could be made to SCtool.

Three weeks prior to the meeting, SCtool was installed at JPL and Trish was

given an informal demonstration. Over the course of a week Trish entered the KaAP

TDN (about 4 hours of total time, over 3 days). She described 18 blocks of the KaAP

TDN as scenarios. Also created were 12 objects and 10 units/types (5 list, 5 unit, 1

coordinate).

The following week I met with Trish to go over the scenarios and I attempted to

address any problems. Two SCtool bugs needed to be fixed (both were known to

randomly occur) and one simple feature was added (Trish requested a pushbutton

to iconify the catalogs. This was in addition to the iconify button supplied by the

Motif window manager). This meeting was videotaped and questions and issues

raised are documented in section 6.12.1.

Richard and Roland were introduced to REBUS/SCtool during the first 13 min-

utes of the meeting. They were presented with hardcopies of the REBUS conceptual

framework (as shown in figure 4.1) and a brief (9 min) demonstration of SCtool with

data from the KaAP scenarios.

6.8 Timeline/background of JPL meetings

To clarify, several meetings are being referred to.

Set-up meeting A meeting in which SCtool was installed at JPL and then infor-

mally demonstrated to Trish. This occurred on Wednesday, November 23rd.

133

Training/review meeting A meeting to review Irish's KaAP scenarios and track

the SCtool bugs. This occurred on November 30th and was videotaped. It

lasted approximately 1.5 hours. Trish and Lorna were present. For this meet-

ing, I performed most of the interaction with SCtool.

The meeting This is the meeting in which the REBUS/SCtool evaluation data

was collected. It occurred on December 9th and was videotaped. The meeting

was scheduled for 9:00am and started about 9:05am. In the beginning, Lorna

sat at the console to explain REBUS/SCtool. After describing REBUS and

SCtool, neither Roland nor Richard had questions, so Lorna exited SCtool.

Trish then took control of the workstation. Then Trish began a new scenario

corresponding to the block in figure 6.2 labeled Connect M&C to subsystems.

This meeting was approximately two hours. At the end of the meeting Richard

and Trish requested a copy of the videotape. I provided a copy to them at the

follow-up meeting.

The follow-up/review meeting In this meeting Trish, Lorna, and Martin (a

member of my dissertation committee and a requirements engineering re-

searcher) reviewed the videotape. This meeting occurred on Dec 22.

6.9 Data captured in SCtool from the meeting

This section describes the data captured with SCtool for the Voyager track. Further

analysis and discussion follows this section. For background, most of the following

data was captured during the meeting. After the meeting, Trish continued to edit

the scenarios adding five stimuli and associating them with scenarios. Trish also

modified the list of "operator actions." What is presented here is the data after

these modifications.

Figure 6.5 contains an example scenario captured during the meeting. The sce-

nario is named "Acquire carrier" and it corresponds to the block of the TDN in

figure 6.2 which is starred and labeled "Acquire Carrier." As stated in the scenario

134

description, the operator needs to lock onto the carrier. In this scenario there are

two objects, the telemetry_processorl3 and the operator.

Inspecting the values of each object shows that, for the operator, the current

value of the attribute "operator actions" is set to "type acquire carrier" and for the

object, telemetry_processorl3, the current value the attribute "carrier acquire state"

is set to "acquire carrier." Trish has chosen to use a single frame to show more than

one point in time. In this case she has actually presented causality within a frame.

This could be considered an incorrect use of REBUS semantics (causality is between

frames), but the circumstances of the evaluation don't lead us to believe this is a

problem.

Specifically, Trish was asked to document any triggers and restrainers with the

scenario frames' description due to SCtool limitations. She was not told that causal-

ity should be presented to the scenario reader between frames and this was not part

of the REBUS language description she received prior to the meeting. Given she

associated the causality of the trigger, "acquire carrier command entered" with the

frame's description, this still conveys the correct notion. Further work is needed to

investigate this issue of readability of scenarios written with causality in the frame

versus between frames, since it is possible that both are equally understandable to

scenario readers. Both also make explicit use of triggers and restrainers for seman-

tics.

Another limitation of the prototype shows also shows up in this scenario. That

is consistency checking. "Type acquire carrier" is meant to be the same as the

actual item, "enter 'acquire carrier' command", in the list of operator actions. To

provide automated support for consistency checking requires comparing the current

attribute value against the attribute type and/or the path catalogs. Ideally, if the

value entered for the attribute is not found then the system would recognize and

track the inconsistency on a to-do list.

Figure 6.6 shows a unit of measurement "db-Hz" and a list type called "loop

type" collected during the meeting. There are some interesting exchanges between

the meeting participants about these types. For example, Richard said to Roland,

135

i«iiiaM,iiii.i,,nmiili,i:.iiii.ii.iliiii ii ii i.ii, n1 ti.n^^t Jut'sb^^rio &«taribiiiiii;Ji.iLlrilr!iii!M:rBiti;t!.i[flir.i3rwlaii,i!iimi.l,;i.iiiljia,iiHiiij»aaiH IIü;

Scanaho Kama Scenario Description

Scenario Catagory(*)

lock on to cantor

AM frame to scenario [" »tend o | I QIC I

Frame Number

D Select Add from Catalog EdK Triggers and Beitragen Rotations

W9mrtfyjinx«sorI3 ' * *

Save Change»!

Üb mi >>.. iiMii^w^wi^^kd!^. - -I
Reset 1st front concept) [Open concept for e<ltttg,„.

Currant Value

typeicotamc

Type

|Qose/Save]

Current Value Attribute Typo

.connectStata pomect3tate

frapare taiemetry state

Jfacon

fcita

H»

totono&yjinicessofl 3

|0<CT8/SOT|

Figure 6.5: The scenario named "Acquire Carrier"

"I forget. What are the three types?" This occurred as Trish was editing the

"loop type" list/enumeration dialog. Trish then proceeded to verify and correct the

descriptive details of this dialog. The discussion of loop type is further described in

section 6.12.2. The type "db-Hz" is significant to the revelation described in section

6.12.4.

Figure 6.7 shows the stimulus "acquire carrier command entered." It is associated

with the scenario "Acquire carrier." As written by Trish, this dialog's left-side does

not conform to what was expected. This issue is further analyzed in section 6.12.5.

To document the data captured with SCTool, figures 6.8, 6.9, 6.10, 6.11, and

6.12 contain the SCtool catalogs with all the concepts collected. I've also shown the

catalog column "foid" which is the file identifier for each concept. This should not

normally be shown as part of the user-interface to SCtool, but it is useful to show

the foid details here because it is the time-stamp used to save the meeting data as

files. A summary of the data and further discussion is in section 6.11.

136

Category(3)/Dkmnstan

■ajpuiAiolM ratio (ft/Ho)

=UUM
ShorthKidvtewforwtt:(L*florM0itsid*of numeric value)

lo-LBll ♦ Right

Composed of types (Tap) over (Bottom)

Tap (menerator) typ« I signal

)typ«|MtM

QuantttyWalue fanftfctfans for Unit

■HL.

