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Sparse Diagonal Forms for Translation Operators for the Helmholtz 
Equation in Two Dimensions 

1      Introduction 

In the design of Fast Multipole Methods (FMM) for the numerical solution of scattering prob- 
lems, a crucial step is the diagonalization of translation operators for the Helmholtz equation. 
These operators have analytically simple, physically transparent, and numerically stable diag- 
onal forms. Once the latter are constructed, the design of FMM schemes is straightforward; 
the simplest "single-stage" algorithms have CPU time requirements of order 0(n3/2), where 
n is the number of nodes in the discretization of the problem. Two-stage schemes have CPU 
time requirements of order 0(n4/3); generally, fc-stage schemes have CPU time requirements 
of order 0(n<*+2)/(*+1>). 

It has been observed by several researchers (see, for example, [4, 2, 3]) that for any given 
precision e, diagonal forms for the translation operators for the Helmholtz equation are not 
unique, and that some choices lead to more efficient FMM schemes than others. In fact, 
there exist choices of diagonal forms leading to single-stage FMM algorithms with CPU time 
requirements of order 0(n4//3), two-stage schemes with CPU time requirements 0(n5/4), etc. 

Due to space limitations, we will not describe here the FMM for the Helmholtz equation, 
referring the reader to [6], [7]. We will observe that the functions bp

Tt : [0,27r] -»• C denned 
below are a generalization of functions vn : [0,2?r] —► C of [6]. However, while the functions vn 

(see (3.25) in [6]) are nowhere small on the interval [0,2n], the functions 6££ are negligibly small 
on most of their interval of definition. The cost of this sparsity is a somewhat higher frequency 
content of the functions 6££; both the functions vn, b^s are trigonometric polynomials of finite 
order, and the order of bp

Te is 1.5 times higher than the order of vn under similar conditions. 
The result of this trade-off is a reduction in the cost of the algorithm (see the preceding two 
paragraphs). For a more detailed motivation for the development of improved translation 
operators for the Helmholtz equation, we refer the reader to the papers [4, 2, 3]. 

The purpose of this paper is to construct such diagonal forms in two dimensions. The con- 
struction is intended to be reasonably rigorous; it is also quite simple. However, the proof that 
the resulting translation operator is sparse is quite long and somewhat technical. Thus, discus- 
sion is deliberately conducted on two levels. First, we formulate the problem (Subsection 1.1), 
and describe a solution (Subsection 1.2). The solution of Subsection 1.2 has been chosen for 
analytical simplicity, rather than for its numerical properties. A more numerically attractive 
solution is described in Subsection 5.1 and illustrated in Subsection 5.1 by numerical examples. 
Thus, a reader who is not interested in the proofs may want to read Subsections 1.1, 1.2, and 
turn to Subsections 5.2, 5.2, possibly after reading Subsection 1.3 (informal description of the 
construction). 

Otherwise, the structure of the paper is as follows. In Section 2, we summarize the known 
facts from analysis to be used in the remainder of the paper.   In Section 3, we develop the 



requisite analytical apparatus. In Section 4, we prove that the functions 6£e introduced in this 
section do in fact satisfy the conditions 1. - 3. of this section. Finally, Section 5 contains a 
slightly modified construction of the functions b?e (quite similar to that of this section, but 
leading to somewhat faster computations), illustrated by several numerical examples. 

Remark 1.1 The mathematical techniques used in this paper are limited to elementary anal- 
ysis; however, the constructions we use are fairly involved. Thus, the proof of the principal 
analytical result of this paper (Theorem 1.1) consists of a fairly long sequence of definitions and 
lemmas. Most of the latter follow immediately from the preceding ones and from the relevant 
definitions, and in such cases the proofs are omitted. 

1.1      Statement of the problem 

In agreement with standard practice, we will denote by Jm the Bessel function of the first kind 
of order m, by Hm the Hankel function of order m, and by Im the modified Bessel function of 
order m (see, for example, [1], Chapter 9). 

Suppose that r, p, e are three real numbers, such that 

0<4-r <p, (1) 

and 

0 < £ < 1/10. (2) 

We will denote by v the smallest of all positive integer numbers such that 

J;(r) < e. (3) 

for all j > v. The purpose of this paper is to construct a function 6^£ : [0,27r] —► C, satisfying 
the following conditions. 

1. There exist a positive integer A (independent of p and r, but possibly dependent on e) and 

complex a_A.i/, OJ-A-H-I, at-x-v+i,- * *> a-i> ao, «i, * • *> "A-iz-i» <*\-u, such that 

*!,(')=   E ";•«*'•'"■'. (4) 

for all 0G [—7T,7r]. 

2. For all j € [-2 • v,2 • v], 

\aj-Hk(p)\<e. (5) 

3. There exist two numbers p,q, independent of r and p (though possibly dependent on e), 
such that 



for all 0 e [—7T, ?r] such that 

\0\>l + q-r-. (7) 

Remark 1.2 From the point of view of asymptotic CPU time estimates, it is sufficient to 
construct functions b^c satisfying the conditions 1. - 3. above. In terms of actual computation 
times, it is critical that the coefficients A, p, q be as small as possible. In the construction of the 
following subsection, A = 3; Theorem 1.1 formulated in the following subsection (to be proved 
in Section 4) provides values p = 8 • y/2 • log(l/e), q = 8. The actual values are considerably 
smaller, as can be seen from the numerical examples presented in Section 5. 

Remark 1.3 In this paper we construct several solutions of the Helmholtz equation that are 
negligibly small over most of the complex plane, without being equal to zero. We will also 
be dealing with restrictions of such solutions on circles and lines in the plane. Abusing the 
terminology somewhat, when we say that the support of some function is contained by some 
region, we mean that outside that region, the absolute value of the function is smaller than a 
preselected e. 

1.2    Construction of the functions bp
Tr 

In this subsection, we construct functions 6££ satisfying the conditions 1. - 3. of Subsection 1.1. 
We will denote by n the smallest integer such that 

with 

H > (rs +C-7--3)3, (8) 

3-1/3     2 
C=^T'8^ (9) 

6 = log(-e), (10) 

and by u the real number defined by the formula 

r2 

We will define two positive integer numbers m, n via the formulae 

m = 6-/i (12) 

respectively, and by /£ir the function [—7r, 7r] —> C, defined by the formula 

/.,W- "'"((,1+ ff-O.^-m-v. (i4) 
5tn(|J 



Finally, for each p > 4 • r, we will define the function b^e : [-it, 7r] -> C by the formula 

m/2 

K,tf) =      £     (A,r)i-^(p)-6^, (15) 
j=-m/2 

where (A^)j denotes the j - th Fourier coefficient of the function /Cir : [—7r, 7r] —► C. 
The following theorem states that the function 6£e satisfies the conditions 1. - 3. of the 

preceding subsection, and provides estimates for the coefficients p, q in (7). Its proof is the 
principal purpose of Sections 3, 4 of this paper. 

