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SUMMARY 

The edge-stress problem for a [±45]s graphite/epoxy laminate was examined 
in detail. A review of the literature on this problem showed that the inter- 
laminar normal stress oz    distributions along the interface between the +45° 
and -45° plies, obtained by various investigators, disagreed in magnitude and 
sign. In particular, a finite difference solution and a perturbation solution 
predicted a tensile oz,  whereas the finite element methods predicted a com- 
pressive stress. Since a stress singularity exists at the intersection of the 
interface and the free edge, the differences in magnitude of the peak stress 
were expected, but not the difference in the sign. 

This paper investigates the reliability of the displacement-formulated 
finite element method in analyzing the edge-stress problem. Analyses of two 
well-known elasticity problems, one involving a stress discontinuity and one 
a singularity, showed that the finite element analysis yields accurate stress 
distributions everywhere except in two elements closest to the stress discon- 
tinuity or singularity. Stress distributions for a [±45]s laminate showed the 
same behavior near the singularity as found in the well-known problems with 
exact solutions. The displacement-formulated finite element method, therefore, 
appears to be a highly accurate technique for calculating interlaminar stresses 
in composite laminates. The disagreement among the numerical methods was 
attributed to the unsymmetric stress tensor at the singularity. 

INTRODUCTION 

Delamination is a critical failure mechanism for laminated composite 
materials. Before delamination can be predicted, analyses must be developed 
to accurately calculate the interlaminar stresses that cause delamination. 
Several attempts have been made to obtain accurate stress distributions in a 
finite-width laminate subjected to uniform axial strain (refs. 1 to 10). 
Finite difference (refs. 1 and 3), boundary-layer theory (ref. 4), extended 
Galerkin method (ref. 7), and finite element method (refs. 2, 6, 8, 9, and 10) 
were used in these studies. 

For the angle-ply laminate, [±45]s, the interlaminar normal stress dis- 
tributions obtained by various investigators disagree in both magnitude and 
sign. Since a stress singularity exists at the intersection of the free edge 
and the interface (ref. 10), the differences in magnitude were expected but 
the differences in the sign were not. 

A possible source of these discrepancies is the way different numerical 
methods behave near stress singularities. Verification of a particular analysis 
is complicated by the lack of an exact solution for the edge-stress problem. 
However, if an analysis can be shown to behave correctly for similar problems 
that do have exact solutions, one's confidence in the analysis is bolstered. 



In this vein, the present paper investigates the use of displacement formulated 
finite element analysis for solving the edge-stress problem. First, the history 
of the edge-stress problem is reviewed. Next, the reliability of the finite 
element method for computing edge stresses is investigated. Finally, discrepan- 
cies between the finite element solution and other numerical solutions for the 
edge-stress problem are discussed. 

SYMBOLS 

b semiwidth of the straight-edge laminate,  m 

E Young's modulus for  isotropic material, MPa 

En Young's modulus for  orthotropic material in the i-direction, MPa 

Gjj shear modulus for orthotropic material, MPa 

h ply thickness, m 

p pressure,   kPa 

U,V,W displacement functions,  m 

u,v,w displacements  in the  x-,  y-,  and  z-directions,  m 

x,y,z Cartesian coordinates, m 

e0 uniform axial strain in the x-direction     (e0 = 0.001) 

9 angle between x axis and longitudinal axis   (see fig.   1(a)),  deg 

v Poisson's ratios  for  isotropic material 

Vjj Poisson's  ratios for  orthotropic material 

{o} Cartesian stresses   (see fig.   1(c)), MPa 

Subscripts: 

i 1,2,3 

j 1,2,3 

1,2,3    longitudinal, transverse, and thickness directions, respectively, 
of a unidirectional ply 

DESCRIPTION OF THE EDGE-STRESS PROBLEM 

Figure 1(a) shows a long, symmetric laminate loaded in the x-direction. 
The laminate has a width of 2b and has four plies, each of thickness h. Away 



frcm the ends the displacement in any x = Constant plane  (fig. 1(b)) were 
assumed to be 

u(x,y,z) = e0x + U(y,z) 

v(u,y,z) = V(y,z)      ) (1) 

w(x,y,z) = W(y,z) 
J 

where eQ is a uniform axial strain, and U,V,W are functions of coordinates 
y and z alone.  (See ref. 1.) 