Mnknumvalual-iD

Maadmum value (80

BE
e Changes | P

ii::||l|f.l-UHrtfMnTiOon' SEM22D1IIOE:
list/Enumeration Dasctlptlan

| »op typ«

CateowyM I
D Select feranumrallon (ordered 1st)

Mditem) ''atond'^'aj I QK I

■ Name EnumiratkMi VMU0 (If Madid] DfSLf^ltlOfl

a) I 1 ■ track phase (Mfforence i El

M ii n

a J» I II - vack phase aid fraqueacy dhferance B

n •'•■'' MI

a *» ! | III - track pMa* and frequency «tin a Ugn* wM» Poppkr

n - - --- - =CH

Figure 6.6: The unit, "db-Hz" and list/enumerated type named "loop type"

3 i J i -~Ti;
Catalogs

and Haitianers Cal ■-«' »*HW ■■**>* '' .K.iilliU!|M3

| update THoaats/Rastraainre Catalog Ust| |Edn«Tooo»g ...| | unToggto Ml] | Iconity catalog

VGn Track

VGR track

■3 ■ ■ ■ ■ ■ »«—■■*- -i-i. i -■ r:- ■ ■ i ■ ' , LI-
ie Stimulus DaicilpUoR

Catagpry(s)

■flows receiver to todcon to the specified carrier signal

Tte<ten»i*>l««ti1unBfmflcondHtonfor

d concept I at end O | I OK I

I tetoiwtry_proc8S»of13 (TPI3)

Count a
1 ("»"»)

Add attribute row | at end o |

Attribute Harne Attribute Type

Carrier acquire state

Value or Path/Concept n

hat

D EC

d concept | «tend □]0
Dug

3(TPI3)

*and o | I OK I |Removetogaied]

carrier acquire state

Attribute Type

canter acquire state

Value or Path/a

I save ChBnges I Restore | Hek>

Figure 6.7: The stimulus "acquire carrier command entered"

137

catalogs

|update Scenario Catalog Ust| |Bit M Toggled Scenarios..-! | UnToggto M| Iconify Catalog

B Scenario Name Scenario Category Scenario Description laid

D
bonnectToTPn lyGR track j

1 1
1 connect to TPI3 subsystem Jn:7o7019149u:S1S43Z.scn

D ! •: : " '""" -^ J
a IfriMStartReconflng IjyGRJrack 1 start DRS recording fn:787013368u:Sa3049.scn

a conflgureRCVR |vGR track | | til h Carrier, Subcarrier and Symbol Rats columns fr:787019802u:838428.scn

B
[Acquire Carrier 1 lyGR track lock on to carrier $11:787021165u:1 S6G62.scn

D
acquire telemetry lyGR track lock on to telemetry data signal Hi the carrier }n:787023307u:370124£Cn

□ JTLMEnd recording I |VGR track stop receiver recording in:7B7023903u:282971 sen

D
hm off receiver loop 1 lyGR track m:767024140u:4B6S41.scn

1 M ■ -a 1
: ■

Ovate a new scenario OK

Q Create new fron selected

Figure 6.8: Scenario catalog (Voyager track data)

SI |Ob|ect Catalog!

Catalogs

| Update/Restore object Catalog | [Eat ft Toggled Objects... [| UnToggte«] fconify Catalog

B Object Name Object Category Object Description torn

B]telemetryjirDcessor13 fTl ;vGR_Track this Is tba Receiver subsystem atTPIS; sometimes referred to as. im:787019212u:354072.obJ j

a carrier >GR track m £n:787020T19u:SluT.ob] I

a jsubcamer

1 1
VGR track forTPI3

i
jn:7S70Z0E81u£S4C2ljiaj 1

a Symbol rate

1 =1

yGR track for TPI 3 configuration

\
pi:7o7u2087Su.-196SE4.obJ 1

a Operator

1 =i
VGR track

 1
LMC operator

a=. == , i
\

ni:7n70Z4eS6u:751180.obj 1

Create a new object

Q Create new from selected

Figure 6.9: Object catalog (Voyager track data)

138

a typt C

Catdogs 1
|UpdateMeasures/TypesCatalog Lbt] [bit«Toggled ...| [UnToggla f*\

fMtVfp» JtfGRti

jUat/Baeiwatad Type yGR track nt:7fl702O43i

TtJ*i Typ- {TOR track pi:767D2157:

Type

jUsUEnumerated Type pecatver loop state [TOR track)ii:707D24Z2<

{UsVEfwmaratod Type [TOR track

JÜit/Ememrated Type [TOR track)n:787SOBG7!

fust/Enumerated Typo |TOR track Jn:787S109K

♦ Ust/Enumratad Type

0 (Mt Type

Create «new ^ cooninato System

O Hamad quantttyAnbe

0 Conversion

|p Create new from »alected|

Figure 6.10: Measures/types catalog (Voyager track data)

Figure 6.11: Path, catalog (Voyager track data)

139

♦ Stimulus

Create a new ^taNbttor

OprohtXtor

|g Create new from selected]

Figure 6.12: Triggers and restrainers catalog (Voyager track data)

6.10 What else was captured - paper meeting

notes

Trish took one page of paper notes during the meeting. The whiteboard was not

used during the meeting. Trish later threw away her paper notes, but here is what

she remembers them containing:

1. Options that we can take if we decide to decode telemetry data without a

MCD (Maximum Likelihood Convolutional Decoder):

a) acquire known data and compare received data with it

b) decode off-line (maybe at DSS-14 where there is a MCD)

c) use the DHT (Data Handling Terminal)

2. a graphical representation of the CONFIG_RCVR, CHK_TLM_DECODE, and

START-TRACK blocks to indicate a change in block ordering

3. arx2 is TP13

140

In looking at the three items:

Item one describes three alternatives that were part of a "what-if" discussion

that occurred during the meeting. This discussion was about the possibility

that decoding would be done in addition to recording. The three items on the

paper notes reflects the total persistent record (except for the video) about

the MCD discussion. The discussion accounts for about thirty minutes of the

meeting and some of the break time. During the break Trish explained these

options to her project leader, Randy. Randy, verified these with Roland. Since

the discussion was important enough to tell Randy, I asked Trish later about

why she didn't document it with SCtool. Trish stated that she specifically

didn't document these components because they would not be needed for the

Voyager Track. Of course, it turned out that the discussion was important

since decoding is now needed. A tool can not capture information that the

tool user chooses not to enter or express.

The results of modifying the TDN to reflect item two is shown in figure 6.13. A

conditional branch was added to the TDN and the original block was divided

into two blocks.

Item three, arx2 is simply another name for TP13 and it is documented in the

description of object TP13.

