
Technical Report
CMU/SEI-95-TR-021
ESC-TR-95-021

3~Ue\lon University

M- n rng Ins'

Quality Attributes

Mario Barbacci

Mark H. Klein

Thomas A. Longstaff

Charles B. Weinstock

December 1995

Carnogie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnogie Mellon Human Relations Commission, the Department o! Defense policy of, "Don't ask, don't teli, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarshios or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh. PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University. 5000 Forbes Avenue Pittsburgh PA 15213 telephone
(412)268-2056. '

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report

CMU/SEI-95-TR-021

ESC-TR-95-021

December 1995

Quality Attributes

Mario Barbacci

Mark H. Klein

Thomas H. Longstaff

Charles B. Weinstock

Engineering Program

19960509 050
Approved for public release.

Distribution unlimited.

Software Engineering institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt. Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1995 by Carnegie Mellon University

This work was created in the performance of Federal government Contract Number F19628-95-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a Federally Funded Research and Development Center. The Government of the
United States has a royalty-free government purpose license to use, duplicate, or disclose the
work, in whole or part and in any manner, and to have or permit others to do so, for government
purposes.

This material may be reproduced by or for the U.S. Government pursuant to the copyright
license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA
15212: Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a Mosaic home page.
The URL is http://www.rai.com.

Copies of this document are available through the National Technical Information Service
(NTIS). For information on ordering, please contact NTIS directly: National Technical
Information Service, U.S. Department of Commerce, Springfield, VA 22161. Phone: (703) 487-
4600.

This document is also available through the Defense Technical Information Center (DTIC).
DTIC provides access to and transfer of scientific and technical information for DoD personnel,
DoD contractors and potential contractors, and other U.S. Government agency personnel and
their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: DTIC-OCP, 8725 John J. Kingman Road, Suite 0944, Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8019/8021/8022/8023. Fax: 703-767-8032/DSN-427.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

Contents

1 Introduction 1

2 Software Quality Attributes 3

2.1 How Various Communities Have Addressed Quality Attributes 3

2.2 Software Quality Attribute Trade-offs 4

2.3 Generic Taxonomy for Quality Attributes 4

3 Performance 7

3.1 Overview 7
3.1.1 Definition 7
3.1.2 Taxonomy 7

3.2 Concerns 9
3.2.1 Latency 10
3.2.2 Throughput 10
3.2.3 Capacity 10
3.2.4 Modes 11

3.3 Factors Affecting Performance 11
3.3.1 Demand 11
3.3.2 System 12

3.4 Methods 13
3.4.1 Synthesis 13
3.4.2 Analysis 13

4 Dependability 15

4.1 Overview 15
4.1.1 Definition 15
4.1.2 Taxonomy 15

4.2 Concerns 15
4.2.1 Availability 15
4.2.2 Reliability 16
4.2.3 Maintainability 17
4.2.4 Safety 17
4.2.5 Confidentiality 17
4.2.6 Integrity 17

CMU/SEI-95-TR-021

<i.j impairments to Dependability
4.3.1 Failures

17
17

4.3.2 Errors 18
4.3.3 Faults 19
4.3.4 Relationship Between Impairments 20

4.4 Methods 21
4.4.1 Fault Tolerance 21
4.4.2 Fault Removal 22
4.4.3 Fault Forecasting 23

5 Security 25

5.1 Overview 25
5.1.1 Context of the Security Attribute
5.1.2 Definition

25
26

5.1.3 Taxonomy 26

5.2 Concerns 27
5.2.1 Confidentiality
5.2.2 Integrity
5.2.3 Availability

28
28
29

5.3 Security Factors
5.3.1 Interface

29
29

5.3.2 Internal 30

5.4 Methods 31
5.4.1 Synthesis
5.4.2 Analysis

31
31

6 Safety 33

6.1 Overview 33
6.1.1 Definition 33
6.1.2 Taxonomy 33

6.2 Concerns 33
6.2.1 Interaction Complexity
6.2.2 Coupling Strength
6.2.3 Advantages and Disadvantages

33
35
36

6.3 Factors 36

6.4 Methods 36
6.4.1 Hazard Identification 37
6.4.2 Hazard Analysis
6.4.3 Implementation Methodologies
6.4.4 Implementation Mechanisms

37
39
39

ii
CMU/SEI-95-TR-021

7 Relationships Between Attributes 41

7.1 Dependability Vis-a-vis Safety 41

7.2 Precedence of Approaches 41

7.3 Applicability of Approaches 42

8 Quality Attributes and Software Architecture 45

Appendix A: Glossary 47

Bibliography 53

CMU/SEI-95-TR-021

CMU/SEI-95-TR-021

List of Figures

Figure 2-1: Software Quality Attribute Trade-offs 4
Figure 2-2: Generic Taxonomy for Quality Attributes 5
Figure 3-1: Performance Taxonomy 9
Figure 4-1: Dependability Tree [Laprie 92] 16
Figure 4-2: The Failure Classes [Laprie 94] 18
Figure 4-3: Fault Classes [Laprie 94] 19
Figure 4-4: Fault Tolerance [Laprie 94] 21
Figure 4-5: Fault Removal [Laprie 94] 22
Figure 4-6: Fault Forecasting [Laprie 94] 23
Figure 5-1: Security Taxonomy 27
Figure 6-1: Safety Taxonomy 34

CMU/SEI-95-TR-021

Vl CMU/SEI-95-TR-021

Quality Attributes

Abstract: Computer systems are used in many critical applications where a
failure can have serious consequences (loss of lives or property). Developing
systematic ways to relate the software quality attributes of a system to the
system's architecture provides a sound basis for making objective decisions
about design trade-offs and enables engineers to make reasonably accurate
predictions about a system's attributes that are free from bias and hidden
assumptions. The ultimate goal is the ability to quantitatively evaluate and
trade off multiple software quality attributes to arrive at a better overall system.
The purpose of this report is to take a small step in the direction of developing
a unifying approach for reasoning about multiple software quality attributes. In
this report, we define software quality, introduce a generic taxonomy of
attributes, discuss the connections between the attributes, and discuss future
work leading to an attribute-based methodology for evaluating software
architectures.

1 Introduction

Computer systems are used in many critical applications where a failure can have serious con-
sequences (loss of lives or property). Critical applications have the following characteristics:

• The applications have long life cycles (decades rather than years) and
require evolutionary upgrades.

• The applications require continuous or nearly non-stop operation.

• The applications require interaction with hardware devices.

• The applications assign paramount importance to quality attributes such as
timeliness, reliability, safety, interoperability, etc.

Developing systematic ways to relate the software quality attributes of a system to the sys-
tem's architecture provides a sound basis for making objective decisions about design trade-
offs and enables engineers to make reasonably accurate predictions about a system's at-
tributes that are free from bias and hidden assumptions. The ultimate goal is the ability to
quantitatively evaluate and trade off multiple software quality attributes to arrive at a better
overall system.

The purpose of this report is to take a small step in the direction of developing a unifying ap-
proach for reasoning about multiple software quality attributes. This report examines the fol-
lowing four software quality attributes: performance, dependability, security, and safety. Each
attribute has matured (or is maturing) within its own community, each with their own vernacular
and point of view. We propose a generic taxonomy for describing each attribute and attempt
to use this taxonomy to

• describe how each community thinks about its respective attribute

• highlight some of the important methods used by each community

CMU/SEI-95-TR-021

• draw out the connections between the attributes

• suggest a direction for developing an attribute-based methodology for
evaluating software architectures.

Section 2 defines software quality and introduces the generic taxonomy. The four sections that
follow cover each of the four attributes:

• Section 3 Performance

• Section 4 Dependability

• Section 5 Security

• Section 6 Safety

In these sections the following conventions are used in the text:

• bold - indicates that a term is defined in the glossary starting on page 47.

• italics - indicates that a term is shown in the figure illustrating the taxonomy.

• bold italics - indicates that a term is both shown in the figure illustrating the
taxonomy and defined in the glossary.

Section 7 discusses the connections between the four attributes by highlighting the relation-
ships between attributes and their approaches and makes several recommendations.

Section 8 discusses future work leading to an attribute-based methodology for evaluating soft-
ware architectures.

CMU/SEI-95-TR-021

2 Software Quality Attributes

Developers of critical systems are responsible for identifying the requirements of the applica-
tion, developing software that implements the requirements, and for allocating appropriate re-
sources (processors and communication networks). It is not enough to merely satisfy
functional requirements. Critical systems in general must satisfy security, safety, dependabil-
ity, performance, and other, similar requirements as well.

Software quality is the degree to which software possesses a desired combination of at-
tributes (e.g., reliability, interoperability) [IEEE 1061].

2.1 How Various Communities Have Addressed Quality Attributes

There are different schools/opinions/traditions concerning the properties of critical systems
and the best methods to develop them:

• performance — from the tradition of hard real-time systems and capacity
planning

• dependability — from the tradition of ultra-reliable, fault-tolerant systems

• security — from the traditions of the government, banking and academic
communities

• safety — from the tradition of hazard analysis and system safety engineering

Systems often fail to meet user needs (i.e., lack quality) when designers narrowly focus on
meeting some requirements without considering the impact on other requirements or by tak-
ing them into account too late in the development process. For example, it might not be pos-
sible to meet dependability and performance requirements simultaneously:

• Replicating communication and computation to achieve dependability might
conflict with performance requirements (e.g., not enough time).

• Co-locating critical processes to achieve performance might conflict with
dependability requirements (e.g., single point of failure).

This is not a new problem and software developers have been trying to deal with it for a long
time, as illustrated by Boehm:

Finally, we concluded that calculating and understanding the value of a single
overall metric for software quality may be more trouble than it is worth. The
major problem is that many of the individual characteristics of quality are in
conflict; added efficiency is often purchased at the price of portability,
accuracy, understandability, and maintainability; added accuracy often
conflicts with portability via dependence on word size; conciseness and
conflict with legibility. Users generally find it difficult to quantify their
preferences in such conflict situations [Boehm 78].

CMU/SEI-95-TR-021

2.2 Software Quality Attribute Trade-offs

Designers need to analyze trade-offs between multiple conflicting attributes to satisfy user
requirements. The ultimate goal is the ability to quantitatively evaluate and trade off multiple
quality attributes to arrive at a better overall system. We should not look for a single, univer-
sal metric, but rather for quantification of individual attributes and for trade-off between these
different metrics, starting with a description of the software architecture.

Performance
O Local (single attribute) optimum

Global (multiple attribute) optimum

Security

Dependability

Figure 2-1: Software Quality Attribute Trade-offs

2.3 Generic Taxonomy for Quality Attributes

Attributes will be thought of as properties of the service delivered by the system to its users.
The service delivered by a system is its behavior as it is perceived by its user(s); a user is
another system (physical or human which interacts with the former [Laprie 92]). We think of
the service as being initiated by some event, which is a stimulus to the system signaling the
need for the service. The stimulus can originate either within the system or external to the
system.

For each quality attribute (performance, dependability, security and safety) we use a taxon-
omy (see Figure 2-1) that identifies:

Concerns — the parameters by which the attributes of a system are judged, specified and
measured. Requirements are expressed in terms of concerns.

Attribute-specific factors —properties of the system (such as policies and mechanisms
built into the system) and its environment that have an impact on the concerns. Depending
on the attribute, the attribute-specific factors are internal or external properties affecting the
concerns. Factors might not be independent and might have cause/effect relationships. Fac-
tors and their relationships would be included in the system's architecture:

CMU/SEI-95-TR-021

• Performance factors — the aspects of the system that contribute to
performance. These include the demands from the environment and the
system responses to these demands.

