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Abstract

As navigation systems continue to improve in performance and features, the Air Force

must develop better Navigation Reference Systems (NRS) to keep pace with technology.

Specifically, with the advent of enhanced, integrated Global Positioning System (GPS)

and Inertial Navigation System (INS) navigators, emphasis is placed on the measuring

performance in the presence of GPS jamming. To meet these needs, a new NRS, dubbed

the Sub-Meter Accuracy Reference System (SARS), is being developed by the 746th Test

Squadron, Holloman AFB, New Mexico. SARS uses a unique, inverted GPS pseudolite

positioning system to determine a reference trajectory. This research investigates two post-

processing methods of determining velocity from a discrete position data at a constant

data rate. The first method employs numerical differentiation along with digital filters to

provide noise reduction. The second method uses kinematic model-based Kalman filtering

and smoothing to determine the reference velocity.

xii



VELOCITY DETERMINATION FOR AN INVERTED PSEUDOLITE

NAVIGATION REFERENCE SYSTEM

L Introduction

1.1 Background

The 746th Guidance Test Squadron, Holloman AFB, NM, is the principal test or-

ganization for developmental testing of military aircraft navigation systems [39]. As part

of the 746th, the Central Inertial Guidance Test Facility (CIGTF) maintains a Navigation

Reference System (NRS) used in the test and evaluation of navigation systems.

From 1965 to the present, many different technologies have been used in the de-

velopment of an NRS. These include radar tracking, high-precision ground-based camera

tracking and the development of an aircraft transponder/ground receiver system. In 1975,

with the advent of microprocessor technology, advances in mathematics (Kalman filtering)

and Inertial Navigation Systems (INS), the "modern-era" NRS was conceived. The Com-

pletely Integrated Reference Instrumentation System (CIRIS) combined an INS, baromet-

ric altimeter and a Range/Range-Rate System (RRS) of ground transponder/interrogators.

Over the years, CIRIS was updated with new inertial navigators as well as Global Posi-

tioning System (GPS) receivers. These upgrades continually improved the overall accuracy

of the system.

In 1993, development began on a replacement for CIRIS called the CIGTF High

Accuracy Post-Processing Reference System (CHAPS). CHAPS combined an INS, Differ-

ential GPS and the RRS transponder measurements in a Kalman filter, in a manner similar

to CIRIS. CHAPS, however, had to be significantly more accurate than CIRIS in order to

effectively test GPS systems, inertial systems and GPS-aided inertial navigation systems.

As an NRS, CHAPS has shown performance in position accuracy of 1.2 m and velocity

accuracy of 0.03 m/s [39]. In early 1995, an upgraded version of CHAPS, called CHAPS

II, began validation testing at CIGTF. CHAPS II is a more compact version of CHAPS

with an enhanced GPS receiver capable of carrier-phase positioning.
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To be an effective reference, the NRS must demonstrate an accuracy at least one or-

der of magnitude better than the system under test [2]. Advances in navigation technology

have made maintaining the accuracy advantage of the NRS difficult. Today, technology

continues to improve the accuracy of navigation systems. Embedded GPS/INS systems,

designed for enhanced performance in routine flight, high dynamics, antenna shaded and

jamming environments, are coming to market. One such system, the Honeywell H-764G,

has demonstrated position accuracy of 0.8 nmi/hr circular error probable (CEP) and ve-

locity accuracy of 0.06 m/s root mean square (RMS), using P-code GPS [12]. While a

pre-production version of the H-764G has been evaluated at CIGTF [30], the increased po-

sition and velocity accuracy of such systems, along with claimed anti-jamming capabilities

necessitates a performance enhancement of the current NRS, CHAPS. A comparison of

recent reference systems developed at CIGTF is given in Table 1.1. A summary of earlier

reference system development can be found in [41].

Table 1.1 Comparison of Modern Navigation Reference Systems

Reference Measurements Position Velocity
System Accura Accuracy

CIRIS [41] INS 4.0 m 0.03 m/s
RRS
GPS

CHAPS [36] INS 1.2 m 0.03 m/s
RRS
Differential GPS

CHAPS II [36] INS 0.1 M 0.03 m/s
RRS
Carrier-Phase GPS

SARS Pseudolites 0.1 m 0.005 m/s 1

Holloman High Speed Instrumented track 0.0008 m 0.0004 m/s
Test Track [36]

To meet the requirements for the NRS, CIGTF is developing a Sub-meter Accuracy

Reference System (SARS). SARS is being designed for accuracies on the order of 0.1 m

in position, and 0.005 m/s in velocity [13]. SARS is expected to operate in the most

dynamic environments experienced by manned fighter aircraft, up to 9 gees and 10 m/s 3

1 Desired accuracies.
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jerk. CHAPS, on the other-hand, was designed to fly on cargo or large bomber aircraft [39].

CHAPS II, while one-half the size of CHAPS, is unable to fly aboard operational fighter

aircraft due to it's size. Additionally, SARS intends to operate without degradation under

narrow-band GPS jamming conditions.

To accomplish these objectives, SARS departs radically from the NRS designs of

CIRIS and CHAPS 2 . SARS will depend solely on GPS-style measurements derived from

the carrier-phase observable [34]. Instead of using GPS receivers on-board the aircraft, the

aircraft will be fitted with a GPS pseudolite transmitter, which is explained in Section 1.3.3.

This dramatically decreases the power and space requirements of the reference system

aboard the test aircraft, allowing for a broader range of aircraft to be tested. Furthermore,

the use of customizable GPS pseudolites allows the user to change the carrier frequency

of the transmitters. This may allow testing under narrow-band GPS jamming conditions,

without adversely effecting the reference system.

1.2 Problem

In previous NRS designs, an error-state Kalman filter combines the available mea-

surements from navigation aids such as GPS, to estimate INS errors. The INS measures

specific force. Acceleration of the aircraft is obtained by subtracting the gravity com-

ponent from measured specific force. Integrating once yields velocity; integrating twice

yields position. SARS, on the other-hand, will obtain position information from GPS data

only, via the GPS observation equations. One might approximate velocity by numerical

differentiation, however at the expense that noise present in the position measurements is

amplified by the differentiation procedure.

In this effort we will compare two different approaches to determining the velocity

of an aircraft along a trajectory given GPS measurements of position. The first approach

uses a combination of digital filtering techniques and numerical methods. The second

approach uses simple kinematic models in a Kalman filter to provide estimates of velocity.

We will compare the performance of these two methods against the desired performance

2 Conceptually, the SARS design is similar to the transponder portion of the RRS, which is part of
CHAPS and CIRIS. The RRS was originally developed for CIGTF by the Cubic Corporation, in 1973 [41].
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specification of 0.005 m/s and determine the sensitivity of each algorithm to different

parameters such as measurement rates and noise characteristics. A simulated environment

will be used for this research.

1.3 Summary of Current Knowledge

1.3.1 Terminology. Due to redundant and sometimes inconsistent terms found

in the open literature, it is necessary to untangle the terminology used in discussing GPS

measurements.3 Three "raw" measurements are obtainable in high performance GPS

receivers: pseudorange, deltarange and the carrier-phase observable. Pseudorange, also

known as the code phase observable, is the traditional GPS measurement used to deter-

mine position. Using a code correlation technique, pseudorange is a measure of the time

of transmission between the GPS satellite and receiver, expressed in terms of distance. A

minimum of four unique pseudorange measurements are required to compute a 3-D solution

for user position and time.

The carrier-phase observable is also employed to determine position. Carrier-phase

is a measurement of the number of integer and fractional cycles of the GPS carrier signal

between the transmitter and receiver, expressed in terms of distance. Using carrier-phase

to resolve position with centimeter accuracy was first developed for static applications,

such as surveying. Recently, the ability to resolve the carrier-phase ambiguity problem in

real-time has been demonstrated [14, 18, 19], leading the way for the use of carrier-phase

in dynamic environments.

Deltarange, also known as Doppler, differs from pseudorange and carrier-phase, as it

is a measure of range-rate rather than position. Deltarange approximates the true line-of-

sight range-rate between a GPS satellite and receiver. Deltarange is formed in the receiver

when cycles of the carrier-phase are counted over a small time interval divided by that

time interval. This time interval is receiver dependent, typically kept small compared

to the measurement output rate. For the Ashtech P-XII GPS receiver, deltarange is

calculated over a 1 millisecond interval, while the measurements are available four times

3 For further reference on GPS measurements and applications see [10,19].
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every second [19]. Since carrier-phase and deltarange measurements are observations of

the same signal, they are highly correlated.

Occasionally, one sees another approximation to range-rate, called pseudo-deltarange

or pseudorange deltarange. Unlike deltarange, pseudo-deltarange is not a measurement

available from a GPS receiver. Instead, pseudo-deltarange is formed by subtracting succes-

sive pseudoranges and dividing over the time interval. Time intervals of pseudo-deltarange

calculations are typically on the order of I second. Because pseudo-deltarange uses such a

long time interval in differentiating position information into velocity, the approximation

to range-rate becomes erroneous. This problem can be exacerbated in the case of high

dynamics, when the time constant of the dynamics falls close to or below the Nyquist rate.

Since the deltarange measurement comes from the receiver's carrier loop, it is independent

of the pseudorange measurement, which comes from the code loop. Pseudo-deltarange,

however, is clearly correlated with pseudorange measurements.

1.3.2 Literature Review. Many sources of information were drawn upon in the

preparation of this research including numerous papers from the open literature, thesis

reports, textbooks, course notes and personal interviews. While not all of the sources are

referenced in this work, the referenced sources in this section and throughout the work

provide an excellent background for further studies in this area.

As of this writing, the only paper in the open literature describing the concept of

SARS is by Raquet, et al [36]. This paper also presents the results of an initial test

of a prototype system conducted at Holloman AFB, N.M. Their results demonstrated

the feasibility of the SARS concept in determining an accurate position solution. While

SARS is unique in its inverted pseudolite mode of operation, there are other trajectory

determination systems that use GPS methods (carrier-phase and differential C/A code)

for kinematic positioning. These are described by Tang, et al, [44], Mahmood and Simpson

[21], Dougherty, et al [8], Robbins [37] and Galijan and Gilkey [9].

The GPS system has its own measure of velocity (deltarange), as discussed earlier.

One of the first papers to quantify GPS velocity accuracy was by McGowan [28]. May, et

al, [23] describe the properties of GPS velocity accuracy as well as applications using GPS
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to determine velocities. Methods and general guidance for proper treatment of deltarange

measurement in a positioning system are given in Bach, et al [1] and Brown and McBurney

[3].

The previous CIGTF-sponsored thesis work of Bohenek [2], Hansen [11], Mosle [29],

Negast [35], Solomon [41], Snodgrass [40], Stacey [43] and Vasquez [47], provide great

insight into the characterization and development of an NRS, as well as the background

theory on inertial navigation systems, error-state extended Kalman filters, GPS, differential

GPS and carrier-phase GPS. Also of interest, Tobin [46], Chang [5], Schwartz [42] and

Roecker [38] address issues concerning adaptive Kalman filtering and target tracking.

1.3.3 Concept of Operation. As stated previously, the design of SARS departs

radically from its modern predecessors, CHAPS and CIRIS. Unlike these reference systems,

SARS does not use an INS. Nor will SARS require aircraft to carry a large payload of

sensors and measuring devices. Instead, the sensors and measuring devices will be located

on the ground, in the form of movable, self-surveying GPS receivers. Before a flight test,

engineers will be able to lay out the desired locations of the receivers along the range,

ensuring adequate receiver geometry and coverage during the flight.

The aircraft will be outfitted with a lightweight, low power GPS pseudolite, designed

to be mounted on aircraft hard-points. An additional GPS pseudolite will broadcast from

a known position on a mountain-top, within view of the ground receivers. This additional

pseudolite will be used to perform a between receiver/pseudolite double difference of the

carrier-phase measurement. This double differencing method eliminates the receiver and

pseudolite clock bias as well as reduces errors due to tropospheric delay. While the theory

of this unique carrier-phase differencing technique is still under development [36], this thesis

work assumes that the carrier-phase measurements will yield a position solution with an

accuracy of 0.1 m la 3-D RMS. The general concept of operation is depicted in Figure 1.1.

After a flight test, carrier-phase position data will be collected from all receivers.

This data will be processed to resolve the receiver clock bias, carrier-phase ambiguities

and cycle slips. In general, a cycle slip is caused by a loss of lock of the carrier signal

between the GPS transmitter and receiver. Cycle slips may be caused by an obstruction,

1-6
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Figure 1.1 Concept of Operation

intense ionospheric activity or receiver power problems [19]. Since SARS is limited to use

in the troposphere, no cycle slips due to ionospheric activity are anticipated.

