
. >.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN AND SPECIFICATION
OF AN OBJECT-ORIENTED

DATA MANIPULATION LANGUAGE

by

Michael W. Stephens

September 1995

Thesis Advisor:
Co-Advisor:

David K. Hsiao
C. Thomas Wu

Approved for public release; distribution is unlimited.

W r:uD I

19960401 024

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) I2. REPORT DATE
September 1995

13. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Design and Specification of an Object-Oriented Data Manipulation
Language

6. AUTHOR(S)

Michael W. Stephens

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This purpose of this thesis is to develop the design and specifications of an Object-Oriented Data Manipulation Language

(O-ODML) for an Object-Oriented Data Model/Language (O-ODM) constructed to test and demonstrate the Multimodel and
Multilingual Database System at the Naval Postgraduate School Laboratory for Database Systems Research, Monterey California.

New database applications, such as images and graphics databases, scientific databases, engineering design and
manufacturing (CAD/CAM and CIM), require complex objects capable of storing images or large textual items and defining
nonstandard application-specific operations. Traditional data modelsAanguages were designed for record keeping, inventory
control, product assemblies and inference making. In these traditional models, information about such complex objects is often
scattered over many relations or records, leading to a loss of direct correspondence between a real-world object and its database
representation. [Ref. 8]

This thesis developed an O-ODML to include such features as object creation and destruction, search and retrieve queries,
attribute-set operations, input/output operations and covering relationships. For compilation, the thesis includes the detailed
specifications of the grammar, production rules, syntax, and symbols for the O-ODML. Thus the O-ODML and O-ODM
incorporate the ability to construct data structures that maintain the functional persistence of data, to specify intrinsic methods for
manipulating data and to create objects with both ordinary attributes as well as sub-objects of sets that are independent of the
original object.

14. SUBJECT TERMS
Object-Oriented Data Manipulation Language
Object-Oriented Data Model
Object-Oriented Database

15. NUMBER OF PAGES

105
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

DESIGN AND SPECIFICATION OF AN OBJECT-ORIENTED

DATA MANIPULATION LANGUAGE

Michael W. Stephens
Lieutenant Commander, United States Navy

B.S. Southern Illinois University at Carbondale, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

Author:

Approved by:

^^l^Udp C2
Michael W. Stephens

k^icuojMc ^f£/^f>
David K. Hsiao, Thesis Advisor

Ted Lewis, Chairman
Department of Computer Science

111

IV

ABSTRACT

This purpose of this thesis is to develop the design and specifications of an Object-

Oriented Data Manipulation Language (O-ODML) for an Object-Oriented Data Model/

Language (O-ODM) constructed to test and demonstrate the Multimodel and Multilingual

Database System at the Naval Postgraduate School Laboratory for Database Systems

Research, Monterey California.

New database applications, such as images and graphics databases, scientific

databases, engineering design and manufacturing (CAD/CAM and CIM), require complex

objects capable of storing images or large textual items and defining nonstandard

application-specific operations. Traditional data models/languages were designed for

record keeping, inventory control, product assemblies and inference making. In these

traditional models, information about such complex objects is often scattered over many

relations or records, leading to a loss of direct correspondence between a real-world object

and its database representation. [Ref. 8]

This thesis developed an O-ODML to include such features as object creation and

destruction, search and retrieve queries, attribute-set operations, input/output operations

and covering relationships. For compilation, the thesis includes the detailed specifications

of the grammar, production rules, syntax, and symbols for the O-ODML. Thus the O-

ODML and O-ODM incorporate the ability to construct data structures that maintain the

functional persistence of data, to specify intrinsic methods for manipulating data and to

create objects with both ordinary attributes as well as sub-objects of sets that are

independent of the original object.

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1

B. THE THESIS ORGANIZATION 5

n. OBJECT-ORIENTED CONSTRUCTS FOR MANIPULATION 7

A. CONSTRUCTS FOR CLASSES AND OBJECTS 8

B. OBJECT IDENTIFIERS 10

C. OBJECT-ORIENTED CLASS RELATIONSHIPS 10
1. Class Composition 10
2. Class Inheritance 11
3. Covering 12

D. OBJECT-ORIENTED MANIPULATIONS 15
1. Methods 15
2. Operations 16

III. OBJECT-ORIENTED OPERATIONS 19

A. OBJECT CREATION AND DESTRUCTION 20
1. The Insert Operation 20
2. The Delete Operation 21

B. VALUE INPUT AND OUTPUT 23
1. The Readjnput Operation 24
2. The Display Operation 26
3. The Project Operation 28

C. OBJECT RETRIEVAL 28
1. The Find_One Operation 29
2. The Find_Many Operation 30

D. OBJECT ATTRIBUTE ASSIGNMENT 30

E. COVERING OPERATIONS 32

F. SET OPERATIONS 33
1. The Add Operation 34
2. The Delete Operation 36
3. The Contains Statement 37
4. Statistical Operations 37

IV. MANIPULATION LANGUAGE SPECIFICATIONS RULES 39

A. SPECIFICATIONS RULES 40
1. Symbols 40
2. Identifiers 41
3. Reserved Words 41

B. DECISION STATEMENTS 42
1. The If-Then Statement 42
2. The If-Then-Else Statement 43

C. ITERATIONS AND THE FOR-EACH LOOP STATEMENT 44

D. MEMBER ACCESS OPERATOR RULES 44

E. COMMENTED CODE 46

V. THE QUERY CONSTRUCTS 47

A. THE QUERY FORMAT 47
1. Query Headings 48
2. Declarations Part 48
3. Body Part 49

B. THE QUERY SYNTAX DEFINITION 50

VI. CONCLUSION 55

A. RELATED WORK 56

B. RECOMMENDATIONS FOR FUTURE WORK 57

APPENDIX A. SYMBOLS 59

APPENDK B. PRODUCTION RULES 61

APPENDIX C. DATA MANIPULATION LANGUAGE DEFINITIONS 63

via

1

APPENDIX D. LEXICAL NOTES AND SEMANTIC NOTES 65

APPENDIXE. FACULTY-STUDENT DATABASE LOGICAL DIAGRAM 67

APPENDK F. FACULTY-STUDENT DATABASE CLASS SPECIFICATION AND
REPRESENTATION 69

APPENDIX G. FACULTY-STUDENT DATABASE QUERY FILES 71

APPENDDCH. FACULTY-STUDENT DATABASE QUERY EXAMPLES 75

LIST OF REFERENCES 83

INITIAL DISTRIBUTION LIST 85

IX

LIST OF FIGURES

1. Specification of a Class 9

2. Specification of a Complex Class 11

3. Inheritance Relationship 12

4. Covering Relationship (1:M) 13

5. Covering Relationship (M:l) 13

6. Covering Relationship Logical Diagram 14

7. Covering Implementation 15

8. Covering Operation 33

9. Attribute-Set Logical Diagram 35

10. Set-of/Inverse-of Attribute-Set Relationships 36

11. Syntax Production Rules 52

12. Production Rules Illustrated 53

XI

Xll

LIST OF TABLES

1. List of Object-Oriented Operations 18

2. Reserved Words 42

3. The Constructs of a Query 47

4. O-ODML Language Symbols 59

5. Definitions 63

Xlll

XIV

LIST OF ACRONYMS

AB DBMS Attribute Based Database Management System
ASCII American Standard Code for Information Interchange
BNF Backus-Naur Form
CAD Computer-Aided Design
CASE Computer-Aided Software Engineering
CAM Computer-Aided Manufacturing
CIM Computer-Integrated Manufacture
CMAC Cross-Model Accessing Capabilities
COBOL Common Business Oriented Language
COD ASYL Committee on Data Systems Languages
DBMS Database Management System
DBTG Data Base Task Group
LR(k) Left-Right(lookahead) Parsing Technique
M2DBMS Multimodel and Multilingual Database System
MDBMS Multimodel and Multilingual Database System (M2DBMS) with Cross-

Model Accessing Capabilities (CMAC)
OID Object Identifier
O-ODBMS Object-Oriented Database Management System
O-ODDL Object-Oriented Data Definition Language
OODL Object-Oriented Data Language
O-ODM Object-Oriented Data Model
O-ODML Object-Oriented Data Manipulation Language
O-OPL Object-Oriented Programming Language

XV

XVI

ACKNOWLEDGEMENTS

I would like to thank Dr. David K. Hsiao and Dr. C. Thomas Wu for their time and

advice during the research and writing of this thesis. Dr. Hsiao provided the leadership

and database knowledge necessary to keep the team focused on the common goal. At the

same time, he provided concise direction to each member as we worked individually on

widely diverse areas of the project. Dr. Wu's knowledge of object-oriented languages and

the constructs of syntax and grammar provided the team with an accurate technical source

of knowledge that returned the DML team to the correct path time and time again. Both

provided valuable time anytime, patience and humor when needed, and knowledge and

technical expertise when all else failed. Their expertise and guidance made this thesis pos-

sible.

I would also like to thank Bruce Badge«, the team leader. In addition to his own

work, he stepped up his efforts to work with each team member, to ensure our individual

and team efforts were coordinated with the work in progress of others.

I would like to thank the members of our team, Bob Clark, Carlos Barbosa, Necmi

Yildirm, Aykut Kutlasan and Erhan Senocak. Our initial work together as a team and

subsequent work as individuals ensured the success of the project and provided the basis

for this thesis.

Finally, I would like to express my appreciation to my wife, Cathy. Her patience

and understanding with the unusual hours and demands of the project, provided both

peace of mind and support, in completing the thesis.

XVll

I. INTRODUCTION

The purpose of this thesis is to develop the design and specifications of the Object-

Oriented Data Manipulation Language (O-ODML). The purpose of the O-ODML is to pro-

vide a high-level query language for writing and processing transactions that can be

executed in the object-oriented language/paradigm within the Multimodel and Multilingual

Database System (M2DBMS) via the Object-Oriented Model/Language (O-ODM) inter-

face. The O-ODML, with the Object-Oriented Data Definition Language (O-ODDL),

comprise the model and the language of the Object-Oriented Data Language (OODL)

within the M2DBMS. The M2DBMS is the database research laboratory at Naval Postgrad-

uate School Monterey, which provides a research platform for exploring solutions to the

problems of heterogeneous databases and design concepts required for the development of

a consolidated database system. The O-ODML is one of five model/language interfaces

currently implemented in support of the M2DBMS research laboratory.

A. MOTIVATION

The historical development of the traditional database systems proceeded through

various data models as a variety of different types of applications evolved for the uses of

databases and data relationships. Different types of applications led to the development of

different data models and database systems to provide better support for the properties and

data interrelationships required by these applications. These traditional database applica-

tions can be characterized as record keeping, product assembly and inventory control, as

well as the more modern database systems developed for inference making.

The types of traditional heterogeneous database systems that have been developed

and are in widespread use include the network, hierarchical, relational and functional data

models. Each of these types of database systems have been designed and developed with

their own unique language, commands, structures and environments. These properties were

designed to provide better support and to optimize the divergent types of data, storage and

manipulation requirements. The network, commonly referred to as the CODASYL or

DBTG network model, was developed to support inventory management, utilizing records

and sets for its data structures and constructs. The hierarchical data model found its main

use in the representation of the many types of hierarchical organizations, such as corporate

structures, classification schemes and government organizations. The hierarchical model

utilizes records and parent-child relationships to define its data structures. The relational

data model is a popular model that has found many widespread applications in commercial

industry. Its data structure is based on the relation and is usually defined using tables, tuples

and attributes. The functional data model demonstrates the ability to use inference making

by using mathematical functions as the modeling constructs. The functional data model uti-

lizes entities and functional relationships for its standard data structure, with the function

call returning the desired information. Each of these traditional data models are well suited

for the traditional database applications for which they were first designed; however, newer

applications have exceeded the capability of these traditional data models to structure com-

plex abstract objects economically.

Newer applications and databases have been developed that require complex data

structures. These data structures include those capable of storing images or large textual

items and defining nonstandard application-specific operations. These types of databases

include such applications as: images and graphics databases, scientific databases, engineer-

ing design and manufacturing applications (CAD/CAM and CIM), and software

engineering and design (CASE). The O-ODM is well suited for these types of applications.