In the analyses each ply is idealized as a homogeneous, elastic orthotropic 
material with the following properties (refs. 1 to 10): 

En = 137.9 GPa (20 x 1 06 psi) 

E22 = E33 = 14.48 GPa (2.1 x l06 psi) 

G12 = G23 = G13 = 5-86 GPa (0.85 x 106 psi) 

V12 = V23 = V13 = 0-21 

The subscripts 1 , 2, and 3 correspond to the longitudinal, transverse, and 
thickness directions, respectively, of a unidirectional ply. 

For convenience, the intersection of the interface between plies and the 
face edge (z = h; y = b in fig. 1(b)) will be referred to as the interface 
corner. Also, the applied uniform axial strain e

0 was arbitrarily set equal 
to 0.001 throughout the study. 

SURVEY OF THE LITERATURE 

The edge-stress problem for composite materials has received considerable 
attention in recent literature. However, significant disagreement still exists 
in the computed stress distributions for specific laminates. Table I summarizes 
the work of seme particular investigators. 

For [o/90Js and L90/0]s laminates, the stress distributions obtained by 
most investigators agree qualitatively. However, for [±45]s laminates consider- 
able disagreement exists. As previously mentioned, the interlaminar normal 
stress a

z    very near the interface corner, obtained by various investigators, 
was found to differ in both magnitude and sign depending on the particular 
numerical technique used and the manner in which the free-edge condition was 
accounted for. Figure 2 illustrates the disagreement by comparing a

z    distri- 
butions along the interface (refs. 1, 5, 6, and 10). At the interface corner, 
Pipes and Pagano (ref. 1) and Hsu and Herakovich (ref. 5) obtained a tensile 



value of az. However, Hsu and Herakovich (ref. 5) also reported a compressive 
value of oz    obtained with a finite difference program of Pipes (ref. 3). They 
attributed the negative value to the numerical instability in the finite differ- 
ence solution. Finite element solutions by Wang and Crossman (ref. 6) and Raju 
and Crews (ref. 10) also gave compressive values of az.     (The az stress was 
plotted with an incorrect sign in ref. 6, as confirmed by a personal communica- 
tion with Wang. All the results of the finite element solutions of Wang and 
Crossman presented in this paper were obtained independently by the present 
authors with the same element and idealization as in ref. 6. These independent 
computations were made to facilitate comparisons of stress distributions which 
were not reported in ref. 6.)  Tang and Levy (ref. 4) obtained a zero value for 
az. Herakovich et al (ref. 8) did not present az distributions along the 
interface. 

Because of steep stress gradients near the free edge, all investigators 
except those in reference 9 speculated that a stress singularity exists at the 
interface corner.  In fact, Raju and Crews (ref. 10) showed that stress singu- 
larities exist for [9/(0-90)]s laminates, where 0 ^ 9 ^ 90. 

It is well known that singular points present difficulties in numerical 
and approximate methods and that different numerical methods certainly behave 
differently near such singular points. Further, the behavior of a numerical 
solution near a singularity depends on how well the continuum is modeled and 
what numerical techniques are used near the singular points. All of these 
factors possibly contribute to the discrepancies in figure 2. 

The finite element methods in references 6, 8, and 10 are displacement 
formulations based on the total potential energy theorem. They did not 
explicitly account for a stress singularity. Therefore, they did not model 
exactly the stresses at the singular point.  It is important to investigate 
whether a finite element solution behaves in a consistent and reliable manner 
near singularities and whether accurate stress distributions can be obtained 
arbitrarily close to the singularity by progressive mesh refinement. The 
present paper addresses these questions. 

First, for illustration, same observations are noted regarding the behavior 
of stresses near a stress discontinuity or a stress singularity. Second, finite 
element solutions are examined for two well-known problems involving stress dis- 
continuities and singularities. Lastly, with the insight gained from these 
problems the finite element solutions for the edge-stress problem are studied. 
The differences between the present finite element solution and other numerical 
methods are discussed. 

STRESSES AT DISCONTINUITIES AND SINGULARITIES 

Both stress discontinuities and singularities have unbounded first partial 
derivatives of stress components. For numerical methods, this leads to obvious 
modeling difficulties in the localized region of high stress gradients.  It 
can also cause less obvious problems related to the stress tensor symmetry, for 
example, a™ = ayx. Although all numerical and approximate analytical solu- 
tions assume that the stress tensor is symmetric, the moment equilibrium 



equations of an infinitesimal volume element show that it can be unsymmetric 
if the first partial derivatives of stress  are  unbounded   (see ref.   11,  page 67 
or  ref.   12.   page  40). 

