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Notation 

Sealars, Vectors, Matrices 

Sealars.  Denoted by upper or lower case letters in italic type. 

Vectors. Denoted by lower case letters in italic type, vector or scalar is taken 

from context. The n-dimensional vector x is made up of components Xi for i = 

l,...,n. 

Matrices. Denoted by upper case letters in boldface type, as the matrix A, 

made up of elements A^ (?th row, jth column). 

Superscripts 

(.)T 

(0 

transpose (matrix) 

inverse (matrix or transform) 

optimal solution, complex conjugate, or complement (set) 

differeniation with respect to time 

Operators 

Functions and mappings are set in an italic font. 

Matrix and Vector Relationships 

A>B 

A>B 

x > a 

A - B is positive definite 

A - B is positive semidefinite 

component wise, x\ > a%, xi > a2,..., xn > an 

vm 



Sets 

• A blackboard font denotes Algebraic Fields and Linear Spaces. 

• A calligraphic font denotes Fuzzy Sets and Fuzzy Rules. 

• A sans serif font denotes classical sets. 

all of which will be upper case, some examples are: 

N 

C 

M 

Hi 

A 

All real numbers 

{r e R \r < 0} 

{r € R | r > 0} 

All natural numbers 

All complex numbers 

A Fuzzy Set 

The ith Fuzzy Rule 

A = [a, b] C R  where  a < b;   a, b G 

IX 
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Abstract 

A full envelope controller synthesis technique is developed for multiple-input 

single-output (MISO) nonlinear systems with structured parameter uncertainty. The 

technique maximizes the controller's valid region of operation, while guaranteeing 

pre-specified transient performance. The resulting controller does not require on- 

line adaptation, estimation, prediction or model identification. Fuzzy Logic (FL) 

is used to smoothly schedule independently designed point controllers over the op- 

erational envelope and parameter space of the system's model. These point con- 

trollers are synthesized using techniques chosen by the designer, thus allowing an 

unprecedented amount of design freedom. By using established control theory for 

the point controllers, the resulting nonlinear dynamic controller is able to handle the 

dynamics of complex systems which can not otherwise be addressed by Fuzzy Logic 

Control. An analytical solution for parameters describing the membership functions 

allows the optimization to yield the location of point designs: both quantifying the 

controller's coverage, and eliminating the need of extensive hand tuning of these 

parameters. The net result is a decrease in the number of point designs required. 

Geometric primitives used in the solution all have multi-dimensional interpretations 

(convex hull, ellipsoid, Voronoi/Delaunay diagrams) which allow for scheduling on 

n-dimensions, including uncertainty due to nonlinearities and parameter variation. 

Since many multiple-input multiple-output (MIMO) controller design techniques are 

accomplished by solving several MISO problems, this work bridges the gap to full 

envelope control of MIMO nonlinear systems with parameter variation. 
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FULL ENVELOPE CONTROL OF NONLINEAR PLANTS WITH 

PARAMETER UNCERTAINTY BY FUZZY 

CONTROLLER SCHEDULING 

/.   Introduction 

1.1    Motivation 

The vast majority of control design techniques are based upon a mathematical 

model of the system, or "plant", that is to be controlled. These models allow the 

use of analytical tools to guarantee that performance specifications will be met; but 

these guarantees only hold as long as the underlying models are valid. Thus, many 

systems require complex control strategies to perform their designed tasks, especially 

those control systems that are required to operate in an unstructured environment. 

Furthermore, dealing with the entire dynamic range of operation can bring a control 

design technique to its knees. This is where the true controller design problem lies. 

Varying parameters and uncertainty from sensor noise, disturbances and perhaps 

even failures, ensure that the model is never perfect. An example of such a problem 

arises in flight control, where one is dealing with the nonlinear dynamics of an air- 

craft, whose parameters, in addition, vary continuously over its entire flight envelope. 

Thus the problem is then two-fold. First, the nonlinearity/complexity of the model; 

and secondly, the variation, or uncertainty in the model's parameters. In conclusion: 

The former problem is encountered when large amplitude slewing maneuvers are at- 

tempted. The latter poses problems when operating in an unstructured environment 

is required. 