The O-ODM is the most recently developed data model. An object-oriented data-

base system offers greater flexibility in giving the designers the capability to specify, both

the structure of complex abstract objects and the manipulations that can be applied to these

objects. The O-ODM has incorporated many of the concepts of object-oriented program-

ming language (O-OPL). These concepts include: the ability to create complex abstract

class structures, to derive new classes through inheritance, to create unique objects and to

encapsulate class methods in the objects with the data that they may modify. In addition,

other O-OPL concepts adopted in the O-ODM include composition, code-reuse and poly-

morphism. [Ref. 8]

The growth in the number of models of heterogeneous database systems reflects

industry efforts to achieve optimization in the ability to process and manipulate the unique

relationships of the divergent types of data and their applications. While these efforts have

achieved their intended goals, government and industry are now coping with the inability

to cross-communicate between these database systems or to share data and resources

between the different types of databases.

Considerable resources have been expended in developing the different types of

data models and database systems. Each of these database systems has developed a follow-

ing of dedicated user groups and supporters and each has become an integral part of our

database resources. As important as these different database systems have become, none

can be abandoned without suffering considerable economic losses and human effort. The

data they contain and control has become regarded as invaluable resources with incalcula-

ble monetary value. However, their value is diminished by the lack of interoperability

between the different database management systems. The languages and commands of one

database system are incompatible with other data models. Users trained in the language of

one database management system are generally incapable of accessing the databases con-

structed under a different system, without extensive cross training. The data stored in one

system cannot be accessed or manipulated by users operating a different system. Nor can

the database systems be readily converted to another system without great expenditure in

economic and human resources. These restrictions have long been recognized as limiting

the potential uses for database systems overall. Several studies have been undertaken to

resolve the issue in an effort to make database systems interoperable with other database

systems. However, to make a database systems interoperable with another system, research

suggests that either the data must be converted or a language interface must be built

between each database management system and each database. While converting a data-

base is possible, the costs of such conversions are expensive. Studies have also shown that

making a system interoperable with another system through a language interface is also

possible, but also expensive. Therefore, if such conversions and interfaces are to be cost

effective, they must be limited to a minimum number of conversions or interfaces as

possible.

To resolve this shortcoming, research at the Naval Postgraduate School Laboratory

for Database Systems Research at Monterey California has led to the development of an

experimental working model, the Multimodel and Multilingual Database System

(M2DBMS) with Cross-Model Accessing Capabilities (CMAC). The M2DBMS + CMAC

has given users the capability to write transactions in one data language and retrieve or

manipulate data in a database system that was originally constructed with a different data-

base language. [Ref. 2]

The M2DBMS with CMAC, or the MDBMS for short, was designed to solve two

problems of heterogeneous databases and transactions.

• Data sharing or the ability to access data using a transaction written in one data
language to access a database based on a different data model.

• Resource consolidation of all heterogeneous databases, system software and
computer hardware.

The MDBMS was designed on the principle that only one initial conversion of the

data to the format of the kernel database is required. That within the MDBMS system,

transactions conducted in any of the supported database languages are translated into the

language of the kernel database system.

The O-ODM was developed and implemented to support the research being

conducted with the MDBMS system. The MDBMS is in the final development phase

required to demonstrate the capabilities of MDBMS using the five heterogeneous types of

database systems.

B. THE THESIS ORGANIZATION

The Object-Oriented Data Model (O-ODM) consists of two parts, the Object-Ori-

ented Data Definition Language (O-ODDL) and the Object-Oriented Data Manipulation

Language (O-ODML). The O-ODDL has been developed and is described in a Master's

Thesis by Bruce Badge« [Ref. 4]. The O-ODML design, specifications and constructs will

be described in the following chapters.

This thesis is organized in two parts. The first part, consisting of Chapters II and III,

contains design decisions and the specifications of the O-ODM and the O-ODML. The sec-

ond part, consisting of Chapters IV and V, contains the formal specifications and constructs

for object-oriented operations and queries.

The discussion on design decisions and specifications will explain the constructs for

manipulating an object-oriented database system, describe the basic structure of such a sys-

tem and considerations for manipulating data using object-oriented transactions within the

framework of the O-ODM.

The formal specifications will describe the definitions, the grammar, the production

rules and methods for composing complex or sequential manipulations, designed to make

the language more robust.

The concluding remarks, related work and recommendations for future work are

contained in Chapter VI. Appendixes A through D contain the specifications and produc-

tion rules developed to support the design of the language and the compilation of

transactions written in the O-ODML.

An object-oriented database was designed and constructed for the purpose of testing

and demonstrating the concepts of the O-ODM. To facilitate the illustrations and provide

explanations of design decisions and specifications for the O-ODML, the Logical Diagram

(physical view) and Class Specifications for a Faculty-Student Database are included in

Appendixes E and F. The Logical Diagram describes the relationships between the differ-

ent classes and attributes. The Class Specifications define each class and provides a schema

representation for the database.

Numerous queries were constructed for the Faculty-Student Database to assist in

developing and testing the constructs of the manipulation language. To illustrate the meth-

odology of various design and specification issues, various types of queries are included in

Appendixes G and H.

II. OBJECT-ORIENTED CONSTRUCTS FOR MANIPULATION

The concept of object-oriented databases originated from the object-oriented pro-

gramming languages in which data and behavior are strongly linked [Ref. 1]. Many of the

concepts and structures associated with object-oriented programming languages can be

adopted and further developed in an object-oriented data model (O-ODM) to provide the

capability for more powerful data abstractions and structures required for newer, more

complex applications. [Ref. 3] These O-OPL concepts and structures include:

• the ability to create abstract data structures

• the ability to create new and unique objects of a class type

• code reutilization through class inheritance and composition

• encapsulation of data and their behavior

• hidden implementation details

Where, in object-oriented programming, the basic concepts of the programming

languages are founded on classes and functions, in the M2DBMS, the O-ODM is con-

structed using classes, methods and operations [Ref. 1]. A key feature of object-oriented

databases and the O-ODM is the power it provides the database designer to specify both the

structure of complex classes and objects as well as the manipulations that can be applied to

these objects. Another key feature is that class objects may have an internal data structure

of an arbitrary complexity in order to contain all the significant information that describes

the objects. Complexity is a relative term, used here it is intended to characterize the vari-

ous data types that might be required in a data aggregate. These data types include the

features normally found in a traditional database, but also offer additional and more pow-

erful data abstractions and structures for newer, non-traditional applications [Ref. 1]. In

traditional database systems, such information about a complex object is often dispersed

over many relations or records, resulting in a loss of direct correspondence between a real-

world object and its database representation [Ref. 8].

A. CONSTRUCTS FOR CLASSES AND OBJECTS

In an object-oriented data model, the basic building blocks and concepts on which

the database is modeled are classes, objects and abstraction. Abstraction gives the user the

ability to create and build a whole idea, or an object, by defining its individual properties

or parts. [Refs. 1, 6]

A class is an abstract data type or a data structure, defined by the database designer,

to provide the specifications for the objects derived from the class. The class defines the

class relationships and the class members. Class relationships may include inheritance,

composition and covering. Class members may include methods and attributes.

A method is a type of data manipulation, contained within the object and defined by

the class of which it is a member. Methods are only permitted to manipulate objects and

attributes for which they are specifically defined. A method defines the means to interface

with an object and provides a means of encapsulating or packaging within an object, both

the data and the functionality of those allowable manipulations permitted by the object and/

or its attributes. A method is one of two types of transactions (methods and operations) per-

mitted by the O-ODM to manipulate data contained in the database. [Ref. 4]

Attributes are the specifications for the types of data an object may contain. An

attribute is also a class member. It defined in two parts, the attribute_name (or identifier)

and the attributejype the attribute will represent. An attributeJtype is a predefined data

type and may be either a primitive data type or a complex data type. A primitive data type

is a set of values of a type integer, float or character string. A complex data type is a set of

values of a type class. Object attributes are analogous of a record field in a hierarchical

model, a tuple attribute in a relational model, or a record data item in a network model.

An object is derived from and defined by the class structure from which it is speci-

fied. A single object is a specific instance of a class, created to represent a new entity of

data being added to the database. Every entity must be represented by a single object. The

object then, is a collection of all the attributes and methods previously defined by the class

from which the object is derived. [Refs. 1,4]

An example of a class specification for the O-ODM is illustrated in Figure 1. A

class is defined by its class name, any specified relationships, the attributes contained in the

class and the methods defined by the class. Attributes are defined by specifying the

attribute_name with the attribute_type. Methods are created by specifying the return_type

(data type) with the method_name and syntax for manipulation. [Ref. 4] For more informa-

tion on methods, refer to paragraph D.I. For information on relationships, refer to

paragraph C. Figure 1 further illustrates the object-oriented paradigm where data and their

behavior are closely linked by encapsulating the methods with the data types they modify

within the specifications for the class.

Class Classjiame : Specified Relationships {
attribute Jype i attribute_name j;

attribute_typem attribute _namem;
returnjtypej method_name j;

return_typen method_namen;

Figure 1. Specification of a Class

B. OBJECT IDENTIFIERS

The Object Identifier (OID) is a hidden attribute and provided to identify each indi-

vidual object stored in the database with an identifier or primary key. The value of the OID

is not visible to the end-user and may only be referenced indirectly. Each ODD is generated

by the system and assigned to an object by the DBMS when the object is first created. The

ODD may then be used as a reference to identify that specific object [Refs. 1,4]. It is unique

in that no other object in the database may have the same OID. The OID is immutable; that

is, it is permanently assigned to the newly created object and will not change for the life of

the object. Nor will the OID be reassigned to another object after the original object is

deleted from the database.

C. OBJECT-ORIENTED CLASS RELATIONSHIPS

1. Class Composition

A complex class is a class that contains a different class as an attribute. In the O-

OPL, this class relationship is referred to as composition and is adopted for use in the design

of the O-ODM. Composition provides the user the ability to create a class with attributes

and methods, and then include that class as an attribute in yet another class. This is referred

to as a "has a" relationship, where a class has a class as an attribute. The specifications for

a complex class are shown in Figure 2 where the class included within another class is illus-

trated as Class_name2. This relationship will be used in the Faculty-Student Database,

illustrated in Appendix E and F, and its usage (attribute-object) will be discussed further in

Chapter m.

10

Class Class_name} {
attribute _type i attribute _name i;

attribute _typem attribute_namem;

Class_name2 attribute _name;
return_typen

};

method_namen;

Figure 2. Specification of a Complex Class

2. Class Inheritance

Inheritance is a relationship between two or more classes where the child class will

assume all the attributes and methods contained in the parent class in addition to any new

attributes and methods defined for the child class. Inheritance provides the mechanism to

derive a new class from an existing class without rewriting the code for those attributes and

methods that are derived from the parent class.

A parent class may also be referred to as a superclass and is a generalization of

zero, one or more child classes. The child class may be referred to as a subclass of the

superclass and is a specialization of the generalization. Through inheritance, existing code

specifying the attributes and methods of the parent class is reused in the child class where

it may be either modified or added to, specifically tailored to the needs of a subclass. Thus,

inheritance and code reuse provides for the O-ODM, the ability to design one parent class

that can be reused by many subclasses of the parent class. To illustrate this point, refer to

Figure 3.

In Figure 3, an object of either child Class Student or Faculty will inherit all the

properties of the parent Class Person. Thus, an object of either Student or Faculty will

inherit all the attributes and methods of Person, such as the pname, paddress and sex

attributes. In addition to the inherited methods and attributes, the child classes may also

11

Class Person{
Name pname;
Address paddress;
char* sex;

};

Class Student: inherit Person {
char* student_no;
char* major;
set of Course schedule;

};

Class Faculty : inherit Person {
char* dept;
set of Course teaches;

};

Figure 3. Inheritance Relationship

define additional new attributes and methods that are specific to the child class only. This

is illustrated in both, the child Class Student where new attributes are created for

student_no, major and schedule, and in the child Class Faculty where new attributes are

created for dept and teaches. Intuitively we see that a student is a person with all the prop-

erties and attributes of a person. A member of the faculty is also a person with all the

properties and attributes of a person. For this reason, inheritance is commonly referred to

as an "is a" relationship. As expected, in addition to being a person, students and faculties

have additional attributes that distinguish them as either a student or a faculty.

