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AFTT/GE/ENG/95D-17 

Abstract 

Identifying microcalcification clusters plays an important role in early breast cancer detection. 

With the increasing number of mammograms that radiologists must examine each year, computer-aided 

diagnosis may provide a vital second opinion to radiologists by helping them screen mammograms 

for early signs of cancer. An automated method for detecting microcalcification clusters is presented. 

The algorithm begins with a digitized mammogram and outputs the center coordinates of regions of 

interest (ROIs) that contain microcalcification clusters. The method presented uses a 12-tap Least 

Asymmetric Daubechies (LAD 12) wavelet in a tree structured filter bank to increase the signal to noise 

level of microcalcifications. The signal to noise level gain achieved by the filtering allows subsequent 

thresholding to eliminate on average 90% of the image from further consideration without eliminating 

actual microcalcifications 95% of the time. A novel approach to isolating individual calcifications from 

background tissue through non-stationary noise reduction, low/hi thresholding, and morphological 

filtering is demonstrated; this technique reduces the number of false detections by an average of 

5 per image. Several features are extracted from each potential calcification, including two newly 

proposed correlation features, to distinguish actual microcalcifications from correlated background 

tissue. Altogether, the method successfully detected 44 of 53 microcalcification clusters (83%) with an 

average of 2.3 false positive clusters per image. A cluster is considered detected if it contains 3 or more 

microcalcifications within a 6.4 mm by 6.4 mm area. Although the emphasis is placed on detecting 

microcalcification clusters for further examination by a radiologist with no attempt made to diagnose 

the cluster as malignant or benign, the method successfully detected 13 of 14 (93%) malignant cases. 
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Detection of Clustered Microcalcifications Using Wavelets 

/. Introduction 

1.1 Cancer Facts 

Breast cancer is a topic of enormous concern. The National Cancer Institute (NCI) estimated 

that 182,000 women would be newly diagnosed with breast cancer in 1994, with approximately 46,000 

deaths from the disease[l]. Early detection of breast cancer is vital to reducing mortality; five year 

survival rates are 93 percent for detection of localized cancer, 72 percent for regional, and only 18 

percent for distant or metastatic disease[32]. Screen/film mammography has been used for many years 

by radiologists to screen for breast cancer. Although mammography is currently the best method for 

breast cancer screening, 10 percent of breast cancers, even lumps that can be felt, do not show up 

on x-rays[l]. In addition, 10 to 30 percent of negative readings are later proven to be from patients 

with breast cancer, two-thirds of which are evident in the mammogram in retrospect[l2] (italics added). 

Possible explanations of why mammography fails to detect so many cancers can be attributed to several 

factors, including poor image quality, radiologist fatigue, and human oversight. To counter some of 

these factors it has been suggested that a second opinion may be the answer[12]. 

1.2 Computer-aided Diagnosis 

It has been proposed that computer-aided diagnosis (CADx) techniques may be used to increase 

the speed and accuracy of breast cancer screening. Computer-aided diagnosis can be defined as a 

diagnosis made with input from computer analysis of radiographic features. Recent developments 

in computer and digital image technology have allowed for the digital processing of mammograms. 

These recent developments make it possible to use sophisticated computer algorithms to identify 

potentially cancerous regions within the breast. It is not the purpose of a CADx system to replace 

human radiologists, but rather to assist them. 

A Model Based Vision approach to CADx will provide improved performance in a cancer 

detection system in terms of producing a higher probability of detection with better false positive 

rejection. Model based techniques use explicit models of objects, sensors, and image formation to 

1 



recognize objects in a noisy environment^]. Focus of attention (FOA), indexing, and matching are the 

major steps in a model based process. Application of these steps to breast cancer detection will result 

in identifying and labeling potentially cancerous breast tissue. 

Of particular interest to researchers is the problem of detecting tiny clusters of microcalcifications; 

they are generally more difficult for a radiologist to spot and are the earliest mammographically 

visible sign of breast cancer. Therefore, research identifying microcalcifications may reap the biggest 

benefit from computer aided techniques. The problem of distinguishing cancerous and pre-cancerous 

microcalcifications from normal tissue is complicated due to the small size of the cancerous features 

and the subtle differences between cancerous and non-cancerous tissue. 

1.3 Problem Statement 

This thesis uses multiresolution/wavelet analysis and feature extraction in a model based target 

recognition architecture to identify regions of interest (ROIs) within an image that contain a cluster of 

microcalcifications. 

1.4 Scope 

This work concentrates on identifying regions containing small clusters of microcalcifications; 

no attempt is made to identify other lesions such as masses or tumors. Also, no attempt is made 

to diagnose the region as malignant or benign; only to classify tissue as being normal or abnormal 

and in need of subsequent investigation by a radiologist. Potentially cancerous tissue is distinguished 

from normal tissue by analyzing features of a given region within a mammogram. Therefore, feature 

extraction and saliency play an important role in cancer detection; several features are presented and 

their classification ability is investigated. 

1.5 Approach 

This research presents a model based solution to the problem of detecting microcalcification 

clusters within breast tissue. It begins by applying a wavelet based technique to increase the signal 

to noise ratio (SNR) of microcalcifications and segmenting regions of interest (ROIs) that contain 

them. Individual objects inside the ROIs are isolated using thresholding and morphological filtering. 



Features are extracted from each object and used to form a hypothesis as to whether the object is a 

microcalcification. The hypothesis is then accepted or rejected after an evaluation based on a set of 

criteria obtained from the models. 

1.6 Objectives 

The purpose of this research is to develop a complete procedure for detecting clusters of micro- 

calcifications, beginning with a digitized mammogram and ending with the coordinates of the ROIs that 

contain the clusters. Also provided is a set of features that indicates the likelihood that the identified 

ROIs contain a cluster of microcalcifications. This purpose will be met by accomplishing the follow- 

ing objectives: 1) demonstrate the effectiveness of a wavelet based filtering scheme for segmenting 

microcalcifications, 2) present new techniques for isolating and new features for identifying individual 

objects in a ROI, and 3) introduce a new means of reducing the non-stationary portion of the background 

within a ROI and show how this improves the detectability of microcalcifications. 

1.7 Organization 

Chapter 2 contains a summary of past and current efforts to solve the breast cancer detection 

problem and an explanation of the theories used to develop the algorithms that have been implemented 

to detect breast cancer. Chapter 3 describes the algorithms and the process of using them. Chapter 

4 gives the results, and Chapter 5 contains some concluding remarks and recommendations. Three 

appendices are also included which contain the specific code and some more detailed explanation of 

how the algorithms were developed and used. 



//. Background 

2.1 Introduction 

This chapter reviews published research findings and theoretical developments related to the 

following three topic areas: 

• Multiresolution/Wavelets 

• Decision Boundary Feature Analysis 

• Model-Based Vision 

These three topics constitute the main tools used in this research. Wavelets have found broad 

usage in a number of engineering applications, and have been successfully applied to digital mammog- 

raphy in particular. Feature analysis based on decision boundaries and model based vision are also 

general pattern recognition techniques, but as far as can be determined, they have not been applied to 

digital mammography. 

2.2 MultiresolutionTWavelets 

Multiresolution analysis is a widely used technique in signal processing that incorporates the 

decomposition of the signal of interest into specified frequency bands (or, in wavelet terminology, into 

different scales). The decomposition of the signal into such separate bands is usually accomplished 

by a quadrature mirror filter bank (QMF). The filters in QMF banks are specifically designed to have 

certain properties that produce the desired effects of alias cancelation and perfect reconstruction[36]. 

Filters derived from the wavelet research of Mallat and Daubechies can be considered a special 

subset of QMF filters that satisfy certain mathematical properties [6] [24]. Wavelet filters have been 

shown to have several advantages over more traditional frequency analysis techniques, such as the 

Short-Time Fourier Transform[30]. These advantages are especially useful when analyzing non- 

stationary signals, such as digital mammograms. The decomposition of a two-dimensional image into 

its subband images via one dimensional filters is usually accomplished using a tree structured filter 

bank, as demonstrated by Jawerth[16]. This decomposition is traditionally used for image compression; 

however, it has also been shown to be useful for feature extraction as well[4]. 



Yoshida et ö/.[38] have shown that a tree structured filter bank based on the family of Least 

Asymmetric Daubechies (LAD)[6] wavelets can be successfully used for the automated detection of 

clustered microcalcifications. Their work demonstrated that reconstructing the mammogram from only 

the second and third level horizontal, vertical, and diagonal detail coefficients significantly improved 

the contrast between the microcalcifications and the background. Thresholding and texture analysis 

techniques were then used to identify specific 5.1-by-5.1 mm areas that were likely to contain at least 

three microcalcifications. Their preliminary results using a database of 39 mammograms with 41 

microcalcification clusters yielded a detection rate of 85%, with a false positive rate of 5 clusters per 

image. 

Laine et al. [20][21][19] have done similar research using separable one dimensional dyadic 

wavelets, a two dimensional ^-transform, non-separable hexagonal wavelets, and Deslauriers-Dubuc 

interpolation wavelets. A multiresolution decomposition was computed for each transform method, 

with a multiscale edge set of coefficients being created to highlight the desired image features. The edge 

sets were created along 45 degree axes for the dyadic, «^-transform, and Deslauriers-Dubuc coefficients, 

and along 60 degree axes for the hexagonal coefficients. The coefficients were processed using an 

adaptive threshold and gain which increased the signal to noise ratio between the microcalcifications 

and the surrounding tissue without increasing the signal to noise ratio between background artifacts 

and the surrounding tissue. The edge sets were then used to reconstruct an enhanced mammogram 

image. The work emphasized visually enhancing an image prior to examination by a human expert, 

rather than finding specific locations within an image that may be cancerous. Therefore, the researchers 

did not report results in terms of percentages of missed or detected microcalcification clusters. Instead, 

a contrast improvement index (CII = crroc""i\ for each method was calculated, using the definition 
^original 

of contrast introduced by Morrow[25]. Results varied between the methods depending upon the type 

of cancer that was being detected (small calcification cluster, spicular lesion, etc.). All four methods 

produced better contrast improvement than other traditional enhancement techniques, such as histogram 

equalization, with the Deslauriers-Dubuc interpolation based methods yielding contrast improvement 

indices of greater than ten for various microcalcification formations. 

Strickland and Hahn[34] use wavelets as a bank of matched filters to detect microcalcifications. 

Modeling the background breast tissue with a non-stationary mean and a residual stationary Markov 

process, they derive the optimum pre-whitening matched filter for detecting a deterministic microcal- 



cification. However, to compensate for their random nature the microcalcifications are modeled using 

a simple Gaussian form, and a bank of matched filters is derived based on the underlying assumptions 

of the statistical properties of the calcifications and the background. In their work, they show that 

the Gaussian object / Markov model for highly correlated noise matched filter corresponds closely to 

a biorthogonal wavelet using the spline variant as proposed by Cohen et al.[5]. A four octave filter 

bank is employed, with three intermediate voices between the octaves to give uniform coverage over 

the whole range of expected calcification sizes. The FROC curve generated by the method produced 

results comparable to other researchers, such as Karssemeijer[17]. 