• Dependability impairments — the aspects of the system that contribute to
dependability. There is a causal chain between faults inside the system and
failures observed in the environment. Faults cause errors; an error is a
system state that might lead to failure if not corrected.

• Security factors — the aspects of the system that contribute to security.
These include system/environment interface features and internal features
such as kernelization.

• Safety factors — the aspects of the system that contribute to safety.
Hazards are conditions or system states that can lead to a mishap or
accident. Mishaps are unplanned events with undesirable consequences.

Methods — how we address the concerns: analysis and synthesis processes during the
development of the system, and procedures and training for users and operators. Methods
can be for analysis and/or synthesis, procedures and/or training, or procedures used at
development or execution time.

Attributes

Concerns

Attribute-
specific
factors

Methods

Internal/External
Cause/Effect

Analysis/Synthesis
Procedures/Training
Development/Execution

Figure 2-2: Generic Taxonomy for Quality Attributes

CMU/SEI-95-TR-021

CMU/SEI-95-TR-021

3 Performance

3.1 Overview

3.1.1 Definition

3.1.1.1 IEEE 610.12 Definition

"Performance" has many connotations. The definition given in the IEEE Standard Glossary of
Software Engineering Terminology [IEEE-610.12] is: "Performance. The degree to which a
system or component accomplishes its designated functions within given constraints, such as
speed, accuracy, or memory usage." This definition is too broad for our purposes.

3.1.1.2 Smith's Definition

Performance as a software quality attribute refers to the timeliness aspects of how software
systems behave. We adopt a slight generalization of Smith's definition of performance: "Per-
formance refers to responsiveness: either the time required to respond to specific events or
the number of events processed in a given interval of time" [Smith 93, p. 720]. Performance is
that attribute of a computer system that characterizes the timeliness of the service delivered
by the system.

3.1.1.3 Performance vs. Speed

A misconception about performance is that it equates to speed—that is, the notion that poor
performance can be salvaged simply by using more powerful processors or communication
links with higher bandwidth. Faster might be better, but for many systems faster is not suffi-
cient to achieve timeliness. This is particularly true of real-time systems. As noted by Stank-
ovic [Stankovic 88], the objective of "fast computing" would be to minimize the average
response time for some group of services, whereas the objective of real-time computing is to
meet individual timing requirements of each service. Moreover, hardware mechanisms such
as caching, pipelining and multithreading, which can reduce average response time, can
make worst-case response times unpredictable.

"Predictability, not speed, is the foremost goal in real-time-system design" [Stankovic 88]. in
general, performance engineering is concerned with predictable performance—whether it is
worst-case or average-case performance. Execution speed is only one factor.

3.1.2 Taxonomy

3.1.2.1 Abstract Performance Model

The performance of a system stems from the nature of the resources used to fulfill demands
and how shared resources are allocated when the multiple demands must be carried out on
the same resources. This type of problem is known as a scheduling problem and has been
studied for years. See, for example, Conway [Conway 67].

CMU/SEI-95-TR-021

Conway [Conway 67, p. 6] says a scheduling problem can described by four types of informa-
tion:

1. jobs and operations to be processed

2. number and types of machines

3. disciplines that restrict the manner in which assignments can be made

4. the criteria by which the schedule will be evaluated

From a modeling point of view, Smith [Smith 93, p. 723] describes five types of data needed
for constructing and evaluating software performance engineering models:

• Performance requirements - quantitative requirements defined in terms of
events of interest and timing constraints for responding to each event.

• Behavior patterns and intensity - the number of event streams1 and the
worst-case and steady-state arrival rates for each event stream

• Software descriptions - the software operations executed in response to
events.

• Execution environment - the hardware devices and software services
needed to carry out the aforementioned software operations.

• Resource usage estimates - resource requirements for carrying software
operations such as processor execution time, I/O demands or memory
requirements.

The points of view of Conway and Smith differ somewhat; nevertheless, both points of view
call out

• performance concerns, such as criteria for evaluating the schedule, and
timing constraints for responding to events

• performance factors, such as

• behavior patterns and intensity, resource usage, software descriptions,
and jobs and operations, which characterize system demand

•execution environment and numbers and types of machines, which
characterize the system

• methods for synthesis and analysis that draw upon queuing theory,
scheduling theory, and formal methods that are used to understand'the
relationship between the factors and the concerns.

This is reflected in the taxonomy shown in Figure 3-1.

An event stream is a sequence of events from the same source- for example, a sequence of interrupts from
a given sensor.

CMU/SEI-95-TR-021

Performance
engineering

Concerns

Latency

Throughput

Factors

Methods -r

Capacity

Modes

Demand

System

Synthesis

Analysis

-E

-E

Response window

Precedence

Jitter

Criticality

Observation interval

Processing rate

Criticality

Utilization

Schedulable utilization

Spare capacity

-E
Arrival pattern

Execution time
Type of resource

Software services

Resource allocation

-E
Scheduling theory

Queuing theory

Formal methods

Figure 3-1: Performance Taxonomy

3.2 Concerns

The performance concerns (or requirements) used to specify and assess the performance of
the system are

• latency - How long does it take to respond to a specific event?

• throughput- How many events can be responded to over a given interval of
time?

CMU/SEI-95-TR-021

• capacity- How much demand can be placed on the system while continuing
to meet latency and throughput requirements?

• modes - How can the demand and resources change over time? What
happens when system capacity is exceeded and not all events can be
responded to in a timely manner?

3.2.1 Latency

Latency refers to a time interval during which the response to an event must be executed.
The time interval defines a response window given by a starting time (minimum latency) and
an ending time (maximum latency). These can either be specified as absolute times (time of
day, for example) or offsets from an event which occurred at some specified time. The ending
time is also known as a deadline. Latency sub-concerns include: precedence (a specification
for a partial or total ordering of event responses), jitter (the variation in the time a computed
result is output to the external environment from cycle to cycle), and criticality (the importance
of the function to the system).

3.2.2 Throughput

Throughput refers to the number of event responses that have been completed over a given
observation interval [Lazowska 84, p. 41]. This definition suggests that it is not sufficient to
just specify a processing rate, but that one or more observation intervals should also be
specified. For example, a system that can process 120 transactions every hour might not guar-
antee that 2 transactions will be processed every minute. Perhaps no transactions are pro-
cessed during the first 30 minutes and all of the transactions are processed during the
remaining 30 minutes.

Criticality is also a sub-concern of throughput.

3.2.3 Capacity

Capacity is a measure of the amount of work a system can perform. Capacity is usually de-
fined in terms of throughput, and has several possible meanings [Jain 91, p. 39]:

The maximum achievable throughput under ideal workload conditions. That
is, the maximum number of events per unit time that can be achieved if you
could pick the theoretically ideal set of events. For networks this is called
bandwidth, which is usually expressed in megabits per second.

However, often there is also a response time requirement that accompanies the throughput
requirement (as mentioned above). Therefore, a more practical definition is the following:

The maximum achievable throughput without violating specified latency
requirements. Jain refers to as usable capacity [Jain 91].

For real-time systems, throughput is not as important as predictably meeting latency require-
ments. While we can still consider looking at the maximum achievable throughput while con-
tinuing to meet all hard deadlines, another useful metric is schedulable utilization.

10
CMU/SEI-95-TR-021

Utilization is the percentage of time a resource is busy. Schedulable utilization, then, is the
maximum utilization achievable by a system while still meeting timing requirements. Sha
[Sha 90] refers to this as schedulability, one of the fundamental measures of merit for real-time
systems.

Since capacity is a measure of the amount of work a system can perform, spare capacity,
then, is then a measure of the unused capacity.

3.2.4 Modes

It is not uncommon for systems to have different sets of requirements for different phases of
execution. For example, an avionics system could have different requirements for the take-off
phase than for the cruising phase. We refer to these different phases as modes. A mode can
be characterized by the state of the demand being placed on the system and the state of the
system (that is, the configuration of resources used to satisfy the demand).

Two commonly encountered modes are reduced capacity and overload. A system might
have to operate with reduced capacity if resources cease to function properly. A system might
have to sacrifice timing requirements of less important events during periods of overload.

3.3 Factors Affecting Performance

Performance is a function of the demand placed on the system, the types of resources used
by the system, and how the system allocates those resources. Performance factors represent
the important aspects of the system and its environment that influence the performance con-
cerns. There are environment performance factors (demand) and system performance fac-
tors.

• demand - How many events streams are there? What are the arrival rates
associated with each event stream? What is the resource usage associated
with responding to each event?

• system - What are the properties of the scheduler used to allocated
resources, the properties of the software operations that comprise the
responses to events and the relationships between responses?

3.3.1 Demand

Demand is a characterization of how much of a resource is needed. Demand can be thought
of in terms of how much utilization a specific event requires. However, it is useful to think of
demand in terms of

• arrival pattern for each event stream and

• execution time requirements for responding to each event

The arrival pattern and execution time are important since these are two pieces of information
that can be used by scheduling theory and/or queuing theory for predicting latency and/or
throughput. The arrival pattern is either periodic or aperiodic.

CMU/SEI-95-TR-021 " iT

• Periodic arrivals occur repeatedly at regular intervals of time.

• Aperiodic arrivals occur repeatedly at irregular time intervals. The frequency
of arrival can be bounded by a minimum separation (also known as sporadic)
or can be completed random [Lehoczky94, pp. 1011-1012].

For execution times, the worst-case and best-case execution times can be used to help define
boundary-case behavior. Queuing theoretic techniques specify execution times using proba-
bility distribution functions.

3.3.2 System

Resources comprise a system and are needed to carry out event responses. We think of the
system in terms of

• types of resources

• software services for managing resources

• resource allocation

Common resource types are: CPU, memory, I/O device, backplane bus, network, and data ob-
ject. Associated with each type of resource there are software services for managing the use
of the resource and resource allocation policies. It is beyond the scope of this paper to discuss
all of these resource types. We will focus on operating systems services and CPU scheduling.

A primary factor that influences the concerns of performance is the software services that are
provided to allocate resources and to provide an interface to resources. These software ser-
vices are usually provided by the operating system. For this discussion we will focus our at-
tention on real-time operating systems, since real-time operating systems are explicitly
concerned with time and thus serve to highlight some of the important issues.

Stankovic groups real-time operating systems into three categories [Stankovic 94]:

• small, fast proprietary kernels

• real-time extensions of commercial operating systems

• research-oriented operating systems

Some of the important factors of an OS discussed by Stankovic that can affect performance
are: context switch times; interrupt latency; time during which interrupts are disabled; use of
virtual memory; bounds on the execution of system calls; precision of timer facilities; support
for predictable communication; scheduling overhead; non-preemptible sections and FIFO
queues. Other important OS factors [Klein 93, p. 7-4] are: priority of the OS service; implicit
use of shared resources; and limited representations of application or system parameters
such as insufficient number of priority levels or insufficient precision in time representation.

The resource allocation policy (that is, scheduling algorithm) used to resolve contention for
shared resources has a primary influence on the performance of a system. Scheduling algo-
rithms can be distinguished by whether the schedule is constructed off-line or on-line [Lehoc-
zky 94].

12 CMU/SEI-95-TR-021

Off-line scheduling requires complete knowledge of all events and their responses. This
knowledge is used to construct a time-line in advance of program execution that lays out the
order in which all event responses will be executed. This type of scheduling strategy is known
as a cyclic executive [Locke 92]. This strategy can be very efficient and simple for cases in
which there are a small number of periodic events with periods that are close to harmonic. In
these cases predicting the performance of a system is very straightforward since it has been
completely predetermined. However, as systems became more complex it was realized that
cyclic executives were relatively inflexible in the face of the inevitable modifications made to
systems.

