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ABSTRACT

Bourdon tubes are the most commonly used elastic elements in mechanical

pressure gauges. Basic theory describing the principles of Bourdon behavior is readily

available but very few analytical studies have been published that model Bourdon

element behavior. The purpose of this research is to develop an analytical model to

determine tip displacement in tubular elastic elements using basic principles of solid

mechanics. To determine the validity of the results obtained from the analytical model, a

study of results from finite element solutions and experimental data is also presented.
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I. INTRODUCTION

A. MOTIVATIONS FOR THIS RESEARCH

Bourdon tubes, the elastic elements used in mechanical pressure gauges, are

quite popular, even today, due to their simplicity. When a Bourdon tube is fabricated

from conventional alloys and operated within its elastic limit, the tip of the tube moves a

small distance. However, if the Bourdon element were fabricated from a superelastic

alloy capable of withstanding strains on the order of 8%, strains much higher than what

ordinary alloys can withstand, the Bourdon tube could be used in unconventional

applications as a robotic finger or as an actuator. With these unique applications in

mind, the study of the elastic deformation of a Bourdon tube was initiated.

The efforts of a literature survey, the results of which are discussed later in this

chapter, yielded little information in terms of analytical solutions to Bourdon tube

behavior. In industries that manufacture Bourdon tubes, tip travel is obtained from

experimental data in the absence of a mathematical model. This further prompted the

development of an analytical solution for tip travel in a Bourdon tube.

With today's micro-chip technology, many people think that the trend for pressure

gauges is moving in the direction of the electronic transducer. Surprisingly, precision

pressure gauges demonstrate consistent and accurate behavior using Bourdon tube

technology. As a result, the demand for Bourdon gauges is quite significant. The most

obvious advantages characteristic of Bourdon gauges are their (1) broad pressure range,

(2) low cost compared to electronic gauges, (3) ease of manufacturing, (4) ease of
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operation, (5) ease of troubleshooting, (6) good accuracy (up to 0.1 % full scale

deflection), and (7) lack of an external power source which precludes susceptibility to

line noise and power outages. [Ref 1,2]

Bourdon tubes are extremely popular as elastic elements in pressure gauges.

Despite their popularity little analytical work has been performed or published modeling

their behavior. The work presented in this thesis provides such an analysis.

B. BOURDON TUBE BEHAVIOR

1. Developmental History

In 1849, a French engineer named Eugene Bourdon invented the C-shaped

element commonly known today as the Bourdon tube or C spring. While witnessing the

construction of a steam engine, Eugene Bourdon noticed that the helically wound coil

used to condense the steam was flattened during formation. To correct the deformation,

the tube was plugged at one end and pressurized at the other. As a result, the coil

partially unwound as the flattened tube regained its circular cross-section. Intrigued by

what he saw, Eugene Bourdon conducted his own experiments and eventually invented a

pressure gauge using the tip deflection of a curved tube with an elliptical cross section as

a pressure measuring device. [Ref. 1] Figure 1 offers an exploded view of a typical C-

type pressure gauge.

2. Deflection Theory

The Bourdon tube, henceforth referred to as the Bourdon, is the actuating element

in many pressure measuring devices. Typically, the Bourdon elastic element has an oval
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Figure 1. C-type Bourdon gauge
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or elliptical cross-section and is coiled in the shape of a C, a spiral, or a helix as shown in

Figure 2. One end of the tube is sealed and the other is connected to a capillary tube

through which pressure is applied. Any pressure within the tube in excess of the external

or atmospheric pressure causes the flattened element to elastically change its shape to a

more circular cross-section. The resulting change in the cross-section causes the coiled

tube to straighten. With one end of the tube fixed, the straightening effect causes the free

end to move a small distance. This small, unenhanced movement is called tip travel as

shown in Figure 3. [Ref. 1,3,4,5,6]

In a C-type Bourdon, the elastic deformation of the cross-section creates

compressive stresses along the inner wall and tensile stresses along the outer wall as

defined in Figure 3. When added to the tensile stresses existing in both walls due to the

applied internal pressure, a stress imbalance is created such that the tensile stress in the

outer wall is greater than the tensile stress in the inner wall. In the process of

straightening, the tube experiences tensile stresses in the inner wall and compressive

stresses in the outer wall, just the opposite caused by the change in cross-section. The

effect of straightening relieves the unbalanced stress condition created by the change in

cross-section. The free end of the Bourdon moves with the application of pressure until

opposing stresses within the tube reach equilibrium. [Ref. 1,4,5]

3. Design Criteria

As stated earlier, the first Bourdon pressure gauge was patented more than 100

years ago. But despite its age and the fact that "technology" is now much more
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advanced, very little about the design of a Bourdon gauge has changed. The factors

considered most important in the design of tubular elastic elements are (1) the element

material, (2) the coil length, (3) the wall thickness of the tube, (4) the cross-sectional

shape, and (5) the desired tip travel.

Bourdons may be made of ferrous or nonferrous metals depending on the

application of the gauge. Admiralty brass, phosphor bronze, and beryllium copper, which

are used to make grade B accuracy gauges, higher quality grade A and AA gauges, and

high pressure gauges, respectively, are examples of nonferrous metals applications. Ni-

Span C is a popular but expensive ferrous material used for its exceptional temperature

behavior. [Ref 1]

As stated earlier, Bourdon elements may be coiled in the shape of a C, a spiral, or

a helix. The shape and coil length of the elastic element depends on the pressure range

of operation. For pressures up to 60 bar (6 MPa, 870.24 psi), C-type elements are

typically used and for pressures above 60 bar, spiral or helical elements are used.

[Ref. 5]

The geometry of the cross-section, one factor affecting tip displacement, is

chosen depending on the pressure range of operation. The distinction is made between

low and high pressure measuring elements for the proper choice of the wall thickness.

Low pressure gauges are loosely defined as those operating from 12 - 500 psi and

typically have flatter cross-sections and thinner walls than high pressure gauges which

have rounder cross-sections and thicker walls and may read pressures as high as 100,000
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psi. [Ref 6] Low pressure Bourdons experience greater tip travel for a given pressure

whereas high pressure Bourdons exert higher tip forces. [Ref 1]

Tip travel in a Bourdon element varies widely with the range of the gauge. Low

pressure gauges, with thinner walls and smaller minor axes, are less effective in

overcoming the frictional forces within the amplifying movement. Higher tip travel and

smaller amplification means smoother pointer motion but also produces excessive

stresses in high pressure elements. As a result, high pressure gauges have thicker walls,

larger minor axes, and high amplification movements to keep tip travel small. Gauge

manufacturers design their Bourdon elements for specific magnitudes of tip deflection.

For ease of manufacturing and maintenance, variations in design are kept to a minimum.

As a result, the major distinction between gauges is found within the movement

mechanisms.

When designing their gauges, manufacturers either determine the appropriate

length of the sector tail and the gear ratio necessary to produce the pointer rotation for

the desired tip travel or determine the necessary tip travel to operate a specific

movement. [Ref 1, 2, 3, 4, 5] Bourdon tip displacement is generally linear with pressure

such that 25%, 50%, and 75% of the total applied pressure is equal to 25%, 50%, and

75% of the total tip displacement. Non-linearities in tip displacement are compensated

by varying bourdon geometry or by adjusting the movement.

4. Temperature Effects

One of the most difficult problems that manufacturers of precision pressure

gauges must overcome is the effects of temperature on the elastic element. Tip
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displacement is very susceptible to changes in ambient temperature. The temperature

characteristics of a Bourdon depend on geometry and material. Fluctuations in

temperature affect the elastic modulus, or stiffness, of the bourdon. Higher temperatures

correspond to lower stiffnesses which mean greater tip travel. The opposite is also true.

Thermal length changes affect the entire measuring system. The easiest and

cheapest way to compensate for temperature effects is to manufacture elastic elements

from materials having low coefficients of thermal expansion. The material most

commonly used for this purpose is Ni-Span C. Although less affected by temperature,

Ni-Span C does not completely eliminate the effects of temperature. Manufacturers also

compensate for temperature effects by making all of the components of the measuring

device from the same material. This approach eliminates any tip deflection relative to

the movement caused by temperature changes. [Ref. 2,4]

Some gauge manufacturers maintain gauge accuracy across fluctuating

temperatures with the addition of a temperature compensator within the movement

mechanism. The device reacts to the same temperature that affects the bourdon. As the

temperature changes, the device adjusts a setting within the movement to offset the

temperature effect. Each compensator is custom manufactured to match and offset the

temperature characteristics of the elastic element with which it is used. [Ref. 2]

5. Technical Publications

Only one publication was found that presented an analytical solution for bourdon

behavior. In 1946, Alfred Wolf wrote An Elementary Theory of the Bourdon Gage which

presented theory based on two elements of strain: strain due to "the bending of the walls
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in a transverse section through the tubing" and to "longitudinal extension and contraction

parallel to the axis of the tubing". In this publication, Wolf derived formulas for what he

called the sensitivity (.5R/R) and the torque (T) of the bourdon where 5R was defined as

the change in radius of curvature and torque was defined as the external bending moment

required to restore tip deflection to zero for any given pressure. Based upon his

theoretical results, Wolf concluded that the theory of pure bending in thin shells did not

adequately model the behavior of the bourdon for the case a4/R2t2 much greater than

unity and that gauge sensitivity was inversely proportional to the first power of t for thin-

walled tubes. Wolf s tabulated results for "observed" and "calculated" sensitivities and

torques for a steel elastic element were quite comparable to on another.