Clarke et dl. [27] [28] [29] have used algorithms that employ both two and three channel tree 

structured filter banks to detect and extract clusters of microcalcifications. In their research, they 

demonstrate the increased effectiveness of a three channel QMF bank over a two channel. The 

QMF filters are designed to meet the perfect reconstruction (PR) and linear phase criteria. Digital 

Mammograms are first pre-processed using a bank of tree-structured median filters which enhance the 

contrast of the microcalcifications and suppress background noise. These filters have a demonstrated 

superiority over standard median filters for retaining desired features without sacrificing noise reduction. 

The mammogram is then decomposed using the QMF bank and reconstructed using only a subset of 

the channels which were shown to contain most of the cancer data. A multistage artificial neural 

network using a backpropagation algorithm with Kaiman filtering was used to detect microcalcification 

clusters. Using a set of 30 images, with 10 containing normal tissue and 20 containing 21 biopsy 

proven microcalcification clusters, they achieved a 90% detection with an average of .85 false positive 

clusters per image. Without preprocessing the results were a 68% true detection rate with 1.43 false 

positive clusters per image. When applied to a set containing 15 biopsy proven microcalcification 

clusters superimposed over simulated images they achieved a 100% detection rate with an average of 

.6 false positive clusters per image. 

2,3   Feature Extraction 

Feature selection is an important operation in pattern recognition. The idea is to find a set 

of vectors that represent an observation while reducing the dimensionality of the data. For pattern 

recognition, it is also desirable that the extracted features provide the best class discrimination. In 

other words, the goal is to find a set of basis vectors which form a subspace of the original data space; 



when the data is projected into this new subspace, it still has the same class separability as it had in the 

original higher dimensional space. 

Lee and Landgrebe[23] propose a method for linear feature extraction based on decision bound- 

aries. Using a training set of pre-classified data, Bayes' decision rule is used to compute the location 

of the decision boundary based on an assumed Gaussian pdf of the data. The decision boundary is 

defined as the set of points in the N dimensional feature space where the probability of a data point 

being a member of class 1 or class 2 is equal. In other words, 

1»£H = °- P(wa) 

Several points of the decision boundary over a significant portion of it (referred to as the "effective 

decision boundary") are identified, and then the vector normal to the decision boundary at each of these 

points is computed. The outer product of each of these normal vectors are added together and averaged 

to form the effective decision boundary feature matrix Y^EDBFM- Lee and Landgrebe show that 

the eigenvectors corresponding to the significant eigenvalues of SEDBFM represent the "informative 

features", i.e., linear combinations of features that are optimum for preserving class separability. The 

space spanned by the orthogonal informative features forms a subspace into which the original data can 

then be projected while maintaining the same class discrimination that existed in the original space. 

To solve the problem of non Gaussian data, Lee and Landgrebe[22] propose a similar method for 

feature extraction using non-parametric classification. Points along the decision boundary are identified 

using a non-parametric pdf estimate such as the K-nearest neighbors or the Parzen window methods. 

Once points along the decision boundary have been identified, the normal to the decision boundary at 

each point is calculated, and T,EDBFM is generated as before. This method is generally more accurate 

for data that is not well approximated by a Gaussian pdf, however, large data sets are often needed to 

accurately represent the effective decision boundary. 

Feature saliency relates closely to feature extraction. The idea is to identify which features 

contribute most to class discrimination. Eisenbees[ll] expanded on the basic feature extraction 

algorithm proposed by Lee and Landgrebe by examining the individual components of the dominant 

eigenvectors of 'EEDBFM • He showed that there is some correlation between the individual features and 

their contribution to class discrimination based on how large their components were in the eigenvectors 



which corresponded to the largest eigenvalues. Using a subset of the feature set based on this evaluation, 

Eisenbees was able to reduce his feature set from 256 to 30 and still preserve an overall classification 

accuracy of 94%. 

Stewart[33] also incorporated the underlying idea of Lee and Landgrebe to identify salient 

features. Using a neural network to compute the decision boundary, Stewart derived a method to 

compute the eigenvalues of ^EDBFM from the gradient of the net's discriminant function. In this 

manner salient features can be identified from the interrelationships between the weights in the network. 

Stewart was able to derive a closed form solution for finding 'EEDBFM, and thus identify the salient 

features. 

2.4 Model-Based Vision 

Model-Based Vision[2] is a pattern recognition scheme that uses previously derived models of 

items of interest to test a hypothesis of whether these items are present in an image. The scheme is 

usually divided into modules or stages: these are focus of attention (FOA), indexing, and matching. 

Focus of attention is intended to segment the image by identifying regions where there is a high 

likelihood of a target being present, and eliminating all other regions from further consideration. 

Indexing extracts features to make a decision as to what type of target may be present, and/or rank 

order the likelihood of specific targets being present. Matching compares the features extracted from 

the object in the image with features derived from a model that was created to simulate the target 

within the feature space as close as possible. The matching features are evaluated according to a set 

of criteria; if the features meet the criteria, then the object is considered to match that type of target. 

Model based vision has been traditionally used in military applications such as target identification, 

however its usefulness in cancer detection will be demonstrated. 

2.5 Conclusion 

Multiresolution analysis, decision boundary based feature selection, and model based vision 

target recognition are the underlying tools and methods that constitute the cancer detection procedure. 

Model based vision is the framework within which the detection procedure operates, multiresolution 

analysis using wavelets is the main focus of attention tool, and feature analysis will be used to make 



a matching determination. The next chapter gives a detailed explanation as to how these tools are 

implemented. 



///. Methods 

3.1 Introduction 

Having described previous research efforts, this chapter will now explain the actual methods 

used to distinguish cancerous from non-cancerous tissue regions. 

3.2 Database 

The nature of the data used for cancer research is of utmost importance in terms of being able to 

correctly evaluate the methods and results. Data for this thesis was obtained from the Wright-Patterson 

Medical Center. Dr. Jeffrey Hoffmeister, from Armstrong Lab, served as the medical expert for 

determining the cancerous condition of the cases that were evaluated. 

The data consisted of 53 mammogram x-ray images that contained radiologist identified mi- 

crocalcification clusters. The images were produced by a Loral film digitization system. The x-ray 

films were scanned and digitized to 12 bits (4096 gray levels) at a resolution of 100 microns per pixel 

using a Lumiscan 200 laser film digitizer interfaced to a Macintosh computer. The digitized data was 

processed on a Sun SparcStation computer. 

3.3 Method Overview 

The entire end-to-end procedure for detecting microcalcifications is shown in Figure 1. Sub- 

sequent sections of this thesis will explain each step in detail. Briefly, the procedure begins with the 

digitized mammogram which is processed by a non-linear operator to improve the dynamic range of 

those gray scale values which contain the most relevant information. The image is filtered by a wavelet 

transform, and then reconstructed using select bands. The image at this point is referred to as the filtered 

image. The filtered image is then thresholded and sub-divided into non-overlapping windows. Regions 

of interest (ROIs) are extracted from the filtered image by first allowing the windows to "settle" on areas 

where the local, energy is maximum; the energy in each window is calculated with redundant windows 

removed. The coordinates of those windows which contain at least a certain minimum energy level, as 

determined by the statistics of the filtered image, become pointers used to extract ROIs from both the 

filtered and the original images. A high-pass operator subtracts out the low frequency non-stationary 

structure of the original ROI. Both sets of ROIs are then subjected to another thresholding routine that 
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Figure 1.    Entire procedure for detecting microcalcification clusters, starting with the digitized mam- 
mogram and ending with a set of ROIs 
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identifies objects within the ROI that may be individual microcalcifications. Features for each such 

object in the filtered image are extracted and evaluated; objects which survive feature examination are 

compared with their corresponding objects from the high-pass filtered original mammogram. If they 

match, and they meet a set of area and perimeter criteria, the object is considered a microcalcification. 

If an ROI contains at least three such microcalcifications, it is considered valid and passed along as a 

detection. 

3.4   Focus of Attention 

The focus of attention (FOA) portion of the algorithm consists of the steps starting with the 

original digitized mammogram and ending with the identification of ROIs that are likely to contain 

microcalcifications. This is analogous to a target identification process [2], which takes in raw image 

data and pertinent sensor information and outputs ROIs, along with confidence measures and character- 

izations of the image in and around the target. The steps constituting the FOA procedure are explained 

below. The goal of this procedure is to reduce the amount of data to be processed in the next step by 

80 to 90 percent, without eliminating actual ROIs. 

3.4.1 Gray Level Modification. The first step is to re-scale the gray levels of the mammogram 

such that the dynamic range of the information portion of the image is increased. This is done by 

applying a non-linear function to the pixel values. The original data was scanned in using a 12 bit linear 

gray scale (0-4095). It was determined from observation that most of the information pertaining to 

microcalcifications and parenchymal tissue was contained within the range of values from 2200 to 3600 

, which occupies only about 29% of the total available resolution. Figure 2 (a) shows a sample digitized 

mammogram and (b) it's accompanying histogram, with the hump of the histogram centered near 3000. 

A sigmoidal function was designed that expanded the values between these points so they have a 

higher dynamic range (i.e., the values from 2200 to 3600 are stretched to occupy a disproportionately 

larger portion of the scale from 0 to 4095) - see Figure 2 (b). In addition to increasing the dynamic 

range, this also has the desirable effect of providing a modest contrast enhancement between the 

microcalcifications and the background tissue. 

For example, consider Figure 3 (a) and (b) which shows a 64 by 64 pixel ROI containing a 

small cluster of microcalcifications. Figure 3 (a) shows the ROI with its original gray scale values, 
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(a) 
Histogram o) gray level values for image #006 
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Figure 2. (a) Original digitized mammogram. (b) Histogram of the gray levels for the mammogram 
in (a) - the spike near 800 corresponds to the dark background around the breast, most of 
the relevant information is in the range from 2200 to 3600. (c) Comparison between the 
linear and non-linear relationship of pixel value to gray-scale value. For the non-linear 
relationship, the pixels in the steepest portion of the curve have the highest dynamic range 
and contrast. 
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(a) (b) 

Figure 3.    64-by-64 pixel ROI containing microcalcifications. (a) Original (unmodified) pixel values 
(b) rescaled ROI using the non-linearity showing increased contrast 

and (b) shows the same ROI after the non-linear function has been applied to it. The contrast has been 

visibly improved; however, a more quantifiable measure of improvement can be computed. Using the 

definition of contrast introduced by Morrow[25], in which the contrast C is defined as 

C = 
f-b 
f + b' (1) 

where / is the mean gray level of the particular object in the image, and b is the mean gray 

level of the background pixels around the object. The values for / and b were calculated from the 

gray levels of the microcalcifications and the background, respectively. A mask was used to separate 

the microcalcifications from the rest of the image. Table 1 shows the improvement in dynamic range 

and contrast after applying the non-linearity. CII is the contrast improvement index introduced by 

Laine[21]: 

CII ^processed 

^original 
(2) 

For this thesis the dynamic range improvement index (DRU) is similarly defined as: 
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ROI measurement Contrast cn Dynamic Range DRn 
Original - mean .0463 - 745.2 - 

standard dev. .0236 - 253.3 - 

Scaled - mean .206 4.25 1733.3 2.37 
standard dev. .125 .921 552.8 .425 

Table 1. Table showing the contrast and dynamic range improvement produced by using a non-linear 
function to re-scale the gray levels. Values were obtained over a sample space of fourteen 
images, see Equations 2 and 3 for definitions of CII and DRTI. 