In on-line scheduling, decisions are made at run-time and thus they tend to be more flexible
than off-line algorithms. Static-priority algorithms (e.g., rate monotonic and deadline monoton-
ic scheduling algorithms) assign a priority to the response to the event; the response uses that
priority for responding to every event in the event stream. Dynamic-priority algorithms (e.g.,
earliest deadline first, least laxity first, best-effort scheduling) allow event responses to change
the priority for every invocation and during a single response.

3.4 Methods

Methods to achieve performance include the following:

Synthesis—methods used to synthesize (such as real-time design methodologies) a system
or Smith's software performance engineering philosophy as discussed in [Smith 90].

Analysis—techniques used to analyze system performance such as queuing analysis and
scheduling analysis.

3.4.1 Synthesis

Smith [Smith 90, p. 14] advocates a philosophy of software performance engineering intended
to augment rather than supplant other software engineering methodologies. The goal is to car-
ry out the fundamental engineering steps of understanding, creating, representing and evalu-
ating, but to complement these steps with an explicit attention paid to performance. This
manifests itself in developing models to represent the performance of the system early, and
continuous evaluation of the performance of the system as it evolves.

3.4.2 Analysis

Performance analysis methods seem to have grown out of two separate schools of thought,
queueing theory and scheduling theory.

Queueing theory — Queuing theory can be used to model systems as one or more service
facilities that perform services for a stream of arriving customers. Each arrival stream of cus-
tomers is described using a stochastic process. Each service facility comprises a server and
a queue for waiting customers. Service times for customers are also described using stochas-
tic processes. Queuing analysis is mostly concerned with average case aggregate behaviors

CMU/SEI-95-TR-021 ~ 13

—which is appropriate for performance capacity planning and management information sys-
tems, for example. However, when worst-case behavior is of interest, scheduling analysis
might be more appropriate.

Scheduling theory— Classical scheduling theory has its roots in job-shop scheduling [Audsley
95, p. 176]. Many of the results of scheduling are either directly applicable to performance
analysis of real-time systems or offer valuable intuition. Many of these are summarized in
[Stankovic 95]. Many of the analysis techniques relevant to static priority preemptive schedul-
ing are discussed in [Lehoczky 94].

The analysis techniques that are applicable to real-time systems offer conditions under which
specific events will meet their timing constraints. These techniques are predicated on knowing
the conditions under which worst-case event responses will occur. Two typical types of anal-
ysis are based on

• computing utilization bounds

• computing response times

Utilization bounds are used to guarantee timing requirements by computing the utilization of
the system and then comparing it to a theoretically-derived bound. Given the right precondi-
tions, when utilization is kept under the specified bound, timing requirements are guaranteed
to be met.

Other results allow one to calculate the worst-case response times for specified events. This
worst-case response time can then be compared to the deadline to determine if latency re-
quirements will be satisfied.

The use of formal methods involves developing a formal specification of the desired temporal
behavior of a system, developing a formal specification of a design or implementation of some
or all of the system, and finally, conducting a formal verification that the system satisfies the
desired behavior.

Typically, these methods involve the use of formal mathematical notations for describing the
characteristics of a system and then use inference techniques to deduce system properties.
Various forms of timed logic systems [Jahanian 86] or timed process algebras are used, for
example.

14
CMU/SEI-95-TR-021

4 Dependability

4.1 Overview

4.1.1 Definition

Unlike the other properties discussed in this report, the dependability community has been
able to reach a consensus on terminology. This agreed upon terminology is codified by Laprie
[Laprie 92]. A subsequent draft revision1 forms the basis for much of this section.

4.1.1.1 IFIP WG10.4 Definition [Laprie 92]

Dependability is that property of a computer system such that reliance can justifiably be
placed on the service it delivers. Dependability has several attributes, including

• availability— readiness for usage

• reliability— continuity of service

• safety— non-occurrence of catastrophic consequences on the environment

• confidentiality— non-occurrence of unauthorized disclosure of information

• integrity— non-occurrence of improper alterations of information

• maintainability— aptitude to undergo repairs and evolution

Notice that the last three attributes correspond to the safety and security areas being dis-
cussed in other sections of this report. In [Laprie 92] confidentiality and integrity are grouped
under the rubric "security." In a later draft [Laprie 94] the two aspects of security are called out
as above.

4.1.2 Taxonomy

Figure 4-1 shows a dependability tree. In addition to the attributes of dependability, it shows
the means to achieving dependability, and the impairments to achieving dependability.

4.2 Concerns

The concerns of dependability are the parameters by which the dependability of a system are
judged. A dependability-centric view of the world subsumes the usual attributes of reliability,
availability, safety, and security (confidentiality and integrity). Depending on the particular ap-
plication of interest, different attributes are emphasized.

4.2.1 Availability

The availability of a system is a measure of its readiness for usage. Availability is always a
concern when considering a system's dependability, though to varying degrees, depending
upon the application.

1 ■ [Laprie 94] J.C. Laprie (ed.) Dependability: Basic Concepts and Terminology, Revision (Draft), 1994.

CMU/SEI-95-TR-021 ^

Dependability ■
engineering

Attributes-
(concerns)

Impairments
(factors) £
Means >
(methods)

Figure 4-1: Dependability Tree [Laprie 92]

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Availability is measured as the limit of the probability that the system is functioning correctly at
time t, as t approaches infinity. This is the steady-state availability of the system. It may be
calculated [Trivedi 82] as:

a = MTTF

MTTF + MTTR

where MTTF is the mean time to failure, and MTTR is the mean time to repair.

4.2.2 Reliability

The reliability of a system is a measure of the ability of a system to keep operating over time.
Depending on the system, long-term reliability may not be a concern. For instance, consider
an auto-land system. The availability requirement of this system is high—it must be available
when called upon to land the plane. On the other hand, the reliability requirement is somewhat
low in that it does not have to remain operational for long periods of time.

The reliability of a system is typically measured as its mean time to failure (MTTF), the expect-
ed life of the system.

16 CMU/SEI-95-TR-021

4.2.3 Maintainability

The maintainability of a system is its aptitude to undergo repair and evolution. It is less pre-
cisely measured than the previous two concerns. MTTR is a quantitative measure of maintain-
ability, but it does not tell the whole story. For instance, repair philosophy should be taken into
account. Some systems are maintained by the user, others by the manufacturer. Some are
maintained by both (e.g., the machine diagnoses a board failure, sends a message to the
manufacturer who sends a replacement board to the user with installation instructions.) There
is a cost vs. MTTR trade-off which comes into play. For instance, built-in diagnostics can re-
duce the MTTR at the possible cost of extra memory, run-time, or development time.

4.2.4 Safety

From a dependability point of view, safety is defined to be the absence of catastrophic con-
sequences on the environment. Leveson [Leveson 95] defines it as freedom from accidents
and loss. This leads to a binary measure of safety: a system is either safe or it is not safe.

Safety is treated separately elsewhere in this report.

4.2.5 Confidentiality

Confidentiality is the non-occurrence of unauthorized disclosure of information. It is treated
separately, in the "Security" section of this report (see Section 5 on page 25).

4.2.6 Integrity

Integrity is the non-occurrence of the improper alteration of information. Along with confiden-
tiality, this subject is treated separately in Section 5 on page 25.

4.3 Impairments to Dependability

The impairments to dependabilityInclude the fault, error, and failure properties of the hard-
ware and software of which the system is comprised, as shown in Figure 4-1.

4.3.1 Failures

As previously stated, a system fails when its behavior differs from that which was intended.
Notice that we define failure with respect to intent, and not with respect to the specification. If
the intent of the system behavior ends up differing from the specification of the behavior we
have a specification fault.

There are many different ways in which a system can fail. As shown in Figure 4-2, the so-
called "failure modes" of a system may be loosely grouped into three categories; domain fail-
ures, perception by the users, and consequences on the environment.

CMU/SEI-95-TR-021 17

Failures

■ Domain

t Perception by
Several Users"

Consequences
" on Environment™

Value Failures

Timing Failures

Consistent Failures

Inconsistent Failures

Benign Failures

Catastrophic Failures

Figure 4-2: The Failure Classes [Laprie 94]

Domain failures include both value failures and timing failures. A value failure occurs when
an improper value is computed, one inconsistent with the proper execution of the system. Tim-
ing failures occur when the system delivers its service either too early or too late.

An extreme form of a timing failure is the halting failure—the system no longer delivers any
service to the user. It is difficult to distinguish a very late timing failure from a halting failure. A
system whose failures can be made to be only halting failures is called a fail-stop system
[Schlichting 83]. The fail-stop assumption can lead to simplifications in dependable system de-
sign. Another special case of the halting failure which lead to simplification is one in which a
failed system no longer generates any outputs. This is termed a fail-silent system.

There are two types of perception failures. A failure can be either consistent, or inconsistent.
In the case of a consistent failure, all system users have the same perception of a failure. In
the case of an inconsistent failure, some system users may have perceptions of the failure
which differ from each other. These sorts of failures are called Byzantine failures [Lamport
82] and are the hardest failures to detect.

Finally, we can grade failures by their consequences on the environment. Although extremely
difficult to measure, failures can be classified in the range benign to catastrophic. A system
which can only fail in a benign manner is termed fail-safe.

4.3.2 Errors

An error is a system state that is liable to lead to a failure if not corrected. Whether or not it
will lead to a failure is a function of three major factors:

18
CMU/SEI-95-TR-021

1. the redundancy (either designed in or inherent) in the system

2. the system activity (the error may go away before it causes damage)

3. what the user deems acceptable behavior. For instance, in data transmission
there is the notion of "acceptable error rate"

4.3.3 Faults

A fault is the adjudged or hypothesized cause of an error. As shown in Figure 4-3, they can
be classified along five main axes: phenomenological cause, nature, phase of creation, sys-
tem boundary, and persistence.

Faults

Cause

Nature ■

Phase of Creation

F

Boundary"

Persistence"

Physical

Human-Made

Accidental

Intentional, Non-Malicious

Intentional, Malicious

Development

Operational

Internal

External

Permanent
1 Temporary

Figure 4-3: Fault Classes [Laprie 94]

Physical faults are those faults which occur because of adverse physical phenomena (e.g.,
lightning.) Human-made faults result from human imperfection and may be the result of many
factors, singly or in cooperation, including poor design, inadequate manufacture, or misuse.

Accidental faults appear to be or are created by chance. Intentional faults are created de-
liberately, with or without malicious intent.

Faults can be created at development time, or while the system is running (operational).

Faults can be internal faults, which are those parts of the internal state of the system which,
when invoked, will produce an error. Alternatively, faults can be induced externally, for in-
stance, via radiation.

CMU/SEI-95-TR-021 19

Finally, faults can be permanent or temporary in which case the fault disappears over time.
Temporary faults which result from the physical environment (i.e., temporary external faults)
are often termed transient faults. Those which result from internal faults are often termed in-
termittent faults.

As shown in [Laprie 94], the cross product of the above would result in 48 different fault class-
es. However, many of these aren't meaningful. The number of important combinations is 15.
These 15 can be loosely grouped into five more general classes; physical faults, design faults,
interaction faults, malicious logic faults, and intrusions. See [Laprie 94].

4.3.4 Relationship Between Impairments

4.3.4.1 Fault Pathology

In the above model, faults produce errors which lead to failures. A fault that has not yet pro-
duced an error is dormant. A fault which produces an error is called active. An error may be
latent or detected. An error may disappear before it is detected, or before it leads to a failure.
Errors typically propagate, creating other errors. Active faults cannot be observed, only errors
can. A failure occurs when an error affects the service being delivered to the user.

