
1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN AND IMPLEMENTATION OF REAL-TIME
MONITOR FOR THE OBJECT-ORIENTED INTERFACE

by

Erhan Senocak

December 1995

Thesis Advisor:
Thesis Co-Advisor

David K. Hsiao
C. Thomas Wu

Approved for public release; distribution is unlimited.

19960401 012
DTIC qoALCWDas«801®01

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01B8), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) I 2. REPORT DATE
December 1995

13. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Design and Implementation of Real-Time Monitor for the Object-
Oriented Interface

6. AUTHOR(S)

Erhan Senocak

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
In a stand-alone database management system (DBMS), one of the key components is the real-time monitor (RTM)

which handles database accesses and responses at run time. In the Multimodel, Multilingual and Multibackend Database Man

agement System (M3DBMS) developed at the Laboratory for Database System Research in the Naval Postgraduate School, there
is also the need of a RTM in order to link a specific Data Model and Data Language Interface to the Kernel DBMS. The problem

addressed by this thesis is to design and implement a RTM for the Object-Oriented Interface in M3DBMS.
In this interface each object-oriented (OO) query is converted into the equivalent Attribute-Based Data Language

(ABDL) queries. However, due to the complexity of the OO operations there is no way to produce these ABDL queries in com-
plete and executable forms. Much of the information needed for the completion and execution of the ABDL queries is provided
by the previous ABDL queries. The approach was to develope a RTM which oversees the execution of previous ABDL queries,
receives the intermediate results from these queries, and completes the subsequent ABDL queries for execution in the Kernel.

The result of this thesis is a RTM which executes the OO query as directed by the compiler of object-oriented data
manipulation language (OODML). Once the OO query is parsed by the OODML compiler, it is transformed into the equivalent
ABDL queries and a series of pseudocode in compliance with the protocol between the OODML compiler and the RTM. The RTM
executes the operations specified by the pseudocode by using its built-in functions. However, for the execution of the ABDL
queries, it communicates with the Kernel DBMS.
14. SUBJECT TERMS

Real-Time Monitor
Object-Oriented Data Manipulation Language
Kernel Database Management System

15. NUMBER OF PAGES

65
id? RICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF REAL-TIME MONITOR

FOR THE OBJECT-ORIENTED INTERFACE

Erhan Senocak
Lieutenant Junior Grade, Turkish Navy

B.S. Turkish Naval Academy, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1995

Author:

Approved by:

Erhan Senocak

David K. Hsiao, Thesis Advisor

C. ThomaVWu, Co-Advisor

Ted Lewis, Chairman
Department of Computer Science

IV

ABSTRACT

In a stand-alone database management system (DBMS), one of the key compo-

nents is the real-time monitor (RTM) which handles database accesses and responses at

run time. In the Multimodel, Multilingual and Multibackend Database Management Sys-

tem (M3DBMS) developed at the Laboratory for Database System Research in the Naval

Postgraduate School, there is also the need of a RTM in order to link a specific Data

Model and Data Language Interface to the Kernel DBMS. The problem addressed by this

thesis is to design and implement a RTM for the Object-Oriented Interface in M3DBMS.

In this interface each object-oriented (00) query is converted into the equivalent

Attribute-Based Data Language (ABDL) queries. However, due to the complexity of the

00 operations there is no way to produce these ABDL queries in complete and execut-

able forms. Much of the information needed for the completion and execution of the

ABDL queries is provided by the previous ABDL queries. The approach was to develope

a RTM which oversees the execution of previous ABDL queries, receives the intermedi-

ate results from these queries, and completes the subsequent ABDL queries for execution

in the Kernel.

The result of this thesis is a RTM which executes the OO query as directed by the

compiler of object-oriented data manipulation language (OODML). Once the 00 query is

parsed by the OODML compiler, it is transformed into the equivalent ABDL queries and a

series of pseudocode in compliance with the protocol between the OODML compiler and

the RTM. The RTM executes the operations specified by the pseudocode by using its built-

in functions. However, for the execution of the ABDL queries, it communicates with the

Kernel DBMS.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

II. THE NEED FOR THE REAL-TIME MONITOR IN THE OBJECT-ORIENTED

INTERFACE 5

IE. THE INTERACTION WITH OTHER SOFTWARE MODULES 9

A. THE INTERACTION WITH THE OODML COMPILER 9

B. THE INTERACTION WITH THE KERNEL DATABASE SYSTEM 12

C. INTERACTION WITH THE KERNEL FORMATTING SYSTEM 13

IV. DESIGN AND IMPLEMENTATION ISSUES 15

A. THE OVERALL DESIGN OF THE REAL TIME MONITOR 15

B. THE IMPLEMENTATION OF THE SECONDARY OPERATIONS 17

C. THE IMPLEMENTATION OF THE PRIMARY OPERATIONS 20

V. CONCLUSIONS 25

A. LIMITATIONS 25

B. FUTURE RESEARCH 25

APPENDIX A- THE DEFINITIONS FOR THE PSEUDOCODE 27

APPENDIX B- THE SAMPLE TRACE OF A QUERY 29

APPENDIX C- SOURCE CODE FOR THE RTM 31

LIST OF REFERENCES 51

INITIAL DISTRIBUTION LIST 53

vu

VUl

LIST OF FIGURES

Figure 1. Interfaces, Databases and Schemas in M3DBMS with CMAC 2

Figure 2. The Role of the RTM between the Interface and the Kernel 7

Figure 3. The Data Flow between the RTM and the Other Softwares 10

Figure 4. The Flowchart for rtm_exec() 16

Figure 5. The Flowchart for the query_exec() 21

rx

I. INTRODUCTION

Different Database Management Systems (DBMS) are derived from different data

models and data languages. These DBMS create heterogeneous databases. To increase the

effective utilization of all these data stored in various databases and to prevent the data

duplication of one database into the other database, the researcher begins to search a way

for the interoperability of heterogeneous databases and their DBMS.

Although it is still in experimental phase, the interoperable solution developed at

the Laboratory for Database System Research in the Naval Postgraduate School may turn

out to be the most promising one, since it removes the limitations of the other solutions

offered so far. For a detailed explanation of the other solutions and their limitations, the

reader is to refer to [Ref. 1]. Our interoperable solution is the Multimodel, Multilingual and

Multibackend Database System (M3DBMS) with the Cross-Model-Accessing Capabilities

(CMAC), where all the heterogeneous databases are integrated into a kernel database. This

integration is done automatically by the M3DBMS with the CMAC and is transparent to the

user. More specifically, the system enables the user to create a database in the data model

preferred, to access and manipulate not only the user's own database but also the other

users' databases. For example, based on the other data models, the relational user of a

relational database may access a hierarchial database as if it is a relational database. The

multimodel, multilingual and CMAC characteristics ensure the interoperability of

heterogeneous databases; the multibackend characteristic ensures the parallel operations

and huge storage of the databases. In this.system there is an interface for each distinct pair

of data model and data language. For the database creation, the interface converts a

database created in a specific data model into the kernel (i.e., attribute-based) data model

format and creates for it the kernel database organized as attribute-value pairs. For the

manipulation of the database, the interface also converts the queries in the user's favorite

data language into the kernel (i.e., attribute-based) data language (ABDL). The entire

system is depicted in Figure 1.

A kernel
database user

The kernel data model
and kernel data

language interface

A hierarchical
database user

The hierarchical data
model and DL/I

interface

An object-oriented
database user

The object-oriented data
model and object-oriented j

data language interface

A kernel
database schema

A hierarchical
database schema

An object-oriented
database schema

A
kernel

database

A
hierarchical

database
in

the kernel
form

A
relational
database

in
the kernel

form

A
functional
database

in
the kernel

form

An
object-oriented

database
in

the kernel
form

A relational database schema
for the hierarchical database

A network
database schema

A relational database schema
for the object-oriented database

A relational
database schema

The network data model
and Codasyl-DML

interface

A network
database user

The relational data model
and SQL interface

A relational
database user

Figure 1: Interfaces, Databases and Schemas in M3DBMS with CMAC

Beginning in the early 90's the Object-Oriented Database Management Systems

(OODBMS) became one of the major trends in the database world. Many "next-

generation" applications, such as computer-aided design and manufacturing systems,

computer-aided software engineering, multimedia and hypermedia information systems,

and artificial intelligence expert systems require databases that can support objects of a

variety of types with ability to express complex relationships among objects [Ref. 2]. Since

conventional database systems (network, hierarchial and relational models) are often

inadequate to support the requirements of these applications, OODBMS have gained more

and more popularity. Although some vendors are enriching RDBMS and claiming that

RDBMS are as powerful as OODBMS, there is no doubt that the latter with rich and

complex semantic database constructs are superior to all the previous DBMS.

Before the present thesis work, M3DBMS has supported attribute-based,

hierarchial, network, relational, and functional data models and their corresponding data

languages. With the completion of this and other theses, the newly emerging data model

and data language, namely, the object-oriented data model and the object-oriented data

language, are incorporated as an object-oriented data model/language interface into the

M3DBMS.

The objective of this thesis research is the design and implementation of a real-time

monitor (RTM) for object-oriented database management. It supervises the execution of

well-formed ABDL queries being produced by the compiler of the object-oriented data

manipulation language (OODML). It also completes other nearly-executable ABDL

queries for execution. Finally, it presents the answer of the query to the kernel formatting

system (KFS). Detailed explanations of the well-formed and nearly-executable ABDL

queries are given in the following chapters. More specifically, in the remaining chapters of

this thesis, the need for the RTM in the Object-Oriented Interface is articulated in Chapter

II. In Chapter in, the interactions of the RTM with the other modules of the interface and

the kernel database are expounded. In Chapter IV, the design and the implementation of the

RTM are detailed. The conclusion of the thesis is included in Chapter V. Following the last

chapter, there are appendices on the pseudocode defintions, the sample trace of a query and

the source code of the RTM.