6.11 Data summary

The data collected is summarized by table 6.1. It shows the number and type of

the SCtool building blocks that were collected. The building block concepts that

were not used are: coordinate systems, conversions, composite paths, inhibitors,

prohibitors, and all the spatial concepts. The fact that some building blocks were

not used could be a sign that REBUS has too many concepts. However, it is more

likely a result of the limits of this evaluation. On the positive side, it is an indication

that more building blocks were not needed for this domain.

141

8
u

IC a >

Figure 6.13: Voyager track TDN after modification (rotate page)

142

building block count

scenarios 7°
objects 5
unit type 1
list/enumerated type eb

simple path 6
stimulus 6
Total: 31

°These were all written as one frame with two or three objects.
^Ranging from 2 to 8 values (not included in count is a duplicate for "operator actions")

Table 6.1: Summary of building blocks collected during meeting

The flow of scenario creation is shown in table 6.2. The first column contains a

scenario name followed by the name of the next scenario created (this corresponds to

the TDN block order). The second column is the amount of time from the beginning

of the first to the begining of the second scenario. The third column shows what

building blocks were created after the first scenario was started and before the second

was started. The data is based on the file names (foid's) SCtool used to save and

restore concepts. The file name for each scenario is formed when the Scenario Editor

Shell is created after selecting "new scenario". The filenames have two parts (m: -

seconds u: - microseconds).

The average time between scenario creations was 13 minutes (79/6). Based on

the videotape and this average, the meeting appears to be moving at a reasonable

pace. Trish stated that her knowledge acquisition meetings are generally scheduled

for about one hour. It is clear that it takes time to type in data and typing is slower

than speech. The evidence of re-use of concepts across the scenarios suggests that

it is certainly possible to take advantage of automated support for manipulation of

the concepts found in scenarios. The next section contains further analysis.

143

scenario name /
next scenario name

time
between
creates a

building blocks
created during

connectToTP13 /
TLMStartRecording

3 min.
(object) telemetry_processorl3
(simple path) connectTP13

TLMStartRecording /
configureRCVR

7 min. (simple path) recordingState

configureRCVR /
Acquire Carrier

22 min.

(object) carrier
(unit type) db-Hz
(list/enum) loop type
(object) subcarrier
(object) symbol rate

Acquire Carrier /
acquire telemetry

35 min.6 (list/enum) carrier acquire state
(list/enum) recording state

acquire telemetry /
TLMEnd recording

9 min.
(simple path) acquire carrier
(simple path) acquire telemetry

TLMEnd recording /
turn off receiver loop

6 min. (simple path) end recording

Total: 79 min.

aTime is calculated as (next scenario file creation time - scenario file creation time)
/ 60 sec. 6There was a morning-break of about 15 of the 35 minutes reported for
the meeting.

Table 6.2: Time between scenario creations

144

6.12 Experience of evaluation and analysis

As part of the intelligent forces project, a videotape was made of a meeting in which

the domain specific scenario acquisition tool (KBET) was used for the first time with

a new pilot. The pilot used the whiteboard to explain new concepts which the tool

could not easily capture: evidence that the domain-specific tool was too brittle for

new knowledge. Furthermore, in trying to represent the new knowledge, the pilot

had to discuss terminology used to build and represent new behaviors in the KBET.

Relative to this, REBUS/SCtool was successful, since: (1) The whiteboard was

not used during the meeting and what little knowledge that needed to be captured

with pencil and paper was not the within-scenaxio domain knowledge needed to

document the Voyager TDN. (2) During the meeting, no one raised questions about

the REBUS/SCtool vocabulary or its use.

Although this indicates that SCtool was more successful than KBET, it's difficult

to tell if the difference is a result of the tools themselves or the context in which they

were used. It might be that SCtool worked better because the domain experts had

more engineering background. But at least we can point to this as an encouraging

result. The next sections provide more detailed examples and analysis.

6.12.1 Able to map domain knowledge to REBUS/SCtool

In this new domain, no new concepts needed to be added to REBUS for it to be used.

While the DSN did not stress all the elements of REBUS, Trish did not have any

difficulty in using the conceptual framework. The few indications of difficulty were

minor and can be attributed to SCtool's prototype implementation, the building

block editors, or between-scena.no notions.

For example, instances of difficulty or questions that occurred in the train-

ing/review meeting are as follows:

1. Trish was modelling an object with three attributes, which were all objects of

the same type. She gave each a unique name and a unique type. She asked

145

about this, and I clarified that one did not need a new type for every object

attribute.

2. For fields in the list/enumerated types editor, there was some confusion as to

which column should contain the items. As seen in figure 6.6, the first column

is labeled "name" and the second "Enumeration value (if needed)." Changing

the textual label to "element name" should improve this dialog.

3. Trish wanted to know if there was a way to delete or search for items from a

catalog. This functionality was not implemented in the prototype.

4. At one point, Trish is engaging in what seems to be "thinking out loud." She

is considering default values for the various predict points (planetary, sideal,

and local) and states that the default values should be the last ones entered

by the user. She seems to realize that this is not a true default and states,

"if planetary has a value the others should be zero." I told her that what she

wanted to express was a rule and I proceeded to model her statement as a

stimulus.

During the actual evaluation meeting with the domain expert, Trish did not need

to ask any modeling questions. She asked only one user interface question which

was about the location of a scroll bar.

6.12.2 Domain knowledge captured and verified

Trish was able to capture and verify the domain knowledge she needed for the

Voyager TDN. REBUS/SCtool were used in a process which was more than a simple

review of a textual document, it also involved uncovering further details which are

then captured. For example, when reviewing the attributes of the carrier object,

Trish asks Roland, "Are there any default values?" While looking at the screen,

Roland says, "For frequency, no; loop type there is an enumerated type. I, II, III. (I

use Roman numerals)" Richard asks, "I forget what are the three types?" Roland

explains in parallel with Trish creating a list/enumerated type named "loop type."

146

Roland and Richard proceed to clarify and verify the explanation Trish has recorded

in the description field. The loop type can be seen in figure 6.6.

6.12.3 Achieved shared understanding

The videotape contains evidence that REBUS/SCtool was successfully used to

achieve shared understanding between Trish and Roland. Relative to Richard's

questioning of Roland during the meeting, there was much less reliance on speaking

during the meeting to clarify understanding between Roland and Trish. The RE-

BUS/SCtool dialogs focused the communication between Trish and Roland, so that

Roland would just look at the screen, and point or gesture at the details that needed

to be changed or discussed. A small example illustrating the value of having the

shared external representation is relevant. In response to one of Richard's questions,

Roland has lost the context of his conversation with Richard and asked "Where are

we?" This did not occur with Trish's question.

