Title: Quarterly/Annual Report

Author: Dr. Linda Hayden

Performing Organization:
Elizabeth City State University
1704 Weeksville Road Box 672
Elizabeth City NC 27909

Sponsoring/Monitoring Agency:
Office of Naval Research

Funding Numbers:
N00014-94-1-1089 PP and CV1
N00014-94-1-0948 N-AASERT-2

Performing Organization Report Number:
5-52562
5-52561

Abstract:
This program, entitled "Nurturing ECSU Research Talent focuses on undergraduate education and undergraduate research experiences. Nurturing these young researchers is our primary concern. Highest priority is given to providing them with the guidance and skills to insure their entrance and success in graduate school. Further, each student in our program learns the fundamentals of scientific research. Program activities include student development activities and infrastructure activities.

Page 19960430 117
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
ANNUAL REPORT

Summer 1994 Program
Academic Year 1994-95

NURTURING ECSU RESEARCH TALENT PROJECT

SUBMITTED TO

THE OFFICE OF NAVAL RESEARCH

BY

ELIZABETH CITY STATE UNIVERSITY

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

Dr. Linda Hayden, Principal Investigator
Box 672 ECSU
Elizabeth City, NC 27909
(919) 335-3544 FAX: 919-335-7487
email: LHAYDEN@UNCECS.EDU

FUNDING INFORMATION:

N00014-94-1-1089 PPandCV-1
N00014-94-1-0948 N-ASERT-2
This program, entitled "Nurturing ECSU Research Talent focuses on undergraduate education and undergraduate research experiences. Nurturing these young researchers is our primary concern. Highest priority is given to providing them with the guidance and skills to insure their entrance and success in graduate school. Further, each student in our program learns the fundamentals of scientific research. Program activities are as follows:

I. Student development activities:
 a) Recruitment of 5 high ability minority students each year;
 b) Providing a precollege/summer experience for recruited students;
 c) Providing research experiences;
 d) Providing a mentor, graduate school counseling and GRE preparation;
 e) Providing financial support for students in the form of research scholarships.
 f) Provide funds for student travel

2. Infrastructure activities
 a) Enhancement of current computer graphics and operating systems courses;
 b) Development of a new course in computer visualization.
 c) Acquisition of computer equipment appropriate to support of research.
 d) Establishing a visiting lecture series in computer science.
 e) Hiring a UNIX network manager

STUDENT DEVELOPMENT ACTIVITIES

a) Recruitment

Students recruited as entering freshmen were:

Corey Ellis (Mathematics), LaVonna Felton (Mathematics)
Curtis Felton (Computer Science) Tammara Ward (Mathematics)
Melvin Anderson (Computer Science).

Current ECSU Students recruited into the program were:

Monk, Clutilda junior/math Jones, Clarence junior/physics
Moore, Dovella junior/cs Dail, Eva Marie junior/cs
Turner, Reginal junior/cs Gayle, Chonda junior/cs
Walker, Matresha junior/cs Best, Tonia senior/cs
Howard, Ervin senior/math McCray, Timothy senior/cs
Troitman, Kevin senior/cs Sharon Saunders senior/cs

Precollege Students
Albert Whitley senior Connie Sawyer junior
Kuchumbi Hayden senior Derrek Burrus senior
Je'aime Powell soph

1994-95 Annual Report of the Nurturing ECSU Research Talent (NERT) Program
b) Providing a precollege/summer experience for recruited students;

During the 1994 summer research program students were actively involved in computer science research projects. The subareas of their research investigations were parallel processing and computer graphics. Each was assigned a computer networking problem to investigate.

Undergraduate Computer Science majors were full time ECSU students with a minimum 2.8 overall GPA, 3.0 GPA in their major and were recommended by two of their major professors. The undergraduates worked in the laboratory for 5 hours each day, 5 days each week for 6 weeks.

Precollege students selected had completed a minimum of three credits of mathematics including geometry and algebra II. Grades of B or better in these courses plus recommendation of two science/mathematics teachers was required. The precollege students worked in the laboratory for five weeks, 5 hours each day, 5 days each week. All students, both precollege and undergraduate were citizens of the United States.

The Instructor for each team was a member of the ECSU faculty knowledgeable in the subdiscipline. Instructors worked with the students for approximately 3 hours each day, 4 days each week.

Consultants were available to team members daily via email. Dr. Wong made a visit to the ECSU site.

Assistant Instructors were graduate students pursing a Masters or Ph.D in Computer Science. Assistant Instructors worked with the students 5 hours each day.

Activities:

Research at the Library of Congress (Washington, DC July 14-17 tentative date)
Training at the NC Supercomputing Center (Research Triangle Park, NC 2-3 days)
SIGGRAPH Conference (Orlando, Fla. July 25-27, 1994 for CV team)
ADMI Conference & Georgia Tech. Atlanta, GA (July 21-23 for PP team)
Lectures by visiting consultants (Sharon Ramsey of Alcoa Aluminum)
Weekly Research Project Reports on Friday
Final Research Project Reports

Schedule

Week 1 ECSU students work with Instructors
Weeks 2-6 High School Students join the teams
Summer 1994 Research Projects
Computer Graphics Project Description: 3-D Modeling and Viewing

The computer visualization project, which students funded under AASERT will investigate, shall consist of three stages. In the first stage, the student researchers will be given lectures concerning solid modeling and visualization. For the solid modeling, they will learn how to represent a solid object using an edge-based boundary model. They will also be taught how to obtain a new object from an existing one or from scratch using Euler operators. As to visualization, they will be given the concepts of 3D viewing, shading and texturing.

In the second stage, the students will define data structures for a solid object using the edge-based boundary model and define a subroutine for each Euler operator. Then we will use the Euler operators to build a set of primitives such as cube, sphere, cylinder, cone and torus. We will also use the Euler operators to build high level operators like sweeping (including both translational sweep and rotational sweep), gluing and assembling. After this stage, students have a simplified solid modeling system based on Euler operators.

In the third stage, students will develop the software for the Gouraud shading and Phong shading as well as for the solid texturing. Finally, they will design objects using the solid modeling system build in the second stage and visualize these objects using the software developed in this stage.

Visualization/Graphics Team
Instructor: Dr. Jingyuan Zhang
Assistant Instructor: Stephanie Vaughan
Consultant: Dr. Scott Owens
ECSU Student 2: Kevin Trotman
Precollege 1: LaVonna Felton
Precollege 2: Jackie Hall
ECSU Student 1: Sharon Saunders
ECSU Student 3: Denisa Edwards

Parallel Processing Research Project Description

The Sieve of Eratosthenes has long been a standard benchmark program for integer operations on a sequential computer. We will develop a parallel prime number sieve to demonstrate several concepts fundamental to parallel computing. This example also illustrates a process of parallel program development which can be usefully applied to many problems.

After defining the problem and a sequential solution, we begin the development of a parallel algorithm by analyzing the actions to be taken and the order constraints on those actions. This makes it possible to define a maximally parallel, although impractical, algorithm. We will then develop a practical algorithm which can be mapped to a network of message passing processors, a pipeline.

The mapping of the algorithm to the array of processors brings up the issue of load balancing. We will develop an algorithm for static load-balancing, allocating the work so that each processor will have about the same amount to do.

We will investigate the performance of the algorithms by measuring the speedup and efficiency. Amdahl's Law gives theoretical limits on the speedup which can be obtained from parallel computers. This will lead to a final refinement of the algorithm based on using an efficient sequential algorithm within processors while maintaining the pipeline between processors.

The final aspect of algorithm development will be an analysis of communication issues: 1) Buffering between the processors reduces processor idle time spent waiting for communication with a neighboring processor; and 2) The effect of packing the integer messages into larger messages between processors so as to increase overlapping of communication with computation.

Parallel Processing Team
Instructor: Dr. Johnny Houston
Assistant Instructor: Michelle Emmanuel
Consultant: Dr. Wong
ECSU Student 1: Ervin Howard
Precollege 1: Connie Sawyer
Precollege 2: Kuchumbi Hayden
Precollege 3: Derrek Burring
c) Providing research experiences;

<table>
<thead>
<tr>
<th>Research Focus</th>
<th>Mentor</th>
<th>Team Members</th>
</tr>
</thead>
</table>
| Fractals/Chaos | Dr. D. Sengupta | Tamara Ward, Jr/Math
 | | Cory Ellis, Jr/Math
 | | Lavonna Felton, Jr/Math
 | | Clutilda Monk, Jr/Math |
| Virtual Reality/Graphics| Dr. Zhang | Dovella Moore, Jr/CS
 | | Ericka Joseph, So/CS
 | | Tonia Best, Sr/CS
 | | Regina Turner, Jr/CS
 | | Melvin Anderson, Jr/CS |
| Multimedia Authoring | Dr. Hayden | Albert Whitley, Pre/CS
 | | Connie Sawyer, Pre/CS
 | | Derrek Burris, Pre/CS
 | | Matresha Walker, Jr/CS
 | | Timothy McCray, Sr/CS
 | | Chonda Gayle, Jr/CS
 | | Je'aime Powell Pre/CS |
| Unix System Adm. | Dr. Hayden | Bradford Smith, Jr/CS
 | | Kuchumbi Hayden, Pre/CS
 | | Kevin Trotman, Sr/CS
 | | Sharon Saunders, Sr/CS
 | | Curtis Felton, Jr/CS
 | | Eva Marie Dail, Jr/CS |
| Rutterford Scattering | Dr. Choudhury | Clarence Jones, Jr/Phy |

d) Providing a mentor, graduate school counseling and GRE preparation;

The Graduate Record Examination was administered on the campus of ECSU on Dec. 10, 1994. Kevin Trotman experienced death in his family and did not take the examination. He will register to take the GRE in the spring. The following students took the GRE in December:

Best, Tonia
Edwards, Denisa
Anderson, Melvin
Felton, Curtis
McCray, Timothy
Ward, Tamara
Ellis, Corey

Monk, Clutilda
Turner, Reginald
Howard, Ervin
Walker, Matresha
Felton, Lavonna
Saunders, Sharon
e) Research Scholarships.