3. Covering

A Covering relationship is said to exist when every object from one class (A), cor-

responds to one or more objects of a second class (B). A being said to cover B. The covering

relationship does not have to partition the second class, i.e., two objects from the first class

(A) may correspond to one or more of the same objects in the second class (B). Thus, cov-

12

ering provides a "one-to-many" (1:M) relationship between an object of one class (A) to

many objects of a second class (B) (from-object-to-class) as shown in Figure 4.

/ al \"^

Set A

ChV\

b6

SetB

Figure 4. Covering Relationship (1:M)

Now consider the individual objects of the second class (B). Each object of class

(B) possesses all the characteristics and properties of the class and is said to generalize class

(B). Considered together as a class, all the objects of B form a singleton with all the char-

acteristics and properties of the class. Now, every object from the first class (A)

corresponds to the second class (B). With this type of correspondence, there are many

objects of A covering the class B (from-class-to-class) as shown in Figure 5, thus providing

a "many-to-one" (M:l) relationship.

Figure 5. Covering Relationship (M:l)

13

In the Faculty-Student Database included in Appendixes E and F, the cover rela-

tionship is implemented between Class Team and Class Student. This is illustrated in the

logical diagram shown in Figure 6, in which each team of the cover class, maps to one or

more students of the member class. "Team-stu" is shown to represent the relationship

between the objects of the two classes.

student* Y major YscheduleJ

member
class

u
Student

cover

class
Team

Figure 6. Covering Relationship Logical Diagram

Figure 7 illustrates the class specifications for a cover class in which Class Team

covers the member class, Class Student. In Class Team, the cover relationship is specified

by a colon, the reserved word COVER, and the specified member's Class_name.

In the underlying data structure, a separate internal data table is created to store each

relationship between an object of the cover class Team and objects of the member class Stu-

dent. This internal relationship is represented in the Faculty-Student Logical Diagram in

Figure 6 as 'Team-stu". The internal data table is depicted in Figure 7 as the Team-stu Data

Table. For each such relationship, a new object is created in the internal table recording the

14

object ODD of the new relationship, the ODD of the team object and the ODD of the student

object assigned to the team. As new students are assigned to a team, new objects are created

for the relationship. Note that this underlying data structure is not a part of the conceptual

view and not visible to the user. However, in the constructs of the manipulation language,

provisions are required and implemented to manipulate the data of the cover relationship

utilizing this internal table. These operations will be discussed in Chapter Etl.E.

Class Student: Inherit Person {
char* student_no;
char* major;
set of Course schedule;

}; >^

Class Team : Cover Student {
char* prjname;
set of Civ Fac advisor;

};

/
^\Team-stu Data Table /

OID(_relationship) OID_s(tudent) OID_t(eam)

SOS1 PI Tl

SOS2 P2 Tl

Figure 7. Covering Implementation

D. OBJECT-ORIENTED MANIPULATIONS

1. Methods

A method is a transaction, defined for and encapsulated with the data it will modify,

within a class data structure at the time the class is specified. Methods are created by spec-

ifying its returnjype (data type) with its method_name and syntax, as illustrated previously

in Figure 1. With a method, we bring operations or functions into a database and associate

them with specific objects and attributes of the database. The preferred means of manipu-

lating an object or its attributes is by using an encapsulated method; defined to ensure that

15

only legitimate operations or functions may be performed on objects of class. Methods also

provide a standard interface for the database designer to form a complex object of inter-

faced objects. Restricting access to the object and attributes, through a standard interface

specified by the programmer, the operational and data integrity of an object can then be

more assured. Thus, a method will only perform transactions on attributes contained within

an object as originally specified by the object class. A method is invoked by sending a mes-

sage to the object to execute the corresponding method.

In the Object-Oriented Data Model, the design and specifications for methods as

well as attributes are further defined in the Object-Oriented Data Definition Language.

[Ref. 4]

2. Operations

Object-oriented operations are transactions, defined for use on many objects and

different classes, but are not methods contained within any object class of the database.

These operations are managed separately from the database by the O-ODBMS. They are

not transactions written in terms of specific operations or functions predefined for individ-

ual data aggregates. They are general operations designed to manipulate all the objects and

their attributes stored in the object-oriented database.

Operations are reminiscent of functions written in an object-oriented programming

language and give the user additional freedom by adding functionality to the DBMS after

the data aggregates have been defined. In the design of the object-oriented data manipula-

tion language, operations are specified for the following types of transactions:

• object creation and deletion

• search and retrieval

• input and output

• attribute value assignment

16

• statistical operations

• set operations.

Table 1 lists the set of O-ODML operations, their syntax and semantics. These will be dis-

cussed further in Chapters III and IV.

Additional programming language features were also implemented to facilitate con-

ducting query transactions and to facilitate the user interface with the database management

system (DBMS). These include decision statements, iteration loops, and object member

access rules. These features will be discussed in Chapter IV.

17

Operations Syntax Semantics

insert insert classjiame Create a new object of a class and add it to the set
of objects within a class and the database table.

delete delete (objjef) Delete variablejiame object from its class and
database table. [Delete implies destruction]

delete (setjittr, single_value) Delete a single attribute from a setjxttr.

find_One find_One classjiame
where expression

Searches and returns only the first object from
classjiame that satisfies the expression.

find_Many find_Many classjiame
where expression

Same as find_One, but will return all objects, as a
set, that satisfy the expression.

find_Many classjiame Same as find_Many, but returns all objects in the
set.

read_Input read_Input (var_list) Read the input from the user, the values to be
assigned to the varjist. Primitive data only.

display display (objjef.attribute) Display the value of an attribute of an object on
screen when the attribute is a primitive data.

display (objjef) Displays all the primitive attributes of an object,
(does not included inherited attributes)

display (" string_literal") Displays text strings.

add add (setjittr, single jalue) Add a single_yalue to a list or set of attributes.

count count (setjittr) or
count (classjiame)

Returns the number of elements in the given set.

project project attribute Only allows projection of single attribute.

min min (setjittr) Returns the min numerical value in a set.

max max (setjittr) Returns the max numerical value in a set.

avg avg (setjxttr) Returns the avg numerical value in a set.

contains setjittr contains expression
or setjittr contains objjef

Set comparison function. Returns objects in a set
satisfying an expression or matching objects in sec-
ond set.

Table 1. List of Object-Oriented Operations

18

III. OBJECT-ORIENTED OPERATIONS

The structure of an object can be said to be divided into visible and hidden

attributes. Visible attributes may be directly accessed for reading by operations external to

the object, or by a high-level query language. The hidden attributes of an object are com-

pletely encapsulated, and can only be accessed through predefined encapsulated methods.

While some object-oriented data models require that all legitimate transactions

must be predefined as a method within an object, this forces a total encapsulation of the

objects and data model. Total encapsulation would restrict the available transactions to only

those predefined as methods within a class. This may be well suited for some purposes;

however, it is too restrictive for most database applications. An object-oriented database

that contains operations is more robust in that it allows greater flexibility in writing com-

mon transactions that are available for use on all classes, objects and attributes.

Operations are database transactions, defined for use on one or more class of

objects by the application programmer. These operations can be defined at the time the

database is first created or they may be added later. Compared with a method, operations

are of a more general nature and allow the database to be manipulated by some combination

of the four primary types of database transactions: Insert, Delete, Retrieve and Update.

These types of operations are managed by the DBMS. They are not a method, predefined

within the data structure of any specific object, but are a part of the entire database and

applicable for all objects of the database.

Transactions may be formed by either a single operation or method, or they may

contain many operations and methods. Whether a transaction contains a combination of a

single or many operations and methods, transactions must be composed in the form of a

query.

19

A query is a structured collection of declarations and operations in a block format.

Each query must be compiled by the O-ODML compiler prior to processing the requested

transactions. For the compiler to process the query, each query must be formatted and struc-

tured within strict guidelines in order to be recognized by the compiler as a legitimate

query. These guidelines will be discussed in Chapter V, The Query Constructs.

A. OBJECT CREATION AND DESTRUCTION

The Insert Operation is used to create a new object of an object class. Since a class

defines a type, a schema specification and a collection of objects of the class type, inserting

an object means adding a new object of the class type to the collection of objects in the

class. Deletion of the object from the collection of objects in the class implies destruction

and removal of the object from the database.

1. The Insert Operation

An object is created by the Insert Operation specifying the operation and the name

of the object class. A new object is then created in the database with all the predefined

attributes and methods of the object class. When the object is first created, with the excep-

tion of the system generated Object Identifier (ODD), no values are assigned to the attributes

of the object. All other attribute values are assigned by the user with specific attribute

assignment operations after the object is created and stored in the database. The syntax and

format for the Insert Operation are as follows:

variable_name := insert class_name;

In the example above, the newly created object will be of a class type specified by

class_name (introduced in Chapter II). The variable_name type must be predefined as an

object reference and is restricted to representing a singular ODD. In the O-ODM an object

reference is a datajype, denoted as obj_ref, and may only represent a single OID value.

20

This is appropriate for an Insert Operation as the operation may only create one object at a

time. As the system creates the new object, a new OID will be generated and assigned to

the object. To permit further operations with the new object, the value of the new OH) must

be assigned to the identifier, variablejname, with an assignment operation at the time the

object is first created.

The Assignment Operator, ":=" is required during the initial Insert Operation to

maintain control of the newly created object. With no other attributes assigned to the new

object and the OID invisible to the user, there is no economical way to retrieve the new

object. Thus, if an object could be created with just the syntax;

insert class_name;

then, to retrieve the new object, all the objects of that class must be retrieved and the newly

created object selected from the entire set of objects. Even then, with no other attributes

assigned, the user would have difficulty in locating and selecting the newly created object

for further manipulations. To prevent this from occurring in the O-ODM, the production

rules are designed to ensure the correct format and syntax are observed.

2. The Delete Operation

Delete implies destruction in the object-oriented syntax. The Delete Operation will

remove the object from the class of objects contained within a class type. Once removed

from the class, it can no longer be manipulated by the user by any method or operation.

With the object deleted from the database, all attributes assigned to the object are also

removed from the database with the exception of the set_of attribute discussed in the fol-

lowing paragraphs. Even in the case of a complex object, where an attribute of an object is

also another object of a different class, that attribute-object is removed from the database

as well. This situation would arise where the user desires to remove a person from the Class

Person. Class Name and Class Address are attributes of Class Person. If a person is

21

removed from the database, the person's name and address attribute-objects will also be

removed from the database.

By design, data in the O-ODM database is persistent. To ensure the integrity of the

database, a Delete Operation can only be evoked explicitly. The syntax and format for the

Delete Operation are illustrated as follows:

delete (obj_ref);

In this example, objjref would be represented by some variable_name whose type

must be predefined as an object reference, identifying a single OID. The Delete Operation

is a singular operation. It can only delete a single object from a class of objects. The excep-

tion was previously noted where the deletion of a complex object will also delete any

assigned attribute-objects of a different class as well.

The second format for the Delete Operation is designed for Set Operations. This is

the case where an attribute of an object is defined as an attribute-set, either of an

attributejype set_of or inverse_of. Both set_of and inverse_of represent a set of objects

containing zero, one or more attributes in the attribute_set. Each attribute listed in an

attribute-set is an object. As an object, they are created with an Insert Operation within their

own Class. These objects may later be assigned as an attribute to an attribute-set of one

object or assigned to several objects and their attribute-sets. Once a value is added to the

attribute-set, the Delete Operation can be used to remove a single attribute value (object)

from the set of attributes contained in the attribute-set. In this case, delete does not imply

destruction. This is an example of polymorphism, or operator overloading adopted from the

O-OPL. Here, the operation's name "Delete" is overloaded and the specific usage is called,

based on the operation's signature. The signature contains the name of the operation and

the list of arguments in the operation's parameter list. An example of the usage of the

Delete Operation removing an attribute from an attribute-set is as follows:

22

delete (set_attr, single_value);

Where set_attr represents an attribute-set of a specified object and single_value is an iden-

tifier, representing the ODD of one object; then, the single object would be removed from

the list of objects contained in the single object's attribute-set. In this mode, Delete does

not destroy the object removed from the set as the removed object may be assigned as an

attribute to an attribute-set in many different objects. The intent is simply to remove the

object from a set of an attribute-set of a single object. As an example, in the Faculty-Student

Database, a Student object may be assigned to the rosters of several different Course

objects. One attribute for the Class Courses is the set of students assigned to that course. A

student in the database may be assigned to several different courses. Each course would

have that student listed as one of the students in its attribute-set. In the case where the stu-

dent is to be removed from a single course, then, the transaction,

delete {course_object.roster, single_student_OID_value);

will only remove a single student from the list of students enrolled in that course. However,

the student object representing the student is not deleted from the database, and it is possi-

ble for the same student to still be assigned to several other courses. For more information

on Set Operations, see paragraph F.

