
NUWC-NPT Technical Report 10,508 
30 September 1995 

An Energy-Based Method for Signal 
Compression and Reconstruction with 
Wavelets 

C. Ganesh 
C. T. Nguyen 
M. Marafino 
S. E. Hammel 
Combat Systems Department 

19960326 063 
Naval Undersea Warfare Center Division 
Newport, Rhode Island 

Approved for public release; distribution is unlimited. 

DTIG QTTALE iJii^i'.laU'.S.iaij' 



DISCLAIM!! NOTICE 

TfflS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



PREFACE 

This report was prepared under NUWC Division Newport 
Project No. 33CWF55, "Submarine Combat Control Technology 
Task," principal investigator A. H. Silva (Code 2211). The 
sponsoring activity is the Office of Naval Research, program 
manager J. Fein (ONR-333). 

The technical reviewer for this report was K. F. Gong (Code 
2211). 

The authors acknowledge the technical support of J. M. 
Impagliazzo (Code 8213), W. E. Green (Code 8211), and Q. Q. 
Huynh (Code 8212) in the initiation of this work. 

Reviewed and Approved: 30 September 1995 

P.'A. La Brecqu^ 
Head, Combat Systems Department 



REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Wan*) 2. REPORT DATE 
30 September 1995 

3. REPORT TYPE AND DATES COVERED 

4. TITLE AND SUBTITLE 

An Energy-Based Method for Signal Compression and Reconstruction with Wavelets 

6. AUTHOR(S) 
C. Ganesh 
C.Nguyen 
M. Marafino 
S. Hammel 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Undersea Warfare Center Division 
1176 Howell Street 
Newport, Rl 02841-1708 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

TR 10,508 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Office of Naval Research 
ATTN: ONR-333 
Ballston Centre Tower One 
800 North Quincy Street 
Arlington, VA 22217-5660 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

Wavelets and wavelet transforms have recently emerged as a promising alternative to traditional Fourier-based spectral decompositions in a variety of 
signal processing applications. With the expected exponential increase in data traffic volume and the consequent overloading of storage capacity and 
transmission channels, the need for improved signal compression is essential. 

A new energy-based method for selection of wavelet coefficients for signal compression is proposed. The number of coefficients selected from a 
particular level of the wavelet decomposition tree is proportional to the mean energy contained in the coefficients at that level. In experimental tests, this 
method provided significantly improved performance over conventional global thresholding-based wavelet selection techniques. The performance index used 
is the signal-to-error ratio, which is a measure of the quality of the reconstructed signal from its compressed representation compared to the original. 

For highly nonstationary signals, a crossover effect is observed; that is, the energy-based selection is outperformed by the conventional method at 
higher percent retention levels. In such a situation, a segmentation strategy is proposed wherein the signal is decomposed into segments of similar 
characteristics prior to compression. 

14. SUBJECT TERMS 

Signal Processing    Signal Compression    Wavelets    Wavelet Coefficient Selection 
Wavelet Decomposition 

15. NUMBER OF PAGES 
45 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

SAR 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



TABLE OF CONTENTS 

Section Page 

LIST OF ILLUSTRATIONS ii 
LIST OF TABLES iii 
LIST OF ABBREVIATIONS AND ACRONYMS iii 

1 INTRODUCTION 1 

2 BACKGROUND 3 
2.1 Traditional Methods for Signal Compression 3 
2.2 Wavelet-Based Method for Signal Compression 4 

3 PROPOSED METHOD 7 
3.1 Energy-Based Selection of Wavelet Coefficients 7 
3.1.1 Motivation 7 
3.1.2 Algorithm 8 
3.1.3 Example 10 
3.2 Performance Calibration 14 
3.3 Entropy Considerations for "Best-Basis" Selection 15 

4 EXPERIMENTAL RESULTS 17 
4.1 Analysis of Two Biological Signals 17 
4.1.1 Porpoise Signal 17 
4.1.2 Dolphin Signal 20 
4.2 Analysis of Signals from Two Undersea Vehicles 24 
4.2.1 Undersea Vehicle A 24 
4.2.2 Undersea Vehicle B 27 

5 CONCLUSIONS 31 

6 FUTURE WORK 37 

7 BIBLIOGRAPHY 39 

APPENDIX-WAVELET TOOLKIT SOFTWARE A-l 



LIST OF ILLUSTRATIONS 

Figure Page 

1 Block Diagram Components of a Data Compression System 3 
2 Conceptual Schematic of Wavelet Decomposition Tree 7 
3 (a) and (b): Time Series of Dolphin and Porpoise Sounds; 

(c) and (d) Root-Mean-Square Error Comparisons for Reconstruction of 
Dolphin and Porpoise Signals Using the Daubechies Four-Wavelet Basis for 
Decomposition 10 

4 Signal Reconstruction: Porpoise Sound with 10-Percent Retention 
Using Daubechies 4 Wavelet Basis 11 

5 Porpoise Sound Reconstruction: Time Segment from 3 50-450 13 
6 Reconstruction Performance Comparison for the Porpoise Signal 18 
7 Reconstruction Performance of the Porpoise Sound 19 
8 Reconstruction Performance Comparison for the Dolphin Signal 21 
9 Reconstruction Performance of the Dolphin Sound 23 
10 Reconstruction Performance Comparison for Vehicle A 25 
11 Reconstruction Performance of Vehicle-A Sound 26 
12 Reconstruction Performance Comparison for Vehicle B 28 
13 Reconstruction Performance of Vehicle-B Sound 29 
14 Conceptual Schematic for Global Threshold vs. Mean Energy-Based 

Wavelet Coefficient Selection Methods 31 
15 Wavelet Coefficient Distribution: Porpoise Sound-Daubechies 12 Basis 33 
16 Wavelet Coefficient Distribution: Dolphin Sound-Daubechies 12 Basis 34 
17 Signal Reconstruction: Dolphin Sound with 20-Percent Retention Using 