ONR Research Scholarship Committee
Dr. Helen Caldwell, Vice Chancellor/Academic Affairs
Dr. VanDegriff, Special Assistant to the Chancellor
Dr. Linda Hayden, PI Nurturing ECSU Research Talent Grant
Mr. James Swinpson, Financial Aid Director
Mr. Rodger McLean, Vice Chancellor/Business & Finance
Dr. James McClean, Director of Funded Projects
Mr. Tommy Foust, Registrar

Steps taken to select student recipients of the Research Scholarship for 1994-5:

1. The Scholarship committee met to outline the process of selection and to clarify scholarship requirements.

2. A list of applicants for admission to 1994 freshmen class was received from Tommy Foust, Registrar.

3. As recommended by the committee, students were contacted by telephone to establish the mentoring relationships:

Out-of-state Students

*to determine their intended major;
*to determine their interest in the ONR Research Scholarships;
*to determine their interest and experiences with science research; and
*to determine their career ambitions.

Current ECSU students

ECSU students were selected according to the governing criteria. Preference was given to:

*Students from the HU-ISSP program;
*Department Interns
*ONR-AASERT Summer 1994 Student Researchers

4. A tentative list of scholarship candidates was submitted to the financial aid officer and to the registrar for review. The PI and the financial aid officer made the determination of award amounts.

5. A written offer of scholarship was sent to each selected candidate. Included with the letter was a form which students were asked to complete and return to Dr. Hayden. Copies of the letter and form were submitted to the Financial Aid Office. **Total Amount Awarded $45,250.00**
f) Provide funds for student travel

Graduate School forum conducted by the Journal of Black Issues in Higher Education

Eight seniors attended the graduate school forum on October 17, 1994 at the Raleigh Civic Center. Students talked with representatives from ten graduate schools. They received information on programs of study and financial assistance.

SOAR Conference

Thirteen students attended the SOAR Undergraduate research conference conducted at Fayetteville State University Nov 9 - 11, 1994. Nine of the students attending the conference made research presentations. SOAR stands for "Seizing Opportunities for Advancing Research Scholars is a consortium project sponsored by the North Carolina Consortium for Undergraduate Research and is supported by a grant from GLAXO, INC. This conference brings together undergraduates to report research results from a wide range of disciplines, including the arts, humanities, social sciences and natural sciences.

Georgia Tech Graduate School Forum and M.L. King Day Focus

Eight students WERE invited to join in the fourth annual graduate recruiting/awareness program for African American students. Focus/95 is a program specifically designed for prospective African-American Graduate Students. Focus/95 the third annual program and is part of the King Week Celebration held in Atlanta, Georgia on January 13-16, 1995. This program has four objectives:

• Provide students an opportunity to interact with the Georgia Tech Faculty and over 400 currently enrolled African-American Graduate Students.

• Familiarize students with the Georgia Tech graduate programs and financial assistance available.

• Assist students in applying for graduate school and financial resources.

• Give students an opportunity to participate in the Annual National Celebration honoring Dr. Martin Luther King

NAAAS

Twelve students submitted abstracts to the NAAAS (National Association of African American Studies) Conference to be held at Virginia State University, in Petersburg, VA., February 1995. All of the students received acceptance letters. Students from Elizabeth City State University spoke at a special NAAAS session arranged by the VSU Kappa Mu Epsilon Mathematics Honor Society and the VSU Walter Johnson Mathematics Club. Student researchers from VSU also made presentations.

SIGGRAPH

All students in the summer program attended the 1994 SIGGRAPH Conference in Orlando Florida. SIGGRAPH'94 focused on the future with a special emphasis on computer graphics and interactive techniques applied to 4 leading-edge areas: 1) Personal technology, the merger of computer...
communications technologies; HDTV; personal digital applications. 2) digital media- multimedia products, technologies, and applications; advanced communications techniques. 3) scientific computing- scientific visualization, high-performance computing and communications. 4) virtual reality- experiential simulations for research and entertainment. Time was allocated during the trip for students to visit the Disney-EBCOT-MGM park.

Library of Congress

Thirteen students and faculty travelled to the Library of Congress during the summer 1994 program. Students used the resources available at the Library of Congress to acquire hard copies of items on their reference list and to complete their research literature reviews. Time was allocated during the trip for students to tour the Congress, Air and Space Museum, and other sites of the capital.

North Carolina Supercomputing Center

The course was an introduction to visualization and the Application Visualization System (AVS). As such, no prior experience with either was expected. However, basic experience with UNIX(TM) and X Windows(TM) was necessary. The course included laboratory exercises on the material presented during the lectures, along with an optional extended laboratory each day from 5-7p.m.

The second class was intended for new KSR1 users who have experience with Unix, and FORTRAN or C. Completion of the full day portion of this class is required for account activation. This was a one and a half day class. The first half day was optional and covered basic parallel programming concepts and algorithms. The full day covered the various parallel programming models available for C and FORTRAN programmers on the KSR1 and mechanics of using the KSR1.

NAFEO High Tech Expo

The National Association for Equal Opportunity Higher Education (NAFEO) met in Washington, DC at the Sheraton Hotel March 1995. Ten ECSU students submitted abstracts to the NAFEO High Tech Expo and were accepted. The main purpose of the trip was to allow the students to present their research at the NAFEO High Tech Expo and to meet with other student researchers. Students also had the opportunity to interact with graduate school representatives.
INFRASTRUCTURE ACTIVITIES

a) Enhancement of current computer graphics course;

Multiple site licences for Renderman software have been purchased for use with the student researchers and with the current computer graphics course. This course which was once a 2D graphics course offered on 286 PCs has emerged into a 2D and 3D graphics course. The workstations used to support the graphics course is currently being shared with the student researchers. Funding of the Instrumentation for Educational Use proposal will alleviate this situation.

Sharon Saunders, completed her honors thesis, entitled "Scene Design Using Renderman".

b) Development of a new course in computer visualization.

The curriculum committee of Elizabeth City State University has approved the addition of one course to our computer science curriculum. The course is CSC 250: Introduction to Computational Science and Computer Visualization Techniques. The course is designed to attract all science majors and has as prerequisites/co-requisites: Calculus I. The course will be offered for the first time during the fall semester 1995. During the spring semester of 1996, CSC 430: Undergraduate Research will focus on advanced computer visualization concepts. Students will complete assignments using the Silicone Graphics workstations on which IRIS Explorer visualization software is available. The book Animation and Scientific Visualization: Tools & Applications edited by R.A. Earnshaw and D. Watson will be used as a textbook. The book was published by Academic Press in 1993 (ISBN 0-12-227745-7).

ECSU submitted a proposal to the ONR Educational Use Broad Agency Announcement. In that proposal ECSU requested funds to purchase additional Silicone Graphics Workstation to support the new course. This proposal was funded and therefore, we do not have to compromise our successful research activity by reallocating the SGI equipment to support classroom assignments.

c) Establishing a visiting lecture series in computer science.

During the summer of 1994 visiting lecturers included Sharon Ramsey, computer visualization specialist from Alcoa Aluminum Company of America. Dr. Wong, professor of computer science at Fayetteville State University spent three days at ECSU working with student researchers on parallel programming during the summer program.

During the academic year program: 1) Dr. Andrea Lawrence, professor of computer science at Spelman University, spoke to our group on Feb. 7, 1994. Dr. Lawrence spoke on The Human Interface. 2) Dr. Larry Morell from Hampton University also spoke with our group on Graduate School course work: What to expect. 3) Mr. Stefan Lawrence spoke on Numerical Analysis.

Additionally, training workshops were conducted on MATHEMATICA by Wolfram Inc. Training workshops were also conducted on AutoCAD by R.L. Daniels and Associates.

d) Hire a UNIX network manager

Two students, Sharon Saunders and Kevin Trotman have been hired to share the job of UNIX system administration. These two senior computer science majors maintain the file system; install
software; establish user accounts; and perform periodic backups. Both students will graduate in May 1995. Kevin will be hired at that time to assume the UNIX network.