A system is typically built up of components. The failure of a component of a system may or
may not result in the failure of the system. If the user does not see the service delivered by the
failed component directly, no failure (with respect to the user) has occurred. A failure has only
occurred with respect to the system which uses the component.

4.3.4.2 Another View of Faults, Errors and Failures

Some find the dichotomy just given—faults, failures, and errors—to be confusing. Heimerd-
inger and Weinstock [Heimerdinger 92] have proposed the elimination of the term "error" as a
way of making things more understandable. In their view, failure has the same meaning as
previously given. However, their alternate view of fault is to consider them failures in other sys-
tems that interact with the system under consideration—either a subsystem internal to the sys-
tem under consideration, a component of the system under consideration, or an external
system that interacts with the system under consideration (e.g., the environment.) Every fault
is a failure from some point of view. A fault can lead to other faults, or to a failure, or neither.

But what of errors? As defined above, errors are a passive concept associated with incorrect
values in the system state. However, it is extremely difficult to develop unambiguous criteria
for differentiating between faults and errors. Many researchers refer to value faults, which are
also clearly erroneous values. The connection between error and failure is even more difficult
to describe.

However, the reality of the situation is that the fault-error-failure terminology is so well en-
trenched that, as much as we'd like not to, we will use that view in the rest of this document.

20 CMU/SEI-95-TR-021

4.4 Methods

As shown in Figure 4-1, there are three major ways to achieve dependability: we can prevent
faults from happening in the first place, we can tolerate their presence in the operational sys-
tem, and we can remove them from the operational system once they have appeared. In ad-
dition, the figure shows, we can evaluate how dependable the system is and use the
information gleaned to improve it.

In this section, we will concentrate on the last three of these means, as fault prevention
comes under the more general heading of good software engineering practice.

4.4.1 Fault Tolerance

Fault
Tolerance

Error
Processing

Fault
Treatment

Diagnosis

Passivation

Reconfiguration

Figure 4-4: Fault Tolerance [Laprie 94]

Backward Recovery

Forward Recovery

Compensation

Fault-tolerant systems attempt to detect and correct latent errors before they become effec-
tive. The dependability tree for fault tolerance is shown in Figure 4-4. The two major means
for fault tolerance include error processing and fault treatment.

Error processing is aimed at removing errors, if possible, before the occurrence of a failure.
Fault treatment is aimed at preventing previously-activated faults from being re-activated.

Error processing involves detecting that the error exists, diagnosing the damage that an error
causes, and recovering from the error by substituting an error-free state for the erroneous
state. Errors can be recovered from via backward recovery, forward recovery, or compensa-
tion.

Backward recovery replaces the erroneous state with some previous state known to be error-
free (e.g., via checkpoints or recovery blocks.) Forward recovery repairs the system state by
finding a new one from which the system can continue operation. Exception handling is one
method of forward recovery. Compensation uses redundancy to mask the error and allow
transformation (perhaps via reconfiguration) to an error-free state. Compensation is achieved
by modular redundancy—independent computations are voted upon and a final result is se-

CMU/SEI-95-TR-021 21

lected by majority voting. Majority voting might be supplemented with other algorithms to mask
complex, Byzantine faults. Modular redundancy requires independence among component
failures. This is a reasonable assumption for physical faults but questionable for software de-
sign faults (e.g., N-version programming).

Fault treatment steps include fault diagnosis and fault passivation (removal and reconfigura-
tion). Fault treatment is aimed at preventing faults from being activated again.

• Fault diagnosis consists of determining the cause(s) of error(s) in terms of
both location and nature.

• Fault passivation consists of removing the component(s) identified as being
faulty from further execution. If the system is no longer capable of delivering
the same service as before, a reconfiguration may take place.

4.4.2 Fault Removal

■— Static analysis
Static I

Li Proof-of-correctness

Fault
Removal

*—Dynamic-H -_ Conformance/Fault-finding
1— Testing -J „

■ Verification
Symbolic Execution

I— Functional/Structural

r- Fault-based/Criteria-based

■Diagnosis I— Deterministic/Random

■ Correction

Figure 4-5: Fault Removal [Laprie 94]

As shown in Figure 4-5, fault removal \s composed of three steps: verification, diagnosis, and
correction. The steps are performed in that order: after it has been determined that the system
does not match its specifications through verification the problem is diagnosed and, hopefully,
corrected. The system must then be verified again to ensure that the correction succeeded.

Static verification involves checking the system without actually running it. Formal verification
[Craigen 87] is one form of static verification. Code inspections or walk-throughs [Myers 79] is
another.

Dynamic verification involves checking the system while it is executing. The most common
form of dynamic verification is testing. Exhaustive testing is typically impractical. Conformance
testing checks whether the system satisfies its specification. Fault-finding testing attempts to
locate faults in the system. Functional testing (otherwise known as blackbox testing) tests that
the system functions correctly without regard to implementation. Structural testing (otherwise
known as whitebox testing) attempts to achieve path coverage to ensure that the system is

22
CMU/SEI-95-TR-021

implemented correctly. Fault-based testing is aimed at revealing specific classes of faults. Cri-
teria-based testing attempts to satisfy a goal such as boundary value checking. Finally, the
generation of test inputs may be deterministic or random.

The above viewpoints may be combined. For example, the combination of fault-finding, struc-
tural, and fault-based testing is called mutation testing [DeMillo 78] when applied to software.

4.4.3 Fault Forecasting

Fault
Forecasting

Qualitative
forecasting

Quantitative |~ Modeling/Testing
forecasting "~|

■—■ Stable reliability / Reliability Growth

Figure 4-6: Fault Forecasting [Laprie 94]

As shown in Figure 4-6, fault forecasting can be qualitative or quantitative. Qualitative fore-
casting is aimed at identifying, classifying and ordering the failure modes, or at identifying the
event combinations leading to undesired events. Quantitative forecasting is aimed at evaluat-
ing, in probabilistic terms, some of the measures of dependability.

There are two main approaches to quantitative fault forecasting which are aimed at deriving
probabilistic estimates of the dependability of the system. These are modeling and testing.
The approaches towards modeling a system differ based on whether the system is considered
to be stable (that is, the systems level of reliability is "unchanging") or in reliability growth (that
is, the reliability of the system is improving over time as faults are discovered and removed.)

Evaluation of a system in stable reliability involves constructing a model of the system and
then processing the model. Reliability growth models [Laprie 90] are aimed at performing re-
liability predictions from data relative to past system failures.

CMU/SEI-95-TR-021 23

24 CMU/SEI-95-TR-021

5 Security

5.1 Overview

5.1.1 Context of the Security Attribute

The definition of a security attribute depends on the context in which the attribute is addressed.
Historically, there have been three main areas which have addressed security: government
and military applications; banking and finance; and academic and scientific applications. In
each of these cases, different aspects of security were stressed, and the definition of individual
security attributes depended upon the stressed security aspects.

5.1.1.1 Government and Military

For government and military applications, the disclosure of information was the primary risk
that was to be averted at all costs. To achieve this, applications and operating systems were
developed to address the separation of data and processes through hardware and software
designs that mimicked the existing system of classified documents. The standards culminated
in the Orange Book - DoD 5200.28.STD and its related interpretations (collectively known as
the Rainbow Series). These documents contained a model, architecture, and method of eval-
uation and rating for secure computing.

5.1.1.2 Banking and Fiance

In banking, finance, and business-related computing, the security emphasis is on the protec-
tion of assets. While disclosure is an important risk, the far greater risk is the unauthorized
modification of information. Protecting the integrity of information produces trust from the cus-
tomers, and thus confidence in the institution responsible for maintaining these data and pro-
cesses. Unlike the DoD, there is no single standard that addresses these concerns, and in
each case the integrity of the systems and applications are embodied in the detailed require-
ments of the systems to be developed or procured. Due to a lack of standardization in the def-
inition of these requirements, the resulting effectiveness in terms of implemented security
attributes varies widely.

5.1.1.3 Academic and Scientific

For academic and scientific computing, the main security emphasis is on protection from un-
authorized use of resources. This stems from the time when computers and computing time
was very expensive and a critical resources to research and scientific applications. This em-
phasis has led to the standards that exist in system administration and intrusion detection on
large shared networks such as the Internet.

In the following sections, the definition and taxonomy for the security attribute will be attempt-
ed in a generic context. One that would apply to any of the above situations. Where appropri-
ate, the relevant standards for each context are identified.

CMU/SEI-95-TR-021 25

5.1.2 Definition

A general definition of security is provided in Appendix F of the National Research Council's
report, "Computers at Risk":

1. Freedom from danger; safety.

2. Protection of system data against disclosure, modification, or destruction.
Protection of computer systems themselves. Safeguards can be both
technical and administrative.

3. The property that a particular security policy is enforced, with some degree of
assurance.

4. Often used in a restricted sense to signify confidentiality, particularly in the
case of multilevel security.

In the case of the security attribute, the second and third definitions apply. The main elements
of the taxonomy, then, are the protection from disclosure (confidentiality), modification (integ-
rity), and destruction (availability). Each of these elements must be addressed in the context
of an overall security policy. This security policy sets the context for how to establish require-
ments and evaluate the effectiveness of each of these general categories of security. It is se-
curity policy that distinguishes between the environments, as was specified in the introduction.

The existing models have thus far focused primarily on the security policy that stresses confi-
dentiality above all else, which leads to the fourth definition from Computers at Risk, as well
as the treatment of security in other software attribute papers such as [Rushby 94].

5.1.3 Taxonomy

Most existing security taxonomies are based on a risk analysis of a specific environment; that
risk analysis is then used as a framework to describe either the security faults or protection
mechanisms in the system. As an example, the taxonomy described in [Aslam 95] is centered
around security faults discovered in the UNIX operating system. This taxonomy decomposes
coding faults into units that cover typical mistakes during the engineering of software. The dif-
ficulty is that this type of taxonomy does little to suggest how to handle security requirements
or trade off the engineering methodologies for other quality attributes. In [Rushby 94], security
is balanced with other quality attributes, but the definition and coverage of the security attribute
is restricted to confidentiality.

To bring in other aspects of security and compare them to other quality attributes, the con-
cerns of security are broken down into the three basic categories of confidentiality, integrity,
and availability. From these concerns, the security factors at the boundary of the systems (the
interface or environment), and the internal factors can be identified. Once the concerns and
factors are identified, the current broad approaches for synthesis and analysis are identified.

26
CMU/SEI-95-TR-021

Security _

engineering

Concerns

Factors

Confidentiality

Integrity

Availability

Interface

Internal

Methods

Synthesis

Analysis

Authentication

Encryption

Auditing and Analysis

Access control

Auditing and logging

Kernelization

Process models

Security models

Secure protocols

Formal methods

Penetration analysis

Covert-channel analysis

Figure 5-1: Security Taxonomy

5.2 Concerns

The security concerns for any given environment (based on a security policy) can be catego-
rized into three basic types:

• Confidentiality is the requirement that data and processes be protected
from unauthorized disclosure.

• Integrity is the requirement that data and process be protected from
unauthorized modification.

• Availability is the requirement that data and processes be protected from
denial of service to authorized users.

CMU/SEI-95-TR-021 27

5.2.1 Confidentiality

Confidentiality is the property that data be unaccessible to unauthorized users. Usually, this
requirement is specified in terms of a security policy, which in turn places requirements on the
design and implementation of a system. For example, in a military environment it may be nec-
essary to process both secret and confidential data on a single system. The confidentiality re-
quirement, then, is that access to the secret information be restricted to only those users with
the appropriate clearance.This requirement has a strong impact on the design of the file sys-
tem, access control, process control, authentication, and administration of the resulting sys-
tem.