Daubechies 12 Basis 35 
18 Signal Segmentation: Dolphin Sound 37 
19 Reconstruction Performance: Dolphin Sound Analyzed in Two Segments 38 
A-l     Wavelet Toolkit Software System Block Diagram A-2 
A-2     Operational Flowchart of Signal Compression/Reconstruction System 

with Wavelets A-3 

LIST OF TABLES 

Table Page 

1 Distribution of Selected Wavelet Coefficients for Porpoise Signal 12 
2 Distribution of Selected Wavelet Coefficients for Dolphin Signal 12 
3 Signal-to-Error Ratio and Entropy Values for the Porpoise Signal 17 
4 Signal-to-Error Ratio and Entropy Values for the Dolphin Signal 20 
5 Distribution of Selected Wavelet Coefficients for Porpoise Signal 22 



LIST OF TABLES (Cont'd) 

6 Distribution of Selected Wavelet Coefficients for Dolphin Sound 22 
7 Signal-to-Error Ratio and Entropy Values for Vehicle-A Signal 24 
8 Signal-to-Error Ratio and Entropy Values for Vehicle-B Signal 27 
9 Distribution of Selected Wavelet Coefficients for Vehicle-A Signal 30 
10 Distribution of Selected Wavelet Coefficients for Vehicle-B Signal 30 

LIST OF ABBREVIATIONS AND ACRONYMS 

DCT Discrete cosine transform 
DFT Discrete Fourier transform 
FWT Fast wavelet transform 
K-L Karhunen-Loeve transformation 
NUWC Naval Undersea Warfare Center 
rms Root mean square 
SER Signal-to-error ratio 
SNR Signal-to-noise ratio 

iii/iv 
Reverse Blank 



AN ENERGY-BASED METHOD FOR SIGNAL COMPRESSION AND 
RECONSTRUCTION WITH WAVELETS 

1. INTRODUCTION 

Evolving remote sensing systems for today's undersea applications have resulted in ever- 
increasing demands for data storage and communication bandwidth. With an expected increase in 
the volume of data traffic and the consequent overloading of storage capacity and transmission 
channels, the need for signal compression is essential. Signal compression techniques can reduce 
the volume of data by exploiting these kinds of statistical redundancies in data: (1) spatial 
redundancy due to correlation between neighboring sensor measurements, (2) temporal 
redundancy due to correlation between successive segments of the same sensor signal, and (3) 
spectral redundancy between bands of multispectral signals. 

In the past several decades, signal compression techniques have been mainly performed 
with traditional spectral decompositions such as the discrete Fourier transform (DFT) and discrete 
cosine transform (DCT). Signal compression by traditional techniques produces no discernible 
degradation in the reconstructed signal at low compression ratios (4:1 to 5:1). As demands for 
high compression ratios increase, a reconstructed signal of moderate quality can be obtained with 
traditional techniques at compression ratios up to 40:1 or so. However, for compression ratios 
higher than 40:1, the performance of traditional techniques deteriorate rapidly, and the 
reconstructed signal is degraded severely and is generally not useful (Hunt, 1978). To this end, 
researchers in the signal and image processing community have been searching for better 
techniques for data compression. In recent years, wavelets and wavelet transforms have emerged 
as a promising alternative to traditional spectral decompositions. Applications of wavelet-based 
methods for signal compression and reconstruction are discussed widely in the open literature 
(Strang, 1994). The most common technique used in wavelet decomposition is based on the 
global threshold method for selecting the coefficients of the wavelet transformed signal. When 
the global threshold method is used, the largest coefficients are retained as representative of the 
signal and all others are discarded. 

This technical report proposes a novel method for selection of wavelet coefficients that 
uses a local threshold for the different resolution levels of the wavelet decomposition tree. This 
local threshold is based on the average energy of the wavelet coefficients in each decomposition 
level. The proposed method will ensure that the selected coefficients in the compressed signal are 
proportionally representative of the energy at each decomposition level. This report details the 
energy-based algorithm for selecting wavelet coefficients and presents experimental results of 
signal compression and reconstruction for marine biological sounds and underwater vehicle 
acoustic signals. Specifically, section 2 reviews signal compression processes using traditional 
and wavelet-based methods; section 3 introduces the proposed energy-based method and contains 
criteria for performance evaluation and best-basis selection; section 4 presents the experimental 
results from analysis of a variety of underwater acoustic signals; section 5 discusses the 
implications of the results and conclusions; and section 6 presents suggestions for future work. 
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2. BACKGROUND 

2.1 TRADITIONAL METHODS FOR SIGNAL COMPRESSION 

The redundancy in signal/image data can be described in terms of correlation between data 
samples. The purpose of data compression is to remove such redundancy and to prepare the data 
for digital transmission or storage. The basic elements of a data compression system are depicted 
in figure 1. The first step is to process the signal by an operation that removes as much data 
correlation as possible. In the second step, these decorrelated data must be properly quantized; in 
the third step, the quantized samples are coded into a form suitable for transmission (coding may 
include such criteria as error detection or correction). Steps 2 and 3 are basically governed by the 
same considerations no matter what particular decorrelation scheme was is chosen in step 1. 
Signal decomposition and decorrelation are performed for data compression in the first step. 

h DECORRELATION QUANTIZATION CODING 

INPUT COMPRESSED 

SIGNAL REPRESENTATION 

Figure 1. Block Diagram Components of a Data Compression System 

One of the conventional data compression methods is the covariance or Karhunen-Loeve 
(K-L) transformation in which these data are decomposed into a set of uncorrelated components 
of decreasing statistical significance. Compression is achieved by selecting those components of 
greatest statistical importance and discarding the rest. Even though the K-L transformation 
provides perfect data decorrelation, it is not an efficient process; for applications with high data 
rates, the computational requirements are extremly expensive (Hunt, 1978). 