6.12.4 Occurrence of side-scenarios

Side-scenarios were an unexpected part of the communication during the real-world

use of REBUS/SCtool. A side-scenario occurred in an episode in which one of

the attributes, Pc/No (the signal to noise ratio), of the carrier object was being

defined. In this context, Trish created a unit type with Roland's feedback. Roland

explained that the unit of measurement is db-Hz. In filling out the range of values

for the dialog, Roland hesitated in stating the range of values as between -10 and

80. Sensing this, Lorna asked if it was the normal range. Roland's response was

"As a unit there would be no real min or max for it, but that's sort of the range the

receiver will expect to see and it doesn't operate outside that range. It's designed

for that kind of range." Lorna then asked, "So what happens? Can someone enter

a value outside the range." Roland responded with a side-scenario. Roland said,

"You can enter a value outside the range. Since it's not designed at that value, for

instance 80 db-Hz, the scaling can't accommodate a signal that strong. So, even

147

if you had a signal that strong it wouldn't be operating properly. You would have

internal overflow happening. So a signal less than -10 db-Hz is too weak for it to

track."

Side-scenarios are close to being &efu;een-scenario relations. It's just that the

situation in which this example arose was the context of defining a building block.

This is more than the simple connection of a building block as participant in a

scenario. It suggests a rational link between a concept and its side-scenarios.

6.12.5 Interpretation of triggers and restrainers

Figure 6.7 contains an example of a stimulus written by Trish. In looking at this

dialog and the scenario "acquire telemetry" in figure 6.5, a difference of interpretation

occurred. Specifically, one should be able to look at the objects in the scenario and

the trigger and see how they relate causally. In connecting the <sides> to the

phrase in the dialog, Trish's stimulus is read as: The <left side = TP13 is not

acquired> is a triggering condition for the behavior described in the <right side =

TP13 is acquired>. The causally oriented version would be written as: <left side =

operator is enter 'acquire carrier' and TP13 is not acquired> <right side = TP13 is

acquired >.

To explain this Trish states:

I interpreted the left/right side as the state of the object before and

after the occurrence of the stimulus. Stimulus name: acquire carrier

command entered. State of TP13 before this action/stimulus occurred:

carrier not acquired. State of TP13 after the action/stimulus occurred:

carrier acquired.

This parallelism between the two sides made more sense to me at

the time I was learning how to use the triggers and restrainers editor.

Also, I completely left out the operator because I didn't really care where

the stimulus was coming from as the state of the object (tpl3) is only

dependent on the stimulus itself, not on the source of the stimulus.

148

The manner in which the stimulus was written does show causality, it just places

semantic importance on the stimulus name. The alternative interpretation of how

to write a stimulus could have resulted from the following three alternatives expla-

nations.

1. Training/User Interface. I never explained to Trish that she should read a

stimulus from left to right based on the text in the user interface.

2. The influence of the TDN pre- and post- conditions for a block. In the follow-up

meeting Trish explained that the left side corresponded to the pre-condition

for a block and the right side, the post-condition. So, Trish's background

influenced her use of the dialog.

3. There needs to be a division between the internal and external system interface.

Alternative 3 has the most significant consequences for the interface. Other

scenario notations, such as the message-flow diagram, make a distinction between

external and internal events. In terms of changes to REBUS/SCtool, this would

mean that triggers and restrainers would need to separate out external activity,

such as the Operator's command, from the internal state.

6.12.6 Use of depictive abstraction

The scenarios collected for the DSN domain appear rather abstract compared to the

IFOR scenarios. The DSN domain is a much more human designed domain than the

air-combat scenarios which take place in the natural world, so the higher levels of

abstraction may be more readily known. So, they appear to be sufficiently concrete

for this domain.

To illustrate the use of abstraction, Trish's use of an object named "operator"

indicates greater use of abstraction than had she used a real name for an operator.

She also decided to use the SCtool abstract default depiction, the round-cornered

boxes of the system component and its textual name (see the acquire carrier scenario

in figure 6.5).

149

This can be explained by considering that it may have been a combination of the

following alternative explanations:

1. As a software expert, Trish considered the role and the abstract system de-

piction sufficient. Also, given Roland's computer experience, more abstract

depiction was sufficient.

2. The features of the task domain are naturally abstract (i.e. the domain depic-

tion an expert would draw is a box).

3. The DSS-13 graphical user-interface was not running locally, so it was not easy

to capture the concrete screens associated with a component.

4. Trish did not receive any training in evocative communication to encourage

her to use concrete notions.

In considering explanations 1 and 2 for most of the meeting the abstract depiction

was sufficient. Item 3 is important because at one point Trish asked Roland a

question about the DSS-13 user-interface. She stated, "When I saw the UI there

were two buttons. Does it matter which one you click-on?" Roland's response was,

"I don't remember those screens, Richard do you remember?" Richard says, "No,

I'll bring it up." Richard proceeded to bring up the system on another computer

in the meeting room7. The task of setting up this program actually took about

twenty minutes, since there were various problems in starting the software. While

it is speculative to consider what would have happened had an evocative screen

snapshot been readily available in SCtool, it is likely that Trish's question could

have been answered as easily as it was asked.

The role of 3 and 4 in combination can't easily be determined from the one

meeting. Trish had insufficient time before the meeting to even prepare scenarios

a-priori much less capture screen snapshots. Before advocating further training to

address explanation 4, as Pott's et al. point out [82], further research and experi-

ments should be done on the role of concreteness in scenarios. Overall, SCtool has

7This computer was to the left of the workstation used for SCtool

150

the necessary features to support concrete and abstract depiction. For future work,

automated support might analyze a collection of scenarios and provide some critique

of a scenario collection which relied heavily on default depictions. Furthermore, the

critic could post this to an agenda or "to-do" list mechanism.

6.13 Chapter summary

This chapter documents the experience of using REBUS and SCtool in the context

of a real-world project at JPL. The evaluation was driven by the needs of JPL. This

project provided an opportunity to formatively evaluate REBUS and SCtool. This

was done by placing REBUS and SCtool in the context of a new application domain

and letting potential users of scenario support tools evaluate REBUS/SCtool for

their needs.

In the context of a meeting which was videotaped, the software expert used

SCtool to collaborate with a domain expert. The software expert was involved in

acquiring domain knowledge from the system engineer about a particular system

object, called telemetry processor 13, and how it would be used in the context of a

particular mission to track the Voyager spacecraft.

The domain knowledge collected during the meeting is summarized and pre-

sented. Within the limitations of the prototype, REBUS and SCtool were found

to be useful for gathering domain knowledge during the meeting. REBUS provided

sufficient conceptual coverage for the concepts needed in the new domain, although

some REBUS concepts, such as the spatial concepts, were not needed for the evalu-

ation.

The evaluation highlighted the need to develop SCtool further. Support for

organizing scenarios, searching for concepts, and checking consistency are needed in

the next version of the prototype.

151

Chapter 7

Conclusion and future work

This chapter highlights the accomplishments of this dissertation and illuminates

possibilities for future research.

7.1 Summary of dissertation

Scenarios are one of the most natural methods of communicating domain knowledge

between domain and software experts. Based on an observational study of scenarios

communicated between such people and a literature survey, I found the existing sce-

nario representations inadequate for precisely describing the richness of the domain

knowledge contained in the natural scenarios written by domain experts. The nat-

ural scenarios illustrated multiple objects engaged in simultaneous behavior. They

contained a mix of depictions, descriptions, objects, units of measurement and types,

spatial concepts, temporal concepts, and behavioral concepts. Existing conceptual

frameworks either provided too little coverage or far too many categories with which

to classify domain knowledge.