The Personnel Office of ECSU is assisting with the process of establishing the network technician I position. All forms have been completed and required signature have been secured. The description of the position as supplied to the State of North Carolina is as follows:

Employee resolves system and network problems on a multi-system UNIX network. Employee coordinates and works with vendors, faculty and student researchers. Employee maintains and supports the network; assisting in the testing and analysis of all elements of the network facilities (including power, communication machinery, software, lines, modems and workstations). Employee prepares instruction sheet for typical network user tasks and assists with UNIX training sessions for research faculty and students.

e) Acquisition of computer equipment appropriate to support of research.

Networking:
• Currently all workstations are networked using TCP/IP (NIS and NSF servers) allowing complete access to the internet.
• Upgrading to ATM Technology Summer '95

HARDWARE

3 Silicone Graphics Workstations (INDY2 and Iris)
10 Additional INDY2 workstations to be added summer '95
12 Sun Sparc Workstations running Sun O/S
10 486 PC converted to LINUX
2 Power Macintosh 8100
1 Power Macintosh 7100

Peripherals and Printers

• Variety of Laser and Color Printers
• Color and Greyscale Scanners
• VCR/TV
• Color Cameras
• INDYCAM
• Projection Panels
1994-95 ENROLLMENT AND GPA REPORT

Data on student enrollment and performance is requested for the overall science and engineering student body, and for students supported under the ONR grant in order to have an internal comparison at your school.

Please see the following table for data. Our Institution does not offer a degree in engineering. No biology majors are involved in this program. ONR students made up 17.4% of the graduating class and 66.7% of those who went on to graduate school.

<table>
<thead>
<tr>
<th>Major Discipline</th>
<th>FR</th>
<th>SO</th>
<th>JR</th>
<th>SR</th>
<th>FR</th>
<th>SO</th>
<th>JR</th>
<th>SR</th>
<th>total ONR</th>
<th>total ONR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINEERING</td>
<td>NA</td>
</tr>
<tr>
<td>BIOLOGY</td>
<td>NA</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>COMPUTER SCIENCE</td>
<td>42</td>
<td>28</td>
<td>21</td>
<td>31</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>MATHEMATICS</td>
<td>11</td>
<td>16</td>
<td>25</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>PHYSICS</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>57</td>
<td>47</td>
<td>62</td>
<td>49</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>33</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Year</th>
<th>Mean GPA for all students</th>
<th>Mean GPA for ONR students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>2.331</td>
<td>3.498</td>
</tr>
<tr>
<td>Sophomore</td>
<td>2.502</td>
<td>3.740</td>
</tr>
<tr>
<td>Junior</td>
<td>2.709</td>
<td>3.050</td>
</tr>
<tr>
<td>Senior</td>
<td>2.956</td>
<td>3.023</td>
</tr>
</tbody>
</table>

1994-95 GRE DATA

<table>
<thead>
<tr>
<th></th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONR</td>
<td>1150.71</td>
</tr>
<tr>
<td>ALL</td>
<td>1109.22</td>
</tr>
</tbody>
</table>
GPA, Grad School & GRE
The Faculty and Graduating Class
of
The Ohio State University
announce the
Spring Commencement Exercises
of
Cathy Latrice Thomas
a candidate
for the degree of
Master of Science
in
Computer Science
Friday, the ninth of June
Nineteen hundred ninety-five
at nine-thirty o’clock in the morning
Ohio Stadium

Students enrolled in the M.S. in Computer Science at Hampton University

Timothy McCray maintained a 3.4 GPA during Spring semester 1995 while taking 6 graduate hours credit and working full time at ECSU. He will be a full time graduate student during Fall semester 1995.

Michelle Brown-Emmanuel maintained a 4.0 GPA during Spring semester 1995 while taking 9 hours graduate credit and working as a Teaching Assistant.

Stephanie Vaughan also maintained a 4.0 GPA during Spring semester 1995 while taking 9 hours graduate credit and working as a Teaching Assistant.

Sharon Saunders will enroll as a full time graduate student and Teaching Assistant during Fall 1995.

Stephanie Purvis will enroll in 6 hours of graduate credits while working full time at ECSU during Fall 1995

Kevin Trotman will enroll in 6 hours of graduate credits while working full time at ECSU during Fall 1995.
Career or Graduate School in Your Future?

Graduate Study & Career Fair

Connecting Minority Students and Jobseekers with Graduate School Admissions Officers and Corporate/Agency Employment Representatives

RALEIGH CIVIC CENTER
500 Fayetteville Street Mall

OCTOBER 17, 1994
10AM – 8PM

FREE ADMISSION TO STUDENTS AND JOBSEEKERS

For more information contact the Career Planning and Placement Office or call (703) 395-2981.
December 13, 1994

Linda Hayden, Professor
Department of Mathematics & Computer Science
Elizabeth City State University
1704 Wesley Road, Box 672
Elizabeth City, NC 27930

Dear Dr. Hayden:

Chancellor Jenkins has notified me that you have been designated to be your institution's program coordinator for the National Minority Graduate Feeder Program. I am pleased to welcome you to NMGFP, a program jointly sponsored by the National Association of State Universities and Land-Grant Colleges and the American Association of State Colleges and Universities. Together, these associations represent almost 300 institutions, including 36 HBCUs.

Participation in NMGFP includes an institutional commitment to the following:

1. Installation of the software, modem, and dedicated phone line as described in my letter of October 31st to your president. It is my understanding that your office includes everything required. If you have questions, please contact me. I have been advised by Mark Jones, the Entraix representative for National Computer Systems (NCS), that the software will not function unless the specified equipment is used.

Entraix is the software each HBCU will be using to enter student data into the NMGFP database. It is very user-friendly and easy to install. Therefore, NCS will mail the software to you for installation in mid-January, rather than sending Mark Jones to each campus to install it for you. This decision not only saves money, a major need if we are to meet our mid-January start-up deadline, but has enabled NCS to coordinate the first year's data transmission costs between each HBCU and Morgan State University. NCS personnel will be available via telephone to assist you. Contact information will be mailed with the software.

NMGFP Coordinator
December 13, 1994
Page Two

2. Identification of at least 10 juniors through masters students for inclusion in the database by mid-January. Ph.D-granting institutions tend to award fellowships for graduate study one year in advance of admission. Those institutions have committed financial support for 10 NMGFP students each, but can't wait much longer to complete the admissions process for September 1995. It is therefore, very important that you identify your students prior to mid-January and enter their profile and academic data into the database as soon as you receive the software.

To assist you with the identification process, I've included the name of the Thurgood Marshall Scholars coordinator for your campus. This individual is already working with outstanding students attending your institution. Please contact this individual as soon as possible to ensure that those scholars who have concentrated in mathematics, the sciences, or engineering are included in the NMGFP database. I have forwarded your name to this individual as well.

Mrs. Vivian T. Armstrong, Acting Chairperson
Division of General Studies
Elizabeth City State University
(919) 335-3524
(919) 335-5701 FAX

Thank you for agreeing to work with the National Minority Graduate Feeder Program, and I will look forward to talking with you throughout the year. If you have questions, please don't hesitate to call me.

Sincerely,

[Signature]

Dorothy J. White
Program Coordinator
National Minority Graduate Feeder Program

cc: Jimmy E. Jenkins, Chancellor
Elizabeth City State University
Visiting Lectures
Workshops & Training
Mathematics and Computer Science Department
Elizabeth City State University

Invited Guests
Dr. Larry Morell, Hampton University Graduate Programs (Apr. 4th)
Steve Covington, Representative from SG1 Microsystems (Apr. 6th)

Student Researchers' Final Reports
Graphics Research Team
Classical Rutherford Scattering Team
Multimedia Authoring Team
Unix System Administration
Fractals/Chaos Team

April 4 & 6, 1995 5:00 pm 116 Lester Hall
Refreshments Served

Mathematics and Computer Science Department
of
Elizabeth City State University
Presents

Mr. Stefan Lawrence
Invited Lecturer in Differential Equations,
Mathematics and Computer Scientist Colloquium

April 11, 1995
2:00 pm 116 Lester Hall
Coffee and Dessert Buffet Served
Mathematics and Computer Science Department of Elizabeth City State University Presents

Dr. Andrea Lawrence
Invited Lecturer, Black Mathematicians and Computer Scientist Colloquium

February 7, 1995
2:00 pm 116 Lester Hall
Coffee and Dessert Buffet Served

Mathematics and Computer Science Department of Elizabeth City State University Presents this Certificate of Appreciation to

Dr. Mary Ellis
Invited Lecturer, Women in Mathematics and Computer Science Colloquium

March 28, 1995

Dr. Shindar Sachdev
Department Chairman

Dr. Linda Hayden
Colloquium Organizer
An excerpt from
Addison-Wesley Publishing Company

A Tour of

Mathematica.