The DFT has had a great impact on many applications of digital signal processing, 
including signal compression and reconstruction. Not only does the DFT provide data 
decorrelation, it also greatly reduces the computational requirements. A standard approach for 
analyzing a signal is to decompose that signal into a sum of simple building blocks. The DFT and 
DCT are the most well-known examples. The mathematical description of data compression with 
the DFT is 

N-l N-\ 

G{m,n) = Y,w {n,k)J^g (j,k)w (m,j), 
;=0 

(1) 
k=0 

where g() is the original signal (or image), G() is the transform of g(-), and w(-) is the kernel 
function. The kernel function for a transform compression scheme operating with the Fourier 
transform is 

w(m, n) = exp(27TJmn/N). (2) 



Since the basis vector formed by the Fourier kernel function described in equation (2) is a cosine 
basis, it does not have compact support or finite energy. Thus, a large number of transform 
coefficients are required for containing a significant fraction of the total signal energy. In Fourier 
analysis, a signal g(t) is mapped into its frequency domain representation G(w), and hence, any 
time localization of the frequency information is lost. As mentioned in section 1, for low retention 
percentages (or high compression ratios), the performance of Fourier-based techniques rapidly 
deteriorate, and the reconstructed signal degrades severely. Wavelets and wavelet transforms 
have recently emerged as a useful alternative for many applications in signal processing. Because 
their basis functions have compact support and their transforms have good localization in both 
time and frequency domains, wavelets have opened up new avenues for improving signal 
compression methods (Chui, 1991). 

2.2 WAVELET-BASED METHOD FOR SIGNAL COMPRESSION 

In constrast to classical Fourier analysis, the time-frequency analysis of a signal is mapped 
into the time-frequency (t-f) plane using a suitable set of basis functions for the expansion. The 
uncertainty principle, a fundamental result in Fourier analysis, states that the time-bandwidth 
product of the signal satisfies the following inequality: 

Af-At>y4K, (3) 

where A/and Ar are the spectral bandwidth and time scale of the signal (Rioul and Vetterli, 
1991). It is desirable to construct basis functions, wavelets, with good localization properties in 
both time and frequency, subject to the uncertainty principle constraint. A wavelet expansion uses 
translations and dilations of one fixed function (or mother wavelet), y/(t) e L2 (R).   The mother 
wavelet y/{t) has to satisfy the admissible condition 

C   =J   [-^-^-dw«x>, (4) w     _      w 

where y/(w) is the Fourier transform of y/{t). In a continuous wavelet transform, the translation 
and dilation parameters vary continuously. The wavelet transform of a signal g(t) is now defined 
as 

W(a,b) = <g,¥aib>, (5) 

where 

y/ab(t) = ^=y/l 1 witha,£e R, a*0. (6) 



By a wavelet decomposition of a given function g(f) one can represent that function as 

n       k 

where n and k range over Z and Z2, respectively, and the c„u are the coefficients. Each of the 
functions W^i*) belongs to one of a finite number of families [ V»t(0} > anc*tne parameters n and 

& are related to the scale and location of this function. 

One way to apply wavelet decompositions for data compression is to approximate g(t) by 
a finite sum of functions Wnkif)- Because the values of the functions y/^{t) stay the same, the 

information content of the signal g is captured in the coefficients c^. The signal g(t) is 
compressed by (1) selecting the largest coefficients, and (2) applying traditional coding techniques 
to the sequence of selected coefficients. 

The most common method of selecting wavelet coefficients of a signal is called the global 
thresholdmethod (Nacken, 1993). This technique selects the wavelet coefficients based on a 
universal threshold level. Because errors introduced by compression depend only on the size of 
the coefficients, one can eliminate the smallest coefficients and still have a reasonably good 
approximation of the original signal. However, when large compression ratios and high-quality 
reconstruction are required, the performance of the global threshold technique is inadequate. In 
many undersea applications, such as sidescan sonar images and underwater acoustic signals, noise 
and other interference contribute a great deal to degrading signals and images. The need for a 
new technique that can improve the performance of data compression thus becomes important. 
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3. PROPOSED METHOD 

3.1 ENERGY-BASED SELECTION OF WAVELET COEFFKTENTS 

3.1.1 Motivation 

This report proposes a new energy-based method for selection of wavelet coefficients for 
signal compression that was motivated by examination of the tree structure of the wavelet 
decomposition (see figure 2). The tree structure as shown consists of several resolution levels, 
where resolution level k represents an approximation of the original signal with a resolution of 
one point for every 2* points of the original signal (Mallat, 1989). For the signals analyzed, the 
wavelet coefficients with the largest magnitudes occurred among only a few levels of the 
decomposition tree. Physically, this finding means that details of the original signal from only 
those resolution levels are retained; whereas the signal itself has several levels in its decomposition 
tree. 

ORIGINAL SIGNAL 
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LEVEL 2 

LEVEL M-1 

LEVEL M 

I      N 

N/4 
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0D   N/<2 > 
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Figure 2. Conceptual Schematic of Wavelet Decomposition Tree 
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3.1.2 Algorithm 

The energy-based technique is based on the mean energy contained at each level of the 
wavelet decomposition tree. The number of wavelet coefficients selected from a particular level is 
proportional to the mean energy contained at that level. The largest wavelet coefficients from 
each level are selected in proportion to the mean-energy content ofthat level. The baseline 
algorithm is shown in the following outlined area. 

' Let the length of the signal (number of samples) N = 2M 

Maximum number of signal resolution levels =M 

' At level k of the decomposition, k=l,2,...,M 
N 

Number of wavelet coefficients available is Nk = -j- 

■ Let the wavelet coefficients at level k be {ckj }, j = 1,2, ..., Nk 

The mean energy of level k is defined as Ek = — ^c| 
^k  j=\ 

,   •    , n , ,    ir       Ek      Percent Retention    .. 
• Number of coefficients desired from level k, Nk = _,:!. x —— x M 2X 100 

In the typical situation, the number of coefficients desired is less than or equal to the 
number of coefficients available; that is, Nk < Nk. However, a special case that occurs frequently 

in practice is Nk > Nk ; that is, the number of coefficients desired from level k is greater than 
the number available at that level. This situation is handled by selecting additional coefficients 
from other levels to make up the difference. Coefficients are allocated based on the energy- 
ranking scheme. In this scheme, the first choice is the level with the maximum mean energy, the 
next choice is the level with the second-highest mean energy, etc. (The enhanced algorithm is 
shown in the outlined area following this paragraph.) 