A fault concerning confidentiality results in the unauthorized disclosure of information or pro-
cess control.This fault can occur in the normal operation of the system by a fault in the imple-
mentation or in the interface through inadequate design specification.

The strength of confidentiality in a system is usually measured in the resources required to
disclose information in a system. For a communication system, this may be stated as the time
it would take an adversary with the resources of a foreign power to read a communication cop-
ied during transit (this measure is often used for data encryption). An internal measure of con-
fidentiality may be to restrict the bandwidth of covert channels1 to a given number of bits per
second.

5.2.2 Integrity

Integrity is the property that the data be resistant to unauthorized modification. Like confiden-
tiality, this must be in relation to a security policy that defines which data should be modified
by whom so that there is a clear definition of unauthorized modification. One example of this
is that the password file on UNIX systems should be modified only by the root user. A require-
ment associated with integrity is often specified as a file access requirement. For operating
systems or database systems, this is specified as write access to a file. In more general terms,
the integrity requirement may be used for either data or processes to specify how modifica-
tions are made to data or how control is passed to processes.

An integrity fault results in unauthorized modification or destruction of data or processes in a
system. In the case of a "trusted" system, a loss of integrity may also lead to a loss of trust in
all down-stream or dependent data or processes in a system. In this way, loss of integrity may
be propagated through the dependencies associated with the original information modified
without authorization. For example, if the underlying operating system of a financial computer
is modified, it may cause all data processed by this system to be modified without authoriza-
tion in violation of policy.

Covert channels are communication of information through data paths not explicitly specified during the de-
sign, such as locking IO devices or controlling the number of processes started.

28 CMU/SEI-95-TR-021

Integrity is usually measured by the time and resources it would take an adversary to modify
data or processes without authorization. These measures are often subjective or dependent
on the average time to guess a specific integrity checksum. When cryptographic methods are
used to guarantee the integrity of a system, the metrics are very similar to those for confiden-
tiality as described above. In addition, however, integrity measures are often associated with
mean time to failure in software systems, as these failures are equivalent to unauthorized
modification.

5.2.3 Availability

Availability is the property that the resources that should be available to authorized user actu-
ally are available. This property is closely associated with availability in other quality attribute
domains (i.e., safety and dependability), but is usually defined in terms of the amount of time
it would take an active intruder to cause a denial of service. A fault associated with availability
is a denial of service attack. Unlike the other quality attributes, a fault associated with avail-
ability in the security attribute is a denial of service caused by an adversary rather than a ran-
dom fault of hardware or software.

As in dependability, availability is usually measured proportional to mean time to failure (see
the definition in the section on Dependability). During the requirement definition or design of a
system, availability is required for security critical aspects of any given system. For example,
it is usually required that the auditing and alarm systems in a secure operating system be
available whenever it is possible to start processes on a system.

5.3 Security Factors

The factors regarding security are grouped according to whether they are associated with the
interface to a system, or are internal to the operation of a system. Both sets of factors are com-
monly known as security features.

5.3.1 Interface

The interface factors are those security features that are available for the user or between sys-
tems. The main types of interface features are

• authentication services

• encryption services

• auditing and analysis services

Authentication services are those that perform the mapping between the user's identity within
the system or application and the person or system accessing the system. This service is es-
sential for many of the concerns in security, as most of the internal security decisions rely on
correctly identifying and authenticating the user or system. There are many types of authenti-
cation, including password, bio-metric, third-party, and capability-based.

CMU/SEI-95-TR-021 29

Encryption services are data or control protection between the internal system or application
and the user accessing the interface. These may take place on a link between systems where
the isolation of the intermediate transfer mechanism cannot be assured. Encryption services
may also serve to verify the integrity of information through the interface by using cryptograph-
ically strong checksum information. Encryption services are often employed in protocols be-
tween system components or across communication links.

Auditing and analysis services are used primarily for the security administrator of a system to
detect unauthorized activities or to discover the history of some access or transaction. These
security services often serve as an alarm to alert an outside user of a policy violation detected
on some internal component.

5.3.2 Internal

Internally, security factors take a variety of design strategies. There are no generally accepted
principles for the internal security factors, but three common areas for security factors are in
the access control system, a secure kernel, and in auditing and logging.

Access control refers to all access to internal objects. These include data and processes and
access by both internal objects and external users. Data access is usually accomplished
through a file system abstraction; the types of access control depend on how objects and data
are described in the security policy. One common model for access control is the access ma-
trix (as embodied in the Bell-LaPadula model described in DoD 5200.28). Access to processes
usually centers around ownership of the process, but in some secure systems the process is
treated as a data object with the same set of access control restrictions as is provided by the
file system abstraction.

Kernelization is the abstraction of all security-related functionality to a small (and hopefully
provably secure) kernel with a strictly defined interface for the rest of the system. This is the
preferred design for DoD secure systems as it abstracts and contains all of the critical security
functionality to a small subset of the overall system.

The auditing and logging security features are often used as add-on security features to ap-
plications and operating systems that were not originally designed with strong security in mind.
These internal factors assure that any action taken internally can be logged and audited so
that in the event of a security violation the actions may be attributed to the base cause. These
features are also used in conjunction with access control and kernelization to provide tracing
ability in secure systems.

30 CMU/SEI-95-TR-021

5.4 Methods

Methods to achieve security include the following:

Synthesis—Methods used to synthesize a secure system include process models such as the
Trusted System Design Methodology (TSDM94) or the Trusted Capability Maturity Model
(TCMM95), security models such as the Mach Security Kernel, and secure protocols such as
Kerberos.

Analysis—Techniques used to analyze system security include formal method, penetration
analysis, and covert-channel analysis.

5.4.1 Synthesis

Process models. The most common technique for developing a secure computing system as
regulated by DoD 5200.28 is to use a process model that involves formal design, integration,
and testing. Two recent additions to this description are the TSDM and the TCMM.

Security models. Another method of synthesis is to modify an existing security model for de-
sign and implementation to suit another application or system. The Mach Security Kernel is a
kemelized model and reference implementation that is often used as a basis to synthesize
new systems taking into account security requirements. The reuse of other security compo-
nents such as auditing or intrusion detection tools is another method of synthesizing a com-
plex system from base components.

Secure protocols. For other distributed applications, a standard security protocol may be used
to build security functionality on existing or new applications. The Kerberos family of protocols
uses a third-party authenticating mechanism and well defined interface to address security
concerns within systems and applications.

5.4.2 Analysis

Formal Methods. For highly secure systems, formal analysis of the design and specification
of the system is used to verify that the design of the system meets the requirements and spec-
ification of the security policy.

Penetration Analysis. For most systems that address security, penetration analysis is per-
formed during the testing phases of the system. This employs standard attack scenarios to
determine if the system is resilient to these attacks. This analysis has the drawback of not ad-
dressing attacks unknown at the time of the test.

Covert-Channel Analysis. Covert-channel analysis is usually performed on multi-level secure
systems as specified in DoD 5200.28 to determine the bandwidth of any secondary data chan-
nel that is identified in the system.

CMU/SEI-95-TR-021 ^

32 CMU/SEI-95-TR-021

6 Safety

6.1 Overview

6.1.1 Definition

As previously stated, dependability is that property of a computer system such that reliance
can justifiably be placed in the service it delivers [Laprie 94].

Paraphrasing this definition, we can define safety as that property of a computer system such
that reliance can justifiably be placed in the absence of accidents.

• Dependability is concerned with the occurrence of failures, defined in terms
of internal consequences (services are not provided).

• Safety is concerned with the occurrence of accidents or mishaps, defined in
terms of external consequences (accidents happen).

The difference of intents—"good things (services) must happen" vs. "bad things (accidents)
must not happen"—gives rise to the following paradox: If the services are specified incorrectly,
a system can be dependable but unsafe; conversely, it is possible for a system to be safe but
undependable.

• A system might be dependable but unsafe — for example, an avionics
systems that continues to operate under adverse conditions yet directs the
aircraft into a collision course.

• A system might be safe but undependable — for example, a railroad
signaling system that always fails-stops.

6.1.2 Taxonomy

The taxonomy for the safety attributes defines conditions of the system (hazards) that might
lead to undesirable consequences (mishaps); methods normally used to identify hazards,
evaluate the consequences of a hazard, and eliminate or reduce the possibility of mishaps;
and indicators of safety in the aggregate (system, environment, users and operators).

6.2 Concerns

Perrow [Perrow 84] identifies two properties of critical systems that can serve as indicators of
system safety: interaction complexity and coupling strength.

6.2.1 Interaction Complexity

Interaction complexity ranges from linear to complex and is the extent to which the behavior
of one component can affect the behavior of other components. Linear interactions are those
in expected and familiar production or maintenance sequence, and those that are quite visible

CMU/SEI-95-TR-021 33

Safety

engineering

Concerns

Factors

-C
-C

Methods

Interaction complexity

Coupling strength

Hazard

Mishap

Hazard
identification

Hazard
analysis

Brainstorming

Consensus building

Hazard and Operability
Analysis (HAZOP)

Fault Tree Analysis (FTA)

Event Tree Analysis (ETA)

Failure Modes and
Effects Analysis (FMEA)

Implementation
methodologies

Implementation
mechanisms

-E
-E

Formal methods

Transformations

Version management

Lockins

Lockouts

Interlocks

Figure 6-1: Safety Taxonomy

even if unplanned. Complex interactions are those of unfamiliar sequences, or unplanned
and unexpected sequences, and either not visible or not immediately comprehensible. [Per-
row 84, Table 3.1] suggests the following indicators of interaction complexity:

Indicators of complex interactions include

• proximity—physical (components) or logical (steps)

• common-mode connections

• interconnected subsystems

34
CMU/SEI-95-TR-021

• limited isolation or substitution of failed components

• unfamiliar or unintended feedback loops

• multiple and interacting control parameters

• indirect or inferential information sources

• limited understanding of some processes

Indicators of linear interactions include

• segregation between components or steps

• dedicated connections

• segregated subsystems

• easy isolation and substitutions

• few feedback loops

• single purpose, segregated controls

• direct, on-line information

• extensive understanding

6.2.2 Coupling Strength

Coupling strength ranges from loose coupling to tight coupling and is the extent to which
there is flexibility in the system to allow for unplanned events. Tightly coupled systems have
more time-dependent processes: they cannot wait or stand by until attended to; the sequences
are more invariant and the overall design allows for very limited alternatives in the way to do
the job; they have "unifinality"—one unique way to reach the goal. Loosely coupled process-
es can be delayed or put in standby; sequences can be modified and the system restructured
to do different jobs or the same job in different ways; they have "equifinality"—many ways to
reach the goal. [Perrow 84, Table 3.2] suggests the following indicators of coupling strength:

Indicators of tight coupling include

• delays in process not possible

• invariant sequences

• only one method to achieve goal

• little slack [in resources] possible

• buffers and redundancies are designed-in, deliberate

• substitutions [of resources] limited and designed-in

Indicators of loose coupling include

• processing delays possible

• order of sequences can be changed

• alternative methods available

CMU/SEI-95-TR-021 35

• slack in resources possible

• buffers and redundancies fortuitously available

• substitutions fortuitously available

6.2.3 Advantages and Disadvantages

There are advantages and disadvantages of the extremes of interaction and coupling [Rushby
93].

Complex interactions can be undesirable because interactions and their consequences can
be hard to understand, predict, or even enumerate. In general, hazard analysis demands few
linear and known interactions to facilitate analysis.