6. Manufacturers' Literature

The logical progression in the search for literature was contacting companies that

manufacture the elastic elements addressed and analyzed in this paper. A representative

from the Stewart Warner Instrument Corporation commented that their gauges cover a

very broad range of pressures and are "old standards" based on tried and true designs.

On the rare occasion that a customer requests a pressure gauge not previously

manufactured, the company has a "formula" for estimating the new design based on

established gauge designs. The company representative also said he had no knowledge

of an analytical model to determine tip travel.

Excerpts from a pressure measurement handbook produced by the WIKA

Instrument Corporation provided a brief history, the principles of operation, some design

considerations, the effects of temperature, and load constraints of bourdon gauges. The
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excerpts also presented equations for tip travel, relative change in curvature, and

maximum bending stresses of tubular elements but, for proprietary reasons, all were

expressed as functions of undefined variables.

The Heise Division of Dresser Industries also provided some literature on dial

gauges. Their biggest contribution to this literature survey was information concerning

temperature compensation, methods of which were previously discussed. Like the

Stewart Warner Corporation, Heise's gauges are well established and rooted in 50-year

old designs. Heise is, however, currently developing its own analytical model for

Bourdon elements.

The efforts of a literature survey yielded relatively little information concerning

analytical studies of Bourdon pressure gauges. Very few technical papers have been

published which analytically describe Bourdon theory. As a result, gauge manufacturers

typically rely on experimentation and established designs when creating new gauges.

C. RESEARCH OBJECTIVES

The objectives of this research were to develop an analytical solution for tip

travel, specifically in C-type Bourdons, and to compare results from the analytical model

to results from finite element models and data collected from laboratory experiments.

Because pressure gauge manufacturers most commonly rely on experimentation for the

design of new gauges, a realization of the stated objectives could prove to be quite useful

to them or to anyone interested in the applications of Bourdon theory.
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H. ANALYTICAL ANALYSIS OF A BOURDON TUBE

A. NOMENCLATURE AND ASSUMPTIONS

1. Nomenclature

For clarity, symbols related to Bourdon geometry are annotated in Figure 4 and

defined as follows:

a - semi-major axis of the elliptical cross-section

b - semi-minor axis of the elliptical cross-section

t - wall thickness of the Bourdon element

R - radius of curvature of the Bourdon element

/u - angle describing the length of the Bourdon tube

I - circumference of the Bourdon tube

p - radius of curvature of the cross-section of the Bourdon tube

S- angle describing the position of a point on the circumference of the

Bourdon element

k - complete modulus of elliptic functions

K - complete elliptic integral of the first kind

E - complete elliptic integral of the second kind

El - Young's modulus

E, - elastic modulus from the theory of thin shells

13
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2. Assumptions

In the process of developing this analytical model for Bourdon behavior, the

following general assumptions were made:

a) the circumference I remains constant during cross-sectional deformation,

b) the length of the tube, defined as 4 R, remains constant as the elastic element

straightens,

c) the wall thickness t remains constant as the cross-section changes,

d) the change in the angle 0 (i - 0) is so small for small deformations that 0

essentially remains constant during deformation, and

e) the material of the elastic element is homogeneous and isotropic.

B. MATHEMATICAL BACKGROUND

As a preface to this section, detailed derivations of all equations are presented in

Appendices A-D. For the sake of clarity and brevity, only simplified expressions are

presented in the body of this paper.

Some background concerning Jacobian elliptic functions and integrals is

necessary for following the mathematical progression in this thesis. The following

definitions

71

2

K- 2.1

1 - k2_ sin2 "

15



and

E= -ik~ sin2*4-k1 2.2

are complete elliptic integrals of the first and second kind, respectively, [Ref 9, 10] and

appear frequently throughout the problem formulation. The variable k, defined by the

expression

k=i b2 2.3
2

a

on the interval 0•< k < 1, is known as the modulus of the Jacobian elliptic functions.

Identities containing the elliptic functions sn(u), cn(u), and dn(u) are presented in

equations 2.4.a - 2.4.f which reduce to the trigonometric functions sin(u), cos(u), and 1

when k is zero. Elliptic function identities relevant to this problem formulation are:

Sn2.(u) + cn 2 (u)= 2.4.a

dn2.(u) + k2.sn2 (u)-1 2.4.b

Sn(O)-0 2.4.c

cn(O)-= 2.4.d

16



dn(O)=I 2.4.e

cn(K) =0 2.4.f

which are also defined in Refs. 9 and 10. Solutions for the following specific integrals

are derived here for later use in the computation of strain energy in elastic Bourdon

elements due to cross-sectional deformation:

[d".(u) du= Kk.j (_-k2) K] 2.5

OK d (u du4-(2 k2 ) I ER(2-k 2 ) 1 3E
JO .(1 k2)2 L (1 - k2) - .(I - k2) 2  2.6

K d (u) d 24.(- 2 2-E. (K - 0_) _ K 1.E ( - 0_ )

0 105.(1- k2) 3  21.(1 )[ (I- k_) 35-(I - k0)3

2.7
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C. PROBLEM FORMULATION

1. Geometric Relationships

Assuming that the volume of the Bourdon changes as deformation occurs, the

change in the semi-major axis da is expressed as a function of the change in the semi-

minor axis db by the equation

ab.-(E- K)
da= db 2.8

E.a2 - K-b2

The derivation of equation 2.8 is presented in Appendix A. For a unit length, the volume

of the Bourdon is defined by the equation

V=r. a. b 2.9

The change in volume then becomes

dV= n (a-db + b-da) 2.10

or

dV\-' a(a(2 +_ b2 )_E - *2Kb2 .db 2.11
Ea2_ Kb2 J

by making the substitution for da in equation 2.10.

Bourdon tip travel is a function of the sectional deformation that occurs as a

result of pressurization. For an applied internal pressure, a curved circular tube will not

18



straighten. But a Bourdon straightens as its elliptical cross-section becomes more

circular. Because of this behavior, it is important to understand how the radius of

curvature of the cross-section, p, changes. As can be seen in Figure 4, the radius of

curvature for a circular section is constant but changes as a function of the angle q for an

elliptical section. A simplifying assumption here is that, as a point is mapped from the

elliptical shape to the more circular shape, the defining angle q0 is approximately the

same before (0) and after (0) deformation for small tip travel and minimal sectional

deformation.

Whereas p defines the radius of curvature, i/p defines the curvature of the cross-

section. The simplified expression for curvature may be written as

2.12P a2.(l1- k2_.Sir?.d•1

The change in curvature, determined by taking the derivative of i/p only with respect to

dimensions a and b, is defined by the expression

________-b ______ (-a2 -b2).E l(-sn 2 )+Ed
a .(I _ (ksin'. ) -a - Kb2 ) b2  j

2.13

The derivative of I/p was not taken with respect to the angle 0 because, as stated earlier

in the assumptions, 0 is assumed to remain constant throughout pressurization and

subsequent deformation.

19



2. Incremental Strain Energy Due to Cross-Sectional Deformation

Having derived the fundamental geometric relationships necessary to develop the

analytical model, energy methods were applied to obtain a solution to the problem. In

general, the elastic strain energy U in a beam due to bending is written as

U=L M2 dx 2.142.E .I

as defined in Ref 11. For an initially curved beam, the bending moment Mis defined as

M=E1I'I d(') 2.15

Figure 4 shows that, for an incremental slice of the cross-section, the wall of the tube can

be modeled as a curved beam where d(1/p) is the change in curvature of the cross-

section. From the theory of thin shells, the effective elastic modulus E, is defined by the

expression

E1
E-

S2 2.161-i"

where E is the elastic modulus of a straight beam. The area moment of inertia I is

defined for a unit length slice of the tube by the expression

3
I=-- 2.17

12
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Rewriting the strain energy equation as symmetric in four quadrants, the

expression for the total incremental strain energy due to cross-sectional deformation is

dU -=4- -- ds 2.18xs 2-E -I

Substituting equations 2.15, 2.16, and A. 14 into equation 2.18, the incremental strain

energy becomes

71

2. E'. 2 2
dU= k~2.Sii~4--- "2 a- jdli ) )i..d 2.19

1-v 1-
.0

and eventually, after considerable simplification,

dU "E=2) [C 2 .dn-4. . (6u) + dn .(u) du

v 2)] 3'- Cyn.