Theorem 1.1 Suppose that r, p, e are three real numbers satisfying the inequalities (1), (2), 
and the function b?t is defined by (15). Then 

1. For all je [-2-1/, 2-1/], 

| (&£),■ - Hk(p) |< e. (16) 

2. \^(6)\<e (17) 

for all 0 € [—TT, 7r] such that 

8.V2./og(i)+8   , 
1 r p 

1.3    Outline of the proof of Theorem 1.1 

Put informally, Theorem 1.1 states that given real numbers r, p such that 4 • r < p, there exists 
a function 6 : [—7T, 7r] —► C such that 

a. b is a trigonometric polynomial of order m, with m ~ 3 • r. 

b. The first 4 • r coefficients in the Fourier series of b are defined by the formula 

(&)j = HjiP) (19) 

for all j such that | j |< 2 • r. 

c. b(0) is small for all 9 outside a small neighborhood of the point 6 = 0. More specifically, the 
size of the region around 0 where b(6) > e may depend on e, but has to be of the order r/p 

~ r 2 In this formulation, it is clear that Theorem 1.1 is not at all obvious, except when p 
or greater. Indeed, in this case, 

nM-Si^-JO-V-V (20) 

(see (39)), and the problem of finding a function satisfying the conditions a. - c. of this section 
becomes a classical problem of designing a low-pass filter that is (almost) band-limited in both 
time and frequency domains. 



When p is considerably smaller than r2 (which is normally the case in situations involving 
the FMM), such simple asymptotic techniques do not work. In this regime, Theorem 1.1 is 
a consequence of detailed analytical properties of Hankel functions, and its proof has to take 
these into account. In this paper, we observe that (4) can be rewritten as 

m/2 

KP,8)=    £    ^■Hj(p)-ei^e, (21) 
j=-m/2 

with the condition (5) assuming the form 

I 7; ~ 1 l< e. (22) 

Now, we change our point of view, interpret the pair (p,0) in (21) as polar coordinates of a 
point in R2, and define the mapping Q : R2 —► C via the formula 

Q(x,y) = b(p,0), (23) 

with (p, 6) the polar coordinates of the point (x,y) e R2. Clearly, in this interpretation, Q is a 
solution of the Helmholtz equation (24) satisfying the radiation condition (27). Thus, the proof 
of Theorem 1.1 has been reduced to constructing a solution to the equation (24) possessing 
certain properties. Once such a solution is found, the function 6£ e(0) is obtained as a restriction 
of Q on the circle of radius p. 

The conditions to be satisfied by Q follow immediately from the conditions a. - c. above. In 
addition to (22), Q must look like a beam to satisfy (17). Fortunately, beam-like solutions of the 
Helmholtz equation are well-known; a typical example are the so-called Gaussian beams (see 
Section 3 below). In this paper, we obtain functions (21) as linear combinations of Gaussian 
beams (see Section 4, where the resulting function R2 —> C is denoted by Q"). 

The last problem we encounter is the fact that Gaussian beams are not sufficiently sharp to 
satisfy the condition c. of Subsection 1.1; put differently, a Gaussian beam that is sufficiently 
sharp to satisfy the condition c. is singular on a region too large for the condition a. to be 
satisfied. Fortunately, Gaussian beams can be modified to reduce the size of the singular region 
dramatically, leaving the beam almost intact away from the singularity. Section 3 is largely 
devoted to this construction, which is referred to as Modified Gaussian Beam. 

2     Analytical Preliminaries 

In this section, we summarize several facts from analysis to be used in the sections below. All 
of these facts are either well-known, or follow immediately from well-known facts. 

2.1     Notation. 

For the Helmholtz equation 

VV + *V = 0 (24) 



we will define the potential <j>* : R2 \ {x0} —► C of a unit charge located at the point x0 € R2 

by the formula 

<t>Xo(x) = HQ(k\\x-xQ\\), (25) 

where H0 denotes the Hankel function of order zero. We will define the potential <f>* h of a 
unity dipole located at Xo and oriented in the direction h G R2 by the formula 

<lfc(*) = -^(fc||x-*o||)-^^jP, (26) 

where H\ denotes the Hankel function of order one. In most cases, a potential <f> satisfying the 
equation (24) in an unbounded region, also satisfies the radiation condition at oo, i.e. for any 
x £ R2, there exists c € C such that 

lim M ■ x) • c-*"*'-1*! • Vt = c, (27) 
t—»oo 

and will refer to functions satisfying the equation (24) (and in unbounded regions - also the 
condition (27) ) as radiation potentials. 

Remark 2.1 In the remainder of the paper, we will be assuming that the Helmholtz coefficient 
k in (24) - (27) equal to 1, unless explicitly stated otherwise. 

For an arbitrary set D € R2 and a point x € R2, we will denote by TX(D) the set of all 
points y in R2 such that y - x € D. 

Given a set D C R2 and a positive real number r, we will denote by Sr(D) the set of all 
points x 6 R2 such that x = xo + J/, with z0 € P, and y some vector in R2 such that \\y\\ < r. 
The following obvious lemma provides a bound on the radius of ST(D) given the radius of D. 

Lemma 2.1 Suppose that D is a subset o/R2, andp > 0 is a real number, such that \\xo\\ < p 
for all xo € D.  Then \\x\\ < r + p for any x £ Sr(D) 

In Subsection 2.2, we will need the following lemma; its proof is an exercise in elementary 
calculus, and is omitted. 