Tight coupling can be undesirable because the system can be hard to adapt to changing sit-
uations. Safety mechanisms demand loose coupling to prevent cascading of failures and to
allow reconfigurations and intervention by operators.

Nevertheless, complex interactions and tight coupling are often desirable to promote perfor-
mance (shared address space), dependability (N-modular redundancy, transactions), or se-
curity (authentication protocols, firewalls).

Finally, the degree of interaction and coupling could be inherent to the application or problem
domain. Smarter design or experience might reduce them, but often we do not have many
choices.

6.3 Factors

Hazards are conditions (i.e., state of the controlled system) that can lead to a mishap.

Mishaps are unplanned events that result in death, injury, illness, damage or loss of property,
or harm to the environment.

The occurrence or non-occurrence of a mishap may depend on conditions beyond the control
of the system thus, in safety engineering, attention is focused on preventing hazards rather
that preventing mishaps directly.

6.4 Methods

The safety engineering approach consists of

• hazard identification and analysis processes

• implementation methodologies and mechanisms

Hazard identification and hazard analysis are performed at several different stages of the de-
sign lifecycle (e.g., preliminary, subsystem, system, operational hazard analysis).

36 CMU/SEI-95-TR-021

The objective of the implementation methodologies and mechanisms is to avoid the introduc-
tion of errors during the development process or to detect and correct errors during operation.

Notions from system safety engineering can be applied to software — the basic idea is to fo-
cus on consequences that must be avoided rather than on the requirements of the system it-
self. Techniques proposed to conduct hazard identification and analysis in software-intensive
systems are derived from well-known techniques used in industry (e.g., chemical process).
However, software-specific hazard identification and analysis techniques are not well estab-
lished and lack adequate integrated tools.

6.4.1 Hazard Identification

Hazard identification attempts to develop a list of possible system hazards before the system
is built. This can be expensive and time consuming and must be performed by application do-

main experts.

• Brainstorming—experts generate list of possible system hazards until some
threshold (e.g., time to identify new hazards) is reached.

• Consensus techniques — facilitated iteration among experts with specific
responsibilities and well defined goals. Example techniques are Delphi and
Joint Application Design.

• Hazard and Operability Analysis (HAZOP) — evaluates a representation
of a system and its operational procedures to determine if humans or
environment will be exposed to hazards and the possible measures that
might be employed to prevent the mishap. The procedure is to search the
representation, element by element, for every conceivable deviation from its
normal operation, followed by group discussions of causes and
consequences.

6.4.2 Hazard Analysis

Following the identification of a hazard, the hazard analysis process consists of the following
risk mitigation steps:

1. Categorize hazard on a scale from catastrophic to negligible. Catastrophic
hazards have the potential to lead to extremely serious consequences. Neg-
ligible hazards have no significant consequences.

2. Determine how or whether that hazard might arise using backward reasoning
from the hazard (what could possibly cause this situation?) or forward
reasoning from the hypothesized failure (what could happen if this failure
occurs?)

3. Remove hazards with unacceptable risk through re-specification, redesign,
incorporating safety features or warning devices, or instituting special
operating and training procedures.

Common techniques for hazard analysis include Fault Tree Analysis (FTA), Event Tree
Analysis (ETA) and Failure Modes and Effects Analysis (FMEA).

CMU/SEI-95-TR-021 37

Fault Tree Analysis (FTA) is a technique that was first applied in the 1960s to minimize the risk
of inadvertent launch of a Minuteman missile. The hazard to be analyzed is the root of the tree.

• Necessary preconditions for the hazard are describing at the next level in the
tree, using AND or OR relationships to link subnodes

• Subnodes are expanded in similar fashion until all nodes describe events of
calculable probability or are incapable of further analysis for some reason.

Software Fault Tree Analysis (SFTA) is an adaptation to software of a safety engineering
analysis methodology. The goal of SFTA is to show that the logic contained in the software
design will not cause mishaps, and to determine conditions that could lead to the software con-
tributing to a mishap. The process is as follows:

1. Use hazard analysis to identify a possible condition for a mishap.

2. Assume that software has caused the condition.

3. Work backwards to determine the set of possible causes (including
environment, hardware, and operator) for the condition to occur.

SFTA differs from conventional software inspection techniques in that it forces the analysis to
examine the program from a different perspective than that used in development.

Event Tree Analysis (ETA) reverses the order followed in FTA. Starting with some initiating
(desirable or undesirable) event, a tree is developed showing all possible (desirable and un-
desirable) consequences. This technique requires judicious selection of the initiating events
to keep the cost and time required for within reason.

Failure Modes and Effects Analysis (FMEA) attempts to anticipate potential failures so that the
sources of these failures can be eliminated.

An FMEA table identifies, for each component failure

• the frequency of occurrence (rare to common)

• the severity of the effect (minor to very serious)

• the chances of detection before deployment (certain to impossible)

The product of all three elements is a "risk priority number" which can be used to determine
how effort should be spent during development.

FMEA uses both Event Tree Analysis (to determine the effects of a component failure) and
Fault Tree Analysis (to determine the cause of a component failure) iteratively.

Frequency of occurrence, severity of failure, and chances of detection are simple integer val-
ues (e.g., 1 to 10) and are assigned based on knowledge and experience of the developers.

An extension of FMEA is Failure Modes, Effects, and Criticality Analysis (FMECA)—it uses a
more formal criticality analysis to rank the results than just the result of multiplying the three
factors.

38
CMU/SEI-95-TR-021

6.4.3 Implementation Methodologies

The objective is to avoid introducing errors during the development process and, if unavoid-
able, detect and correct them during operation.

Different implementation methodologies are applicable during the development phases.

Requirements — Specification, analysis and validation using notations with various degrees
of formality (e.g., Petri-nets, state machines, Statecharts). Requirements expressed in natural
languages are often ambiguous or incomplete. The first step must be to represent the require-
ments in a notation that is not ambiguous and can be analyzed, that is, generate a specifica-
tion of the behavior of the system (and validate it with the customer!).

• The specification must be analyzed for inconsistencies and incompleteness,
although the latter depends on the expertise of the analysts rather than the
specification technique used.

• Some specifications can be "executed" and the behavior of the system can
thus be simulated; other specifications can be validated through symbolic
execution to predict behavior given some initial state and a set of inputs

Design — Using formal methods—i.e., a formal design notation—and proving that it satisfies
the specification or derive the design by transformation of the specification. There are a num-
ber of design notations; however, errors can be introduced that can only be detected by com-
paring to the specification. This proof can be hard, and the use of two different notations
makes tracing requirements to design more difficult.

Implementation — Strict version management to retain confidence that the source code that
is analyzed is the code used to build the system and formally verified source code translators
(and hardware). Successive transformations of the specification reduces the introduction of
errors but there are now many more representations of the system—making the requirements
tracking even more difficult.

6.4.4 Implementation Mechanisms

Traditional implementation mechanisms employed in safety-engineering include

• lockins — lock the system into safe states

• lockouts — lock the system out of hazardous states

• interlocks — prescribe or disallow specific sequences of events

There are software analogs to these mechanisms but they must be implemented carefully —
a "design for safety" must keep the system always in a safe state, even if the service is not
available (i.e., the system is "unreliable").

CMU/SEI-95-TR-021 39

For example, monitoring a set of variables that must be between certain limits for safe opera-
tion. The naive approach might declare the variables to be "OK" by default and then do a linear
scan to see if one of them is off-bounds in order to trigger a safety shutdown. If the scan is
interrupted or stalled, certain variables that should be tripped might not be examined, and the
safety shutdown might not occur when it should.

40 CMU/SEI-95-TR-021

7 Relationships Between Attributes

Each of the attributes examined has evolved within its own community. This has resulted in
inconsistencies between the various points of view.

7.1 Dependability Vis-a-vis Safety

The dependability tradition tries to capture all system properties (e.g., security, safety) in terms
of dependability concerns—i.e., defining failure as "not meeting requirements." It can be ar-
gued that this is too narrow because requirements could be wrong or incomplete and might
well be the source of undesired consequences. A system could allow breaches in security or
safety and still be called "dependable."

The safety engineering approach explicitly considers the system context. This is important be-
cause software considered on its own might not reveal the potential for mishaps or accidents.
For example, a particular software error may cause a mishap or accident only if there is a si-
multaneous human and/or hardware failure. Alternatively, it may require an environment fail-
ure to cause the software fault to manifest itself.

For example [Rushby 93], a mishap in an air traffic control system is a mid-air collision. A mid-
air collision depends on a number of factors:

• the planes must be too close

• the pilots are unaware of that fact or

• the pilots are aware but

• fail to take effective evading action

• are unable to take effective evading action

• etc.

The air traffic control system cannot be responsible for the state of alertness or skill of the pi-
lots; all it can do is attempt to ensure that the planes do not get too close together in the first
place.

Thus, the hazard (i.e., erroneous system state that leads to an accident) that must be con-
trolled by the air traffic control system is, say, "planes getting closer than two miles horizontal-
ly, or 1,000 feet vertically of each other."

7.2 Precedence of Approaches

Safe software is always secure and reliable — Neumann [Neumann 86] presents a hierarchy
of reliability, safety, and security. Security depends on reliability (an attribute of dependability)
and safety depends on security, hence, also reliability.

CMU/SEI-95-TR-021 41

• A secure system might need to be reliable because a failure might
compromise the system's security (e.g., assumptions about atomicity of
actions might be violated when a component fails).

• The safety critical components of a system need to be secure to prevent
accidental or intentional alteration of code or data that were analyzed and
shown to be safe.

• Finally, safety depends on reliability when the system requires the software
to be operational to prevent mishaps.

Enhancing reliability is desirable, and perhaps necessary, but it is not sufficient to ensure safe-
ty. As noted in [Rushby 93], the relationships are more complex than a strict hierarchy:

• Fault tolerant-techniques can detect security violations — Virus detected
through N-version programming, intrusions detected automatically as latent
errors, and denial detected as omission or crash failures.

• Fault containment can enhance safety by ensuring that the consequences of
a fault do not spread and contaminate other components of a system.

• Security techniques can provide fault containment through memory
protection, control of communications, and process walls.

• A security kernel can enforce safety using runtime lockin mechanisms for
"secure" states and interlocks to enforce some order of activities.
Kernelization and system interlocks are primarily mechanisms for avoiding
certain kinds of failure and do very little to ensure normal service.

• A kernel can achieve influence over higher levels of the system only
through the facilities it does not provide — if a kernel provides no
mechanism for achieving certain behaviors, and if no other mechanisms
are available, then no layers above the kernel can achieve those
behaviors.

• The kinds of behaviors that can be controlled in this way are primarily
those concerning communication, or the lack thereof. Thus, kernelization
can be used to ensure that certain processes are isolated from each
other, or that only certain inter-process communication paths are
available, or that certain sequencing constraints are satisfied.

• Kernelization can be effective in avoiding certain faults of commission
(doing what is not allowed) but not faults of omission (failing to do what is
required)—that is, a security kernel cannot ensure that the processes
correctly perform the tasks required of them.

7.3 Applicability of Approaches

The methods and mind set associated with each of the attributes examined in this report have
evolved from separate schools of thought. Yet there appear to be common underpinnings that
can serve as a basis for a more unified approach for designing critical systems. For example:

42
CMU/SEI-95-TR-021

• Safety and dependability are concerned with detecting error states (errors in
dependability and hazards in safety) and preventing error states from
causing undesirable behavior (failures in dependability and mishaps in
safety).

• Security and performance are concerned with resource management
(protection of resources in security and timely use of resources in
performance.)