B. VALUE INPUT AND OUTPUT

Attributes and data values cannot be manipulated unless they are first stored in main

memory. There are three means of entering a data value into memory.

• assign the value to a variable as it is read from a query file

• retrieve the value from storage and assign it to a variable, a retrieve operation

• read the value entered by the user, an input operation

23

In order to view the results of a transaction, the values of selected attributes or

objects can be written, either to the terminal screen or to a file, an output operation.

Transactions, previously written in the format of a query and saved as a file is the

most common method for performing operations on the database. File queries may be pre-

tested, used, modified and reused many times. Values may be assigned to a variable during

the course of the query and then further manipulated as part of the query's database trans-

actions. More commonly, a query may retrieve a value from storage and assign the

retrieved value to a variable for further manipulations. If desired, a query can be written in

such a way that different variations of the query can be formed by changing the values of

the query arguments for each execution of the query. Another method of entering values is

the Readjnput Operation, where a user enters values during the execution of the query.

1. The Readjnput Operation

The Readjnput Operation is an interactive method of reading data values, pro-

vided by the user from the terminal keyboard, into a query as it is executing. The

Readjnput Operation will temporarily cause the execution of the query to pause while

waiting for the user to provide a correct value or argument for the variable or variables

listed in the parameters for var_list. The varjist is a list of one or more identifiers repre-

senting one or more variables. Once prompted, the user must enter a valid value prior to the

query proceeding with the query execution. A common practice is for the query program-

mer to use a Display Operation to prompt or advise the user when or what type of valid

arguments to enter. Without such a prompt, the query execution would pause awaiting an

input from the user, but the user would be unaware a response was required or why the pro-

gram execution appeared to halt. The syntax and format for the Readjnput Operation are

as follows:

readjnput (varjist);

24

Each variable listed in varjist will be assigned a value in sequential order as it is

entered from the terminal. As an illustration, suppose the user is entering a name into the

database and the following operation is encountered in the execution of the query:

readjnput (a, b, c);

After the program reads and executes the Readjnput Operation, the query will pause in

execution and wait for an input from the user, three inputs are required in this case, one for

each of the three variables (a, b and c). The user will first enter a value of a type defined in

the query declarations for the variable "a". For an attribute of a last name that is of type

char*, the user would enter the following at the terminal keyboard:

Stephens<carriage return>

At the carriage return, the Readjnput Operation will read and store the character string

"Stephens" in the first variable (a) listed in the var_list and await the next entry. This will

continue until each variable listed in the varjist, has been assigned a value, as read from

the keyboard by the Readjnput Operation.

After the last value is read, the Assignment Statement must then be used to assign

each text siring value to a proper attribute. The next operation will then be an Assignment

Statement, to assign a value entered at the terminal keyboard for the variable "a" to the cor-

rect attribute. If the three variables of the varjist (a, b, c) are of type, "char*" and the user

had identified a Person object to which he wanted to enter the last name, first name and

middle initial, the next three operations of the query would read:

person_variable.name.lname := a;
person_variable.name.fname := b;
person_variable.name.mi := c;

25

2. The Display Operation

The Display Operation is an output operation. It displays to the terminal monitor

and to the user, information, data and messages that the query programmer wishes to con-

vey. It does not interact with the data stored in the database in any way, other than to display

data that may have been retrieved or processed by other methods or operations.

The programmer, building a series of complex methods and operations in a single

query, may choose to display the results of each database transaction, or to display the final

results of a series of transactions. The programmer may also use the Display Operation to

prompt the user for keyboard data entries, as in a Readjnput Operation, or to display advi-

sory messages and exceptions to the user via the monitor. Note, when programming a text

string literal for display, the text string is enclosed in double quotation marks, i.e., "text-

string". The Display Operation may be used in one of three ways:

• Display the primitive value of one or more attributes of an object

• Display the primitive value of all the attributes of an object

• Display a text string to the monitor

There are several limitations on the capability of the Display Operation. To display

an attribute of an OID, the OID value must first be assigned to a variable where it is used

by the Display Operation to specifically identify which object's attributes are to be dis-

played. The Display Operation will only display primitive data. Primitive data may only

represent a single value. If asked to display all the attributes of an object, the Display Oper-

ation will omit displaying the attributes listed in an attribute-set or the attributes of an

attribute-object. These are separate objects with their own set of attributes. For example, if

asked to display all the attributes of an object of Class Person, it will only display the prim-

itive data contained in the attribute "sex". The attributes, pname and paddress, are class

objects, Name and Address, containing their own attributes. Thus, the Display Operation is

26

limited in that it will not automatically follow a reference to another object and its

attributes. These attributes can be displayed, but they must be specified using the member

access operator (dot notation) to be discussed in Chapter IV.C. This limitation will also

apply to those attributes inherited from a parent class. The syntax and format for the Dis-

play Operations are as illustrated below. Note how the member access rule is applied in the

following examples. The format for the member access operator is a period between the

object reference and its attribute.

• To display the value of one or more attributes to the screen where the attributes
contain only primitive data

display (obj_ref.attributei);
or

display (objjef.attributej, obj_ref. attribute2);

• To display all the primitive attributes of an object

display (obj_ref);

• To display a text string or message to the screen (quotation marks are required
around the text string literal)

display ("stringjiteral");

• To display an attribute of a class attribute contained in an object where
attribute_object represents an ODD of an object that is an attribute

display (ob'}_ref.attribute_object.a.ttiibutei);

• To display an inherited attribute of a parent class where class_name represents an
OID of an object with attributes that are inherited

display (obj_ref.class_name. attribute j);

27

3. The Project Operation

The Project Operation is a special output operation designed for debugging pur-

poses. When a retrieve operation identifies a specific object, Project permits the display or

assignment of the attributes of an object reference or a single attribute of the object.

project(variable_name);

C. OBJECT RETRIEVAL

Object retrieval is often the first step of a query, designed to locate an object so that

further manipulations may be performed on the object or its attributes. The retrieval is a

three-step process:

• a systematic search of the database

• litigation of an object based on a search condition

• assign the object reference value to a variable for further manipulation

The search condition specifies a Boolean expression that the desired object or

objects, and/or their attributes must satisfy. A Boolean expression is an expression that can

only be evaluated as either true or false. The syntax for a Boolean expression requires the

use of a Relational Operator to determine equality between two values. If the comparison

is evaluated to be true, then the Boolean expression will return a value of true. If the Bool-

ean expression is evaluated as false, then it will return a value of false. The Relational

Operators include and are represented by the following symbols:

< less than
> greater than
= equal to
/= not equal to
>= greater than or equal to
<= less than or equal to

28

Where the search condition is satisfied, then the object's OID that satisfies the condition is

identified and retrieved. In a more complex search, more than one search condition may be

specified. The criteria for the multiple search conditions are satisfied, if the search also sat-

isfies the logical operators "and" or "or", with each search condition.

There will be some searches where more than one object may satisfy the search con-

ditions. The retrieve operations will either return the first object (OID) located, or will

return all the objects (OIDs) located, that satisfy the parameters of the operation specified

as well as the search criteria. The two retrieve operations are Find_One and FindJMany.

1. The FindLOne Operation

The FindjOne Operation is a search and retrieve operation that will only return the

first object's OID that satisfies the search condition. There are no provisions to continue the

search if the object returned is not the desired object. If a different object was desired, a

different search condition must be specified and a new search initiated. Only one object

may be manipulated at a time. Once located, the OID of the object is assigned to a variable

of type obj_ref and stored in main memory for further operations. Objjref is of a type that

will only store a single OID. If desired, more than one object can be retrieved in separate

searches. Each OID must be stored in a separate variable of type objjref. If this is the desire,

a different search condition must be specified to preclude retrieving the same object first

found, during subsequent search operations.

The Find_One Operation mandates that a search condition must be included for the

operation. A search condition is always specified by using the reserved word WHERE. The

syntax and format for the FindjOne Operations are as follows:

obj_ref := findjDne class_name where search condition;
or

obj jef := findjOne classjname
where search condition} logical operator search condition?,

29

2. The FindJVlany Operation

The Find_Many Operation is also a search and retrieve operation. However,

Find_Many will retrieve and store all object OIDs that satisfy the search conditions. Each

OID may be stored in single variable of type obj_set. Obj_set is an attributejype that is

capable of storing a set of one or more OIDs.

The search condition for a Find_Many Operation is optional. Used without such a

condition, Find_Many will return all the object OIDs of the class.name specified. Used

with a search condition, the Find_Many Operation will use the condition to limit the num-

ber of OIDs returned. The Find_Many Operation will continue to search the database until

all OIDs of objects that match the search condition are located and retrieved. The search

condition in a Find_Many Operation is also specified by using the reserved word WHERE.

As in the Find_One Operation, more than one search condition may be used and the criteria

for the search conditions satisfied if the objects also satisfy the logical operators of "and"

or "or", with each search condition. The syntax and format for the Find_Many Operations

are as follows:

objjref := find_many class_name;
or

obj_ref := find_many classjiame where search condition;
or

obj_ref := find_many classjiame
where search conditionj logical operator search condition?,

D. OBJECT ATTRIBUTE ASSIGNMENT

Assignment of a value to an attribute of an object occurs as part of an assignment

expression and two special operators, the Assignment Operator and the member access

operator. The Assignment Operator is denoted by the combination of two symbols, the

colon and the equal sign, ":=". An example of an Assignment Operation and an expression

are as follows:

30

variafc/e_name.pname.fname := 'Mike';
where

left-side attributejype = right-side attribute type

In this example, the right-side of the assignment is evaluated. If it is of the same

attributejype as the attribute on the left-side of the assignment, then the value of the right-

side is assigned to the left-side attribute. Note the use of the single quotation for the data

type, char* value. Also, note the use of variable_name to represent an OID of an object. In

the O-ODM, functional references to members of an object (attributes and methods) use the

member access rule; however, a variable (of type obj_ref) whose value is the object's OID

must be provided for access. In the previous example, a specific object of a class was

retrieved and the OID assigned to variable_name of type obj_ref. This type of reference

can be viewed as a shorthand reference to the object and temporarily stored in memory by

the program for the life of the query. During the remainder of the query execution, further

references to variable jiame will always denote the specific object of the class previously

located and assigned to variable _name. Attributes or methods ofthat object can then be ref-

erenced as variablejiame.attribute. Assignments of values to that object's attribute would

then be as follows:

variable_name.attribute := attribute_value;

In our first example,

variable_name.pname.fna.me := 'Mike';

variable jiame represents the OID of the object we wish to a assign value. The dot notation

denoted by the period between variable jiame and pname accesses the class_attribute

Name designated as pname in our Faculty-Student Database. One attribute of the attribute-

object pname is fname, representing the first name of a person. In this example, the dot

notation accesses fname, an attribute of pname.

31

E. COVERING OPERATIONS

Covering Operations are those operations where special provisions are required to

conduct search operations involving those classes constructed with the covering principal.

From Chapter n, Cover was defined to mean that an object of one class maps to a subset of

objects of another class. While the search operations are not necessarily unique, a method

is required to signify to the compiler that the search operation involves a cover class and

requires a modified execution procedure. This special method is invoked using the reserved

word, IT. IT is a special symbol that effectively becomes a self referencing pointer [Ref. 9],

To illustrate the proper usage, refer to the following example taken from the Faculty-Stu-

dent Database and shown in Figure 8:

variable_name j :=find_many Team
where name = 'DB' and IT contains

variable_name2_ofjnetnber_class;

In the underlying data structure, this relationship is maintained in an internal table

created to record each relationship between an object of the cover class and multiple objects

of the member class. As previously explained in Chapter IL3.C, this relationship is main-

tained in the logical data structure of the database and is not visible to the user.

As shown in Figure 8, the query would first retrieve all OIDs of the students spec-

ified in the first search operation. The second search operation, the cover operation, would

retrieve all the OIDs for Teams where those students found in the first search are team stu-

dents. This relationship is found in the Team_stu internal data table.