DRII = 
DR ■processed 

DR, 
(3) 

original 

where the dynamic range is defined as the maximum gray value in the image minus the minimum 

gray value. 

The table shows a mean contrast improvement of 4.25 and a mean dynamic range improvement 

of 2.37. Using global enhancement techniques, Laine achieved contrast improvement indices of 6.2, 

6.4 and 5.8 for microcalcification clusters. Although the gains achieved by applying a non-linearity 

are more modest, they are much simpler to implement and are used only as a pre-processor. The 

overall objective of pre-processing is to enable the subsequent filtering to more easily separate the 

microcalcifications from the background. 

3.4.2 Filtering. After modifying the gray level values, the image is then filtered by a 

tree structured wavelet decomposition/reconstruction scheme. A diagram of the basic method for 1 

level of decomposition of a two dimensional image via one dimensional filters is shown in Figure 

4; this is identical to the structure described by Jawerth et al.[l6], and is widely used in filtering 

applications[38,6, 30, 4]. 

Let f(x,y) represent the input image, which is decomposed into the approximation image 

fLL(x,y) and the three detail images fLH (x, y), /ffi,(a:,y) and/Hff(a;,y). H(x) and H{x) represent 

forward and reverse low pass filtering in the x direction; similarly, G(y) and G(y) represent forward 

and reverse high pass filtering in the y direction. 2 [ x and 2 J. y represent decimation by 2 in the x 

and y directions, and 2 f x and 2 | y represent upsampling (inserting a row or column of zeros) in the 
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Figure 4.    Block diagram of one level of (a) wavelet decomposition and (b) wavelet reconstruc- 
tion [16]. 

x.and y directions. If a perfect reconstruction scheme is used, then the output f(x,y) will differ from 

f(x,y) only by a delay d and possibly a scale factor c; therefore, f{x,y) = cf(x,y)z~d. 

Although virtually any wavelet may be used in theory, the LAD family was chosen due to 

its regularity properties. It has been suggested[6] that regularity is more important for use in image 

processing, in terms of accurately representing rapidly changing structures, than other considerations, 

such as the number of vanishing moments. The LAD wavelets have also been shown to work well with 

mammograms in particular[38]. The 12 tap LAD wavelet (LAD 12) was selected for use as the basis 

for filtering. 

As indicated above, the image is decomposed into an approximation image and three detail 

images; each of these sub-images is \ the size of the original, and are usually represented in a Figure 

similar to 5 (a). The "1" subscript indicates that each sub-image is at a scale 1 below the original. 

The decomposition process can then be repeated on any of the sub-images, further decomposing it into 

an approximation and three detail images. Although in most cases, only the approximation image is 

further split into successively narrower bands, as shown in Figure 5 (b). 

Figure 6 shows a mammogram that has been decomposed down to the level three approximation 

image and levels 1, 2, and 3 detail images. The reconstruction is carried out using only the coefficients 

from the level two and three approximation images. The other coefficients are all set to zero. In 

effect this is very similar to bandpass filtering the image with a passband of f to f. This band of 

frequencies correspond to transitions or bumps that are roughly 2 to 8 pixels in size. The digitized 

mammograms have a spatial resolution of . 1 mm per pixel, so 2 to 8 pixels is close to the expected 

size of microcalcifications. Giger et al.[38], Clarke[28], and Laine[21] have shown good results using 
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Figure 5. Wavelet decomposition to (a) first level (b) third level. 

Figure 6. Mammogram that is wavelet decomposed to third level. 
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Figure 7. Demonstration of centroid migration (a) three separate windows each contain a portion of 
the microcalcification cluster; (b) final ROI after several successive centroid migrations 
containing the entire cluster. 

the same or similar frequency bands. The reconstructed image is then clipped at a gray level of 255 

and thresholded at zero (negative gray scale values are set to zero). This forms the filtered image from 

which ROIs are extracted. 

3.4.3 Region of Interest Identification. Regions which potentially contain microcalcifications 

are found by identifying small boxes within the image (64 by 64 pixels) which have a relatively large 

number of bright pixels compared to most other same sized regions. The filtered image is thresholded 

at T = 6 \ a, where <r is the standard deviation of the gray levels of the entire image. The value 61 was 

selected after a ROC analysis of the system performance on the training set, as discussed in Chapter 5. 

Then the 1020 by 2028 pixel image is subdivided into 465 non-overlapping 64 by 64 pixel windows (15 

windows high by 31 windows wide, minus a small border around the edge). The sum of all the pixel 

values in each window is computed, which is used as a measure of energy (since there are no negative 

values); those with an energy of AT or greater are retained for further consideration. This threshold 

value was chosen to reflect that microcalcifications are among the brightest objects in the reconstructed 

image, and a single microcalcification will be at least 4 pixels large. Therefore, any window containing 

at least one microcalcification will meet this criteria. 
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The center of mass for each retained window is then calculated, and the window is then re- 

centered around its centroid. This process is then repeated until the centroid moves less than 2 pixels, at 

which time it is considered to have "rested" in a region where it encloses the most energy. This process 

of "centroid migration" will tend to pull neighboring windows together when they each may have 

originally enclosed a portion of a cluster of microcalcifications. Once each of the original windows 

have finished migrating, they will most likely overlap each other (i.e., their centers of mass will be very 

close). Overlapping windows can be considered redundant if their centers of mass are within d = 20 

pixels of one another, where d = \/Al0W + A2
col; the window with the lowest energy is eliminated. 

An example of this process is illustrated in Figure 7. If a cluster of microcalcifications happens to lie 

in part of three windows, and there isn't a lot of other energy in the windows (usually a reasonable 

assumption), then the centers of mass (indicated by the X's) of the three windows will all be near the 

cluster. As each of the windows migrates toward the cluster's center of mass, the three windows will 

increasingly overlap until they are close enough to be considered redundant; then only one window 

will be retained. 

After the original windows have migrated and the redundant windows have been removed, the 

energy of the new set of windows is calculated. Only those with energy equal to or greater than 12T 

are retained. This energy level roughly corresponds to the potential existence of at least three micro- 

calcifications within the ROI. Those ROFs which survive this process will be more closely scrutinized 

during the indexing procedure to determine if they do contain microcalcifications or background tissue 

that correlated well with the passband of the wavelet filter. 

3.5   Indexing 

The purpose of indexing is to formulate an initial hypothesis regarding each ROI which is then 

subsequently tested in the matching stage [2]. For microcalcification detection, the hypothesis is a 

simple yes or no decision on whether the ROI warrants further investigation. The goal of this step is 

to eliminate those ROIs which possessed enough energy to survive the Focus of Attention stage, but 

whose structure (as determined by an evaluation of several features) is more likely to correspond to 

background tissue than microcalcifications. 
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Figure 8. Cluster identification within an ROI: (a) Original filtered ROI, (b) ROI after thresholding 
with a high value, (c) ROI after thresholding with a lower value, (d) result after several 
iterations of morphological dilation of the the ROI in (b) and logical ANDing with the ROI 
in (c). The remaining four objects are then evaluated to determine their likelihood of being 
microcalcifications. 

3.5.1 Index Features. Each ROI examined in this stage has a set of features generated 

which describe every object within it. These features and how they are generated are described in the 

following paragraphs. 

The first step is to identify the individual objects within the ROI as illustrated by Figure 8. 

Two masks of the ROI are generated by thresholding the filtered ROI with a high value for one and 

a lower value for the other. Any objects within the ROI that consist of only one or two pixels are 

eliminated. The high threshold mask is then morphologically dilated (without letting any two objects 

grow together) and logical AND compared pixel by pixel with the lower threshold mask. This process 
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is repeated iteratively until the objects stop growing. The remaining objects are considered to constitute 

the potential microcalcifications (an object is defined as a group of pixels that are connected to one 

another by a continuous path of horizontal or vertical neighboring pixels). Each of the objects is then 

examined individually to determine its likelihood of being a microcalcification. 

The first feature of an object is its size: an object must be between 4 and 50 pixels in size to 

be considered a potential microcalcification. The next feature is linearity, which describes the degree 

to which an object resembles a straight line. Strong linearity is associated with background structure 

(arteries, veins, etc.), whereas weak linearity indicates that the object has a blob shape, and is therefore 

more likely to be a microcalcification. The object's linearity is based on the Hough transform as 

described by Gonzalez and Wintz[14]. The linearity of an object at angle 6 is 

?(*) = 7 E(*- cos V) + {v sin(0))2 (4) 
t=i 

where ix and iy are the row and column coordinates of pixel number i in the object. The linearity 

can be generated from a matrix 9: 

* = 

Peu\   Pe2,i 

P$u2      P»2,2 

p9ui    P»*,i 

»„,1 

e„,2 

»»,* . 

(5) 

where Peati = ix cos(0n) + iy sin(0n). Let a be a vector consisting of the standard deviations 

of each column of \I>. Each entry in a corresponds to the standard deviation of the linearity of the 

pixels at a specific angle from — T to 7r. Therefore, the position of the smallest value in a corresponds 

to the angle of maximum linearity of the object. The object's linearity L is therefore defined as 

L = (min(*))7f (6) 
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where I is the number of pixels in the object and a is the vector of standard deviations. The 

lower the linearity factor, the more closely the object approximates a straight line (an object that is a 

straight line has a linearity of zero). 

The other features represent the amount of correlation that exists between the filtered and 

the original images. Microcalcifications can typically be modeled as bright specks with some size 

distribution on a darker, noisy background[34]. Ideally, the objects identified in the ROIs from the 

filtered image (see Figure 8) exactly correspond to microcalcifications. In practice, however, this is 

not the case. Many objects do not correspond to microcalcifications at all, in which case they are 

considered to be some type of background tissue. If an object in a filtered ROI represents an actual 

microcalcification, then the pixels corresponding to that object in the original image will (in general) be 

the brightest pixels within the local area immediately surrounding the object (defining the local area to 

be the pixels within a 3 or 4 pixel wide border around the object). On the other hand, if the object does 

not represent a microcalcification, then it is likely to be part of an edge (which is why it was passed 

by the wavelet filter), and hence may not constitute the brightest pixels within its local area. To help 

distinguish microcalcifications from background which happens to meet the size and linearity criteria, 

a correlation method is used. Using the model of microcalcifications as bright specks on a low noise 

background, then the auto-correlation of the object in the filtered ROI (using a no-noise background) 

should approximate the cross-correlation of the object in the filtered ROI and its corresponding pixels 

in the original ROI. Two features are extracted and used to determine how close the two correlations 

are to each other. These are the center of the cross-correlation, which should be the highest value in 

the cross-correlation matrix, and the mean-square error between the two correlation matrices, which 

should be close to zero. This will separate microcalcifications from background tissue that may have 

had an edge that was passed by the filtering operation. 