►   For levels k = 1, 2,. . ., K 

If Nk>Nk 

Number of coefficients selected from level k, Nk = Nk 

else 
Number of coefficients selected from level k, Nk = Nk 

end if 
Difference between coefficients desired and selected at level k, Dk = Nk - Nk 

end for 
K 

Total additional coefficients desired, D = X A 
fc=i 

•   While £>>0 
Let level kM have maximum mean energy; i.e., Ek   = max^},^ = 1, 2, . . ., K 

Let number of coefficients desired from level kM be NkM 

Let number of coefficients available at level kM be NkM 

]fNkM+D<NkM 

Number of coefficients selected from level kM, NkM = NkM + D 

else 
Number of coefficients selected from level kM, NkM = NkM 

end if 

Update total additional coefficients desired, D = D-\NkM - Nku j 

Eliminate level kM from further consideration 
end while 

This selection method ensures that if the mean energy at a given decomposition level is 
sufficiently large, some wavelet coefficients from that level will be selected in the compressed 
representation ofthat signal. This result is in contrast to the global threshold technique, wherein 
the largest coefficients in a universal sense are retained independent of their distribution across 
levels. In general, it was observed that the energy-based selection method retains wavelet 
coefficients across a broader spectrum of levels in the decomposition tree. Two illustrative 
analyses for porpoise and dolphin acoustic signals are presented in paragaph 3.1.3. 



3.1.3 Example 

For the dolphin and porpoise signals shown in figure 3, the distribution of selected wavelet 
coefficients across the various resolution levels is listed in tables 1 and 2 for different retention 
percentages. For example, a 10-percent retention of the porpoise signal using the conventional 
global thresholding method results in selection of coefficients from levels 1 through 4. In 
contrast, the energy-based method results in selection of coefficients from levels 1 through 7. In a 
physical sense, this result means that details of the original signal are utilized in the reconstruction 
in the energy-based method across a wider range of resolution levels than in the global- 
thresholding method. The resulting enhancement in the signal reconstruction with the energy- 
based method is shown in figure 4. The reconstructed signal obtained from energy-based 
compression is compared to the reconstruction from global thresholding for the porpoise sound 
(using 10-percent retention of the Daubechies four-wavelet basis). The former retains 
significantly finer detail of the original signal than the latter and is illustrated in figure 5 by 
zooming in on a segment of the porpoise signal reconstruction. A tradeoff occurs in the large- 
amplitude regions of the reconstructed signal. Since global thresholding retains the largest 
coefficients overall, some of 
the peak amplitudes are reproduced more accurately than for energy-based reconstruction. This 
effect does not represent significant information loss in the energy-based signal reconstruction 
because the overall trends are still retained. However, presence of some signal detail results in 
improved interpretation, such as feature extraction and classification. 

DOLPHIN SOUND 

1000 

PORPOISE SOUND 

4 6 8 
PERCENT RETENTION 

10 4 6 8 
PERCENT RETENTION 

10 

(C) (d) 

Figure 3.  (a) and (b): Time Series of Dolphin and Porpoise Sounds; 
(c) and (d): Root-Mean-Square-Error Comparisons for Reconstruction of 

Dolphin and Porpoise Signals Using the Daubechies Four-Wavelet Basis for Decomposition 
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Figure 4. Signal Reconstruction: Porpoise Sound with 10-Percent Retention 
Using Daubechies Four-Wavelet Basis 

Tables 1 and 2 show the distribution of wavelet coefficients across resolution levels for 
varying retention percentages (% Ret) using global thresholding (G) and mean energy (E) 
selection methods. Signals are analyzed using the Daubechies four-wavelet basis. The 
performance index of reconstruction is the signal-to-error ratio (SER) in decibels and has been 
calibrated for equivalent numbers of coefficients selected using the two methods. 
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Table 1. Distribution of Selected Wavelet Coefficients for Porpoise Signal 

% Ret 2 5 10 20 40 

Level G E G E G E G E G E 

1 1 2 4 6 19 11 78 23 178 45 
2 12 8 35 21 64 41 97 83 158 175 
3 6 6 11 14 18 28 26 57 52 115 
4 1 1 1 4 1 7 1 14 12 28 
5 1 3 6 1 12 7 24 
6 1 3 6 2 12 3 16 
7 1 2 3 6 
8 1 
9 
10 

Total 20 19 51 52 102 707 205 204 410 410 

SER 1.60 1.69 2.73 3.02 3.95 4.82 5.84 7.56 9.54 11.59 

Table 2. Distribution of Selected Wavelet Coefficients for Dolphin Signal 

% Ret 2 5 10 20 40 

Level G E G E G E G E G E 

1 1 2 3 5 39 10 156 19 
2 9 6 23 15 56 30 101 61 150 185 
3 11 9 25 23 35 46 47 93 72 128 
4 3 3 8 8 17 18 34 30 64 
5 1 1 3 2 5 
6 0 1 1 2 
7 1 1 2 4 
8 1 1 2 
9 
10 

Total 20 19 57 50 102 702 205 205 410 409 

SER 1.63 1.78 3.67 3.73 5.78 6.31 8.97 9.17 13.16 13.77 
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Figure 5. Porpoise Sound Reconstruction: Time Segment from 350-450 
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3.2 PERFORMANCE CALIBRATION 

The performance index for signal reconstruction is defined with respect to the fidelity of 
the reconstructed signal r(t) from its compressed representation. The measure of "goodness" is 
how closely this reproduction matches the original signal s(t) in terms of the reconstruction error, 
e(t) = s(t) - r(t), and is the SER, 

SER =20 log (in units of dB), (8) 

where Smu   and iw   are the rms values of signal s(t) and error e(t) , respectively. The SER 
criterion is analogous to the well-known signal-to-noise ratio (SNR) and shares the property that 
signal amplitude levels are factored into the measure. 