32

Class Student: inherit Person {
char* studentjno;
char* major;
set_of Course schedule;

Class Team : Cover Student {
char* prjname;
set_of Civ_Fac advisor;

^\Team-stu Data Table /

OID(_relationship) OE)_s(tudent) OID_t(eam)

SOS1 PI Tl

SOS2 P2 Tl

a := find_many Student where
pname.fname = 'Luis'
or pname.fname = 'Recep';

b := find_many Team where IT
contains a;

Figure 8. Covering Operation

F. SET OPERATIONS

Sets are special attributes of an object that may contain zero, one or more values

(objects). These have previously been denoted as attribute-sets. To illustrate this point,

refer to the O-ODM data model, the Faculty-Student Database in Appendixes E and F. One

such illustration is Class Student. A student in the data model may be scheduled for either

zero, one or many courses of the Class Course. Another such illustration is where a member

of the Civilian_Faculty class may advise zero, one or many teams of the Class Team. The

O-ODDL specifies this set relationship as a new data type denoted as set_of or inverse_of

[Ref. 4].

To the user, set_of and inverse_of represent identical attribute-set concepts. Both

represent sets of attributes and both attributejypes are created automatically as each new

33

object of a class containing an attribute-set is created. Attributes may then be added to and

deleted from the set as necessary.

In the underlying data structure, a single attribute contained in an attribute-set

(set_of or inverse_of) is a separate object of a different class, identified by its own OID,

with its own attributes and methods. Inverse_of was implemented as the complement of

set_of. This was accomplished by creating one internal data table where the relationships

between objects of set_of and inverse_of are maintained. This implementation feature

serves two purposes;

• to reduce the redundancy of storing the same information twice

• to preserves the integrity of the database by ensuring that any transaction on one
object of an attribute-set will also be performed on its compliment.

This logical view of the database and underlying data structure is not visible to the user nor

within the scope of this thesis; however, the explanation is necessary to help illustrate the

following Set Operations.

1. The Add Operation

The Add Operation enters a single new attribute value, a previously created object,

to the set of attributes contained in an object's attribute-set (set_of or inverse_of).

The syntax and format for the Add Operation are as follows:

add(set_attr, single_value);

In this example, set_attr identifies the specific object OID and its attribute-set that

an object will be added to. Added to the set_attr, is an OID, represented by a single_value

identifier of type obj_ref (attributejype).

To illustrate, refer to Figures 9, The Attribute-Set Logical Diagram and Figure 10,

Set-of/Inverse-of Attribute-Set Relationships. This is an excerpt from the Faculty-Student

Database Logical Diagram and shows the relationship between Student-schedule and

34

Course-roster. Course-stu is the internal data table created to record and maintain this

relationship.

Course
M

Figure 9. Attribute-Set Logical Diagram

Figure 10, illustrates the class specification for each class and the Course-stu inter-

nal table implemented to maintain the two attribute-set relationships.

The Add Operation can be used to add a student to a course-roster or to add a course

to a student-schedule. In the underlying data structure, the internal table for the Course_Stu

relationship will add a new object with its own OK) for this single, one to one (1:1) rela-

tionship. The attributes for the object will consist of the OID for the student and the OID

for the course, thus recording the relationship between the two attribute-sets. As new stu-

dents are added to course-rosters, the roster/schedule relationship will automatically record

the course in the student-schedule attribute-set as well. Many students may be entered on a

course-roster, many courses may be listed in a student-schedule, thus establishing the

"many-to-many" (M:M) relationship. With this relationship recorded in one location, any

35

Class Coursej
char* cname;
char* cse_num
char* secjio;
Faculty instructor;
inverse of Studentschedule roster;

Class Student: inherit Personf
char* student_no;
char* major;
set of Course schedule;

};

\^

^\^ Course_stu Data Table w

OnXrelationship) OID_c(ourse) OID_s(tudent)

SOCS1 Cl PI

S0CS2 C2 PI

SOCS3 C4 PI

Figure 10. Set-of/Inverse-of Attribute-Set Relationships

additions or deletions to the Course_stu table will automatically update both objects'

attribute-sets, thus maintaining data integrity and reducing redundancy.

2. The Delete Operation

The Delete Operation is an example of the concept of polymorphism and operator

overloading adapted from the object-oriented paradigm. Here, the Delete Operation is over-

loaded. In addition to the destruction of objects first described in Chapter HI. A.2, the Delete

Operation is used here to remove a single_value attribute from an attribute-set. In this

usage, delete does not imply destruction. The object removed from the attribute-set remains

in the database and may be assigned to other objects and their attribute-sets. The format of

the Delete Operation for an attribute-set is as follows:

delete (set_attr, single_value);

This operation utilizes the same underlying data structure and internal tables dis-

cussed in paragraph F.l for the Insert Operation. For the delete operation, the set_attr

36

identifies the object OID and which attribute-set (and internal table) the relationship is

recorded in. The single_value identifies which attribute in the attribute-set is to be deleted.

With this information, the correct object in the internal table is located and deleted. Note

that it is the relationship deleted, the object (identified by the single_value) is not deleted

from the database. Note that this underlying data structure and operation is not visible to

the user. To the user, his transaction is simply removing an attribute from an object's

attribute-set.

3. The Contains Statement

The Contains Statement provides a unique search capability for an object-oriented

database containing attribute-sets. By design the Contains Statement acts as a comparison

operation, searching for those attributes in a set that match some specified criteria. For

example, the Contains Statement will search an attribute-set for an attribute that matches a

given expression and return any object or objects (OIDs) that satisfies the expression. The

formal syntax for a Contains Statement is as follows:

set_attr contains expression;
or

set_attr contains obj_ref;

Again, the underlying data structure and internal tables are used in conducting the

search for matching OIDs and attributes satisfying a given expression.

4. Statistical Operations

Included in the design of O-ODML are certain Statistical Operations commonly

used in database manipulations to enhance the ability of the database to perform grouping

operations. These Statistical Operations are commonly referred as aggregate functions.

Aggregate functions are used to specify mathematical manipulations on collections of val-

ues from the database. Common statistical operations include, minimum, maximum,

37

average and count. The count operation returns the number of values located in either the

class or the attribute-set of an object. Note that Count will return an integer value, the total

of all values located, counting duplicate values if found. The syntax and format for each

query are as follows:

min(set_attr);

max(set_attr);

avg(set_attr);

count(set_attr); or count(class_name);

38

IV. MANIPULATION LANGUAGE SPECIFICATIONS RULES

A high-level programming language allows the programmer to write programs that

resemble English or everyday mathematics. The user can use descriptive names that are

easy to understand and describe operations using familiar symbols. Generally, a high-level

language is easier to use; however, a machine language is the language of the computer and

a high-level language must be translated before it can be executed. [Ref. 5]

A machine readable, high-level query language is designed with rules for syntax,

grammar and production. These rules are required so that a machine, such as a compiler,

may translate the symbolic language produced by the source query language into the proper

commands of the target language [Ref. 7]. In the object-oriented data model/language (O-

ODM), the manipulation language (O-ODML) is the source language and the kernel lan-

guage of the M2DBMS, the Attribute Based Database Management System (ABDBMS) is

the target language.

In developing the language of the O-ODML, the specifications of the manipulation

language include definitions, symbols, reserved words, grammar, syntax rules and produc-

tion rules. These rules are well defined and specific. This permits a machine to read the

high-level language of the user and convert the query into code that can be correctly trans-

lated into commands in the target language. If an error is made in applying the rules, a

compilation error will result and the execution of the query will halt.

In addition, control structures such as conditional statements and loops are provided

to enhance the abilities of the query programmer to manipulate the database, i.e., to operate

on more than one record at a time.

A complete list of symbols, reserved words, production rules and definitions are

provided as references in Appendixes A through D.

39

A. SPECIFICATIONS RULES

1. Symbols

Symbols are made up of the basic ASCII character set and are used by the query lan-

guage to form commands and provide special meanings to the O-ODML compiler. Briefly,

they include all the letters of the alphabet, all the digits and most of the special characters

of the ASCII set. Not all the special characters have been adopted for use as symbols by the

O-ODML, but are available for other purposes, such as forming an identifier or as part of

a test string literal.

Each character is represented internally by its own unique ASCII numeric code. The

printable characters range from 32 to 126. The table of ASCII numeric code is widely avail-

able and not included here; however, a few of its of its features include the following:

• Digits are in increasing value of consecutive characters and grouped together

• Uppercase letters are grouped in consecutive order and in increasing value

• Lowercase letters are grouped in consecutive order and in increasing value

• Digits precede uppercase letters that precede lowercase letters

• Special characters are interspersed in the basic ASCII set between 0 and 126

Each ASCII character of a query is read by scanning the input stream of characters

and grouping them into identifiers and symbols. Identifiers and symbols are used by the

compiler to construct the manipulations used by the target language to query the database.

The implementation details of this process have been developed and are described in Mas-

ter's Thesis by Carlos Barbosa, Aykut Kutlusan and Erhan Senocak. [Refs. 9, 11]

The O-ODML character set includes the following:

• Uppercase letters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

• Lowercase letters

40

abcdefghijklmnopqrstuvwxyz

• Digits

0123456789

• Special characters

~ '! @#$%A&*()_-+=I\{}[]"':;<>,.?/

• Non printable characters

space, tab, end-of-line, end-of-file, carriage_return

Each of these characters may be taken together or individually to indicate a special

symbol and meaning or to represent an identifier in the constructs of a query.

2. Identifiers

An identifier is used as a name for different components in a program, such as a pro-

cedure or a variable. Identifiers are also used to denote reserved words. The following rules

govern the appearance of identifiers so they may be read by the compiler as such:

• Consist of a series of one or more characters

• Number of characters is not limited

• First character must be a letter

• Remaining characters may be letters, digits, underscore

• More than one underscore in succession is not allowed

• An underscore is not allowed as the final character

• Uppercase and lowercase are interchangeable and interpreted as the same thing,
i.e., the O-ODML is not case sensitive

• First character following an embedded period in an identifier must be a letter

3. Reserved Words

Reserved words are identifiers reserved for special significance in the object-ori-

ented data model/language and cannot be used for other purposes. A reserved word must

not be used as a declared identifier. The list of reserved words is contained in Table 2.

41

ADD END IT
AND ENDJF MAX
AVG END_LOOP MIN
BEGIN FIND_MANY MOD
CHAR FIND_ONE NOT
CHAR* FLOAT NULL
CLASS FOR OR
CONTAINS IF PROJECT
COUNT IN READJNPUT

COVER INHERIT SET_OF
DELETE INSERT THEN
DISPLAY INTEGER QUERY
EACH INVERSE_OF WHERE

ELSE IS

Table 2. Reserved Words

• A reserved word must not be used as a declared identifier

• MOD is a Multiplication_Operator

• AND & OR are Logical_Operators

B. DECISION STATEMENTS

Decision statements are algorithms with two or more alternate paths of executions.

The normal procedure is for a query to execute in sequential steps. There may be occasions

when the programmer desires to provide alternate steps that may or may not be executed,

depending on the results of previous transactions or based on input data. In the O-ODML,

the decision on which path to execute is determined by evaluating a Boolean expression

within a decision statement. A decision statement can be either a conditional statement or

an iteration loop.