Cycle slips essentially corrupt the future time-history of the carrier-phase ambiguity

term. In dynamic applications, cycle slips are more difficult to predict due to the additional

Doppler shift created by the aircraft's motion [19]. Previous AFIT thesis work [2,11,29,47],

has addressed the problem of detecting and correcting for cycle slips in highly dynamic

environments. For this effort it is assumed that the carrier-phase processing will correct

the position solution for any cycle slips.

1.4 Assumptions

This section lists the assumptions used in this thesis research. These assumptions

are defined to aid the reader in making a proper evaluation of this effort.

1. It is assumed that the carrier-phase data has been processed to remove ambiguities

and cycle slips. It is assumed that the relevant residual carrier-phase errors include

receiver noise, tropospheric delay and multipath.
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2. It is assumed that the processed carrier-phase solution for position is expected to

yield errors of 0.1 m la 3-D RMS. This position error is assumed to include the error

due to imprecise knowledge of the receiver and transmitter (stationary pseudolite)

locations.

3. It is assumed that the maximum measurement rate of the GPS/pseudolite receivers

to be used for SARS is 10 Hz.

4. It is assumed differentially-corrected C/A-code pseudorange and deltarange measure-

ments are available.

5. It is assumed that all GPS/pseudolite receivers are perfectly synchronized in time

and that all measurements are available simultaneously.

6. Flight trajectories will contain a range of dynamic conditions with profiles not ex-

ceeding 9 gees and 10 m/s 3 jerk. These profiles are assumed to be representative of

the dynamic environment of modern fighter aircraft.

7. The flight profiles used in this thesis effort will come from PROFGEN [32]. MATLAB

[27] will be used for simulation, data reduction and visualization. Explanations of

these software tools can be found in Section 1.7.1.

8. Any Monte Carlo analyses to be conducted will be the results of 50-run simulations.

Although a larger number of Monte Carlo runs would produce sample statistics

that more closely reflect the true underlying error statistics, with statistical error

asymptotically approaching zero as the number of runs approaches infinity, fifty was

decided upon to keep the total computation time within reasonable limits.

1.5 Scope

The models developed in this effort are based upon information obtained from the

open literature and from sources given by the sponsor, CIGTF. The velocity algorithm

target specification is 0.005 m/s la 3-D RMS, at a measurement rate no greater than 10 Hz.

Several different filtering techniques will be considered in simulation, and recommendations

made concerning the feasibility of a real world implementation of these techniques.
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1.6 Approach/Methodology

Overall, two distinct approaches to the problem will be investigated. One method

involves the use of digital filters and numerical methods techniques to evaluate velocity

as the derivative of discrete, noisy position information. The second technique uses the

structure of the Kalman filter to estimate velocity given a simple kinematic model and

GPS measurements of position and velocity.

1.6.1 Digital Filtering with Numeric Differentiation. The digital filtering with

numeric differentiation effort is a straight-forward approach to the problem. Given noise

corrupted, discrete position measurements, a numerical derivative is computed. Two tech-

niques for implementing a numerical derivative are explored. First, a standard central

difference approximation to the derivative is derived from a Taylor's series expansion. Sec-

ond, a curve fitting algorithm based upon cubic splines is employed to fit a curve to the

noise corrupted position data. An analytical derivative of the fitted curve will be evaluated

to determine velocity. The performance of the two techniques will be compared. Further-

more, digital filtering methods, in the form of low pass filters, are used for noise reduction

both before and after the derivative operation.

1.6.2 Kalman Filtering. The Kalman filtering effort will devise an algorithm for

velocity determination for two different measurement strategies. The first involves using

carrier-phase data that has been processed to remove ambiguities and the effects of cycle

slips. The second strategy involves combining unprocessed pseudorange and deltarange

measurements to determine velocity. Simulations will be used to carry out this research,

and simple models will be constructed.

In the CHAPS NRS, an error-state extended Kalman filter [2,11,39] provides esti-

mates of the reference system errors. Figure 1.2 depicts such a system. The estimated

errors are subtracted from the indicated trajectory, producing the estimated reference po-

sition, velocity and acceleration. This error-state model is generated from higher order

truth models and is validated for performance.
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Figure 1.2 Typical NRS Error-State Model Formulation

In order to create a proper error-state model for SARS, a truth model needs to

be developed. One option would be to create a truth model based upon what is known

about carrier-phase GPS measurements and apply it to this "inverted" GPS problem.

Such truth models, however, are based upon a mathematical description of the device, and

should be validated by empirical data obtained from the "real world." Since SARS is still

in development, it is unlikely that any such empirical data can be collected at this point

to validate such a model.

It is possible to generate an error-state model based upon previous carrier-phase

models. Such a model would need to be modified based upon our assumptions of the

operating environment. After the model is modified, it should be validated. This validation

would require significant resources [39] beyond the scope of this thesis effort.

Even without formal validation it is possible to use a model; for example, one mod-

ification might involve removing model states corresponding to ionospheric errors, since

the GPS signal will not be traveling through the ionosphere. In this case, it appears that

our assumptions about the operating environment will improve the accuracy of our results.

On the other-hand, new sources of error may exist and should be introduced to the model.
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Multipath error, while not considered in past AFIT carrier-phase research [2,11], may be

a significant source of error for SARS. If so, what effect does altitude have on multipath

error? Does the multipath portion of the model need to be adjusted for altitude changes,

and if so, how? While it may be prudent to consider the modeling of multipath as a func-

tion of altitude, it is difficult to predict the impact an altitude change should have. Hence,

without real world validation, model confidence is quickly lost.

A heuristic approach to the model formulation is suggested. If one assumes that

a valid error-state model cannot be confidently constructed, then the only information

remaining to be exploited, aside from the carrier-phase data itself, is the fact that the

aircraft will be in controlled flight, along some trajectory. If an aircraft trajectory can be

broken down into distinct phases, the kinematics can be represented by simple models,

such as:

a Constant Velocity, Acceleration modeled as a white Gaussian noise

@ Constant Acceleration, Jerk modeled as a white Gaussian noise

* Constant Acceleration, Jerk modeled as a 1st order Markov process

It is possible that one of these models may be generic enough to provide an adequate

velocity estimate over the entire flight, or, each model may be valid only during a particular

segment of a flight. In this case, an adaptive filter could be devised that changes in response

to flight conditions.

1.7 Materials, Data and Equipment

No special provisions are required for this research. The Sun SPARC network in the

AFIT Guidance and Navigation Laboratory as well as the XR5M 6-channel and 12-channel

GPS receivers will be used for experimentation during this thesis.

1.7.1 Simulation Software.

1.7.1.1 PROFGEN. The Avionics Directorate of Wright Laboratory devel-

ops and maintains a software package called PROFGEN (PROFile GENerator). PROF-
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GEN allows for the creation of flight trajectories of a vehicle under continuous control over

the Earth's surface. This is accomplished by solving the equations of motion of a zero-

mass body responding to maneuver commands specified by the user. These maneuvers

can consist of vertical turns, horizontal turns, rolls, straight flights and sinusoidal heading

changes. More detailed information is available in the PROFGEN documentation [32].

1.7.1.2 MATLAB. MATLAB [27] is a technical computing environment

for high performance numeric computation and visualization. MATLAB, which stands for

matrix laboratory, is useful for conducting simulation and analysis of linear (and non-linear)

systems. MATLAB features a powerful matrix interpreter, a user-friendly environment,

a variety of reliable numerical integration algorithms and a graphical simulation environ-

ment called SIMULINK. MATLAB, SIMULINK and several "toolboxes" were used in the

construction of the simulations and their analysis.

1.8 Overview of Thesis

The methodology in this chapter is meant to motivate the development of algorithms

to determine the velocity of an aircraft flying in a trajectory. CIGTIF's performance objec-

tive for SARS is a velocity accuracy of 0.005 m/s 3-D RMS la at a maximum measurement

rate of 10Hz. Two approaches will be considered: a digital filtering with numeric differen-

tiation approach and a kinematic model-based Kalman filter approach.

This thesis consists of five chapters. Chapter I has presented the problem to be solved

and the approach to be taken in solving it. Chapter II covers the theory involved in this

thesis. Topics covered in Chapter II include an overview of numerical differentiation, GPS

measurement equations, digital filtering and Kalman filter theory. The theory involved

with GPS measurements includes how the measurement equations are derived, in light of

the inverted pseudolite concept. Chapter III presents the noise models and Kalman filter

models implemented in this thesis. The results of the data evaluations and simulations are

presented in Chapter IV and Chapter V gives conclusions and recommendations for future

research.
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I. Theory

2.1 Overview

This chapter describes the general theory pertaining to this research. The first sec-

tion outlines the implications of noise corrupted discrete-time position measurements in

velocity determination. The GPS measurement section presents the equations involved

with the three basic GPS measurements: pseudorange, carrier-phase and deltarange; fur-

ther information on GPS theory is available in [10]. The Kalman filtering section provides

an overview of Kalman filtering/smoothing. Readers unfamiliar with these Kalman filter-

ing topics are referred to [24,25]. Finally, the last section presents the types of digital

filters used in this research.

2.2 Approximating Velocity

GPS measurements of the aircraft position will be available at discrete time intervals.

These measurements can be solved in Earth Centered Earth Fixed (ECEF) coordinates

and expressed as follows:

x(ti)
r(t) = y(ti) (2.1)

z(t )

The velocity of the aircraft can then be defined as the derivative of position:

'( t) lim r(t, + h) - r(ti) (2.2)
h-0 h

Unfortunately, this equation cannot be properly evaluated as h is limited to the sampling

rate of SARS.

2.2.1 Taylor's Series Approximation to the Derivative. One method used to ob-

tain the numerical derivative approximation and maintain stability is a truncated Taylor's

series expansion. The Taylor's series for a function r(x) at (x + h) expanded about x is:

r"(x)h2 r'(x)h3

r(x + h) = r(x) + r'(x)h + 2! + 3 + h.o.t. (2.3)
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Similarly for r(x) at (x - h) we have

r"(x)h2 r"(x)h3

r(x - h) = r(x) - r'+ r"(± 2 - 3 + h.o.t. (2.4)
2! 3!

Combining (2.3) and (2.4) we have:

2r'"(x)h3  2rv(xh
[r(x + h) - r(x - h)] = 2r'(x) + 3 +2 x)h 5 + h.o.t. (2.5)

3! 5!

Notice that the even numbered derivative terms are eliminated. Truncating (2.5) to first

order and rearranging yields the classic central difference approximation of the first deriva-

tive:

r'(x) r(x + h) - r(x - h) (2.6)
2h

2.2.2 Extrapolating the Central Difference Approximation. In (2.5), the even

order derivatives in the Taylor's series cancel out fortuitously. It is possible to combine

additional equations to cancel out additional higher order terms. Consider the following

equation:

[r(x + 2h) - r(x - 2h)] = 4r'(x) + 2 . 2 3 r..(x)h 3 2. 2 5 rv(x)h' + h.o.t. (2.7)
3! 5!

which can be combined with a scaled version of (2.5) to remove the third order derivative:

23[r(x+h) -r(x - h)] - [r(x+2h)-r(x -2h)] = 12r'(x)+2.(24-2 )() + h.o.t. (2.8)

Neglecting the fifth order and higher derivatives, we can rearrange (2.8) to solve for the

following central difference equation:

r'(x) = 8 r(x + h)- r(x - h) _ r(x + 2h) - r(x - 2h) (2.9)
12h 12h

This extrapolation method can be pursued further to generate approximations to deriva-

tives with better residual error characteristics, at the expense of requiring additional data

points. The central difference equation approximation for the first derivative is well docu-

mented [6,15,22,45] in numerical methods texts. Equations (2.10) ,(2.11) and, (2.12) show
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the algorithms tested in this research.

r'(x) -r(x +h) -r(x -h) (2.10)

2h

r(X) r(x + h) - r(x - h) _ r(x + 2h) - r(x- 2h)
12h 12h

45r(x + h)- r(x - h) 9 r(x + 2h)- r(x - 2h)
r'(x) 60h 60h

+ r(x + 3h) - r(x - 3h) (2.12)+ ~60h (.2

For best precision, the numerical differentiation algorithm would be extrapolated as far as

higher order derivatives exist for the function in question. Due to the sampled data nature

of the system under consideration in this research, there is no guarantee that the function

is continuous, especially in areas of high dynamics.

2.2.3 Error Analysis of the Velocity Approximation. There are many contributing

factors in the overall error of the velocity approximation algorithms. Three sources of error

in the velocity approximation are considered: error due to digital sampling, error due to

truncation of the Taylor's series and error due to corrupted position data. This section is

concerned with evaluating the extent of these errors.

2.2.3.1 Error Due to Digital Sampling. If we treat the position measure-

ments as digital sampling of a continuous time signal, one must be concerned with the

phenomena of aliasing. In the frequency domain, aliasing results in higher frequencies of a

signal impersonating lower frequencies. In the time domain, aliasing results in corruption

of the discrete-time signal. In order to avoid aliasing, it is necessary to sample at a rate

at least two times higher than the highest frequency of the input signal. This is known as

the Nyquist rate.

