
Fundamental Challenges in Mobile Computing
M. Satyanarayanan

School of Computer Science
Carnegie Mellon University

Abstract
This paper is an answer to the question: "What is unique and conceptually different about

mobile computing?" The paper begins by describing a set of constraints intrinsic to mobile
computing, and examining the impact of these constraints on the design of distributed systems.
Next, it summarizes the key results of the Coda and Odyssey systems. Finally, it describes the
research opportunities in five important topics relevant to mobile computing: caching metrics,
semantic callbacks and validators, resource revocation, analysis of adaptation, and global
estimation from local observations.

• Mobility is inherently hazardous.1. Introduction
A Wall Street stockbroker is more likely to be

What is really different about mobile computing? The mugged on the streets of Manhattan and have his
computers are smaller and bits travel by wireless rather laptop stolen than to have his workstation in a
than Ethernet. How can this possibly make any difference? locked office be physically subverted. In addition to
Isn’t a mobile system merely a special case of a distributed security concerns, portable computers are more
system? Are there any new and deep issues to be vulnerable to loss or damage.
investigated, or is mobile computing just the latest fad? • Mobile connectivity is highly variable in

performance and reliability.This paper is my attempt to answer these questions. The
Some buildings may offer reliable, high-bandwidthpaper is in three parts: a characterization of the essence of
wireless connectivity while others may only offermobile computing; a brief summary of results obtained by
low-bandwidth connectivity. Outdoors, a mobilemy research group in the context of the Coda and Odyssey
client may have to rely on a low-bandwidth wirelesssystems; and a guided tour of fertile research topics
network with gaps in coverage.awaiting investigation. Think of this paper as a report from

the front by an implementor of mobile information systems • Mobile elements rely on a finite energy source.
While battery technology will undoubtedly improveto more theoretically-inclined computers scientists.
over time, the need to be sensitive to power
consumption will not diminish. Concern for power1.1. Constraints of Mobility
consumption must span many levels of hardwareMobile computing is characterized by four constraints:
and software to be fully effective.• Mobile elements are resource-poor relative to static

elements. These constraints are not artifacts of current technology,
For a given cost and level of technology, but are intrinsic to mobility. Together, they complicate the
considerations of weight, power, size and design of mobile information systems and require us to
ergonomics will exact a penalty in computational rethink traditional approaches to information access.
resources such as processor speed, memory size,
and disk capacity. While mobile elements will 1.2. The Need for Adaptation
improve in absolute ability, they will always be

Mobility exacerbates the tension between autonomy andresource-poor relative to static elements.
interdependence that is characteristic of all distributed
systems. The relative resource poverty of mobile elements

This research was supported by the Air Force Materiel Command as well as their lower trust and robustness argues for
(AFMC) and ARPA under contract number F196828-93-C-0193. reliance on static servers. But the need to cope with
Additional support was provided by the IBM Corp. and Intel Corp. The

unreliable and low-performance networks, as well as theviews and conclusions contained here are those of the authors and should
not be interpreted as necessarily representing the official policies or need to be sensitive to power consumption argues for self-
endorsements, either express or implied, of AFMC, ARPA, IBM, Intel, reliance.
CMU, or the U.S. Government.

Any viable approach to mobile computing must strike a
balance between these competing concerns. This balance
cannot be a static one; as the circumstances of a mobile
client change, it must react and dynamically reassign the
responsibilities of client and server. In other words, mobile
clients must be adaptive.

use anticipatory caching for availability, because the inexpensive validator for cached data satisfying some
number of objects cached (resident set size) is much larger complex criteria.
than the number of objects in current use (working set

Consider the example of a transcontinental distributed
size).

system in the United States. Even at the speed of light,
The Coda solution is to maintain cache coherence at communication from one coast to the other takes about 16

multiple levels of granularity and to use callbacks [11]. milliseconds. A round trip RPC will take over 30
Clients and servers maintain version information on milliseconds. During this time, a client with a 100 MIP
individual objects as well as entire subtrees of them. Rapid processor can execute over 3 million instructions! Since
cache validation is possible by comparing version stamps processor speed can be expected to increase over time, the
on the subtrees. Once established, validity can be lost computational opportunity represented by this scenario
maintained through callbacks. This approach to cache will only worsen.
coherence trades precision of invalidation for speed of

Over time, the synchronous model implicit in the use of
validation. It preserves correctness while dramatically

RPC will become increasingly untenable. Eventually, very
reducing the cost of cache coherence under conditions of

wide-area distributed systems will have to be structured
weak connectivity. Usage measurements from Coda

around an asynchronous model. At what scale and
confirm that these potential gains are indeed achievable in

timeframe this shift will occur depends on two factors: the
practice [12].

substantially simpler design, implementation, and
The idea of maintaining coherence at multiple debugging inherent in the synchronous model, and the

granularities can be generalized to a variety of data types considerably higher performance (and hence usability) of
and applications in the following way: the asynchronous model.