A System for Doing Mathematics by Computer

Wolfram Research
Free AutoCAD Training
Sponsored by
Elizabeth City State University

AutoCAD 101
Introduction To AutoCAD

Objectives: Upon completion of this course, students will be familiar with the 2-D capabilities of AutoCAD, and should know how to create, modify, and display drawings. For maximum benefit, each student should be provided with non-production practice time during the two weeks following this course. Given 20-40 hours of after-course practice and review time using the materials provided in class, a student should be able to use AutoCAD to create and update basic production drawings.

Dates and Times

August 1-3, 1994
Each session is from 8:00 am to 5:00 pm with a one-hour lunch break.

All sessions will be held at:

Elizabeth City State University
Lester Hall - Room 115
Elizabeth City, North Carolina 27909

Space is limited to 16 people, so call now to reserve seats.
Call (919)-335-3439 to make reservations.

Who should attend

Drafting and Technology instructors,
Vocational directors and any interested participants from middle schools to university level.

Credit

Continuing Education Units.

Program Personnel

Mr. Lee Hayden
Department of Math & Comp. Sci.

Dr. Linda Hayden
Department of Math & Comp. Sci.

Dr. Ellis Lawrence
Department of Technology

Instructors

Dr. Ellis Lawrence
Department of Technology
Mr. R.L. Daniels & Associates
Autodesk - Area Education Representative
Honors & Awards
CALL FOR PROPOSALS
YARBROUGH UNDERGRADUATE RESEARCH GRANTS
for the 1995-96 Academic Year

1. Grants are for research to be carried out during the summer of 1995 and/or the 1995-96 academic year. Maximum amount available to be determined by NCAS Board.

2. Applicants must be freshmen, sophomores, or juniors in good standing at any North Carolina college or university and must plan to be enrolled next year. Each applicant must have a faculty sponsor to guide the research and administer the funds.

3. Before funds are disbursed, recipients must be members of the Collegiate Academy (either individual or member of a Club in good standing). Recipients must present a paper on their research at the 1996 spring meeting and submit a brief financial report to the chairman of the Research Grants Committee upon completion of the research project. Derieux Award winning papers must be submitted to CAMCAS, the official journal of the Collegiate Academy, for publication.

4. Applications must include the following:
 a. From the student: One copy of
 (1) A proposal cover sheet.
 (2) A narrative description of the research. This should include an introduction with clear statement of purpose, methods and materials, and listing of pertinent references. It should be no longer than four pages.
 (3) A one page budget summary. Itemize as specifically as possible; no miscellaneous line item, please! Indicate quantity and source of materials, supplies and equipment, normally available in science departments, books, and routine travel expenses should not be included (see attached example).
 b. From the faculty sponsor: One copy of a supporting letter.
 c. From two other professors: One copy each of two general letters of recommendation.

5. All application materials should be sent to Dr. Wid Painter, Chairman, Yarbrough Research Grants Committee, Department of Chemistry, High Point University, University Station-Monticello Ave, High Point, NC 27262-2598.

6. The deadline for receipt of all application materials is April 16, 1995. Awards will be announced by May 15, 1995, and funds will be distributed in September, 1995.
Mathematics and Computer Science of ECSU
1994 Student Internship Report

1994 Intensive Summer Science Program Students

The following students were selected to attend the Summer'94 Intensive Summer Science Program at Hampton University.

<table>
<thead>
<tr>
<th>name</th>
<th>major</th>
<th>class</th>
<th>ssno</th>
<th>home phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutilda Monk</td>
<td>math ed</td>
<td>sophomore</td>
<td>242-21-4964</td>
<td>(910) 289-2603</td>
</tr>
<tr>
<td>Richard Flood</td>
<td>physics</td>
<td>sophomore</td>
<td>260-31-3146</td>
<td>(912) 923-6863</td>
</tr>
<tr>
<td>Robert Holley</td>
<td>chemistry</td>
<td>sophomore</td>
<td>237-47-0479</td>
<td>(919) 771-2781</td>
</tr>
<tr>
<td>Guana Dixon</td>
<td>chemistry</td>
<td>junior</td>
<td>240-57-7278</td>
<td>(919) 338-2892</td>
</tr>
<tr>
<td>Christopher Roberts</td>
<td>physics</td>
<td>sophomore</td>
<td>244-21-1890</td>
<td>(919) 568-4066</td>
</tr>
<tr>
<td>Matresha Walker</td>
<td>cs</td>
<td>sophomore</td>
<td>246-37-6133</td>
<td>(919) 438-8379</td>
</tr>
<tr>
<td>Reginal Turner</td>
<td>cs</td>
<td>junior</td>
<td>245-43-8072</td>
<td>(919) 338-4106</td>
</tr>
<tr>
<td>Tonya Best</td>
<td>cs</td>
<td>junior</td>
<td>238-59-3934</td>
<td>(919) 237-4150</td>
</tr>
<tr>
<td>Dovella Moore</td>
<td>cs</td>
<td>sophomore</td>
<td>239-45-2601</td>
<td>(919) 946-6509</td>
</tr>
</tbody>
</table>

1994 ONR-Summer Research Students

ONR AASERT Summer Research Program in Parallel Processing and Computer Visualization 1994. Research was conducted on the campus of ECSU in the Mathematics and Computer Science Department.

<table>
<thead>
<tr>
<th>summer'94</th>
<th>ssno</th>
<th>name</th>
<th>major</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer'94</td>
<td>242-94-7067</td>
<td>kevin trotman</td>
<td>senior CS</td>
</tr>
<tr>
<td>summer'94</td>
<td>235-37-4090</td>
<td>stephanie vaughan</td>
<td>graduate student CS</td>
</tr>
<tr>
<td>summer'94</td>
<td>240-37-6990</td>
<td>michelle brown-emmanaul</td>
<td>graduate student CS</td>
</tr>
<tr>
<td>summer'94</td>
<td>237-41-5055</td>
<td>sharon saunders</td>
<td>senior CS</td>
</tr>
<tr>
<td>summer'94</td>
<td>244-51-8662</td>
<td>denisa edwards</td>
<td>senior CS</td>
</tr>
<tr>
<td>summer'94</td>
<td>114-56-32-54</td>
<td>ervin howard</td>
<td>Senior Math ED.</td>
</tr>
<tr>
<td>summer'94</td>
<td>238-25-6441</td>
<td>derek burrus</td>
<td>precollege- Camden County</td>
</tr>
<tr>
<td>summer'94</td>
<td>243-37-0536</td>
<td>jackie hall</td>
<td>precollege- NC school of Math</td>
</tr>
<tr>
<td>summer'94</td>
<td>246-33-5956</td>
<td>connie sawyer</td>
<td>precollege - Camden High</td>
</tr>
<tr>
<td>summer'94</td>
<td>225-15-7231</td>
<td>lavonna felton</td>
<td>precollege Norcom High</td>
</tr>
<tr>
<td>summer'94</td>
<td>579-15-0979</td>
<td>kuchumbi hayden</td>
<td>precollege Norcom High</td>
</tr>
</tbody>
</table>
Student/Sponsor Travel
The National Association of African-American Studies (NAAAS)

February 16, 1995

by Chonda Gayle

At a quarter to 8 am we departed to go to the third annual conference of the National Association of African-American Studies (NAAAS) at Virginia State University in Petersburg, Virginia. This conference marked a special time in my development of communication skills. I was the speaker informing other students of my research and results. I was speaking instead of listening. I have a long term objective of being a role model for others. I feel that by doing this presentation, you inform others that you don’t have to wait until you enter graduate school to do research.

Previous to my presentation, I listened to some of my fellow classmates. I observed and listened. I observed their actions that I thought might hinder and enhance to my presentation. I tried to make sure I did not make the same mistakes but also try to get some involvement from the audience. Their topic was about Neuroscience. Programming the computer to learn and make decisions, such as deciphering different people, just like a regular person. They applied this concept of neuroscience to calculating statistics and recognizing the player by its statistics.

My presentation at 11:30 went smoothly. I tried to get some audience participation but did not have much luck. That is something that I have to work on for my next presentation. Of course, I was nervous at first, but soon felt comfortable enough to do the rest of the presentation.

In conclusion, going to this conference, I found that I am one of the fortunate students that first of all have a degree in Computer Science. Secondly, have the opportunity to do research on an undergraduate level. Lastly, to be able to develop presentation skill and share my findings with others that are just as interested in the same research topic. This interest brought me closer to the other students in the room. The more interested faces I saw during my presentation, the more I wanted to feed them with information.
SMART/NSBE Conference Report
By Kevin Trotman

After two or three weeks of preparation, the Elizabeth City State System Administration Team was given the opportunity to present an Alumni Workshop to the Alumni group at the National Society of Black Engineers' SMART conference in Washington DC. We traveled to the conference with Tamara Ward and Matresha Walker. Tamara and Matresha were given the opportunity to compete in the undergraduate presentation was on Multimedia programming (authoring).

We arrived at the conference on Friday, Feb. 3, 1995 and checked into our hotel and went over our presentations for the last time. The next morning we awoke to find that several inches of snow had fallen during the night and some of the alumni were unable to make it to that morning's workshop's due to the weather. However, at 10am we began to give our presentation to a still-forming group of the NSBE alumni. There were five of us in our group and our presentation took just over a half hour and then we were able to hear from the next speaker who gave an excellent lecture on how to grab student's attention by using the technologies available. He emphasized using hypertext tools for teaching, such as Mosaic, a tool used widely for internet exploration. He made a very good point in noting that students are often more interested in classroom work when they are taught using electronic or technological resources, because of the student's excitement associated with them.