2.20

where the constants CQ through C4 are defined as follows:

C 4 22.20.a
a4.(Ea2 - Kb2)2

21



C2( 2.20.b

C3=6E- E - 2.20.c

C,--9"Eý 2.20.d

The variables K and E represent the complete elliptic integrals of the first and second

kind, respectively, and are defined in equations 2.1 and 2.2. The integrals of dn-4 (u),

dn6 (u), and dn-8 (u) are defined by equations 2.5, 2.6, and 2.7, respectively.

3 Incremental Strain Energy Due to Bending

To determine Bourdon incremental strain energy due to bending, or straightening

in this case, an expression was developed for the total bending moment due to an applied

internal pressure. Referring to Figure 5, the net moment M is found by summing the

moments acting on the end cap and walls of the tube about point 0. The details of this

derivation are shown in Appendix C and the resulting expression is

M=-P-a-R-D.(1 - cosO)-k 2.21

where P is the applied pressure, R is the radius of curvature measured to the centerline of

the tube, and D is a constant for specified dimensions a and b defined as

22
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D=a[I E + (2-E - K) }+ 'Kj2.2-3 k 2.22

Again, K and E represent complete elliptic integrals of the first and second kind,

respectively, as defined in equations 2.1 and 2.2. Substituting equations 2.21 into

equation 2.14, the total strain energy due to bending of a length of tube that subtends the

angle p with the center of curvature becomes

Ub-- (-P.a.R.D.(1- cos(1))) 2 RdP 2.23

2. E'I

where the moment of inertia I is now defined as

7E
I=4.((a + t).(b + t)3 - a-b3 ) 2.24

4

The incremental strain energy due to bending was found by differentiating Ub with

respect to a, b, P, and R as follows:

d'Ub=- Ub + rU+ d Ub +- Ub 2.25
da db cdP dR

To simplify the results of this lengthy equation, the incremental strain energy due to

bending is rewritten as

24



dUb=A-(B + Z) 2.26

where A, B, and Z are defined as follows:

A - (6. - 8.sMn(A) + SMn(2.))4. Eý-I 2.26.a

B P. .. a- D+ db+PR D db 2.26.b
(Ea' - Kb2 ) da26.

and

Z=(R-P-dP) + (1.5P.DAdR) 2.26.c

According to the principle of virtual work defined in Ref. 11, the change in

external work is equal to the change in elastic strain energy (dW = dU) if a configuration

satisfies geometric constraints and remains continuous. Assuming that the Bourdon

satisfies these conditions,

dW=-dUxS + dUb 2.27

where the incremental external work acting on the tube is defined as

dW=P, dV 2.28

or
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(P + dP)-dV=dU + dUlb 2.29

Making the appropriate substitutions into equation 2.29, the resulting equation is written

as

(a2 +2b).£- 2.Kb'
(P + dP).7 r. a (. b )E- Kb db=ELa 2 _-Kb 2

2aE1 ICf db2  C.d-.u)
j-'I+CC- dn- (u + C )4- d-.- du+

4E (1 - V2 )'(6". - 8.iSl4 + sir(2- t))x4.E'-.I

a-D +D -db+P.R- D -db+P.RdP+ + -
(E-a' - Kb) da b

2.30

which is quadratic in db where dR is also unknown. See Appendix B for derivation

details.

4. Tip Travel

The equation for tip travel was derived by making the assumption that the length

of the Bourdon remains constant for any given pressure and by applying Castigliano's

second theorem. The assumption for constant length, L, written as
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x'R=L 2.31

implies that

gwdR + R-dg=O 2.32

or that incremental tip travel dR can be calculated using the expression

dR= -R. dg 2.33

Whereas R and p are known quantities, the variable d/u is undefined. Referring to

Figure 6,

-02.34

by geometry where 0 , the angle of rotation of the tip due to the applied dummy moment,

is described by the equation

~L(

-M dx 2.35
13

which is the application of Castigliano's second theorem [Ref. 11]. When the dummy

moment, M, is applied, the equation for the net moment becomes

M=-P-a-R-D(1 - cosO)-k- M.-k 2.36
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R, > R,

gR = Constant

dR = R2 - RI

R, I O i I k t12- R111

x \

Figure 6. Bourdon length segment and tip deflection for the application of

Castigliano's second theorem
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Substituting equation 2.36 into equation 2.35 and setting the dummy moment equal to

zero, the expression for tip rotation is obtained by integrating

P- aKlRD0= (R - sinDu) 2.37

In this formulation, tip displacement is calculated iteratively. For this model, knowing 0,

defines dtu which then allows the determination of incremental tip travel dR. Once dR is

known, db is found by solving equation 2.29 and da is calculated using equation 2.8.

Subsequent values of dR are then calculated using incremented values of a and b.

D. SIMULATION PROGRAM AND ANALYTICAL RESULTS

1. Source Code Description and Limitations

Considerable effort was expended in expressing all of the equations in Chapter II

as functions of a, b, k, E, and K to simplify the programming portion of this research

effort. Having derived the requisite equations to determine tip travel and sectional

deformation, a program was written in FORTRAN to iteratively calculate solutions for

user-defined Bourdon properties, geometries, and operating pressures. The source code,

listed in Appendix E, defines all program variables, prompts the user for input, and then

calls seven subroutines to iteratively calculate tip travel and corresponding changes in tip

geometry.

The topics of temperature effects and the standard methods of compensation

discussed in Chapter I were not addressed in this attempt to develop an analytical
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solution for Bourdon tip displacement. The analytical model presented in this paper only

calculates tip travel and cross-sectional deformation as functions of pressure.

2. Analytical Results

Execution of the source code Program Bourdon was very sensitive to the

geometric relationships between a, b, and R and worked best for a:b ratios near 2:1 and

for 0 < R < 34 mm (0 < R < 1.34 in). The program ceased to work beyond one iteration

once R exceeded 33 mm.

The following table indicates analytical results for fictitious Bourdon elements

each fabricated from phosphor bronze having an elastic modulus of 110 GPa (16 x 106

psi) and a Poisson's ratio of 0.34:

Table 1. Analytical Solutions Generated from Program Bourdon

Bourdon Major Axis Minor Axis Radius of Wall Angle Max. Tip Travel

Element (2a) (2b) Curvature Thickness Describing Applied (dR)

[mm/in] [mm/in] (R) (t) [mm/in] Tube Pressure [mm/in]

[mm/in] Length (1.) (P)

[deg/rad] [MPa/psi]

1 10.000 / 5.000 / 30.000 / 0.300/ 250 / 1.00/ 1.54 /

0.393 0.197 1.181 0.012 4.363 145.00 0.06

2 10.000 / 5.000 / 30.000 / 0.100 / 250 / 1.00 / 41.54 /

0.393 0.197 1.181 0.004 4.363 145.00 1.64

3 10.0 / 5.000 / 30.000/ 0.300 / 330 / 1.00 / 1.38 /

0.393 0.197 1.181 0.012 5.760 145.00 0.05

4 10.0 / 5.000 / 20.000 / 0.300 / 250 / 1.00 / 0.46 /

0.393 0.197 0.787 0.012 4.363 145.00 0.02
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5 10.0 / 5.000 / 50.000 / 0.300 / 250 / 1.00 / 7.12/

0.393 0.197 1.97 0.012 4.363 145.00 0.28

6 14.000 / 5.000 / 30.000 / 0.100 / 250 / 1.00 / 112.41 /

0.551 0.197 1.181 0.004 4.363 145.00 4.43

7 14.000 / 5.000 / 20.000 / 0.100 / 250 / 1.00 / 33.31 /

0.551 0.197 0.787 0.004 4.363 145.00 1.31

8 7.500 / 5.000 / 20.000/ 0.100/ 250/ 1.00 / 4.32 /

0.295 0.197 0.787 0.004 4.363 145.00 0.17

9 7.500 / 5.000 / 30.000 / 0.100 / 250/ 1.00 / 14.57 /

0.295 0.197 1.181 0.004 4.363 145.00 0.57

Looking at the results of the analytical model, some of the tip deflections are

excessively large while others are of more reasonable magnitudes. These extremes in

output are currently unexplained and under investigation. While the validity of the

analytical model's results is unknown, an important observation is made concerning the

trends of the output. As stated previously in Chapter I, Bourdon elements having flatter

cross-sections and thinner walls exhibit larger tip displacements than rounder, thicker

elements for the same applied pressure. The results presented in Table 1 show trends

that agree with Bourdon displacement theory.