To determine the highest frequency component that the input signal may contain,

we examine the case of a high performance fighter aircraft in a demanding flight profile.

In Section 4.3.1, analysis confirms that Nyquist criterion is met for the sampling rates of

interest in this research.
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2.2.3.2 Error Due to Truncation. Neglecting higher order terms in the

Taylor's series will cause errors of magnitude h' where h is the sampling interval and n is

the order of the derivative of the first neglected term [6,15,22]. For example, the neglected

terms in (2.10) are:
223 + 2 . 2 5 rv(x)h + h.o.t. (2.13)

3! 5!

and the order of the error is h3 . Similarly, (2.11) and (2.12) are of order h5 and h7

respectively.

2.2.3.3 Implications of Noisy Position Data. Now consider errors in the

position information. Each coordinate is corrupted by some error 6:

x(t ) + bx(t )

r(ti) y(ti) + by(ti) (2.14)

z(t2 ) + bz(ti)

where x(ti), y(ti) and z(ti) represent true position. Using (2.6) the velocity equation for

the x direction becomes:

dx(ti) [x(ti+i) + bx(ti+1 )] - [x(ti- 1 ) + bx(ti- 1 )]

dt 2At
x(t+1 ) - x(ti 1 ) _ x(ti+) - bX(ti.1) (2.15)

2At + 2At

The velocity equation can be expressed as a sum of two terms: the computed double sided

velocity approximation and the error in computed velocity. In order to generate accurate

velocity estimates, it is important to minimize the effect of the error term in Equation

2.15. One way to make this term approach zero is to make the sampling period very large

compared to the magnitude of the difference in the error. This solution is not practical

since large sampling periods invalidates the difference equation as an approximation to

velocity.

Another way to reduce the effect of the error term is to make the numerator much

smaller than the denominator. If the errors bx(ti+1 ) and bx(ti_1 ) are time correlated, they

may cancel each other out, depending on the sampling rate and the time constant of the
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errors. Unfortunately there are practical limits to the sampling rate. If there is a white

component to the noise, or if the error terms are not exactly correlated, there will be a

non-zero remainder. As the sampling rate is increased, this remainder becomes amplified

by the denominator term.

Care must be taken when choosing a sampling rate; a trade-off between the accuracy

of the velocity approximation and the amount of noise amplification must be made. In

many applications, such as navigation, it is prudent to eliminate as much noise as possible

from the position measurements before using the differencing equation to approximate

velocity.

2.3 Global Positioning System Measurements

2.3.1 Pseudorange. The basic pseudorange observable is a difference between

the time of transmission of the GPS signal and the time of arrival, based upon a code

correlation technique. The pseudorange observation equation given by [10] is:

p =1 j- Ri 1 +C (p - 6,c) + btrop + b ..path + bion

where: p = is the measured pseudorange

Rj - Ri 11 = the true, but unknown, range

Ri = ECEF coordinates of the it h receiver

Rj = ECEF coordinates of the jth pseudolite

6p, = the pseudolite clock offset from true GPS time

brc = the receiver clock offset from true GPS time

c = speed of light

~ion = the range equivalent ionospheric delay term

btrop = the range equivalent tropospheric delay term

6 ,mpath = the error due to multipath effects

Since the pseudolites used for this application will not transmit signals through the

ionosphere, the error term 6o, may be eliminated. The resulting pseudorange equation is:

p =11 Rj - n ± 11 +c. (6pc - b5r) + btrop + bmpath (2.16)
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which is valid for both the airborne and ground-based pseudolites. The receiver location,

Ri, is known a priori since the ground receivers use carrier phase surveying techniques to

determine precisely their position. Similarly, the ground-based pseudolite position is also

known a priori. Thus, a good estimate of the range between the ground-based pseudolite

and receiver is known. The true range can be expressed as a sum of two terms, the surveyed

or estimated range, 1 !kj - !ki 11, and the error in the survey, 6 R.

11Rj - Ri I1=RJ -kRi i 11bR (2.17)

By subtracting the known quantity 11 i J - 1?i from both sides of the ground-based

pseudorange observation (2.16), we define a differential correction term Ap:

AP = Pgnd-II Rj - -II

= [c. (bp - bre) + btrop + 6"]pathlgnd + 6R (2.18)

where the subscript gnd denotes terms corresponding to the ground-based pseudolite.

The quantity expressed in (2.18) can be subtracted from the pseudorange observation

equation for the airborne pseudolite, providing a differentially corrected pseudorange, p*.

P* Pair-AP

11 -j i 11+ C (bp - br,) + btrop + '5 mpathlair

- [c. (bpo - 6rc) + trop + mopaz] 9gnd - 6R

11 1? - Ri ± [C .
6pc + '

5trop + 6mpath] air

C- [cbpc + btrop + 65 mpathlgnd - 61? (2.19)

where the subscript air denotes terms corresponding to the airborne pseudolite. This

eliminates the common receiver clock bias since [r]jgnd = [brlair, and may reduce the

tropospheric delay effect.

To further reduce the error in (2.19), a tropospheric error correction can be calcu-

lated. In GPS applications, the tropospheric delay is considered a function of humidity,
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temperature and altitude at the receiver. The implications of modeling the tropospheric

delay term is developed in Section 3.3.1.

2.3.2 Carrier-Phase. This section develops the essential pseudolite-based carrier-

phase equations required for this effort. For the reader unfamiliar with carrier-phase meth-

ods, a more general derivation of the GPS carrier-phase equations is presented in [2, 11].

A carrier-phase measurement is derived from the phase shift between the transmitter-

generated signal and receiver-generated signal. In GPS applications, the transmitter is a

satellite; in this application, the transmitter is one of two pseudolites. One pseudolite is

located at a surveyed location on the Earth's surface, in view of all the receivers. The

second pseudolite is mounted on an aircraft, flying in a trajectory over the range.

The carrier-phase observation equation [2] for GPS pseudolites is given by:

- -f .p - br) - f (II Rj - Ri 11 -bion -+trop + bmpath) (2.20)

where: D = the phase-range in cycles between pseudolite and receiver

f = the frequency of transmission

6PI: = the pseudolite clock offset from true GPS time

6rc = the user clock offset from true GPS time

c = speed of light

11 Rj - Ri = the true, but unknown, range

bion = the range equivalent ionospheric delay term

btrop = the range equivalent tropospheric delay term

mpath = the error due to multipath effects

Since the pseudolite signals do not pass through the ionosphere, the term bio, can be

eliminated from (2.20). The resulting carrier-phase observation equation for pseudolites is:

-f" (6pc - b,,) - (II Rj - RB 1I +trop + bmpath) (2.21)

Because the carrier-phase measurement is a phase shift, it represents only a fraction

of a wavelength of the carrier. The phase-range measurement at some time epoch, t, is
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represented by the following equation:

-(t) = -Iqra¢(t) + Oint(to, t) + N(to) (2.22)

where 4bfrac(t) is the fractional part of the total wavelength, (bj~t(to, t) is an integer number

of phase cycles from an initial epoch, t,, to the current epoch, t, and N(to) is an integer

phase ambiguity term. The phase ambiguity term is also known as the cycle ambiguity

and it represents the difference between the true integer count at time t,, and the current

integer count at t, measured or calculated by the receiver [11].

The carrier phase measurement, 4)measured(t), is equal to the sum of the fraction

observation at time epoch, t, and the integer count at the same time epoch, t, and can be

represented by:

Imeosured(t) = Pfrac(t) + int(tot) (2.23)

The total phase range at time epoch, t, from (2.22) can now be written as:

)(t) = measured(t) + N(t) (2.24)

Substituting (2.21) into (2.24) produces the measured range for the pseudolite carrier-phase

observable:

measured(t) 4)(t) - N(t)

f
= -f( -5 r ) - .(11 Rj - RII +robp + bmpth) - N(t) (2.25)

c

Multiplying (2.25) by the negative of the cycle wavelength, -A, converts from cycle units

to distance units:

S(t) - measured(t)

11 R- - R ± 11 +C. (bpc - brc) + 5trop + 5mpath + A . N(t) (2.26)

2.3.2.1 Carrier Phase Double Differencing. The between-receiver/satellites

double differencing method described in [2,36] is the method to be implemented in this
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research. It is modified slightly to a between-receiver/between-pseudolites method and is

depicted in Figure 2.1. This method subtracts a between-receiver single difference with

Airborne Pseudolite (ABR)

RiaB
R

J/ Rj ABR

Ground Based J P

P seudolite (GBP)

GPS r;GPS
Receiver Receiver

i-th Ground Based Receiver (GBR) j-th Ground Based Receiver (GBR)

Figure 2.1 Illustration of Between Receivers/Pseudolites Double Difference

another between-receiver single difference using the same receivers and the ground-based

reference pseudolite. Additionally, the integer ambiguity term must be estimated. In [36],

preliminary results using this double differencing method with conventional integer ambi-

guity resolution techniques are presented. The result of this double differencing method

is the elimination of pseudolite and receiver clock error biases. An atmospheric error

term reduction is dependent upon the relative magnitudes and directions of the ranges

between the transmitters and receivers as well as the homogeneity of the atmosphere, and

subsequently, is highly application specific.

2.3.3 Deltarange. By differentiating the carrier-phase measurement equation

(2.26), we can derive an approximation to the range rate:

d lim - A11Rj-Ri11 +c' A(pc - brc) + Arop ± rpath+ A ' AN(t) (. = lim(2.27)
dt At-01 At

which approaches the true range rate as At approaches zero. The true range rate equation

is given by:

d4- _ d 11 R - I d & db.mpath + dpc dr
dt dt d dt d dt
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d tIRjRII e + Cdtr (2.28)

dt dt

where berror = 6trop + 6,npath + 6p - br," This assumes that the integer phase ambiguity

term, N(t), remains constant over the time interval such that AN(t) = 0.

2.3.3.1 Solving the Range Rate Equation for User Velocity. User velocity

is embedded in the first term of (2.28). Evaluating this term we have:

-/(xj - X,)I + (yj - y,)2 + (zj - Z,)2
dt d

(Xj - xi)(xj - :i) + (yj - y)( h - 0) + (zj - z)(ij - i) (2.29)

/(xj - X,)2 + (yj - y,) 2 + (zj - Z,)2

where i denotes the i th pseudolite and and j, the jth receiver. Letting a,, a 2 , and a 3 be

the directional derivatives:

V (Xj-_,)2+(y-y,)
2

+( , _.)
2

(Ya-Yi)N 2 -- X/( j- )l +(yj yi)2+(zj-Zi)l

a3  = (z -z.)
O _V- /(Xj-Xi)2+(yi -yi)l+(z -Zi)2

Equation (2.29) can be expressed as:

d IIR-RII = a, (ij - ii) + a 2 (Yj - Yi) ± a 3 (ij - -i) (2.30)

Substituting (2.30) into (2.28) yields:

d-t = a,(ij - iY) + a2 ( J - Yi) + a3(;i - i) + c derror (2.31)
dt

Rearranging this equation to separate pseudolite velocity from user velocity:

d-±)aiii+ a2  + a3 ii = alij +a 2Vj+ a 3 .±+C dero (2.32)
dt do
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For the roving pseudolite on-board the aircraft, the velocities of the receivers are zero

with respect to the ECEF frame. Equation (2.32) for the airborne pseudolite becomes:

- alij + a 2j + a3j + C derror (2.33)
dt air dt air

For the ground-based pseudolite, not only are the velocities of the receivers zero, but also

the velocity of the pseudolite itself is zero. Equation (2.32) for the ground-based pseudolite

becomes:

d-t d6error

dt gnd dt gnd

d6trop dmpah d6P _ db¢r (2.34)

= di d c c-- gnd - gid

If we assume that simultaneous measurements of the pseudolites is possible, the

ground-based pseudolite can be used as a differential correction to the airborne pseudolite.

Since the same receiver is used to detect both pseudolite signals, the quantities d6di gnid

and d are equal. For the remaining error terms, d c!--andc r' "_h it is notdt air dt ' dt -dt

known what benefit differential corrections will have. Assuming the pseudolites are of

the same make and model, they should use the same clock device and have similar drift

characteristics, dP. However, the airborne clock will be subjected to higher g-forces anddt "

may suffer from the effects of g-induced disturbances to the oscillator [20].