In surveying potential tools to provide automated support for scenarios, what

existed was found to be inadequate in light of the use of scenarios for precise com-

munication. When scenarios are captured in the current practice, scenario writers

are primarily using text editors and drawing tools to capture and manipulate the

domain knowledge. Such tools do not specifically focus on the scenario writing task

152

and do not specifically support the semantic definition and manipulation of the ac-

quired domain knowledge. Alternatively, tools exist for the semantic definition and

manipulation of domain knowledge but they are focused on the details needed for

the software domain and don't relate back to the application domain.

For this dissertation, a new representation (REBUS) for scenarios was developed

and embodied in a automated tool (SCtool). REBUS was designed to support the

richness of the domain knowledge contained in the natural scenarios written by

the domain experts. This coverage was demonstrated: by examples from various

domains; by considering the requirements for a expressive scenario representation;

and by an evaluation in an application which was not considered prior to REBUS's

development. The design of REBUS and the graphical user-interface to SCtool

considered how concepts could be organized within a conceptual framework and as

building blocks. The conceptual framework served as a basis for the tool's catalogs

and each building block was provided as an editor.

In evaluating REBUS and SCtool in a new domain, REBUS was able to pro-

vide the support for the conceptual coverage, the depiction and description, and

the multiple object behavior. All of which are needed by the scenario writer. Al-

though the domain was not highly spatial, the whiteboard was not needed during

the meeting and the personal notes that were taken were focused on a topic which

was tangential to the scenarios and concepts which the scenario writer wanted to

model. Compared to text and drawing tools, SCtool's output contained a more pre-

cise record of domain concepts identified in the meeting. The domain concepts were

captured in a structured manner at an appropriate semantic level of abstraction.

During the course of the evaluation, SCtool was easily used to create new scenarios,

objects, units of measurement, and paths. Only one question was asked about the

user-interface, specifically, concerning the location of a scroll bar. The domain in-

dependence of REBUS/SCtool was not a hindrance. The participants were able to

actively engage in modeling their domain and they were not distracted or confused

by the terminology of REBUS.

153

REBUS/SCtool was evaluated in the domain of operational control of the Deep

Space Network (DSN). It was chosen to be different from the Intelligent Forces

(IFOR) domain which served as initial motivation for REBUS' design. While success

in this different domain shows the domain-independence of REBUS, it does not serve

to demonstrate that REBUS is suited to any domain for any domain experts. It

would be great to try SCtool back in the IFOR domain, but this work is not part of

this thesis.

In light of this, the evaluation in this thesis could be thought of as a pilot study

to show the potential effectiveness of REBUS and SCtool. Further development and

evaluation should follow to characterize the range of tasks and range of expertise for

which a tool such as REBUS/SCtool is suited. This is best started after between-

scenario support is implemented.

The DSN study was done with experts who have more systems background than

the pilots. The required domain knowledge stressed only a part of the REBUS

conceptual framework, namely objects, units/types, simple paths, and triggers. The

fact that other aspects of REBUS were not stressed, does not indicate that they are

not needed.

As with any prototype system, SCtool falls short of an ideal implementation.

Many details were not implemented due to lack of time. To implement these details

one would need a robust, object-oriented database and graphical interface frame-

work.

7.2 Future work

There are several directions for further research. We need to continue to improve

REBUS and SCtool based on the weaknesses identified in chapters 5 and 6. Such

as providing facilities to query and retrieve concepts and improvements to the path

editors, and triggers and restrainers building blocks. The use of REBUS and SCtool

for real work highlighted the need to implement between-scenano support (sec 7.2.1).

In addition SCtool can be extended in several directions (sec 7.2.2-7.2.6).

154

7.2.1 Betw^en-scenario support

Section 3.4 described many of the relations potentially needed for between scenario

support. Further work is needed to investigate how such relations are realized and

used in an automated tool. One interesting direction from the air-combat domain

is shown in figure 7.I.1 As well as showing scenario composition and conveying

temporal order and disjunction, the figure illustrates a more abstract scenario which

still contains concrete detail (e.g. "The target turns 180° and runs") and informal

annotation, such as the comment "this is trivial" in box BDT 8b2a.

7.2.2 Connection to automated tools for software experts

We believe that the REBUS building blocks are transformable to and from an au-

tomated knowledge based software development environment. Consider a tool for

software experts which could accept REBUS as input or output. That is, if do-

main knowledge modeled with REBUS is input, the system provides the user with a

graphical user interface to transform building blocks to programming-specific knowl-

edge. If programming-specific knowledge is input, the tool could provide the user

with the ability to associate that knowledge to REBUS concepts. The tool would

support traceability by maintaining the mapping between scenarios and detailed sys-

tem specifications. For example, a unit of measurement like nautical miles could be

transformed to an appropriate "class" or a programming type like "integer" could

be mapped back to nautical miles.

7.2.3 Automated support for multiple users

To support multiple scenario readers and writers on a project both synchronous

and asynchronous automated support can be used. A non-intrusive mechanism for

the synchronous editing of the scenarios is the replication of the interface dialogs

to multiple workstations for simultaneous viewing and editing. To do this in an

X Window System environment, one could use a commercial tool such as HP's

1 Figure 2.4 contains the page corresponding to the box labeled 9b2b.

155

Navigation
&

Conventions

1. "Scene" 1 al a = standard initial conditions; 3x2 ship elements on CAP vs 2 x enemy fighters €> 100 nm range.
2. Target assignment and commit decision are presumed.
3. Branches occur at significant decison points.
4. The "al a" trace represents the stereotype version, (desired, simplest outcome)
5. Traces (currently) conclude at a "high Pk" launch against the target.

"Bagdad Taxi Drill" tactic map

What are some likely variations?

• The target changes course < 45*
^The target accelerates to supersonic speed

• The target alters its formation (splits n")
■ The target changes course < 90*
pJJietarget accelerates to supersonic speed at this point

■ target is able to prevent 3 & 4 from
BOT
4a1a

BOT
5a1a

BDT
6ala

dosing to range y (speed and
maneuver)
one or more missiles fail

BDT
Sbla

• target turns away from lead element ~
• The target accelerates to supersonic

speed at this point
• taget launches missiles at lead element

prior to SOnm

• The target alters its formation (splits n")
• The target pursues 3 & 4
• The target accelerates to supereonc speed

at this point
• The target turns 180* and runs.

Figure 7.1: Example of scenario composition from fighter-plane domain.

156

SharedX. Tool-specific synchronization support can also occur at the user-interface

to provide visual context for users sharing scenarios. At the knowledge-base level,

one needs to prevent inconsistent changes to the knowledge-base.