II. THE NEED FOR THE REAL-TIME MONITOR IN THE OBJECT-
ORIENTED INTERFACE

During the design phase of the object-oriented interface, one of the important issues

is how to convert the object-oriented operations of the interface into the equivalent ABDL

functions in the kernel. For a detailed explanation of the object-oriented operations see

[Ref. 3]. Although simple ABDL functions, namely INSERT, DELETE, UPDATE,

RETRIEVE and RETRIEVE COMMON are capable of supporting complex object-

oriented operations, there is no way to produce these ABDL functions in complete and

executable forms. Much of the information needed for the completion and execution of

ABDL functions must be provided by previous ABDL functions and computations. Thus,

there is the need of a real-time monitor, which oversees the execution of the previous

ABDL functions; receives the intermediate results from these functions, and completes the

subsequent ABDL functions for their execution in the kernel.

Another option might be to modify the kernel in order to handle the situation

defined above. Since the processes in the kernel are being shared by the other interfaces of

M3DBMS and the code regarding the implementation of the kernel database management

system is very long and complex, any modification of the kernel would be very time

consuming and may result in unexpected problems in building up a robust kernel database

system. The reader is to refer to [Ref. 4] and [Ref. 5] for a detailed explanation of the kernel

database system. So, due to the risk of introducing errors into the kernel database system

and complicating the implementation of the object-oriented interface, the use of a layer of

software between the object-oriented interface and the kernel is a much easier and rational

solution.

Besides, in all the other interfaces of M3DBMS, the need of a real-time monitor

(called as the kernel controller) is inevitable. In general, the kernel controller submits the

equivalent ABDL queries to the kernel and receives the answers from the kernel. So, the

kernel controller acts like a real-time monitor of a stand-alone DBMS, handling the

database accesses at the run time.

Architectually, the RTM in the object-oriented interface is similar to the kernel

controllers in the other interfaces. However, the RTM in the object-oriented interface

facilitates object-oriented operations, completes all the incomplete assembled ABDL

operations, and interacts with the kernel database system on behalf of the object-oriented

interface.

The role of the RTM between the object-oriented interface and the kernel is

depicted in Figure 2.

0 returns the result of a query User selects Object Oriented Interface

Kernel
Formatting

VSystem

Li

Language Interface Layer (Lil)

Parser
DML *—/scanner)

DDL
Parser

Intermediate
Language

Table

Data
Dictionary

Query
Constructor

Descriptor .d &
Template .t
Files

Kernel Mapping System (Kms^/

RTM

Real Time
Monitor

Kernel Controller (Kc)

RTM TA

Kernel

Attribute Based
Interface

Storage
(AB Format)

Figure 2. The Role of the RTM between the Interface and the Kernel

III. THE INTERACTION WITH OTHER SOFTWARE MODULES

Before describing the design and the implementation of the RTM, depicting the

relationship of the RTM with the other modules of the interface and the kernel, that is,

defining the input and the output of the RTM will make the architecture of the RTM much

more readable and understandable.

Basicly, the RTM communicates with three software modules. The first is the query

constructor, the last component of the OODML compiler, which is responsible for

preparing the input file to the RTM, namely query J. The RTM executes the query Jline

by line and communicates with the kernel for the execution of each ABDL query in this

file. So, the kernel is the second software module that the RTM interacts with. Once the

execution of the whole query file is completed, the RTM checks if it has created an output

file that has to be displayed to the user. If it has, then it activates the kernel formatting

system. It is the third software module to which the RTM is related.The data flow between

the RTM and the other software modules is depicted in Figure 3.

In the following sections, the interaction of the RTM with the other software

modules is expounded.

A. THE INTERACTION WITH THE OODML COMPILER

The input file that the RTM processes on, is prepared by the OODML compiler.

This file consists of the translation of an object-oriented query into the attribute-based

queries. The translation process in the OODML compiler takes several steps. First, each

object-oriented query is tokenized using the tool LEX. Once all the tokens have been

identified, the tool YACC is used as a parser in order to check the syntactic and semantic

correctness of the query. The parser also constructs the intermediate-language table and the

symbol table. Finally, the query constructor produces the equivalent ABDL queries

accessing the intermediate-language table, the data dictionary, and the symbol table

[Ref.7]. Some of these ABDL queries are well-formed and some of them are nearly-

executable. The query constructor also produces the pseudocode with respect to the type of

Kernel
Formatting
System
(KFS)

result in the ABDL format
(response to the OOL query)

Language Interface

RTM

RTM

KERNEL

DML
Compiler

Pseudocode + ABDL queries
(for a single OOL query)

Real-Time Monitor (RTM)

Kernel Controller

response in the
ABDL format An ABDL query

Attribute Based
Interface

(TI)

Figure 3: The Data Row between the RTM and the Other Softwares

10

the operations in the object-oriented query. Finally, all these statements, i.e., well-formed

and nearly-executable ABDL queries and the pseudocode are packed and sent to the RTM

as a text file query J.

As stated above, the query J is composed of three types of statement; well-formed

ABDL queries, nearly-executable ABDL queries, and the pseudocode. A well-formed

ABDL query is the ABDL query which is complete and ready to be sent to the kernel

database for execution. A nearly-executable ABDL query is an ABDL query which is

complete in terms of the syntax of the ABDL but, incomplete in terms of the values of its

arguments. In other words, the ABDL query includes a variable that has to be substituted

with its value or values before execution. The value of the variable is determined from the

execution of the previous ABDL queries. The presence of the nearly-executable ABDL

queries is due to the fact that the compiler can not build all the ABDL queries in well-

formed way. Since some ABDL queries are dependent on the results of the previous ABDL

queries, there is no way for the compiler to know the answer of an ABDL query in advance

in order to prepare the next query with the result of the previous one. Because the RTM is

present in the course of the execution of the queries, the completion of the nearly-

executable queries for their execution becomes a natural task of the RTM.

The RTM always works on the object identifier (OID) values received from the

kernel database in response to the ABDL queries. Although the existence of the OIDs is

hidden from the user, it is the only way to keep track of objects, since for each object there

is a unique OID assigned by the RTM. Consequently, all the computations and the

manipulations performed by the RTM make use of the OID values.

As outlined in [Ref. 3], the object-oriented operations are much more complex and

may involve more primary ABDL operations. The for-loop, assignment, display are some

of the object-oriented operations that do not have equivalent ABDL functions, since they

are not storage and retrieval operations. So, to implement these operations and to complete

nearly-executable ABDL queries for execution, there is a protocol between the RTM and

the compiler, namely, pseudocodes. Each pseudocode is a unique single-character used for

11

a particular operation. They are the only means to activate the corresponding functions in

the RTM so that some of the object-oriented operations are performed without the kernel.

The reader is to refer to Appendix A for the pseudocode definitions.

Since the RTM can be assumed as a bridge between the object-oriented language

interface and the kernel, the way the communication is handled is very important. The next

section will focus on this issue.

B. THE INTERACTION WITH THE KERNEL DATABASE SYSTEM

One of the responsibilities of the RTM is to handle the inter-communication

between the kernel database system and the object-oriented interface. The communication

with the kernel is crucial because it is the only possible way to send an ABDL query to the

kernel and get the result from the kernel. All communications are accomplished via the Test

Interface (TI) process which is one of the six processes residing in the kernel.

There are two main TI_ functions that the RTM utilizes for ABDL query execution.

All other TI_ functions are called by way of these two functions. Once the RTM

determines that an ABDL query is ready for execution, it calls the function

TI_S$TraflJnit(dbid, trafunit) in the following form:

TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, request)

The structure ool_ptr -> oi_curr_db.cdi_dbname holds the database identifier

(dbid) and the variable request holds the traffic unit (trafunit) which is the ABDL query

itself. The dbid determines the database that the kernel is going to access.

Following this function call the RTM calls the function TI_RTM_chk_res_left() to

ensure that the request has been processed and the results from the kernel system have been

received. The function TI_RTM_chk_res_left() communicates with the rest of the kernel

system and receives the message about the condition of the request. If errors exist, the

fuction TI_R$ErrorMessage() is called to get the error message. However, if no error

occurs, the function TI_R$ReqRes() is called to receive the response from the other

processes of the kernel system. The response buffer is then checked to see if this is the last

12

response. If it is the last response, the results are then loaded into the file responseJ

through the calls to the functions TI_ReqRes_RTMoutput() and TI_print_RTMReqRes(),

respectively [Ref. 5].

Depending on the type of the primary operation, the process on the response J is

handled accordingly by the RTM. If the primary operation is a RETRIEVE then the file

response J is opened. All the responses are OID values. They are used by the secondary

and/or primary operations followed. But if the primary operation is a RETRIEVE where

the result is to be displayed to the user, namely, DISPLAY, then the content of the

response J is stored in the file output J. In this case, the content of the response J consists

of attribute-value pairs, not OID values. The responses to all the other DISPLAY

operations are also appended to the output J. When the execution of the query J is

completed, the RTM sends this file to the KFS.

C. INTERACTION WITH THE KERNEL FORMATTING SYSTEM

Once the execution of the query J is completed, the RTM checks if it has created

the output J. As mentioned in the previous section, this file is created in case the user wants

the data retrieved from the database to be displayed on the screen. Since the data retrieved

from the database is in the attribute-based format, the KFS reformats them in a tabular

format and displays to the user in an object-oriented fashion. Since there might be more

than one DISPLAY operations in an object-oriented query, the responses to each

DISPLAY operation are separated by an asterisk (*) in the outputJ'by the RTM.On the

basis of the separators, the KFS can determine whether it should to create a new table with

new attribute names as the column headings. For a detailed explanation regarding the

implementation of the KFS, refer to [Ref. 4].