Lemma 2.2 For any positive real x,t and natural k, 

< e
x ■ e~2^ • e^. (28) 

ef-(1+l+^) 

(1 + f) k\k 



2.2    Elementary properties of Bessel functions 

As is well-known, there exist two functions a,ß : C —► C, such that 

Ho(z) = a(z) + ß{z) ■ log(z) (29) 

for all z € C; the functions Ho, Hi are connected by the formula 

Hx(z) = -j^Ho(z). (30) 

The following lemma provides a crude (but sufficient for our purposes) estimate of the absolute 
values of the Hankel functions Ho, E\. It is an immediate consequence of 9.1.12, 9.1.13, 9.2.1, 
9.2.7 in [1]. 

e-Im(z) 
Ho(z) |< e—r-, (31) 

Lemma 2.3 For any z € C, 

7f*l ' 
and 

I *wi< .-*■<■>• (^i + rh)- <32> 
As is well known (see, for example, [8]), Jm are analytic on the whole complex plane for 

all integer values of m, while Hm have a branch cut along the negative real axis, and become 
infinite at the origin. The asymptotic behavior of the functions Jm, Hm for large m is given 
by the formulae 

IhriJm(z)-Am.y/Ö^i) = l, (33) 
m—*oo ez * 

(see [1], 9.3.1, 9.3.2, 9.1.3). It is immediately clear from (33) that the functions Jm(z) decay 
rapidly when z is fixed and m is large. However, (33) is an asymptotic statement, understating 
the actual rate of decay of (33) when m is only slightly greater than \z\. For purely imaginary 
2, a dramatically stronger estimate is given by Lemma 2.7 below; for purely real z, a fairly 
tight estimate is provided by the following lemma, which can be found in [8], pp. 227, 255. 

Lemma 2.4 For any real 0 < x < 1 and v > 0, 

Jv{vx)< j j . (35) 
(2-7T-Z/)5.(1 -£2)7.(1+7(1- x2))" 

The following lemma provides a simplified version of (35). Given (35), its proof is an exercise 
in elementary calculus, and is omitted. 



Lemma 2.5 For any real r > 10 and 0 < e < 0.1, 

J»(r)<£ (36) 

for any 

n > (T-3 +c.r-|)3, (37) 

t/ra'tA c, £ defined by (9), (10). 

Remark 2.2 Obviously, if n satisfies the inequality (37) and v is defined by (3), then v < n. 

For large z and fixed m, the asymptotic behavior of Jm(z), Hm{z) is given by the formulae 

^zjm{z) - ^)C0B(» -  ™ - £) = ^C1]^-)' (38) 

V^U*) " ^K^"^ = O(^) (39) 

when 2 —► oo, as long as Im(z) > 0 (see [1], 9.2.5, 9.2.7). 
We will need the behavior of Bessel functions in one more asymptotic regime, as provided 

by the following lemma, which can be found (in a slightly different form) in [8]. 

Lemma 2.6 For any integer n > 0, 

1 E(l] <J(n)< Eil) 9 MO) 
2     22/3 • 3^3 . 7T . „1/3  < J^n> <   22/3 . 3l/3 . ff . „1/3     ^ \-W) 

Furthermore, 

22/3 . 31/3 .    .   1/3 

J5&,       r(i)       •■M") = 1- (41) 

As is well-known, the modified Bessel functions Im are defined by the formula 

Im(z) = i~n ■ Jm(i ■ z) (42) 

for all complex z; we will need the classical formula 

00 

ef (<+})=   £  tk-h(z), (43) 
fc= —<X> 

valid for all pairs z, t such that t ^ 0. 
It is well-known that once n > z, the functions Jn(z) decay rapidly with n (see (33), (35)), 

for all complex z. What appears to be less well-known, is that when z is purely imaginary, the 
decay starts at n ~ >/(2 • z). The following lemma provides a somewhat crude description of 
the behavior of In(x) in the regime y/{2 • x) < n < x. We present an outline of the proof for 
this lemma, since the author has failed to find it in the literature. 



Lemma 2.7 For any integer n and real x such that 0 < n < x, 

n2 n4 

In{x) < ex -e~2^ -ee^3". (44) 

Proof. 
Since Ik(x) > 0 for all positive /r,z, it immediately follows from (43) that 

e!-(<+7) 
h(x) < —r- (45) 

for all positive real t,x and natural k. In particular, (45) holds for t = 1 + ~, becoming 

Now, (44) follows from Lemma 2.2 above. 

X' 

/*(*) <     „  , ^    ■ (46) 

The following technical lemma is obtained from the preceding one by elementary algebraic 
manipulation. 

Lemma 2.8 Suppose that r,u,6 are three positive real numbers, and n is an integer num- 
ber. Suppose further that 6,c,u are defined by (10), (9), (11), respectively, and n satisfies the 
inequality (37). Then 

In(u) < eu ■ e~s. (47) 

Finally, we will need two well-known integral expressions for Bessel functions, given by the 
following lemma. 

Lemma 2.9 For any integer n and complex z, 

Jn{z) = i-ü- . / * e«'-*-c<"(0) . e^dO, (48) 
2 • TT     JQ 

and 

In(z) = -!-./* c*-«"(«) • j-n-'M. (49) 
2 • 7T     Jo 



2.3 Green's formula for the Helmholtz equation 

The following theorem is a special case of the famous Green's formula. It can be found (for 
example) in [5]. 

Theorem 2.10 Suppose that the function <f> : R2 —► C satisfies the Helmholtz equation (24) 
outside the region Q with boundary T. Suppose further that it satisfies the outgoing radiation 
condition (26) at oo. Than for any x € R2 \ Ö, 

fa) = ~\ ■ Jr(m ■ f§(*,*) + |£(0 • G(t,x))dl, (50) 
with 

G(x,y) = H0(k-\\x-y\\) (51) 

for any x, y € R2 such that x ^ y; the integration in (50) is with respect to the arc length. 

2.4 Partial wave expansions of radiation potentials 

Suppose that a function ip : R2 —> C satisfies the Helmholtz equation (24) outside the disk 
D of radius R with the center at the point x0 € R2, and that it also satisfies the radiation 
condition (26) at oo. Then there exists a unique sequence a — {am},m = 0,1,2, • • •, such that 
for any x € R2 \ D, 

i>(x) =    Yl   <xm-Hm(kp).eime. (52) 
m=—oo 

In the above formula, p = \\x — XQ\\ and 0 is the angle between the vector x - xo and the x axis. 
A derivation of the formula (52) can be found, for example, in [5]; we will refer to expansions 

of the form  (52) as .ff-expansions, and to the point x0 as the center of the expansion (52). 
The following lemma is a direct consequence of the formulae (33), (34). It establishes the 

convergence rate of the expansion (52). 