This procedure is demonstrated in Figure 9. An object representing a microcalcification is shown 

as a 3-dimensional mesh plot in (a). In (b) the mesh plot of the corresponding location in the original 

image is shown. The mean of the original ROI was subtracted out, and the image thresholded at zero 

to get the maximum contrast available within the ROI. The auto-correlation of the filtered object and 

the cross-correlation between the two images are computed and shown as mesh plots in (c) and (d). It 

can be seen that the two correlations are reasonably close to one another. The "closeness" is indicated 

by examining the height of the cross-correlation at the point where the auto-correlation is at its peak - 
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(a) (b) 

(c) (d) 

Figure 9.    Mesh plots of (a) filtered microcalcification object (b) original microcalcification (c) auto- 
correlation of filtered microcalcification (d) cross-correlation of the filtered and original. 

i.e. at the zero shift point. The other feature is the mean-square error. If KAC and RCc represent the 

N by M auto- and cross-correlation matrices, respectively, then the mean-square error e is 

N     M 

= ^EE(RAc(i,i)-Rcc(i,i))2 
NM (7) 

Smaller epsilon is associated with the stronger the likelihood that the object is a microcalcifica- 

tion. 

The converse is demonstrated in Figure 10.   In this case the filtering operation passed the 

transition at the edge of some background tissue. The filtered object resembles a microcalcification 
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(a) (b) 

(c) (d) 

Figure 10. Mesh plots of (a) filtered "microcalcification" object (b) original image showing a tissue 
edge (c) auto-correlation of filtered microcalcification (d) cross-correlation of the filtered 
and original. 

in size and shape, but the corresponding structure in the original image does not.   Therefore, the 

mean-square error will be much higher for this case than the previous one. 

3.5.2 Index Decision-making. The features described above are computed and used to make 

a determination as to whether the ROIs that survived the focus of attention stage are more likely to 

contain microcalcifications or background tissue. Each object in the ROI in question has its size and 

linearity computed. Microcalcifications should be at least four pixels and not more than 50 pixels in 

size. It was also determined by observation that a linearity ofL< 0.025 is a good cutoff for separating 

microcalcifications (that are usually less linear and more "blob" shaped) and linear background tissue. 

Objects that meet these criteria are then evaluated using the correlation procedure to compute their 
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Feature Criteria 

size(S) 50 > S > 4 
linearity(Z) L > .025 

center correlation(C) C>.8 
mean-square error(e) .11 >e 

# microcalcifications(iV) JV>2 

Table 2. Feature decision thresholds and their order of consideration. 

center correlation value and mean-square error. Ideally the center correlation should be one, but 

anything above .8 is retained. Also, in the ideal case the mean-square error is zero; however, it was 

determined that e < .11 is a reasonable cutoff. A ROI must have at least 3 objects that meet these 

criteria to be considered a possible microcalcification cluster. The decision steps are summarized in 

table 2. 

3.6   Matching 

3.6.1 Final Object Identification. In a typical target recognition application, the matching 

process tests a hypothesis about an object's identity by comparing features extracted from the object 

against some criteria. The criteria is usually based on a model which was developed to resemble the 

object in terms of the extracted features. The final step, then, in deciding whether a microcalcification 

cluster is detected is to extract features from each calcification and compare them with a model-based 

standard. 

As previously discussed, microcalcifications can be modeled as bright specks on a non-stationary 

noisy background. Because microcalcifications exist over a very wide range of gray scale values, and 

the background tissue (referred to as "noise" hereafter) in which they exist also has a wide distribution 

of gray scales and amount of correlation, it is very difficult to identify a universal standard which can 

be used to separate microcalcifications from noise. Instead, it is more profitable to consider each object 

within a highly localized area consisting of the object itself and a few pixels immediately surrounding 

it; this allows for comparisons to be made on a relative basis. For this reason, it is helpful to have a 

second view of the object as a double-check of the attributes to be examined. 
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Figure 11. Comparison of object separation using the original ROI: (a) & (b) without removing the 
non-stationary background; (c) & (d) after removing the non-stationary background. Once 
the non-stationary portion of the background is removed, the dimmer microcalcifications 
are retained, and the background object on the bottom of the original image is discarded. 

Such a second view is generated by creating a high-pass version of a ROI being considered, 

which removes the non-stationary portion of the background, leaving any microcalcifications on a 

zero-mean noisy background. 

The non-stationary background is approximated by filtering the ROI with an 8-by-8 pixel averag- 

ing window. This effectively removes the signal portion of the ROI, and leaves a smooth approximation 

of the background structure. This structure is then subtracted from the original image, producing a high 

frequency only ROI consisting of microcalcifications and noise on a "fiat" background. The hi-pass 

image can then be subjected to a thresholding scheme that is similar to the one used with the wavelet 

filtered image. The effect of this is demonstrated in Figure 11. Figure 11 (a) and (b) show the original 
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Figure 13. (a) Decision boundary and data points: * - phantom data points, + - actual microcal- 
cifications, o's - noise data points, (b) Blow-up of the critical portion of the decision 
boundary and data points actually used to determine the decision boundary: + and o indi- 
cate data points, x's are decision boundary points as determined by Lee and Landgrebe's 
non-parametric procedure 

3.6.2 Hypothesis Testing. Once the final ROI has been generated, objects within the ROI 

are subjected to the last test as to whether they represent microcalcifications or noise. The area and 

perimeter of each object is determined, and then the ratio of area/perimeter is calculated. If the 

ratio falls within a certain range based on the area, then the object is considered a microcalcification; 

otherwise it is considered noise. Figure 13 (a) illustrates most of the data region, including several 

sample points for both microcalcifications and noise, and an approximation to the decision boundary. 

An X-ray phantom image containing several modeled microcalcifications of assorted sizes was used as 

a guideline. The area/perimeter ratio was calculated and plotted for each modeled microcalcification. 

Since the phantom modeled microcalcifications are somewhat idealized in terms of their size and shape, 

they represent a high confidence level indicator. The (*) points represent modeled microcalcifications. 

The decision boundary was determined by selecting several examples of microcalcifications and noise, 

and generating an effective decision boundary feature matrix[23]. Figure 13 (b) shows a magnified 

view of the points used to determine the boundary. All +'s and o's are actual data points. These points 

were used as input for the decision boundary calculation[22], and the x's indicate the decision boundary 

points. 

Each object in the final ROI is tested to determine which category it falls into - microcalcification 

or noise. Any ROI with at least three microcalcifications is passed along as being detected. 
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3.7   Conclusion 

The detection procedure involves a number of different steps, each of which is designed to 

gradually eliminate more and more false ROIs. Actual results generated by this method will be 

presented in the following chapter. 
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IV. Results 

4.1 Introduction 

This chapter presents the results of applying each of the steps described in Chapter 3. In all, the 

procedure was applied to 53 mammograms containing a total of 53 ROIs with radiologist confirmed 

microcalcifications. The data was divided into four sets: a training set consisting of 14 mammograms 

with 17 ROIs, a test set consisting of 17 mammograms with 20 ROIs, an evaluation set consisting of 

12 mammograms with 16 ROIs, and a set declared normal (i.e., cancer free) by a radiologist. 

The training set was used to develop the procedures and methods discussed previously. Therefore, 

the results obtained from this set will receive more emphasis in the following discussion as its progress 

is traced through the steps in the detection method. Once this was done, the test and evaluation sets 

were processed and evaluated without changing the procedure. 

4.2 Training Set 

The training set consisted of 14 mammograms from 9 different patients. Of the 17 ROIs, 10 were 

confirmed as malignant after biopsy, 5 were confirmed benign after biopsy, and 2 were not biopsied. 

4.2.1 Focus of Attention. The steps comprising the FOA portion of the method were applied 

to the images. After the images had been filtered by the wavelet filter bank and thresholded, the ROIs 

were ranked according to the amount of energy they contained. Table 3 shows the total number of 

ROIs that survived the FOA steps, and an energy rank of how the true ROI compared to all the others 

(1 = ROI having the highest energy in the image, etc.). Those images with more than one number in 

the rank column had more than one ROI, and were ranked accordingly. 

The mean and standard deviation of both the number of ROIs passed and the rank order of the true 

ROIs is also listed in the table. The numbers in parentheses are calculated by ignoring image 008, which 

represented an extreme case in terms of the rank order of the ROI. The microcalcifications in image 

008 are small and have low contrast, causing very little energy to be present in the segmentation steps. 

It could be argued that the number of false positives surviving the FOA stage could be substantially 

reduced if only the top 15 or 20 ROIs were retained, at the expense of losing only one true ROI. 

However, it was decided at this early phase of the procedure to allow the large number of ROIs to 
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Image Num. Regions rank 

005 78 1 
006 89 2,3,5 

007 78 1,6 
008 61 60 
009 82 6 
020 69 6 
022 54 2 
024 56 1 
033 66 2 
038 95 3 
040 53 13 
045 55 1 
047 41 3 
055 45 10 

mean 66.4 7.35 (4.1) 

<7 16.1 13.9 (3.4) 

Table 3. Table showing the results of the focus of attention procedure. Num. regions indicates the 
number of ROIs that survived the thresholding procedure, and rank indicates the rank order 
by energy of the true ROI (1 - highest energy, etc.). 

pass in exchange for passing all the true microcalcification clusters. Even though the number of ROIs 

passed is large, an average of 66 non-overlapping ROIs that are 64 by 64 pixels in size represent 

10
6

2
6
4^

6
2
4
048 = .1289 about 13% of the image, which means a reduction in the amount of data to be 

considered by about 87%, with all true ROIs being retained. 

4.2.2 Indexing. Once the ROIs were identified, the next step was to make a decision whether 

they were more likely to represent microcalcifications or noise. The indexing steps evaluated the size, 

linearity, and degree of correlation to make the decision. Table 4 shows the amount of data that survived 

the indexing steps. 

A comparison of Tables 3 and 4 shows that indexing removed an average of approximately 

50 ROIs per image, while still retaining all of the microcalcification clusters. Again, if only the top 

fraction were retained, such as the top 4 or 5, a very good detection percentage could be achieved with 

a reasonable number of false positives. However, it was again decided to retain all of the ROIs that 

passed this step, and to use a matching scheme to make a final decision about each ROI. 
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Image Num. Regions rank 
005 17 2 
006 17 1,2,3 

007 18 1,2 
008 18 18 
009 4 1 
020 18 1 
022 15 1 
024 25 1 
033 23 2 
038 17 4 
040 16 5 
045 13 1 
047 15 1 
055 6 1 
mean 15.8 2.76 (1.8) 

a 5.5 4.1 (1.2) 

Table 4.    Table showing the results of the indexing procedure. Mean and standard deviation numbers 
in parentheses are calculated by ignoring image 008. 

4.2.3 Matching. The matching process compared the area and area/perimeter values for each 

potential microcalcification within an ROI against a standard that was developed from the phantom 

images. At its optimal setting, the method achieved a 100% (17 of 17) detection with an average of 

1.64 false positive ROIs per image. 