13

14

IV. DESIGN AND IMPLEMENTATION ISSUES

A. THE OVERALL DESIGN OF THE REAL TIME MONITOR

Once the function real_time_monitor() is activated with the query J, the RTM takes

the control in the object-oriented interface and begins to execute the query_f line by line.

There are two types of operations that the RTM handles: Primary operations and secondary

operations. Primary operations are related to the execution of the ABDL functions. The

operations regarding data retrieval and manipulation, i.e., the operations that the RTM has

to communicate with the kernel are referred to as primary operations. The operations

internal to the RTM for the execution of the pseudocode are called as secondary operations.

As stated before, all types of pseudocode are symbolized by one character and

placed at the beginning of each line in the query_f. So, the first character of each line

determines the action to be taken by the RTM. After the realjime _monitor() is called, the

program flow shifts to the main controller function rtm_exec(). The body of this function

is a switch statement. Since the lines are read character by character, once the first character

of a line is read, it is compared with one of the characters defined in the switch statement

and depending on whether it is a pseudocode or an ABDL query, the corresponding

secondary operation or the primary operation is executed. There is a function for each type

of pseudocode. The flowchart for the function rtm_exec() is demonstrated in Figure 4. As

seen in Figure 4, the rtm_exec() is responsible for calling the functions regarding secondary

operations. In case the first character of a line is a left bracket ([), the rtm_exec() calls the

function query_exec() that is responsible for the execution of the primary operations.

The relationship between the secondary and primary operations are handled

through the flags. Depending on the type of the pseudocode there might be a warning such

as substitution, double substitution, assignment for the ABDL query in the next line. In case

of these warnings, the corresponding flags are set, so that in the next line, the status of these

flags is checked first and the necessary action is taken before executing the ABDL query.

At the end of the execution of the ABDL query the corresponding flags are reset.

15

(query)
\3/

yß

■

fopen

T h <c=EOF> ►/c= create_obj_ref

T h

TT IF
fclose

\c= create_obj_set ■«ay-

T

)

(output]
\file/

IF

xc= ' p-^S^, prep_ass

T

w

k

TF

\c= ,\^
prep_subs X

T
h

TF

\c= prep_do uble_s ubs # y—

T

JF

\c=
X or_exec

T

—w

k

i
F

\c= and_exec

T

—9

TF

\c= . «.X get_common ' /

T ^

TF

%c= query_exec 1 /•—

T

—V

YF

J /c=' y\ loop exec pl -T

Figure 4: The Flowchart for rtm_exec()

16

The reader is to refer to Appendix B for the sample trace of a query. The script file

in Appendix B consists of the original object-oriented query, the query Jproduced by the

query constructor, the steps taken by the RTM during the execution of the query J, and the

end-result displayed by the KFS.

The software for the RTM is implemented in C programming language. The

rtm_def.h and the rtmx reside in the directory dblllulmdbslgreglCNTRLITIILanglFlsrcl

ObjIKc. The reader is to refer to Appendix C for the source code.

B. THE IMPLEMENTATION OF THE SECONDARY OPERATIONS

As seen in Figure 4, each secondary operation is implemented as a function in the

RTM. In the following lines, each one of these functions is described.

create_obj_ref(): This function is used to create object reference (obj_ref) and

store it in the data structure defined below. The name and the number of the obj_refs are

defined in the query J. The data structures used for this function are as follows:

struct obj_ref

{

char name[3];

chardata[20];

};

struct obj_ref list_obj_ref[30];

The field name of the struct obj_ref is used to store the name of the obj_ref and the

field data is used to store the OID value. Since there may be more than one obj_refs in the

query_f, they are stored in the array list_obj_ref[30].

create_obj_set(): This function has the same functionality as the create_obj_ref()

does. The only difference is that the data field of the struct obj_set is defined as an array of

array of characters since an object set (obj_set) may have more than one OID values. The

data structures defined for this function are as follows:

struct obj_set

17

{

char name[3];

chardata[30][20];

};

struct obj_set list_obj_set[30];

prep_ass(): This function deals with the intermediate steps necessary for the

assignment. First, it reads the name of the variable that the assignment will be done. This

is either an obj_ref or an obj_set. Next, the index of this variable in the corresponding list

is found and stored in the global variable index. Depending on whether it is an obj_ref or

an obj_set, the flag o_r_ass or o_s_ass is set, correspondingly. The assignment is required

by the primary operation RETRIEVE, and the secondary operations AND, OR, and

GET_COMMON. It is used for assigning the OID values to the data field of the obj_ref/

obj_set referenced by the index.

prep_subs(): This function handles the intermediate steps necessary for any

substitution in an ABDL query. First, it reads the name of the variable to be substituted with

the OID value in its data field. The substitution variable may be either an obj_ref or an

obj_set. Next, the index of this variable in the corresponding list is found and with respect

to the type of the variable the flag flag_subs_or or the flag flag_subs_os is set,

correspondingly. The data structures defined for this function are as follows:

struct obj_ref_set_info

{

char name[3];

int index;

};

struct obj_ref_set_info subs_obj_var;

prep_double_subs(): This function handles the intermediate steps necessary for

double substitution in an ABDL query. The difference between this function and the

prep_subs() is that this one allows for two substitutions in an ABDL query but the type of

18

the substitution variables have to be obj_ref.The function reads the name of the variables

from the queryJ. After locating their index in the list_obj_ref, it sets the flag

flag_double_subst.The data structure defined for this function is as follows:

struct obj_ref_set_info list_subs_obj_ref[2];

or_exec(): This function computes the union of the ODD values in two distinct

obj_sets and stores them in a new obj_ref/obj_set. After locating the index of each obj_set

subject to the union, the function determines the type of the assignment variable depending

on whether the flag o_r_ass or o_s_ass is set. If the type of the assignment variable is an

obj_ref, then the first OID value of the first obj_set is assigned to the data field of the

assignment variable and, the function terminates. If the type of the assignment variable is

an obj_set, first, all the OID values in the first obj_set are assigned. Then, each OID value

in the second obj_set is compared to the OID values in the first obj_set. If it does not match

with any of them then it is added to the data field of the assignment variable. The data

structure used for this function is as follows:

struct obj_ref_set_info list_or_var[2];

and_exec(): This function computes the conjunction of the OID values in two

distinct obj_sets and stores them in a new obj_ref/obj_set. The steps performed at the

beginning are same as in the function or_exec(). After the function begins to compare the

OID values of the first obj_set to the second obj_set's, the action taken depends on the type

of the assignment variable. If it is an obj_ref, the first OID value that matches is stored in

the assignment variable and, the function terminates. If the type of the assignment variable

is an obj_set, the comparison between the obj_sets continue and all the OID values that are

equal, are assigned in the specific obj_set. The data structure defined for this function is as

follows:

struct obj_ref_set_info list_and_var[2];

get_common(): This function determines the OID values in an obj_set, that are

repeated for at least the number of OID values in another obj_set or in an obj_ref, and it

assigns these OID values in a new obj_ref/obj_set. The first variable the function reads is

19

always an obj_set, and the second one may be either an obj_set or an obj_ref. After their

index is determined, the type of the assignment variable is checked. If it is an obj_set and

the second variable is an obj_ref, then all the OID values in the first variable are assigned

to the data field of the assignment variable. If the second variable is an obj_set, then the

OID values in the first obj_set, that are repeated for at least the number of OID values in

the second obj_set, are assigned to the data field of the assignment variable. If the type of

the assignment variable is an obj_ref, the same algorithm is applied again. In this case, if

the second variable is an obj_ref, the first OID value in the first obj_set is stored in the data

field of the assignment variable. If the second variable is an obj_set then the first OID value

which satisfies the above criteria is assigned to the assignment variable.

Ioop_exec(): This function is used for executing the statements inside a for-loop as

the number of OID values in an obj_set. The first variable the function reads is referred to

as index variable, and its type is always an obj_ref. The second variable the function reads

is always an obj_set on which the number of iterations for the for-loop are computed. The

function opens a new file, loop Jand the statements between the beginning and the end of

the for-loop are copied from the query J to the loopj. Following this step, a loop is

entered. In each iteration of this loop, the data field of the index variable is updated with an

OID value of the obj_set. Since the number of iterations are equal to the number of OID

values in the obj_set, in each iteration a new OID value is stored in the data field of the

index variable. So, the number of the iteration determines which OID value will be copied

from the obj_set to the index variable.ln each iteration, the function rtm_exec() is called

recursively. This time, the rtm_exec() receives the loop jas its input file.

C. THE IMPLEMENTATION OF THE PRIMARY OPERATIONS

The RTM performs four types of primary operations, namely, RETRIEVE,

DISPLAY, UPDATE and ADD. Once the function query_exec() is called, it reads the next

character in the line and branches to the corresponding function which handles a specific

primary operation. Figure 5, depicts the flowchart for the query_exec().

20

retrieve exec

add exec

update_exec

display_exec

* The output file is generated only if display_exec is activated.

Figure 5: The Flowchart for the query_exec()

21

In the rest of this section, each one of these functions will be described.

retrieve_exec(): This function is used for retrieving data from the kernel database.