Comparing Bourdon elements 1 and 2 from Table 1, element 2 has a thinner wall

than element 1 and consequently experiences significantly more tip travel. Looking at

the major axes of elements 2, 6, and 9, element 6 has the flattest cross-section followed,

in increasing order, by elements 2 and 9, respectively. As expected, element 6 exhibits
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the greatest tip movement and element 9 exhibits the least when all other parameters are

held constant between the three specified elements. Similar comparisons can also be

made between other elements in Table 1.
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III. EXPERIMENTAL AND NUMERICAL ANALYSES OF A
BOURDON TUBE

A. EXPERIMENTAL ANALYSIS

Because analytical studies are based on assumptions, it is good practice to

compare analytical results with experimental data. Doing so verifies the validity of the

mathematical model and its underlying assumptions. For the model developed in this

thesis, a good correlation between analytical results and experimental data implies the

successful application of this analytical model to future designs of Bourdon gauges.

The experimental results presented in Tables 2 and 3 were obtained by two naval

facilities: the calibration laboratory at the Regional Repair Center (RRC), Norfolk, and

the Mechanical Instrument Repair Calibration Shop (MIRCS) in USS SHENANDOAH

(AD-44), homeported in Norfolk. The requested information was faxed to SIMA,

Norfolk and was then disseminated to the aforementioned facilities. Pertinent

dimensions, elastic element information, and Bourdon tip travel results from the

experimental studies are:
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Table 2. Experimental Data from RRC

Gauge Bourdon Major Axis Minor Axis Radius of Applied Tip Travel

Company Material (2a) (2b) Curvature Pressure (P) (dR)

and Range [in/mm] [in/mm] (R) [in/mm] [psi/MPa] [in/mm]

[psi]

Weksler Alloy Steel 0.5737 / 0.2220 / 1.361 / 300.00 / 0.25 /

0-300 14.5720 5.6388 34.5694 2.07 6.35

Mensor Stainless 0.5559 / 0.2936 / 3.0843 / 1000.00 / 0.4375 /

0-1000 Steel 14.1199 7.4574 78.3412 6.89 11.1125

Heise Stainless 0.4108 / 0.2758 / 3.5129 / 3000.00 / 0.25 /

0-3000 Steel 10.4343 7.0053 89.2277 20.68 6.35

Table 3. Experimental Data from MIRCS

Bourdon Major Axis (2a) Minor Axis (2b) Radius of Applied Tip Travel

Material [in/mm] [in/mm] Curvature ( R) Pressure (P) (dR)

[in/mm] [psi/MPa] [in/mm]

Stainless 0.5 / 0.115 / 0.771 / 500 / 0.131 /

Steel 12.7 2.921 19.571 3.45 3.327

Beryllium 0.5 / 0.190 / 1.033 / 600 / 0.129 /

Copper 12.7 4.826 26.236 4.14 3.277

One key parameter missing from Tables 2 and 3 is the Bourdon wall thickness of

each gauge. Whereas the major and minor diameters were easily measured, wall

thicknesses were neither measurable nor available from the respective manufacturers due

to the proprietary nature of the information.
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B. FINITE ELEMENT ANALYSIS

One rapidly growing approach to engineering problem solving is the numerical

technique of finite element analysis. These techniques (1) discretize a domain with a

finite number of finite elements and a finite number of nodes per element, (2) introduce

nodal points and appropriate shape functions to represent the trial solution in each

element, and (3) transform the resulting set of differential equations into a series of

matrix equations to change a system from an infinite degree of freedom system to a finite

degree of freedom system of appropriate size.

Several powerful finite element software packages exist today that compute

solutions for complicated engineering problems. For the purpose of this research, the

ability to build, constrain, and pressurize a Bourdon tube using computer graphics greatly

enhanced the study of Bourdon behavior. As powerful as this tool can be, however, this

type of analysis did not preclude the effort to conduct laboratory experiments but rather

supplemented the study of Bourdon behavior. Once the models were constructed and

drawn to match the dimensions and material properties of the Bourdons used in the

experimental studies, tip displacement results were quickly determined.

The finite element solutions presented in this paper were generated using I-DEAS

Simulation software, software that builds geometry and finite element models, analyzes

the models, and evaluate the results. Each of the finite element models presented in this

paper was constructed using the following parameters: (1) major axis 2a, (2) minor axis

2b, (3) wall thickness t, (4) radius of curvature R, (5) Bourdon arc length u, (6) elastic

modulus E, (7) Poisson's ratio v, and (8) applied pressure P.
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Assumptions for wall thickness and arc length were made based on design

information presented in Refs. 1 and 5. Boundary conditions were applied at one end of

each Bourdon model. The socket or pressure end was clamped to prevent rotation and

translation in the x, y, and z directions. The tip end of each model was sealed but

otherwise left unconstrained to allow maximum freedom of movement. Internal

pressures corresponding to experimental test pressures were applied to the walls and end

cap (tip) of each finite element model.

The numerical models were analyzed using linear, thin-shelled elements whose

thicknesses were modified to match the estimated wall thicknesses of the Bourdon

elements listed in Table 1. The quality of the mesh for each element was established

using criteria for distortion. On a scale of -1.0 to 1.0, an element is perfectly square for a

distortion value of 1.0. Meshes exhibiting distortion values less than zero are very bad

and should be avoided whereas distortion values greater than 0.4 are acceptable. In

modeling the Bourdon elements using I-DEAS, all of the meshes exhibited distortion

levels greater than 0.4. The elements that were distorted, however, consistently occurred

along the length of the element at the major axis.

The following table summarizes numerical solutions for tip displacement in

Bourdon elements having the same geometries and material properties as those presented

in ChapterII.,Table 1:

36



Table 4. Numerical Solutions for Table 1 Bourdons

Bourdon Major Axis Minor Axis Radius of Wall Angle Max. Tip Travel

Element (2a) (2b) Curvature Thickness Describing Applied (dR)

[mm/in] [mm/in] (R) (t) [mm/in] Tube Pressure [mm/in]

[mm/in] Length (jt) (P)

[deg/rad] [MPa/psi]

1 10.000/ 5.000 / 30.000 / 0.300 / 250 / 1.00 / 3.26/

0.393 0.197 1.181 0.012 4.363 145.00 0.13

7 14.000 / 5.000 / 20.000 / 0.100 / 250 / 1.00 / 42.8 /

0.551 0.197 0.787 0.004 4.363 145.00 1.69

8 7.500 / 5.000 / 20.000 / 0.100 / 250 / 1.00 / 8.50 /

0.295 0.197 0.787 0.004 4.363 145.00 0.33

Bourdon elements 1, 7, and 8 were chosen from Table 1 at random for modeling

in I-DEAS. As for the case of the analytical model, the validity of the magnitudes of tip

deflection generated by the finite element technique is also uncertain without

comparative data from gauge manufacturers or more extensive experimental work.

Comparing the results from Tables 1 and 4, the numerical solutions follow the

same trends as those from the analytical model but at greater magnitudes of tip

deflection. Tip travel is 53%, 22%, and 49% greater for I-DEAS elements 1, 7, and 8,

respectively, than for the same analytical elements in Table 1.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The objective to analytically derive a model to predict Bourdon behavior was a

very challenging one. The very mechanism by which Bourdons move, as described in

Chapter I, indicates the level of complexity of this engineering problem. The simple

beam and thin-shell theories and equations used in the development of this analytical

model for tip travel in a Bourdon tube have produced solutions whose validity is yet to be

determined.

The task of comparing analytical, numerical, and experimental results was

hampered by insufficient experimental data, questionable numerical solutions, and forced

assumptions concerning Bourdon geometry and material. The fact that Program

Bourdon produced output that followed expected trends is encouraging. The fact that the

code runs for more than one iteration only for certain Bourdon geometries warrants

continued investigation.

The experimental data collected from RRC and MIRCS was very limited due, in

some part, to the underspecification of the requested information. Ideally, the

dimensions of the elastic elements should have come from the gauge manufacturers, but

as stated previously, that information is closely guarded by the companies that design and

manufacture the gauges. In addition, the tip travel for each bourdon element should have

been measured over the operating range of the gauge and not just at the maximum

allowable pressure.
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The accuracy of the numerical results generated in I-DEAS was questionable due

to the excessive magnitudes of tip deflection for the applied pressures. Because the

experimental and numerical results for tip travel were each somewhat inconclusive and

because the analytical results were constrained by the geometric relationships of

dimensions a, b, and R, the comparative study of results yielded little useful information

for us to be able to state with conviction the accuracy of the analytical results.