To  illustrate the  unsyimietry of the stress  tensor  at a point of a stress 
discontinuity,  consider  the problem of uniform pressure on part of a semi- 
infinite plane as shown in figure 3(a).    The problem has  an exact solution which 
may be readily derived from equations given in reference 13,  page 127.    The 
solution is  as follows: 

arc tan 

arc tan 

(r^y 

tt 

Jxy 
(x a)2 + y2 

(x - a)y 
(x a)2 + y2 

arc tan 

(x - a)y 
(x a)2 + y2 
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\ x + a/ 

(x + a)2 + y2 

(x + a)y 
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(x + a)y 
(x + a)2 + y2 }      (2) 

J 

The boundary condition on the shear  stress  is that    a^ = 0    along    y = 0, 
which is  satisfied by the above solution.    However,   if the points   (±a,0)   are 
approached along    x = ±a,   then    ax^(±af0)   = +P/TT. 
points   (±a,0)   due to the stress discontinuity. 

Therefore, axy * 'yx at the 

The exact solution was obtained using the Airy stress function which was 
at all interior points developed from  the  equilibrium  equations with    avx = a^ 

of  the region.    The only condition imposed on the solution at the boundary was 
that  it satisfy the applied boundary conditions.    Symmetry of the stress tensor 
at boundary points  is  not  necessary for  the Airy stress  function to exist. 
Similar  results of    axv f avx    can be shown at singular  points,   for  example,  at 'xy 'yx 
the tip of a crack where the stresses are also unbounded. 

The complete elasticity solution accounts for the proper behavior of the 
stress components everywhere in a continuum including the neighborhood of stress 
discontinuities and singularities. On the other hand, numerical and approximate 
analytical solutions allow considerable freedom in specifying the nature of the 
solution and significant errors can be introduced by enforcing incorrect symme- 
try conditions. 

As mentioned earlier, numerical and approximate procedures are based on 
the assumption of a symmetric stress tensor everywhere in the continuum includ- 
ing the points with stress discontinuities and singularities. Therefore, these 
procedures cannot account for an unsymmetric stress tensor at these points, and 
this leads to difficulties. For example, in figure 3(a) prescription of the 
boundary condition oyx  = 0 at (±a,0) automatically sets aw = 0 at these °xy = ° 



points. The numerical solutions obtained with those boundary conditions cannot, 
in general, agree with the exact solution. 

In the displacement-based finite element analyses, the boundary conditions 
on stresses are not specified at discrete points. Rather, on parts of the 
boundary where stresses are prescribed, the boundary conditions are accounted 
for through equivalent nodal forces. The nodal forces represent integrals of 
the surface tractions. These integrals are always bounded whether or not a 
stress singularity or discontinuity exists. Therefore, it is of interest to 
study how the finite element method calculates the stresses near stress discon- 
tinuities or singularities. 

FINITE ELEMENT ANALYSIS OF WELL-KNOWN PROBLEMS 

In this section, finite element solutions for two well-known problems 
involving stress discontinuities and singularities are presented and compared 
with exact solutions. For each problem the relevant domain was idealized by 
eight-noded isoparametric elements. Three meshes - coarse, medium, and fine - 
were used. The medium mesh was obtained by subdividing each element of the 
coarse mesh into four elements.  Similarly, the fine mesh was obtained by sub- 
dividing each element of the medium mesh into four elements. 

Stress Discontinuity 

Figure 3(a) shows a semi-infinite plate with a uniform pressure p over 
the region -a ^ x ^ a. As discussed in the previous section, stress discon- 
tinuities exist at the ends, A and A', of the loaded region.  The exact solu- 
tion for the problem is given in equation (2).  Figure 3(b) shows the fine mesh 
idealization for the problem. 