First, the function prepares the ABDL query to be sent to the kernel. For this purpose, the

ABDL query which is read from the query J is stored in an array of characters, named

request. Next, the function checks the status of the flags flag_subs_os and flag_subs_or to

see if the ABDL query is in well-executable or nearly-executable form. If none of the flags

are set, then it means that the query is in well-executable form, and sent to the kernel

directly for execution. If the type of the substitution variable is an obj_ref, the ABDL query

is modified substituting the variable with its OID value and sent to the kernel. If the type

of the substitution variable is an obj_set, then for each OID value in the data field of this

obj_set, the ABDL query is modified substituting the variable with the OID value in turn,

and sent to the kernel. The responses received from the kernel is stored in the data field of

the assignment variable. In case that the type of the assignment variable is an obj_ref, only

the first OID value in the file response J is stored in the assignment variable since its data

field is restricted to holding just one OID value. At the end of the function, the substitution

and the assignment flags that are found to be set at the beginning, are reset. This function

utilizes the ABDL function RETRIEVE. The data retrieved using the function

retrieve_exec() is always OID values. For retrieving the actual data to be seen by the user,

the function display_exec() is used.

display_exec(): This function is used for the retrieval of the data to be displayed to

the user. In general, the function follows the same steps taken in the function

retrieve_exec(). One difference is that the data retrieved is not assigned to a variable but

stored in the file, output J opened by this function. When the function is activated, it also

sets the global flag flag _disp lay. So, when the execution of the query J is complete, the

main program checks the status of this flag and activates the KFS if it is set. Since there

may be more than one DISPLAY operation in the query J, and the KFS is activated after

the execution of the whole query_f, all the responses received from the kernel are appended

in the output J. So, the function display_exec() writes an asterisk (*) in the output J to

22

separate the responses to different DISPLAY operations. This function also utilizes the

ABDL function RETRIEVE.

update_exec(): This function is used to update the data in the kernel database. The

steps necessary for the preparation and the transmission of the ABDL query are as in the

function retrieve_exec(). The function makes use of the ABDL function UPDATE.

add_exec(): This function is used for building a new relationship between the

existing objects in the kernel database. For example, regarding the faculty-student database

introduced in [Ref. 8], adding a student to a specific team that he was not a member of

before, requires the use of this function. In this situation, that specific student and that

specific team already exist in the database but they are not associated. So, the OID value of

that student and the OID value of that team are added as a tuple in the table Student Jeam

which keeps track of the students belonging to a team. To distinguish this tuple from the

other tuples in the table, the RTM generates an OID value and associates it with this tuple.

As stated in [Ref. 9], the tables that implement the set-of and the covering relationships are

generated by the compiler of the object-oriented data definition language and they are

hidden from the user. So, the function add_exec() manipulates these kind of tables. Let's

assume that the rtm_exec() reads the statement below from the query J, and calls the

function query_exec() which calls the function add_exec() eventually:

[AINSERT(<TEMP,Student_team>,<OID,?>,<oid_student,s>,<oid_team,t>)]

As seen above, the statements using this function are always incomplete ABDL

queries and require an OID value and double substitution before being sent to the kernel.

The function reads the query until it meets with the question mark ('?). At this point, the

function get_objectid() is called and the OID value generated by this function is replaced

with this character. The function get_objectid() gets the time of the day from the computer,

parses it into an 8 digit number, and converts this number into a character string. That's

why, each OID value is guaranteed to be unique. Then, the function add_exec() continues

reading the query and locates the two obj_refs to be substituted with their OID values. Once

23

the substitutions are done, the query is ready for execution and sent to the kernel. This

function utilizes the ABDL function INSERT.

24

V. CONCLUSIONS

The goal of this thesis research is to design and implement a RTM which would

complete and execute the ABDL queries, access the database via the kernel system at run

time, and prepare the results to be displayed to the user.

I successfully accomplished the task of building a RTM which would perform the

functionality described above. The RTM is capable of executing all the object-oriented

operations processed by the OODML compiler. The limitations of the RTM and the

recommendations for the future research will be detailed in the following sections.

A. LIMITATIONS

As stated before, the RTM is not a stand-alone software. It is a layer of software

linking the object-oriented interface to the kernel system. It is designed to work only for

these two software. The structure of the input to the RTM is predefined by way of the

pseudocode and the format of the responses coming back from the kernel are known in

advance. So, any change in the input to the RTM may hinder its functionality.

The protocol between the RTM and the OODML compiler is very strict and

inflexible. The current protocol is sufficient for the object-oriented operations implemented

so far. The implementation of the new object-oriented operations may require the

generation of new pseudocode.

The RTM does not check the syntactic correctness of an ABDL query received in

the query J. Since the ABDL queries are generated by the OODML compiler itself without

user interference, the RTM assumes that they are free of errors.

B. FUTURE RESEARCH

Some of the object-oriented operations stated in [Ref. 3] are not implemented yet.

These operations are insert, delete, read-input and the statistical operations, i.e., count, min,

max, avg. Regarding the implementation of the statistical operations, there may not be any

dependency on the OODML compiler since these operations are simple computations that

25

may be performed by the RTM itself. On the other side, for the implementation of the other

operations, the input that the OODML compiler will provide, is a remarkable factor. For

example, the type and the number of the substitutions in the operations insert and delete are

to be determined by the OODML compiler. Unless these issues are fixed, the

implementation of these operations may be very fuzzy and time-consuming.

Another feature which has to be added to the RTM in the future is, handling the

conditional statements in an object-oriented query. However, before the implementation of

this operation in the RTM, the OODML compiler has to be modified to accept this kind of

statements and the pseudocode regarding this operation has to be defined.

Although the RTM implemented in this thesis research is built specifically for the

object-oriented interface, it may set a good example for the new interfaces to be added to

the M3DBMS in the future.

26

APPENDIX A- THE DEFINITIONS FOR THE PSEUDOCODE

% : Declaration of Object Reference
This pseudocode is used for the declaration of an object reference (obj_ref). The

character string following the '%' specifies the label of the obj_ref. More than one
obj_refs can be declared on the same line, each being separated by comma. The label of an
obj_ref is limited to three characters. An obj_ref that is not declared, can not be used in the
queryj.

Example:
%ra,rb,i,s,t

@ : Declaration of Object Set
This pseudocode is used for the declaration of an object set (obj_set). The issues stated

above regarding the declaration of an obj_ref are also valid for the declaration of an
obj_set.

Example:
@sa,sb,sc,sd,e

& : Assignment Warning
This pseudocode is used for assignment. It means that the OID values retrieved from

the kernel database are to be assigned in the data field of the obj_ref/obj_set following the

Example:
&ra
[RETRIEVE((TEMP=Name)and(LNAME=wu))(OID)]

~: Substitution Warning
This pseudocode is used for single substitution in an ABDL query. First, the obj_ref/

obj_set subject to substitution is found in the ABDL query and then, replaced with its OID
value(s). There is only one obj_ref/obj_set following the '-'.

Example:
~sb
[RETRIEVE((TEMP=Course)and(INSTRUCTOR=sb))(OID)]

: Double Substitution Warning
This pseudocode is used for double substitution in an ABDL query. There are two

arguments following the '#', each separated by comma, and the type of both arguments is
obj_ref. First, the two objjrefs subject to substitution are located in the ABDL query and
then, replaced with their OID values. This kind of substitution occurs only in the ADD
operation.

Example:
#s,t
[AINSERT(<TEMP,Student_team>,<OID,?>,<oid_student,s>,<oid_team,t>)]

+ : Union
This pseudocode is used to compute the disjunction of the OID values stored in two

obj_sets.
Example:
&sc

27

+sa,sb
* : Intersection

This pseudocode is used to compute the conjunction of the OID values stored in two
obj_sets.

Example:
&sd
*sa,sb

A : Get Common
This pseudocode is used to determine the OID values in the first argument which are

repeated for at least the number of OID values in the second argument. The type of the
first argument is an obj_set. The type of the second argument may be either an obj_set or
an obj_ref.

Example:
&e
Asa,sb

$: For-Loop
This pseudocode is used for executing the statements inside a for-loop for the number

of OID values in the second argument following the '#'. it also marks the beginning of the
for-loop. The first argument following the '$' is called as index variable of the for-loop.
The type of the first argument is obj_ref, and the type of the second argument is obj_set.
The example regarding the use of this pseudocode is given following the definition of the
'!'.

!: End of for-loop
This pseudocode marks the end of the for-loop.
Example:
$i,e

[ORETRIEVE((TEMP=Course)and(OID=i))(CNAME,CSE_NO)BYCNAME]

28

APPENDIX B- THE SAMPLE TRACE OF A QUERY

Script started on Tue Jul 11 12:51:10 1995
//********************* *FACSTUoolreql*********************//

Query Display_Course IS
obj_set a;
obj_ref i;

Begin
a := find_many Course where instructor.pname.lname = 'Wu1;
For Each i IN a

display(i.cname, i.cse_no);
End_Loop;

End;

pseudocode for real-time monitor
%i
@a,sa,sb,sc
&sa
[RETRIEVE((TEMP=Name)and(LNAME=wu))(OID)]
&sb
~sa
[RETRIEVE((TEMP=Person)and(PNAME=sa))(OID)]
&a
~sb
[RETRIEVE!(TEMP=Course)and(INSTRUCTOR=sb))(OID)]
$i,a
~i
[ORETRIEVE((TEMP=Course)and(OID=i))(CNAME,CSE_NO)BY CNAME]

y query_f

Successfully parsed!!

real_time_monitor() activated
rtm_exec() activated
create_obj_ref() activated
create_obj_ref() terminated
create_obj_set() activated
create_obj_set() terminated
prep_ass() activated
prep_ass() terminated
query_exec() activated
retrieve_exec() activated
Request= [RETRIEVE((TEMP=Name)and(LNAME=wu))(OID)]

(<OID, N7>)
retrieve_exec() terminated
query_exec() terminated
prep_ass() activated
prep_ass() terminated
prep_subs() activated

29

prep_subs() terminated
query_exec() activated
retrieve_exec() activated
Request= [RETRIEVE((TEMP=Person)and(PNAME=sa))(OID)]
mod_req =[RETRIEVE((TEMP=Person)and(PNAME=N7))(OID)]

(«DID, P7>)
retrieve_exec() terminated
query_exec() terminated
prep_ass() activated
prep_ass() terminated
prep_subs() activated
prep_subs() terminated
query_exec() activated
retrieve_exec() activated
Request= [RETRIEVE((TEMP=Course)and(INSTRUCTOR=sb))(OID)]
mod_req =[RETRIEVE((TEMP=Course)and(INSTRUCTOR=P7))(OID)]