Lemma 2.11 If Di C D is a disk of radius R-i > R with the center at XQ then there exists 
c > 0 such that for any x 6 R2 \ R-2 and N > \k\ • R, 

Mx)-   £   ßm.Hm(kp).eime\<c(£-f. (53) 
m=-N 2 

Remark 2.3 In numerical calculations, the expansion (52) is truncated after a finite number 
of terms, and the resulting expression is viewed as an approximation to the potential ip. As is 
well-known, if we want to approximate tp by an expansion of the form (53) with accuracy e, 
we have to choose 

N ~ R- | k |, (54) 

i.e. the number of terms in the approximation is almost independent off, and must be roughly 
equal to \k\ ■ R. 

10 



2.5    Far-field representations of radiation potentials 

In this subsection, we introduce an alternative form of the expansion (52), possessing a simple 
physical interpretation simplifying many calculations with radiation potentials. 

For the expansion (52), we will consider a function FXo(ip) : [—7r, 7r] —► C1 defined by the 
formula 

FXo(iP){0) =]im^(t-x + x0)-Vi- e~ikt ■ ^0- • e*-' (55) 

with x = (cos 6, sin 6). Substituting (39), (52) into (55), we immediately obtain 

+ CO 

^W(*)=   E   Ane-^V"1*, (56) 
m=—oo 

which provides an explicit expression for FXo(ip) via the coefficients {ßm}. Clearly, (56) defines 
a unitary mapping connecting the coefficients {aj} in the expansion (52) with the with the 
function FXo(tp), and we will refer to FXo{il>) as the far-field representation of the radiation 
potential tp with the origin at Xo- 

Obviously, given a radiation potential (52), its far-field representation (55) depends on the 
origin a;o- The following lemma describes the dependence; its proof can be found (for example) 
in [6]. 

Lemma 2.12 Suppose that the radiation potential ij) is defined by the formula (52), and XQ, 

x\ are two arbitrary points in R2. Suppose further that FXo(ip), FXl(ip) are the far-field repre- 
sentations of if) with origins xo, x\ respectively. Then for any 6 € [—x, 7r], 

FXl^){6) = FXQ{i>){e)-ei-k-^-x^\ (57) 

with the vector w £~R? defined by the formula 

w = (cos(6),sin(6)). (58) 

Remark 2.4 In fact, both the existence of asymptotic representations of radiation fields and 
the above lemma are an immediate consequence of the radiation condition (27). A detailed 
investigation of such issues can be found in [6] in the two-dimensional case, and in [7] in the 
three-dimensional one. 

The following lemma is an immediate consequence of the formulae (56), (52). It provides 
an explicit formula for the evaluation of a radiation potential at a point, given its far-field 
representation. 

Lemma 2.13 Suppose that a function tp : R2 —► C satisfies the Helmholtz equation (24) outside 
the disk D of radius R with the center at the origin, and that if) also satisfies the radiation 

11 



condition (26) at oo. Suppose further that a : [—x, 7r] -» C is the far-field representation of ip. 
Then for any x G R2 \ D, 

+00 
V>(*) =   E  Wm-e^-e^.H^k-p), (59) 

m=—oo 

tu/jere (p, 0) are the polar coordinates ofx, and (a)m denotes the m-th term of the Fourier series 
of a. 

2.6    Gaussian Beams 

Gaussian beams are solutions of the Helmholtz equation that are obtained as potentials of 
charges with complex coordinates. Such a potential is small everywhere outside a region in the 
plane that looks like a spreading beam, and inside that region the graph of the absolute value of 
such a function looks like the normal distribution; hence the term "Gaussian beam". Because 
of their localized nature, Gaussian beams are used as building blocks for the construction of 
other solutions for the Helmholtz equation. 

Suppose that u > 0 is a real number. We will define the function Gu : R2 —► C by the 
formula 

Gu(x,y) = Ho(/((x-i-u)2 + y2)))-e-u, (60) 

and refer to Gu as a Gaussian beam with base u, oriented horizontally and pointing to the 
right. For any x0 e R

2, we will denote by G*° the mapping R2 —► C, defined by the formula 

Gx
u°(x) = Gu(x + x0). (61) 

Obviously, G° = Gu, and G*° will also be referred to as a Gaussian Beam. 
The following lemma provides an explicit expression for the far-field representation for the 

Gaussian beam (60). While its proof is very simple, we provide it, since it reveals important 
features of the behavior of Gaussian beams at large distances from the origin. 

Lemma 2.14 Suppose that u is a positive real number. Then the Gaussian beam (60) is a 
radiation potential outside the subset Bu o/R2, consisting of all pairs (x,y) such that 

x     =0, (62) 

—u   < y < u. (63) 

Furthermore, the far-field representation of (60) is given by the formula 

F0(GU)(6) = cM^M-D, (64) 

for all 6 € [-7r,x]. 

12 



Proof. We start with observing that the equation 

(x - * • u)2 + y2 = 0 (65) 

has exactly two solutions: 

(   x   =0, y = -u), (66) 

(   x   =0,   y = u). (67) 

Thus, the function Gu : R2 —► C has logarithmic singularities at the points (66), (67), connected 
by a branch cut (see (29)); obviously, outside this branch cut the function (60) is analytic and 
satisfies the equation (24). 

Suppose now that x2 + y2 » u2. Using the Taylor theorem, we have 

\f{{* ~ i ■ u)2 + y2) = 

r, i    2x   n,   2 • i • x • u      u2 

v v x* + y1       xl + y2 

/(x2 + y2)-i.       X2l       +0(    „I     2.) = v vix + y )      v(x + y ) 
r-i-u- cos(9) + O(-), (68) 

with (r, 9) the polar coordinates of the point (x,y) G R2. Now, (64) foDows from the combina- 
tion of (68), (60), (55), (39). 

D 

Remark 2.5 An exercise in elementary calculus shows that for any u > 0, 

,2 
C«.(«>s(0)-1) < _c-u-T (69) 

for all 6 € [-7r, TT], and 

max   I e^0^)"1) _ e"u4 |< I, (70) 

Both bounds (70), (69) are quite crude, but sufficient for our purposes. 

3    Detailed Analysis of Gaussian Beams 

In this section, we develop the analytical apparatus to be used in Section 4 to prove Theorem 1.1. 
The principal tool we use consists of the well-known Gaussian beams; however, the analysis we 
use is somewhat more detailed than what appears to be present in the literature. 
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3.1    Four elementary lemmas 

In this and the following subsections, we analyze the spatial structure of functions of the 
form (60) in some detail, in the process justifying the use of the term "Gaussian beams". Lem- 
mas 3.1 - 3.4 below provide the necessary analysis. Their proofs are an exercise in elementary 
calculus, and are omitted. We start with several additional definitions. 