An auxiliary effect that occurs in the energy-based method is the presence of integer- 
number rounding for wavelet coefficient selection among the different resolution levels. This 
effect is demonstrated, for example, in table 1 at the 2-percent retention level for the porpoise 
signal. The total number of coefficients selected over the different levels using the energy 
technique is 19, whereas on an absolute basis 2 percent of this 1024-length signal leads to 20 
coefficients (which is the number selected by global thresholding). To accurately compare 
performance among the two coefficient selection methods, the SER index is calibrated to predict 
performance assuming that an identical number of coefficients were chosen using the energy 
method (in this case, 20). The performance calibration algorithm uses a quadratic curve-fit to 
interpolate the SER for a new number of wavelet coefficients and is shown in the following 
outlined area. 

Let total number of wavelet coefficients = N, 
and let number of wavelet coefficients selected = n 

Let number of coefficients selected by global thresholding = Ng , 

and let number of wavelet coefficients selected by mean energy = Ne 

Assuming that signal reconstruction error e(n) = an2 + bn + c , known points are 
(l)/»=0, e(0)=c  =S_ 

(2)n=Ne,  e(Ne) = a-N2+b-Ne+c = Ee 

(3)n=N,    e(N) = a-N2 + b-N +c = 0 

Solving for a, b, c leads to 
N.S^+NfE.-S^) 

a 
N2N-N2N„ 

N2N-N2Ne 
c = Srms 

Hence, for n=Ng,  e{N g) = a-N\+b-Ng+c = Eg 

14 



This performance calibration is required in about 60 percent of the cases involving a mean energy 
selection-based comparison with global thresholding. 

3.3 ENTROPY CONSIDERATIONS FOR "BEST-BASIS" SELECTION 

An open issue in any wavelet decomposition is the choice of the basis function or 
resolution kernel. Here, the approach of Coifman and Wickerhauser (1992) is adopted in selecting 
the best basis. The optimal basis is defined as the basis function that results in the wavelet 
decomposition with minimum entropy. The entropy of the wavelet decomposition {w,}=1 of the 

signal {s,f=l is 

E = 2>? log-r 

thus, En = min {.£,-} where basis family j=l, 2,. . ., 

(9) 

In a thermodynamic sense, entropy is regarded as the measure of chaos in a physical 
system (Resnick and Halliday, 1975) and can be thought of as the amount of "scatter" in the 
wavelet coefficients of the signal. Hence, selection of the basis with minimum entropy is 
equivalent to picking the kernel function that results in least variability in the wavelet coefficients. 
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4. EXPERIMENTAL RESULTS 

Experimental tests were done using both the global threshold and the energy-based 
wavelet coefficient selection technique for signal compression and reconstruction of four sets of 
acoustic data. This analysis was performed using the Wavelet Toolkit Software as described in 
the appendix. Two data sets were from biological sources, and two were from undersea vehicles. 
The SER and the entropy levels were recorded for several Daubechies-basis functions 
(Daubechies, 1992) using 2-, 5-, 10-, 20-, and 40- percent retention levels. These results are 
displayed and referenced in the following sections. 

4.1 ANALYSIS OF TWO BIOLOGICAL SIGNALS 

4.1.1 Porpoise Signal 

The porpoise signal shown in figure 3(a) was analyzed using conventional global 
thresholding and the proposed energy-based method. The experimental results from each method 
are shown in table 3 where G represents global thresholding, E represents the mean-energy 
wavelet coefficient technique. The SER is measured in decibels for 2-, 5-, 10-, 20-, and 40- 
percent retention levels. 

Table 3. Signal-to-Error Ratio and Entropy Values for the Porpoise Signal 

% Ret 2 5 10 20 40 Entropy 
Basis G E G E G E G E G E (xlO7) 

1 
SER 

2 
SER 

3 
SER 

4 
SER 

5 
SER 

1.09 1.09 2.07 2.41 3.28 4.02 4.90 6.76 8.41 10.85 3.75 

1.60 1.69 2.73 3.02 3.95 4.82 5.84 7.56 9.54 11.59 3.21 

1.66 1.72 2.74 3.24 4.13 4.96 6.17 7.92 10.57 11.90 3.04 

1.56 1.68 2.87 3.18 4.37 5.17 6.89 8.29 10.47 12.49 3.27 

1.70 1.94 3.08 3.51 4.64 5.53 7.41 8.81 12.44 13.51 2.94 

Performance comparisons between the energy-based technique and the global threshold 
method for signal reconstruction of the porpoise sound are displayed for Daubechies bases 4, 6, 8, 
and 12 in figure 6 (a) through (d), respectively. When plotted against the percent-retention levels, 
the energy-based technique outperforms the global threshold method for the porpoise signal at 
each Daubechies basis. 
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Figure 6. Reconstruction Performance Comparison for the Porpoise Signal 

Figure 7 displays the entropy values and reconstruction performance for the porpoise 
signal. The basis with the minimum entropy is Daubechies 12 as shown in figure 7 (a) and (b). 
This basis was observed to provide the best performance for signal reconstruction. 
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Figure 7. Reconstruction Performance of the Porpoise Sound 

The reconstruction performance of the porpoise sound using the global threshold method 
at selected percent-retention levels is displayed in figure 7 (c). The SER was observed to increase 
with increasing percent-retention levels. The best performance for signal reconstruction in terms 
of the maximum SER occurs for Daubechies 12, as predicted by the minimum entropy point. 
Similarly, the reconstruction performance for the porpoise sound using the energy-based method 
for the same retention levels is displayed in figure 7 (d) and shows the same basic characteristics 
observed in figure 7 (c). 
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4.1.2 Dolphin Signal 

Similar testing and analysis were performed using the dolphin signal shown in figure 3 (b). 
The results from the global threshold and the energy-based methods are shown in table 4 where G 
represents global thresholding, E represents the mean-energy wavelet coefficient technique. The 
SER is measured in decibels for 2-, 5-, 10-, 20-, and 40-percent retention levels. 