(<OID, C2>)
retrieve_exec() terminated
query_exec() terminated
loop_exec() activated
rtm_exec() activated
prep_subs() activated
prep_subs() terminated
query_exec() activated
display_exec() activated
Request= [RETRIEVE((TEMP=Course)and(OID=i))(CNAME,CSE_NO)BY CNAME]
mod_req = [RETRIEVE ((TEMP=Course) and (OID=C2)) (CNAME, CSE_NO) BY CNAME]

(<CNAME, ooprog>, <CSE_NO, 4114>)
display_exec() terminated
query_exec() terminated
rtm_exec() terminated
loop_exec() terminated
rtm_exec() terminated

The Result of your Query is :

CNAME I CSE_NO I ""] The end-result displayed to
 L the user. (The steps taken

...... , I by the RTM are not displayed,
ooprog I 4114 I J normally.)

real_time_monitor() terminated
script done on Tue Jul 11 12:54:56 1995

30

APPENDIX C- SOURCE CODE FOR THE RTM

/* rtm.def.h*/
/* This file includes the structure definitions and the function declarations/

/* Structure holding info about an object reference */
struct obj_ref {

char name[3];
char data[20];

};

/* Structure holding info about an object set */
struct obj_set {

char name[3];
char data [30] [20] ,-

};

/* Structure holding info about the location of an obj_ref/obj_set*/

struct obj_ref_set_info {
char name[3] ;
int index;

void real_time_monitor()

void rtm_exec();

void create_obj_ref () ,-

void create_obj_set();

void prep_ass();

void loop_exec () ,-

void prep_subs () ,-

void or_exec();

void and_exec();

void get_common();

void prep_double_subs();

void query_exec{);

void retrieve_exec () ,-

void display_exec();

void add_exec();

void update_exec();

31

/* rtm.c coded by Erhan SENOCAK (July 95)*/

«include <stdio.h>
Sinelüde "rtm_def.h"
»include <licommdata.h>
»include <ool.h>
»include "object_ID.h"

»define FALSE 0
»define TRUE 1

struct obj_ref list_obj_ref[30];
struct obj_set list_obj_set[30];

■ struct obj_ref_set_info subs_obj_var,-
struct obj_ref_set_info list_subs_obj_ref[2];

FILE* fp;
FILE* outfptr;

char c, prev_disp_req[100] ;

int o_r_ass = FALSE;
int o_s_ass = FALSE;
int flag_display;
int same;
int index ;
int flag_subs_os = FALSE;
int flag_subs_or = FALSE;
int flag_double_subst = FALSE;

void
real_time_monitor(fname)
char* fname;

{
/* printf("\nreal_time_monitor() activated"); */

flag_display = FALSE;
same = FALSE;
rtm_exec(fname);

/* If the flag is set this means that there is an output to be displayed to
the user.In this case the Kfs is activated, and after the Kfs is called

the output_f is removed */
if (f lag_display.) {

fclose(outfptr);
system)"/u/mdbs/greg/CNTRL/TI/LangIF/src/Obj/Kfs/a.out");
system! "rm /u/mdbs/greg/CNTRL/TI/LangIF/src/Obj/Kf s/output_f") ,-

}

/* printf("\nreal_time_monitor() terminated"); */

)

void
rtm_exec(fname)
/* Main function. It opens the query file prepared by the query constructor and

begins to read each line of the file character by character and takes the
appropriate action by comparing the first character of each line with one of
the characters defined below in the switch expression. */

char* fname,-

{
FILE *fopen();

32

/* printf("\nrtm_exec() activated")

fp= fopen(fname, " r") ;
while ((c = getc(fp)) != EOF) {

switch (O {
case 1 % ' : create_obj_ref();

break;
case '@' : create_obj_set () ,-

break,-
case '&' : prep_ass();

break;
case '$' : loop_exec () ,-

break;
case ' ~' : prep_subs();

break;
case 1 + ' : or_exec();

break;
case i * i : and_exec();

break;
case ■ A i : get_common(),-

break;
case '#' : prep_double_subs();

break,-
case

}
•[' : query_exec();

}
fclose(fp) .

/* printf ("\nrtm_exec() terminated\n") ,- */
}

void
create_obj_ref()
/* Reads each obj_ref separated by comma and stores in the

list_obj_ref array. */

{
int i, j ,-

/* printf("\ncreate_obj_ref() activated"); */

j=0;
for (i=0 ; i<30 ; i++) {

strcpy(list_obj_ref[i].name, "");
strcpy(list_obj_ref[i].data, "");

}
while ((c = getc(fp)) != '\n') {

i = 0;
list_obj_ref [j]'.name[i + +] = c;
while ((c = getc(fp)) != ',') {

if (c == '\n')
break;

printf ("\n%s%c", "c=",c) ,-
list_obj_ref[j].name[i++] = c;

}
list_obj_ref [j] .name[i] = '\0',-

j++;
if (c == '\n')

break;

33

/* printf("\ncreate_obj_ref() terminated"); */

}

void
create_obj_set()
/* Reads each obj_set separated by comma and stores in the

list_obj_set array. */

{
int i,j;

/* printf("\ncreate_obj_set() activated"); */

for (i=0 ; i<3 0 ; i++) (
strcpy(list_obj_set[i].name, "");
for (j=0 ; j<30 ; j++)

strcpy(list_obj_set[i].data[j], "");

}
j=0;
while ((c = getc(fp)) != '\n') {

i = 0;
list_obj_set[j].name[i++] = c;
while ((c = getc(fp)) !=','){

if (c == '\n')
break;

list_obj_set[j].name[i++] = c;

}
list_obj_set[j].name[i] = '\0';

j + +;
if (c == '\n')

break;

}

/* printf("\ncreate_obj_set() terminated"); */

}

void
prep_ass()
/* This function deals with the intermediate steps necessary for the

assignment. First, it reads the name of the variable that the assignment will
be done. Next, the index of this variable in the corresponding list is located
and stored in the global variable index. */

{
char ass_var[3]; /* Variable to hold obj_ref/obj_set */
int i = 0;

/* printf("\nprep_ass() activated"); */

while ((c = getc(fp)) 1= '\n')
ass_var[i++] = c;

ass_var [i] = ' \0 ' ,-
for (i=0 ; i<3 0 ; i++) {

if (!(strcmp(list_obj_ref[i].name, ass_var))) {
index = i;
o_r_ass = TRUE;

}
if (o_r_ass)

break;

}
if (!(o_r_ass)) {

for (i=0 ; i<3 0 ; i++) {
if (!(strcmp(list_obj_setti].name, ass_var))) {

34

index = i;

o_s_ass = TRUE;

}
if (o_s_ass)

break;

}

}

/* printf("\nprep_ass() terminated"); */

void

prep_subs()

/* This function handles the intermediate steps necessary for any substitution

in an ABDL query. First, it reads the name of the variable to be substituted

with the OID value in its data field. The substitution variable may be either

an obj_ref or an obj_set. Next, the index of this variable in the corresponding

list is found and with respect to the type of the variable the flag_subs_or or

the flag_subs_os is set.*/

{

int i=0, j;

/* printf("\nprep_subs() activated"); V

while ((c = getc(fp)) != '\n')

subs_obj_var.name[i++] = c;

subs_ob j _va r. name [i] = ' \ 0 ' ,-

for (j=0 ; j<30 ; j++) {

if (!(strcmp(list_obj_set[j].name, subs_obj_var.name))) {

subs_obj_var.index = j;

flag_subs_os = TRUE;

}
if (flag_subs_os)

break;

}

for (j=0 ; j<30 ; j++) {

if (!(strcmp(list_obj_ref[j].name, subs_obj_var.name))) {

subs_obj_var.index = j;

flag_subs_or = TRUE;

}
if (flag_subs_or)

break;

/* printf("\nprep_subs() terminated"); */

}

void

prep_double_subs()

/* This function implemented for the need of add_exec() function.Due to the

characteristic of add operation two substitutions have to be made inside

the INSERT ABDL request. Beware that this function is not used for any other

purpose. So, the value of the flag_double_subst is checked only in the

add_exec() function. */

{
int i, j=0;

/* printf("\nprep_double_subst() activated"); */

for (i=0; i<2 ; i++) {

strcpy (list_subs_obj_ref[i].name, ""); /* The list_subs_obj_ref is

35

list_subs_obj_ref[i].index = 31; cleaned from the previous values */

}
while ((c = getc(fp)) != '\n') {

i=0;
list_subs_obj_ref[j].name[i++] = c;
while ((c = getc(fp)) != ', ') {

if (c == '\n')
break ,-

list_subs_obj_ref[j].name[i++] = c;

}
list_subs_obj_ref[j].name[i] = '\0';

j++;
if (c == '\n')

break;

}
/* The index of the obj_refs' read above are found searching thru list_obj_ref

and stored in the list_subs_obj_ref. */

for (j=0 ; j<2 ; j++) {
for (i=0; i<30 ; i++) {

if (!(strcmp(list_obj_ref[i].name , list_subs_obj_ref[j].name))) {

list_subs_obj_ref[j].index = i;

break;

}
}

}
/* Check if the indexes were found and if found assign the flag TRUE */
if ((list_subs_obj_ref [0] .index != 31) && (list_subs_obj_ref [1]-index != 3D)

flag_double_subst = TRUE;

printf("\nprep_double_subst() terminated"); */

void
or_exec()
/* This function computes the union of the OID values in two distinct obj_sets

and stores them in the obj_ref/obj_set referred by the function prep_ass(). */

{
struct obj_ref_set_info list_or_var[2];
int i, j=0, n,col=0, k,l, found, not_exist, id, done=FALSE;

printf("\nor_exec() activated");