For any positive real u, we will define the function / : R2 —► C by the formula 

f(x,y)=f((x-i.u)2 + y2). (71) 

For any positive real u,ß such that ß < u, we will define two regions A, B in R2, as follows. 

1. The region AUtß consists of all pairs (x,y), such that 

i y |> ^t^+<»')■(«•-*•)). (72) 

2. The region Bu>ß consists of all pairs (x,y), such that 

M.v/((^y-/*')) (73) 

(see Figure 1). 

Lemma 3.1 For any positive u,ß such that ß < u, 

R2 = Auß\JBuß. (74) 

Furthermore, for any (x,y) £ AUtp, 

Im(f(x,y))<ß, (75) 

and for any (x,y) £ Buß, 

Im(f(x,y))>ß, (76) 

The preceding lemma describes precisely the part Auß, of the plane where the inequal- 
ity (75) is satisfied; the following one provides a simplified approximate description of the 
region Au<ß. 

Lemma 3.2 Suppose that under the conditions of the preceding lemma, 6 is a positive real 
number, such that 

ß = u-6, (77) 

and 

* + l<f (78) 
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Then 

Im{fu(x,y))<u-6-2-log(u) (79) 

for any (x,y) € R2 such that 

\y\>2.V2-/(6+l)y{x2J.u2\ (80) 

The following lemma provides a further simplification of the conditions (72), (73) when 
2-yfi< s/{x2 + y2) < 2 • u. 

Lemma 3.3 Suppose that the positive real numbers x, u, 6 are such that 

(81) 

(82) 

(83) 

c         U 

6<r 
2 ■ \fu < x < 2 u 

Then 

Im(fu{x .»))< u - -6 

for any y such that 

Ul>2 7(io *) • y/Ü (84) 

Proof. 
Obviously,   (84), can be rewritten in the form 

\y\>2-yf(10-S)-y/ü = 

2./(2.6).^4-UjJ-u2\ (85) 

Substituting (82) into (85), we obtain 

lyl>2./(2.5).^±^. (86) 

Now, (83) follows from the combination of (82) and Lemma 3.2. 
D 

The following lemma describes a simplification of the conditions (72), (73) when y/(x2 + 
y2)>2-u. 
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Lemma 3.4 Suppose that the positive real numbers x, u, S are such that 

S < f, (87) 

and 

x>2-u. (88) 

Then 

Im{fu(x,y))<u-6 (89) 

for any y such that 

JU>i^. '    (90) 
X y/U 

Proof. Introducing the notation 

- = /i, (91) 
u 

(92) 

we observe that, due to (88), fi > 2, and, therefore, 

Now, substituting (91) into (90), we have 

\_y\      4-y/6      2-V2-V6-u-y/(l + n2) = 

X y/Ü fl • U3/2 

2-V2-V6-u-y/{u2 + fl2 -U2) _ 

\i ■ u3/2 

2 ■ y/2 • y/6 ■ u ■ y/{u2 + x2) 
fi • u3/2 

Multiplying both sides of (93) by x and using (91) again, we get 

.    .    2-V2-yft-u-y/{u2+n2-u2) |2/|> v7^ *= 

^^■/", + t').<. (94) 
y/U 

Now, (89) follows from the combination of (94) and Lemma 3.2. 

(93) 
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3.2    Geometry of Gaussian beams 

In this subsection, we use the elementary lemmas of the preceding one to describe in some 
detail the spatial behavior of Gaussian beams. The theorem below follows immediately from 
the combination of Lemmas 3.3, 3.4 above and Lemma 2.3. 

Theorem 3.5 Suppose that the positive real numbers u, 6 are such that 

S < f. (95) 

Then 

\Gu(x,y)\<e-s (96) 

in either of the following two (intersecting) regions: 

1. x € [2 • y/ü, 2 • u), | y |> 2 • ^10 • S) ■ y/ü. 

2. x£[2-u,<x>\,\y\>±&-x. 

Observation 3.1 The above theorem has a very transparent physical interpretation. Specifi- 
cally, a Gaussian beam (60) begins to look like a beam once x > yfu. While x € [y/v-, u], the 
Gaussian beam virtually does not expand. At approximately x = u, the beam begins to expand 
with the angle of expansion roughly 4 • y/S/y/u, with e~s relative error of our measurements (or 
calculations). This behavior is quite obvious in Figure 3. 

4    Modified and Modulated Gaussian Beams 

4.1    Modified Gaussian beams 

According to Lemma 2.14, the Gaussian beam (60) has a localized far-field representation. 
Specifically, for any e > 0, 

I F0(GU)(6) \< e (97) 

for all 6 such that 

|0|>v/^.log(I)) (98) 

(see (69)). On the other hand, Gu has logarithmic singularities at the points (66), (67), and 
a branch cut connecting them. In other words, to a specified precision, the support of the 
far-field representation of a Gaussian beam is proportional to l/\/ü, with u the size of the 
region where the beam (60) is discontinuous. This very large region of discontinuity turns out 
to be a major problem when Gaussian beams are used as bricks for the construction of other 
solutions of the equation (24). Fortunately, there exist solutions of the equation (24) almost 
exactly coinciding with (60) away from the branch cut (62), (63), and singular on a region of 

17 



size roughly ■v/ü. We will refer to such solutions as Modified Gaussian Beams (MGBs), and 
use use them as building blocks for the construction of solutions of the equation (24). In this 
subsection, we construct the MGBs, and prove some of their properties. We start with several 
definitions. 

For an arbitrary pair of positive real numbers u, 6, we will denote by R\ the rectangle in 
the plane defined by the four vertices 

(l,-(«+l)),(l,(«+l)),(-l,(tt+l)),(-l,-(«+l)), (99) 

by A4 the rectangle defined by its vertices 

(2, -(u + 2)), (2, (u + 2)), (-2, -(« + 2)), (-2, (u + 2)), (100) 

by i?2 the rectangle defined by the vertices 

(l,-7),(l,7),(-l,7),(-l,-7), (101) 

with 

7 = 2-^/(2.«.(«+l)), (102) 

and by E3 the difference R\ \ i?2, observing that R3 consists of two rectangles, with vertices 

(l,-7),(l,-(U+l)),(-l,-(tt+l)),(-l,-7), (103) 

(1,7),(1,(«+!)),(-!,(«+1)),(-1,7), (104) 

respectively (see Figure 2). We will denote by Ti, T2, T3, T4 the boundaries of the regions i?i, 
#2, -R3, R4, respectively. Whenever a function is to be integrated over one of these boundaries, 
the integration will always be assumed to be with respect to the arc length. 