Figure 4 shows the normalized shear stress distribution ayx on the line 
y = 0, which should be zero.  In this figure and all subsequent figures the fine 
mesh results are represented by a solid curve through the data; only the peak 
value is shown by a diamond symbol. The coarse and medium mesh results are 
shown by circular and rectangular symbols, respectively. The finite element 
stress for the three meshes is approximately zero except in the neighborhood 
of point A. Very near point A the shear stress ayx had relatively large 
positive and negative values. However, for all three meshes the nonzero values 
were confined to two elements on either side of point A. The integral of the 

plOa 
shear stress  \    ayx dx on the y = 0 line was nearly zero for all 

refinements. 

mesh 

Figure 5 presents the normalized shear stress distribution axy on the 
line x = a for  0 ^ y ^ a. The finite element solutions with the three meshes 
agreed very well with the exact solution except in the immediate neighborhood 
of point A. Again, the region of disagreement was confined to the two elements 
nearest the discontinuity. Numerical integration revealed that the equilibrium 



plOa 
condition  \    o^l dy = pa was satisfied approximately for all 

J0 lx=a 
idealizations. 

Stress Singularity 

A bimetallic plate subjected to uniform tension was selected to illustrate 
finite element results near a singularity resulting from an interface between 
dissimilar materials. Figure 6(a) shows the plate with tension on the edges at 
y = ±8a, remote from the interface and with traction free sides along x = 0 
and x = 8a. Stress singularities exist at points A and A' (refs. 14 and 15). 
The finite element idealization for a rigid bottom plate (E11 = °°) is 
shown in figure 6(b). 

The stresses on any radial line from the singular point A (or A') have 
the form (refs. 14 and 15) 

{a} = {c}r"a + 0(r-a+1) (3) 

where {c}  is a vector of constants, r is the radial distance fron point A 
and 0(r~a+1) represents terms of the order r"

a+1  and higher. 

The exponent a is the singularity power. For the case of a rigid bottom 
plate (E11 = oo,), plane strain conditions and v1 = 0.3, the a has a value 
of 0.289. 

As point A is approached along the bond line, y = 0, the shear stress 
ayx «ill be singular with a  = 0.289. But as point A is approached along 
the free edge, x = 0, the shear stress axy has a zero value. Therefore, the 
shear stress and its complement are unequal at the singular point. 

Figure 7 presents the normalized shear stress along the bond line, y = 0 
obtained with the three meshes. Because of the singularity, the shear stress 
had a steep gradient very near x/a =0. The shear stresses for the fine mesh 
were fitted to equation (3) and a was found to be 0.263. This value agrees 
well with the 0.289 obtained frcm references 14 and 15. 

Figure 8 shows the normalized shear stress distribution along the x = 0 
line. As expected, the shear stress was nearly zero all along the free edge 
and was nonzero only near the singular point. As in the stress discontinuity 
case, the regions of nonzero values were confined to two-element thicknesses. 
Numerical integration showed that the integral of the shear stress 
n 8a 
\   o^y dy was nearly zero for all mesh refinements. 
J0      x=0 

These two examples suggest that the finite element solutions are accurate 
everywhere except very near a stress discontinuity or a singularity. However, 



the region of inaccuracy is limited to about two elements and such a region can 
be made very small by progressive mesh refinement. Therefore, these examples 
indicate that valid results may be obtained by finite element methods in the 
neighborhood of singularities and discontinuities. 

FINITE ELEMENT ANALYSIS OF THE EDGE-STRESS PROBLEM 

As previously mentioned, the objective of the present study was to develop 
an accurate numerical solution for the edge-stress problem of a composite lami- 
nate. Attention was focused on a r±45]s laminate. The finite element ideali- 
zation for the [+45]s laminate is presented first, followed by a convergence 
study of the stresses near the interface corner. Stress distributions are pre- 
sented for the laminate interface and through the thickness at the free edge. 
Finally, equilibrium considerations are discussed. 

Idealizations 

Because of the symmetries in the problem, only the shaded region 
(0 ^ y ^ b;  0 ^ z ^ 2h) in figure 1 (b) of an x = Constant plane was con- 
sidered.  The displacement functions U and V were prescribed as zero on 
the y = 0 line and the displacement function W was prescribed as zero on 
the z = 0 line. 

The shaded region in figure 1(b) was idealized by eight-noded isoparametric 
elements as shown in figure 9. To study the convergence of the stresses near 
the free edge, three meshes were used. The medium mesh in figure 9(b) was 
obtained by subdividing each element of the coarse mesh (fig. 9(a)) into four 
elements. The fine mesh in figure 9(c) was obtained by a similar subdivision 
of each element of the medium mesh. The coarse mesh had 135 nodes and 36 ele- 
ments, the medium mesh had 485 nodes and 144 elements, and the fine mesh had 
1833 nodes and 576 elements. 