Nonetheless, the tropospheric error rate, !L=, may be small enough over such a
dt ma b

short period of time to neglect entirely. This assumes that there is a high correlation in

tropospheric error between subsequent measurements, which is likely given that sequential

signals are passing through (relatively) the same atmosphere. While the pseudolite signals

are travelling through essentially the same atmosphere (wet and dry refractivities), the

tropospheric error terms are also dependent on user altitude, range and elevation angle

[17]. Experimentation may be useful in determining the usefulness of such a differential

correction. The differentially corrected range rate equation is:
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d4( &P dlO

dt diff dt air dt gnd
dberor d~eror= alij + a2Vjj + a3Zj +c- - c--

+ Cxdt air dt gnd

drmpath dl5pc
±+ C dt air-gnd di air-gnd dt air-gnd

= lj 2Yj + a3 .ij + C d e rr (2.35)

2.4 Kalman Filtering/Smoothing

Although solutions to the GPS ranging equations are non-linear, in this exploratory

research, the Kalman filter measurement models were kept linear. This is accomplished by

solving the ranging equations before presenting them to the Kalman filter. This was done

to keep the analysis focused on assessing the performance and suitability of the Kalman

filter algorithm itself. If the desired level of performance can be achieved with the standard

Kalman filter, and possibly exceeded, the study of the effects of compensation for non-linear

measurement equations is warranted.

While the Kalman filter lends itself to use in real-time applications, it is also useful in

non-real time estimation problems. In fact, by taking advantage of information contained

in "future" measurements, a better state estimate can be provided in most cases [25]. This

use of "future" measurements in a Kalman filter structure describes the optimal smoothing

problem.

While many different smoother formulations exist, the fixed-interval smoother as de-

scribed in [25], is most applicable to this research. The fixed-interval smoother is especially

useful for post-mission data analysis as it allows all measurement data collected to be used

to generate the state estimates at a given time, ti.

Considering a discrete-time model of states x(ti), and measurements z(ti):

x(ti+1) = (ti+l,ti)x(ti) + Bd(ti)u(ti) + Gd(ti)wd(ti) (2.36)

z(t 2 ) = H(ti)x(ti) + v(ti) (2.37)
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where the initial conditions x(to) have a mean xo and covariance P 0. States are propagated

by a discrete-time state transition matrix 4(ti+1 ,ti). Also, Wd(ti) is a discrete-time white

Gaussian noise with covariance:

E~dt)WT(tj)} l Qd(ti) ti = tj

E{Wd(ti (2.38)S0 ti 4tj

and is independent of the measurement noise vector, v(ti), which also is described as zero-

mean white Gaussian, with noise covariance, R(ti):

E {v(ti)vT(tj)} R(ti) tj = tj(2.39)

0 tj 54ti

The smoothing procedure can be thought of as having three steps. First a con-

ventional forward running Kalnan filter generates state estimates, denoted C(t+), where

the (+) superscript indicates the state estimate after a measurement update at time ti.

Second, a backward running Kalman filter, independent of the forward running filter, com-

putes state estimates kb(ti-), where the (-) superscript indicates the state estimate before

a measurement update at time ti. Third, the state estimates are combined optimally to

produce k(tt/i,), by considering them as two separate observations of x(ti), weighting each

by factors related to the covariances P(t+ ) and Pb(t-). Computationally, it is more effi-

cient to run and store the results of the backward filter first, then combine steps one and

three into a single algorithm that computes the forward filter estimate and the smoothed

estimate simultaneously.

The fixed-interval smoothing algorithm, as presented in [25], is shown below. A

conventional forward running Kalman filter with propagation equations:

k(tk+l) = (tk+l, tk)(t +) + Bd(tk)u(tk) (2.40)

+ = (tk+l, tk)P(+) (tk+l, tk) + Gd(tk)Qd(tk)GdT(tk) (2.41)
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and measurement update equations:

K(tk) = P(t -)HW(tk) [H(tk)P(t-)H T ( tk) ± k)] (2.42)
R(t + ) - *(t-) + K(tk)[zk - H(tk)R(t-)] (2.43)

P(t + ) = P(t) - K(tk)H(tk)P(t-) (2.44)

and initial conditions:

R(t0) = (2.45)

P(t 0 ) = PO (2.46)

are used to generate a state estimate and covariance for each time. A backwards run-

ning Kalman filter is implemented in inverse-covariance form since no a priori statistical

information is known about the initial conditions. Measurement updates are given by:

kb(tk+ ) = Yb(4k-) + HT(tk)R-l(tk)zk (2.47)

Pb-'(tk+ ) = Pb-1 (tk - ) + HT(t)R-1 (tk)H(tk) (2.48)

The states are propagated backwards in time by:

J(tk) = Pb-'(tk+)Gd(tk-1) [GdT(tk-1)Pb-l(tk+)Gd(tk-1) + Qd-l(tk-1)]-1

L(tk) = I - J(tk)GdT(tk-l)

kb(tk-1) = ,bT( tk,t+l)L(tk) [kb(tk+ ) - Pb-'(tk+)Bd(tkl)U(tk-1)] (2.49)

Pb-'(tk-1) = "(T(tk, tk+l){L(tk)Pb- t+L(tk)

+ J(tk)Qd-(tkO)JT(tk)}4(tk, tk+I) (2.50)

with initial conditions:

b(S-f) = 0 (2.51)

Pb-(t -) = 0 (2.52)
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The smoothed estimate is generated by combining *(t+), P(t+), 5rb(t-), and Pb-(t -) in:

X(ti) = [I + P(tt)Pbl(i;)]-1

W(t)= P(t+)XT (ti)

Y(ti) = I- W(t,)pb-l(t)wT(t,)

p(t/i/t) = y(t)p(t+)yT(t) + WC(t)Pb-(t)wT(ti) (2.53)

k(ti/tf) = X(ti)*(t + ) + P(ti/tf)kb(tT) (2.54)

where X(ti), W(ti), and Y(ti) are defined as intermediate terms used to evaluate the

smoothed state estimate, k(ti/tf), and associated covariance, P(ti/tf). The notation

(ti /t,) stands for "at time, ti, based on measurements through time t and on measurements

from time ti".

A metric has been developed to determine the relative benefit of Kalman smoothing

over Kalman filtering alone. This metric, the Fraser smoothability criterion [25], is based

upon an eigenvalue decomposition of the stochastic controllability matrix:

[kti Qd(ti) 'P(ti+1,ti)Qd(ti) b2(t,+l, ti)Qd(ti) ""' 't'-(ti+1,ti)Qd(ti)]

(2.55)

As the eigenvalues of the stochastic controllability matrix become large, the greater the

relative benefit of smoothing.

2.5 Digital Filtering

This section describes the types of digital filters considered in this research: Finite

Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters.

2.5.1 FIR Filter. The causal FIR filter, shown in Figure 2.2, is a non-recursive

discrete-time filter that depends only on the present and past input signals. The transfer

function of an FIR filter is given as:

N-1

H(z) = E h(n) z - n, (2.56)
n=O
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where h(n) is the filter impulse response of length N.

x(nT) - --------- Z1

(0)h(1) h(2) h(N-2) h(N-1)

@ + -------- y(nT)

Figure 2.2 Structure of FIR Filter

The FIR filter has several interesting properties:

Linear Phase An FIR filter can be designed with linear phase, wherein we assume that

there will be no phase distortion of the filtered signal.

Stability FIR filters are non-recursive and inherently stable.

Numerics FIR filters are less sensitive to coefficient accuracy and quantization noise

problems than IIR filters.

Filter Order To achieve the same magnitude response as an IIR filter, FIR filters are of

a much higher order than IIR filters.

2.5.2 HR Filter. The IIR filter, shown in Figure 2.3, is a recursive discrete-time

filter that uses past and present outputs as well as inputs. The transfer function of an IIR

filter is given as:
(z) =_ Ej M Ai z' - 2.7

1 + EjLj B, z-1 (2.57)

The use of past and present outputs in the IIR filter formulation, also known as

feedback, results in some interesting properties:

Non-Linear Phase A casual IIR filter has a non-linear phase response. The implemen-

tations of a non-causal and causal IIR filter can be combined, however, to produce a

zero phase response.

Stability 11R filters employ feedback and can be unstable.
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Figure 2.3 Structure of IIR Filter (Canonic Form)

Numerics IIR filters are sensitive to coefficient accuracy and quantization noise problems.

Filter Order IIR filters are typically of much lower order than a corresponding FIR filter.

Having a lower order also gives the IIR filter a better (shorter) transient response,

requiring fewer sample periods to reach steady-state operation.

There are four classic IIR filters: Butterworth, Chebyshev, inverse Chebyshev (or

Chebyshev II) and Elliptic. These four filter types can be classified under two error ap-

proximation measures. One measure involves a Taylor's series expansion, equating as many

of the derivatives of the desired response to actual response as possible. The other measure

attempts to minimize the maximum difference between the desired and actual responses

over a frequency range. These IIR filters are often designed as analog filters and trans-

formed to digital filters using the bilinear transformation. Good discussions of 11R filter

design can be found in digital signal processing textbooks, such as [7,31].

2.6 Summary

This chapter has given a brief introduction to calculating an approximation to ve-

locity from discrete position data. Also given is theory relating to the "raw" GPS mea-

surements: pseudorange, deltarange and carrier-phase. The Kalman filter/smoother is

presented as a means to model the trajectory of an aircraft in controlled flight. Finally,

the FIR and IIR digital filter architectures are outlined and proposed for this research. The

material presented in this chapter forms a base of information, essential for understanding

the results to be presented later.
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III. Models

3.1 Overview

This chapter begins by presenting the simple kinematic models describing the tra-

jectory of an aircraft in controlled flight. Next, the tropospheric estimation error, receiver

noise and multipath error models are developed for use in both the Kalman filter/smoother

and discrete-time filtering and numerical methods approaches. Finally, a computer-assisted

design methodology for the FIR and IIR discrete-time filters is presented.

3.2 Kinematic Models

The kinematic models developed in this section are intended to adequately describe

the motion of an aircraft along a trajectory segment. A trajectory segment is defined as a

continuous portion of the overall trajectory.

Kinematic modeling describes motion by defining a kinematic position vector

r(t) = {x(t), y(t), z(t)}, (3.1)

a kinematic velocity vector,

v(t) = dr(t) -dx(t) dy(t) dz(t) (3.2)
d- i dt ' dt)}

a kinematic acceleration vector,

d2r(t) {d 2 (t) d2y(t) d2 z(t).
a() dt2  dt2  d 2 ' d 2 (3.3)

and so on:
dr(t) _d_ dy(t) dnz(t)(
dtn = d-n- ' dtn , dtn .(34

These representations of motion are each equivalent if the appropriate initial conditions are

known and the function r(t) is continuously differentiable. In practice, these assumptions

generally do not hold and the closest representation to the measurement is chosen. In this

way, position information can be used to determine an approximation to velocity.
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For this effort, the initial conditions are not precisely known, the time history is

discretized and the position measurements are noise corrupted. The technique of pseudo-

noise addition [25] is used in an attempt to compensate for these shortcomings. The models

can be expressed as a system of stochastic difference equations of the form:

x(tj) = 4I (tj, ti-1)x(ti-1) + Gd(ti)wd(ti-i) (3.5)

z(tj) = H(ti)x(ti) + v(ti), (3.6)

where: x(ti) = n-dimensional system state vector

4(ti, t 1 ) = state transition matrix

Gd(ti) = noise distribution matrix

wd(ti-1) = white Gaussian dynamics noise vector of covariance, Q(t)

z(ti) = m-dimensional measurement vector

H(ti) = measurement matrix

v(ti) = white Gaussian measurement noise vector of covariance, R(t).

Three simple kinematic models are used in this research: a constant velocity with

white noise added, constant acceleration with white noise added, and constant acceleration

with noise modeled as a first order Markov process.

3.2.1 Constant Velocity. The constant velocity model assumes that the aircraft's

acceleration is well described by a zero mean white Gaussian noise, Wd, of strength Qd.

The constant velocity model is given by:

x= P VX Py Vy Vz (3.7)

and

1 T 0 0 0 0

0 0 1 T 0 0
= 

(3.8)
0 0 0 1 0 0

0 0 0 0 1 T,

0 0 0 0 0 1
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where T, is the sampling time of the discrete system, and Qd is the equivalent discrete

time noise approximated by:

Qd4 Z 1 [4 (ti, ti-j)G(t)Q(t)G T(t)4,T(ti, ti_1) + G(t)Q(t)G T(t,_)] Ts (3.9)
2

and Q(t) is given by:

q, 0 0

Q(t) [ 0 qy 0 (3.10)

0 0 q

where q., qy, and qz are tunable parameters. The noise distribution matrix is given by:

0 0 0

1 0 0

0 0 0
G (t) =(3.11)

0 1 0

0 0 0

0 0 1

The measurement matrix H is given by:

1 0 0 0 0 0

H= 0 o 1 o o o (3.12)

0 0 0 0 1 0

with a measurement noise covariance of:

0 0

R= 0 G 0 (3.13)

0 0 r

where r., ry, and r, are tunable parameters.
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3.2.2 Constant Acceleration. Similarly the constant acceleration model assumes

jerk is modeled as a zero mean white Gaussian noise and is given by:

x= p. v. a. py vY ay Pz v, az (3.14)

with a state transition matrix:

1 T, lt 0 0 0 0 0 0
2

0 1 T, 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 T, - 0 0 0

= 0 0 0 0 1 T, 0 0 0 (3.15)

0 0 0 0 0 1 0 0 0

0 0 0 000 i T T.
S 2

0 0 0 0 0 0 0 1 T

0 0 0 0 0 0 0 0 1

where T, is the sampling time of the discrete system, and Qd is the equivalent discrete

time noise given by (3.9) and (3.10). The noise distribution matrix is:

0 0 0

0 0 0

1 0 0

0 0 0

G(t) 0 0 0 (3.16)

0 1 0

0 0 0

0 0 0

0 0 1
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The measurement matrix H is given by:

1 0 0 0 0 0 0 0 0

H= 00 0 1 000 0 I (3.17)

0 0 0 0 0 0 1 0 0

with a measurement noise covariance of:

r, 0 0
R 0 ry 0 (3.18)

0 0 r,

where r,, ry, and r, are tunable parameters.