After these workshops, we were able to help set up the presentations for the other members of our group and mingle about the conference room while the competition was taking place. The students in our group were able to mingle with the alumni and pass out many resumes and collect information from various companies. Later that night we attended the Banquet and listened to Dr. Howard Edwar's speech on "Passing the Torch, the Tool Which Empowers". He is a very moving speaker and I enjoyed his remarks. I agreed with his remarks on funding for minority education, and was very surprised by his statistics on the number of blacks obtaining degrees last year. There was only one point in his speech which I did not agree with, and that was his characterization of blacks as "poor folks". Even though I am no black, I recognize why he said this. He was referring to monetary means. However, after working with my friend on the System Administration Team at ECSU and seeing the drive spirit, determination, strength, and intelligence which they possess, I would have to characterize them all as some of the richest folks I know.

Before leaving on our trip to Washington, one of the undergraduates in our group remarked that he wanted to room with me because I was a senior and he wanted to pick my brain of what I knew about computer science. We did room together, and he did ask me every question related to computers that he could think of. That is a strength which I could only characterize as a rich spirit.

Melvin Anderson

My task was to help set up and attend the presentations of the UNIX and Multi-media groups. The presentations began around 10:30 with the UNIX group. The presentation basically involved the explanation of the UNIX system and the many "clones" which exist. The most discussed "clone" was Linux. Linux was described as the most complete duplication of the UNIX system. The presenters described the many functions of the UNIX system. The most important functions of UNIX involve the creation and deleting of user files within the system.

The next presentation was done by Ms. Smith and Mr. Williams from Wayne State University in Detroit, Michigan. Their presentation was significant, in that Mr. Williams and Ms. Smith play an integral role in bringing technology to inner-city youth. I can relate to this story, because it is people like these who showed Melvin Anderson that there is more to the world than the drugs and violence that he sees everyday in Bowling Park. Mr. Williams is instrumental in maintaining a network which links Wayne State's computing center to area public schools. The system used by the students includes internet and mosaic. Also, Mr. Williams spoke of a 14 year old kid who has taught himself to use a computer and has created his own homepage.

Later in the evening we attended a banquet in the grand ballroom. The guest speaker was Dr. Howard Adams. Dr. Adams' speech was very inspirational in that he dared us to dream the impossible. He spoke of how he was told that his dreams and goals were laughed at by members of his rural community. This is very important to me on a personal level because I am only one of three people from my neighborhood to go to college. I am told every time I go home that college is only for whites and that I will soon join them on the corner. Dr. Adams really hit home when he said that African-Americans deserve to experience life at its fullest. I know that I will settle for nothing less than the best.

In all the trip was an enlightening experience. I met many people who have the same goals as myself. I also traveled from home for the first time. I learned a lot about Curtis Felton as a person which is important since we will work as a team for the next three years. I would like to formally thank you for taking me on this trip.
From: Dr. Linda Hayden, Research Advisor
To: Elizabeth City State University Instructors

The following students attended the SOARS Conference at Fayetteville State University, Fayetteville, N.C., on November 9, 10, and 11, 1994:

Ericka Joseph
LaVonna Felton
Chonda Gayle
Chaka Ruffin
Reginald Turner
Clarence Jones

Cutilda Monk
Dovella Moore
Matresha Walker
Denisa Edwards
Tamara Ward
Cory Ellis

Please excuse the ECSU students for their absences and allow them to make up any work missed. For further information please contact Dr. Linda Hayden, ph. ext. 617.

A copy of the conference program is attached for your convenience.

North Carolina Fall Conference on Undergraduate Research
November 10-11, 1994 at Fayetteville State University

sponsored by the North Carolina Consortium for Undergraduate Research and supported by a grant from GLAXO, INC.

Theme
"Seizing Opportunities for Advancing Research Scholars"

DEDICATED TO THE MEMORY OF

DR. JAMES TOWNES
ELIZABETH CITY STATE UNIVERSITY

This year’s conference is in memory of Dr. James Townes of Elizabeth City State University. Dr. Townes was instrumental in establishing the Consortium and made many significant contributions to its growth.

Four historically black public universities [North Carolina Central University (NCCU), Elizabeth City State University (ECSU), Fayetteville State University (FSU), and Winston-Salem State University (WSSU), a university enrolling a substantial number of Native Americans [Pembroke State University (PSU)], and two premier undergraduate research universities [North Carolina A&T State University (NCA&T) and the University of North Carolina at Asheville (UNCA)] from among the sixteen institutions of higher education that comprise The University of North Carolina have entered into a consortium [North Carolina Consortium for Undergraduate Research (NCCUR)] in order to gain expertise in the development and management of successful, institution-wide undergraduate research programs and to enhance research activities on their campuses. The fourth fall conference on undergraduate research sponsored by the Consortium is being held on the campus of Fayetteville State University on November 10-11, 1994 with the theme "Seizing Opportunities for Advancing Research Scholars (SOARS)*. Research presentations will be made by undergraduate students from such widely diversified fields as chemistry, physics, biology, instruction and curriculum, psychology, sociology, physical education, computer science, and mathematics.

The Consortium for Undergraduate Research gratefully acknowledges GLAXO, INC. for a generous grant in support of the North Carolina Fall Conference on Undergraduate Research.
Ninth Annual
Black College
High Tech Expo
1995

Elizabeth City State University
Denise Edwards
Sharon Saunders
Abstract: Scene Design Using Renderman
Chenda Gayle
Abstract: G.E. Computer Services Help Desk
Interview & Survey Results
Devalle Moore
Reginald Turner
Marsha Walker
Abstract: Identification & Prediction Using
Neural Networks
Claudia Monk
Abstract: Function Comparison for Lagrange
Polynomials
Wendy Griffin
Reginald Harris
Denise Mitchell
Eric Mountain
Penny Paschal
Stephen Tatey
Abstract: Application of Total Quality
Management (TQM) in Black Owned
Business

Fayetteville State University
Samuel Q. Campbell
Abstract: Nucleation and Chiral Symmetry
Breaking Under Controlled Hydrodynamic
Flow

Grambling State University
Larry C. Clay Jr.
Abstract: D-galactosamine Effects at Various
Concentrations on Monolayer Rat
Epidermis

Hampton University
David Walker
Abstract: A Study of Distinct Microsomal
RNA From Neurospora Crassa

Jackson State University
William J. Durr
Abstract: Copper (II) Compounds with
Heterocyclic Ligands

Eva McShee Owusu
Abstract: Multimedia Toolbook
Ronda Richardson
Abstract: Computational Studies on
Molecular Structures and Properties of
HPX and HXP (X=O,S,Se) Species

Kentucky State University
Elena Shbutais Allusin
Abstract: Effects of Varying Dietary Copper
Concentration & Copper Supplementation,
on Ceruloplasmin & Superoxide Dismutase
Activity in Blood of Weanling Rats

Laura Lam-Wilson
Abstract: Effect of Organomercurials in
Causing Chromosome Changes in
Cultured Mammalian Cells
By Chandra Gaye

At a quarter to 8 am we departed to go to the third annual conference of the National Association of African-American Studies (NAAS) at Virginia State University in Petersburg, Virginia. This conference marked a special time in my development of communication skills. I was the only speaker informing other students of my research and objective results. I was speaking instead of listening, I feel that by doing this presentation, I am informed others that you don't have to wait until you enter graduate school to do research.

Previous to my presentation, I listened to some of my fellow classmates offer their presentations and listened. I observed their actions that I thought were effective and decided that I should do the same. I tried to make sure my presentation was organized and that I had enough evidence to back up my actions. I also tried to make sure my audience was involved and not just sitting there. I tried to get as much feedback from the audience as possible. The better feedback I get, the more knowledge I gain. Programming the computer so that it is silent and just like an audience is not as difficult when you have practiced.

My presentation at 11:30 went smoothly. I tried to get some audience participation but did not have much luck. That was something that I have to work on for my next presentation. Of course, I was nervous at first, but after a few minutes, I felt comfortable enough to do the rest of the presentation.

In conclusion, going to this conference, I found that I am one of the few students that have a degree in Computer Science. Second, students that have a degree in Computer Science are good at problem solving. Lastly, I was able to meet other students interested in the same field as myself. This interest brought me closer to the other students in the conference. The more I talked with them, the more they wanted to see my presentation.
Research Projects
Multimedia Authoring Team

Student multimedia researchers will use Authorware by Macromedia and Aldus Persuasion to create multimedia documents. Students will focus on information architecture and human-factor issues that help determine the size of and connections between information modules, and related high-level issues of interest to those planning to compose, evaluate or purchase multimedia documents. They will learn to use multimedia authoring tools with their suite of production tools (including word processor, a desktop publishing package, a video edition system, an audio capture program, and a synchronization tool to make all the disparate elements come out of the computer at the same time.) to produce documentation of the Nurturing ECSU Research Talent programs.