Perhaps the most useful way of dealing with nonlinearity of the model is to 

linearize it about some point, p, in its operating range; that is about a point in the 
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parameter space, P, of the model. The parameter space P encompasses both the set 

of generic parameters that govern the dynamics of the plant, and variables which 

define the operating condition in the operational envelope. If the model is "smooth", 

a rather unrestrictive assumption for many physical systems, the linearized equation 

will accurately represent the true system in some "sufficiently small" region, or ball 

B(p, e), about the equilibrium point p in the parameter space. The scalar e represents 

how far the actual operating point can deviate from p and still be "adequately" de- 

scribed by the model and is determined by the strength of the pertinent nonlinearity. 

One now has available all the tools for linear analysis, and the solution within this 

neighborhood can be obtained by a myriad of linear control synthesis techniques, 

i.e. LQR, QFT, etc. However, one must still deal with varying parameters over the 

entire operating range. Varying the model's parameters may "remove" the system 

from within this region of model validity. The controller achieved above may yield 

nevertheless acceptable performance beyond the region for which it was designed, 

but this must be construed as luck in a specific problem solution. In an attempt 

to ensure adequate performance over the entire parameter space, the designer must 

adequately cover the entire space with a valid region, or regions, upon which to 

base the design. Robust controllers are those which attempt to increase the volume 

of such a region in the parameter space. One robust control design technique that 

actually quantifies its valid design region is Quantitative Feedback Theory [8, 16]. 

Frequently no single controller will do. A common practice is to perform sev- 

eral point-wise control designs, each design performed for a fixed p £ P, that will 

adequately cover the entire operational range. These point designs need not be de- 

signed for only one point, but may be robust controllers covering a specified region of 

P. For instance in QFT where the region of acceptable performance in P is specified. 

Such robust controllers are considered to be designed around a point in P and there- 

fore, will also be referred to as point designs. Classically, this requires overlap of the 

balls indicating the valid regions of the individual models. The rationale is then that 
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for any fixed point in the parameter space, one chooses "the best" controller and 

uses it. In this type of approach, one must devise a means of smoothly switching 

between controllers without inducing an objectionable response during the transi- 

tion. This can be interpreted in a broad sense as "robust scheduling"; in particular 

"gain scheduling" is when the (not necessarily robust) controllers are of a common 

parametric form and these parameters are scheduled. 

The heart of using multiple point designs is three fold. One must devise means 

to: 1) select the locations of the point models at which point designs are generated, 

2) choose the best controller among those available and, 3) smoothly switch between 

controllers. The resulting controller can work quite well in many cases, as has been 

proven in flight control for years. However, the means by which the actual scheduling 

between the point designs is accomplished is mainly art and very ad hoc [34]. All 

three of these steps are "problem areas" which are over come in a systematic and 

quantified manner in this research. 

1.2    Research Direction 

This research effort focuses on the judicious scheduling of individual point 

designs (which may be robust with specified operating regions) over all of P. The 

parameter space consists of the actual physical parameters and/or the system's state 

about which the linearization is performed. The proposed approach is based upon 

using Fuzzy Logic (FL) to blend the individual "point" designs such that for any 

trajectory in the parameter space, the system performs (controls) adequately. The 

ability to systematically design such a dynamic scheduler is a major contribution to 

the field of controller design. 

Fuzzy Logic is a partial membership set theory developed by Lotfi Zadeh in the 

mid 1960s and is basically a means of representing uncertainty in a system process 

without directly applying statistical methods [21]. Fuzzy Logic is now being used in 
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many academic fields and in commercial endeavors, and may be directly employed 

to: [21, 48]. 

1. Design a controller for crisp nonlinear or uncertain plants. 

2. Perform System Identification (ID) of a plant. 

3. Model an uncertain plant mathematically. 

The goal of this research is to derive and explore a technique to design full 

envelope controllers, for nonlinear plants with structured parameter uncertainty, 

using point-wise designs that adequately span the parameter space of the plant 

to be controlled. The ability to base the controller on point-wise designs allows 

the designer to use all the available tools of classical, modern and robust control 

theory to aid in the solution. The term "envelope" is taken from the flight control 

field and it represents that subset of P defined by the (structural and aerodynamic) 

physical limitations of the airframe (plant). Where robust control's aim is to increase 

the valid region in P for a fixed compensator design, adaptive or scheduled control 

modifies the controller based upon an estimate of the current operating point in P. 