Since the performance of the method is dependent upon the settings of a number of threshold 

and comparison values, it is informative to examine how the performance changed as the parameters 

changed. Four receiver operating characteristics (ROC) curves are shown in figure 14 to demonstrate 

the effects of altering the parameters. The altered parameters are: (a) the multiple of the standard 

deviation used to determine the threshold value in the windowing of the wavelet filtered image, (b) 

the parameter controlling the low/hi threshold pair applied to ROIs that identified the separate objects 

within the ROI, (c) The correlation peak minimum and mean square error maximum values used to 

screen objects, and (d) the threshold parameter used to separate objects in the hi-pass ROIs prior to the 

cross check between the hi-pass and wavelet filtered ROIs. 

4.2.4 Discussion. Examination of the ROC curves gives an indication as to how the 

performance of the method changes as the parameters are changed.   The segmentation threshold 
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ROC curve as a function of segmentation threshold ROC curve as a function of Initial threshold 

0.4 0.6 0.8 1 \2 1.4 1.6 1.6 
average # false detections per Image 

02 0.4 0.6 0.8 1 1.2 1.4 
average # false detections per Image 

(a) (b) 
ROC curve as a function of correlation parameters ROC curve as a function of high-pass threshold 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
average # false detections per Image 

02 0.4 0.6 0.8 1 1.2 1.4 
average # false detections per image 

(c) (d) 

Figure 14. ROC curves showing performance as detection parameters are changed: (a) multiple of the 
standard deviation used for segmentation, (b) initial low-hi threshold pair, (c) correlation 
peak and mean square error criteria, (d) hi-pass ROI threshold 
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parameter (14 (a)) is the first hurdle that must be overcome in order for a ROI to be detected. The effect 

of raising this threshold is to eliminate lower energy ROIs, which causes ROIs containing few and 

or small microcalcification to be immediately discarded; false ROIs which contain low energy noise 

would probably be eliminated in one of the subsequent steps. This explains the steep initial drop in 

the curve as the ROIs corresponding to images 8 and 40 (see Table 3) are discarded, then the decrease 

becomes more gradual. 

The low/hi threshold parameter (Figure 14 (b)) appears to offer the best tradeoff between 

decreasing probability of detection and the number of false detections. An explanation for this is that 

the ROIs are not evaluated in terms of their energy after this step, instead this is a pre-processing 

operation used prior to determining whether the individual objects within a ROI are more likely to 

be microcalcifications or noise. This means that the ROIs are retained or discarded based on the 

distribution of the energy within them, not necessarily on the magnitude of the energy. Therefore, 

proportionately more false ROIs are eliminated as the threshold increases as compared to the other 

parameters. 

Changing the parameters of correlation peak and mean square error (14 (c)) appears to produce 

the most extreme changes at the ends of the curve. These are the only parameters that are not threshold 

values; instead they are feature criteria. In addition, both features are highly non-linear - particularly 

the peak correlation value. At its most extreme level, the peak correlation is a binary yes or no decision 

as to whether the correlation center is the maximum value in the cross correlation between the objects 

in the wavelet filtered image and the original image. Because of the non-linearity of these features, it 

is difficult to predict the effect that changing them will have on the method as a whole. 

The hi-pass threshold parameter (14 (d)) governs the size and shape of the objects in the hi-pass 

ROI that are cross-checked with the objects in the wavelet filtered ROI. As the threshold increases, 

these objects get progressively smaller. This has a double-edged helpful effect on the detection 

process. Objects which are essentially the "wrong" shape to be microcalcifications (wrong being 

described as wispy, or not compact) are eliminated quicker than compact objects that more closely 

resemble microcalcifications, which are retained until they are too small to be detected at all. This also 

explains the steep drop at the end of the curve, which represents the threshold point beyond which very 

few microcalcifications survive the area/perimeter test. 
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4.3 Test Set 

The procedure was used to evaluate the test data set using the same settings that were applied to 

the training set without modification. Fifteen of the twenty ROIs were detected (75% detection rate) 

with an average of 1.82 false positive detections per image. Applying the procedure without modifying 

any of the parameters produces a less "biased" estimate of its performance; the training set was used 

to develop the algorithm, therefore there is a tendency to customize portions of the method to match it. 

This becomes apparent when the results of the two methods are compared: 100% detection with 1.64 

false ROIs per image for the training set versus 75% detection with 1.82 false ROIs per image for the 

test set. A more realistic estimate of how the method would work in a real world setting is obtained by 

using pristine data with the unmodified algorithm. 

It is informative to examine the ROIs that were not detected and to discover the reason(s) 

why they were not. Two of the five microcalcification clusters were too small to meet the minimum 

energy requirement in the segmentation step. In the other three cases, all three clusters contained two 

calcifications that met all of the requirements, but one (or more) calcifications failed to meet some 

requirement by a narrow margin. Most missed microcalcifications could be attributed to one of two 

factors: either the correlation features were outside the acceptable limits, or the area/perimeter ratio 

was too low. The first reason for failure appeared to occur when the signal to noise level of the 

microcalcification was very low, which caused a strong cross-correlation between the noise and the 

microcalcification. The second reason appeared to be the result of having a threshold too high, causing 

too little of the microcalcification to be left from which the area/perimeter ratio was calculated. In either 

case, some additional pre-processing may help reduce the noise level such that a third calcification 

could be detected. Since an ROI must have three valid microcalcifications to be considered a detection, 

these ROIs were discarded. 

4.4 Evaluation Set 

The procedure was also applied to a third set of data, again without modifying any of the 

parameters. Twelve of sixteen ROIs were successfully detected, with an average of 4.25 false positive 

detections per image. The higher number of false positives was due to one case, which consisted of 

a pair of older images that were produced on different film. Excluding that particular case resulted in 

8 of 12 detections with 2.8 false positive ROIs per image. For the missed ROIs, once more, most of 
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# Detections # images which occurred 
0 5 
1 2 
2 1 
3 1 
4 0 

5+ 1 

total 10 

Table 5.    Number of (false) detections that were found by the algorithm in radiologist declared normal 
images. 

them were attributed to cases where 2 microcalcifications were passed but a third narrowly failed some 

criteria. 

4.5 Normal Tissue Set 

As a final check, the procedure was applied to a set of 10 images that were declared by a 

radiologist to be free of abnormalities (i.e., no microcalcifications or masses were present). This 

experiment was intended to indicate how the algorithm would perform on a "normal" case by counting 

the number of detections. Table 5 shows the results of this test. One image produced 10 false positive 

detections giving an overall average of 1.7 detections per image. The reason for the single anomaly is 

unclear, however, it is suspected to be related to the variations in the density of the breast tissue. Visual 

examination of these images indicated that there may be some correlation between how homogeneous 

the breast x-ray appears and how likely a large number of false positive detections would occur. 

4.6 Summary 

For the training set the procedure achieved a 100% (17 of 17) detection rate, with an average 

of 1.64 false positive ROIs per image. When the three data sets are combined for a composite 

performance measure, 44 of 53 (83%) ROIs were detected with an average of 2.44 false detections per 

image. Combining only the test and evaluation sets resulted in 27 of 36 (75%) ROIs detected with 2.83 

false positive detections per image. The composite results are summarized in the ROC plot in Figure 

15. Combining the test, evaluation, and normal tissue results should give a reasonable estimate of the 

system performance for most mammograms. 
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Figure 15.    Composite probability of detection and false positive ROIs per image results of training, 
test, and evaluation data 
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V. Conclusion 

5.1 Introduction 

This chapter summarizes the methods and results of this research, while highlighting the devel- 

opments that are unique to AFTT and to cancer detection as a whole. The main purpose of this research 

was to produce a front to back procedure that begins with a digitized mammogram and outputs the 

coordinates of regions within the image that are likely to contain a cluster of microcalcifications. The 

procedure also outputs with each region a set of features to indicate how strong the likelihood is that the 

region contains a cluster of microcalcifications. The objective is to help a radiologist identify abnormal 

tissue, not to make a diagnosis; therefore, no attempt is made to classify abnormalities as malignant or 

benign. 

5.2 Summary of Methodology 

The steps involved in detecting ROIs are the result of combining some unique tools developed 

by this research with the application of concepts developed by other researchers that were outlined in 

Chapter 2. The first step is to apply a non-linear function to the image to improve the contrast and 

dynamic range of the most relevant information. Similar techniques have been used successfully by 

other researchers[20,21,12,18]; for this research the AFTT non-linear transformation of the brightness 

values produced a mean contrast improvement index (CII) of 4.25 compared to 6.4 for Laine's more 

computationally intensive method[21,19]. A new measure that is similar to the CII was also introduced 

in this work: a dynamic range improvement index (DRII), which measures how the relevant portion 

of the information can be spread over the available resolution in order to enhance detectability at the 

expense of shrinking the dynamic range of the less important information. 

This research implements the wavelet decomposition/reconstruction method for image filtering 

demonstrated by Yoshida et aZ.[38]. The filtering increases the signal to noise ratio of microcalci- 

fications, allowing for easier detection using thresholding and feature extraction. The intent was to 

test the applicability of Yoshida's filtering method to AFTT's mammogram database. Although the 

post-filtering portion of the method used by Yoshida to detect microcalcification clusters differed from 

what was used for this research, it is worthwhile to compare the results: Yoshida's complete procedure 

produced an 85% detection rate with an average of 5 false positives per image using a database of 39 
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mammograms, compared to this research which produced a training result of 100% detection with an 

average of 1.64 false positives per image and a test and evaluation result of 75% detection with 2.54 

false ROIs per image using a total of 53 images. It is unclear whether or how Yoshida divided the 39 

images into training or test sets. 

After filtering and thresholding the image, the next step is to identify the center coordinates of 

ROIs that contain microcalcification clusters. A process called centroid migration is introduced which 

finds the center coordinates and eliminates redundant ROIs. This process, unique to this research, 

reduced the number of ROIs that were passed by the focus of attention portion of the algorithm by 

approximately 30%. 

The background noise removal procedure was in part inspired by the work of Hahn and 

Strickland[34], who proposed modeling breast tissue as a stationary random process with some cor- 

relation on a non-stationary background. This research presents a novel approach to removing the 

non-stationary portion of the background by subtracting an estimate of the background which was cre- 

ated through mean filtering. Potential microcalcifications were then extracted using low/hi thresholding 

and morphology. The combination of non-stationary background noise removal and dual thresholding 

to extract microcalcifications is unique to this research, and removed on average 5 false positive ROIs 

per image from the training set. 

Microcalcifications were confirmed as such by comparing features generated from each potential 

microcalcification with a model based criteria, using phantom microcalcifications as the modeling 

source. Although Clarke et al.[29, 28] and Giger et al.[ 12] have used phantom images to simulate 

microcalcifications, the extraction of features from phantoms for model based matching is unique to this 

research. New features of peak and mean-square error of the cross correlation between two estimates 

of microcalcifications are also proposed in this work; when combined with other standard features such 

as linearity, area, and perimeter it is shown that classification results comparable to those achieved 

by Dhawan[8], who using a neural network to evaluate features based on second order statistics to 

identify microcalcification clusters achieved a detection rate of 77% with a false positive rate of 45% 

on a database of 100 images. 