Table 4. Signal-to-Error Ratio and Entropy Values for the Dolphin Signal 

% Ret 2 5 10 20 40 Entropy 

Basis G E G E G E G E G E (xlO7) 

1 
SER 

2 
SER 

1.61 1.76 2.85 3.07 4.42 5.26 6.94 7.97 10.87 11.76 2.59 

1.63 1.78 3.67 3.73 5.78 6.31 8.97 9.17 13.16 13.77 2.34 
3 

SER 
4 

SER 
5 

SER 

2.36 2.25 4.17 4.50 6.57 7.01 10.36 9.93 16.12 15.47 2.11 

2.18 2.27 4.30 4.54 6.90 6.99 11.44 10.35 16.76 16.25 2.13 

2.45 2.49 4.04 4.68 7.43 7.55 12.55 11.09 18.79 17.97 2.09 

Performance comparisons were done to further analyze the signal reconstruction of the 
dolphin sound using the global threshold and energy-based methods for Daubechies 4, 6, 8, and 
12. Figure 8 shows that a crossover occurs in the reconstruction performance of the global 
threshold and the energy-based methods for Daubechies bases 6, 8, and 12. Close analysis of the 
data presented in table 2 verifies that no crossover occurs for Daubechies 4 in figure 8(a) (that is, 
the energy-based technique outperforms the global threshold technique at all retention levels). The 
crossover points for the other three basis functions (figure 8 (b) through (d)) occur somewhere 
between 10-and 20-percent retention. 

Table 5 shows that the wavelet coefficient selection distribution for the porpoise signal 
using Daubechies 12 progresses more deeply into the decomposition tree for the energy-based 
method than for the global threshold. The SER results further verify that no crossover occurred 
in the reconstruction of the porpoise signal. The distribution of the wavelet coefficients for the 
dolphin signal using Daubechies 12 as shown in table 6, however, appears to converge to the 
same level of the decomposition tree for both methods. It is clear from analyzing the SER values 
that a crossover in reconstruction performance occurs between 10-and 20-percent retention (that 
is, the SER values for the global method exceed those for the energy-based method). 
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Table 5. Distribution of Selected Wavelet Coefficients for Porpoise Signal 

% Ret 2 5 10 20 40 

Level G E G E G E G E G E 

1 1 1 1 3 3 6 30 12 143 25 

2 14 9 39 23 77 45 127 91 171 191 

3 5 6 10 16 20 31 37 63 65 126 

4 2 1 4 2 8 7 17 20 33 
5 1 2 5 3 9 7 18 
6 1 3 6 1 13 4 16 
7 1 

8 
9 
10 

Total 20 20 51 57 102 707 205 205 410 410 

SER 1.70 1.94 3.08 3.51 4.64 5.53 7.41 8.81 12.44 13.51 

Table 6. Distribution of Selected Wavelet Coefficients for Dolphin Signal 

% Ret 2 5 10 20 40 

Level G E G E G E G E G E 

1 - 1 1 8 3 109 5 
2 5 5 26 13 50 26 110 53 174 209 
3 15 11 24 29 44 58 66 116 88 128 
4 3 1 8 8 15 21 31 35 62 
5 1 1 2 3 
6 1 1 2 2 
7 
8 
9 
10 

Total 20 19 51 57 102 702 205 205 410 409 

SER 2.45 2.49 4.04 4.68 7.43 7.55 12.55 11.09 18.79 17.99 

Tables 5 and 6 show the wavelet coefficient selection distribution across decomposition 
levels for varying retention percentages (% Ret) using global thresholding (G) and mean-energy 
(E) selection methods. Signals were analyzed using the Daubechies 12-wavelet basis. The 
performance index of reconstruction is the SER in decibels and has been calibrated for equivalent 
numbers of coefficients selected using the two methods. 
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Entropy values and reconstruction performance for the dolphin signal are shown in figure 9. 
The minimum entropy for the dolphin signal occurs at Daubechies 12; therefore, the best 
performance for signal reconstruction is expected to occur at this basis as was observed with the 
porpoise signal. 

Figures 9 (c) and (d) show the reconstruction performance of the dolphin sound using the 
global threshold and energy-based methods respectively. The SER for the dolphin signal 
reconstruction again increases with increasing percent-retention levels. The best performance for 
signal reconstruction in terms of the maximum SER occurs for Daubechies 12, as was previously 
seen with the porpoise signal. 
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Figure 9. Reconstruction Performance of the Dolphin Sound 
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4.2 ANALYSIS OF SIGNALS FROM TWO UNDERSEA VEHICLES 

4.2.1 Undersea Vehicle A 

Signal data from vehicle A were also analyzed using conventional global thresholding and 
the proposed energy-based method. The experimental results from each method are shown in 
table 7. 

Table 7. Signal-to-Error Ratio and Entropy Values for Vehicle-A Signal 

% Ret 2 5 10 20 40 Entropy 

Basis G E G E G E G E G E (xlO7) 

1 
SER 0.28 0.46 0.68 0.46 1.40 1.84 2.82 3.57 5.99 7.63 4.73 

2 
SER 0.44 0.44 1.03 1.04 1.95 2.00 3.62 4.01 6.90 8.53 5.88 

3 
SER 0.42 0.45 0.97 1.04 1.81 1.98 3.34 3.91 6.64 8.36 5.59 

4 
SER 0.31 0.43 0.74 0.98 1.43 1.84 2.82 3.59 6.00 7.58 4.79 

5 
SER 0.54 0.60 1.13 1.32 1.98 2.40 3.58 4.44 6.82 8.46 4.24 

Table 7 shows experimental results of the vehicle-A signal reconstruction using global 
thresholding (G) and mean-energy (E) wavelet coefficient selection techniques. The SER is 
measured in decibels for 2-, 5-, 10-, 20-, and 40- percent retention levels. 