Consequently, the validity of the analytical model remains under investigation.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

The research results presented in this paper are rather limited implying that a

considerable amount of work still needs to be done to develop an acceptable analytical

model for Bourdon behavior. The following suggestions are made to continue the

research effort:

1. Peruse Chapter VII (Tubular Manometric Springs) of Ref. 12 for its detailed

discussion of Bourdon tubes and compare the assumptions and derivations presented in

this thesis to the theories presented in Elastic Elements of Instruments. This book is

highly recommended by the Heise Division of Dresser Instruments as an excellent

resource in developing an analytical model for Bourdon behavior.

2. As a means of eliminating the geometric constraints of the analytical model,

modify the model using less restrictive geometric assumptions by independently

considering variable Bourdon length, circumference, and angle q0.
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3. Collect more thorough experimental data covering a much broader operational

range of pressures to better analyze and predict Bourdon behavior and eliminate as many

assumptions as possible concerning Bourdon geometry by obtaining comprehensive

measurements.

4. Enhance the analytical model to include a stress analysis to predict failure

from fatigue due to cyclic loading or from overpressurization and exploit the ability of

finite element software packages to calculate stresses and strains within finite element

models for comparison purposes.
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APPENDIX A. GEOMETRIC RELATIONSHIPS

Geometric relationships are derived in great detail in this appendix. These

relationships ultimately serve as the building blocks for the formulation of the analytical

model for Bourdon behavior. Derivations for da, the change in the semi-major axis, dV,

the volumetric change of the tube of unit length, and d(1/p), the change in the curvature

of the cross-section, are presented in this appendix.

Referring to Figure 4, the equation for the elliptical cross-section is

2 2
X z
- + -=I A. 1

b a

and the area, A, is

A=7-a b A.2

The volume of the elliptical tube with length unity is

V= -. a-b A.3

and the change in volume is

dV= 7.(a-db + b. da) A.4

The circumference, 1, of an ellipse is defined as
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1=4. ds A.5
-0

where ds is an incremental length of the circumference defined by the radius of curvature

of the cross-section p and the angle 0. Referencing Figure 4 for small do,

ds.dx2 +dz 2  A.6

For

x=b. cos4 A.7

and

z-a.sino A.8

the following expressions are true:

dx2= b2, si 0- do2 A.9

and

dz2 a2.cos2.O-d• 2  A.10

Substituting equations A.9 and A. 10 into equation A.6 and dividing both sides by the

square root of a2,
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ds=a. 2 - + cos2 -•do A.11

Substituting in the trigonometric identity cos2 = 1 - sinhb and rearranging terms,

ds~a ( I. -1sin2# + [-d# A. 12

The new variable kis defined by the expression

021 - b A.13
2a

on the interval 0 < k •1. The incremental arc length ds is now written as

ds--a-kl- 0- sin2-0.do A.14

so that the circumference becomes

1=4.a- 1-k -s do A.15

and then

14-.a.E A. 16
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where E is the complete elliptic integral of the second kind defined by equation 2.2. For

the assumption that / is constant, dl = 0. Taking the derivative of equation A. 16 and

equating it to zero yields the following expression:

a- dE-d +E-da~o A. 17

Solving for dk, the derivative of both sides of equation A. 14 is taken and written as

-bk.dk=-.b(a.db - b.da) A.18
a

then as

b
dk-- 3--(b. da - a.db) A.19

k.a

and eventually as

b2 da- a.b. dbdk= A.20

ja ab2

after making the substitution for k defined by equation A. 13. From Ref. 9,

dE B-K
-Em A.2 1

dk k
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where K is the complete elliptic integral of the first kind defined by equation 2.1.

Substituting equations A.20 and A.21 into equation A. 17 yields

(E-K ~b-da- adb\
b"/ ka2 H+ E.da-o A.22

which simplifies to

(E-b2 - K.b2 )-da + (K.a.b - E-a.b).db + (E.a' - E.b2).da A.23
2 b 2

a -b

and eventually to

da.b.(E- K)
E. a' - ,2 A.24

the ultimate expression of the change in the semi-major axis written as a function of the

change in the semi-minor axis. Substituting this expression into equation A.4, the

volumetric change in the Bourdon may be written as a function of db as follows:

a. (-K) ]
dV= -Xa.db + b-[abE- -b db HA.25

After some algebraic manipulation, the change in volume is written as

dV= (a2 + - 2Kb 2  A.26

E.a2 - K.b 2

47



Referencing Figure 4, the radius of curvature p of the cross-section is defined by the

relation

ds

P---s A.27

and the curvature is defined by the expression

d .z

I dx2

p + d21. A.28

The objective now is to write curvature as a function of the parameters a, b, and 0.

Recalling equation A. 1, its derivative is

x-dx z.dzS+A.29
b2 a

Solving for dz/dx,

dz-a•.x
-- a 2xA.30

dx b'.z

so that

2I a ."x
(d )24 2 A.31

The next objective is to write dz2/di in terms of a, b, and q0. By definition,
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dx2 dx A.32

With the substitution of equation A.30, equation A.32 becomes

dý-z di -~a2 -x

d2 dx (b 2 .z A .33

or

dý.'Z - a d

2• ' bdx z A.34

which, when the derivative is taken, becomes

dz -a 
dz)

2 A.35
dx b 2 z

Substituting equation A.30 into equation A.35 and simplifying, equation A.35 may be

rewritten as

dý -z -a 2 [ x -a 
A .3d2 b.z z b.z A.36

and eventually as
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-bA.37

Now substituting equations A.30 and A.37 into equation A.28, curvature is expressed as

4
1 -a 1

P b 2 3 ( 4. )15 A.38

which, after a few algebraic manipulations, becomes

1 -a4-b4

" 4 (b.z +a4x2)4. 5  A.39

Substituting equations A.9 and A. 10 into equation A.39, curvature is written as

1 -a 4 b4

SA.40
P (b4.a 2 .sinm"2 + a4.b 2 .cos 2 .)15

or as

1 - a -b

' (b2.sin 2  + a2.cos2.)l. A.4 1

Recalling the trigonometric identity cos'b = 1 - sin2 O, and dividing the numerator and

denominator by a',
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1 -b
A.42 Ssin .0 + (1 Si2 a)15.A4

and ultimately

1 -b
P a2.(1 _ký.sin2.O)I.5 A.43

Considering the absolute value of the curvature

1 b

, a2.( - k.nsm2.)1.5 A.44

which now correlates to the definition of curvature for an elliptical cross-section as

defined in Ref, 13. The change in curvature may now be written as

d. .d A.45

where

1 b2

4 k2 3 A.46a(1 -k•si.#)

and
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/d - /a+d \b+L Pdda+ A.47

The derivative is taken with respect to k because k is a function of the dimensions a and b

as defined by equation A. 13. The partial derivatives ofp with respect to a, b, and k are

(aP) da b k( - 2" da A.47.a

d -db=- -a - 1.5in .) db
b b A.47.b

(d p ). k= 3 a 2 k d si b ~I - k s n j A .4 7 .c

so that equation A.47 becomes

2p-a. a 'in .1. 3a k-cdk.sin'dP(L.da-b).(I-k2.sin2.#) b -- --(.sin%.

A.48

Recalling equations A. 13 and A. 19, the expression kdk may be written as

k. dk=b- (b. da - a. db) A.49
3 A4

a
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Making the substitutions for da and kdk and simplifying, equation A.48 becomes

dp=a2 . r(2b2 - 2) b M-0 .. d

b2 Ea'__b -Y&

IE- s 2 Eain ýs ýd

A.50

which is even further simplified by manipulating the following terms:

Sm2  k i 2I - nOs ((1 k.Sn 2 ) A.51

or

Si2 #*1-ksn2=2.( in k 2 .~2  '~ ~SMIn A.52k

Making the substitution of equations A. 13 and A.52 into equation A.50 , the expression

for the change in the radius of curvature becomes

• 3aE 2 2
dp Ea2 - Kbi2- sin db+

b 2 2 Kb' Ea2 1Kb

A.53

which, with a little more manipulation, becomes
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a2 a 2 +b2 E + K b ) -si ' 1.1-d
__._.____._1.€ ((a2+b ).E+K~b2 ).(1k.ii1.)"

d B-Ea2 - Kb2 
b 2

A.54

Now substituting equations A.46 and A.54 into equation A.45, the change in curvature is

written as

3. a3B-)EI db'0 k2s. ) 2 5 (E 2 - Kb2) b2)+ K] k2-•n.¢)j

A.55
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APPENDIX B. INCREMENTAL STRAIN ENERGY DUE TO
CROSS-SECTIONAL DEFORMATION

In general, elastic strain energy for a beam subjected to transverse loading is

expressed as

L

U=Ž-Mc B.1
2.E. I

So as not confuse the symbols for elastic modulus and elliptic integrals of the second

kind, elastic modulus for a straight beam will be designated E, elastic modulus derived

from the theory of thin shells will be designated E, , and elliptic integrals of the second

kind will be designated E for all remaining calculations. For an initially curved beam,

the moment Mis defined by the expression

M=E1 1 B.2P

Incremental strain energy in the bourdon due to a change in the cross-section is written as