Thus, the efforts of this research is to develop a type of adaptive controller, based 

on scheduling on "fast" states. Successful development of such a technique is a 

significant contribution to the field of applied adaptive control. 

The application of the Fuzzy Logic methodology yields a nonlinear mathemati- 

cal problem. Thus, the mathematics required to analyze the problem and arrive at a 

solution reside in the field of nonlinear analysis and quickly become intractable. Clas- 

sical analytical methods of guaranteeing the stability and performance of the control 

system are no longer applicable. Hence, this research is somewhat exploratory and 

it will rely to a point on heuristics and extensive simulations. This stage of affairs 

is a major drawback of the investigated FLC approach. 

This research focuses on the following. 
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• The development of a multivariate Fuzzy Logic control paradigm. This will 

afford state feedback control in a fuzzy setting. 

• Effects of switching between independent point designs as the plant traverses 

P. 

• How to correctly/optimally blend independent point designs as the plant tra- 

verses P while maintaining acceptable performance. 

• Does the ability to blend the individual designs impose any restrictions on 

the point designs themselves? That is, can the point designs be accomplished 

independent of each other (highly desirable), and may any conventional control 

design technique be used to achieve each separate point design? To accomplish 

this, the interaction of the control design method and the fuzzy blending of 

the point designs is investigated. 

• Does this blending ability of the proposed technique provide any characteristics 

which relieves constraints on the underlying point designs? If so, this may allow 

for simpler methods of point design controller synthesis (i.e. plant inversion 

based techniques) that would be unacceptable without the addition of the 

fuzzy scheduling. Also, does the blending extend the valid region for which a 

controller may be used. That is, will the blending allow for a decrease in the 

number of point designs that would otherwise be required to cover P. 

• Examination of what is a sufficient cover of P. 

• Conduct extensive testing via simulation to evaluate the performance of the 

final Fuzzy Logic Controller (FLC). 

1.3    Control System Description 

This research entails blending individual point designs via Fuzzy Logic to 

achieve acceptable responses over the entire envelope of operation.   To visualize 
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Figure 1.1    Functional Diagram of Adaptive Controller Using Fuzzy Scheduling 

the concept, Figure 1.1 depicts a functional block diagram of the proposed adaptive 

control system. 

A "sufficient" number of individual controllers are designed a priori, say N, 

such that U^Li B(pi,6i) D P. The parameter et- denotes the range of applicability 

of each point design p;. Classically this requires overlap of the point controllers' 

valid regions such that for any p £ P there exists at least one point design yielding 

adequate response. The vector m, m € P, consists of available measurements of 

parameters and states on which the model relies. This measurement is then fuzzified 

to account for the uncertainty of the unknown true parameter values. The fuzzified 

m defines M., a fuzzy set defined on the "universe of discourse" P. This represents 

the uncertain point of operation in the parameter space. Then the appropriate 

controllers are blended, based on M., to drive the plant. 
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1.4    Research Scope and Assumptions 

A technique is generated for the synthesis of the blending function of Figure 1.1 

for acceptable control system performance over the entire operational envelope. Em- 

bedded in this goal is a determination of what is a sufficient covering of the envelope 

by point designs. This removes the requirement for conventional gain scheduling 

in control problems in which a single fixed controller can not perform adequately. 

In the development of this technique, the ability to synthesize all individual point 

designs independently and by whatever means the control engineer prefers is main- 

tained. This allows the greatest applicability, including techniques which require 

linear time-invariant (LTI) plant models such as output feedback, LQR or eigenvec- 

tor placement. 

Due to the nonlinear aspects of the plant under control and the introduction of 

fuzzy reasoning, the issues of stability, performance and steady-state errors are ad- 

dressed through experimentation via simulation and compared to prespecified system 

response requirements. 

Although the techniques used to design the point controllers may very well 

require the plant model to be smooth in some region about its trim (or equilibrium) 

point p € P, the blending technique does not have this requirement. For the fuzzy 

scheduling, only continuity of the plant model is assumed. 