• a client caches data satisfying some predicate P One promising asynchronous model is obtained by
from a server. combining the idea of cheap but conservative validation

with the style of programming characterized by optimistic• the server remembers a predicate Q that is much
concurrency control [8]. The resulting approach bearscheaper to compute, and possesses the property Q

implies P. In other words, as long as Q is true, the some resemblance to the use of hints in distributed
cached data it corresponds to is guaranteed to be systems [19], and is best illustrated by an example.
valid. But if Q is false, nothing can be inferred

Consider remote control of a robot explorer on theabout that data.
surface of Mars. Since light takes many minutes to travel

• On each update, the server re-evaluates Q. If Q from earth to Mars, and emergencies of various kinds may
becomes false, the server notifies the client that its arise on Mars, the robot must be capable of reacting on its
cached data might be stale. own. At the same time, the exploration is to be directed

live by a human controller on earth — a classic command• Prior to its next access, the client must contact the
server and obtain fresh data satisfying P. and control problem.

We refer to Q as a semantic callback for P, because the This example characterizes a distributed system in which
interpretation of P and Q depends on the specifics of the communication latency is large enough that a synchronous
data and application. For example, P would be an SQL design paradigm will not work. The knowledge of the
select statement if one is caching data from a relational robot’s status will always be obsolete on earth. But, since
database. Or it could be a piece of code that performs a emergencies are rare, this knowledge will usually differ
pattern match for a particular individual’s face from a from current reality in one of two benign ways. Either the
database of images. Q must conform to P: a simpler differences are in attributes irrelevant to the task at hand, or
select statement in the first case, and a piece of code the differences can be predicted with adequate accuracy by
that performs a much less accurate pattern match in the methods such as dead reckoning. Suppose the robot’s state
second case. In Coda, P corresponds to the version number is P, as characterized in a transmission to earth. Based on
of an object being equal to a specific value (x), while Q some properties, Q, of this state, a command is issued to
corresponds to the version number of the encapsulating the robot. For this command to be meaningful when it
volume being unchanged since the last time the version reaches the robot, Q must still be true. This can be verified
number of the object was confirmed to be x. by transmitting Q along with the command, and having the

robot validate Q upon receipt. For this approach to beSemantic validation can be extended to domains beyond
feasible, both transmitting and evaluating Q must be cheap.mobile computing. It will be especially valuable in

geographically widespread distributed systems, where the There are, of course, numerous detailed questions to be
timing difference between local and remote actions is too answered regarding this approach. But it does offer an
large to ignore even when communication occurs at the intriguing way of combining correctness with performance
speed of light. The predicate Q in such cases serves as an in very wide-area distributed systems.

4

3.2.1. Some Open Questions • What strategies does one use if multiple resources
must be simultaneously revoked?• Under what circumstances are semantic callbacks

most useful? When are they not useful? • How does one distinguish between resources whose
revocation is easy to recover from and those it is• What forms can P and Q take for data types and
expensive or impossible to recover from?applications in common use? How does one

estimate their relative costs in those cases? • How does one handle deadlocks during revocation?
• Can P and Q really be arbitrary code? Are there

3.4. Analysis of Adaptationrestrictions necessary for efficiency and
How does one compare the adaptive capabilities of twopracticality?

mobile clients? The primary figure of merit is agility, or
• How does one derive Q from P quickly? Are there the ability of a client to promptly respond to perturbations.

restrictions on P that make this simpler?
Since it is possible for a client to be more agile with respect

• How does one trade off the relative cost and benefit to some variables (such as bandwidth) than others (such as
of P and Q? Is the tradeoff space discrete or battery power), agility should be viewed as a composite
continuous? Can this tradeoff be made adaptive? metric.