For asynchronous support, we could consider tools such as Lotus Notes™ which

tie together and filter semi-structured messages sent via electronic mail. Scenarios

could be sent via e-mail for comment. Thus, the work-flow could be monitored,

leading to automated support for agendas or "to-do" lists.

7.2.4 Automated support for agendas

Agenda mechanisms are another means to support individuals or groups. Scenarios

or building blocks that are incomplete or that have open questions could be docu-

mented and tracked in a meaningful fashion. That is, agenda items could have links

to building blocks, scenarios, or between-scenario concepts.

7.2.5 Automated support for variation generation

REBUS lends itself to automated support for the generation of scenario or building-

block variants. Because of the conceptual framework's strong semantics, one can

generate interesting variations which differ along one or more semantic dimensions.

For example, variations on the temporal situation could be generated by varying

the duration specifications of paths or varying the frame order. Some criteria for

"interesting" scenario variations could be developed as a means to support analysis

and validation of the system under development.

7.2.6 REBUS as a query language

Domain descriptions expressed in terms of REBUS could be used as a language to

allow users to query and retrieve information from multimedia knowledge bases. The

key issues here include the mapping between REBUS and the database schema and

an appropriate graphical user interface.

157

Reference List

[1] James F. Allen. Maintaining Knowledge about Temporal Intervals. Commu-

nications of the ACM, 26(ll):832-843, "1983.

[2] Lowell Jay Arthur. Rapid Evolutionary Development: Requirements, Proto-

typing & Software Creation. John Wiley & Sons, Inc., New York, 1992.

[3] Lon Barfield, Willie van Burgsteden, Ruud Lanfermeijer, Bert Mulder, Ju-

rrienne Ossewold, Dick Rijken, and Philippe Wegner. Interaction Design at

the Utrecht School of the Arts. SIGCHI Bulletin, 26(3):49-86, July 1994.

[4] Brigham Bell. Using Programming Walkthroughs to Design a Visual Language.

PhD thesis, University of Colorado, Boulder, CO, 1992.

[5] Kevin M. Benner. The ARIES Simulation Component (ASC). In Proceedings

of the Eighth Knowledge-Based Soßware Engineering Conference (KBSE'93),

pages 40-49. IEEE, September 1993.

[6] Kevin M. Benner. Validation of Formal Specifications via Simplification and

Simulation. PhD thesis, University of Southern California, 1995.

[7] Jacques Bertin. Semiology of Graphics. Univerity of Wisconsin Press, Madi-

son, Wisconsin, 1983.

[8] MarkBoddy. AAAI-92 Workshop Report: Implementing Temporal Reasoning.

SIGART Bulletin, 4(3):15-49, 1992. Collection of workshop papers.

158

[9] Barry W. Boehm and Rony Ross. Theory-W Software Project Manage-

ment: Principles and Examples. IEEE Transactions on Software Engineering,

15(7):902-916, July 1989.

[10] Grady Booch, editor. Object Oriented Design with Applications. Ben-

jamin/Cummings, Menlo Park, CA, 1991.

[11] Dave Bridgeland. Simulacrum: A System Behavior Example Editor, chap-

ter 10, pages 191-202. Volume 1 of Ichikawa et al. [46], 1990.

[12] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Program-

ming Expert Systems in OPS5: An Introduction to Rule-Based Programming.

Addison-Wesley Publishing Company, 1985.

[13] J.M. Carroll and M.B. Rosson. Getting Around the Task-Artifact Cycle: How

To Make Claims and Design by Scenario. ACM Transactions on Information

Systems, 10(2):181-212, April 1992.

[14] John M. Carroll. Names and Naming: An Interdisciplinary Review. Technical

report, IBM T.J. Watson Research Center, Yorktown Heights, N.Y., October

1978.

[15] John M. Carroll. Natural Strategies in Naming. Technical report, IBM T.J.

Watson Research Center, Yorktown Heights, N.Y., February 1979.

[16] Message Sequence Charts. International Telecommunication Standard CCITT

Z.120 (1993).

[17] H.H. Clark and S.E. Brennan. Grounding in Communication. In L. Resnick,

J. Levine, and S. Teasley, editors, Perspectives on Socially Shared Cognition.

American Psychological Association, 1991.

[18] Herb Cohen. You Can Negotiate Anything. Bantam Books, 1982, cl980.

159

[19] J. Conklin and M.L. Begeman. gIBIS—A Hypertext Tool for Exploratory Pol-

icy Discussion. ACM Transactions on Office Information Systems, 6(4):303-

331, 1988.

[20] The X Consortium. The X Window System. Available via anonymous FTP

at ftp.x.org.

[21] Jacques Davy. GoPATH Programmer's Guide. Bull - Imaging & Office Solu-

tions, Paris, France, 1.2 edition, 1992.

[22] Jacques Davy. GoPATH Reference Manual. Bull - Imaging k Office Solutions,

Paris, France, 1.2 edition, 1992.

[23] Sarah A. Douglas, David Novick, and Russell S. Tomlin. Consistency and

Variation in Spatial Reference. In Proceedings of the Ninth International Con-

ference on Cognitive Science, July 1987.

[24] Joseph L. Dvorak and Thomas G. Moher. A Feasibility Study of Early Class

Hierarchy Construction in Object-Oriented Development. Empirical Studies

of Programmers, 4:23-35, 1991.

[25] W. L. Johnson et al. Collected papers of the SOAR/IFOR project. Technical

Report ISI/SR-94-367, USC/Information Sciences Institute, 4676 Admiralty

Way, Marina del Rey, CA 90292-6695, Spring 1994.

[26] Kristina Fayyad and Lynne Cooper. Representing Operations Procedures us-

ing Temporal Dependency Networks. In Proceedings of the Second Interna-

tional Symposium on Ground Data Systems for Space Mission Operations,

SPACEOPS-92, Pasadena, CA, November 1992.

[27] William Finzer and Laura Gould. Programming by Rehearsal. Byte, 9(6): 187-

210, June 1984.

[28] Nick V. Flor and Edwin L. Hutchins. Analyzing Distributed Cognition in Soft-

ware Teams: A Case Study of Team Programming During Perfective Software

Maintenance. Empirical Studies of Programmers, 4:36-64, 1991.

160

[29] David H. Gelernter and Suresh Jagannathan. Programming Linguistics. MIT

Press, 1990.

[30] Vinod Goel. "Ill-Structured Representations" for 111-Structured Problems. In

Proceedings of the Fourteenth Annual Conference of the Cognitive Science So-

ciety, pages 130-135, 1992.

[31] Vinod Goel and Peter Pirolli. Motivating the Notion of Generic Design within

Information Processing Theory: The Design Problem Space. AI Magazine,

Spring:19-36, 1989.

[32] Neal Goldstein and Jeff Alger. Developing Object-Oriented Software for the

Macintosh: Analysis, Design, and Programming. Addison-Wesley Publishing

Company, Reading, MA, 1992.