Their research, using techniques of sound and video conversion, integration and compression, will serve to document the work of all research teams. Researchers will explore several models that group information in different ways. Researchers will assume the various project management tasks including audio technicians, writers, graphic designers, and editors.
Virtual Reality/Graphics Team

The computer animation project, which students will investigate, will consist of three stages. In the first stage, the student researchers will be given lectures concerning modeling and visualization. For the modeling, they will learn how to represent a solid primitive using the boundary representation. They will also be taught how to obtain a new solid object from existing ones. As to visualization, they will be given the concepts of 3D viewing, shading and texturing.

In the second stage, the students will build a solid modeling tool based on RenderMan, which will provide a set of primitives such as cube, sphere, cylinder, cone and torus, and a set of boolean operators like union, intersection, and difference. The tool will also be capable of building a solid object from a 2D object using sweeping (including translational and rotational sweeps).

In the third stage, the students will define scenes using the tools they build, and describe the surface details like shading and texturing using RenderMan's Shader Language. They will also put different kinds of light sources into the scenes. Finally, they will develop frames for animation by either moving part of the scene or moving the camera, and putting these frames together for playing.

Dovella Moore
Tonia Best
Reginald Turner
Ericka Joseph
Melvin Anderson
Unix System Administration Team

ATM stands for asynchronous transfer mode. ATM networking provides both circuit and packet-switching services with the same protocol. Students researchers will investigate the major benefits of ATM networking: scalability, statistical multiplexing and traffic integration.

Scalability is one of the most valuable properties of ATM. The main factor in providing scalability are a switched-based architecture and a common cell structure across all ATM components. Conventional LAN technologies such as ethernet are limited by the delays involved in the attempts to coordinate the sharing of the link bandwidth. Students will investigate how ECSU users access the ATM network in the student CS research laboratory located in Lester Hall with a variety of connections, media types and applications. They will begin by studying the common cell structure which allows data to be transported in the same format over the entire network regardless of the data rates of the intervening subnetworks.

The effect of uniform cell format on traffic integration will be analysed as data from different sources are readily integrated into the ATM network and transmitted concurrently.

Students will investigate how statistical variations in the traffic load can be smoothed out as many sources are multiplexed to result in better utilization of shared resources. A minimum of 18 random sources will be studied to exploit the benefits of statistical multiplexing and to avoid the possibility that there are too few traffic sources.
Fractals have captured the attention, enthusiasm and interest of many people around the world. In our Fractal, Dynamic and Chaos research project, we will investigate the underlying mathematical principles and characteristics behind fractals, chaos and dynamics. In addition, we will investigate how fractal, chaos and dynamics relate to each other and to many aspects of mathematics as well as to natural phenomena. The final aspect of the project is to create some fractals using computers.

The goals of the project will be achieved in several stages. In the first stage, students will be given handouts concerning some preliminaries of dynamical systems and their examples. Students will be asked to predict the fate of orbit of some simple (non-linear) quadratic dynamical systems and investigate the period doubling route to chaos. At this stage two computer programs will be developed to see this numerical observation in computer graphics. In the third stage, using several activity sheets, the student researchers will be involved directly in constructing, counting, computing, visualizing and measuring related to deterministic fractal, the Sierpinski triangle and the Pascal triangle. Students will also investigate geometric relationships between Pascal's triangle and the Sierpinski triangle by coloring rule using modular arithmetic. This relationship provides the link to Cellular automata. Students will explore a whole class of cellular automata which are closely related to the evolution of divisibility patterns in Pascal's triangle.

The final stage of the project, using L-systems the researchers will construct Fractals in computer and growth of a plant. L-systems are string rewriting machines which are characterized by the fact that the production rules are applied simultaneously to all symbols of the input string.
Rutherford Scattering Team

The structure of the atom was first determined by bombarding heavy atomic targets with alpha particles. The alpha particles are the nuclei of Helium atom. Radioactive substances emit alpha particles. They are found suitable to be used as projectiles. These particles have been found to possess kinetic energy of the order of several MeV’s. Such high energetic particles can come very close to the target nuclei such as gold. The alpha particles under the influence of Coulomb interaction are scattered along different directions. The trajectories of the projectiles in the classical picture can be obtained by solving Newton’s equation of motion.

The quantity that measures the outcome of the scattering is the differential cross-section. This quantity is a measure of the ratio of the number of projectiles glancing beyond the target along a solid angle to the incoming projectile intensity. A researcher must have a clear picture of this idea. This is the quantity an experimental physicist measures with his instruments.

A counter receives these projectiles and records their number along different angles around the target. We know the initial intensity of the projectiles by carrying out initial counts.

The whole study of classical Rutherford Scattering runs in three phases. In the first phase the researcher learns to set up the mathematical problem. Then the equation of motion for the projectiles moving around the fixed target I written. These equations will later be changed into differential equations. He will learn to solve them to determine the orbits of the projectiles. With the knowledge of the orbits he will compute a closed form of the differential cross-sections.

In the second phase the researcher will write a Mathematica program to plot the differential cross-section as a function of the scattering angle θ. With this program he will plot graphs for different substances for different projectile energies. In the third phase he will expand the program to graph the cross-sections as a function of two variables, namely the scattering angle and the kinetic energy.
ATM Networks

ATM stands for asynchronous transfer mode. ATM networking provides both circuit and packet-switching services with the same protocol. Students researchers will investigate the major benefits of ATM networking: scalability, statistical multiplexing and traffic integration.

Scalability is one of the most valuable properties of ATM. The main factor in providing scalability are a switched-based architecture and a common cell structure across all ATM components. Conventional LAN technologies such as Ethernet are limited by the delays involved in the attempts to coordinate the sharing of the link bandwidth. Students will investigate how ECSU users access the ATM network in the student CS research laboratory located in Lester Hall with a variety of connections, media types and applications. They will begin by studying the common cell structure which allows data to be transported in the same format over the entire network regardless of the data rates of the intervening subnetworks. The effect of uniform cell format on traffic integration will be analyzed as data from different sources are readily integrated into the ATM network and transmitted concurrently.

Students will investigate how statistical variations in the traffic load can be smoothed out as many sources are multiplexed to result in better utilization of shared resources. A minimum of 18 random sources will be studied to exploit the benefits of statistical multiplexing and to avoid the possibility that there are too few traffic sources.

This is to certify ___________________________ has been interviewed and accepted onto the ATM Networking Research Team. Written below are any additional responsibilities assigned to this student.

Dr. Linda Hayden, instructor date

Dr. Linda Hayden, P I date

Student Research Project in Computer Networking

Student multimedia researchers will learn to use Authorware by Macromedia and Aldus Persuasion to create multimedia documents. Students will focus on information architecture and human-factor issues that help determine the size of and connections between information modules, and related high-level issues of interest to any planning to compose, evaluate or purchase multimedia documents. They will learn to use multimedia authoring tools with their suite of production tools (including word processor, a desktop publishing package, a video edition system, an audio capture program, and some kind of synchronization tool to make all the disparate elements come out of the computer at the same time.) to produce documentation of the Nurturing ECSU Research Talent program and the Center of Excellence in Undergraduate Research program.

Their research, using techniques of sound and video conversion, integration and compression, will serve to document the work of all research teams. Researchers will explore several models that group information in different ways. Researchers will assume the various project management tasks including audio technicians, writers, graphic designers, and editors.

This is to certify ___________________________ has been interviewed and accepted onto the Multimedia Authoring Research Team. Written below are any additional responsibilities assigned to this student.

Mr. Derek Wilkens, instructor date

Dr. Linda Hayden, P I date
Student Research Project in Physics

Rutherford Scattering

The structure of the atom was first determined by bombarding heavy atomic targets with alpha particles. The alpha particles are the nuclei of Helium atoms. Radioactive substances emit alpha particles. They are found suitable to be used as projectiles. These particles have been found to possess kinetic energy of the order of several MeV's. Such high energetic particles can come very close to the target nuclei such as gold. The alpha particles under the influence of Coulomb interaction are scattered along different directions. The trajectories of the projectiles in the classical picture can be obtained by solving Newton's equation of motion.

The quantity that measures the outcome of the scattering is the differential cross-section. This quantity is a measure of the ratio of the number of projectiles glancing beyond the target along a solid angle to the incoming projectile intensity. A researcher must have a clear picture of this idea. This is the quantity an experimental physicist measures with his instruments.

A counter receives these projectiles and records their number along different angle around the target. We know the initial intensity of the projectiles by carrying out initial counts.

The whole study of classical Rutherford Scattering runs in three phases. In the first phase the researcher learns to set up the mathematical problem. Then the equation of motion for the projectiles moving around the fixed target is written. These equations will later be changed into differential equations. He will learn to solve them to determine the orbits of the projectiles. With the knowledge of the orbits he will compute a closed form of the differential cross-sections.