1. The If-Then Statement

The If-Then statement is a conditional statement and always contains a Boolean

expression and at least one statement. The conditional statement determines if the sequence

42

of a statement or statements bounded by the If-Then statement is executed. Those state-

ments bounded by the If-Then statement are statements included between the first reserved

word If-Then and completion of the conditional statement signified by the last reserved

word ENDIF. If the Boolean expression is evaluated as true, the statements contained

within the If-Then statement are executed. If the Boolean expression is evaluated as false,

the If-Then statement is bypassed and the next sequential statement following the condi-

tional statement is then executed. [Ref. 6] The If-Then statement is written as follows:

IF (Boolean expression) THEN
one or more statements;

ENDIF;

2. The If-Then-Else Statement

The If-Then-Else statement is closely related to the If-Then statement. The differ-

ence is that the If-Then-Else statement mandates that a choice of statements must be made

and executed before continuing with the next sequential statement of the query following

the conditional statement. [Ref. 6] The If-Then-Else statement is written as follows:

IF (Boolean expression) THEN
first one or more statements;

ELSE
second one or more statements;

ENDIF;

If the Boolean expression is evaluated as true, then the first sequence of statements

are executed and the second sequence of statements are bypassed. If the Boolean expression

is evaluated as false, then the first sequence of steps are bypassed and the second sequence

of statements are executed. In the If-Then-Else statement, either the first or the second

sequence of steps must be executed prior to continuing with the next statement or series of

statements in the query. [Ref. 6]

43

C. ITERATIONS AND THE FOR-EACH LOOP STATEMENT

The Iteration Statement, the For-Each Loop, allows a statement or series of state-

ments to be repeated a specified number of times. The number of repetitions is determined

by some controlling condition. The For-Each Loop uses an index variable and a control

variable as the condition to determine the number of times the statements within the loop

will be repeated. [Ref. 6]

An index variable is an individual ODD from the set of OIDs contained in the control

variable. A control variable is the set of OIDs on which each iteration of the For-Each loop

will act upon. An index variable must be declared as an object reference (obj_ref) type. A

control variable must be declared as an object set (obj_set) type. For each iteration of the

For-Each loop, the index variable will be assigned an individual value of an OID in the set

of OIDs contained in control variable. Once the loop has been executed for each OID value

of the control variable, the loop is terminated and control returns to the next sequence of

statements in the query following the iteration statement. The following is an example of

the For-Each Loop:

For Each index In control variable
one or more statements;

EndJLoop;

The index variable may be used in the body of the For-Each Loop. However, it can-

not be modified beyond its defined iteration of the set_of control variable for each

execution of the loop. [Ref. 5] End_Loop is a reserved word and signifies the completion

of the For_Each Loop.

D. MEMBER ACCESS OPERATOR RULES

Commonly referred to as dot notation, an object's attributes may be referenced

using a member access selector. This selector consists of an object's variable_name or

44

identifier, followed by the attribute_name, separated by a period. In the following example,

Class Name may have an object stored in the database with an identifier of "thename" rep-

resenting the OID of the object.

Class Name{
char* fname;
char* mi;
char* lname;

};

Each attribute may then be accessed as follows:

thename.fname
thename.mi
thename.lname

This method of referencing an attribute may also be used to assign new values to the

attributes as well. For example:

thename.fname := 'Mike';

In the same manner, a method may be accessed to manipulate data.

\hename.method_name(paiameterJist);

where methodjiame would be a predefined method of the Class Name.

Now consider the case where an object is assigned as an attribute of another object.

Class Person{
Name pname;
Address paddress;
char* sex;

};

In this example, Class Person has three attributes, pname, paddress and sex. Two of the

attributes are of Class attributejypes, Name and Address, i.e., Name and Address are both

a Class. Therefore, we have two Classes assigned as attribute-objects of another class.

Note, this is different from the attribute-set previously defined, where objects are members

of an attribute-set that is a class attribute. In this definition, the Class Name and Class

45

Address are attributes of the Class Person and are considered member objects. This rela-

tionship was previously defined as a complex object. In this situation, an object of Class

Person will have an attribute pname of a data type of Class Name and an attribute of pad-

dress of a data type of Class Address.

To access the attributes of an object of Class Name, of an object of Class Person,

with an object reference variable name of "theperson", the dot notation would take the fol-

lowing form:

theperson.thename.fname
theperson.thename.mi
theperson.thename.lname

E. COMMENTED CODE

A query is a collection of programming code and as in any good program, it is

important that provisions be made to allow the programmer to comment the code. Program-

mers insert comments to document programs and to improve program readability. They

help other users to read and to understand the program. Comments do not cause the com-

puter to perform any action, i.e., when the program is run, the comments are ignored by the

compiler and do not cause any executable code to be generated. A comment that begins

with "//" is called a single-line comment because the comment terminates at the end of the

current line. [Ref. 6] An example of its use is as follows:

//This query will create a new object

Query InsertPerson IS
obj_ref p; //declares p as a new variable of type obj_ref

Begin

p := insert Person; //assigns ODD of new person to p
p.sex := 'M'; //note that a literal only uses a single quote

End:

46

V. THE QUERY CONSTRUCTS

A query is a collection of reserved words, symbols and statements. Each query is

structured in a block format to form declarations and database manipulations. Each forms

a small program that must be properly coded to comply with the rules of syntax and gram-

mar of the query language. To ensure the query is machine readable and able to compile,

the structure and production rules of a query are well defined.

A. THE QUERY FORMAT

The format of a query is divided into five basic parts as illustrated in Table 3.

Syntax Semantics Example

Parti: QUERY id IS Query Heading Query InsertPerson IS

Part 2: type id; Declarations Part obj_ref p;

Part 3: BEGIN Reserved Word BEGIN Begin

Part 4: statement_list; Body of executable state-
ments and operations

p := insert Person;
p.sex := 'M';

Part 5: END; Reserved Word END End;

Table 3. The Constructs of a Query

The following example illustrates the format of a query:

Part 1: Query InsertPerson IS
Part 2: obj_ref p;
Part 3: Begin
Part 4: p := insert Person;

p.sex := 'M';
Part 5: End;

47

1. Query Headings

The Query Heading consists of the reserved word QUERY, an identifier provided

by the user, and the reserved word IS. The compiler recognizes the reserved word QUERY

as the start of a legitimate program and proceeds to look for the identifier name to be

assigned to the query, followed by the reserved word IS.

The identifier name for the query is generated by and for the benefit of a user to

name or to describe the general purpose of the query. The query identifier must conform to

the same syntactic rules as previously defined for an identifier in Chapter IV.A.2.

• Consist of a series of one or more characters

• Number of characters is not limited

• First character must be a letter

• Remaining characters may be letters, digits, underscore

• More than one underscore in succession is not allowed

• An underscore is not allowed as the final character

• Uppercase and lowercase are interchangeable, they are interpreted the same, i.e.,
the O-ODML is not case sensitive

• First character following an embedded period in an identifier must be a letter

Part 1 is completed when the reserved word IS, is compiled. A semicolon is not used

to terminate the Query Heading.

2. Declarations Part

The Declarations Part is used to define variables and their data types. If there are

no declarations, this part may be empty. Variable declarations provide the names of iden-

tifiers (also referred to as an id) that will be used to reference data items as defined by their

type declarations or some predefined identifier. Variable names or identifiers must conform

to the same syntactic rules described in paragraph 1. Data types or predefined identifiers

include the following:

48

• objjref

• obj_set

• integer

• float

• char* (character strings)

One or more spaces are inserted between the data type and the identifier. If more

than one identifier is declared of the same type, the identifiers may be listed consecutively

on the same line, but must be separated by a comma. The last identifier on each line is fol-

lowed by a semicolon, terminating that declaration. A new declaration may be made

following the semicolon. A good programming practice is to have each new declaration

begin on a new line. The following are examples of the formats that may be used in the dec-

larations section:

//commented code may appear here
//two variable may be declared
//semicolon follows each declaration
//each variable may be declared on a
//separate line if desired

The Declarations Part concludes when the reserved word BEGIN is compiled. The

reserved word BEGIN is used by the compiler to mark the completion of the Declarations

Part and the beginning of the Body Part of the query. A semicolon is not used to terminate

this line.

3. Body Part

The Body Part is composed of a series of executable statements. These statements

include methods and operations as well as programming constructs of the manipulation lan-

guage. The types of available operations were previously defined and are listed in Table 1,

List of Object-Oriented Operations.

objjref first_id, second_id;
obj_set third_id, fourth_id;
char* fifth_id, sixth_id;
integer seventh_id;
integer eigthjd;
float ninth_id;

49

Statements can be further decomposed into simple statements such as expressions,

or structured statements such as If-Then statements or Loop statements. Structured state-

ments include the database operations previously defined Chapter III. All statement and

expressions must be terminated by a semicolon.

The Body Part is completed when the reserved word END is compiled. The query

is then compiled, executed, and the program terminated.

B. THE QUERY SYNTAX DEFINITION

There are several methods to formally define the syntax of the O-ODM manipula-

tion language. These include the Backus-Naur Form (BNF) and syntax charts. To ensure

accuracy and consistency, the production rules were chosen to define the syntax for the O-

ODML, as they also define the formal mechanics of the syntax for the O-ODML compiler.

The production rules are defined and included in Appendix B.

The production rules were generated using the LR(£) parsing techniques. The "L"

is for the left-to-right method of scanning the input, the "R" for constructing a right-side

derivation in reverse. The k is for the number of lookahead input symbols used in making

a parsing decision. The productions of a grammar specify the manner in which the termi-

nals and nonterminals may be combined to form strings. A grammar defines the constructs

and hierarchical structure of a programming language. [Ref. 7]

The Context-Free Grammar is the convention chosen for the productions of the O-

ODML production rules. Each production consists of a nonterminal, followed by the sym-

bol "::=", followed by a string of nonterminals and terminals. [Ref. 7]

A terminal is a token, either a single character or several characters forming a string

of tokens to represent a reserved word. Terminals cannot be decomposed into a smaller pro-

duction rule.

50

A nonterminal represents a variable and is a sequence of tokens that can be further

broken down into additional production rules. Several examples of nonterminals found in

the O-ODML production rules include expression, statement, list, declaration, part and

term.

The Context-Free Grammar consists of the following four parts:

• A set of tokens or terminal symbols

• A set of nonterminals

• A set of productions. Each production starts with a nonterminal on the left-side,
followed by a symbol "::=", meaning "can have the form", and a series of termi-
nals and nonterminals for the right-side

• A start symbol

A production is said to be for a nonterminal listed on the left-side. The following

conventions will be used for a production in the Production Rules of the O-ODML. [Ref. 7]

• Terminals will be listed in boldface, such as digits, symbols and reserved words

• Reserved words will be listed in boldface caps

• Nonterminals will be listed in italics

• A vertical bar " I " will mean a choice of either-or must be made

• All right-side productions must be completed and in succeeding order, however
each nonterminal must first be completed prior to proceeding to the next termi-
nal/nonterminal of a production

• Tokens consist of zero or more characters

• A string of zero characters is the token " £ ", meaning epsilon or empty string

To illustrate the use of the production rules, Figure 11 contains a partial listing of

the O-ODML production rules and Figure 12 illustrates their use. The full set of production

rules for the object-oriented data manipulation language are provided in Appendix B.

51

Start ::= QUERY id IS declarative_part body_part

Type and variable production rules

declarative_part ::= £ I declaration declarative_part
declaration ::= variable_decl
variable_decl ::= type idjist;
id_list ::= id idjists
idjlists ::= £ I, idjist
type ::= obj_ref I obj_set I INTEGER I FLOAT I CHAR*

Procedure declaration production rules
body_part : := BEGIN statementjist END;

Figure 11. Syntax Production Rules

52

(start j

(QUER^-»^ id ^-^C IS y~>~(declarative_part) lbody_part)-

Zero, one or more declaration
statements may be declared.

/

{declaration) (_£_)

(variable _declj

(opg)

f obj_ref >
obj_set

INTEGER
FLOAT

VCHAR*y

(id_list

CZ)
\id_lists)

dD £
D

±
Further

Productions

One or more variables may
be declared of each type.

Mandatory Path

Either/Or Path

Repetitive Path

Figure 12. Production Rules Illustrated

53

54

VI. CONCLUSION

This thesis developed the design and specifications for an Object-Oriented Data

Manipulation Language for an Object-Oriented Data Model. The Object-Oriented Data

Model is one of five data models implemented as part of the Multimodel and Multilingual

Database System database research project at Naval Postgraduate School at Monterey Cal-

ifornia. The object-oriented data manipulation language provides a high-level query

language for writing and processing transactions that can be executed in the object-oriented

language/paradigm via the Object-Oriented Model/Language interface.

The Object-Oriented Data Model is particularly well suited for modern database

applications such as images and graphics databases, scientific databases, engineering

design and manufacturing (CAD/CAM and CIM). These types of applications require com-

plex objects capable of storing images or large textual items and defining nonstandard

application-specific operations.

The Object-Oriented Data Model is based on the object-oriented programming lan-

guage paradigm, and many of the constructs and features of the O-ODM were adopted from

the programming language. These features include inheritance, encapsulation, polymor-

phism, operator overloading, composition and abstraction. Adopted for a database model,

these features offer greater flexibility and efficiency to the programmer in creating a data

base capable of emulating real world and evolutionary concepts.