[33] Reginald G. Golledge. Do People Understand Spatial Concepts: The Case of

First-Order Primitives. In Theories and Methods of Spatio- Temporal Reason-

ing in Geographies Space, pages 1-21. Springer-Verlag, 1992. Lecture Notes in

Computer Science 639.

[34] S. Gossain and B. Anderson. An Iterative-Design Model for Reusable Object

Oriented Software. In Proceedings of OOPSLA ECOOP '90: Conference on

Object-oriented Programming: Systems, Languages, and Applications, Euro-

pean Conference on Object-oriented Programming, New York, NY, October

1990. ACM Press.

[35] R.V. Guha and D.B. Lenat. Cyc: A midterm report. AI Magazine, 11(3):32-

59, 1991.

[36] Raymonde Guindon. Designing the Design Process: Exploiting Opportunistic

Thoughts. Human-Computer Interaction, 5:305-344, 1990.

[37] Raymonde Guindon. Knowledge Exploited by Experts During Software Sys-

tem Design. International Journal of Man-Machine Studies, 33:279-304, 1990.

161

[38] Raymonde Guindon and Bill Curtis. Control of Cognitive Processes During

Software Design: What Tools Are Needed? In Proceedings of the Conference

on Human Factors in Computing Systems (CHI), pages 263-268. ACM, May

1988.

[39] Robert J. Hall. Interactive Specification Acquisition via Scenarios: A Pro-

posal. Technical report, AT&T Bell Laboratories, September 1992.

[40] Robert J. Hall. Validation of Rule-Based Reactive Systems by Sound Sce-

nario Generalization. In Proceedings of the Eighth Knowledge-Based Soßware

Engineering Conference (KBSE'93), pages 30-39. IEEE, September 1993.

[41] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming, 8:231-274, 1987.

[42] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi

Sherman, Aharon Shtull-Trauring, and Mark Trakhtenbrot. STATEMATE: A

working environment for the development of complex reactive systems. IEEE

Transactions on Software Engineering, 16(4):403-413, April 1990.

[43] Randall W. Hill, Kristina Fayyad, Patricia Santos, and Kathryn Sturdevant.

Knowledge Acquisition and Reactive Planning for the Deep Space Network.

Appeared in AAAI Fall Symposium on Planning and Learning: On to Real

Applications, November 1994.

[44] Pei Hsia, Jayarajan Samuel, Jerry Gao, David Kung, Yasufumi Toyoshima,

and Chris Chen. Formal Approach to Scenario Analysis. IEEE Software,

pages 33-41, March 1994.

[45] Valerio Hunt and Andres Zellweger. The FAA's Advanced Automation Sys-

tem: Strategies for Future Air Traffic Control Systems. IEEE Computer,

20(2):19-32, February 1987.

[46] Tadeo Ichikawa, Erland Jungert, and Robert R. Korfhage, editors. Visual

Languages and Applications. Plenum Press, New York, NY, 1990.

162

[47] Neil A. Iscoe. Domain-Specific Programming: An Object-Oriented and

Knowledge-Based Approach To Specification and Generation. PhD thesis, The

University of Texas at Austin, December 1990. Department of Computer Sci-

ence.

[48] ISX for DARPA-Rome Laboratory. Knowledge Representation specification

Language (KRSL), version 2.0.1 edition, 1992. DRAFT of KRSL Standard for

DARPA/Rome Laboratory Planning and Scheduling Initiative.

[49] I. Jacobson, M. Christenson, P. Johsson, and G. Overgaard. Object-Oriented

Soßware Engineering: A Use Case Driven Approach. ACM Press, 1992.

[50] W. Lewis Johnson, personal communication.

[51] W.L. Johnson and M.S. Feather. Requirements Analysis Using ARIES:

Themes and Examples. In Proceedings of the 5th Knowledge Based Soß-

ware Engineering Conference, tech report no. RL-TR-91-11, Rome Laboratory,

pages 121-131, Syracuse, NY, September 1990.

[52] W.L. Johnson, M.S. Feather, and D.R. Harris. Representation and Presenta-

tion of Requirements Knowledge. IEEE Transactions on Soßware Engineering,

18(10):853-869, October 1992.

[53] Ken Kahn. ToonTalk™ - An Animated Programming Environment

for Children. Available via anonymous ftp from csli.stanford.edu in

ftp/pub/Preprints/toontalk.ps.Z, February 1995. Animated Programs, 44 El

Rey Road, Portola Valley, CA 94028.

[54] John Karat and John Bennett. CSCW '92 Workshop Report: Understanding

and Supporting Successful Group Work in Software Design. SIGCHI Bulletin,

25(4), October 1993.

[55] John Karat and John L. Bennett. Using Scenarios in Design Meetings - A Case

Study Example. In Taking Soßware Design Seriously: Practical Techniques

for Human-Computer Interaction Design, pages 63-94. Academic Press, 1991.

163

[56] David Keirsey, Jimmy Krozel, David Payton, and David Tseng. Case-Based

Computer Generated Forces. In Proceedings of the Fourth Conference on Com-

puter Generated Forces, volume 4, pages 307-316, Orlando, Florida, 1994. In-

stitute for Simulation and Training, Univ. of Central Florida. IST-TR-94-12.

[57] Van E. Kelly and Uwe Nonnenmann. Reducing the complexity of formal speci-

fication acquisition. In Automating Software Design, pages 41-64. AAAI Press,

1991.

[58] Kari Kuutti. Activity Theory and Its Applications to Information Systems

Research and Development. In H.-E. Nissen, editor, Information Systems Re-

search, pages 529-549. Elsevier Science, 1991.

[59] George Lakoff. Women, Fire and Dangerous Things: What Categories Reveal

About the Mind. Univ. Chicago Press, Chicago, 1987.

[60] Barbara Landau and Ray Jackendoff. "What" and "Where" in Spatial Lan-

guage and Spatial Cognition. Behavioral and Brain Sciences, 16(2), 1993.

[61] Allen MacLean, R. Young, V. Bellotti, and Thomas Moran. Questions, Op-

tions, and Criteria: Elements of Design Space Analysis. Human-Computer

Interaction, 6(3&4):201-250, 1991. Special Issue on Design Rationale.

[62] Kim Halskov Madsen. A Guide to Metaphorical Design. Communications of

the ACM, 37(12):57-62, December 1994.

[63] C.M.I.M. Matthiessen and J.A. Bateman. Systemic-Functional Linguistics in

Language Generation: Penman. Academic Press, 1991.

[64] G.A. Miller. The Magic Number Seven Plus or Minus Two: Some Limits on

Our Capacity for Information Processing. Psychological Review, 63(2):81—96,

1956.

[65] A. Munro, M.C. Johnson, D.S. Surmon, and J.L. Wogulis. Attribute-Centered

Simulation Authoring for Instruction. In AI-ED 93, World Conference on

Artificial Intelligence in Education, Edinbugh, Scotland; 23-27 August 1993.