In the second phase the researcher will write a Mathematica program to plot the differential cross-section as a function of the scattering angle with this program he will plot graphs for different substances for different projectile energies. In the third phase he will expand the program to graph the cross-sections as a function of two variables, namely the scattering angle and the kinetic energy.

This is to certify [student researcher's name] has been interviewed and accepted onto the Mathematics Research Team. Written below are any additional responsibilities assigned to this student.

List two reference books that the student must read.

1.
2.

Dr. Dipendra Sengupta, Instructor date

Dr. Linda Hayden, PI date

Student Research Project in Parallel Processing

The Sieve of Eratosthenes has long been a standard benchmark program for integer operations on a sequential computer. We will develop a parallel prime number sieve to demonstrate several concepts fundamental to parallel computing. This example also illustrates a process of parallel program development which can be usefully applied to many problems.

After defining the problem and a sequential solution, we will begin the development of a parallel algorithm by analyzing the actions which must be repeated and the order constraints on those actions. This makes it possible to define a maximally parallel, although impractical, algorithm. We will then develop a practical algorithm which can be mapped to a network of message passing processors, a pipeline.

The mapping of the algorithm to the array of processors brings up the issue of load balancing. We will develop an algorithm for static load-balancing, allocating the work so that each processor will have about the same amount to do.

We will investigate the performance of the algorithms by measuring the speedup and efficiency. Amdahl's Law gives theoretical limits on the speedup which can be obtained from parallel computers. This will lead to a final refinement of the algorithm based on using an efficient sequential algorithm within processors while maintaining the pipeline between processors.

The final aspect of algorithm development will be an analysis of communication issues: 1) Buffering between the processors reduces processor idle time spent waiting for communication with a neighboring processor; and 2) The effect of packing the integer messages into larger messages between processors so as to increase overlapping of communication with computation.

This is to certify [student researcher's name] has been interviewed and accepted onto the Parallel Processing Research Team. Written below are any additional responsibilities assigned to this student.

Dr. Johnny Houston, Instructor date

Dr. Linda Hayden, PI date
Student Research Project in Mathematics

Fractals/Chaos
Fractals have captured the attention, enthusiasm and interest of many people around the world. In our Fractal, Dynamic and Chaos research project, we will investigate the underlying mathematical principles and characteristics behind fractals, chaos and dynamics. In addition, we will investigate how fractal, chaos and dynamics relate to each other and to many aspects of mathematics as well as to natural phenomena. The final aspect of the project is to create some fractals using computers.

The goals of the project will be achieved in several stages. In the first stage, students will be given handouts concerning some preliminaries of dynamical systems and their examples. Students will be asked to predict the fate of orbit of some simple (non-linear) quadratic dynamical systems and investigate the period doubling route to chaos. At this stage, two computer programs will be developed to see this numerical observation in computer graphics.

In the third stage, using several activity sheets, the student researchers will be involved directly in constructing, counting, computing, visualizing and measuring related to deterministic fractal, the Sierpinski triangle and the Pascal triangle. Students will also investigate geometric relationships between Pascal’s triangle and the Sierpinski triangle by coloring rule using modular arithmetic. This relationship provides the link to Cellular automata. Students will explore a whole class of cellular automata which are closely related to the evolution of divisibility patterns in Pascal’s triangle.

The final stage of the project, using L-systems the researchers will construct fractals in computer and growth of a plant. L-systems are string rewriting machines which are characterized by the fact that the production rules are applied simultaneously to all symbols of the input string.

This is to certify ___________________________ has been interviewed and accepted onto the Mathematics Research Team. Written below are any additional responsibilities assigned to this student.

List two reference books that the student must read.

1.
2.

Dr. Dipendra Sengupta, Instructor date Dr. Linda Hayden, P I date

Student Research Project in Graphics/Animation

3-D Modeling and Viewing
The computer animation project, which students will investigate, will consist of three stages. In the first stage, the student researchers will be given lectures concerning modeling and visualization. For the modeling, they will learn how to represent a solid primitive using the boundary representation. They will also be taught how to obtain a new solid object from existing ones. As to visualization, they will be given the concepts of 3D viewing, shading and texturing.

In the second stage, the students will build a solid modeling tool based on RenderMan, which will provide a set of primitives such as cube, sphere, cylinder, cone and torus, and a set of boolean operators like union, intersection, and difference. The tool will also be capable of building a solid object from a 2D object using sweeping (including translational and rotational sweeps).

In the third stage, the students will define scenes using the tools they built, and describe the surface details like shading and texturing using RenderMan’s Shader Language. They will also put different kinds of light sources into the scenes. Finally, they will develop frames for animation by either moving part of the scene or moving the camera, and putting these frames together for playing.

This is to certify ___________________________ has been interviewed and accepted onto the Graphics/Animation Research Team. Written below are any additional responsibilities assigned to this student.

List two reference books that the student must read.

1.
2.

Dr. Jingyuan Zhang, Instructor date Dr. Linda Hayden, P I date
Future Directions
"Center of Excellence in Undergraduate Research"
Proposal Abstract & Exerts

Proposal Control # 95019ISS - ARO
ABSTRACT

The proposed effort would establish a Center of Excellence in Undergraduate Research at Elizabeth City State University in the fields of Chemistry, Computer Science, Math and Physics (CCMP). This program will include both an academic year component and a summer component and will involve two departments at ECSU: Math and Computer Science Department and the Department of Physical Science.

The proposed project focuses on undergraduate education and undergraduate research experiences in CCMP. Nurturing these young researchers will be our primary concern. Highest priority will be given to providing them with the guidance and skills to insure their entrance and success in graduate school. Further, each student will learn the fundamentals of scientific research as they conduct investigations in CCMP disciplines.

The proposed project is based on the successful program entitled "Nurturing ECSU Research Talent (NERT)" funded by the Office of Naval Research. NERT focuses on undergraduate computer science majors. ONR proudly considers NERT as part of its Science and Engineering Education Initiative. Further, the NERT program should serve as a model for increasing the quality of science education and increasing the number of minority students trained in CCMP disciplines. Therefore, it is the desire of ECSU, at this time, to replicate the Nurturing program in the Physical Science Department while continuing to challenge majors in the Mathematics and Computer Science Department. Proposed COE activities address both student development and infrastructure.

To accomplish the objectives ECSU has partnered with several other organizations and institutions: Georgia State University, Georgia Technical Institute, Old Dominion University, American University, North Carolina A&T and Hampton University. The COE would formalize the relationships with these PH.D. granting institutions. Partners have agreed to participate in the visiting lecture series, to support ECSU CCMP research activities and facilitate student entrance into graduate programs. ADNET Systems, industrial partner(8(A) certified), will mentor the Networking research team and insure the integrity of the network connections on which the on-line mentoring will depend. ECSU is a small school that makes a big effort to nurture its students.
Center of Excellence in Undergraduate Research

Physics & Chemistry Research Teams

Electron Scattering
Dr. Choudhury, ECSU Mentor
Dr. Muang, HU Mentor

Photochemistry
Dr. Koker, ECSU Mentor
Dr. Roscher, AU Mentor

GS/MS
Dr. Yakubu, ECSU Mentor
Dr. Kent, NCA&T Mentor

Mathematics & Computer Science Research Teams

Graphics and VR
Dr. Zhang, ECSU Mentor
Dr. Owen, GSU Mentor

Parallel Processing
Dr. Houston, ECSU Mentor
Dr. Morrell, HU Mentor

Fractals & Chaos
Dr. Sengupta, ECSU Mentor
Dr. Casey, AU Mentor

Networking
Dr. Hayden, ECSU Mentor
ADNET Industrial Mentor
Dr. Wahab, ODU Mentor

Multimedia Authoring
Mr. Wilkens, ECSU Mentor
Dr. McGuire, GATech Mentor
Facilities and Equipment

It is important that the Center of Excellence provide state-of-the-art equipment to support the research activities of the students and faculty involved. Following is a description of the equipment required for each of the research teams involved in the Center of Excellence at ECSU.

Facilities

ECSU proposes to renovate 113 Lester Hall, 114 LH and 115 LH, to house the Center of Excellence in Undergraduate Research offices. Offices for the Principal Investigator, Network Technician, Clerical Support and Tutors will be available in the 113-115 LH complex. Space will also be available for student research and study activities. The physical science equipment will be located in the J.R. Jenkins Science Complex which is adjacent to Lester Hall. Internet access will be available to student/faculty researchers in both Lester Hall and the Science Complex.

ECSU has recently renovated 116 Lester Hall to accommodate a lecture room and a 12 station computer laboratory which has ATM networking. This facility will also be available to the Center of Excellence in Undergraduate Research. In addition the ECSU Library, which is less than 50 feet from Lester Hall has 2-way teleconferencing and a video conference room. That facility will also be available to the COE.