/* Obj_sets to be worked on are put in an array */
while ((c = getc(fp)) != ■\n') {

i = 0;
list_or_var[j].name[i++] = c;
while ((c = getc(fp)) !=','){

if (c == '\n')
break;

list_or_var[j].name[i++] = c;

}
list_or_var[j].name[i] = '\0';

j + +;
if (c == '\n')

break;

}
/* The index of the obj_sets read above are found in the list_obj_set */

for (j=0 ; j<2 ; j++) {
found = FALSE;
for (i=0; i<30 ; i++) {

if (!(strcmp(list_obj_set[i].name , list_or_var[j].name))) {

36

list_or_var[j].index = i;
found = TRUE;

}
if (found)

break;

}
}
i=0;
id = list_or_var[0].index;
If the type of the assignment variable is an obj_set, first, all the OID values
in the first obj_set are assigned to the assignment variable. Then, each OID value
in the second obj_set is compared to the OID values in the assignment variable. If it
does not match with any of them then it is assigned to the assignment variable too. */

if (o_s_ass) {
while (list_obj_set[id].data[i][col]) {

strcpy(list_obj_set[index].data[i], list_obj_set[id].data[i]);

i++;

}
j=0;
k=0;
while (list_obj_set[list_or_var[l]-index].data[j][col]) {

not_exist = TRUE;
for (n=0 ; n<i ; n++) {

if (!(strcmp(list_obj_set[index].data[n],
list_obj_set[list_or_var[l].index].data[j])))

not_exist = FALSE;

list_obj_set[list_or_var[1].index].data[j]);

}
if (not_exist)

1 = i+k;
{

strcpy(list _obj_ set[index] .data[l

}

k++;

}

^ ;

o _s_ass = FALSE;
index =31; /* index can hold a value value between 0-29 since the size of the arrays

is 30. Assignment of 31 is a second safety measure else than
the flags o_r_ass and o_s_ass.*/

} /* End of if (o_s_ass) */
If the type of the assignment variable is an obj_ref, then the first OID value
of the first obj_set is assigned. If there is no OID value in the first obj_set
then the first OID value in the second obj_set is assigned and the function
terminates */
else if (o_r_ass) {

if (list_obj_set[id].data[i][col]) {
strcpy(list_obj_ref[index].data, list_obj_set[id].data[i]);
done = TRUE;

}
if (!(done)) {

k=0;
if (list_obj_set[list_or_var[1].index].data[0][col]) {

strcpy(list_obj_ref[index].data, list_obj_set[list_or_var[1].index].data[0]);

}
}
o_r_ass = FALSE;
index = 31;

} /* End of if (o_r_ass) */

printf("\nor_exec() terminated");

37

void
and_exec()
/* This function computes the conjunction of the OID values in two distinct

obj_sets and stores them in the obj_ref/obj_set referred by the function

prep_ass() */

{
struct obj_ref_set_info list_and_var[2];
int i, j=0, n,col=0, k=0, found;

/* printf("\nand_exec() activated"); */
9

I* Obj_sets to be worked on are put in an array */

while ((c=getc(fp)) != '\n') {

i=0;

list_and_var[j].name[i++] = c;

while ((c = getc(fp)) != ', '){

if (c =='\n')

break,-

list_and_var[j].name[i++] = c;

}
list_and_var[j].name[i] = ' \0';

j++;
if (c == '\n')

break;

}
/* The index of the obj_sets read above are found in the list_obj_set */

for (j=0 ; j<2 ; j++) {

found = FALSE;

for (i=0; i<30 ; i++) {
if (!(strcmp(list_obj_set[i].name, list_and_var[j].name))) {

list_and_var[j].index = i;

found = TRUE;

}
if (found)

break;

/* The data values in each obj_set are compared with eachother and the values

that match are assigned to the object set specified by the prep_ass() */

i=0;

if (o_s_ass) {

while (list_obj_set[list_and_var[0].index].data[i][col]) {

j=0;

found = FALSE;
while (list_obj_set[list_and_var[l].index].data[j][col]) {

if (!(strcmp(list_obj_set[list_and_var[0].index]-data[i],

list_obj_set[list_and_var[l].index].data[j]))) {

strcpy(list_obj_set[index].data[k] ,

list_obj_set[list_and_var[0].index].data[i]);

k++;

found = TRUE;

}
if (found)

break;

+ + j ;

}

+ + i;
} /* End for while */

o_S_ass = FALSE;

index = 31;
} /* End for if (o_s_ass) */

38

if (o_r_ass) {
while (list_obj_set[list_and_var[0].index].data[i][col]) {

j=0;
found = FALSE;
while (list_obj_set[list_and_var[l].index].data[j][col]) {

if (!(strcmp(list_obj_set[list_and_var[0].index].data[i],
list_obj_set[list_and_var[1].index].data[j]))) {

strcpy(list_obj_ref[index].data,
list_obj_set[list_and_var[0].index].datafi]);

k++;
found = TRUE;

}
if (found)

break;

++j;
}
if (found)

break; /* Obj_ref assignment */
+ + i;

} /* End for while */
o_r_ass = FALSE;
index = 31;
} /* End for if (o_r_ass) */

/* printf("\nand_exec() terminated"); */

}

void
loop_exec()
/* This function is used for executing the statements inside a for-loop as the

number of OID values in an obj_set. */

{
int i = 0, refindex, setindex, j = 0;
char refname[3], setname [3],-
FILE* fpointer;

/* printf (■ \nloop_exec () activated ") ,- */

/* The first variable read is the index of the for-loop. */
while ((c = getc(fp)) != ',')

refname[i++] = c;
refname[i] = '\0';
i = 0;
while ((c = getc(fp)) != '\n')

setname[i++] = c;
setname[i] = ' \0 ' ;

/* The statements between the beginning and the end of the for-loop are.written
in the file loop_f. */
fpointer = fopen(" loop_f", "w") ,-
while ((c = getc(fp)) != '!')

putc(c, fpointer) ,-
f close (fpointer) ,-
c = getc(fp);
for (i = 0 ; i<3 0 ,- i++) {

if (!(strcmp(list_obj_ref[i].name, refname))) {
refindex = i;
break;

}
}
for (i=0; i<30 ;i++) {

if (!(strcmp(list_obj_set[i].name, setname))) {

39

set index = i;

break;

}

}

i = 0;

fpointer = fp;
Loop is entered. The number of iterations are computed with respect to the

number of OID values in the obj_set. In each iteration the rtm_exec() is

called recursively. */

while (list_obj_set[setindex].data[i][j]) {

strcpy(list_obj_ref [ref index] .data, list_obj_set [setindex] .data[i]) ,-

rtm_exec("loop_f");

i++;

}
fp = fpointer;

printf("loop_exec() terminated"); */

void

get_common()
/* This function determines the OID values in an obj_set, that are repeated for

at least the number of OID values in another obj_set or in an obj_ref and

assigns these OID values in an obj_ref/obj_set located by the function

prep_ass() */

{
int i=0, j=0, p=0, k=0, repeat, setsize=0, setindex, arg2size=0, arg2index;

int done=FALSE;

char setname[3], arg2name[3] ,-

/* printf("\n get_common() activated "); */

while {{ c = getc(fp)) != ',')

setname[i++] = c;

setname[i] = '\0';

i = 0;

while ((c = getc(fp)) != '\n')

arg2name[i++] = c;

arg2name[i] = ' \0',-

for (i=0 ; i<30 ; i++) {

if ('! (strcmp(list_obj_set [i] .name, setname))) {

setindex = i;

while (list_obj_set[i].data(j++][k])

setsize = j;

break;

}

}

j = 0;

for (i=0 ; i<30 ; i++) {

if (!(strcmp(arg2name,list_obj_set[i].name))) {
arg2index = i;
while dist_obj_set[i] .data[j + +] [k])

arg2size = j ;
done = TRUE;

}
else if (!(strcmp(list_obj_ref[i].name, arg2name))) {

if (list_obj_ref[i],data[k])
arg2size = 1;

done = TRUE;

}
i f (done)

40

break;

}
done = FALSE;
if (o_s_ass) {

if (arg2size == 0)

else {
if (arg2size == 1) {

for (i=0 ; i<setsize ; i++)
strcpy(list_obj_set[index).data[i], list_obj_set[setindex]-data[i]);

}
else {

for (i=0 ; i<setsize ; i++) {
repeat = 0;
for (j=i ; j<setsize ,- j + +) {

if (! (strcmp(list_obj_set[setindex].data[i] ,
list_obj_set(setindex].data[j]))) {

repeat++;
if (repeat == arg2size)

strcpy(list_obj_set[index].data[p++] ,
list_obj_set[setindex].data[i]);

}
}

}
}

}
o_s_ass = FALSE;
index = 31;

} /* End of if (o_s_ass) */
else if (o_r_ass) {

if (arg2size == 0)

else {
if (arg2size == 1) {

for (i=0 ,- i<setsize ; i + +) {
strcpy(list_obj_ref[index].data, list_obj_set[setindex].data[i]);
done = TRUE;
i f (done)

break;

}
}
else {

for (i=0 ; i<setsize ; i++) {
repeat = 0 ,-
for (j=i ; j<setsize ; j++) {

if (!(strcmp(list_obj_set[setindex].data[i] ,
list_obj_set[setindex].data[j]))) {

repeat+ + ,-
if (repeat == arg2size) {

strcpy(list_obj_ref[index].data, list_obj_set[setindex].data[i]
done = TRUE;

}
i f (done)

break;

}
}
i f (done)

break;

}
}

}

41

o_r_ass = FALSE;

index = 31;
} /* End of else if (o_r_ass) */

/* printf("\n get_common() terminated "); */

void

query_exec()
/* This function is used for branching to a function regarding a specific type of

data manipulation and retrieval operation. */

{
/* printf("\nquery_exec() activated"); */

c = getc (fp);
switch (c) {
case 'R' : retrieve_exec();

break;
case '0' : display_exec () ,-

break;
case 'A' : add_exec();

break;
case 'U' : update_exec();

}
break;

/* printf("\nquery_exec() terminated"); */

}

void

retrieve_exec()
/* This function retrieves data, specifically, OID values from the kernel database.