A system that is highly agile may suffer from instability.3.3. Algorithms for Resource Revocation
Such a system consumes almost all its resources reacting toApplication-aware adaptation complicates the problem of
minor perturbations, hence performing little usefulresource management. In principle, the system owns all
computation. The ideal mobile client is obviously one thatresources. At any time, it may revoke resources that it has
is highly agile but very stable with respect to all variablestemporarily delegated to an applicaton. Alas, reality is
of interest.never that simple. A variety of factors complicate the

problem. Control theory is a domain that might have useful
insights to offer in refining these ideas and quantifyingFirst, some applications are more important than others.
them. Historically, control theory has focused on hardwareAny acceptable revocation strategy must be sensitive to
systems. But there is no conceptual reason why it cannotthese differences. Second, the cost of revoking the same
be extended to software systems. Only carefulresource may be different to different applications. For
investigation can tell, of course, whether the relevance isexample, reducing the bandwidth available to one
direct and useful or merely superficial.application may result in its substantially increasing the

amount of processing it does to compensate. A similar 3.4.1. Some open questions
reduction in bandwidth for another application may result • What are the right metrics of agility?
in a much smaller increase in processing. A good

• Are there systematic techniques to improve therevocation strategy must take into account these differential
agility of a system?impacts. Third, there may be dependencies between

processes that should be taken into account during • How does one decide when a mobile system is
revocation. For example, two processes may have a "agile enough"?
producer-consumer relationship. Revoking resources from

• What are the right metrics of system stability?one process may cause the other to stall. More complex
dependencies involving multiple processes are also • Can one develop design guidelines to ensure
possible. Unless revocation takes these dependencies into stability?
account, hazards such as deadlocks may occur.

• Can one analytically derive the agility and stability
Revocation of resources from applications is not common properties of an adaptive system without building it

first?in current systems. Classical operating systems research
has focused on resource allocation issues rather than

3.5. Global Estimation from Local Observationsresource revocation. As a result there is currently little
Adaptation requires a mobile client to sense changes incodified knowledge about safe and efficient techniques for

its environment, make inferences about the cause of theserevocation. This deficiency will have to be remedied as
changes, and then react appropriately. These imply theapplication-aware adaptation becomes more widely used.
ability to make global estimates based on local

3.3.1. Some open questions observations.
• How does one formulate the resource revocation

To detect changes, the client must rely on localproblem?
observations. For example, it can measure quantities such

• How does one characterize the differential impact of as local signal strength, packet rate, average round-trip
revocation on different applications? times, and dispersion in round-trip times. But interpreting

5

[7] Kumar, P., Satyanarayanan, M.
Flexible and Safe Resolution of File Conflicts.
In Procedings of the 1995 USENIX Technical Conference.

New Orleans, LA, January, 1995.

[8] Kung, H.T., Robinson, J.
On Optimistic Methods for Concurrency Control.
ACM Transaction on Database Systems 6(2), June, 1981.

[9] Lu, Q., Satyanarayanan, M.
Improving Data Consistency in Mobile Computing Using

Isolation-Only Transactions.
In Proceedings of the Fifth Workshop on Hot Topics in

Operating Systems. Orcas Island, WA, May, 1995.

[10] Moravec, H.
Mind Children.
Harvard University Press, Cambridge, MA, 1988.

[11] Mummert, L.B., Satyanarayanan, M.
Large Granularity Cache Coherence for Intermittent

Connectivity.
In Proceedings of the 1994 Summer USENIX Conference.

Boston, MA, June, 1994.

[12] Mummert, L.B., Ebling, M.R., Satyanarayanan, M.
Exploiting Weak Connectivity for Mobile File Access.
In Proceedings of the Fifteenth ACM Symposium on

Operating Systems Principles. Copper Mountain
Resort, CO, December, 1995.

[13] Noble, B., Satyanarayanan, M.
An Empirical Study of a Highly-Available File System.
In Proceedings of the 1994 ACM Sigmetrics Conference.

Nashville, TN, May, 1994.

[14] Noble, B., Price, M., Satyanarayanan, M.
A Programming Interface for Application-Aware

Adaptation in Mobile Computing.
Computing Systems 8, Fall, 1995.

[15] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki,
M.E., Siegel, E.H., Steere, D.C.
Coda: A Highly Available File System for a Distributed

Workstation Environment.
IEEE Transactions on Computers 39(4), April, 1990.

[16] Satyanarayanan, M.
The Influence of Scale on Distributed File System Design.
IEEE Transactions on Software Engineering 18(1),

January, 1992.

[17] Satyanarayanan, M., Kistler, J.J., Mummert, L.B., Ebling,
M.R., Kumar, P., Lu, Q.
Experience with Disconnected Operation in a Mobile

Computing Environment.
In Proceedings of the 1993 USENIX Symposium on

Mobile and Location-Independent Computing.
Cambridge, MA, August, 1993.

[18] Steere, D.C., Satyanarayanan, M.
Using Dynamic Sets to Overcome High I/O Latencies

During Search.
In Proceedings of the Fifth Workshop on Hot Topics in

Operating Systems. Orcas Island, WA, May, 1995.

[19] Terry, D.B.
Caching Hints in Distributed Systems.
IEEE Transactions in Software Engineering SE-13(1),

January, 1987.

7