Performance comparisons between the energy based technique and the global threshold 
method for signal reconstruction of the sound from vehicle A are displayed for Daubechies bases 
4, 6, 8, and 12 in figure 10 (a) through (d), respectively. When plotted against the percent- 
retention levels, the energy-based technique outperforms the global threshold method for the 
signal at each Daubechies basis with a noticeable improvement as percent-retention increases. 

Figure 11 (a) and (b) display the entropy values for vehicle A. The basis with the 
minimum entropy is again Daubechies 12. The reconstruction performance for the vehicle sound 
using global thresholding and the energy-based method for the same retention levels are displayed 
in figure 11 (c) and (d), respectively. The SER values were observed to increase slightly with 
increasing retention levels for both wavelet selection coefficient methods. 
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4.2.2 Undersea Vehicle B 

Similar testing and analysis were done using data recorded from a second source which 
will be referred to as "undersea vehicle B." The results from the global threshold and the energy- 
based methods are shown in table 8. 

Table 8. Signal-to-Error Ratio and Entropy Values for Vehicle-B Signal 

% Ret 2 5 10 20 40 Entropy 
Basis G E G E G E G E G E (xlO6) 

1 
SER 

2 
SER 

3 
SER 

4 
SER 

5 
SER 

2.72 2.67 3.44 3.44 4.38 4.49 6.18 6.52 9.70 10.92 3.32 

2.77 2.78 3.63 3.63 4.91 4.90 7.19 7.41 10.79 12.60 3.70 

2.76 2.74 3.60 3.56 4.81 4.78 6.98 7.17 10.55 12.15 3.61 

2.68 2.66 3.38 3.35 4.38 4.39 6.19 6.41 9.57 10.81 3.32 

2.57 2.60 3.14 3.20 4.01 4.12 5.61 5.89 8.82 9.92 3.07 

Table 8 shows the experimental results of the dolphin sound reconstruction using global 
thresholding (G) and mean-energy (E) wavelet coefficient selection techniques. The SER is 
measured in decibels for 2-, 5-, 10-, 20-, and 40- percent retention levels. 

Performance comparisons were done to analyze the signal reconstruction of vehicle B 
using the global threshold and energy-based methods for Daubechies 4, 6, 8, and 12. Figure 12 
shows that both methods perform similarly at lower (2-percent to 10-percent) retention levels, but 
begin to diverge significantly at higher (20-percent to 40-percent) retention levels with the 
energy-based method outperforming global thresholding. 

Table 9 shows that the wavelet coefficient selection distribution for the vehicle-A signal 
using Daubechies 12 progresses more deeply into the decomposition tree for the energy-based 
method than for global thresholding. The SER results further verify that no crossover occurred in 
the reconstruction of the vehicle-A signal. The distribution of the wavelet coefficients for vehicle 
B using Daubechies 12 is shown in table 10. As seen with vehicle A, the wavelet coefficient 
distribution for vehicle B also spans across more levels when using the energy-based technique. 
These results suggest a direct correlation exists between the reconstruction performance using the 
energy-based method and the coefficient distribution in the decomposition tree. 
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Table 9. Distribution of Selected Wavelet Coefficients for Vehicle-A Signal 

% Ret 2 5 10 20 40 

Level G E G E G E G E G E 
1 177 119 493 298 1040 596 2115 1193 4070 2386 

2 151 125 324 313 588 626 1068 1253 1960 2505 

3 41 2 103 10 206 86 412 440 823 
4 22 54 108 8 215 79 430 
5 11 28 57 1*3 5 226 
6 5 12 23 46 93 
7 2 6 12 24 48 
8 1 3 6 11 23 
9 1 2 4 7 15 
10 1 1 3 
11 1 1 2 
12 
13 
14 

Total 328 327 819 819 1638 1640 3277 3276 6554 6554 

SER 0.54 0.60 1.13 1.32 1.98 2.40 3.58 4.44 6.82 8.46 

Table 10. Distribution of Selected Wavelet Coefficients for Vehicle-B Signal 

% Ret 2 5 10 20 40 

Level G E G E G E G E G E 
1 322 224 801 560 1577 1119 3071 2239 5565 4478 

2 6 61 12 151 61 302 206 605 935 1210 

3 18 44 87 175 51 350 
4 12 29 58 117 3 234 
5 6 15 31 62 124 
6 4 9 18 36 72 
7 1 3 7 14 27 
8 1 2 3 7 14 
9 1 1 3 6 11 
10 1 2 4 8 16 
11 1 2 5 9 19 
12 
13 
14 

Total 328 330 819 818 1638 1637 3277 3278 6554 6555 

SER 2.57 2.60 3.14 3.20 4.01 4.12 5.61 5.89 8.82 9.92 

Tables 9 and 10 show the wavelet coefficient selection distribution across decomposition 
levels for varying retention percentages (% Ret) using global thresholding (G) and mean-energy 
(E) selection methods. Signals were analyzed using the Daubechies 12-wavelet basis. The 
performance index of reconstruction is the SER in decibels. 
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5. CONCLUSIONS 

A new mean energy-based wavelet coefficient selection technique for signal compression 
has been developed, and its performance has been compared with conventional global 
thresholding. The energy technique is a local thresholding method in that each level of the 
wavelet decomposition tree has its own independent threshold for coefficient selection; energy 
considerations provide the mechanism for determining this threshold. In contrast, global 
thresholding utilizes a universal threshold across all resolution levels to select coefficients for 
representation of the compressed signal. This conceptual difference is schematically illustrated in 
figure 14. 
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Figure 14. Conceptual Schematic for Global Threshold vs. Mean Energy-Based 
Wavelet Coefficient Selection Methods 