The proposed design approach is applicable to both uncertainty due to plant 

nonlinearity, and uncertainty due to parameter variation or mis-modeling. As such, 

the proposed research constitutes an effort in both nonlinearity and parameter un- 

certainty. When insufficient point-wise designs exist to cover P, the uncertainty due 

to nonlinearity is greatly increased and adequate performance can not be "designed 

in" by the point-wise controllers alone. Therefore, the issue of sufficient cover must 

be addressed. While heuristic arguments are employed, the proposed approach is 

strongly anchored in the conventional control paradigm. 
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1.5    Current Literature 

The majority of the FLC research and development in the existing literature, 

especially the dynamic/adaptive designs, represents work by people with neural net- 

work backgrounds. The adaptive properties of such work usually comes from using 

adaptive networks that play a part in either the antecedent or consequent action 

of the fuzzy rule set. The adaptive designs not based upon neural networks rely 

on an optimization criterion to change the antecedent (membership function) or 

consequence (control output) of the fuzzy rules. 

The current adaptive work can be put into categories based upon a few dis- 

cernible common roots. The techniques differ mainly based upon one's belief in 

the availability of accurate analytical models describing the system to be controlled. 

The confidence in such models ranges from none, yielding techniques that rely on 

empirical input/output data using adaptive neural networks; to very strong, where 

state cell [42] approaches and dynamic programming [30] ideas are used to arrive 

at nonlinear controllers. In between these two extreme levels of confidence in the 

model are: 1) techniques based on fuzzy identification of the system, 2) those which 

believe the system is better modeled as a system with varying or unknown mem- 

bership functions and, 3) those that optimize on the consequence of the fuzzy rule. 

Clarification of the above groupings is given below. 

The main difference between ordinary adaptive neural networks and those of 

practical use in fuzzy logic controllers is the ability to incorporate linguistic rules 

given by a human expert [32, 44]. These controllers can also monitor the system's re- 

sponse to their past inputs to provide learning reinforcement as in Berenji's GARIC 

based controller [4, 5]. In the spirit of dynamic programming [30], fuzzy logic con- 

trollers have also been implemented in neural networks using temporal back propa- 

gation to modify the rules [18]. 

Another class of controllers uses fuzzy identification to obtain a model of the 

plant to be controlled.   This model is then used within the controller in different 
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ways. One method is to use the model to predict the system's response to an 

original fuzzy rule. This response is compared with the desired response and the 

consequence of the rule is modified such that the new rule includes a correction to 

remove the predicted error [2, 23]. Another technique is to design a desired open loop 

controller and augment it with the "inverse model" dynamics obtained from fuzzy 

identification. The inverse model then "cancels" the actual plant and the response is 

dictated by the open loop controller [2, 22, 23]. Lai and Lin [22] combine this fuzzy 

identification method with modifying the rules' consequences via an optimization 

routine. They begin with a fixed set of membership functions to perform a fuzzy ID 

of the plant. The consequence of a control rule is taken as a linear combination of 

the fuzzy variables. The mean-squared error of the output is used as the minimizing 

performance index to solve for the coefficients of a rule's consequence. If the resulting 

"optimal" fit using a linear combination of the fuzzy variables is not "good enough", 

they use a complex search algorithm to change the membership functions defining 

the fuzzy variables. With these new membership functions they perform another 

identification. This process is continued until the desired fit is obtained [22]. Most 

techniques avoid this second degree of freedom in obtaining the final fuzzy inference 

engine. 

Stepping up the level of confidence placed on analytical models, or perhaps 

just an expert's linguistic rules, are those techniques which assume a fixed rule set 

and a well defined performance evaluation cost function. The "degree of freedom" 

here is the membership function. The problems are posed using a parametric repre- 

sentation of the underlying membership functions. Examples include: for Gaussian 

functions use the of mean and variance [45], and for triangular membership functions 

use of the 2 points of support, and each triangle's center point [19, 22]. Various opti- 

mization algorithms can then be used to optimally select the parameters which yield 

membership functions giving the best performance. Some possible search techniques 
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for optimization include recursive least mean squares [45], complex searches [22], or 

Genetic Algorithms [19]. 

Very similar to the above techniques are those that begin with fixed member- 

ship functions and rules, then optimize by means of the control applied. That is, 

the form of the rule is fixed, but the exact consequence is not yet known. In these 

cases the antecedents are determined by all possible intersections of the membership 

functions. The rule is then a combination of basis functions. This is very similar to 

some fuzzy ID [22] techniques; the difference in using it for control is that these basis 

functions are now the available control inputs. The most common consequence is a 

linear combination of available inputs [40, 42]. An optimization is then performed, 

yielding the coefficients for each consequence, providing the entire rule set. 