If the type of the substitution variable in the ABDL query stored in the request

array is an obj_ref, then the ABDL query is modified substituting the variable

with its OID value and sent to the kernel. If the type of the substitution

variable is an obj_set then for each OID value in the data field of this obj_set,

the ABDL query is modified substituting the variable with the OID value in turn

and sent to the kernel for execution. If there is no substitution in that case

the whole query is sent directly to the kernel. The responses received back are

stored in the assignment variable. */

{
char request[100], req_partl[100], req_part2[100], mod_req[100], temp[30], ch;

int i=0, j=0, z=0, k, n, 1=0, t=0, s, once = 0;

FILE *fptr, *fopen();

/* printf("\nretrieve_exec() activated"); */

request[i++] = '[';

request[i++] = 'R1;

while ((c = getc(fp)) != ' \n') {

if (c == EOF)

break;

request[i++] = c;

}
request[i] = '\0'; /* ABDL query read in the request */

i = 0;

if (flag_subs_os) {

for (k=0 ; k<2 ;k++) {

while (request[i] != '=')

req_partl[j++] = request[i++];

req_partl[j++] = request[i++]; /»Everything till second equality copied*/

}

42

req_partl[j] = '\0'

k = 0;

while (request[i] . = ') ')
temp[k++] = request[i++];

temp[k] = '\0';

while (request[i] . = '\0')

req_part2[z++] =

r&a nart2f7.1 = recn

request[i++];

esf. f i 1 :

if (!(strcmp(temp, subs_obj_var.name))) {

n =0;

while (list_obj_set[subs_obj_var.index].data[n][1]) {

strcpy(mod_req, req_partl);

/* OID value is inserted in the ABDL query */

strcatl mod_req, list_obj_set[subs_obj_var.index].data[n]);

strcatt mod_req, req_part2); /*whole request constructed */

TT_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, mod_req);

TI_chk_reqs_left();
fptr = fopen("/u/mdbs/greg/CNTRL/TI/LangIF/src/Obj/Kc/response_f","r'l;

if (o_s_ass) {

if (!(once))

once = t;

t = 0;

t = t + once * n;

while {(ch = getc(fptr)) != EOF){

while ((ch = getc(fptr)) != ',') {

if (ch == EOF)

break;

}
if (ch == EOF)

break;

ch = getc(fptr); /* space before OID value is skipped */

s = 0;

while ((ch = getc(fptr)) != '>') {

if (ch == EOF)

break;

list_obj_set[index].data[t][s++] = ch;

}
if (ch == EOF)

break;

list_obj_set [index] .data [n] [s] = '\0',-

t + +;

if (Ch == EOF)

break;

}
} /* end of if */

else if (o_r_ass) {

t = 0;

while ((ch = getc(fptr)) != EOF){

while ((ch = getc(fptr)) != ',')

/* blank space between ',' and OID value skipped */

ch = getc(fptr) ,-

while ((ch = getc(fptr)) != '>')

list_obj_ref[index].data[t++] = ch;

list_obj_ref [index] .data[t] = '\0',-

o_r_ass = FALSE;

index = 31;

break; /* while loop broken */

}

}

43

n++; /* data[n] incremented */

fclose!fptr),-
} /* end of while */

if (o_s_ass) {
o_s_ass = FALSE;
index = 31;

}
} /* End of if (!(strcmp)) */

flag_subs_os = FALSE;
subs_obj_var.index = 31;

} /* End of if(flag_subs_os) */

else if (flag_subs_or) {
for (k=0 ; k<2 ;k++) {

while (request[i] != '=')
req__partl[j + +] = request[i++];

req_partl[j++] = request[i++]; /*Everything till second equality copied*/

}
req_partl[j] = ' \0\-
k = 0;
while (request[i] != ')')

temp[k++] = request[i++];
temp[k] = '\0',-
while (request[i] != '\0')

req_part2[z++] = request[i++];
req_part2[z] = request[i];
if (!(strcmpltemp, subs_obj_var.name))) {

if (list_obj_ref[subs_obj_var.index].data[l]) {
strcpyl mod_req, reg parti);
strcatl mod_req, list_obj_ref[subs_obj_var.index] .data) ,-
strcatl mod_req, reg_part2); /* whole request constructed */
TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, mod_req);

TI_chk_reqs_left();
fptr = fopen("/u/mdbs/greg/CNTRL/TI/LangIF/src/Obj/Kc/response_f","r");

if (o_s_ass) {
t=0;
while ((ch = getc(fptr)) != EOF){

while ((ch = getc(fptr)) !=','){
if (ch == EOF)

break ,-

}
if (ch == EOF)

break;
ch = getc(fptr); /* space before OID value is skipped */

s = 0;
while ((ch = getc(fptr)) != '>') {

if (ch == EOF)
break;

list_obj_set[index].data[t][s++] = ch;

}
if (ch == EOF)

break;
list_obj_set[index].data[t][s] = '\0';

t++;
if (ch == EOF)

break;

}
o_s_ass = FALSE;
index = 31;

} /* end of if */

else if (o_r_ass) {

44

t = 0;

while ((ch = getc(fptr)) != EOF){

while ((ch = getc(fptr)) != ',')

/* blank space between ',' and OID value skipped */

ch = getc (fptr) ,-

while ((ch = getc(fptr)) != '>')

list_obj_ref[index].data[t++] = ch;

list_obj_ref[index].data[t] = '\0',-

o_r_ass = FALSE;

index = 31;

break; /* while loop broken */

fclose!fptr);

} /* end of if */

} /* End of if (!(strcmp)) */

flag_subs_or = FALSE;

subs_obj_var.index = 31;

} /* End of if(flag_subs_os) */

else {

TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, request);

TI_chk_reqs_lef t {) ,-

fptr = fopentVu/mdbs/greg/CNTRL/TI/LangIF/src/Obj/Kc/response_f" , "r");

if (o_s_ass) {

t = 0;

while ((ch = getc(fptr)) != EOF){

while ((ch = getc(fptr)) != ',') {

if (ch == EOF)

break ,-

if (ch == EOF)

break;

ch = getc(fptr);

s = 0;

while ((ch = getc(fptr)

if (ch == EOF)

break ,-

list_obj_set[index].dataft][s++] = ch;

}

if (ch == -EOF)

break;

list_obj_set[index].data[t][s

t + +;

/* space before OID value is skipped */

='>'){

'\0';

o_s_ass = FALSE;

index = 31;

}

else if (o_r_ass) {

t = 0;

while ((ch = getc(fptr)) != EOF){

while ((ch = getc(fptr)) != ',')

ch = getc(fptr); /* blank space between ',' and OID value skipped */

while ((ch = getc(fptr)) != '>')

list_obj_ref[index].data[t++] = ch;

list_obj_ref[index].data[t] = '\0';

o_r_ass = FALSE;

index = 31;

break; /* while loop broken */

45

}
}

fcloset fptr);

}

/* printf("\nretrieve_exec() terminated"); */

}

void
display_exec()
/* This function retrieves the data to be displayed to the user. */

{
char ch,request[100], req_partl[100],req_part2[100], mod_req[100], temp[30];

int i=0, j=0, z=0, k, n, 1=0;
FILE* fopenl);
FILE* fptr;

/* printf("\ndisplay_exec() activated"); */

request[i++] = '[';
while ((c = getc(fp)) != '\n') {

if (c == EOF)
break;

request[i++] = c;

}
request[i] = ' \0'; /* ABDL query read in the request */

if (!(flag_display)) {
/* The responses are stored in the output_f */

outfptr = fopenl"/u/mdbs/greg/CNTRL/TI/LangIF/src/Obj/Kfs/output_f", "a");

flag_display = TRUE;
strcpy(prev_disp_req, request);

}
/* The flag same is used to separate the responses to different DISPLAY operations

in the same query_f. */
if (!(strcmp(prev_disp_req, request)))

same = TRUE;
else {

strcpy(prev_disp_req, request);
same = FALSE;

}
i=0;
if (flag_subs_os) {

for (k=0 ; k<2 ;k++) {
while (request[i] !='=■)

reg_partl[j++] = request[i++];
req_partl[j++] = request[i++]; /'Everything till second equality copied*/

}
reg partiM1 = '\0';
k = 0;
while (request[i] != ')')

temp[k++] = request[i++];
temp[k] = ' \0';
while (request[i] != '\0')

req_part2[z++] = request[i++];
req_part2[z] = request[i];
if (!(strcmp(temp, subs_obj_var.name))) {

n =0;
while (list_obj_set[subs_obj_var.index].data[n][1]) {

strcpy(mod_req, reg parti);
strcat(mod_req, list_obj_set[subs_obj_var.index].data[n]);
strcat(mod_req, req_part2); /* whole request constucted */

46

TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, mod_req) ,-
TI_chk_reqs_left() ;
if (!(same))

putc('*', outfptr) ,-
fptr = fopenl "/u/iTidbs/greg/CNTRL/TI/LangIF/src/Obj/Kc/response_f", "r") ;
while ((ch = getc(fptr)) != EOF)

putclch, outfptr);
fclose(fptr) ,-
n++; /* data[n] incremented */

} /* end of while */
} /* End of if (Mstrcmp)) */

flag_subs_os = FALSE;
subs_obj_var-index = 31;