Photochemistry Research Support Equipment

The Photochemistry Research Team Projects will be conducted on a modular instrument developed by SLM-AMINCO, namely, the SLM-AMINCO model 8100 Spectrofluorometer. The application capabilities of this instrument are remarkable with respect to the Photochemistry research to be conducted. This modular instrument enables the measurement of excitation, emission, and synchronous spectra quantitative analysis; time traces(kinetics); intracellular measurements; 3-D scans; polarization/anisotropy; excitation/emission matrices. With optional accessories or system upgrade, experiments pertinent to stopped flow measurements, quantitative fluorescence imaging and fluorescence lifetime measurements can be made. Cost: $55,000.00

GRAPHICS Research Support Equipment

The Graphics Research Team Projects will be conducted on a Silicone Graphics ONYX. The ONYX provides the student researchers with a unique combination of CPU computing power, advanced graphics, throughput(I/O), and real-time video performance on a single highly scalable computing platform. In addition, the ONYX will provide Graphics researchers with a wealth of development tools and libraries. Cost $98,000.00
NETWORKING Research Support Equipment
The Networking Research Team Projects would center around integration of the ONYX, Pentium PCs, and Indy workstations into the Asynchronous Transfer Mode (ATM) network which is currently being installed in Lester Hall. Although a considerable amount will be required for reference material, and peripherals, there is no additional hardware required for projects which the system administration research team will conduct. Cost $0.00

Multimedia Authoring Research Support Equipment
The Multimedia Authoring Research Team Projects will be conducted on two silicone graphics INDY workstations. INDY gives the multimedia researcher the ability to incorporate sound, video, and high quality 3D graphics into their projects. Multimedia Researchers will make considerable use of the Build-in Video and Audio Subsystems, and standard tools such as IndyCam color digital video camera, integrated video MediaMail software and options such as desktop conferencing and IndyVideo. These features will allow the multimedia authoring research team to capture, create and communicate their ideas. Only two INDY workstations are requested since the multimedia authoring research team will also have access to the ONYX. Cost $10,800.00 per Indy.

Fractals/Chaos Research Support Equipment
The Fractals/Chaos Research Team Projects will be conducted on a Pentium PC platform which will support the use of MATHEMATICA software. The Fractals/Chaos research team will also have use of the ONYX for visualization purposes and the INDY workstations. Cost $4500.00 per PC.

Parallel Processing Research Support Equipment
The Parallel Processing Research Team Projects will be conducted on the CRAY supercomputer and nCube located on the campus of Hampton University. Each student on the Parallel Processing Research Team will be assigned accounts on the CRAY and nCube for use in their research assignments. Students will access the CRAY and nCube using equipment currently on the UMFORT.ECSU.EDU research lab network. No additional equipment is required for the parallel processing research team. Cost $0.0

GS/MS Research Support Equipment
The GS/MS Research Team Projects will be conducted using a gas chromatography-mass spectrometer (GS/MS). The GS/MS provides a powerful tool for quantitative and qualitative identification of components of complex mixtures. It will allow students to identify a particular component by comparing its retention time with the retention times of standards. Students will confirm the identity and concentration of the gas chromatographic peak by mass spectrometry. Cost $62,364.60

Electron Scattering Research Support Equipment
The Electron Scattering Research Team Projects will be conducted using three PENTIUM PC running MATHEMATICA software. The calculus of electron scattering will initially be a large part of the research of this team. MATHEMATICA will support their initial investigations. Students will also have use of the equipment located in the physics department of Hampton University where researchers will spend summers. Cost $4500.00 per PC.

ECSU Center of Excellence in Undergraduate CCP Research
EXPECTED RESULTS

We expect this program to result in several very important outcomes. First, the close working relationships students will experience with their research advisors will give them additional insights into course material. We expect that these students will maintain their qualifying GPA and be retained in the program. Success will be measured by the number of students retained in the program.

ECSU has the highest retention rate of any of the 16 campuses in the University of North Carolina system. Our retention rate is 48% as compared with the next highest of 45.8% at UNC-Charlotte, 38.2% at North Carolina State University, 29.5% at North Carolina A&T, and 12.1% at Fayetteville State University. We fully expect to retain each and every one of the student participants in this program. It should be noted that none of the students in our Pilot program withdrew from the University. Success in retaining these students in the program will be measured by the number who graduate from ECSU.

We expect, on a larger scale, to nurture the research abilities of our many highly motivated, academically talented CCMP students. Based on the Pilot program we expect our student researchers to have their research papers accepted and presented at two national conferences each year. We will also encourage students to submit their research for publication. We expect that at least one of our researchers will have their papers accepted for publication each year. Success will be measured by the number of student research papers accepted for presentation and for publication.

Second, given the emphasis we will place on GRE preparation and given the many opportunities we will give these students to take the GRE, we expect that the final GRE scores for our graduating seniors will be markedly higher than those we now see. Success will be measured in terms of the percent of increase over average GRE scores of previous graduates.

Third, undergraduate research experience will give our students the competitive edge they will need in their graduate studies. In addition to the fellowships from partner institutions, participants will be encouraged to start early selecting graduate schools and seeking fellowships to finance their graduate studies. We will require all seniors to apply for graduate school admission. Success will be measured by the number of COE student researchers who elect to go on to graduate school in a CCMP discipline.

ECSU Center of Excellence in Undergraduate CCMP Research
Schedule of Major Program Activities

Summer & Fall 1995
- Make selections of research students
- acquire research equipment
- hold 1 meeting with partners
- conduct 2 research training seminars weekly
- start applications process for summer'98 internships
- hold visiting lecturer seminars
- monitor academic/research/scholarly activities
- students take the December offering of the GRE
- assist seniors with graduate school applications
- hire tutors and network technician

Spring 1996
- complete application process for internships
- evaluate program progress & make annual report
- conduct 2 research training seminars weekly
- hold 1 meeting with partners
- hold visiting lecturer seminars
- Make selections of research students
- monitor academic/research/scholarly activities

Summer 1996
- complete annual report
- monitor student internships
- conduct summer program at ECSU and HU

Fall 1996
- hold 1 meeting with partners
- hold visiting lecturer seminars
- monitor academic/research/scholarly activities
- begin application process for summer'97 internships
- students take the December offering of the GRE
- assist seniors with graduate school applications

Spring 1997
- complete applications for internships
- evaluate program progress
- make annual report
- hold 1 meeting with partners
- hold visiting lecturer seminars
- monitor academic/research/scholarly activities

Summer 1997
- complete annual report
- monitor student internships
- conduct summer program at ECSU and HU

Fall 1997
- hold 1 meeting with partners
- conduct 2 research training seminars weekly
- hold visiting lecturer seminars
- monitor academic/research/scholarly activities
- begin application process for summer'98 internships
- students take the December GRE
- assist seniors with graduate school applications

Spring 1998
- complete applications for internships
- evaluate program progress
- hold 1 meeting with partners
- conduct 2 research training seminars weekly
- hold visiting lecturer seminar
- monitor academic/research/scholarly activities

Summer 1998
- complete annual report
- monitor student internships
- conduct summer program at HU and ECSU
Collaborations:
American University, Math and Chemistry Depts
Old Dominion University, Computer Science Dept.
Hampton University, Computer Science Dept.
North Carolina A&T University, Chemistry Dept.
Georgia Technical Institute, Multimedia Center
Georgia State University, Computer Science Dept.
ADNET Systems, Inc.

University Partnerships:
ECSU has worked diligently at building relationships with each of the partner universities. It is now our desire to formalize these relationships through visiting lecture programs, fellowship programs and on-line mentoring of ECSU research faculty and students.

Industrial Partner
ADNET Systems Inc., is a small disadvantage company based in Washington D.C. metropolitan area. ADNET has received small disadvantaged business certification under the U.S. Small Business Administration’s 8(a) program. ADNET possesses superior technical ability in the area of data communications, computer networking, information management system, system analysis, system engineering and system integration. ADNET will provide mentoring for the Networking Research Team.
ADNET has extensive knowledge in various local as well as wide area network topologies and schemes. ADNET has developed device driver applications for various UNIX-based workstations such as Sun Sparc, Silicon Graphics and others. The company is well versed in design, implementation and management of various LAN architecture such as: 10BaseT, FDDI, ATM, etc. to run DECnet, TCP/IP, XNS, SNA and AppleTalk protocols. Most importantly, the company has been in responsibility for installation of the ECSU ATM network.

<table>
<thead>
<tr>
<th>Partner</th>
<th>Research Area</th>
<th>Partner Provides</th>
<th>Partner Receives</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODU (CS)</td>
<td>Networking</td>
<td>• On-line mentoring</td>
<td>• 1 fellowship/dept</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visiting Lectures</td>
<td>• Travel money: $2K/dept</td>
</tr>
<tr>
<td>AU (Math, Chem)</td>
<td>Fractal/Chaos Photochemistry</td>
<td></td>
<td>• Honorarium: $3K/dept</td>
</tr>
<tr>
<td>HU (CS, Physics)</td>
<td>Parallel Processing Electron Scattering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATech (Comm)</td>
<td>Multimedia Authoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCA&T</td>
<td>GS/MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSU (CS)</td>
<td>Graphics</td>
<td>• On-line mentoring</td>
<td>• Travel money: $2K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visiting Lectures</td>
<td>• Honorarium: $3K</td>
</tr>
<tr>
<td>ADNET Systems</td>
<td>Networking</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>