164

[66] Bonnie A. Nardi. Studying Context: A Comparison of Activity Theory, Sit-

uated Action Models, and Distibuted Cognition. In East-West International

Conference on Human-Computer Interaction: Proceedings of the EWHCF92,

pages 352-359, 1992.

[67] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End-User

Computing. MIT Press, Cambridge, MA, 1993.

[68] Bonnie A. Nardi and James R. Miller. Twinkling Lights and Nested Loops:

Distributed Problem Solving and Spreadsheet Development. International

Journal of Man-Machine Studies, 34(2):161-184, 1991.

[69] Jean-Marc Nerson. Applying Object-Oriented Analysis and Design. Commu-

nications of the ACM, 35(9):63-74, September 1992.

[70] Uwe Nonnenmann and John K. Eddy. KITSS - Toward Software Design and

Testing Integration. In Proceedings of the AAAI-91 Workshop on Automating

Software Design: Interactive Design, pages 131-137, July 1991.

[71] Uwe Nonnenmann and John K. Eddy. KITSS - A Functional Software Testing

System Using a Hybrid Domain Model. In Proceedings of the Eighth IEEE

Conference on Artificial Intelligence Applications. IEEE, July 1992.

[72] National Institute of Standards and Technology. A Brief History of Measure-

ment Systems with a Chart of the Modernized Metric System, poster, 1991.

Special publication 304A.

[73] Greg R. Olsen and Thomas R. Gruber. Ontolingua Theory: physical-

quantities. World Wide Web. http://www-ksl.stanford.edu/knowledge-

sharing/ontologies/html/physical-quantities/index.html.

[74] Greg R. Olsen, Thomas R. Gruber, and Yves Peligry. Ontolingua Theory:

standard-units. World Wide Web. http://www-ksl.stanford.edu/knowledge-

sharing/ontologies/html/standard-units/index.html.

165

[75] Gary M. Olson, Judith S. Olson, Mark R. Carter, and Marianne Storr0sten.

Small Group Design Meetings: An Analysis of Collaboration. Human-

Computer Interaction, 7(4):347-374, 1992.

[76] Judith S. Olson, Gary M. Olson, Marianne Storr0sten, and Mark Carter. How

a Group-editor Changes the Character of a Design Meeting as well as its

Outcome. In Proceedings of the ACM Conference on Computer-Supported

Cooperative Work (CSCW), pages 91-98. ACM, New York, NY, November

1992.

[77] Judith S. Olson, Gary M. Olson, Marianne Storr0sten, and Mark Carter.

Group work Close Up: A Comparison of the Group Design Process With and

Without a Simple Group Editor. A CM Transactions on Information Systems,

ll(4):321-348, October 1993.

[78] Open Software Foundation, Cambridge, MA. OSF/Motif Programmer's

Guide. Release 1.2.

[79] Arno Penzias. Ideas and Information: Managing in a High-Tech World. W.W.

Norton k Company, Inc., New York, 1989.

[80] Michael Polanyi. The Tacit Dimension. Doubleday Anchor Books, New York,

1967.

[81] Colin Potts. Software-Engineering Research Revisited. IEEE Software, pages

18-28, September 1993.

[82] Colin Potts, Kenji Takahashi, and Annie I. Anton. Inquiry-Based Require-

ments Analysis. IEEE Soßware, pages 21-32, March 1994.

[83] Dave Randall and Richard Bentley. Ethnography and Systems Development:

Bounding the Intersection. Tutorial Notes: CSCW'92, 1992.

[84] Gail L. Rein and Clarence A. Ellis. rIBIS: A Real-Time Group Hypertext

System. International Journal of Man-Machine Studies, 34(3):349-367, 1991.

166

[85] Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

[86] Gudula Retz-Schmidt. Various Views on Spatial Prepositions. AI Magazine,

9(2):95-105, 1988.

[87] Ed Rimmer. Qualitative Spatial Reasoning: A Survey. AISB Quarterly,

Summer(88):54-61, 1994.

[88] Kenneth S. Rubin and Adele Goldberg. Object Behavior Analysis. Commu-

nications of the ACM, 35(9):48-62, September 1992.

[89] Kenneth S. Rubin, Patrick McClaughry, and David Pellegrini. Modeling Rules

Using Object Behavior Analysis and Design. Object Magazine, 1994.

[90] Donald A. Schön. The Reflective Practitioner - How Professionals Think in

Action. Basic Books, New York, 1983.

[91] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented

Modeling. John Wiley & Sons, Inc., New York, 1994.

[92] Sally Shlaer and Stephan J Mellor. Object Lifecycles: Modeling the World in

States. Prentice Hall, Englewood Cliffs, N.J., 1992.

[93] Herbert A. Simon. The Structure of 111 Structured Problems. Artificial Intel-

ligence, 4:181-201, 1973.

[94] David Sims. Review Finds Requirements Changes Plague AAS Project. IEEE

Software, 11(2):93, March 1994.

[95] David Canfield Smith, Allen Cypher, and Jim Spohrer. KIDSIM: Program-

ming Agents Without a Programming Language. Communications of the

ACM, 37(7):55-67, July 1994.

[96] David E. Smyth. Widget creation library. Available via anonymous FTP at

ftp.x.org in contrib/devel_tools/Wcl-2.X.tar.Z.

167

[97] John T. Stasko. TANGO: A Framework and System for Algorithm Animation.

PhD thesis, Brown University, 1990.

[98] John T. Stasko. Using Direct Manipulation To Build Algorithm Animations

By Demonstration. In Proceedings of the Conference on Human Factors in

Computing Systems(CHI), 1991.

[99] John T. Stasko and Eileen Kraemer. A Methodology for Building Application-

Specific Visualizations of Parallel Programs. Journal of Parallel and Dis-

tributed Computing, 18(2):258-264, June 1993.

[100] B. Stroustroup. The C++ Programming Language. Addison-Wesley Publish-

ing Company, 1991.

[101] M. Tambe and P. Rosenbloom. Event Tracking in Complex Multi-agent En-

vironments. In Proceedings of the Fourth Conference on Computer Generated

Forces and Behavioral Representation, pages 473-484, Orlando, FL, May 1994.

Institute for Simulation and Training, University of Central Florida.

[102] John C. Tang. Findings from Observational Studies of Collaborative Work.

International Journal of Man-Machine Studies, 34(2):143-160, 1991.

[103] United States Geological Survey. Spatial Data Transfer Standard (SDTS).

file://sdts.er.usgs.gov/pub/sdts/www/html/sdtshome.html, 1992.

[104] Bill Verplank. personal communication, May 1994.

[105] Richard S. Wurman. Follow the Yellow Brick Road: Learning to Give, Take,

and Use Instructions. Bantam Books, New York, NY, 1992.

[106] Karen Zand. Conjure: The Alternative Coloring Book, volume 1. Malocclusion

Publishing, Box 341, 10153| Riverside Drive, Toluca Lake, CA 91602, 1991.

168