3.2.3 Constant Acceleration, Noise 1st Order Gauss-Markov. In this section,

the constant acceleration model developed in Section 3.2.2 is augmented with additional

shaping filter states. This model is used to describe the jerk of the aircraft as a zero mean,

first order Gauss-Markov process. This type of model is very useful for approximating a

variety of empirically observed band-limited noises [24] and is popular in the open literature

[5,42,46]. The model is described by:

i(t) = -(1/T)x(t) + w(t) (3.19)

Also known as a first-order lag, driven by white Gaussian noise of strength Q = 2U2/T,

this process produces an output with an autocorrelation described by

T (r) = E{x(t)x(t + r)} = 2e-
17/T (3.20)

where T is the correlation time and a2 is the mean squared value. The first-order Gauss-

Markov process is an exponentially time-correlated process.
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The model structure is identical to the model presented in Section 3.2.2 with the

exception of the state transition matrix:

1 T, fl,3 0 0 0 0 0 0

0 1 f2,3 0 0 0 0 0 0

0 0 f3,3 0 0 0 0 0 0

0 0 0 1 T f4,6 0 0 0

0(ti,ti)= 0 0 0 0 1 fA, 6 0 0 0 (3.21)

0 0 0 0 0 f6,6 0 0 0

O0 0 0 0 0 1 T f7,9

0 0 0 0 0 0 0 1 fA,9

0 0 0 0 0 0 0 0 f9,9

where

fl,3 = f4,s =f7,9 T. T + T 2 (e(+T ' ) - 1) (3.22)

=fs, fs, = T-(1-e

f3,3 f, f9, = e(TS)

3.3 Noise Models

The major GPS error sources can be broken down into three categories: Transmitter

Errors, Propagation Errors, and Receiver Errors. Traditional GPS transmission errors

include orbital estimation errors, clock errors and the effects of Selective Availability (SA).

Propagation errors include the effects of the ionosphere and troposphere on the GPS signal,

as well as multipath at the receiver site. Receiver error can be attributed to multipath

effects and a generic receiver noise (Phase Locked Loop, clock).

For the pseudolite-based positioning system used in this research, orbital estimation

and SA effects are not applicable sources of error. Similarly, since the pseudolite signals

do not travel through the ionosphere, this source of error is neglected. For carrier-phase

signals the pseudolite clock error is assumed to be eliminated by the differencing approach

in Section 2.3.2.1.
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3.3.1 Tropospheric Delay. The tropospheric delay effect most commonly pre-

sented in GPS literature actually reflects the combined effect of the troposphere and

stratosphere. The troposphere is defined as the first 10 km above the Earth's surface.

The stratosphere is defined as the region just above the troposphere and extends to 60

km [19]. Figure 3.1 portrays the separation of the troposphere and stratosphere.

Stratosphere 50 Ian

Troposphere 10 km

Figure 3.1 Location of Troposphere and Stratosphere

Since most of the water vapor is concentrated in the lower atmosphere, below 10

km, most tropospheric models essentially divide the tropospheric effect into wet and dry

effects [16]. The dry component accounts for 80-90% of the total tropospheric delay effect

and is predictable within 1% at the zenith point, while the wet component makes up 10-

20% of the total tropospheric delay effect and is predictable within 10-20% at the zenith

point [19].

There are several tropospheric models used in GPS research [16], including the Saas-

tamoinen, Davis, Goad and Goodman, Yionoulis, Black, Chou, Marini, and others. Dif-

ficulties arise in using the traditional GPS tropospheric models in this research, due to

the inverted nature of the pseudolite positioning concept. First, the GPS tropospheric

models assume that the GPS signal is transmitted from satellites in high orbits. The tro-
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pospheric delay is then calculated from the top of the stratosphere to the receiver; in this

case, an aircraft flying somewhere in the troposphere. However, the delay term that we

are concerned with is between the aircraft and a ground receiver. One might compensate

for this by calculating the total delay between the satellite and ground receiver and then

subtracting the delay between the satellite and aircraft. Secondly, the tropospheric delay

is calculated as a function of the zenith angle. As these zenith angles go beyond 70 - 800

many of the GPS tropospheric models attempt to model the curvature of the Earth and

consequently overestimate the delay term [16].

3.3.2 Receiver Noise and Multipath Error. An approximation to the strength of

receiver noise is to treat 1% of the signal wavelength as white noise [19]. This noise is due

to the processing of the signals by the receiver hardware. For example, the GPS Li carrier

is transmitted at 1573.42 MHz, corresponding to a wavelength of 19cm. Thus, the receiver

noise in the carrier-phase Li measurement can be modeled as white noise with a strength

of 1.9mm. Similarly, the code phase frequency is 1.023 MHz resulting in a wavelength of

293m and a receiver noise strength of 2.93m.

Multipath effect is caused by the antenna being exposed to reflected signals, causing

interference in the receiver [19]. The effect of multipath is highly dependent upon the

geographic and cultural features of the receiver site. Several parameters are used to describe

the reflection of a signal off the Earth's surface. These include the dielectric constant

(Kr9 ), conductivity (a) and, index of refraction (n = !K/rg). The multipath effect is

also dependent upon the elevation angle of the pseudolite, 0,. Figure 3.2 shows the effect

of reflection. The critical elevation angle is defined as the angle below which Snell's law

predicts reflection. Using Snell's law, the critical angle (O) is determined as:

0, = sin-'( n) (3.23)ng

0, = 90o 0" (3.24)

where na is the index of refraction of air and ng is the index of refraction of the ground.

Sandy, dry areas, typical of the desert of New Mexico, have an index of refraction n9 = 3.2

[19]. The index of refraction of air is defined as na = 1. Using (3.24) and (3.24), the critical
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signal reflected part

Figure 3.2 Multipath Signal Reflection

elevation angle is determined to be 0, = 71.80. Thus, as aircraft flying over the RRS range

become closer to the ground and fly farther away from the receivers, they will induce

multipath effects at elevation angles less than 0,. Section 4.2 illustrates the relationship

between the flight profile, receiver locations, and geometry concerns (e.g. elevation angles).

3.3.3 Noise Model Implementation. Figure 3.3 is a SIMULINK block diagram

of the noise model used in this research. This model outputs the ranging error between

a given pseudolite transmitter and receiver. Inputs into the model are a time history of

range and elevation angle.

There are three sections of the noise model: the multipath error, receiver noise and

tropospheric estimation error. The multipath error and tropospheric estimation error are

modeled in this research as first order Markov processes with time constants of 5 seconds

and 30 seconds respectively. Receiver noise is customarily modeled as "white" noise. The

multipath error model uses the elevation angle as a parameter to scales the multipath

range error with the following formula:

I- sin(OI), when O < 71.80

0, when 0, > 90'
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Similarly, the tropospheric estimation error model takes range as a parameter and scales

btrop:

6trop range (3.25)6toy lkm

such that the error is normalized about the radius of the troposphere, or 10 km.

Two noise models are used in this research. The first model, hereafter refered to as

the "colored" noise model, contains tropospheric, multipath and receiver noise error and

is described above. The other model is a "white" noise model, where the tropospheric

and multipath effects are neglected. The receiver noise strength is increased to achieve an

overall 0.1m 3-D RMS position solution.

Fifty realizations of each noise model were generated and saved. This allows both

the digital filtering and numerical differentiation approach and Kalman filtering/smoothing

approache to share the same noise realizations.

3.4 Digital Filter Design

In this research, the digital filters were synthesized with the use of computer-aided

design tools found in MATLAB's Signal Processing Toolbox. The design procedure involves

identifying the following parameters that characterize the performance of a low pass filter:

a Rp = allowed passband loss

* R, = desired stopband attenuation

9 bp = allowed passband ripple

* 6, = allowed stopband ripple

e fp = desired passband frequency

a f, = desired stopband frequency

These design parameters are shown in Figure 3.4 The passband includes all positive fre-

quencies up to fp, the stopband includes all frequencies above f,, and the transition band

is defined as the region between f, and f,. For FIR filters, the MATLAB function remezord

accepts as inputs: fp, f,, bp and 6, and returns the parameters required to design the FIR
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Figure 3.4 Parameters for Filter Design

filter using the well-known Parks-McClellan algorithm. Similarly, IIR filters are designed

using MATLAB functions that are capable of generating Butterworth, Chebyshev (I and

II) and Elliptic filters. By varying combinations of the parameters Rp, R,, fp, f,, bp and

b,, the filter design is accomplished in an iterative and intuitive manner.

For example, to design the lowest order Chebyshev-I low pass filter whose passband

frequency is 0.5, with stopband frequency of 0.8, with no more than 1 dB of loss in the

passband, has at least 20 dB attenuation in the stopband, and allows 0.1 dB of passband

ripple, one would use the MATLAB commands cheblord and chebyl, as in the following:

[N, Wn] = cheblord(O.5, 0.8, 1, 20);

[B, A] = chebyl(N, Wn, 0.1);

Now the filter is completely described by vectors B and A, representing the numerator and

denominator coefficients of the filter transfer function.
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IV. Results

4.1 Overview

This chapter presents the results of the development and testing of the two ap-

proaches taken in this research: Digital filtering with numeric differentiation and Kalman

filtering/smoothing. The chapter begins with a discussion of the aircraft trajectories used

in this research.

4.2 Aircraft Trajectory

The software package PROFGEN [32] is used to create the flight profile used in

this research. The flight profile is essentially the same used in previous CIGTF-sponsored

AFIT thesis research. It is intended to simulate a two-hour mission performed by a high

performance multi-role fighter aircraft. Figure 4.1 shows a two dimensional representation

of the profile. Figure 4.2 shows the time history of "gees" as experienced by the aircraft,

which provides an overall measure of the dynamics of the profile.

-0

0 1000 2000 3000 4000 5000 6000 7000 8000

_ o
z
IM

S

0 1000 2000 3000 4000 5000 6000 7000 8000

00 1000 2000 3000 4000 5000 6000 7000 8000
"rime (a)

Figure 4.1 2-D View of Flight Profile

Figure 4.3 shows a three-dimensional view of the profile, which is oriented over the

CIGTF RRS range. Overlayed on the profile are the locations of the six receiver sites
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considered for this research. Table 4.1 lists the geographic location of the receivers. These

receivers are located at existing RRS transponder sites [33], and are not formally optimized

for geometry. The position of the receivers relative to the flight profile can also be seen in

Figure 4.4.

Table 4.1 Pseudolite Receiver Locations for NRS Simulation

# Location Longitude Latitude Altitude
R1 Tula PK, NM 33001.36 '  -106°08.20' 1322.53m
R2 TDC, NM 32055.58 '  -106008.50 ' 1241.76m
R3 Oscura PK, NM 33044.58 '  -106022.14 ' 2417.51m
R4 Salinas, NM 33017.55 '  -106031.44' 2695.11m
R5 Sac Peak, NM 32047.16 '  -105049.15 ' 2804.81m
R6 Twin Buttes, NM 32042.12 '  -106'07.38 ' 1365.71m

-100

-102

S-104 ........ .-105

x iX

-107
31 32 33 34 35 36 37

Latitude (deg)

Figure 4.4 Top View of Flight Profile and Receiver Locations

Of concern is the need to keep the configuration of the receivers non-coplanar, to

ensure a reasonable three dimensional solution [36]. Furthermore, the ranges and elevation

angles between the receivers and the aircraft are of interest, as they effect the tropospheric

delay and multipath errors. Figure 4.5 shows the ranges and elevation angles for the flight

profile. Notice that the elevation angles are typically below 10 degrees, with the exception
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of when the aircraft flies almost directly over the receivers. These low elevation angles are

not only good conditions for inducing multipath errors, but also represent an undesirable

coplanar receiver configuration.

There is a segment of the trajectory that shows small negative elevation angles.