We will denote by GU}s the function R2 \ R2 -+ C defined by the formula 

Gu,s(x) = -l- ■ J [GJfy ■ H(i,z) + ^%) • G(t,x))dl, (105) 

and refer to Gu<$ as a Modified Gaussian Beam. For any x0 € R2, we will denote by G^°s the 

mapping TXo(R? \ i?2) -* C, defined by the formula 

Gx
u°s(x) = Gu4x + x0). (106) 

Obviously, G° s = Gu,s, and G*°s will also be referred to as a Modified Gaussian Beam. 
The following lemma shows that for large u,S, the values Gu(x) are almost zero for all 

x 6 T3. It is an immediate consequence of Lemma 3.2 and the formulae (103), (104). 

Lemma 4.1 Suppose that u,6 are two positive real numbers, such that 6 < u/2. Then for any 

x£T3, 

I Gu(x) |< tl. (107) 
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The following lemma shows that for large u, 6, the functions GUts, Gu very nearly coincide 
for values of argument outside T^ 

Lemma 4.2 Suppose that u,6 are two real positive numbers, such that 6 + 1 < u/2. Then for 
any x € R2 \ RA, 

\Gu,s(x)-Gu(x)\<e-s. (108) 

Proof. 
Since Gu is a solution of the equation (24), analytic outside i?i and satisfying the radiation 

condition (26) at oo, Theorem 2.1 yields 

Gu(x) = J- ■ Jr(Gu(t) ■ ^(t,x) + ^% ■ G(t,x))dl, (109) 

for any x G R2 \ R\. Obviously (see Figure 2), 

UGu{t)' WM + ^§N^{t) * G{t'X))dl = 

UG^ * If(*'X) + dJ^N1{t) ■ G{U X))dl + 

l3
iGu(t)' If(*' X) + ^N^{t)' G{t'X))dL (U0) 

On the other hand, it immediately follows from the combination of (31), (32), and (107) that 

I J (Gu(t) ■ ?jZ{t,z) + ^5^(0 • G(t,x))dl |< e~\ (111) 

and we obtain (108) by combining (111) with (110) and (105). 
D 

The following lemma shows that the far-field representation of the modified Gaussian beam 
GUjs is almost identical to that of the Gaussian beam Gu. Its proof is similar to that of 
Lemma 4.2, and is omitted. 

Lemma 4.3 Suppose that u,6 are two real positive numbers, such that 6 + 1 < u/2. Then 

I Fo(Gu,s)(0) - e"-^)-1) |< e~s. (112) 

for all 6 € [—7r,7r]. 
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4.2    Modulated Gaussian beams 

We will define the function M™ : R2 —► C by the formula 

M2(x,y) = 

\f(r~) ■ I ' Gu{x - m ■ cos(ri), y-m- sin(r,)) ■ e^dn,    (113) v   o • x    Jo Jm{m) 

and the function M™s : R2 —► C by the formula 

MZtS(x,y) = 
:m r    : flit 

7H • V(i—) • /     G*^x ~ m •cos^)' y ~ m • sinW) • ^dn  (114) Jmi'm)        o • it    Jo 

(the definitions (113), (114) are correct and stable due to Lemma 2.6). We will be referring 
to M™ as Modulated Gaussian Beam, and to M™8 as Modulated Modified Gaussian Beam 
(MMGB). Obviously, M™ is a radiation potential outside the region Sm(Bu) (see (62), (63), 
and Lemma 2.1, and M™s is a radiation potential outside 5m(i?2) (see (101)). The following 
lemma supplies the far-field representation for M™. 

Lemma 4.4 For any real u > 0 and integer m, 

F0(M™)(6) = e«'-m-e • e"<"»W-i) (115) 

for all 6 € [-7r,7r]. 

Proof. 
Combining (113) with (61) and (57), we have 

F0{M?)(8) = 

_i!L . J{—) • / * j'o(<3K«»M.™-«»('»)))(0) • e^dn = 
Jm{™)     V    8 * T      JO 

im /7J_x 
Jm(m)   yK8-n} 

f       ei-k-((m-cos(ri),m-sin(r])),(cos(e)<sin(e))) _ e»'-m-rj ■    _ 

0 

Jm(m)   VV8-n' 

Fo(G   )(8) •   /       e'-k-m-(cos{r,)-cos(e)+s<n(v)-sin($)) , £»•"»•') ^ - 

JO 

TT-T * \/(^") • Fo(Gu)(0) ■ r e«'*"-^"-») • e'^r?. (116) 
«An(«0    v   8-TT Jo 
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Now, we obtain (115) by combining (116) with (48) and (64). 
D 

The following lemma is an immediate consequence of the combination of Lemmas 4.4, 4.3. 
It supplies the (approximate) far-field representation of M™s. 

Lemma 4.5 For any real u > 0, integer m, and 0 < 6 < u/2, 

| FoiMfsW) - e'-m-e • eM«»**)-1) |< e-\ (117) 

for all 8 6 [-7r,7r]. 

For an arbitrary integer n > 0, real u > 0, and real 0 < 6 < u/2, we will define the function 
Ql : R2 -> C via the formula 

QZ(x)=   J2  Mu^), (118) 
m=—n 

and the function Q* s : R2 —► C via the formula 

QZs(x)=   J2 M?A*)- (119) 
m=—n 

Obviously, Q" is a radiation potential outside Sn(Bu) and Q"s is a radiation potential outside 
5n(Ä2). 

The following two theorems describe the far-field representations of Q%, Q^si respectively. 
They follow immediately from Lemmas 4.4, 4.5, respectively, and the obvious fact that 

A    im a     sin((n + ±)-9) 

Theorem 4.6 For an arbitrary integer n > 0 and real u > 0, 

Fo(QZW) = J,'B«n+ff-g) • eM«»W-i) (121) 
sin(^) 

for all 0 e [-n,n]. 