Convergence Study 

The stress distributions obtained with the three mesh models for a [±45]s 

laminate were examined. The stresses that showed the steepest gradients were 
the interlaminar normal stress az and the interlaminar shear stress axz. 
The distributions for these stresses through the thickness at the face edge and 
along the interface are compared for the three models. 

inter laminar normal stress az.- Figure 10(a) shows the az distribution 
through the thickness along the free edge, y = b, for the three models.  In 
this figure and all subsequent figures the fine mesh results are represented- 
by a curve through the data; only the value at the interface is shown as a dis- 
crete value (diamond symbol). The coarse and medium mesh results are shown by 
circular and rectangular symbols, respectively. The solid symbols indicate the 
stresses in +45° ply. As shown on the figure, the values of az for the three 
meshes agree closely except near the interface. At the interface, the three 
meshes produced noticeably different az values but with the same sign. 

8 



Figure 10(b) shows the average interlaminar values of az plotted against 
normalized distance from the free edge. The az results from the three meshes 
are in excellent agreement for  (b - y)/h ^ 0.08. However, at the free edge, 
y - b, due to the singularity, the computed az    values are again noticeably 
different for the three meshes, with the fine mesh producing the largest value. 

Inter laminar shear stress qvg!.- Figure 11 (a) presents the through-the- 
thickness distributions of axz at the free edge, y = b, for the three models. 
Figure 11(b) shows the axz distributions along the interface. For all three 
meshes, as in figure 10, the computed stresses differed significantly only very 
near the interface corner, with the fine mesh again giving the largest values. 

From these results it is evident that the finite element solution converges 
everywhere except very near the interface corner. That is, for decreasing mesh 
size, the computed stresses continue to change only in this particular region. 
This region is very small, on the order of  (b - y)/h < 0.08 in figures 10 
and 11. The stresses outside this region are believed to be accurate when 
interpreted in the light of the previous discussions for points near stress dis- 
continuities and singularities. 

Stress Distributions 

Along the interface.- The stress distributions along the interface, z = h, 
obtained with the fine mesh model are presented in figure 12. For complete- 
ness, the az    and axz results from figures 10 and 11 are also included. 
Figure 12(a) shows the ax, oyr    axy, and axz distributions and figure 12(b) 

shows the az and azy distributions plotted against the normalized distance 
from the free edge. These stresses were computed from the elements in the +45° 
ply. The corresponding stresses in the -45° ply were nearly identical except 
the signs of o^y    and azy were reversed. 

Figure 12 shows that ax, ay, and axy attain the classical-laminate- 
theory values at a distance of about 4h from the free edge. The three dimen- 
sional stresses az,    azy, and axz all decay to zero at a similar distance 
from the edge. Near the edge, all stresses have gradients. The stresses ax, 
ay, and axy increase near the edge but drop abruptly in the two elements 
nearest the edge. On the other hand, the shear stress azy in figure 12(b) 
passes through zero and rises steeply to a positive peak at the edge. This 
sudden rise, once again, occurs in the two elements closest to the edge. 

Because the interface corner is on the free edge, the stresses av, y uxy a, 

and azy should have a zero value. However, because a singularity exists at 
the interface corner (ref. 10) and because the finite element solution does not 
prescribe zero boundary stresses, these stresses have nonzero values.  It is 
of interest, therefore, to examine the through-the-thickness distributions of 
ay Gxy and azy at tne free edge. 



Through the thickness.- Figures 13 to 15 show the distribution of ay, ayx, 
and a , respectively, in the top ply (+45°) along the free edge for all 
three mesh models. The stresses in the -45° ply were nearly identical to those 
of the +45° ply, except the ayx and ayz signs were reversed. Also included 

in figures 13 and 15 are the finite element results obtained with Wang and 
Crossman's (ref. 6) model. These results were obtained with three-noded tri- 
angular elements and, in general, lie between the present coarse and medium mesh 
results that were based on eight-noded isoparametric elements. 

Figures 13 to 15 indicate that the stresses ay, ayx, and ayz were very 
nearly zero for most of the free edge. As in the previous examples, the region 
of disturbance was limited to two elements on either side of the interface. 
With progressive mesh refinement, the thickness of the elements was reduced and 
so was the region of disturbance. For all three stresses ay, ayx, and ayz 
(figs. 13, 14, and 15, respectively) numerical integration revealed that 

n2h f2h T2h 
a dz a  dz J   ayz dz 

Jh h h 

were nearly zero for each of three models.  However at the interface corner, 
each of the stresses ay, ayx, and ayz had nonzero values and, curiously, 
these values were unaffected by mesh refinements.  In general, for a very fine 
mesh, these results indicate that the computed stresses would be zero all along 
the free edge except at the interface corner. 