Elevation angle is calculated using a plane tangent to the surface of the Earth as reference.

Since altitude is computed as height above the WGS-84 reference ellipsoid, these small

negative angles are a result of the aircraft altitude being below the tangent plane extending

out over a curved Earth.

X 10,

60c 1000 2000 3000 4000 5000 6000 7000 80004 0 ..~ ~.................... .... ....i........................ i... ....i............ .........
0

0 1000 2000 3000 40L00 50L00 6000 7000 8000

Time (s)

Figure 4.5 Range and Elevation Angles Between Aircraft and Receivers

Another metric for the geometry of receiver locations is to consider the Geometric

Dilution of Precision (GDOP) . GDOP is a ratio of 3-D position (and time) accuracy to

measurement accuracy [18].

GDOP is defined as:

GDOP = /Tr{(AT . A) -i} (4.1)
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where the matrix A is defined as,

Dxo Dyo DzO Dto

A = Dx1  Dyl Dz1  Dt (4.2)

Dx, Dy Dz, Dt,

containing the directional derivatives:

Dxi = (xj - xi) (4.3)
V(Xi - xi), + (y. - yi)2 + (z, -

Dy, = (Yi - y i )  (4.4)
V( Xj - xi) 2 + (yj - y, )2 + (zj - Z,)2

Dz = (zi - zi) (4.5)
V(Xj - X) 2 + (yj - y,) 2 + (zj - Z,)2

Dti = 1 (4.6)

GDOP is calculated for the entire flight profile using the receiver locations in Table

4.1 and is presented in Figure 4.6. As GDOP grows, the set of equations that must be

solved simultaneously to yield position and time become more linearly dependent. Not only

does the uncertainty in the solution grow as GDOP becomes large, but in the presence

of measurement noise, the existence of a solution is in jeopardy. In practice, acceptable

GDOP for a GPS receiver is considered to be an arbitrary value usually below 10. Figure

4.7 shows a portion of the flight segment with reasonable GDOP.

In simulation it is possible to preserve a good GDOP throughout the flight by placing

additional receivers along the flight path. A crude, yet effective algorithm was developed

to accomplish this. The algorithm monitors GDOP during a flight. If GDOP exceeds a

given threshold, a search in a fixed radius around the aircraft locates the site yielding the

best improvement in GDOP. The number of receivers used to determine GDOP at one

time is fixed, and the addition of a new receiver generally results in the removal of an

existing receiver. As receiver sites exceed range or elevation limits, they are removed from

consideration as well.
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In Figure 4.8 we see the receiver laydown pattern for the entire flight profile. During

this flight, receivers were placed such that GDOP was not allowed to exceed 10, as shown

in Figure 4.9. The receiver locations are marked with an X. The pattern in Figure 4.8,

forms a "racetrack" surrounding the flight profile. The relative proximity of the receiver

locations to the flight profile suggests that rather than trying to encompass the entire flight

profile with a single set of receivers, a "racetrack" pattern may be a potential strategy for

SARS receiver deployment1 . This algorithm is effective in limiting GDOP for simulation

purposes yet also provides insight into the real-world geometry problem facing SARS.

4.3 Digital Filtering with Numeric Differentiation

In this section, the validation and results of the digital filtering with numeric differ-

entiation approach are presented. First each of the components of the block diagram are

validated for performance. The validation procedure involves benchmarking the compo-

'The issue of receiver geometry for a realistic flight profile and a reasonable number of receiver sites

should be addressed in more detail as an issue of feasibility for the SARS project.
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transform was implemented via MATLAB's built-in Fast Fourier Transform (FFT) routine

to examine the frequency spectra of the signal. The flight profile was generated at 1000

Hz to ensure that if any aliasing was present at lower sampling rates, it could be detected.

Figures 4.10 and 4.11 show the frequency spectra for 1000 Hz and 10 Hz respectively.

Figure 4.10 verifies that there are no components of the frequency spectra at high frequen-

cies. Similarly at 10 Hz, there is no evidence of frequency components that might suggest

aliasing at lower frequencies.
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4.3.2 Numerical Differentiation Algorithm Performance. Two procedures for

determining a numerical derivative were examined. The first procedure involves an ex-

trapolated Taylor's series expansion of the derivative operation as described in Section

2.2.2. The second procedure uses splines to perform a curve fit to the numerical data. An

analytical derivative of the equation of the splines, evaluated at the points of interest, gives

an approximation to the derivative.

4.3.2.1 Central Difference Equations. The central difference equation ap-

proximation for the first derivative is well documented [6,15,22,45] in numerical methods

texts. Equations (2.10), (2.11), and (2.12) show the algorithms used in this research.

To test the algorithms, a test signal is defined:

r(x) = sin(x 2 ), (4.7)

which has an exact analytic derivative:

r'(x) = 2x cos(x 2). (4.8)

Equations (4.7) and (4.8) are evaluated over the interval [0, 37r] at a given sample rate.

The numerical derivative is computed and is compared to the exact value determined from

(4.8). As expected, (2.12) demonstrates better performance than the other equations in

the absence of noise. Figure 4.12 shows the error committed by the first, second and third

order central difference equations at a 100 Hz sample rate. We can see from Figure 4.12

that the third order central difference equation shows small errors on the order of 10-6,

compared to 10 - 1 and 10' for the first and second order central difference equations

respectively.

The test signal is chosen such that as x increases, the frequency of the test signal si-

nusoid increases, and the approximation to the derivative worsens. This error is attributed

to two factors: the truncation of the higher order terms in the Taylor's series and the

nature of the sampled waveform. Truncation establishes the order of magnitude of the

error, while the increasing frequency of the signal exposes the error due to sampling.
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Next we examine the performance of these algorithms under realistic dynamics, as

provided by the PROFGEN flight profile. The PROFGEN indicated positions are numer-

ically differentiated using the central difference equations. These computed velocities are

compared to the PROFGEN indicated velocities, which are considered to be truth data.

See Appendix A for a description of the error metrics used in this research. These results

are collected in Table 4.2. As expected, the higher order algorithm provides the best per-

formance at both data rates. Also, as the data rate is increased from 1 Hz to 10 Hz, all of

the numerical differentiation algorithms improve.

Direction [Rate I Error (m/s) la (m/s) Order

3-D RMS 1 Hz 6.125160e-02 4.035006e-01 1st
3-D RMS 1 Hz 1.355792e-02 1.164690e-01 2nd
3-D RMS 1 Hz 8.047649e-03 8.551035e-02 3rd
3-D RMS 10 Hz 6.510429e-04 4.601638e-03 1st
3-D RMS 10 Hz 5.020955e-06 1.171970e-04 2nd
3-D RMS 10 Hz 1.301999e-06 5.134946e-05 3rd

Table 4.2 Performance of Numeric Differentiators Using Flight Profile

Figure 4.13 shows the 3-D RMS error of the third order numerical differentiator for a

10 Hz data rate. This plot shows large "spikes" of error at specific time intervals, which are

correlated in time to the highly dynamic portions of the flight trajectory as seen in Figure

4.2. While the magnitudes of the spikes in Figure 4.13 vary for the different numerical

differentiation algorithms and data rates, the location of these "spikes" remains consistent.

We would then expect better performance of the numerical differentiation routines

during periods of low dynamics. Table 4.3 shows the numeric differentiator performance

over a segment of the flight profile with benign dynamics (t = 0 to 100 seconds). Comparing

Tables 4.2 and 4.3 we see a 93%-98% improvement in 3-D RMS error.

While it is worthwhile to consider the performance of these numerical differentiators

in the absence of noise, we can also determine the performance of each algorithm in the

presence of corrupting noise. Two types of noise corruption are employed. One is a

simulation of "white" Gaussian noise, while the other is a combination of white and time

correlated noise, hereafter referred to as "colored" Gaussian noise. The each noise type is
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Figure 4.13 Error in 3rd Order Numerical Derivative Using Flight Profile at 10 Hz

Dirction IRate IMean Error (m/s) I la (m/s) JOr-d er]

3-D RMS 1 Hz 4.106344e-03 1.386701e-02 1st
3-D RMS 1 Hz 2.907217e-04 3.474643e-03 2nd
3-D RMS 1 Hz 1.330864e-04 2.321516e-03 3rd
3-D RMS 10 Hz 4.145871e-05 1.418019e-04 1st
3-D RMS 10 Hz 2.859088e-07 1.245242e-05 2nd
3-D RMS 10 Hz 1.123711e-07 7.592645e-06 3rd

Table 4.3 Performance of Numeric Differentiators Using Benign Flight Profile
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tuned to provide an overall 0.1 m 3-D RMS la error in position as described in Section

3.3.3.

Mean Error Mean Error 1
Direction Rate Colored (m/s) l (m/s) White (m/s) j la (m/s) Order

3-D RMS 1 Hz 4.033391e-01 9.760447e-03 4.568517e-01 3.114718e-02 1st
3-D RMS 1 Hz 5.264175e-01 1.240445e-02 5.284405e-01 4.333967e-02 2nd
3-D RMS 1 Hz 5.949750e-01 1.387963e-02 5.467742e-01 5.120870e-02 3rd
3-D RMS 10 Hz 6.300444e-02 4.476222e-03 9.252125e-02 8.219554e-01 1st
3-D RMS 10 Hz 6.256138e-02 5.565853e-03 1.231328e-01 1.114507e±00 2nd
3-D RMS 10 Hz 6.930055e-02 5.707011e-03 1.449810e-01 1.306353e+00 3rd

Table 4.4 Performance of Numeric Differentiators in the Presence of Noise Using Benign
Flight Profile

The results in Table 4.4 show the performance of the three central difference equation

algorithms in the presence of noise, for a 50 Monte Carlo run simulation. For both the 1

Hz and 10 Hz data rates the benefit of using the higher order differentiators is no longer

evident. In fact, at 1 Hz the higher order differentiators show a 14% to 47% increase in 3-D

RMS error compared to the first order equation. At 10 Hz, the second order differentiator

slightly outperforms the first order algorithm for the case of colored noise. However, in all

other cases at 10 Hz, the first order differentiator provides the best performance.

4.3.2.2 Differentiation Using Cubic Splines. Another method of approxi-

mating a derivative is to determine a closed form expression for a curve that fits the data

to be operated on. An analytic derivative is taken of the curve and then evaluated at the

points of interest to generate the derivative approximation. While there are many curve

fitting methods available, cubic splines handle large sets of data points well and guarantees

continuous derivatives over the entire data set [15,45]. As in the previous section, (4.7) and

(4.8) are evaluated for x = 0 to 37r at a given sample rate. The derivative is approximated

using cubic splines and is compared to the exact value determined from (4.8). Comparing

Figures 4.12 and 4.14 shows the cubic spline derivative performing between the second and

third order numerical differentiators.
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Figure 4.14 Error in Cubic Spline Derivative in the Absence of Noise

As with the numerical differentiators, it is of interest to examine the performance

of the cubic spline method under a realistic flight profile. The cubic spline method shows

significant improvement in velocity accuracy as the data rate increases from 1 Hz to 10

Hz. Also, under this realistic flight profile, the cubic spline method slightly outperforms

the third order numerical differentiator. The results of the cubic spline differentiator are

tabulated in Table 4.5. In Figure 4.15 the 3-D RMS error of the cubic spline differentiator

for 10 Hz is shown. The location and magnitude of the large spikes compares favorably to

what is shown in Figure 4.13 as well as the aircraft dynamics shown in Figure 4.2.

We can also compare the performance of the cubic spline differentiator to the numer-

ical differentiation routine, within the benign portion of the flight profile. The performance

advantage of the cubic spline method is easily seen by comparing Tables 4.3 and 4.5. The

cubic spline differentiator shows an improvement over the third order central difference

equation in 3-D RMS error of 64% and 84% for 1 Hz and 10 Hz data rates respectfully.

Cubic spline differentiation can also be applied to noisy signals. To accommodate

noise, a smoothing parameter, p E [0...-1], is introduced. For p = 0, the cubic spline

algorithm performs a least-squares straight line fit to the data. For p = 1, the natural
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Figure 4.15 Error in Cubic Spline Derivative Using Flight Profile at 10 Hz

Direction iRate Mean Error (m/s) la (m/s) Profile

3-D RMS 1 Hz 7.373304e-03 7.608367e-02 Entire

3-D RMS 10 Hz 1.345184e-06 4.488712e-05 Entire

3-D RMS T 1 Hz 4.702409e-05 4.779469e-04 Truncated
3-D RMS 10 Hz 1.767529e-08 1.428987e-07 Truncated

Table 4.5 Performance of Cubic Spline Differentiator in the Absence of Noise
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cubic spline fit is performed. As p moves from 0 to 1, the cubic spline algorithm changes

from one extreme to the other. The smoothing parameter is in general arbitrarily chosen.

In this case, p = 0.85 yielded the best performance.