The Object-Oriented Data Manipulation Language developed specifications to cre-

ate and delete database objects, perform search and retrieval operations and input/output

functions. Specifications were designed to manipulate the object-oriented relationships of

inheritance, composition and covering. Programming language features borrowed from the

object-oriented language include decision statements, member access functions and loop

iterations.

55

The Object-Oriented Data Model has been successfully completed and satisfacto-

rily demonstrated.

A. RELATED WORK

For a complete description and implementation details of the Object-Oriented Data

Definition Language (O-ODDL), the reader is referred to the following Master's Thesis:

• The Design and Specification of an Object-Oriented Data Definition Language
(O-ODDL) by Bruce Badge« [Ref. 4]

• The Design and Implementation of a Compiler for the Object-Oriented Data Def-
inition Language (O-ODDL Compiler) by Luis Ramirez and Recep M. Tan [Ref.
12]

• The Instrumentation of a Kernel DBMS for the Support of a Database in the O-
ODDL Specification by Dan Kellett and T. Kwon [Ref. 13]

For a complete description of the implementation details of the Object-Oriented

Data Manipulation Language (O-ODML), the reader is referred to the following Master's

Thesis:

• The Design and Implementation of a Compiler for the Object-Oriented Data
Manipulation Language (O-ODML Compiler) by Carlos Barbosa and Aykut Kut-
lusan [Ref. 9]

• The Instrumentation of a Kernel DBMS for the Execution of Kernel Transactions
Equivalent to their 0-0 Transactions by Robert Clark and Necmi Yildirum [Ref.
10]

• The Design and Implementation of a Real-Time Monitor for the Execution of
Compiled Object-Oriented Transactions (O-ODDL and O-ODML Monitor) by
Erhan Senocak [Ref. 11]

The reader is referred to following references for additional information on the

Multimodel and Multilingual Database Management System.

• "The Object Oriented Database Management: A Tutorial On Its Fundamentals"
by Dr. David K. Hsiao [Ref. 1]

56

"A Parallel, Scalable, Microprocessor-Based Database Computer for Perfor-
mance Gains and Capacity Growth" by Dr. David K. Hsiao [Ref. 14]

The Multimodel and Multilingual Database System User's Manual by Paul Alan
Bourgeois [Ref. 15]

B. RECOMMENDATIONS FOR FUTURE WORK

While many of the features of an object-oriented language were available, only a

subset of those features were developed for the data model. While loops, goto statements,

pointer functions, arrays, exception handling capabilities and other programming language

features were not required for this implementation, but the potential for enhancing the capa-

bilities of the O-ODML are easily seen. However, any additional features developed in the

language specifications will also require additional coding of the O-ODML compiler and

the Real-Time Monitor to ensure the correct mapping to the kernel database system.

Initial design decisions precluded the implementation of encapsulated methods.

This is an important feature of the object-oriented paradigm and future work on the O-

ODM should consider implementation of methods to provide enhanced external interface

capability.

57

58

APPENDIX A. SYMBOLS

Addition_Operator + 1 -

Assign_Operator :=

Close_Parenthesis)

Colon '■

Comma ;

Comment // till end of line

Delimiter (SPACE 1 TAB 1 EOL) +

End_Of_File

Epsilon E

Float_Constant digit+ (digit+)* . digit+(digit+)* (No embedded underscores).

Identifier letter+((_ (letter 1 digit))I (letter!digit))*
(. letter+(((_ (letter 1 digit))l(letterldigit)))*)*

Integer_Constant digit+((digit+) 1 (digit+))* (No embedded underscores).

Logical_Operator AND 1 OR

Multiplication_Operator * 1 / 1 MOD

NULL

Open_Parenthesis (

Relation_Operator = | /= | < | <= I >= I >

Reserved_Word See Table 2.

SemiColon ?

String_Constant "printable chars, ASCII 32-126, and TAB"

Unary_Operator -

Table 4. O-ODML Language Symbols

Key: * Means 0 or more I Separates options
+ Means 1 or more digit 0..9
() Groups of options, select one. letter Means A-Z or a-z

59

60

APPENDIX B. PRODUCTION RULES

start ::= QUERY id IS declarative_part body_part

Type and variable production rules

declarative jpart ::= 8 I declaration declarative jpart
declaration v.- variable_decl
variable_decl ::= type idjist;
id_list ::= id idjists
id_lists ::= £ I, idjist
type : := obj_ref I obj_set I INTEGER I FLOAT I CHAR*

Procedure declaration production rules

body jpart : := BEGIN statementJist END;
statement_list ::= statement statementJists
statementJists ::= £ I statementJAst
statement ::= simple_statement; I structured_statement;

Simple statement production rules

simple_statement ::= id simple_statements I NULL
simple_statements ::= actual_parameters I := assign_statement
actual_parameters ::= £ I {actual_parameter_lisi)
actual_parameter_list ::= expression actual_parameter_lists
actual_parameter_lists ::= £ I, actual_parameter_list

Structured statement production rules
structured_statement ::= ifjstatement I loop_statement I delete_statement I

input^statement I output_statement I add_statement
assign_statement ::= insert_statement \find_statement I add_statement I expression
if_statement :: = IF expression THEN statement Jist else_part ENDIF
else_part ::= £ I ELSE statement_list
loop_statement ::= FOR EACH id IN id statement Jist ENDJLOOP
insert^statement ::= INSERT id
delete_statement ::= DELETE (delete_parameter_list)
delete_parameter_list ::= id I id, id
find_statement : := FIND_ONE id WHERE expression I

FIND_MANY id where_expr

where_expr ::= £ I WHERE expression
input_statement : := READJNPUT (idjist)
output_statement ::= PROJECT id I DISPLAY (display„parameterJist)
display ^parameterJist ::= id I literal
add_statement ::= ADD (id, id)
statisticaLstatement ::= MIN (id) I MAX (id) I AVG (id) I COUNT (id)

61

Expression production rules

expression

expressions
rel_expr

rel_exprs
contain_expr
contain_exprs
simple_expr

simple_exprs
term

terms
factor
primary
literal

= rel_expr expressions
= £ I Iogical_operator expression I contain_expr
= simple_expr rel_exprs I statistical_statement reljexprs

= £ I re!ational_operator simple_expr
= CONTAINS contain_exprs
= rel_expr
= term simple_exprs
= £ I addition_operator simple_expr
=factor terms
= £ I multiplication_operator term
= NOT primary I primary
= literal I id I (expression)
= integer_constant I float_constant I string_constant

Note 1: Key to production rules: (1) Nonterminals are in italics, (2) RESERVED WORDS ARE
IN BOLD UPPERCASE, and (3) token types are in bold lowercase.

Note 2: The Data Manipulation Language is not case sensitive.

62

APPENDIX C. DATA MANIPULATION LANGUAGE DEFINITIONS

Name Semantics

attribute A property that further describes the object, defined by the type of data
it represents (attributejype) and its identifier (attribute_name)

attribute_name An identifier or name for the attribute

attributejype Predefined data type, may be either of a primitive or complex data type

attribute-object An object, contained as an attribute in another object forming a com-
plex class

attribute-set An attribute of an object, the attribute being a set of objects, either a
set_ofor in verse _of attribute

class_name The proper name of an object type, i.e., Class Person, Class Student

control variable The set of OIDs through which a loop will cycle while performing
some action

identifier A variable name of either a reserved word, a variable or a query

index Loop control variable, initialized to 1st OID of control variable when
the FOR statement is executed and incremented through each OID in
the control variable for each execution of the loop.

inverse_of A predefined data type representing zero or more OIDs in an attribute-
set, a set notation, the compliment of set_of

method_name An object member, the identifier used to identify the method within the
object formerly defined by a class

nonterminal Variables that represent a sequences of tokens and defines sets of
strings that help define the language generated by the grammar, i.e.,
statement, expression. In a parse tree, nonterminals are denoted as leafs.

obj_ref A predefined data type that represents a single Object Identifier (OID)
of a class, used specifically as the data type in the FindjDne queries.

obj_set A predefined data type that represents a set of Object Identifiers (OID),
of multiple class objects used specifically as the type in Find_Many
queries.

return_type The type of data an object method will return upon completion of its
transaction

Table 5. Definitions

63

Name

set attr

set of

single_value

string_constant

stringjiteral

terminals

var list

variable name

Semantics

The ODD and attribute of an object which is of data type set_of or
inverse_of used to represent which attribute-set will be modified in an
add or delete set operation.

A predefined data type representing zero or more OIDs in an attribute-
set, a set notation, the compliment of inverse_of

The single object in a setjxttr of objects.

A string of characters used to display a message to the user. The string
must be enclosed in double quotation marks.

A string of characters used when data of type char* is assigned to an
attribute. Must be enclosed in single quotation marks.

The basic symbols from which strings are formed, i.e. if, then else. In a
parse tree, terminals are denoted as interior nodes.

A list of one to many variables that can receive data from the user
through Readjnput Operation which can then assign the data to appro-
priate attributes in objects.

An identifier, predefined as an object reference to represent one OID

Table 5. Definitions

64

APPENDIX D. LEXICAL NOTES AND SEMANTIC NOTES

Lexical Notes
1. String may have 0 to 250 characters, to place a " (quote) in a string, two quotes are
needed.

2. MOD is a Multiplication_Operator, AND & OR are Logical_Operators.

Semantic Notes

1. All variables must be declared before they are referenced.

2. Duplicate identifiers may not be declared in the same scope.

3. The expression of an IF statement must be of type BOOLEAN.

4. AND and OR operators must be of type BOOLEAN.

5. +, -,*, / operators may be of type integer or float but must match.

6. Relational Operators must have integer operands.

7. The MOD operator must have integer operands.

8. Recursion is allowed.

9. Type checking is performed in assignment statements (Left Hand Side and Right
Hand Side must be of the same type.).

65

66

APPENDIX E. FACULTY-STUDENT DATABASE LOGICAL DIAGRAM

Name
(sex)

Address

Person

Faculty Student

N
U

N
Course

M

N

Team_
stu

Mil fac Civ fac

(rank ") (title) (advises"}

M N

M

Team

/Class\ relates 2 classes
\ class /

Class

Inherit
Superclass

t
Subclass

Covering

Cove

Class o
Member

Class

Participation

Total

Partial

67

68

APPENDIX F. FACULTY-STUDENT DATABASE CLASS
SPECIFICATION AND REPRESENTATION

Class Name {
char* fname;
char* mi;
char* lname;

}
Name OID fname mi lname

Class Address {
char* street;
char* city;
char* state;
char zipcode;

};

Address ODD street city state zipcode

Class Person {
Name pname;
Address paddress;
char* sex;

};
Person OID pname paddress sex

Class Student: inherit Person {
char* student_.no;
char* major;
set_of Course schedule;

};

Student OID student_.no major schedule

69

Class Faculty : inherit Person {
char* dept;
set_of Course teaches;

};

Faculty OID dept teaches

Class Civ_fac : inherit Faculty!
char* title;
inverse ofTeam.advisor advises;

Civ_fac OID title advises

Class Mil_fac : inherit Faculty {
char* rank;

};

Mil_fac OID rank

Class Team : Cover Student {
char* prjname;
set of Civ_Fac advisor;

Team OID prjname advisor

Class Course {
char* cname;
char* cse_num;
char* sec_no;
Faculty instructor;
inverse_of Student.schedule roster;

};

Course OID cname cse num sec no instructor roster

70

APPENDIX G. FACULTY-STUDENT DATABASE QUERY FILES

The following queries illustrate the use of the O-ODML in constructing database

manipulations. These queries were successfully used to test and demonstrate the object-

oriented data manipulation language on the Faculty-Student Database depicted in

Appendixes E and F. Each query is currently saved in an individual ASCII file. The files

are located in the "/greg" directory of the "MDBS" account at the M2DBMS database

research laboratory of NPS Monterey. Each query file name is given in the title bar at the

start of each query.