The primary advantage of the energy method is that it tends to select wavelet coefficients 
from a broader spectrum of levels than the global thresholding method does. In particular, the 
energy method is biased towards selecting coefficients from deeper in the decomposition tree 
since the mean energy tends to increase with increasing level number. This occurrence is because 
total number of coefficients at level k = (N I2k) decreases as k increases, tending to push up the 
overall average. This phenomenon is observed in the coefficient selection distributions tabulated 
in tables 1 and 2 (Daubechies four analysis) and tables 5 and 6 (Daubechies 12 analysis) for 
porpoise and dolphin signals. 
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A comparison of signal reconstruction performance between the two methods (figures 6 
and 9) shows that the energy method always outperforms global thresholding at low-retention 
percentages. However, as the retention percentage increases, there may be a crossover; from 
which point global thresholding performs better than mean energy-based selection (as seen in 
figure 9 (b) through (d) for dolphin signal reconstruction, where crossover occurs between 10- 
percent and 20-percent retention for Daubechies 6, 8, and 12 basis functions. 

The wavelet coefficient-selection distribution across resolution levels is plotted in figures 
15 and 16 for a Daubechies 12 decomposition of the porpoise and dolphin signals (reference 
tables 5 and 6). The distributions for the porpoise are shown in figure 15 and exhibit a marked 
difference between the two methods in both overall shape and depth in the decomposition tree. 
The energy-based distribution has a "heavy tail," which is the expected characteristic signature of 
the method and is the advantage over global thresholding. In contrast, figure 16 shows that the 
distributions for both selection methods for the dolphin tend to have the same overall shape and 
depth in the decomposition tree with increasing retention percentage. In such a situation, the 
primary advantage of the energy-based selection over global thresholding is nullified. If the two 
methods reach the same depth of the decomposition tree, global thresholding performs better 
because it is selecting the largest coefficients across the limited range of levels under 
consideration. 

Figure 17 shows the reconstructed signal from energy-based compression compared to the 
reconstruction from global thresholding for the dolphin sound (using 20-percent retention of the 
Daubechies 12 basis). In the first phase of the signal, the energy-based reconstruction tracks the 
detailed variations of the original signal, whereas global thresholding has only 1 low-frequency 
component (see figure 17 (a)). However, once the signal enters its high-amplitude region, global 
thresholding follows the large peaks more closely than.the energy method, which overall results in 
a better SER performance index for global thresholding versus the energy method (12.55 dB 
versus 11.09 dB). 
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6. FUTURE WORK 

The crossover effect is particularly pronounced in signals that are nonstationary in nature, 
such as speech. One possible approach to data compression in such a situation is segmentation 
wherein the signal is decomposed into segments of similar characteristics. Each segment would 
then be analyzed with a unique wavelet basis function that is optimal with respect to that segment. 
Open issues are (1) the choice of segmentation boundaries (such as points where the signal is 
determined to change characteristics) and (2) a real-time, adaptive segmentation strategy. 

A preliminary analysis was conducted on the dolphin signal assuming a segmentation 
boundary between the initial low-amplitude region and the primary high-amplitude segment as 
shown in figure 18. These segments were analyzed independently, and the reconstruction 
performance on the total signal was determined for similar basis functions on the two segments. 
These performance curves are shown in figure 19, and it can be seen that the crossover effect has 
been greatly reduced from the original analysis in figure 10. Similar types of segmentation 
approaches have been extensively used in speech-processing (Wickerhauser, 1992). The 
foregoing analysis shows demonstrated potential for undersea applications and calls for future 
investigation. 
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APPENDIX 

WAVELET TOOLKIT SOFTWARE 

To understand and perform wavelet analysis, a software package called the Wavelet 
Toolkit has been developed at the Naval Undersea Warfare Center (NUWC). The Wavelet 
Toolkit is used to perform experiments on one-dimensional acoustic signals for data compression 
and reconstruction. A block diagram of the Wavelet Toolkit is given in figure A-l and provides an 
overview of the system functionality. This program consists of three modules: wavelet 
decomposition, wavelet coefficient-selection techniques for data compression, and signal 
reconstruction. 

Module 1-This part of the software decomposes a given time series into its wavelet 
coefficients. The user-specified input data file is assumed to have two columns: time and data. 
Given a signal with number of data points N=2k, the decomposition is performed using the fast 
wavelet transform (FWT) algorithm as described in a journal article by Cody (Cody, 1992). 

Module 2-Four different methods are implemented for selection of wavelet coefficients 
for signal data compression: level-based pruning, global threshold, local threshold, and mean 
energy-based. 

(1) In the level-based pruning method, user-specified number of levels of the wavelet tree 
are removed, beginning from level 1 and proceeding downward. This method is a very 
elementary compression technique, somewhat arbitrary, and does not perform well. 

(2) In the global threshold method, user-specified percentage of coefficients are retained, 
and largest coefficients in an overall global sense are selected. This method is a conventional 
method and is commonly used. 

(3) In the local threshold method, user-specified percentage of coefficients are retained at 
each level, and largest coefficients in a local sense are selected. This method does not perform as 
well as conventional global thresholding. 

(4) In the mean energy-based method, user-specified percentage of coefficients are 
retained. Criterion of selection is the mean energy at each level of the decomposition tree. The 
number of coefficients selected is proportional to the mean energy. In case of coefficient 
overflow, remaining coefficients are selected from levels that have available coefficients. 

Module 3-Reconstructs the signal from the given wavelet coefficients. The user-specified 
output file has two columns: time and data.The following enhancements have been incorporated, 
debugged, and tested: 

1. dynamic memory allocation for wavelet decomposition tree, 
2. quicksort coefficient sorting algorithm, 
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3. performance index as defined by SER, 
4. entropy of wavelet transform, 
5. inclusion of Daubechies 2 through Daubechies 20 coefficients to 12-decimal place 

accuracy for comparative performance analysis, 
6. performance calibration assuming a different number of coefficients retained, 
7. best wavelet basis selection using minimum entropy. 
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Figure A-l.  Wavelet Toolkit Software System Block Diagram 
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