2 ,2

d i IVI2 B.3

dTJ=4'- - dsB.
XS 2. E 1-1

1

where Mis now defined as
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M=E I- d(I) B.4

Making the appropriate substitutions for Mand Ei, equation B.3 becomes

Ir
dTs== 1  2 d ds B.5

where, for a unit length, the area moment of inertia is defined as

3
I---- B.6

12

and t is the wall thickness of the Bourdon element. The integral term is found by

squaring equation A.45 which results in the expression

(d (i))'-

_b2 (a' + b 2).-E Sin. 1

Sa2 .( _ k 2.sin 2 3. (Ea2 - K b2) 3 - 2  + i

B.7

which upon squaring becomes
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(d (92=

b 4  1(aa+2+b)yE+ K
, ~~-------VT

4.E b2 9..p2
2)k ( - k 2) 2 2(i 2 42 • .) Jdb2

For s'mplicity, equatio n 13.8 is rewri.en as

d- k2.Sin2.4) + - k2.s+n. .) 0 -
S. "db2

where the constants C, through C4 are defined as follows: B.9

C b4

4 - Kb2)2

B.9.a

C tl 2 + b 2

4P

B.9.c

C 4 E2

B.9.d

57



Rewriting equation B.5 in terms of the constants C1 through C4 and substituting

equation A. 14 for ds, the equation for incremental strain energy due to a change in the

cross-section becomes

dU -xS

2- 2.db [ + +4 -a. . sin- do21. +I
v (I - k sm. 0)' (1 - k..sin2) (, -k

B.10

With further simplification, incremental strain energy due to sectional deformation is

written as

dU=xS

11
+2 2  3 + 4 do

1/ 2(1 - (k.si -k .sin),)•( (1 - ký-. n2 )4.5

B.11

All of the terms in the denominator of the integral in equation B. 11 may be written in

terms of elliptic functions by letting

sin. () = sn. (u) B. 12

and
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cos-(#)=cn. (u) B. 13

so that

d(sin) = coso- do= d(sn(u))= cn(u)- dn(u). du B. 14

Solving for do,

do=dn(u) du B. 15

In addition,

I - k2 sin2 ) - k2 sn2-(u) B.16

where

1 - 0- sn2.(u)= dn2 -(u) B. 17

by definition in equation 2.4.b. Equation B. 11 is further simplified by evaluating the

integral in parts and by making substitutions with equations B. 15 and B. 17. The first

term in the integral is written as

J(1 - k -sin 2.5 do= [K dnW. (u))- 25. dn. (u) du
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= (d- 5 -(u) dn.(u)) du--K dn .(u) du B.18

Applying equation 5.131.3 from Ref 14 for m = -4,

dd 4 . (u) du=j 4

12 [K U+KdU

1 k 2 4n_3. (u) -sn(u), cn(u) - 2.(2 -k 2 ) d 2 (u) du + udu3.(k•) -

B.19

Using the elliptic function identities defined in Chapter I and the relationships

(k) 1 k2 B.20

and

[K (d- (u)) du=E B.21

-'0

as defined in Refs 9 and 10, equation B. 18 is rewritten in simpler form as

dn 4 (u) du= K 2.(2 -k2) K 2
+d .()d=Id- .- (u) du B.22

a3.(1 - k) 3.(1k)

Again, applying equation 5.131.3 from Ref. 14 to solve for the final integral where
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m = -2, equation B.22 is further simplified to the expression

[d-4-udU= K 24( -k2) EK B.23

Cid . (u-)2 du=- KB.2

where, for future reference,

J dn 2. (u) du- B.24

Still in the process of simplifying the equation for the incremental strain energy in

Bourdons due to changes in cross-section, the next integral to be evaluated is

[ O - k-S.*2•)- 35 do= [K (dn--(u))-"dn..(u) du

J- (dn 7.(u). dn. (u)) du= 0[K 6.(u) du B.25

Applying equation 5.131.3 from Ref. 14 for m = -6,
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OK d- (u) du

1 k 5' ff(u) '-sn(u)'Ucnf(u) - 4.(2 -k2) dn-4.(u) du + 3.J dn-.(u) du5.(k•)

B.26

Substituting equations B.20, B.23, and B.24 and applying the elliptic function identities

defined in Chapter I,

!?K 4'(2 - k) .2-E.(2 - K] B.27

Jo - i- (u) duj- 2. B.27

And finally, applying the same procedure to the denominator of equation B. 11

corresponding to the constant C4 ,

J( i k22) 4 s d= (d2.(u))- .dn.(u). du

= (u) ( u..(u)) = -8. (u) du

B.28
where, applying equation 5.131.3 from Ref. 14 for m = -8,
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Sodd'- (u) du=[ K

I ( 0j d7 (u)' sn(u), cn(u) - 6.(2 - k6)"[ dn(u) du + 5 . (u) du

B.29

Substituting equations B.20, B.23, and B.27 and applying the elliptic function identities

defined in Chapter I,

[ - ) 24(2-k)2 5 2E(2-ký) 18- E (2 - ký)
( 105.(1 - k)3 21-(1 - 0)' (1- K 35.(1 - ký)3

B.30

The equation for incremental strain energy due to changes in cross-section may now be

written as

dU -S CI 2 dn-.-(u) + C3.dx-'(u) + C .dn- (u) du B.31

xs (1 - ) -o

where the integrals of dn-' (u), dn6(u), and dn-8 (u) are defined by equations 2.5, 2,6, and

2.7, respectively.
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APPENDIX C. INCREMENTAL STRAIN ENERGY

DUE TO BENDING

As defined in Appendix B, the total strain energy due to bending in a beam is defined as

U=-Mý dx C. 1

.0

where M represents the net moment acting on the bourdon as a result of pressurization

and E' is Young's modulus. The detailed derivation of the net moment acting on the

elastic element represents a very large segment of this appendix.

Referencing Figure 5, the elemental area of the bourdon tube is defined by the

expression

dA=(R ± pcosý)-d&ds C.2

Recalling equation A. 14, equation C.2 may also be written as

dA--a.(R + pcosý ). - kjnsir..dOd. C.3

The force acting on the elemental area is defined as

dF=P. dA C.4

where

P=P- ((coso. cos0)'i + (cosoa-sin0)-j + sinoe-k) C.5
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The angle a describes the direction of the normal component of pressure acting on the

wall of the tube as shown in Figure 5. Substituting equations C.3 and C.5 into equation

C.4, the elemental force acting on the elemental area of the bourdon is

dF=P.((cosoa.cosO).i + (coso..sin0).j + sice-k)[ a-(R + p-cos1). - k2sin2#.d0.do

C.6

where the corresponding moment arm to the elemental area is defined as

dr=-R. (cosO-i + sin.j) + (R +,o.coso)-(cos0-i + sin0j) +,0- sino.k C.7

Relating the angle a to the angle 0 in Figure 6,

cos,
cos(o -- C .8

Fi-1 ý-k2 sin2.

and

situ= b- sinr C.9

a i- k2 .siir.-

As a result, equation C.6 may be expressed as

dF=P-a.(R pcos) os.cos)-i+ (cosf.sir0)-j -. sinok -d-dO
a

C.10
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The moment acting on the elemental area due to an elemental force is defined by the

equation

dM=dr - dF C.11

Temporarily factoring out Pa(R+pcosO4)d/4tO from equation C.10 for simplicity, the

vectorial components of the resulting cross product of equation C. 11 are:

F.. b
coO-sirf-sp.sir* - -- sirn.(R.sirO - R-sirl3 + p--coo -sir)) . C.1 1.a

a

bjcos" cosO. P sit* - b. silr. (R-cosO - R. cosp + p. cf3 - -cos) C. 11 .ba

and

((R-cosO - R-cosp + p-cos-cosO).cossirl - cos~cos&(R.siro - R-sirp+ .pcos-sirt)).k

C.11.c

For the sake of brevity, the cosine function will be abbreviated by "c" and the sine

function will be abbreviated by "s" from this point to the end of Appendix C. Continued

simplification begets the following equation for the moment acting on the bourdon tube:

-2- [Pa(Ri aaj

Mr Pa.(R+ p-c4)- p-c.s.so - b.(R+ p.c,). s4-sO + -R-s-.s lif-idýd•
a a

.0
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- P.a.(R - p.co). p.c-.sO.cO - -- (R + p-co).so.cO + b-R.so.c l3 -j dO dO
a a