//******* FACSTUoolreql ******** //
// Retrieval

Query Display_Course IS

obj_set a;
objjref i;

Begin

a := find_many Course where
instructor.pname.lname = 'Wu';

For Each i IN a
display(i.cname, i.cse_no);

EndJLoop;

End;

// ******* FACSTUoolreq2 ******* //
// Multiple retrieval

Query Display „Courses IS
obj_ref a, i;
obj_set b;

Begin

a := find_one Student where
pname.lname = 'Badgett'
and major = 'CS';

b := find_many Course where
roster contains a
andsec_no = T;

For Each i In b
display(i.cname);

End_Loop;

End;

71

// ****** FACSTUoolreq3 ******* //
// Covering Retrieval

Query Display_Team_Info IS
obj_ref i;
obj_set a, b;

Begin
a := find_many Student where

pname.fname = 'Luis'
or pname.fname = 'Recep';

b := find_many Team where it
contains a; // Covering relationship

For Each i IN b
display(i.prjname);

End_Loop;

End;

/******** FACSTUoolreq5 ******* //

// ******* FACSTUoolreq4 ********//
// Single Retrieval & Update

Query Update_MilFac_Rank IS
objjref p;

Begin
p := find_one Mil_fac where

sex = 'M'
and rank = 'LCDR;

display(p.rank, p.pname.fname,
p.pname.lname);

p.rank := 'CMDR;

display(p.rank);

End;

// ******* FACSTUoolreq6 ******* //

// £>et L-ompanson

Query Display_Civ_Fac IS

// multiple upuait

Query Update_Student_Info IS
obj_ref a, i; obj_set a;
obj_set b; obj_ref i;

Begin Begin
a := find one Team

where prjname = 'OOP'; a := find_many Student where
major = 'CS';

b := find_many Civ_fac
where advises contains a; For Each i IN a

i.major := 'EC;
For Each i IN b display(i.pname.fname,

Display(i.title, i.pname.lname); i.pname.lname, i.major);
End_Loop; End_Loop;

End; End;

72

// ****** FACSTUoolreq7 ******* //
// Multiple retrieval

Query Display_faculty IS
obj_set p;
obj_ref i;

Begin
p := find_many Faculty

where dept = CS;

For Each i IN p
display(i.pname.fname,

i.pname.lname);
End_Loop;

End;

II ******* FACSTUoolreq8 ********//
// Single Retrieval & Update

Query Update_CivFac_Address IS
obj_ref a;

Begin
a := find_one Civ_Fac where

pname.lname = 'Hsiao'
and title = 'Prof;

a.paddress.street := '150_Leahy_St';
a.paddress.city := 'Carmel';
a.paddress.zipcode := '93943';

display(a.paddress.street,
a.paddress.city,
a.paddress.zipcode);

End;

73

74

APPENDIX H. FACULTY-STUDENT DATABASE QUERY
EXAMPLES

The following queries were drafted to test various design and specification issues

in the design of the O-ODML. These examples are included here to further illustrate vari-

ous methods of constructing database manipulations utilizing the O-ODML.

1. ADD STUDENT
Query AddStudent IS

obj_ref s;
char* x, y;

Begin
s := insert Student;
display ("Input the student number and major");
read_Input (x, y);
s.student# := x;
s.major := y;

End;

2. DROP STUDENT I
Query DropStudent IS

obj_ref p;
Begin

p := find_One Student
where major = 'cs'
and student* = '20';

delete (p);
End;

75

3. DROP STUDENT II
Query DropStudent IS

obj_set c;
obj_ref d, i;

Begin

c := find_Many Student
where pname.lname = 'Smith'
and major = 'cs';

For Each i IN c
display (i.student*, i.pname.fname);

End Loop;

//Once correct student # is located from the first query
d := find_One Student

where student# = '20';

delete (d);

End;

4. CHANGE ADDRESS I
Query ChangeAddress IS

obj_ref a;
char* x, y, z;

Begin

a := find_One Student
where pname.lname = 'Smith'
and pname.fname = 'John'
and student* ='20';

display ("Input the new street address, city and zip");
read_Input (x,y,z);
a.paddress.street := x;
a.paddress.city := y;
a.paddress.zip := z;

End;

76

5. CHANGE ADDRESS II //Example for changing all attributes of an object class
Query ChangeAddress IS

obj_set s;
obj_ref i;
char* x, y, z, w;

Begin

s := find_Many Students
where paddress.city = 'Monterey';

For Each i IN s
display (i.pname.fname, i.pname.lname);
display ("Input the new street, city, state and zipcode.");
read_Input (x, y, z, w);
i.paddress.street := x;
i.paddress.city := y;
i.paddress.zipcode := w;

End_Loop;

End;

6. CHANGE GENDER //change all females to males
Query ChangeGender IS

obj_set p;
obj_ref i;
char* x;

Begin

p := find_Many Student
where sex = 'F';

display ("Enter the correct gender, M/F");
read_Input (x);

For Each i In p
i.sex := x; //student inherits from person, will display sex

End_Loop;

End;

77

7. CHANGE COURSE I
Query ChangeAddress IS

obj_set c;
obj_ref i;
char* x;

Begin

c := find_Many Course
where sec# = '2'
and cse#='4114';

For Each i IN c
display (i.cname, i.cse#);
display ("Enter the correct course name");
read_Input (x);
i.cname := x;

End_Loop;

End;

8. CHANGE COURSE II
Query ChangeCourse IS

obj_ref a;
char* x;

Begin

a := find_One Course
where cse#= '20';

display ("Input the new course number.");
read_Input (x);
a.cse# := x;

End;

78

9. CHANGE THE TEAM OF A STUDENT
Query ChangeTeam IS

obj_ref t, s, k;
char* x;

Begin
t := find_One Team

where prjname = 'DB5';
s := find_One Student

where pname.lname = 'Smith'
and pname.fname = 'John';

delete (t, s); //delete s (student) from t (team)
k := find_One Team

where prjname = 'DB12';
add(k, s); //add s (student) to t (team)

End;

The following queries demonstrate the use of "set-of' methods on attribute-sets.

10. ADD TEAMS THAT A CIV_FAC ADVISES //teams already exist
Query CivFacTeam IS

obj_set a;
objjref b;

Begin
a := find_Many Team

where prjname = 'DB5';
b := find_One Civ_Fac

where pname.lname = 'Wu';
For Each i IN a

add(b.advises, i); //union of set a and set b
End_Loop;

End;

11. DELETE TEAMS THAT CIV_FAC ADVISES
Query CivFacTeam IS

obj_ref a, b;
Begin

a := find_One Civ_Fac
where pname.lname = 'Wu'
and pname.fname = 'Thomas';

b := find_One Team
where prjname = 'OOP'
and Team contains advisor = a;

delete (a. advises, b);
End;

79

12. ADD AN ADVISOR TO A TEAM
Query TeamAdvisor IS

obj_ref cy, ex;
Begin

cy := find_One Team
where prjname = 'DB5';

ex := find_One Civ_Fac
where pname.lname = 'smith'
and pname.fname = "john";

add (cy.advisor, ex);
End;

13. DELETE A SINGLE ADVISOR FROM THE SET OF ADVISORS OF A TEAM
Query CivFacTeam IS

obj_ref a, b;
Begin

a := find_One Team
where prjname = 'DB5';

b := find_One Civ_Fac
where pname.lname = 'Hsiao'
and pname.fname = 'David';

delete (a. advisor, b);
End;

14. ADD AN INSTRUCTOR TO A COURSE
Query InstructorCourse IS

obj_ref a, b;
Begin

a := find_One Faculty
where pname.lname = 'Wu';
anddept='CS';

b := find_One Course
where cse# = '3320';

add (b.instrucotr, a);
End;

80

15. DELETE AN INSTRUCTOR FROM A COURSE
Query Courselnstructor IS

objjref a, b;
Begin

a := find_One Faculty
where pname.lname = 'Wu';
anddept='CS';

b := find_One Course
where cse#='3320';

delete (b.instrucotr, a);
End;

16. ADD A LIST OF COURSES TO A STUDENT'S SCHEDULE
Query StudentSchedule IS

obj_ref i, p;
obj_set c;

Begin
p := find_One Student

where pname.lname = 'Badgett'
and student* = '20';

c := find_Many Course
where cse# = '4322' and sec# = ' 1'
or cse# = '4114' and sec# = ' 1';

For Each i IN c
add (p.schedule, i); //set union of courses to student's schedule

End_Loop;
End;

17. DELETE A LIST OF COURSES FROM A STUDENT'S SCHEDULE
Query StudentSchedule IS

obj_ref i, p;
obj_set c;

Begin
p := find_One Student

where pname.lname = 'Badgett'
and student* ='20';

c := find_Many Course
where cse# = '4322' and sec# = ' 1'
or cse# = '4114' and sec# = ' 1';

For Each i IN c
delete (p.schedule, i); //set difference of student's schedule minus courses

End_Loop;
End;

81

18. DELETE LIST OF COURSES FROM WHAT A FACULTY MEMBER TEACHES

Query Faculty Teaches IS
obj_ref a, i;
obj_set b;

Begin

a := find_One Faculty
where pname.lname ='Wu'
and pname.lname = 'Thomas';

b := find_Many Courses
where cname = 'OOPROG';

For Each i IN a
delete (i.teaches, b);

End_Loop;

End;

82

LIST OF REFERENCES

[I] Hsiao, David K., "The Object Oriented Database Management: A Tutorial On It's
Fundamentals", Proceedings of the Second Far-East Workshop on Future Database
Systems, Kyoto, Japan, April 1992.

[2] Hsiao, David K., Wu, C. Thomas, "Interoperable and Multidatabase Solutions for
Heterogeneous Databases and Transactions", Draft Notes in Computer Science,
NPS Monterey, CA, July 1994.

[3] Pohl, I., Object Oriented Programming Using C++, Benjamin/Cummings Publish-
ing Company, Inc, 1993.

[4] Badge«, R.B., The Design and Specification of an Object-Oriented Data Definition
Language (O-ODDL), Master's Thesis, Naval Postgraduate School, Monterey, Cal-
ifornia, September 1995.

[5] Feldman, Michael B, Koffman, Elliot B., Ada: Problem Solving and Program
Design, Addison-Wesley Publishing Company, 1993.

[6] Deitel, Harvey M., Deitel, P.J., C++ How To Program, Prentice Hall, Inc., 1994.

[7] Aho, Alfred V., Sethi, Ravi, Ullman, Jeffrey D., Compilers, Principles, Techniques,
and Tools, Addison-Wesley Publishing Company, 1988.

[8] Elmasri and Navathe, Fundamentals of Database Systems, The Benjamin/Cum-
mings Publishing Company, Inc., 1990.

[9] Barbosa, C. and Kutlusan, A., The Design and Implementation of a Compiler for the
Object-Oriented Data Manipulation Language (O-ODML Compiler), Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1995.

[10] Clark, R. and Yildirum, N., The Instrumentation of a Kernel DBMS for the Execu-
tion of Kernel Transactions Equivalent to their 0-0 Transactions, Master's Thesis,
Naval Postgraduate School, Monterey, California, September 1995.

[II] Senocak, E., The Design and Implementation of a Real-Time Monitor for the Execu-
tion of Compiled Object-Oriented Transactions (O-ODDL and O-ODML Monitor),
Master's Thesis, Naval Postgraduate School, Monterey, California, September
1995.

[12] Ramirez, L. and Tan, R., M., The Design and Implementation of a Compiler for the
Object-Oriented Data Definition Language (O-ODDL Compiler), Master's Thesis,

83

Naval Postgraduate School, Monterey, California, September 1995.

[13] Kellett, D. and Kwon, T., The Instrumentation of a Kernel DBMS for the support of
a Database in the O-ODDL Specification, Master's Thesis, Naval Postgraduate
School, Monterey, California, September 1995.

[14] Hsiao, David K., "A Parallel, Scalable, Microprocessor-Based Database Computer
for Performance Gains and Capacity Growth", IEEE Micro, December 1991.

[15] Bourgeois, Paul Alan, The Multimodel and Multilingual Database System User's
Manual, Masters Thesis, Naval Postgraduate School, Monterey, California, Decem-
ber 1992.

84

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library
Code 013
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr. David K. Hsiao, Code CS/HS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr. C. Thomas Wu, Code CS/KA
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. MS. Doris Mlezko
Code P22305
Weapons Division
Naval Air Warfare Center
PtMugu,C A 93042-5001

7. Ms. Sharon Cain
NAIC/SCDD
4115HebbleCreekRd
Wright Patterson AFB, OH 45433-5622

8. Mr. D. W. Stephens ...
4258 Drake St
Houston, TX 77005

85

9. LCDR Michael W. Stephens
4258 Drake St
Houston, TX 77005

10. Mrs. Shirley Graham ..
4921 S. E. 85th St
Portland, OR 97266

86