5.3   Summary of Results 
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Set # Images True Detections % False detections average/image 
Train 14 17 of 17 100 23 1.64 
Test 17 15 of 20 75 31 1.82 
Eval 12 12 of 16 75 51 4.25 
Clear 10 - - 17 1.7 

Total 53 44 of 53 83 122 2.3 

Table 6. Detection and false positive results for all data sets. 

The results for each of the data sets is shown in Table 6. Listed for each data set is the number 

of images in the set, the number of microcalcification clusters detected versus the number of clusters 

present, the percentage of clusters detected, the total number of false positive ROIs detected for the 

set, and the average number of false ROIs per image. The total for all of the data sets combined was 

44 out of 53 ROIs detected (83%), with 122 false detections in 53 images, which yields an average of 

2.3 false positives per image. It is important to notice the change in results for the different data sets. 

The training set was used to develop the algorithm and determine the various threshold parameters, 

indicating that it is possible to customize the algorithm to detect everything with a fairly low false ROI 

detection rate. The test, evaluation, and clear data sets were processed independently and with the 

exact same algorithm parameters as were used on the training set. Although the performance fell off, 

the results of the three independent sets were reasonably consistent with one another. From this it can 

be concluded that the same results could be expected from virtually any set of images. 

The missed detections mainly occurred in cases of extremely small and/or poor contrast microcal- 

cifications. In particular, low contrast calcifications most often failed to survive the initial thresholding 

of the wavelet filtered image. Small or high noise calcifications that were missed usually failed to meet 

one of the correlation feature criteria or the area/perimeter feature requirement. The missed detections 

are useful in that they define the boundaries of the system's performance; it is suggested that follow-on 

work be done to expand these boundaries by investigating other adaptive thresholding techniques in 

order to increase the detectability. 

Although it was not the purpose of this research to diagnose detected ROIs as malignant or 

benign, it is informative to re-examine the detection results in terms of the number of malignant and 

benign cases detected. The 43 biopsied images comprise 27 different cases (16 double view and 11 

single view), with 14 pathology confirmed malignant and 13 pathology confirmed benign. The system 

detected 13 of the 14 (93%) malignant cases with an average of 2.85 false detections per image. Of 
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the 14 malignant cases, 6 were used in the training set and the other 8 were distributed in the test and 

evaluation sets. For the 13 benign cases, 10 were detected (77%) with an average of 2.1 false ROIs 

per image. A case was considered detected if an ROI corresponding to a biopsied cluster in one of the 

views was output by the system; if the microcalcification cluster was not output for either view, it was 

counted as a missed detection. 

It is interesting to note that the system was more successful in detecting malignant clusters 

than benign ones, and images with malignant clusters had a higher incidence of false positives. This 

indicates that the features used to separate microcalcifications from background tissue may potentially 

be used to separate malignant from benign clusters, as the system is more sensitive to malignant cases. 

It is also of practical interest: a missed benign cluster may not have serious repercussions for the 

survival of a patient but a missed malignancy could prove fatal. Two possible explanations of why a 

higher percentage of malignant cases are detected are: first, very small clusters that are susceptible to 

elimination during the initial filtering and thresholding steps are more likely to be benign and second, 

benign microcalcifications may be less separable from background tissue using area/perimeter as a 

feature than malignant ones. 

5.4   Conclusion 

Some interesting conclusions can be drawn from this work: 

• Filtering the mammogram with a tree structured wavelet filter using a Daubechies wavelet 

increases the signal to noise level of the microcalcifications sufficient to allow a thresholding scheme 

to identify over 90% of the radiologist identified microcalcification clusters. 

• Low and a high thresholding combined with morphological filtering proved successful 

in isolating individual microcalcifications 95% of the time. Features extracted from each calcification 

were then used to evaluate its authenticity, with the results as given above. Selection of the threshold 

values as a function of the statistics of the image was effective, but occasionally produced excessive 

false positive detections. 

• It is possible to remove enough of the non-stationary background within an ROI through 

a simple mean filtering and subtraction technique to increase both the sensitivity and specificity of the 

process. For the set of training data this method removed an average of 5 false positive ROIs per image. 
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With these conclusions, this thesis meets the objectives outlined in Chapter 1. The procedure 

developed in this research may be applied to most mammograms and be expected to yield results 

similar to those found using the data in this research. 
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Appendix A. Wavelet Code 

A.1   Introduction 

This appendix describes the MATLAB m-files that were used to perform the wavelet decom- 

position and reconstruction of the mammogram images evaluated in this thesis. The wavelet code 

consists of two m-files: new.wave. m and new.recon. m. New.wave. m decomposes the input image 

into an approximation image and three detail images as described in chapter 3. Recon.wave_conv.rn 

reconstructs the image from its four sub-images. Each of these is described in detail below. 

A.2   Requirements 

The image size is not constrained to be square, or even a power of 2. Because the filtering is 

done using MATLAB's conv2 command, the filtered image size is equal to the original image size plus 

the filter length minus 1. That is, if the original image ismxn, and the filters are of length /, the the 

filtered image is of size m + l — lxn + l — 1. The filtered image is then decimated by two so that each 

sub-image is m+
2'~

1 x £i^:1. Generally, m,n, and I are even, sop = m + l-1 and q = n + l-1 are 

odd. However, the decimation routine automatically rounds | and § up to the nearest integers, a and 

b, so a = ceilC""^'"1) and b = ceilC+j-1). The original image size mxn must therefore be chosen 

such that a and b are even for all of the decomposition levels that are to be computed. This is a function 

of the filter length, so a correct set of sizes must be computed for each filter length. For example, if the 

original image size is 2312 x 1160, and the filter has 8 taps, the the first level decomposition will be 

2312 + 8 - 1 -=- 2 = 1159.5 -> 1160 by 1160 + 8 - 1 -S- 2 = 583.5 -► 584, or 1160 x 584; the 

second level will be 584 x 296, etc. The reason for this non-linear size progression is the nature of the 

conv2 command. Its disadvantages of awkward size requirements and non power-of-two progression 

are outweighed by its advantages of speed and minimizing the edge effects of filtering. 

A3   new.wave.m 

new.wave .m is the routine that computes the wavelet coefficients for an image. It is a function 

that accepts an image and the wavelet filter coefficients for the low and highpass filters as inputs, and 

returns the approximation and detail images. The program is designed to be flexible so as to handle 

images of any size using any separable wavelet filter with the following restrictions:  1) The filter 
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coefficients must be the same size (i.e., it does not handle biorthogonal wavelets of different lengths), 

2) The image must be a specific size if it is to be reconstructed (see above). 

A wavelet decomposition is created by calling the function wave.conv for an image, which 

returns four sub-images. The next level of decomposition can then be created by calling the function 

again, only this time use the approximation image returned from the first call as the input image, and 

so on until enough decomposition has been achieved. 

function [sll,slh,shl,shh] = new_wave(IMG,LO,HI); 

%************************************************** 

% 
% function [sll,slh,shl,shh] = new_wave(IMG,LO,HI); 
% 
% Uses the low and hi-pass filters LO and HI to 
% create the approximation image sll and the three 
% detail images slh, shl, and shh from the original 
% image IMG 
% 
%************************************************** 

% low-pass filter the columns 
LI = conv2(IMG,L0); 

% downsample the columns 
[nr,nc] = size(Ll); 
Ll=Ll(:,l:2:nc); 

% low-pass filter the rows 
sll = conv2(Ll,L0'); 

% downsample the rows 
[nr,nc] = size(sll); 
sll = sll(l:2:nr,:); 

% hi-pass filter the rows 
slh = conv2(Ll,HI'); 

% downsample the rows 
[nr,nc] = size(slh); 
slh = slh(l:2:nr,:); 

% hi-pass filter the columns of the original 
HI - conv2(IMG,HI); 

% downsample the columns 
[nr,nc] = size(Hl); 
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Hl - Hl(:,l:2:nc); 

% low-pass filter the rows 
shl - conv2(Hl,LO'); 

% downsample the rows 
[nr,nc] = size(shl); 
shl = shl(l:2:nr,:); 

% hi-pass filter the rows 
shh = conv2(Hl,HI'); 

% downsample the rows 
[nr,nc] = size(shh); 
shh = shh(l:2:nr,:); 

A.4   new_recon.m 

The program new.recon.m reconstructs an image from four sub-images and a set of filter 

coefficients that are provided as input. 

function BACK = new_recon(sll,slh,shl,shh,LO,HI); 

%' 
% function BACK = new_recon(sll,slh,shl,shh,LO,HI); 
% 
% Creates reconstructed image BACK from the approximation 
% and detail images and lo and hi-pass filters LO and HI. 
% 

% upsample along y - i.e. double the number of rows: 

[nrow,ncol] - size(sll); % all four must be the same size 

sll_up(l:2:((2*nrow)-l), 
slh_up(l:2:((2*nrow)-l), 
shl_up(l:2:((2*nrow)-l), 
shh_up(l:2:((2*nrow)-l), 

) = sll 
) - slh 
) = shl 
) = shh 

% convolve the pieces with their appropriate low or high pass filter 

ill = conv2(sll_up,L0') 
ilh = conv2(slh_up,HI') 
ihl = conv2(shl_up,L0') 
ihh = conv2(shh_up,HI') 

45 



% combine the intermediate images 

[row,col] = size(ill); 
inter_lo = ill + ilh; 
inter_hi = ihl + ihh; 

% upsample along x - i.e. double the number of columns: 

intl(:,l:2:((2*col)-l)) = inter_lo; 
inth(:,l:2:((2*col)-l)) = interjii; 
[row,col] - size(intl); 

XI = conv2(intl,L0); 
X2 = conv2(inth,HI); 

% add the two together 

BACKa = XI + X2; 

1 = length(LO); 
orig_row - 2*nrow - 1; 
orig_col = 2*ncol - 1; 

BACK = BACKa(l:orig_row + 1 - l,l:orig_col + 1 - 1)*.25; 
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Appendix B. Microcalcification Detection Code 

B.l   Introduction 

After the wavelet filtered image has been created, the next step is to use it to detect the actual 

microcalcification clusters. This appendix describes the set of subroutines that make up the actual 

detection portion of the procedure. The hi-level program detect .m controls the whole process from 

front to back, while calling several subroutines to make important calculations. The primary subroutines 

aremain.seg_roc.m, pre.proc64 .m, hypoth.m, roi.correl64 .m, reduce64 .m, roc.feat64.rn, 

and sorter64 .m. In addition, there are several minor subroutines that perform various odd jobs such 

as reading in files, computing centers of mass, etc., that are not listed. 

B.2   main.seg.roc. m 

This m-file segments the mammogram by generating the row and column coordinates of the 

centers of the initial ROIs. Inputs are the filtered image and the multiple of the standard deviation that 

is to be used for the threshold, and the outputs are the center row and column coordinates (in vector 

form) and the filtered image standard deviation, which is used for future reference. 

function [I_clear,J_clear,sd] - main_seg_roc(IMG,mult); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% main_seg.m 
%' 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Program main_seg.m that executes the segmentation functions for a 
% 1020 by 2028 reconstructed wavelet filtered and threshholded mammogram. 