Mean Error Mean Error Smoothing
Direction Rate Colored (m/s) lr (m/s) White (m/s) l0 (m/s) Parameter

3-D RMS 1 Hz 5.241575e-02 4.872613e-03 9.304974e-02 7.544461e-03 0.85
3-D RMS 10 Hz 8.828444e-02 6.173212e-03 8.130258e-02 5.698531e-03 0.85

Table 4.6 Performance of Cubic Smoothing Spline Differentiators in the Presence of Noise
Using Benign Flight Profile

Table 4.6 shows the performance of the cubic spline differentiator in the presence of

noise. Comparing the cubic spline differentiator results to the central difference equation

differentiator results of Table 4.4 favors the cubic spline differentiator. Except for the case

of colored noise at 10 Hz, the cubic spline yields lower 3-D RMS errors by 40% to 80%.

4.3.3 Digital Filter Results. In order to validate the performance of the digital

filters used in this research, we first examine what penalty, if any, results from their use.

For example, filter cutoff frequencies must be chosen to eliminate as much noise as possible,

while preserving the true underlying signal. To do this, we apply low pass filters to both

noisy and noiseless signals, and observe the results. In both cases, the difference between

the original, noiseless signal and the filtered signal is the error we wish to quantify.

4.3.3.1 HR Filter Performance. Four types of IIR filters were examined:

Chebyshev I, Chebyshev II, Butterworth and Elliptic. The filters were evaluated for per-

formance at data rates of 1 Hz and 10 Hz using the truncated flight profile. The filter

design parameters were adjusted by trial and error for each filter type to achieve it's

"best" performance.

Table 4.7 lists the design parameters and resulting filter order used for each of the

filter designs. The passband frequencies (fp) and stopband frequencies (f,) are given in

normalized frequency (0 to 1), the allowable passband ripple (6p) and desired stopband

attenuation (6,) are given in decibels. These design parameters are used to describe the
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desired properties of a low pass filter, which is synthesized using MATLAB as described

in Section 3.4.

Type Rp(dB) Rs(dB) I fp f, bp (dB) I (dB)I 1order
Chebyshev-I le-07 40 0.55 0.8 le-07 - 9

Chebyshev-Il le-07 20 0.55 0.75 le-07 - 8
Butterworth 2  le-07 30 0.55 0.8 - 13
Elliptical le-07 40 0.55 0.8 le-07 7

Table 4.7 IIR Filter Design Parameters and Resulting Filter Order

The Butterworth filter designed using parameters similar to the other IIR filters

was unstable. Since the Chebyshev (I and II) and Elliptic filters would provide better

performance than a reduced order Butterworth, the Butterworth filter was removed from

consideration. Table 4.8 shows the results of applying the three types of filters to noiseless

position data at 1 Hz and 10 Hz rates respectively. The Elliptic filter trails the performance

of the Chebyshev filters, with the Chebyshev-1J filter yielding the best performance.

Direction I Filter Type [ Rate I Mean Error (m)

3-D RMS Chebyshev-J 1 Hz 4.112376e-02
3-D RMS Chebyshev-II 1 Hz 1.058158e-03
3-D RMS Elliptic 1 Hz 9.470536e-02
3-D RMS Chebyshev-I 10 Hz 3.677020e-04
3-D RMS Chebyshev-II 10 Hz 1.521616e-04
3-D RMS Elliptic 10 Hz 8.528341e-04

Table 4.8 Performance of IIR Filters in the Absence of Noise

The performance of the IIR filters in the presence of noise is displayed in Table 4.9.

Tests were performed at 1 Hz and 10 Hz data rates with both white noise and colored noise

models. Although the Chebyshev-II filter gave the best results in the absence of noise, the

Chebyshev-I filter outperformed all other filters except for the case of colored noise at 1 Hz.

The fact remains, however, that the prefilter is unable to significantly reduce the amount

of noise in the position signal before numerical differentiation takes place.

2 Unstable filter
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Direction Filter Type Rate Mean Error (m) Noise

3-D RMS Chebyshev-I 1 Hz 1.387863e-01 White
3-D RMS Chebyshev-II 1 Hz 1.432184e-01 White
3-D RMS Elliptic 1 Hz 1.810501e-01 White
3-D RMS Chebyshev-I 10 Hz 1.173286e-01 White
3-D RMS Chebyshev-II 10 Hz 1.368191e-01 White
3-D RMS Elliptic 10 Hz 1.190525e-01 White

3-D RMS Chebyshev-I 1 Hz 1.883719e-01 Colored
3-D RMS Chebyshev-II 1 Hz 1.692749e-01 Colored
3-D RMS Elliptic 1 Hz 2.291981e-01 Colored
3-D RMS Chebyshev-I 10 Hz 1.384984e-01 Colored
3-D RMS Chebyshev-I 10 Hz 1.413331e-01 Colored
3-D RMS Elliptic 10 Hz 1.390585e-01 Colored

Table 4.9 Performance of IIR Filters in the Presence of Noise

4.3.3.2 FIR Filter Performance. While the IIR prefilter was able to reduce

the overall error, albeit slightly, an FIR filter could not be designed to meet the performance

requirements. The MATLAB routine remezord was used to implement an FIR filter with

the characteristics seen in Table 4.10. Comparing Tables 4.7 and 4.10, the order of the FIR

Type Rp(dB) R,(dB) fp f, 6, (dB) 6, (dB) order

FIR le-07 0.55 0.8 - le-07 68
FIR le-07 - 0.55 0.75 - le-07 85

Table 4.10 FIR Filter Design Parameters and Resulting Filter Order

filter is extremely high compared to that of the 11R filter. This high filter order results in

an unacceptable transient response as the filter requires as many as 85 samples to reach it's

optimal performance. For this reason the FIR filter was dismissed as a potential prefilter

or postfilter candidate.

4.3.4 Post-Filter Design. Considering the results of Section 4.3.3, the Post-

Filter was designed as a Chebyshev-I low pass filter. Since the Chebyshev-I showed only

a marginally better improvement over other IIR filter types for the prefilter, an extensive

analysis was not completed for the postfilter. The following parameters for the Chebyshev-

I filter were found to give the best results for the overall system: The results for the overall
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Type fp f, b5p (dB) b., (dB) order Data rate

Chebyshev-I 0.25 0.55 le-04 80 10 1Hz
Chebyshev-I 0.04 0.13 le-04 80 10 10 Hz

Table 4.11 IIR Post-Filter Design Parameters and Resulting Filter Order

system follow in Section 4.3.5

4.3.5 Overall Results. In this section, results are presented for the overall nu-

merical methods and digital filtering approach. Figure 4.16 depicts the overall approach

involving a prefiltering stage, a numerical differentiator and a postfiltering stage. The

Vk

rk d
dt

Pre-Filter Post-Filter
-----------------------------------------------------------

Figure 4.16 Overall Block Diagram for Digital Filtering Approach

prefilter and numerical differentiator performance has been validated in Sections 4.3.3 and

4.3.2. Based upon these results, the overall system is implemented using the Chebyshev-I

low pass filter and the cubic smoothing spline differentiator. The post filter design param-

eters are presented in Table 4.11.

Mean Error Mean Error

Direction Rate Colored (m/s) la (m/s) White (m/s) lo (m/s) Order

3-D RMS 1 Hz 6.972119e-02 6.267176e-03 5.336845e-02 1.080036e-02 1st
3-D RMS 1 Hz 6.982697e-02 6.256767e-03 5.354084e-02 1.079336e-02 2nd
3-D RMS 1 Hz 7.859507e-02 1.151028e-02 7.456002e-02 2.329147e-02 3rd
3-D RMS 1 Hz 6.841166e-02 6.844996e-03 6.943656e-02 6.512700e-03 Cubic
3-D RMS 10 Hz 6.608933e-02 4.165794e-03 7.414128e-02 5.083268e-03 1st
3-D RMS 10 Hz 6.015083e-02 5.208232e-03 7.061738e-02 5.517326e-03 2nd
3-D RMS 10 Hz 6.239051e-02 5.323950e-03 7.479032e-02 6.179847e-03 3rd
3-D RMS 10 Hz 5.262775e-02 4.734819e-03 6.263966e-02 5.993183e-03 Cubic

Table 4.12 Overall Performance in the Presence of Noise Using Benign Flight Profile
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The overall performance of the approach of digital filtering with numeric differenti-

ation is summarized in Table 4.12. The results show a slight advantage with the higher

data rate of 10 Hz. The cubic spline algorithm demonstrates the best overall performance,

including meeting the specifications of 0.005 m/s 3-D RMS la for the case of colored noise

at 10 Hz.

4.4 Kalman Filtering/Smoothing

This section presents the results of the Kalman Filtering/Smoothing approach. Three

different filter models are examined: a constant velocity model, a constant acceleration

model and a constant acceleration with noise modeled as a first order Markov process.

Each model is run at 1 Hz and 10 Hz. The benefits of smoothing as opposed to just

filtering are presented.

The flight profile used is the same benignly dynamic trajectory used for the digital

filtering and numeric differentiation approach. The trajectory shows the initial climb to

altitude associated with a takeoff. The ECEF X,Y, and Z velocities are shown in Figure

4.17. After 50 seconds, the aircraft levels off and assumes a true constant velocity in all

70
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Figure 4.17 X, Y, and, Z Velocities for Benign Flight Trajectory
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directions. Performance is evaluated for the entire 100 second segment as well as for the

last 45 seconds which guarantees a true constant velocity.

4.4.1 Constant Velocity Model. The results of the Constant Velocity Kalman

filter/smoother model described in Section 3.2.1 are shown in Tables 4.13 and 4.14. Table

4.13 shows the 3-D RMS error and la of the Kalman filter/smoother in the truncated

flight segment. It is interesting to see that the Kalman filter and smoother showed better

results at 1 Hz rather than 10 Hz.

Direction I Rate 11 Error (m/s) [la (m/s) Filter Type [Noise Type

3-D RMS 1 Hz 1.513682e-02 1.519563e-02 Filter White
3-D RMS 1 Hz 8.156500e-03 6.732130e-03 Smoother White
3-D RMS 1 Hz 9.072810e-03 7.198723e-03 Filter Colored
3-D RMS 1 Hz 6.706086e-03 4.728951e-03 Smoother Colored
3-D RMS 10 Hz 4.502794e-01 1.226147e-01 Filter White
3-D RMS 10 Hz 2.784655e-02 2.200576e-02 Smoother White
3-D RMS 10 Hz 2.307511e-01 3.527986e-01 Filter Colored
3-D RMS 10 Hz 3.682011e-02 2.988482e-02 Smoother Colored

Table 4.13 Constant Velocity Model Using Truncated Flight Profile

When considering the entire benign trajectory we must "open up the bandwidth" of

the filter. Essentially the non-constant velocities of the input data result in the kinematic

model being invalid. To tell the filter to rely more on the measurements than its internal

model, we increase the magnitude of the dynamics driving noise, Q. In this case, the results

for the 1 Hz and 10 Hz data are very similar. Tuning plots for the position and velocity

states are shown in Appendix B.

4.4.2 Constant Acceleration Model. The results of the constant acceleration

Kalman filter/smoother model described in Section 3.2.2 are shown in Tables 4.15 and

4.16. Table 4.15 shows the 3-D RMS error and lo of the Kalman filter/smoother in the

truncated flight segment.