} /* End of if(flag_subs_os) */

else if (flag_subs_or) {
for (k=0 ; k<2 ;k++) {

while (request[i] != '=')
req_partl[j++] = request[i++];

req_partl[j++] = request[i++]; /*Everything till second equality copied*/

}
req_partl[j] = ' \0';
k = 0;
while (request[i] != ')')

temp[k++] = request[i++];
temp[k] = '\0';
while (request[i] != '\0')

req_part2[z++] = request(i++];
reg part2 f zl = request [i],-
if (!(strcmp(temp, subs_obj_var.name))) {

if (list_obj_ref[subs_obj_var.index].data[1]) {
strcpyl mod_req, reg parti);
strcat(mod_req, list_obj_ref[subs_obj_var.index].data);
strcat(mod_req, reg part2); /* whole request constucted */
TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, mod_req);
TI_chk_reqs_lef t () ,-
if (!(same))

putc('*', outfptr);
fptr =fopenl"/u/mdbs//greg/CNTRL/TI/LangIF/src/Obj/Kc/response_f■,"r");
while ((ch = getc(fptr)) != EOF)

putclch, outfptr) ,-
fclose(fptr);

} /* end of if */
} /* End of if (Mstrcmp)) */
flag_subs_or = FALSE;
subs_obj_var.index = 31;

} /* End of if(flag_subs_or) */
else {

TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, request);
TI_chk_reqs_left();
if (!(same))

putc('*', outfptr);
fptr = fopen("/u/mdbs//greg/CNTRL/TI/LangIF/src/Obj/Kc/response_f" , "r");
while ((ch = getc(fptr)) != EOF)

putclch, outfptr) ,-
fclose(fptr);

} /* end for else */

/* printf ("\ndisplay_exec () terminated"),- */

47

void

update_exec()

/* For updating the data in the kernel database. Similar steps as in the function

retrieve_exec() are taken. */

{
char request[100], req_partl[100],req_part2[100], mod_req[100], temp[30];

int i=0, j=0, z=0, k, n, 1=0;

/* printf("\nupdate_exec() activated"); */

request[1 + +] = ' [' ;

request[i++] = 'U1;

while ((c = getc(fp))

if (c == EOF)

break;

request[i++] = c;

•\n') {

•\0' /* ABDL query read in the request */ request[i]

i = 0;

if (flag_subs_os) {

for (k=0 ; k<2 ;k++) {

while (request[i] != '=')

req_partl[j++] = request[i++];

req_partl[j++] = request[i++]; /»Everything till second equality, copied */

}
req_partl[j] = '\0';

k = 0;

while (request[i] != ')')

temp[k++] = request[i++] ;

temp[k] = '\0';

while (request [i] '.= '\0')

req_part2[z++] = request[i++];

req_part2[z] = request[i];

if (I(strcmpltemp, subs_obj_var.name))) {

n =0;

while (list_obj_set[subs_obj_var.index].data[n][1]) {

strcpy(mod_req, reg parti);

strcatl mod_req, list_obj_set[subs_obj_var.index].data[n]);

strcat(mod_req, req_part2); /* whole request constructed */

TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, mod_req) ,-

TT_chk_reqs_left();

n++; /* data[n] incremented */

} /* end of while */

/* End of if (Mstrcmp)) */ }
flag_subs_os = FALSE;

subs_obj_var.index = 31;

}
else if (flag_subs_or) {

for (k=0 ; k<2 ;k++) {

while (request[i] != '=')

req_partl[j++] = request[i++];

req_partl[j++] = request[i++];

End of if(flag_subs_os) */

/'Everything till second equality copied */

reg parti[j1 = '\0';

k = 0;

while (request[i] != ')')

temp[k++] = request[i++];

temp[k] = '\0',-

while (request[i] != '\0')

req_part2[z++] = request[i++];

req_part2[z] = request[i];

48

if (!(strcmpftemp, subs_obj_var.name))) {

if (list_obj_ref[subs_obj_var.index].data[1]) {

strcpyf mod_req, reg parti) ,-

strcat (mod_req, list_obj_ref [subs_obj_var. index] .data) ,-

strcat(mod_req, req_part2); /* whole request constucted */

TI_S$TrafUnlt(ool_ptr -> oi_curr_db.cdi_dbname, mod_req);

TT_chk_reqs_left();

} /* end of if */

} /* End of if (!(strcmp)) */

flag_subs_or = FALSE;

subs_obj_var.index = 31;

} /* End of if(flag_subs_or) */

else {

TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, request);

TI_chk_reqs_lef t () ,-

} /* End for else */

/* print f (" \nupdate_exec () terminated"),- */

}

void

add_exec()

/* Used for building a new relationship between the existing objects in the kernel

database, not inserting a new object in the database. Before the query is

sent to the kernel for execution, it is modified by double substitution and the

addition of an OID value.*/

{

char request [100] , req_partl [100] , req_part2 [100] , mod_req[100] , temp[30] ,-

int i=0, j=0 , k, z=0 , 1=0;

/* printf("\nadd_exec() activated"); */

request[i++] = '[';

while ((c = getc(fp)) != '\n') {

if (c == EOF)

break,-

request[i++] = c;

}

request [i] = '\0',- /* ABDL query read in the request */

if (flag_double_subst) {

i=0;

while (request[i] != '?')

reg partiM++1 = request[i++];

reg partiH1 = '\0';

j = 0;

i + +;

while (request[i] != '\0')

req_part2[j++] = request[i++];

req_part2[j] = ' \0';

strcpy(mod_req, reg parti);

/* OID value is added in the place of '?' in the query. */

strcat(mod_req, get_objectid());

strcat (mod_req, reg part2) ,-

i=j=0;

'/* The first substitution is handled below */

for (k=0 ; k<5 ; k++) {

while (mod_req[i] != ',')

reg partiM + +1 = mod_req[i + +] ,-

req_partl [j + +] = mod_req[i + +] ,■
}
reg parti[j1 = '\0';

49

k=0;
while (mod_req[i] != ■>')

temp[k++] = mod_req[i++];
tempjk] = ' \0',-
while (mod_req[i] != '\0')

req_part2[z++] = mod_req[i++];
req_part2[z] = '\0';
for (i=0 ; i<2 ,- i++) {

if (!(strcmp(temp, list_subs_obj_ref[i].name))) {
if (list_obj_ref[list_subs_obj_ref[i].index].data[1]) {

strcpy(mod_req, req_partl);
strcat(mod_req, list_obj_ref[list_subs_obj_ref[i].index].data)
strcat(mod_req, req_part2);

}
break;

}
}
/* The second substitution is handled below */

i=j=z=0;
for (k=0 ; k<7 ; k++) {

while (mod_req[i] != ',')
req_partl[j++] = mod_req[i++];

req_partl[j++] = mod_req[i++];

}
req_partl[j] = '\0';
k=0;
while (mod_req

temp[k++] =
temp[k] = ' \0';
while (mod_req[i] != '\0')

req_part2[z++] = mod_req[i++]
req_part2[z] = '\0';

i] ! = '>')
mod_req[i++];

for
if

i=0 ; i<2 ; i++) {
(!(strcmp(temp, list_subs_obj_ref[i].name))) {
if (list_obj_ref[list_subs_obj_ref[i].index].data[l]) {

strcpy(mod_req, req_partl);
strcat(mod_req, list_obj_ref[list_subs_obj_ref[i].index].data)

strcat(mod_req, reg part2);

}
break;

}

TI_S$TrafUnit(ool_ptr -> oi_curr_db.cdi_dbname, mod_req);
TI_chk_reqs_left();
flag_double_subst = FALSE;

} /* End of if */

printf("\nadd_exec() terminated" V

50

LIST OF REFERENCES

1. Hsiao, David K., "Interoperating and Integrating the Multidatabase and Systems,"
presented at ACM CSC'95, Nashville, Tennessee, Mar. 1995.

2. J.V. Joseph et al., "Object-Oriented Databases: Design and Implementation," IEEE
Proceedings, vol. 79, pp. 42-63, Jan. 1991.

3. Stephens, M.W., Design and Specification of an Object-Oriented Data Manipulation
Language, Master's Thesis, Naval Postgraduate School, Monterey, California,
September 1995.

4. Kellett, D. and Kwon, T, The Instrumentation of a Kernel DBMS for the Support of
a Database in the O-ODDL Specification, Master's Thesis, Naval Postgraduate
School, Monterey, California, September 1995.

5. Clark, R. and Yildirum, N., The Instrumentation of a Kernel DBMS for the
Execution of Kernel Transactions Equivalent to their 0-0 Transactions, Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1995.

6. Elmasri and Navathe, Fundamentals of Database Systems, The Benjamin/
Cummings Publishing Company, Inc., 1990.

7. Barbosa, C. and Kutlusan, A., The Design and Implementation of a Compiler for the
Object-Oriented Data Manipulation Language (O-ODML Compiler), Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1995.

8. Badge«, R.B., The Design and Specification of an Object-Oriented Data Definition
Language (O-ODDL), Master's Thesis, Naval Postgraduate School, Monterey,
California, September 1995.

9. Ramirez, L. and Tan, R.M., The Design and Implementation of a Compiler for the
Object-Oriented Data Definition Language (O-ODDL Compiler), Master's Thesis,
Naval Postgraduate School, Monterey, California, September 1995.

51

52

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library ,
Code 013
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr David K. Hsiao, Code CS/HS.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr C. Thomas Wu, Code CS/KA.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Ms. Doris Mlezko
Code P22305
Weapons Division
Naval Air Warfare Center
PtMugu,CA 93042-5001

7. Ms. Sharon Cain
NAIC/SCDD
4115HebbleCreekRd
Wright Patterson AFB, OH 45433-5622

8. Deniz Kuvvetleri Komutanligi.
Bakanliklar-Ankara 06600
Turkey

53

Ltjg Erhan Senocak ..
1671/4 sok. No: 11/8
Karsiyaka-Izmir 35601
Turkey

54