+ j02- RP-a-(R + p.coj). R.c.(cO.so3 - sO.co3)-k dO d

C.12

Factoring back in the expression Pa(R+pcosqO)dcdO and evaluating the x-component of

the equation C. 12 first,

b a
P--(R pc)-PCýS-(R + a . aý-s .s Od =

C.13

because sinqo is an odd function on the interval 0 to 2nr. Similarly for the y-component of

equation C. 11,

a aRc~ls
-a.(Rip- co).[ P-ccO - .(R + p- pco)- cO + -co - d 0d=0

.0 *'O

C.14

Evaluating the z-component of equation C. 11,
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P-a.R. (R + p'cý)-cý-(cO-s3 - so.cp3) dO d4=

4"Pa'a-R [K - E]
3 .(I - c13)• -- + (2.E - K)2k

3 k

C.15

Therefore, the final expression for the moment acting on the walls of the tube is

-- )4-P-aR K_ 1
M=- __ - CV - +(2.E-K) k C.163 k2

Again referring to Figure 5, the net force acting on the end cap of the bourdon element is

F cap=-P'rt-a'bj C.17

and the corresponding moment arm is

dr=R-(i - cp3).i- R.so3.j C.18

Performing the cross product,

MeOL =dr x dFcap =-PR-rab-(1 - cO)-k C.19
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Therefore, the net moment acting on the tube is the sum of the moments acting on the

walls and end cap of the Bourdon as shown in next equation:

__et__.+Mcal).a.4._ K- E

M=P.aP( q -[f +(2.E-K) 7rb fk

C.20

For simplicity, the new variable D is defined as

Da.[-{ - + ( 2.E- K) - C.21

such that

Mnet-P'a'R-D'(i - c3)'k C.22

Substituting equation C.22 into equation C. 1, the total bending strain energy is expressed

as

Ub . (P-a- R- D .(1 - cOF)) 2 d C 2
2.E1.I

Ub 2BE- K(..:x~f) *Rc C.23

The incremental strain energy is calculated by differentiating U, with respect to the

dimensions a and b, the applied pressure P, and the radius of curvature of the tube R such

that
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dUb(= d U).da +t <U)db± (d U dP + (iU)dR C.24

where

(d~ P'-aR3 ID (dda- . (6- 9. sin(A) + sin(2. A)). a-D +ID da C.25
a 4. E' I da .

(e ) PUR* ( db=(-I - 8.smi(jL) + sn'(2. I)) - I d b C.27

and

2 22

T. dR= 3 1Pa R2-D (6' 8-? sin(At) + sin(2- ))dR C.28

Summing equations C.25 - C.28 and simplifying, the incremental strain energy in the

bourdon due to bending may be expressed as
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d uEb= - (6.A - 8.sin(A) + sin(2.- t)) -

Ea 2 -Kb2  da )db

C.29

where

d a 4 a (K - -b) K _ (a2 - )b 2 2.a

IaD= f3 ( (a 2 2)b 2 a (2) E-K C.30

and

d 4 2.a .b-(K - E)22 --- gr C.31

db 3 (a2_ b2)

as a result of taking the partial derivatives of equation C.21 with respect to the semi-

major and minor axes, respectively.
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APPENDIX D. DEVELOPING EQUATIONS FOR TIP TRAVEL

Two equations are used to develop the equation for Bourdon tip displacement.

The first equation is based on the assumption made in this analytical study that the length

of the elastic element remains constant during pressurization. Based on this assumption,

the following is true:

* R= Constant D. I

and

.. dR + R. d=0 D.2

where incremental tip travel, dR, is expressed as

D.3

Referring to Figure 6, the variables R and p are measurable quantities but dui must

be calculated. One way to do so is to apply Castigliano's Second Theorem as defined in

Ref 11 which states that

. M ( dd D.4

El M
-0

whereM, is an imaginary moment and El is Young's modulus. This equation is helpful

because, in beam theory, 0• represents the change in the slope of the elastic member at

the point of an applied imaginary moment. Geometry then dictates that
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D.5

thereby establishing the second equation necessary to calculate tip deflection. Modeling

the Bourdon as a beam, this relationship makes sense because as the radius of curvature

at the tip of the Bourdon becomes larger with pressure, the change in slope becomes

larger and the angle pi describing the length of the elastic element becomes smaller.

Therefore, once 0, is known, bourdon tip displacement is calculated using equation D.3.

Continuing with the application of Castigliano's second theorem, a dummy

moment M, is applied in the direction chosen positive for 0 so that the bending moment

in equation D.4 becomes

M=-P.aR.D( - cosO)-k- M.-k D.6

and

d
M- - I D.7

dM.
1.

Making the appropriate substitutions into equation D.4, setting M, equal to zero, and

integrating,

P-a.R.D a PaR.D0 ~( 1 COSO) O(A- sins)
O=E 1.I JoE'.I

D.8
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A positive value of 0i means the tip angle of rotation has the same sense of direction as

the applied dummy moment. Because 0Q is a function of the dimensions a and b (a

function of b because D is a function of b), an iterative solution for tip travel incorporates

the cross-sectional deformation that occurs simultaneously with straightening.
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APPENDIX E. FORTRAN SOURCE CODE

Program Bourdon

* This program calculates tip deflection in low pressure, C-type Bourdon
* elements for user-defined properties, geometries, and pressures.

* Definition of variables:

* a = semi-major axis of the elliptical thin-walled tube (ID)
* b = semi-minor axis of the elliptical thin-walled tube (TD)

* t = wall thickness of elliptical tube
* R = tip radius of curvature of the elliptical tube
* p = internal pressure applied to the tube
* mixs = I, the area moment of inertia of the tube for cross-sectional
* deformation
* mib = I, the area moment of inertia of the tube for bending
* mu = arclength of the elliptical tube
* epr = elastic modulus of the tube material
* nu = poisson's ratio of the tube material
* rad = input variable for the initial radius of curvature
* rin initial radius of curvature expressed in meters
* da = incremental change in a
* db = incremental change in b
* dR = incremental change in R
* dp = incremental internal pressure applied to the tube
* dmu = incremental change in mu

* sink = k, defined as the square root of 1-(b/a)^2
* bk = K, Jacobian Elliptic Integral of the 1 st kind
* be = E, Jacobian Elliptic Integral of the 2nd kind
*

* c I = a constant in the expression for capc
* c2dn = the product of a constant and the elliptic integral of
* dn(u)e-4 in the expression for capc
* c3dn = the product of a constant and the elliptic integral of
* dn(u)e-6 in the expression for capc
,

* c4dn = the product of a constant and the elliptic integral of
* dn(u)e-8 in the expression for capc
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* D = a constant in the net moment equation expressed as a
* function of a, b, K, and E
* dDda = partial derivative of D wrt a
* dDdb = partial derivative of D wrt b

* capa = a constant expressed as a function of parameters a, b,
* P, and R used in Subroutine Bndenrg
* capb = a constant expressed as a function of parameters a, b,
* P, and R used in Subroutine Bndenrg
* capc = a constant expressed as a function of dimensions a and
* b used in Subroutine Xsecenrg
* capj = an expression representative of incremental external work
* capI = the ratio of capj to capa used in the expression for capy
* capx = the ratio of capc to capa used in the final expression
* for db
* capy = an expression representing the difference in capb and
* capi used in the final expression for db
* capz = a constant expressed as a function of parameters a, b,
* P, and R used in Subroutine Bndenrg
* thetai = bourdon tip rotation due to applied dummy moment

* dV = volumetric change in the tube, dV = vol*db
* duxs = change in internal energy due to a change in the
* cross-section of the elliptical tube as a result
* of an applied internal pressure
* dub = change in internal energy due to bending of the
* elliptical tube

implicit real*8 (a-ho-z)
real*8 mixs, mib, mu, nu, maj, min

common a,b,smk,bk,be,epr,R,mixs,mib,mu,nu,p,capc,capa,capb,capz,c 1,
"+ c2dn,c3dn,c4dnD,dDda,da,dDdb,pi,dp,dR,db,dmu,thetai,vol,capj,
"+ capl,capx,capy

open (7,file='data',status='old')
read (7,*)maj,min,wl,rad,mu,dp,pmax,eprnu
close (7)

* Dimensions converted to meters.

a = maj/1000.0
b = min/1000.0
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t = wl/1000.0
rin = rad/1000.0
R =rin

call capke

pi =3.141592654

vol =pi*a*(((a**2 + b**2)*be - 2.0*bk*b**2)/(be*a**2
+ ~bk*b**2))

sink = sqrt(1.0 - (b/a)**2)
mi= (pi/4.0)*((a + t)*(b + t)**3 - a*b**3)

"* This loop increases the internal pressure to a pre-determined
"* maximum pressure in increments of dp so that associated changes
"* in the variables a, b, R, and mu may be considered in the problem.