Because a stress singularity exists at the interface corner and recalling 
the results for the finite element solutions and the exact solutions in fig- 
ures 4, 5, 7, and 8, this discrepancy of stresses on the boundary is expected 
near the interface corner. 

Equilibrium Considerations 

Any solution to the edge-stress problem should satisfy the following equi- 
librium requirements. As shown in figure 16, the top ply of a [±45Js can be 
treated as a free body.  Equilibrium requirements for the free body are 

y-force equilibrium 

p2h        pb 
Oy  dz =    ayz dy <4a> 

10 



z-force equilibrium 

1 b 
az dy = 0 (4b) 

0 

Moment equilibrium about   (0,h) 

p 2h pb 
j        ay(z -  h)   dz = J      azy dy (4c) 
'h 

For the [±45]s, the classical laminate theory predicts ay as zero in the 
interior of the laminate. Therefore, equations (4) reduce to 

p b pb        pb 
tfyz <3y = \ az  dY = \  azY dy = 0 (5) 

!0 J0        J0 

Numerical integration of the stresses in figure 12(b) revealed that the 
present solution satisfies equations (5). However, it appears from figure 3 
of reference 1 that the oz    distributions obtained by finite difference tech- 
niques did not satisfy the last of equations (5).  This is because the oz    dis- 
tributions changed sign only once, leaving an unbalanced moment. In the present 
finite element solution, sz changed from compression to tension at about 
(b - y)/h =0.2 and changed sign again at about  (b - y)/h =2.4 before the 
stress az became zero. This distribution left no unbalanced moment. The 
finite element results of reference 6 show similar behavior. 

DISCUSSION OF NUMERICAL METHODS 

Finite difference (refs. 1 and 3), perturbation (ref. 5), and finite ele- 
ment (refs. 6, 8, and 10) are all approximate methods which use the basic 
assumption of a symmetric stress tensor in their formulations. All along the 
free edge, including the interface corner, the finite difference and pertur- 
bation methods imposed the boundary conditions o„  = a„x = a„z = 0. These 
boundary conditions force the complementary shear stresses axy and aZy to 
also be zero at the interface corner. But at the interface corner, the stresses 
are singular and the stress tensor is not symmetric. Thus, the stresses a^ 
and aZy are not zero at the interface corner. If Oy and a^ are zero, 

it can be shown that az is forced to be tensile for a tensile applied load. 
Details are given in the appendix. This may be the reason that the finite dif- 
ference and perturbation methods predicted a tensile oz    at the interface cor- 
ner in figure 2. 

11 



On the other hand, the present finite element solution did not explicitly 
prescribe ay, oyx,  and ayz to be zero at the interface corner. Instead it 

prescribed the normal and tangential forces on each of the element sides, which 
lie along the free edge, to be zero. Also, as discussed earlier, the integrals 
of the stresses ay, a,—, and ayz were zero in the present solution over the 
entire free edge, y = b. This shows that there were no net normal and tangen- 
tial forces on the free edge. Furthermore, the finite element solution satis- 
fied all equilibrium requirements. 

CONCLUDING REMARKS 

The edge-stress problem for a [±45]s laminate has been studied by several 
investigators using finite difference, perturbation, and finite element dis- 
placement methods. The interlaminar normal stress az distributions along the 
interface (between the +45° ply and the -45° ply) disagree in magnitude and 
sign for different methods. Because a stress singularity exists at the inter- 
section of the interface and the free edge, the differences in magnitude of 
oz    were expected. The difference in sign was not expected. The finite dif- 
ference and perturbation techniques predicted a tensile az, where as the finite 
element solutions predicted a ccmpressive az very near the free edge. 

Available continuum solutions revealed that the stress tensor may not 
necessarily be symmetric (that is, a^j *  a-ji for i * j) at a stress discon- 
tinuity or singularity. However, all approximate and numerical methods use 
symmetric stress tensors in their formulations. Therefore, two well-known prob- 
lems, one involving a stress discontinuity and one a singularity, were analyzed 
to check the finite element method. These analyses showed that the finite ele- 
ment method yielded accurate solutions everywhere except in a region involving 
the two elements closest to the stress discontinuity or singularity, and that 
this region can be made arbitrarily small by refining the finite element model. 