Theorem 4.7 For an arbitrary integer n > 0, real u > 0, and real 0 < 6 < u/2, 

FoiQlsW) - Sin{(n *,V ' 6) ■ e"^^)-1) |< e-fi (122) 
sm(§) 

/or a//0 G [—7T,7r]. 
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The following theorem is an immediate consequence of the combination of Theorem 3.5 
with (119), (114), (108). It shows that the support of the function Q"s is shaped like a beam, 
whose width is closely related to that of the Gaussian beam Gu- 

Theorem 4.8 Suppose that n > 0 is an integer number, and u, 6, are two real numbers such 
that 0 < 6 < u/2. Then 

\Ql,S(x,y)\<e-s (123) 

in either of the following two (intersecting) regions: 

1. x£ [2-y/ü,2-u], | y \> 2-s/{lQ-8)-y/u + n. 

2. x € [2 • u, oo], | y |> ^ • x + n. 

The following theorem is obtained from the preceding one by elementary algebraic manip- 
ulation. 

Theorem 4.9 Suppose that under the conditions of Theorem 4-8, the numbers u, n, are defined 
by (11), (IS), respectively, and that in addition, u > 2 • 6. Then 

\Q:<s(x,y)\<e-s (124) 

in either of the following two (intersecting) regions: 

2. ar€[£,oo], | y |> 8 •>/§•«• f. 

Theorem 4.7 provides an analytical expression for the far-field representation Fo{Q^s) of 
the potential Q*s . The following theorem provides a somewhat less detailed description of 
the Fourier series of Fo(Q™s). 

Theorem 4.10 Suppose that under the conditions of Theorem 4-7, r > 0 is a real number, 
and the numbers u, 6, v, n, m are defined by the formulae (11), (10), (3), (12), (13). Then 
for all integer j such that \ j |< 2 • v, 

I W3Sf,))i - 1 l< e. (125) 

Furthermore, for any j such that \ j \> m/2, 

I (FO(Q:,S))> l< t. (126) 

Proof. 
Denoting by s,t the functions [-7r,7r] —»• C defined by the formulae 

*.n(0. + j)-*)t (127) 
sin(Z) 
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t(9) = ^-(«»»W-1), (128) 

we observe that the Fourier series of s, t are given by the formulae (120), (49). Due to (127), (128), 
we can rewrite (122) in the form 

\FQ(Ql£)(e)-t(0).s(e)\<e, (129) 

from which it immediately follows (due to the convolution theorem) that 

ll(WC,Ä));-(**i);||<£. (130) 

Now, the conclusion of the theorem follows immediately from the combination of Lemma 2.8 
with (130), (120), (49). 

D 

4.3    Proof of Theorem 1.1 

In this subsection, we use the analytical machinery developed in the preceding ones to prove 
Theorem 1.1 of Section 1. Given real numbers p,r,e satisfying the conditions (1), (2), we will 
dehne the mapping /3£e : [—ir, ir] —* C by the formula 

#,e W = QIÄP • C0S W' P ■ «"(*))> (131) 

with 6 defined by (10), v defined by (3), u defined by (8), and n defined by (13). The following 
four lemmas show that the function ß£e satisfies the conditions of Theorem 1.1, and is very 
close to the function bp

rt, defined in Section 1. 
The following lemma is obtained from Theorem 4.8 by elementary algebraic manipulation. 

Lemma 4.11 Suppose that under the conditions of Theorem 4-10, the function ß£c : [—TT, IT] —► 
C is defined by (131). Suppose further that either 

p€[16-r,-^— ],   and    | 9 |> —, (132) 
4 • o p 

or 

r2 8 • \/2 • 6     6 • r 
PZIT-F>°°]>   and   \0\>—"— + ' (133) 4-o r p 

or both. Then 

I #,(«) l< «. (134) 

The following lemma is an immediate consequence of the preceding one. 
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Lemma 4.12 Suppose that under the conditions of Theorem 4-10, the function b^s is defined 
by (131).  Then 

\K,M\<e- (135) 
for all 6 6 [—TT, 7r], such that 

r p 

The following lemma is an immediate consequence of the combination of (59) and Theo- 
rem 4.10. 

Lemma 4.13 Suppose that under the conditions of Theorem 4-10, the function /?£e is defined 
by (131). Then for all j <E [-2 • v, 2 • v), 

| (fa); - Hj(p) |< e. (137) 

Finally, Lemma 4.14 below is easily obtained from the combination of Lemma 2.13 with (131), (122). 

Lemma 4.14 Suppose that under the conditions of of Theorem 4-10, the functions ß^e, 6£(£, 
are defined by (131), (15), respectively. Then for all 6 € [-TT.TT], 

\ß^(B)-^{9)\<e. (138) 

Corollary 4.15 Obviously, Theorem 1.1 is an immediate consequence of Lemmas 4-1%, 4-13, 

4.14. 

5     Numerical Considerations and Experiments 

5.1    A numerically more attractive procedure 

Theorem 1.1 of Section 1 provides a construction of the function 6£|£ satisfying the conditions 1. 
- 3. of Section 1. However, the function b^e supplied by Theorem 1.1 is in no sense optimal, and 
in fact has been chosen so as to simplify the proof of Theorem 1.1, not to lead to numerically 
most efficient schemes. The following construction turns out to provide a function 6££ that is 
considerably more attractive numerically than that provided by Theorem 1.1. 

Given real numbers r,p,e such that 0 < r < p/4, and e > 0, we will define the integer number 
v as the smallest real number such that 

Jj(r) < e. (139) 

for all j > v. We will define the integers m, n by the formulae 

ro = 6-i/, (140) 
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n = --u, (141) 

and a real number u by the formula 

e-"./f (*) = £. (142) 

Finally, we will define the function /£>r : [-7r,7r] —♦■ C, by the formula (14), and the function 
bp

rt : [-7T,7r] -* C by the formula (15). 

Observation 5.1 Obviously, the above procedure defines a function very similar to that pro- 
vided by Theorem 1.1, as is obvious from Lemmas 2.5, 2.8. However, the analogue of The- 
orem 1.1 for the construction of this subsection is somewhat subtle; the proof fragments into 
a large number of cases, depending on the relative sizes of r, p, and e. On the other hand, 
once the function b£t is obtained, it is quite trivial to verify numerically that it satisfies the 
conditions 1., 2. of Subsection 1.1, which are the two conditions necessary for bp

Te to be a 
translation operator (to a fixed precision e). Furthermore, our numerical experiments indicate 
that in most cases, the above construction works better than that provided by Theorem 1.1, in 
the sense that the coefficients p, q in the formulae (6), (7) are much smaller. 