As with the constant velocity model, the Kalman filter dynamics driving noise is

increased to compensate for the dynamics model inadequacies. These results are shown in

Table 4.16. Tuning plots for the position and velocity states are shown in Appendix C.
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Direction ] Rate 11 Error (m/s) la (m/s) ][ Filter Type [Noise Type

3-D RMS 1 Hz 2.902978e-01 5.130680e-01 Filter White

3-D RMS 1 Hz 6.008015e-02 4.753936e-02 Smoother White

3-D RMS 1 Hz 1.212918e-01 1.302018e-01 Filter Colored

3-D RMS 1 Hz 2.813343e-02 2.249046e-02 Smoother Colored

3-D RMS 10 Hz 9.530139e-01 1.982058e+00 Filter White

3-D RMS 10 Hz 2.477768e-02 2.267867e-02 Smoother White
3-D RMS 10 Hz 8.852748e-01 1.393025e+00 Filter Colored

3-D RMS 10 Hz 3.682874e-02 2.981835e-02 Smoother Colored

Table 4.14 Constant Velocity Model Using Entire Benign Flight Profile

Direction I Rate 11 Error (m/s) [ lo (m/s) Filter Type Noise Type

3-D RMS 1 Hz 3.372428e-02 2.795790e-02 Filter White

3-D RMS 1 Hz 1.079198e-02 9.758075e-03 Smoother White

3-D RMS 1 Hz 2.198128e-02 1.742112e-02 Filter Colored

3-D RMS 1 Hz 1.077930e-02 8.012129e-03 Smoother Colored

3-D RMS 10 Hz 1.041561e-02 1.172789e-02 Filter White

3-D RMS 10 Hz 3.921000e-03 4.031051e-03 Smoother White

3-D RMS 10 Hz 2.585014e-02 1.957010e-02 Filter Colored

3-D RMS 10 Hz 1.389758e-02 9.936714e-03 Smoother Colored

Table 4.15 Constant Acceleration Model Using Truncated Flight Profile

Direction [Rate i Error (m/s) lo (m/s) if Filter Type [Noise Type

3-D RMS 1 Hz 1.618147e-01 1.582101e-01 Filter White

3-D RMS 1 Hz 4.853251e-02 3.832201e-02 Smoother White
3-D RMS 1 Hz 7.861218e-02 7.368700e-02 Filter Colored

3-D RMS 1 Hz 2.681462e-02 2.147360e-02 Smoother Colored

3-D RMS 10 Hz 2.361016e-01 5.188239e-01 Filter White
3-D RMS 10 Hz 1.518371e-02 1.315073e-02 Smoother White

3-D RMS 10 Hz 1.180761e-01 1.284944e-01 Filter Colored

3-D RMS 10 Hz 3.151422e-02 2.514358e-02 Smoother Colored

Table 4.16 Constant Acceleration Model Using Entire Flight Profile
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4.4.3 Constant Acceleration with Markov Process Model. The results of the

constant acceleration Kalman filter/smoother model with noise modeled as a 1st order

Markov process described in Section 3.2.3 are shown in Tables 4.17 and 4.18. Table 4.17

shows the 3-D RMS error and la of the Kalman filter/smoother in the truncated flight

segment.

Direction I Rate 11 Error (m/s) I la (m/s) Filter Type [Noise Type]

3-D RMS 1 Hz 1.438570e-02 1.443129e-02 Filter White
3-D RMS 1 Hz 7.010042e-03 6.366674e-03 Smoother White
3-D RMS 1 Hz 1.051723e-02 8.653171e-03 Filter Colored
3-D RMS 1 Hz 7.704391e-03 5.347301e-03 Smoother Colored
3-D RMS 10 Hz 5.640125e-03 8.993274e-03 Filter White
3-D RMS 10 Hz 2.622584e-03 3.179606e-03 Smoother White
3-D RMS 10 Hz 1.125054e-02 8.307786e-03 Filter Colored
3-D RMS 10 Hz 9.955190e-03 6.872084e-03 Smoother Colored

Table 4.17 Constant Acceleration Model with Markov Process Using Truncated Flight
Profile

As with the previous models, the dynamics driving noise, Q, is increased in order

to achieve satisfactory performance. Tuning plots for the position and velocity states are

shown in Appendix D.

Direction [Rate i Error (m/s) lcr (m/s) i Filter Type [Noise Type]

3-D RMS 1 Hz 1.964303e-01 2.241990e-01 Filter White
3-D RMS 1 Hz 4.448769e-02 3.508846e-02 Smoother White
3-D RMS 1 Hz 1.205297e-01 1.247135e-01 Filter Colored
3-D RMS 1 Hz 2.643877e-02 2.122642e-02 Smoother Colored
3-D RMS 10 Hz 3.652743e-01 8.777798e-01 Filter White
3-D RMS 10 Hz 1.626416e-02 1.427469e-02 Smoother White
3-D RMS 10 Hz 1.244843e-01 1.315372e-01 Filter Colored
3-D RMS 10 Hz 3.386609e-02 2.725365e-02 Smoother Colored

Table 4.18 Constant Acceleration Model with Markov Process Using Entire Flight Profile
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4.5 Summary

This chapter presented the results of two distinct approaches to calculating a refer-

ence velocity from discrete, noisy position data: a digital filtering and numeric differentia-

tion approach and a Kalman filtering/smoothing approach. Performance for each approach

is measured at data rates of 1 Hz and 10 Hz, with a white noise model and a "colored"

noise model.

The results of these simulations are encouraging. The performance specification of

0.005 m/s 3-D RMS la was achieved by both approaches, although not for every case. The

digital filtering and numeric differentiation method tolerated changes in dynamics better

than the Kalman filter/smoother, while the later showed excellent performance when its

internal dynamics model was well matched with the incoming data.
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V. Conclusions and Recommendations

5.1 Overview

This chapter presents the conclusions derived from this thesis research concerning two

different approaches to determining velocity for an inverted pseudolite-based navigation

reference system: a digital filtering with numeric differentiation approach and a kinematic

Kalman filter/smoother approach. Also presented are recommendations for future research

topics stemming from this research.

5.2 Conclusions

5.2.1 Digital Filtering and Numerical Methods. In this research, two methods

of performing numerical differentiation are developed. The first method is based upon

a Taylor's series approximation to the derivative. In the absence of noise, the higher

order differentiation algorithms provide better performance. When noise is added to the

position data, however, there is no benefit to using higher order numerical differentiation

algorithms.

The second method uses cubic splines to describe a curve that fits the position data.

The expression for the curve is differentiated analytically and evaluated at the points of

interest. In the absence of noise, this method performs slightly better than a second order

numerical differentiator. In the presence of noise, the performance of the cubic spline is

comparable to the Taylor's series-based numerical differentiators.

These numerical differentiation algorithms were tested with data at 1 Hz and 10

Hz rates. Both the Taylor's series and cubic spline differentiation algorithms are more

accurate at the higher rate of 10 Hz.

The data processed by the numerical differentiation algorithm is low pass filtered

before and after the operation. When performing a numerical differentiation, it is beneficial

to remove as much noise as possible from the signal before differentiating. The prefilter,

however, was not found to be particularly effective. Since the differentiation procedure

loses accuracy in the presence of noise, improving the prefilter performance is essential to

improving the effectiveness of this approach.
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Both the prefilter and postfilter were designed as IIR filters. FIR filter designs were

not able to meet the performance requirements, especially in the area of allowable passband

loss. The IIR filters were run forward and backwards through the data, allowing the filter

to achieve a linear phase response, crucial to the accurate reconstruction of the position

data. Given that the FIR filters were unable to meet performance standards and that the

IIR filters were non-causal, it is unlikely that this digital filtering and numerical methods

approach would be able to support real time operation' .

The biggest disadvantage to this method is that it's development used and required

knowledge of the truth data. The low pass filters were designed to eliminate as much noise

as possible without corrupting the data, and this was accomplished with knowledge of the

truth data. Similarly, the smoothing parameter used in the cubic smoothing spline algo-

rithm was chosen such that it minimized the difference between the estimated velocity and

true velocity. In a real world application, it would not be possible to "tune" these param-

eters so exactly. Certainly simulation would be an aid to determining these parameters,

however it remains to be seen whether the same performance levels can be reached.

In spite of these disadvantages, this method was able to meet the required specifi-

cation of 0.005 m/s 3-D RMS la in simulation. While this research may have created

more questions than it answered, these results are encouraging, and show that the SARS

concept may be feasible navigation reference system.

5.2.2 Kalman Filtering/Smoothing. In contrast with the digital filtering with

numeric differentiation method, the Kalman filter/smoother did not demonstrate better

performance at the higher data rate of 10 Hz. The overall performance of the Kalman

filter/smoother fell below the desired accuracy of 0.005m/s 3-D RMS la for a segment of

the trajectory containing benign dynamics. The Kalman filter/smoother performance was

hindered greatly by the inadequacy of the model assumptions. During the portions of the

flight profile that matched the model assumptions, the Kalman filter/smoother performed

well.

'Real time support is not required for the SARS concept. In this post processing environment it is
prudent to take advantage of non-causal filters.
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One way to improve the performance of Kalman filter would be to lower the mea-

surement noise. Since the position accuracy of 0.1 m is given in the problem statement,

it may not be directly possible to lower the measurement noise. However, one could alter

the Kalman filter models to accept ranging measurements. In this manner, ranging error

terms such as tropospheric delay and multipath could be estimated and potentially re-

duced. Since the ranging equations are non-linear, an extended Kalman filter formulation

or other compensation may be required.

To exploit the availability of past and future measurements in the Kalman filter,

a fixed interval Kalman smoother was implemented. While there was a benefit to the

smoothing operation, it was not enough to completely overcome the inherent model inad-

equacy. The Fraser smoothability criteria indicates that the kinematic models used in this

research are not very smoothable when the dynamics driving noise is low (i.e. the internal

dynamics model matches the observations) and this is reflected in the results. When Q is

increased to compensate for an inadequate model, the benefit of smoothing is greater.

While the performance objectives were not met using the Kalman filter/smoother

approach for the entire benign trajectory, there are advantages to this method. Foremost

is that this method is less reliant upon knowledge of the truth data in order to "tune"

the system, as long as one has confidence in the dynamics model. Since the Kalman

filter/smoother showed promise when the model was well matched to the measurement

data, it still may be a useful research avenue for SARS.

5.3 Recommendations

The following are just a few of the many possible research topics for future considera-

tion. The recommendations presented represent research areas most important to proving

the feasibility of the SARS concept.

5.3.1 Receiver Geometry. As was exhibited in this research, proper receiver

location is essential to maintaining good geometry (e.g. DOP) over the course of a flight.

Since the accuracy of the solution to the GPS ranging equations worsens as the receiver

locations become more coplanar, it is likely that there exists a limit on what the acceptable
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DOP is to maintain a position accuracy of 0.1 m. If this DOP limit can be found, it may

be possible to determine an "optimal" placement of pseudolite receivers that maintains

good geometry throughout a flight profile.

5.3.2 Flight Profiles. Flight profiles used to test navigation systems are typically

2-3 hour missions involving a combination of benign and high dynamic segments [39]. This

research also showed that such flight profiles will have to be modified to maintain good

receiver geometry. It may be necessary to consider the problem of determining appropriate

flight profiles and optimizing receiver placement simultaneously.

5.3.3 Error Modeling. For the unique inverted pseudolite concept of SARS, creat-

ing SARS-specific tropospheric and multipath models could increase positioning accuracy,

and subsequently increase velocity accuracy. Using empirical data it may be possible to

quantify and model the tropospheric delay and multipath error terms, given the relatively

consistent climate of the New Mexico desert, as well as apriori knowing the receiver loca-

tions.

5.3.4 Adaptive Kalman Filtering. This research shows the potential for a kine-

matic Kalman filter based solution if the underlying filter model adequately describes the

dynamics of the trajectory. While one Kalman filter may not be able to meet the accuracy

needed by SARS, it may be worthwhile to consider an adaptive filtering technique. For

example, a Multiple Model Adaptive Estimation (MMAE) [25] technique could be used to

set up a bank of Kalman filters which run in parallel. Using residual monitoring techniques

the outputs of these Kalman filters can be multiplexed and/or blended in an attempt to

achieve better performance than that of a single Kalman filter.
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Appendix A. Calculation of RMS Error

The objective of this appendix is to illustrate the error metrics used in this thesis

research. A scalar metric, the Root Mean Square (RMS), is used to describe the error of a

vector of computed values from the true values. Typically these vectors are a time history

of position or velocity.

Consider a time history of three dimensional position expressed as three vectors, X,

Y and Z, as well as the estimates of position X, Y and 2, all of length k. The 3-D RMS

error metric is given by:

RMS = - (X(t) - X(t)) + (Y(ti) - 0(t))2 + (Z(ti) - Z(i))2  (A.1)
k4z=1

In the case of data from more than one simulation (Monte Carlo analysis), it is also

useful to compute the following mean and standard deviation statistics:

mRMS = - .yERMS(i) (A.2)
n i.

lmRMS = n 1" (RMS(i) - mRMS) 2  (A.3)

where mRMS denotes the mean RMS error, lmRMS denotes the standard deviation in

RMS error and n represents the number of simulation runs performed.
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Appendix B. Constant Velocity Kalman Filter Results

This appendix contains the tuning plots for the Constant Velocity Kalman filter. A

legend for the plots is presented below:

Table B.1 Legend for Filter Tuning Plots

Symbol Definition

Solid Line Mean Error
... Dotted Line Mean Error : True Sigma

- - Dashed Line + Filter Predicted Sigma
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Appendix C. Constant Acceleration Kalman Filter Results

This appendix contains the tuning plots for the Constant Velocity Kalman filter. A

legend for the plots is presented below:

Table C.1 Legend for Filter Tuning Plots

Symbol I Definition

Solid Line Mean Error
•.. Dotted Line Mean Error ± True Sigma

-- Dashed Line ± Filter Predicted Sigma
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Appendix D. Constant Acceleration, 1st Order Markov Kalman Filter Results

This appendix contains the tuning plots for the Constant Velocity Kalman filter. A

legend for the plots is presented below:

Table D.1 Legend for Filter Tuning Plots

Symbol IDefinition
Solid Line Mean Error

... Dotted Line Mean Error ± True Sigma
-- Dashed Line ± Filter Predicted Sigma
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