Open(4,file='data',status='new`)

Do 10 p=O.O,pmax - dp,dp
call capke

vol = pi*a*(((a**2 + b**2)*be - 2.0*bk*b**2)/(be*a**2
+ - bk*b**2))

call xsecenrg
call dercapd
call dummy
call tip
call bndenrg

capj = (p + dp)*vol
capI= capj/capa
capx. = capc/capa,
capy = caph - capI

*The final expression for db is written as a quadratic equation for
*both roots of the equation.

db = (-capy - sqrt(capy**2 - 4.0*capx*capz))/(2.0*capx)

da = (a*b*(be - bk)/(be*a**2 - bk*b**2))*db
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* Variables incremented through the loop.

a = a + da
b = b + db
R=R+dR
mu = mu + dmu
sink sqrt(1.0 - (b/a)**2)
mixs =t**3/12.0
mi b= (pi/4.0)*((a + t)*(b + t)**3 - a*b**3)

10 continue

close (4)

stop
end

Subroutine Capke

"* This subroutine calculates K and E, elliptic integrals of the first
"* and second kind, respectively. K and E are functions of k which is
"* itself a function of the major (2a) and minor (2b) axes of the
"* ellipse.

implicit real*8 (a-h,o-z)
real*8 mixs, mib, mu, nu

common ab,smk,bk,be,epr,R,mixs,mib,mu,nu,p,capc,capa,capb,capz,c 1,
"+ c2dn,c3dn,c4dn,D,dDda,da,dDdb,pi,dp,dR,db,dmu,thetai,vol,capj,
"+ capl,capx,capy

ang = asin(smk)
eps = 1.Oe-8
a0 = 1.0
bO = cos(ang)
cO = sin(ang)
rmult = 1.0
stor = cO**2
bk = 1.5707963
be = bk*(1.O - 0.5*stor)

89 if (abs(cO).lt.eps) goto 99
al = 0.5*(aO + b0)
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bl = sqrt(aO*bO)
cl = 0.5*(aO - bO)
rmult = 2.0*rmult
stor = stor + rmult*(c 1**2)
bk = 1.5707963/al
be = bk*(1.0 - 0.5*stor)
aO=al
bO = bI
cO = cl
goto 89

99 continue
return
end

Subroutine Xsecenrg

"* This subroutine calculates the change in internal energy due to a
"* change in the cross-sectional area of an elliptic tube when an
"* internal pressure (greater than external or ambient pressure) is
"* applied to the tube. The change in internal energy occurs when
"* the elliptical cross-section becomes more cicular with applied pres-
* sure.

implicit real*8 (a-h,o-z)
real*8 mixs, mib, mu, nu

common a,b,smk,bk,be,epr,R,mixs,mib,mu,nu,p,capc,capa,capb,capz,c 1,
"+ c2dn,c3dn,c4dn,D,dDda,da,dDdb,pi,dp,dR,db,dmu,thetai,vol,capj,
"+ capl,capx,capy

call jacconst

capc= (2.0*a*epr*mixs*c l*(c2dn + c3dn + c4dn))/(1.0 - nu**2)

* The change in internal energy due to a change in the cross-section
* is defined as duxs = capc*db**2

return
end
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Subroutine Jacconst

* This subroutine simplifies the expression needed to calculate the
* change in internal energy due to a change in the tube's cross-
"* section. C1 is a constant for specific major and minor axes of
"* the elliptical tube. Constants c2nd, c3dn, and c4dn are
"* also specific for given tube axes but also include the evaluation
"* of the elliptic trigonometric function dn(u) raised to the -4, -6,
* and -8 powers, respectively.

implicit real*8 (a-h,o-z)
real*8 mixs, mib, mu, nu

common a,b,smk,bk,be,epr,R,mixs,mib,mu,nu,p,capc,capa,capb,capz,c 1,
"+ c2dn,c3dn,c4dn,D,dDda,da,dDdb,pi,dp,dR,db,dmu,thetai,vol,capj,
"+ capl,capx,capy

ci = (b/a)**4*(1.O/(be*a**2 - bk*b**2)**2)
c2 = (((a**2 + b**2)/b**2)*be + bk)**2
c3 = -6.0*be*(((a**2 + b**2)/b**2)*be + bk)
c4 = 9.0*be**2

dn2 = (2.0*be*(2.0 - smk**2)/(1.O - smk**2) - bk)/(3.0*(1.O -
"+ smk**2))

dn3 = (4.0*(2.0 - smk**2)/(15.0*(1.O - smk**2)**2))*(2.0*be*(2.0
+ - smk**2)/(1.O - smk**2) - bk) - (3.0*be/(5.0*(1.O - sink
+ **2)**2))

dn4 = (24.0*(2.0 - smk**2)**2/(105.0*(1.O - smk**2)**3) - 5.0/
"+ (21.0*(1.0 - smk**2)**2))*(2.0*be*(2.0 - smk**2)/(1.0 -
"+ smk**2) - bk) - (18.0*be*(2.0 - smk**2)/(35.0*(1.0 - smk**2)**3))

c2dn = c2*dn2
c3dn = c3*dn3
c4dn = c4*dn4

return
end

Subroutine Dummy

"* This subroutine calculates the change in the slope at the free end
"* of the tube using Castigliano's second theorem. The change in the
"* slope is determined by applying a dummy moment at the tube tip and
"* incorporating that moment into the internal energy equation for a
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* beam. Thetai is found by integrating the internal energy equation and
* then setting the dummy moment equal to zero.

implicit real*8 (a-h,o-z)
real *8 mixs, mib,nu, mu

common a,b,smk,bk,be,epr,R,mixsmib,mu,nu,p,capc,capa,capb,capz,c 1,
"+ c2dn,c3dn,c4dn,D,dDda,da,dDdb,pi,dp,dR,db,dmu,thetai,vol,capj,
"+ capl,capx,capy

thetai = ((p + dp)*a*(R**2)*D*(mu - sin(mu)))/(epr*mib)

* Thetai should be a positive value to indicate that the angle of
* rotation has the same sense of direction as the applied dummy moment.

return
end

Subroutine Tip

"* Once thetai is known, the tip deflection of the tube can be
"* calculated by assuming that mu*R = constant. In doing so,
"* mu*dR + R*dmu = 0 must be true. Geometry shows that mu has the
"* same magnitude but opposite sense of thetai.

implicit real*8 (a-h,o-z)
real *8 mixs, mib, nu, mu

common a,b,smk,bk,be,epr,R,mixs,mib,mu,nu,p,capc,capa,capb,capz,c 1,
"+ c2dn,c3dn,c4dn,D,dDda,da,dDdb,pi,dp,dR,db,dmu,thetai,vol,capj,
"+ capl,capx,capy

dmu = -thetai

dR = (-R*dmu)/mu

return
end
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Subroutine Bndenrg

"* This subroutine simplies the expression needed to calculate the
"* change in internal energy due to bending in the tube. Capa, capb,
"* and capz are all constant for the given parameters but change as the
* parameters change.

implicit real*8 (a-h,o-z)
real *8 mixs, mib, nu, mu

common a,b,smk,bk,be,epr,R,mixs, mib,munup,capc,capa,capb,capz,c l,
"+ c2dn,c3dn,c4dn,D,dDda,da,dDdb,pi,dp,dR,db,dmu,thetai,vol,capj,
"+ capl,capx,capy

capa = (((p + p)*(a**2)*(R**2)*D)*(6.0*musin(mu)+sin(2.0*mu)))/
+ (4.0*epr*mi)

capb = (((p + dp)*R*b*(be - bk)/(be*a**2 - bk*b**2))*(a*dDda +
"+ D)) + ((p + dp)*R*dDdb)

capz = (R*D*dp) + (1.5*(p + dp)*D*dR)

* The change in internal energy due to bending is defined as
* dub = capa*(capb*db + capz)

return
end

*

Subroutine Dercapd

"* This subroutine simplifies the expression for the net moment acting
"* on the tube as a result of the applied internal pressure. D is the
"* simplifying term in the moment equation. dDda and dDdb are the
"* partial derivatives of D with respect to a and b, respectively.

implicit real*8 (a-h,o-z)
real*8 mixs, mib, mu, nu

common a,b,smk,bk,be,eprR,mixs,mib,mu,nu,p,capc,capa,capb,capz,c 1,
"+ c2dn,c3dn,c4dn,D,dDda,da,dDdb,pi,dp,dR,db,dmu,thetai,vol,capj,
"+ capl,capxcapy
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D = a*((4.O/3.O)*((bk - be)/(smk**2) + (2.O*be - bk)) - pi*(b/
+ a))

dDda =(4.O/3.O)*(((a**2*(bk - be)*(3.O*(a**2 - b**2) - 2.O*a**
+ 2))/(a**2 - b**2)**2) - (2.O*be - bk))

dDdb =(4.O/3.O)*((2.O*a**3*b*(bk - be)/(a**2 - b**2)**2) - pi)

return
end
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