Observation 5.2 Clearly, evaluating the function fc,r at m equispaced points on the interval 
[—7r,5r] is an order m procedure (see (14)); given f£tr, the function bp

rt : [—7r,7r] —► C (defined 
in (15)) can be evaluated at m equispaced nodes via the FFT, provided that m is a product 
of powers of small prime numbers. Thus, in our computations, we altered slightly the defi- 
nition (HO). Specifically, we defined m as the smallest positive integer that is a product of 
powers of 2, 3, and 5, and is greater than 6 • v. With this modification, the function bp

e can be 
constructed for a cost of the order m • log(m), which is sufficiently fast for most applications. 

5.2    Numerical illustrations 

In this subsection, we illustrate the behavior of the functions ß£e with several figures, as follows. 

In Figure 3, we illustrate the behavior of the function Gu with u = 1000, by plotting the loci 
of points x in the plane where | Gu(x) \= e, with e = 1.0E - 3, 1.0E - 7, 1.0£ - 12. The 
beam-like structure of(ju is quite transparent from this plot. 

In Figure 4, we illustrate the behavior of the modulated Gaussian beam Q™6 by comparing 
it to the behavior of a Gaussian beam Gu,s with the same parameters u, 6. Specifically, we 
plot the loci of points where | Q"s |= exp(-6), | Gu<s |= exp(-8). In the regime we chose 
for this illustration, both functions behave very much like expanding beams, with the same 
angle of expansion. The distance between the graphs is roughly equal to n, as it should be 
(see (113), (114), (118), (119)). 

In Figure 5, we illustrate the behavior of the functions /?£ as p grows, for four values of e 
(e = 1.0E - 3, 1.0J5 - 6, 1.0£ - 9, 1.0.E - 12). Specifically, we plot the size (in radians) 0 
of the region around 0 where | ß£e |> £, viewed as a function of p. It is quite easy to see that 
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the region shrinks as p grows, apparently converging to some constant, depending on t. This 
behavior is in agreement with Lemma 4.12. 

In Figure 6, we illustrate the behavior of the functions ßp
Tt as a tool for the reduction of the 

computational cost of the Fast Multipole Method. We plot the ratio of the number of nodes 
required to discretize the function /?££ at the Nyquist frequency to the number of nodes required 
to discretize the function un of [6], to the same accuracy and under identical conditions. The 
ratio is plotted for e = 1.0E - 3, 1.0E - 6, 1.0E- 9, 1.0E - 12, r = 100, and p/r € [4,40]. It 
is easy to see that under these conditions, the improvement is quite dramatic for low-accuracy 
calculations. When the desired precision is high, the improvement is much less impressive. 

Figure 7 is similar to Figure 6, except that here, r = 500. Obviously, in this case, the reduc- 
tion in the computational cost is much greater than for r = 100; this is in agreement with 
Theorem 1.1. 

Figure 8 shows the plots of the absolute values of the function /?£e : [-TT, T] —»• C with r = 100, 
£ = 1.0E - 6, and p = 400, 1000, 10000. Here, it is obvious that /?£e is structured like a bell, 
with the width of the bell decreasing as p increases. By the time p ~ r2, the bell shrinks to a 
point. 

Finally, Figure 9 contains a plot of the real part of the function /?£e : [-JT,7T] -> C. The 
function is so osciUatory that this plot is not very informative. However, it is clear from Figures 
8, 9 that while the absolute value of /?£e looks very much like a bell, the function /?£e itself is 
quite oscillatory, except near 0 = 0. 

6      Generalizations and Applications 

Obviously, the purpose of this paper is purely technical - to construct numerical tools to be used 
in the design of Fast Multipole Methods for the Helmholtz equation. Furthermore, in a vast 
majority of applications, the problems are three-dimensional, so that the principal (though 
by no means the sole) purpose of a two-dimensional scheme is to serve as a model before 
three-dimensional algorithms are attempted. 

The construction of this paper is trivially generalized to arbitrary real Helmholtz coefficients 
by rescaling. The construction extends to complex Helmholtz coefficients easily, as long as the 
real part of the Helmholtz coefficient is positive; in this case, the proofs have to be modified 
slightly. The construction becomes numerically unstable for Helmholtz coefficients with large 
negative imaginary parts. 

Our numerical experiments show that the construction of the preceding section can be 
sharpened somewhat, especially for relatively small r and p. In other words, there exist versions 
of the function ß%t that have the same frequency content as those constructed in the preceding 
section, and that are small on a greater part of the interval [-ir, TT). However, in our experiments 
we used optimization techniques to construct such functions, at a significant cost in CPU time 
(the cost of our procedure is of the order 0(m3), with a fairly large constant). At the present 
time, the possibility of more efficient schemes of this type is under investigation. 
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Extension of the results of this paper to three dimensions is quite straightforward, and a 
paper reporting it is in preparation. The author is currently in the process of incorporating 
the construction of Section 5 of this paper into a Fast Multipole scheme for the solution of 
two-dimensional scattering problems. These results, and their extension to three dimensions, 
will be reported at a later date. 
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Figure 1: Regions A, B, with u = 10000, 6 = 40 
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Figure 2: Rectangles Ri,R2,Rz,R4, drawn not to scale 
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Figure 3: Gaussian beam Gu, with u = 1000; drawn to scale. 
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Figure 4: Functions Q"g, Gu.s,   with u = 168, n = 311, 
6= 13.82« -log(1.0E-6) 
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Figure 5: Functions /3£e, with r = 100, £i = 1.0£ - 3, 
e2 = 1.0£ - 6, £3 = 1.0£ - 9, e4 = 1.0E - 12. 
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Figure 6: Improvement in the number of nodes in the discretizations of 
functions ß*e, as a function of p/r; with r = 100, and 

ei = 1.0E - 3, 1.0E - 6, 1.0E - 9, 1.0E - 12. 



0.40E+00    .. 

0.30E+00    .. 

0.20E+00    .. 

O.lOE+00    .. 

= 1.0£-9 

e = 1.0JE-6 

0.50E+01 0.15E+02 0.25E+02 0.35E+02 p/r 

Figure 7: Improvement in the number of nodes in the discretizations of 
functions ß£e, as a function of p/r; with r = 500, and 

et = 1.0E - 3, 1.0JE7 - 6, 1.0E - 9, 1.0E - 12 
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Figure 8: Absolute values of the function ß£e, with r = 100, 
£ = 1.0E - 6, and p = 400, 1000, 'lOOOO 
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Figure 9: Real part of the function /3£e, with r = 100, e = 1.0E - 6, 
and p = 400 