% The requirements to run this program are: 
% 
% 1: A 1020x2028 matrix called IMG exists in memory 

% The program parameters are: 
% 
% top_margin uncertainty edge distance from top/bottom of IMG 
% size_margin uncertainty edge distance from sides of IMG 
% min_energy minimum "energy" required for ROI to be 
% considered relevant after first pass 
% thresh minimum energy to survive the second pass 
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% box_row # rows in the sliding window (size in rows) 
% box_col # cols in the sliding window (size in cols) 
% -NOTE: the (image size - margin) / box size 
% must be an integer !11 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Initial Threshhold 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

sd = std(IMG(:)) 
hi_t - mult*sd; 
MASK = IMG > hi_t; 
IMG = IMG.*MASK; 
clear MASK 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Parameter Definitions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%«%%%%% 

top_margin = 30; 
side_margin = 22; 
box_row = 64; 
box_col = 64; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% BEGIN PROGRAM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Compute the "Energy" matrix E 

E = slider(IMG,top_margin,side_margin,box_row,box_col); 

% Keep only those regions which have at least the minimum energy 

min_energy = 4*hi_t; 
[I,J] - find(E > min_energy); 
I_mid = (I-l)*box_row+top_margin+(box_row/2); 
J_mid = (J-l)*box_col+side_margin+(box_col/2); 

% Perform the centroid migration 

[G,EN] = SEG (IMG, I,J,top_margin,side_margin,min_energy,box_row,box_col); 

thresh = 3*min_energy; 
[I_final,J_final,E_final] = reducer(G,EN,thresh); 

for i = 1:length(I_final) 
if (I_final(i) < (box_row/2) | l_final(i) > (1020 - (box_row/2))) 
E_final(i) = 0; 
elseif (J_final(i) < (box_col/2) | J_final(i) > (2028 - (box_col/2))) 
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E_final(i) - 0; 
end 
end 

F = find(E_final); 
for i = l:length(F); 
I_clear(i) = I_final(F(i)) 
J_clear(i) = J_final(F(i)) 
E_clear(i) = E_final(F(i)) 
end 

B.3   pre.proc64.m 

This m-file implements the low and hi thresholding and identifies the individual objects within 

a ROI. The input is the filtered ROI, and the output is the ROI with only the separate objects that are 

potential microcalcifications remaining. The subroutine roi.cut64 .m actually designates individual 

objects within the ROI, so it included here. 

function ROIB = pre_proc64(ROI,tl,th,min_size); 

%***************************************************** 

% 
% function ROIB = pre_proc64(ROI,tl,th,min_size); 
% 
% m-file returns the matrix ROIB which contains only those 
% pixels which are part of an object that has at least one 
% pixel with a value >- th. 
% 
%***************************************************** 

% create masks of objects that have all pixels in excess of 
% a given value (th or tl), and are at least min_size large 

MASK1 = roi_cut64(ROI,th,min_size); 
MASK2 - roi_cut64(ROI,tl,min_size); 
Y = MASK1; 

e_new - sum(MASKl(:)); 
dif = e_new; 

% grow the ROI by dilating and ANDing the two masks 

while dif > 0, 
e_old = e_new; 
X - Y>0; 
BW = dilate(X,'fatten'); 
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Y = BW.*MASK2; 
e_new = sum(Y(:)); 
dif = e_new - e_old; 
end 

ROIB = Y; 

function BACK - roi_cut(IMG,mult,min_size); 

%******************************************************* 

% 
% function BACK = roi_cut(IMG,mult,min_size); 
% 
% Function that returns ROI BACK with only objects that have all 
% of their pixel values in excess of mult and are at least min_size 
% pixels large 
% 
%******************************************************** 

MASK - IMG > mult; 
X - MASK.*IMG; 

[I,J,V] = find(abs(X)); 
1 = length(I); 

% first pass - assign same row clusters 

C(l) = 1; 
cmax = 1; 
cind = cmax; 
for i = 2:1 
new_col = J(i) - J(i-l); 
if new_col == 0 
t = find((I == I(i)) & (J == (J(i) - 1))); 
if t == [] 
if I(i) == (I(i-l) + 1) 
C(i) = cind; 
else 
cmax = cmax + 1; 
cind = cmax; 
C(i) = cind; 
end 
else 
cind = C(t); 
C(i) = cind; 
end 
elseif new_col == 1 
t = find((I == I(i)) S (J == (J(i) - 1))); 
if t == [] 
cmax = cmax + 1; 
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cind = cmax; 
C(i) = cind; 
else 
cind = C{t); 
C(i) = cind; 
end 
else 
cmax = cmax + 1; 
cind - cmax; 
C(i) = cind; 
end 
end 

% second pass - assign same column clusters 

for i = 2:1 
if (J(i) -- J(i-l)) & (I(i) ~ I(i-1)+1) 
if C(i) ~= C(i-l) 
t - C(i-l); 
T = find(C == t); 
q = length(T); 
for k - l:q 
C(T(k)) = C(i); 
end 
end 
end 
end 

% determine the number of unique clusters, size, energy & distance 

num = 0; 
for i = l:cmax 
T = find(C == i); 
if T "- [] 
num = num + 1; 
s = length(T); 
if s > (min_size-l) 
RI = [RI; I(T)]; 
RJ = [RJ; J(T)]; 
RE = [RE; V(T)], 
end 
end 
end 

SP = sparse(RI,RJ,RE,64,64); 
BACK = full(SP); 
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B.4   hypoth.m 

This m-file computes the features of size and linearity of objects within a ROI that are used as i 

first cut to separate microcalcifications from noise. 

function [sz,LIN] = hypoth(ROIX); 

%********************************************** 

% 
% function [sz,LIN] = hypoth(ROIX); 
% 
% Returns the size and linearity for each object within ROIX 
% 
%********************************************** 

% Group the pixels into their corresponding objects - see roi_cut64.m 

[I,J,C] = sep_cluster(ROIX); 

set = -pi/2:pi/50:pi/2; 
cosx = cos(set); 
sinx = sin(set); 

cmax = max(C) ; 
for k = l:cmax 
T=find(C==k); 
if (T~=[] & I "- []) 
sz(k) = length(T); 
II = I(T); 
JJ = J(T); 

% *** Evaluate 'linearness' of the potential uCa++ 

pl = II*sinx; 
p2 - JJ*cosx; 
huff = pi + p2; 
std_huff = std(huff); 
vhuff = min(std_huff); 
vhuff =vhuff~2; 
LIN(k) - vhuff/length(II); 

else 
sz(k) = 0; 
LIN(k) - 0; 
end 
end 
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B.5   roi.correl 6 4. m 

This m-file generates the correlation peak and mean-square error values for each object within a 

ROI. The original and filtered ROIs are passed as input, with vectors of the error values for each object 

being created as output. 

function [middle,msq] = roi_correl64(X,PIC); 

%************************************************ 

% 
% function [RX,AC] = roi_correl64(X,PIC); 
% 
% wavelet roi = X (pre-processed) 
% original roi = PIC 
% This m-file evaluates every cluster in X and returns its central correlation 
% value (middle), and its correlation mean-square error (msq) 
% 
%************************************************ 

PIC2 = PIC - mean(PIC(:)); 
NPIC = PIC2>0; 
NPIC = NPIC.*PIC2; 

[I,J,C] = sep_cluster(X); 
cmax = max(C) ; 
for k = l:cmax; 
T = find(C == k); 
if (T "■ [1 j I "-[]) 
II = I(T); 
JJ = J(T); 
min_row = min(II); 
min_col = min(JJ); 
max_row = max(II); 
max_col = max(JJ); 
MI = II - min_row + 1; 
MJ = JJ - min_col + 1; 
T = length(II); 
Ms = ones(1,1); 
S = sparse(MI,MJ,Ms,(max_row-min_row+l),(max_col-min_col+l)); 
TMP = sparse(II,JJ,Ms,64,64); 
TTMP = full(TMP); 
MASK = full(S); 
MASK = MASK/sqrt(sum(MASK(:))); 
AC = xcorr2(MASK); 
[nr,nc] = size(AC); 
midr = ceil(nr/2); 
midc = ceil(nc/2); 
top - midr - 3; 
bot = midr + 3; 
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if top < 1 
top = 1; 
bot = nr; 
end 
left = midc - 3; 
right - midc + 3; 
if left < 1 
left = 1; 
right = nc; 
end 
midac = AC(top:bot,left:right); 
if min_row < 5 
top = 1; 
toffset = -(5 - min_row); 
else 
top - min_row - 4; 
toffset » 0; 
end 
if max_row > 60 
bot = 64; 
toffset - max_row - 60; 
else 
bot = max_row + 4; 
toffset = 0; 
end 
if min_col < 5 
left - 1; 
soffset = -(5 - min_col); 
else 
left = min_col - 4; 
soff set = 0; 
end 
if max_col > 60 
right =64; 
soffset = max_col - 60; 
else 
right = max_col + 4; 
soffset = 0; 
end 
piece = NPIC(top:bot,left:right); 
if toffset < 0 
piece = [zeros(abs(toffset),right-left+l); piece]; 
elseif toffset > 0 
piece = [piece; zeros(toffset,right-left+l)]; 
end 
[nr,nc] = size(piece); 
if soffset < 0 
piece = [zeros(nr,abs(soffset)) piece]; 
elseif soffset > 0 
piece = [piece zeros(nr,soffset)]; 
end 
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pp = sqrt(sum(sum(piece.~2))); 
if pp > 0 
piece = piece/pp; 
else 
piece = piece; 
end 
[nr;nc] = size(piece); 
midr = ceil(nr/2) + toffset; 
midc = ceil(nc/2) + soffset; 
CC = xcorr2(piece,MASK); 
if max(CC(:)) > 0 
CC = CC/max(CC(:)); 
else 
CC = CC; 
end 
% extract middle section of each correlation 
[nr,nc] = size(CC); 
midr = ceil(nr/2); 
midc = ceil(nc/2); 
[nr,nc] = size(midac); % should be 1,3,5, or 7 
rmar - (nr-l)/2; % should be 0,1,2, or 3 
cmar = (nc-l)/2; 
midcc = CC((midr-rmar):(midr+rmar),(midc-cmar):(midc+cmar)); 
% compare how similar the vectors are 
xhat = max(midcc(:)); 
mm = min(midcc(:)); 
if xhat > mm 
yy = xhat/(xhat - mm); 
else 
yy = 0; 
end 
newcc = yy*(midcc - mm); 
[nr,nc] = size(newcc); 
midr = ceil(nr/2); 
midc = ceil(nc/2); 
middle(k) = newcc(midr,midc); 
% compute diff based on 5x5 piece of correlation values 
[nr,nc] = size(newcc); 
if (nr > 5 & nc > 5) 
newcc = newcc(2:6,2:6); 
midac = midac(2:6,2:6); 
end 
diff = newcc - midac; 
msq(k) = mean(mean(diff.~2)); 
else 
middle(k) = 0; 
msq(k) = 1; 
end 
end 
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B.6   reduce64.m 