The previous section offered examples of the applicability of methods usually associated with
one attribute to other attributes.

The applicability of methods developed for one attribute to another attribute suggests that dif-
ferences between attributes might be as much a matter of sociology as technology. Neverthe-
less, there are circumstances for which an attribute-specific mind set might be appropriate.
Examples include the following:

• The dependability approach is more attractive in circumstances for which
there is no safe alternative to normal service—a service must be provided
(e.g., air traffic control).

• The safety approach is more attractive where there are specific undesired
events — an accident must be prevented (e.g., nuclear power plant).

• The security approach is more attractive when dealing with faults of
commission rather than omission — service mustnotbe denied, information
must not be disclosed.

This is not to suggest that other attributes could be ignored. Regardless of what approach is
chosen, we still need a coordinated methodology to look at all of these attributes together, in
the context of a specific design. In the next chapter we sketch a plan of activities that would
lead to an attribute-based methodology for evaluating the design of an artifact—more specif-
ically, for evaluating a software architecture with respect to these attributes.

CMU/SEI-95-TR-021 43

44 CMU/SEI-95-TR-021

8 Quality Attributes and Software Architecture

A (software) system architecture must describe the system's components, their connections
and their interactions, and the nature of the interactions between the system and its environ-
ment. Evaluating a system design before it is built is good engineering practice. A technique
that allows the assessment of a candidate architecture before the system is built has great val-
ue.

The architecture should include the factors of interest for each attribute. Factors shared by
more than one attribute highlight properties of the architecture that influence multiple attribute
concerns and provide the basis for trade-offs between the attributes. A mature software engi-
neering practice would allow a designer to predict these concerns through changes to the fac-
tors found in the architecture, before the system is built.

We intend to continue our work by exploring the relationships between quality attributes and
software architectures. All the attributes examined in this report seem to share classes of fac-
tors. There are events (generated internally or coming from the environment) to which the sys-
tem responds by changing its state. These state changes have future effects on the behavior
of the system (causing internal events or responses to the environment). The "environment"
of a system is an enclosing "system," and this definition applies recursively, up and down the
hierarchy. For example varying arrival patterns (events) cause system overload (state) that
lead to jitter (event); faults (events) cause errors (state) that lead to failure (events); hazards
(events) cause safety errors that lead to mishaps (events); intrusions (events) cause security
errors that lead to security breaches (events). Additional classes of factors to consider include
the policies and mechanisms used for process creation, allocation, address space sharing,
connection, communication method, interaction style, synchronization, and composition of ac-
tions.

Architecture patterns are the building blocks of a software architecture. Examples of patterns
include pipes-and-filters, clients-and-servers, token rings, blackboards, etc. The architecture
of a complex systems is likely to include instances of more than one of these patterns, com-
posed in arbitrary ways. Collections of architecture patterns should be evaluated in terms of
quality factors and concerns, in anticipation of their use. That is, it is conceivable that archi-
tecture patterns could be "pre-scored" to gain a sense of their relative suitability to meet quality
requirements should they be used in a system.

In addition to evaluating individual patterns, it is necessary to evaluate compositions of pat-
terns that might be used in an architecture. Identifying patterns that do not "compose" well (i.e.,
the result is difficult to analyze or the quality factors of the result are in conflict with each other)
should steer a designer away from "difficult" architectures, towards architectures made of well
behaved compositions of patterns.

CMU/SEI-95-TR-021 45

In the end, it is likely that we will need both quantitative and qualitative techniques for evalu-
ating patterns and architectures. Promising quantitative techniques include the various mod-
eling and analysis techniques, including formal methods mentioned in this report. An example
of a qualitative technique is being demonstrated in a related effort at the SEI. The Software
Architecture Analysis Method (SAAM) [Clements 95, Kazman 95] illustrates software architec-
ture evaluations using "scenarios" (postulated set of uses or transformations of the system).
Scenarios are rough, qualitative evaluations of an architecture; scenarios are necessary but
not sufficient to predict and control quality attributes and have to be supplemented with other
evaluation techniques (e.g., queuing models, schedulability analysis). Architecture evalua-
tions using scenarios should be enriched by including questions about quality indicators in the
scenarios.

46 CMU/SEI-95-TR-021

Appendix A Glossary

accidental faults — faults created by chance.

active fault — a fault which has produced an error.

aperiodic — an arrival pattern that occurs repeatedly at irregular time intervals. The frequency
of arrival can be bounded by a minimum separation (also known as sporadic) or can be com-
pletely random.

attribute specific factors — properties of the system (such as policies and mechanisms built
into the system) and its environment that have an impact on the concerns

availability — a measure of a system's readiness for use.

benign failure — a failure that has no bad consequences on the environment.

Byzantine failure — a failure in which system users have differing perceptions of the failure.

capacity — a measure of the amount of work a system can perform.

catastrophic failure — a failure that has bad consequences on the environment it operates
in.

complex interactions — those of unfamiliar sequences, or unplanned and unexpected se-
quences, and either not visible or not immediately comprehensible.

component coupling — the extent to which there is flexibility in the system to allow for un-
planned events. Component coupling ranges from tight (q.v.) to loose (q.v.)

confidentiality — the non-occurrence of the unauthorized disclosure of information.

consistent failure — a failure in which all system users have the same perception of the fail-
ure.

criticality — the importance of the function to the system.

dependability — that property of a computer system such that reliance can justifiably be
placed on the service it delivers.

dependability impairments — the aspects of the system that contribute to dependability.

dormant fault — a fault that has not yet produced an error.

error — a system state that is liable to lead to a failure if not corrected.

event — a stimulus to the system signaling the need for the service.

CMU/SEI-95-TR-021 47

event stream — a sequence of events from the same source—for example, a sequence of
interrupts from a given sensor.

Event Tree Analysis (ETA) — a technique similar to Fault Tree Analysis. Starting with some
initiating (desirable or undesirable) event, a tree is developed showing all possible (desirable
and undesirable) consequences.

fail-safe — a system which can only fail in a benign manner.

fail-silent — a system which no longer generates any outputs.

fail-stop — a system whose failures can all be made into halting failures.

failure — the behavior of a system differing from that which was intended.

Failure Modes and Effects Analysis (FMEA) — a technique similar to Event Tree Analysis
(ETA). Starting with potential component failures, identifying its consequences, and assigning
a "risk priority number" which can be used to determine how effort should be spent during de-
velopment.

Failure Modes, Effects, and Criticality Analysis (FMECA) — an extension of Failure Modes
Effects Analysis (FMEA) that uses a more formal criticality analysis.

fault — the adjudged or hypothesized cause of an error.

fault avoidance — see fault prevention.

fault forecasting — techniques for predicting the reliability of a system over time.

fault prevention — design and management practices which have the effect of reducing the
number of faults that arise in a system.

fault removal — techniques (e.g., testing) involving the diagnosis and removal of faults in a
fielded system.

fault tolerance — runtime measures to deal with the inevitable faults that will appear in a sys-
tem.

Fault Tree Analysis (FTA) —a technique to identify possible causes of a hazard. The hazard
to be analyzed is the root of the tree and each necessary preconditions for the hazard or con-
dition above are described at the next level in the tree, using AND or OR relationships to link
subnodes, recursively

halting failure — a special case of timing failure wherein the system no longer delivers any
service to the user.

hazard — a condition (i.e., state of the controlled system) that can lead to a mishap.

48
CMU/SEI-95-TR-021

Hazard and Operability Analysis (HAZOP) — evaluates a representation of a system and
its operational procedures to determine possible deviations from design intent, their causes,
and their effects.

human-made faults — those resulting from human imperfection.

impairments to dependability — those aspects of the system that contribute to how the sys-
tem (mis)behaves from a dependability point of view.

inconsistent failure — see Byzantine failure.

integrity — the non-occurrence of the improper alteration of information.

intentional faults — faults created deliberately, with or without malicious intent.

interaction complexity — the extent to which the behavior of one component can affect the
behavior of other components. Interaction complexity ranges from linear (q.v.) to complex
(q.v.).

interlocks — implementation techniques that prescribe or disallow specific sequences of
events.

intermittent faults — a temporary fault resulting from an internal fault.

internal faults — those which are part of the internal state of the system.

jitter — the variation in the time a computed result is output to the external environment from
cycle to cycle

latency — the length of time it takes to respond to an event.

latency requirement — time interval during which the response to an event must be execut-
ed.

latent error — an error which as not yet been detected.

linear interactions — interactions that are in expected and familiar production or mainte-
nance sequence, and those that are quite visible even if unplanned.

lockins — implementation techniques that lock the system into safe states.

lockouts — implementation techniques that lock the system out of hazardous states

loose coupling — characterizes systems in which processes can be delayed or put in stand-
by; sequences can be modified and the system restructured to do different jobs or the same
job in different ways; they have "equifinality"—many ways to reach the goal.

maintainability — the aptitude of a system to undergo repair and evolution.

CMU/SEI-95-TR-021 49

methods — how concerns are addressed: analysis and synthesis processes during the de-
velopment of the system, procedures and training for users and operators.

mishaps — unplanned events that result in death, injury, illness, damage or loss of property,
or environment harm.

mode — state of a system characterized by the state of the demand being placed on the sys-
tem and the configuration of resources used to satisfy the demand.

observation interval — time interval over which a system is observed in order to compute
measures such as throughput.

performance — responsiveness of the system—either the time required to respond to specif-
ic events or the number of events processed in a given interval of time.

performance concerns — the parameters by which the attributes of a system are judged,
specified, and measured.

performance factors — the aspects of the system that contribute to performance.

periodic — an arrival pattern that occurs repeatedly at regular intervals of time.

permanent fault — a fault which, once it appears, is always there.

physical faults — a fault that occurs because of adverse physical phenomena.

precedence requirement — a specification for a partial or total ordering of event responses.

processing rate — number of event response processed per unit time.

quality — the degree to which software possesses a desired combination of attributes (e.g.,
reliability, interoperability) [IEEE 1061].

reliability — a measure of the rate of failure in the system that renders the system unusable.
A measure of the ability of a system to keep operating over time.

response — the computation work performed by the system as a consequence of an event.

response window — a period of time during which the response to an event must execute;
defined by a starting time and ending time.

safety — a measure of the absence of unsafe software conditions. The absence of cata-
strophic consequences to the environment.

safety indicators — the aspects of the system that contribute to safety.

schedulable utilization — the maximum utilization achievable by a system while still meeting
timing requirements.

50
CMU/SEI-95-TR-021

security factors — the aspects of the system that contribute to security.

service — a system's behavior as it is perceived by its user(s).

Software Fault Tree Analysis (SFTA) — an adaptation to software of a safety engineering
analysis methodology. The goal of SFTA is to show that the logic contained in the software
design will not cause mishaps, and to determine conditions that could lead to the software con-
tributing to a mishap.

spare capacity — a measure of the unused capacity.

temporary fault — a fault which disappears over time.

throughput — the number of events responses that have been completed over a given ob-
servation interval.

tight coupling — characterizes systems that have more time-dependent processes: they
cannot wait or stand by until attended to; the sequences are more invariant and the overall
design allows for very limited alternatives in the way to do the job; they have "unifinality"—one
unique way to reach the goal.

timing failure — a service delivered too early or too late.

transient fault — a temporary fault arising from the physical environment.

user of a system — another system physical or human which interacts with the former.

utilization — the percentage of time a resource is busy.

value failure — the improper computation of a value.