For the present analysis of a [±45]s laminate, the finite element results 
near the singularity (at the intersection of the interface and the free edge) 
were similar to the behavior for the two well-known problems. The present 
finite element solutions for the edge-stress problem are, therefore, believed 
to be accurate except in the two elements closest to the singularity. There- 
fore, the present finite element displacement method, based on the total poten- 
tial energy formulation, appears to be an accurate and useful technique for 
analyzing the edge stresses in a composite laminate. 

The present finite element analysis of a [±45]s laminate showed that the 
interlaminar stress az is ccmpressive at the intersection of the interface 
and the free edge. The finite difference and perturbation solutions in the 
literature may have predicted an incorrect sign (tensile) for the az stress 
because of the assumption of a symmetric stress tensor combined with stress 
boundary conditions at the singular point. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
October 27, 1980 
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APPENDIX 

POINT SOLUTION 

In this appendix, a point solution is presented for the interlaminar normal 
stress az at the interface corner of a [±45]s laminate. A symmetric stress 
tensor and stress boundary conditions were assumed. This solution demonstrates 
that the magnitude and sign of az at the interface corner can be explicitly 
obtained from the constitutive relations, continuity conditions along the inter- 
face, and the boundary conditions av = ayX = 0. 

Consider a [±45]s laminate. The constitutive relations for a +45° ply are 

{£} = [s]{a]                                            (Al) 

where 

is} = (Ex' £y ez' exy ^yz' ezx' 

{a}T = (ax, ay, az, axy, avz, azx) 

and 

Sll    Si2    Si3    Si4     0     0 

s22    S23    S24     0     0 

[s] = S33   s34    0    0 

S44     0     0 

SYM.                         S55    0 

S66 

Implicit in equation (Al) is the assumption of a symmetric stress tensor. 

The stress-free boundary conditions along y = b are 

ay ~ ayz = ayx = °                                      <A2> 
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APPENDIX 

Continuity of displacements along the interface, for all y, requires 

45   -45 
e  = e 
xy   xy 

(A3) 

and 

45   -45 
e  = e 
y  y 

(A4) 

The imposed axial strain is 

e„ = e (A5) 

Equations (Al), (A2), (A4), and the continuity of oz across the inter- 
face can be solved to show the stresss ax in each of the 45° and -45° plies 
is the same. Solving equations (Al) to (A5) for the point where an interface 
meets the free edge gives 

eo = SnOx + S13az 

0 = S14ax + S34az 

(A6) 

Solving equations (A6) for ax and az, 

enS 
-\ 

ov = oö34 
slls34  _ s14s13 

(A7) 

"Si 4 

S34 
J 

For graphite/epoxy laminates considered in this paper, equations (A7) give 

14 

av = 24.62 x 103 en MPa 

az = 57.44 x  103 e0 MPa 



Thus the point solution predicts a tensile   oz    at the  interface corner  for 
tensile applied strain as the finite difference and perturbation solutions 
predicted.    Therefore,    az    is forced to be tensile if a symmetric stress 
tensor  is assumed and the boundary conditions    ay = a™ = a„z = 0    are 
prescribed. 
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(a) Four-ply laminate 

(b) An x = Constant plane. 

(c) 3-D stress components. 

Figure 1.- Laminate configuration, loading, and stresses. 
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Figure 2.- Comparison of interlaminar normal stress calculated 
by various methods. 
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(a) Uniform load on a semi-infinite plate. 

H-a~"H^P 
„1 l A o'sl 

__ 

K <£ )a. 

' 
/\ www 1 Oa — *1 

" 

(b) Finite element idealization - fine mesh. 

Figure 3.- Problem involving stress discontinuity. 
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Figure 4.- Shear  stress   (OyX/p)   distribution on    y = 0    line. 
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Figure 5.- Shear stress (axy/p) distribution on x = a line. 
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(a) An isotropic bimetallic plate under tension. 

(b) Finite element idealization - fine mesh. 

Figure 6.- Problem involving stress singularity. 
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Figure 9.- Rectangular mesh models. 
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(b)     az    along the  interface,     z = h. 

Figure  10.- The    oz    distributions for various idealizations of a 
[±45]s laminate. 
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Figure 12.- Stress distributions along the interface, fine mesh. 
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