This m-file removes the non-microcalcifictions from an ROI by retaining only those objects 

whose index number is passed in the vector 'keepers'. 

function NEW = reduce64(X,keepers); 

%******************************************* 
% 
% function NEW = reduce64(X,keepers); 
% 
% Returns the ROI with only those objects indexed by the vector 
% keepers 
% 
%******************************************* 

[I,J,C] = sep_cluster(X); 
l=length(keepers) ; 
for k=l:l 
T = find(C == keepers(k)); 
II - I(T); 
JJ = J(T); 
IT = [IT; II]; 
JT = [JT; JJ]; 
end 
lo=length(IT); 
Ms=ones(lo,l) ; 
S=sparse(IT,JT,Ms,64,64); 
TMP-full(S); 
NEW=TMP.*X; 

B.7   rocfeat64.m 

This m-file cross compares the reduced wavelet filtered ROI with the hi-pass filtered ROI and 

generates the area and area/perimeter features. 

function feat = roc_feat64(NEW,M,lt); 

%************************************************* 
% 
% function feat - roc_feat64(NEW,M;lt); 
% 
% function compares hi-pass and wavelet filtered ROIs and outputs 
% size and area/perim features for each microcalcification 
% 
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MS = NEW>0; 
np - ,9*sum(sum(MS)); 

ut = .9*max(M(:)); 
G=pre_proc64b(M, It,ut,4); 
MK = G>0; 
tot - sum(sum(MK)); 

while (tot < np & ut > It), 
ut = ut - 5; 
G=pre_proc64b(M,lt,ut,4); 
MK - G>0; 
tot = sum(sum(MK)); 
end 

[sz,lin]=hypoth(G); 
T=find(sz>5 & lin > .025); 
PATCH = reduce64(G,T); 

MK = PATCH>0; 
DIP = MS.*MK; 

BW = dilate(DIF,'dilate'); 
XXX = BW.*PATCH; 
e_new - sum(XXX(:)); 
dif = e_new; 

while dif > 0, 
e_old = e_new; 
Y = XXX > 0; 
BW = dilate(Y,'dilate'); 
XXX = BW.»PATCH; 
e_new = sum(sum(XXX)); 
dif = e_new - e_old; 
end 

VEC - []; 
[I,J,C] = sep_cluster(XXX); 
cmax = max(C); 
cnt = 0; 
for k = l:cmax; 
T - find(C == k); 
if (T ~- [] & I "-[]) 
cnt = cnt + 1; 
SIZE = length(T); 
II = I(T); 
JJ = J(T); 
1 = length(II); 
Ms = ones(1,1); 

57 



TMP = sparse(II,JJ,Ms,64,64); 
MASK = full(TMP); 
perim = bwperim(MASK); 
PERIM = sum(sum(perim)); 
COMPACT = SIZE/PERIM; 
VEC = [VEC; cnt SIZE COMPACT]; 
end 
end 

feat=VEC; 

B.8   sorter64.m 

This m-file examines the list of features produced by roc_feat64.m to determine which ROIs 

contain 3 or more valid microcalcifications. 

function F = sorter64(FEAT) ; 

%*************************************** 

% 
% function F = sorter64(FEAT); 
% 
% function that evaluates the list of features FEAT to determine 
% which ROIs contain 3 or more valid microcalcifications, and 
% outputs F as a list of valid ROIs 
%' 
%**************************************** 

mx = max(FEAT(:,1)); 
KEEP = []; 
F=[]; 

for k = l:mx 
T = find(FEAT(:,l) == k) ; 
if T "- [] 
SUB = FEAT(T,:); 
nr = length(T); 
kp = 0; 
for n = l:nr 
sz = SUB(n,3); 
rat = round(sz/SUB(n,4)); 
inter = sz - rat; 
if sz > 5 & sz < 18 & inter > 0 
kp = kp + 1; 
elseif sz > 17 & sz < 22 & inter > 1 
kp - kp + 1; 
elseif sz > 21 & sz < 29 & inter > 2 
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kp = kp + 1 
elseif sz > 
kp = kp + 1 
elseif sz > 
kp = kp + 1 
elseif sz > 
kp = kp + 1 
end 
end 
if kp > 2 
KEEP = [KEEP; k] 
F = [F; SUB]; 
end 
end 
end 

28 & sz < 35 & inter > 3 

34 & sz < 44 & inter > 4 

43 & sz < 46 & inter > 5 
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Appendix C. Feature Selection Code 

C.l   Introduction 

This appendix contains the code used to calculate the Effective Decision Boundary Feature 

Matrix HEDBFM- Four separate m-flles are used to compute this matrix: classified.m prunes the 

input data so that only those data points are retained which are on the correct side of the decision 

boundary. It calls parzen.prob.fast.m for each point to compute a nonparametric probability 

estimate for each point using a Parzen Window pdf estimate. Once the data is correctly classified, 

find-bound. m computes the decision boundary points. Then get.edbf m. m is executed to compute the 

matrix ^EDBFM • The dominant features for classification purposes can then be found by computing 

the eigenvalues of TIEDBFM • 

C.2   class ified.m 

function Qx_prime - classified(Qx,Qy,h); 

% function Qx_prime = classified(Qx,Qy;h) 
%. 
% function that retains only those members of class Qx in Qx_prime that 
% are correctly classified (based on a Bayes decision rule) using a 
% Parzen window pdf estimate. 
% h is the parzen window width parameter 

icvx - inv(cov(Qx)); 
icvy = inv(cov(Qy)); 
sigx = sqrt(det(cov(Qx))); 
sigy = sqrt(det(cov(Qy))); 
1 = size(Qx,l); % # of rows 

for i = 1:1 
f = Qx(i,:); 
px(i) = parzen_prob_fast(Qx,f,h,icvx,sigx); 
Py(i) = parzen_prob_fast(Qy,f,h,icvy,sigy); 

end 
dist = px./py; 
dist = dist(:); 
keep = find(dist>l); 
s = size(keep,l);     % # of retained elements 
for i = l:s 

p = keep(i); 
Qx_prime(i,:) = Qx(p,:); 

end 

60 



C.3   parzen_prob-fast. m 

function prob - parzen_prob_fast(Qx,f,h,icvx,sig); 

% function prob = parzen_prob_fast(Qx,f,h,icvx,sig) ; 
% 
% function that computes the a posteriori probability estimate that 
% vector f is a member of the class defined by the data set Qx. h is 
% the parzen window width parameter. The data Qx should be "tall and 
% skinny" - i.e., every column is a feature and every row a realization 
% of the data set. f should be a row vector 
% the inverse cov matrix (icvx) and sqrt of the determinant of the cov matrix 
% (sig) are also passed so they don't have to be computed too much 

n = size(Qx,2);      % # columns - dimensionality of the data 
s - size(Qx,l);      % # rows - # data points (members) of class Qx 

wun = ones(s,l); 
big_f - wun*f;      % replicate f s times to form the big matrix 

X - big_f - Qx;      % x - x_hat for the mahal calculation 

dist = diag((X*icvx*X')/(2*lT2)); 

dist = sum(exp(-dist)); 
prob = dist/(s*(2*pi)~(n/2)*sig*lT(n+l)); 

C.4   find-bound.m 

function [B0,Yj] = find_bound(Qx,Qy,h,Lmin,thresh); 

% function BO = find_edbfm(Qx,Qy,h,Lmin,thresh); 
% 
% function that takes in the two classes Qx and Qy and finds the edbfm 
%'matrix and the decision boundary BO. h is the parzen window width 
% parameter and Lmin is the number of points in class 2 closest to class 1 
% that are used to compute the decision boundary (usually ~ 5) 
% thresh is the decision boundary 'nearness' threshhold 
% 

% retain only the member of each class that are on the correct sid 
% of the decision boundary 

Qx_ok = classified(Qx,Qy,h); 
Qy_ok = classified(Qy,Qx,h); 

% pick the Lmin members of class 2 that are closest (probabalistic) to class 1 
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1 - size(Qy_ok,l); 
icvx = inv(cov(Qx)); 
icvy = inv(cov(Qy)); 
sigx = sqrt(det(cov(Qx))); 
sigy - sqrt(det(cov(Qy))); 
for i - 1:1 

y = Qy_ok(i,:); 
d(i) = parzen_prob_fast(Qx,y,h,icvx,sigx); 

end 

[yy,ii] = sort(d); 
ii = ii(:); 
ii = flipud(ii);     % resort so distances are in descending, rather than 

% ascending order 
Yj(1:Lmin,:) = Qy_ok(ii(1:Lmin),:); 

% cycle thru each point in class 1 and find the closest point in the Lmin 
% set of class 2, find the decision boundary point, and then compute 
% the gradient 

clear d 
1 = size(Qx_ok,l); 

for i = 1:1 
i 
x - Qx_ok(i,:); 
for k = l:Lmin 

near = Yj(k,:); 
d(k) = norm(x - near); 

end 
[yy,ii] = sort(d); 
closest - Yj(ii(1),:); 
anchor1 = x; 
anchor2 = closest; 
m = (anchorl + anchor2)/2; 
tl = parzen_prob_fast(Qx,m,h,icvx,sigx); 
t2 = parzen_prob_fast(Qy,m,h,icvy,sigy); 
t = -log(tl/t2); 
while abs(t) > thresh, 

if t > 0 
anchor2 = m; 
anchorl ■= anchorl; 

else 
anchorl = m; 
anchor2 = anchor2; 

end 
m = (anchorl + anchor2)/2; 
tl = parzen_prob_fast(Qx,m,h,icvx,sigx); 
t2 = parzen_prob_fast(Qy,m,h,icvy,sigy); 
t = -log(tl/t2); 

end 
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B0(i,:) - m; 
end 

C.5   get-edbfm.m 

function EDBFM - get_edbfm(Qx,Qy,BO,h,delta); 

% function EDBFM = get_edbfm(Qx,Qy,BO,h,delta); 
% 
% computes the EDBFM for data of classes Qx and Qy, with a decision 
% boundary BO. It uses a parzen window pdf estimate with width parameter 
% h and gradient increment of delta to numerically find the normal 
% vector 

icvx = inv(cov(Qx)); 
icvy = inv(cov(Qy)); 
sigx = sqrt(det(cov(Qx))); 
sigy = sqrt(det(cov(Qy))); 
m = size(B0,l)      % # rows 
n = size(B0,2)       % # columns 

N = zeros(n,n); 
for i = l:m 

X - B0(i,:); 
tl = parzen_prob_fast(Qx,X,h,icvx,sigx); 
t2 - parzen_prob_fast(Qy,X,h,icvy,sigy); 
tX - -log(tl/t2); 
for k = l:n 

f - X; 
f(k) = f(k) + delta; 
tl - parzen_prob_fast(Qx,f,h,icvx,sigx); 
t2 » parzen_prob_fast(Qy,f,h,icvy,sigy); 
t = -log(tl/t2); 
grad_h(k) - (tX - t)/delta; 

end 
normal - grad_h'*grad_h; 
N = N + normal; 

end 
EDBFM - N; 
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