CMU/SEI-95-TR-021 51

5? " " " " — -
CMU/SEI-95-TR-021

Bibliography

Anderson 85 Anderson, T. Ch. 1, "Fault Tolerant Computing." Resilient Computing Sys-
tems, London: Collins Professional and Technical Books, 1985.

Andrew 91 Andrews, G.R. "Paradigms for Process Interaction in Distributed Pro-
grams." ACM Computing Surveys 23, 1 (March 1991): 49-90.

Aslam 95 Aslam, T. A Taxonomy of Security Faults in the UNIX Operating System
(Master's Thesis). West Lafayette, In: Purdue University, Department of
Computer Science, 1985.

Audsley 95 Audsley, N. C. et al. "Fixed Priority Pre-Emptive Scheduling: An Historical
Perspective." Real-Time Systems 8, 2-3 (March-May 1995): 173-198.

Avizienis 86 Avizienis, A. and Laprie, J.C. "Dependable Computing: From Concepts to
Design Diversity." Proceedings of the IEEE 74, 5 (May 1986): 629-638.

Bacon 93 Bacon, Jean. Concurrent Systems—An Integrated Approach to Operating
Systems, Database, and Distributed Systems. Reading, Ma.: Addison-
Wesley, 1993.

Barbacci 93 Barbacci, M.R.; Weinstock, C.B.; Doubleday, D.L.; Gardner, M.J.; and Li-
chota, R.W. "Durra: A Structure Description Language for Developing Dis-
tributed Applications." Software Engineering Journal 8, 2 (March 1993):
83-94.

Bell 71 Bell, CG. and Newell, A. Computer Structures: Readings and Examples.
New York: McGraw-Hill, 1971.

Bell 76 Bell, D.E. and La Padula, L.J. Secure Computer Systems: Unified Expo-
sition andMultics Interpretation (Technical Report ESD-TR-75-306). Bed-
ford, Ma.: MITRE Corporation, 1976.

Bishop 91 Bishop, R. and Lehman, M. "A View of Software Quality," 1/1 -3. IEEE Col-
loquium on Designing Quality into Software Based Systems, London, UK,
October 14,1991. London: IEEE, 1991.

Boehm 78 Boehm, B. et al. Characteristics of Software Quality. New York: American
Elsevier, 1978.

Boehm 88 Boehm, B. "A Spiral Model of Software Development and Enhancement."
Computer 21, 5 (May 1988): 61-75.

Butler 93 Butler R.W. and Finelli, G.B. "The Infeasibility of Quantifying the Reliability
of Life-Critical Real-Time Software." IEEE Transactions on Software En-
gineering 19,1 (January 1993): 3-13

CMU/SEI-95-TR-021 53

Christian 91

Clapp 92

Clements 95

Christian, F. "Understanding Fault-Tolerant Distributed Systems." Com-
munications of the ACM 34, 2 (February 1991): 56-78.

Clapp, J.A. and Stanten, S.F. A Guide to Total Software Quality Control,
Technical (Technical Report RL-TR-92-316). Bedford, Ma.: MITRE Cor-
poration, 1992.

Clements, P., Bass, L, Kazman, R., Abowd, G. "Predicting Software
Quality by Architecture-Level Evaluation," 485-497. Proceedings of the
5th International Conference on Software Quality, Austin, Texas, October
23-26,1995. Milwaukee, WL: American Society for Quality Control, 1995.

Conway, R. W., Maxwell, W. L, and Miller, L. W. Theory of Scheduling.
Reading, Ma.: Addison Wesley Publishing Company, 1967.

Hennel, M.A. "Testing for the Achievement of Software Reliability." Soft-
ware Reliability and Safety, B. Littlewood and D. Miller (eds.). New York:
Elsevier Applied Science, 1991.

IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering
Terminology. New York: Institute of Electrical and Electronics Engineers
1990.

IEEE Standard 1061-1992. Standard for a Software Quality Metrics Meth-
odology. New York: Institute of Electrical and Electronics Engineers
1992.

International Organization for Standardization. Information Technology -
Software Product Evaluation - Quality Characteristics And Guidelines For
Their Use. Geneve, Switzerland: International Organization For Standard-
ization, 1991.

Heimerdinger 92 Heimerdinger, W. L. A Conceptual Framework for System Fault Tolerance
(CMU/SEI-92-TR-33, ADA264375). Pittsburgh, Pa.: Software Engineer-
ing Institute, Carnegie Mellon University, 1992.

Jahanian, F. and Mok, A. "Safety Analysis of Timing Properties in Real-
Time Systems." IEEE Transactions on Software Engineering 12, 9 (Sep-
tember 1986): 890-904

Conway 67

Hennel 91

IEEE-610.12

IEEE-1061

ISO-9126

Jahanian 86

Jain 91

Kazman 95

Jain, R. The Art of Computer Systems Performance Analysis. New York-
Wiley, 1991.

Kazman, R., Bass, L, Abowd, G., and Clements, P. "An Architectural
Analysis Case Study: Internet Information Systems," 148-165. Proceed-
ings of the 1st International Workshop on Architectures for Software Sys-
tems, Seattle, Washington, April, 1995 (Technical Report CMU-CS-95-
151). Pittsburgh, Pa.: School of Computer Science, Carnegie Mellon Uni-
versity, 1995.

54
CMU/SEI-95-TR-021

Klein 93

Laprie 92

Lazowska 84

Lehoczky 94

Leveson 83

Leveson 86

Leveson 95

Littlewood 90

Locke 92

MOD 91

Musa 90

Neumann 86

Perrow 84

Klein, M.H., Ralya, T., Pollack, B., Obenza, R. and Harbour, Michael
Gonzalez. A Practitioners' Handbook for Real-Time Analysis: Guide to
Rate Monotonie Analysis for Real-Time Systems. Boston: Kluwer Aca-
demic Publishers, 1993.

Dependable Computing and Fault-Tolerant Systems. Vol. 5, Dependabil-
ity: Basic Concepts and Terminology in English, French, German, Italian,
and Japanese. Laprie, J.C. (ed.). New York: Springer-Verlag, 1992.

Lazowska, E. D, Zahorjan, J., Graham, G. S., and Sevik, K. C. Quantita-
tive System Performance: Computer System Analysis Using Queuing
Network Models. Englewood Cliffs, N.J.: Prentice-Hall, 1984

Lehoczky, J.P. "Real-Time Resource Management Techniques," 1011-
1020. Encyclopedia of Software Engineering, Marciniak, J.J (ed.). New
York: J. Wiley, 1994.

Leveson, N.G. and Harvey, P.R. "Software Fault Tree Analysis." Journal
of Systems and Software 3, 2 (June 1983): 173-181.

Leveson, N.G. "Software Safety: Why, What, and How." ACM Computing
Surveys 18, 2 (June 1986): 125-163.

Leveson, Nancy G. Safeware: System Safety and Computers. Reading,
Ma.: Addison-Wesley, 1995.

Littlewood, B. Ch.6, "Modelling Growth in Software Reliability." Software
Reliability Handbook, Paul Rook (ed.). New York: Elsevier Applied Sci-
ence, 1990.

Locke, CD. "Software Architecture for Hard Real-Time Applications: Cy-
clic Executives vs. Fixed Priority Executives." The Journal of Real-Time
Systems 4, 1 (March 1992): 37-53.

UK Ministry of Defence, Interim Defense Standard 00-56: Hazard Analysis
and Safety Classification of the Computer and Programmable Electronic
System Elements of Defence Equipment, April 1991.

Musa, J.; lannino, A.; and Okumoto, K. Software Reliability: Measure-
ments, Prediction, Application. New York: McGraw-Hill, 1990.

Neumann, P.G. "On Hierarchical Design of Computer Systems for Critical
Applications." IEEE Transactions on Software Engineering 12,9 (Septem-
ber 1986): 905-920.

Perrow, C. Normal Accidents: Living with High Risk Technologies, Basic
Books, New York: 1984.

CMU/SEI-95-TR-021 55

Picciotto 92

Place 93

Rushby 93

Schlichting 83

Sha90

Smith 90

Smith 93

Stankovic 88

Stankovic 94

Stankovic 95

Stotts 88

Trivedi 82

J. Picciotto and J. Epstein. "A Comparison of Trusted X Security Policies,
Architectures, and Interoperability," 142-152. Proceedings. Eighth Annual
Computer Security Applications Conference, San Antonio, Texas,
Nov. 30-Dec 4, 1992. Los Alamitos, Ca.: IEEE Computer Society Press,
1992.

Place, P.R.H. and Kang, K.C. Safety-Critical Software: Status Report and
Annotated Bibliography (CMU/SEI-92-TR-5, ADA266993). Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon University, 1993.

Rushby, J. Critical System Properties: Survey and Taxonomy (Technical
Report CSL-93-01). Menlo Park, Ca.: Computer Science Laboratory, SRI
International, 1993.

Schlichting, R.D. and Schneider, F.B. "Fail-Stop Processors: An Approach
to Designing Fault-Tolerant Computing Systems." ACM Transactions on
Computing Systems 1, 3 (Aug. 1983): 222-238.

Sha, L. and Goodenough, J. B. Real-Time Scheduling Theory and Ada,
IEEE Computer 23, 4 (April 1990), 53-62.

Smith, C. U. Performance Engineering of Software Systems. Reading,
Ma.: Addison-Wesley, 1990.

Smith, C. U. and Williams, L. G. "Software Performance Engineering: A
Case Study Including Performance Comparison with Design Alterna-
tives." IEEE Transactions on Software Engineering 19, 7 (July 1993).

Stankovic, J. A. "Misconceptions About Real-Time Computing: A Serious
Problem for Next-Generation Systems." IEEE Computer 21, 10 (Oct.
1988): 10-19.

Stankovic, J. A. "Real-Time Operating Systems." pp. 1009-1010, Encyclo-
pedia of Software Engineering, Marciniak, J.J. (ed.). New York: J. Wiley
1994.

Stankovic, J.A., et al. "Implications of Classical Scheduling Results for
Real-Time Systems." IEEE Computer 28, 6 (June 1995): 16-25.

Stotts, P. David. Chapter 18, "A Comparative Survey of Concurrent Pro-
gramming Languages," 419-435. Concurrent Programming, Gehani and
McGettrick (eds.) Reading, Ma.: Addison-Wesley, 1988.

Trivedi, K. S. Probability and Statistics with Reliability, Queuing, and Com-
puter Science Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1982.

56
CMU/SEI-95-TR-021

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-95-TR-021

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ECS-TR-95-021

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731 -2116

8a. NAME OFFUNDING/SPONSOREMG
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

Quality Attributes

12. PERSONAL AUTHOR(S)
Mario Barbacci, Mark H. Klein, Thomas A. Longstaff, Charles B. Weinstock

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

December 1995
15. PAGE COUNT

56
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

.software amhrronturfi. software rienenriahililv software performance soft- FIELD GROUP SUB. GR.

ware quality attrib utes, software safety, software security

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Computer systems are used in many critical applications where a failure can have serious consequences (loss of lives
or property). Developing systematic ways to relate the software quality attributes of a system to the system's architec-
ture provides a sound basis for making objective decisions about design trade-offs and enables engineers to make
reasonably accurate predictions about a system's attributes that are free from bias and hidden assumptions. The ulti-
mate goal is the ability to quantitatively evaluate and trade off multiple software quality attributes to arrive at a better
overall system. The purpose of this report is to take a small step in the direction of developing a unifying approach for
reasoning about multiple software quality attributes. In this report, we define software quality, introduce a generic tax-
onomy of attributes, discuss the connections between the attributes, and discuss future work leading to an attribute-
based methodology for evaluating software architectures.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFrED/UNLIMITED | SAMEASRPT[] DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/ENS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