In the final category, the analytical model is used to design the controller. The 

problem is set in the fuzzy paradigm to either help in dealing with nonlinearities, 

model variation or noise. This is most often performed using a state cell approach 

[42, 40] which yields different optimal solutions depending on the location in the 

state space. Vachtsevanos shows how naturally fuzzy logic complements the cell 

state approach in problems with constrained inputs [42]. 

Another use has been the fuzzification of the LQR paradigm [38]. Fuzzy dy- 

namics yield an optimal control law, u = —Kx with fuzzy K, which satisfies the 

Ricatti "inequality" equation. The control law dictates a membership function for 

all K, which satisfy the inequality. The optimal K is the one which has maximum 

membership value in these membership functions [38]. 

There are also ad hoc nonlinear techniques. An interesting nonlinear technique 

guaranteeing stability and asymptotic tracking is based upon Lyapunov synthesis [43] 

and a nonlinear supervisor. Such techniques provide nice guarantees in steady-state 

yet provide little control over, or insight into, transient responses. 
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Fuzzy Logic has been used to perform classical gain scheduling of a proportional- 

integral-derivative (PID) controller for a linear single-input single-output (SISO) sys- 

tem [15, 50]. However, this scheme requires a common controller where only the gains 

are varied, and the problem is only posed in the SISO case. A fuzzy inference engine 

is used to obtain the three "adaptive" gains to out perform an optimal linear PID 

controller. Possible performance improvement over the linear PID is not surprising, 

since the FLC has the advantage of nonlinear control action. The proposition that 

this is actually equivalent to a fixed nonlinear PID controller is addressed in the 

sequel. 

Fuzzy gain scheduling has also been used for LTI SISO systems using other 

point-wise techniques. Both pole placement by state feedback [49] and H^ [47] have 

been used to generate the underlying point-wise controllers. For the state feedback 

case, fuzzy logic with triangular membership functions interpolates the feedback 

gains between two point designs. The resulting controllers from the H^ point designs 

were replaced by "similar" controllers, all of the same form. Fuzzy Logic was then 

used to interpolate the poles and zeros of the two nearest point designs. Both 

designs rely on trial and error for selection of the placement of the point designs and 

linearity of the truth model, ignoring nonlinearities in the design. They also rely 

on the variation of only a single scalar parameter. Although not addressed in the 

paper, the H^ design is susceptible to adverse transients since a single controller is 

being used [25]. This is due to various dynamic controllers being switched in and 

out without proper handling of the current state of plant stored energy. That is, the 

initial conditions required of the controller states is not addressed [34]. 

There have been attempts at using Fuzzy Logic to blend two separate dynamic 

controllers [35, 36]. However, both controllers are for the same plant at one oper- 

ating point and hence do not directly address uncertainty due to nonlinearities or 

parameter variation. The two controllers are designed using conventional techniques 

where neither design yields a satisfactory response by itself. One design yields a fast 
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but very lightly damped response, while the other has good transients but is too 

slow. Using Fuzzy Logic along with trial and error tuning, an acceptable response 

may be obtained, but again, only for the single operating point of the plant. 

Fuzzy Logic is often hyped as being capable of providing control solutions for 

"difficult" to control plants, where other methods fail. A Fuzzy Logic Controller 

(FLC), it is claimed, does not require a mathematical model of the plant but instead 

is able to capture the expertise of an experienced operator. Thus, the control engineer 

encodes the operator's rules governing his actions into a fuzzy inference engine in the 

FLC to control the plant. Indeed it's conceivable that in "simple systems", where 

these rules are easily articulated, the method works well and converges to a suitable 

controller after some tuning of the inference engine during simulations [17]. 

Note the use of "simple system" versus "simple plant"; this is used to bring 

attention to the control objective. Take for example the classical inverted pendulum 

problem; deriving the equations of motion without small angle approximations yields 

a set of nonlinear differential equations which are not easily dealt with directly. Most 

control techniques would linearize the equations about the unstable equilibrium set 

point and proceed, while a fuzzy controller has no such requirements [17]. The 

inverted pendulum is not a simple plant. However, the pendulum can easily be kept 

at the inverted position by observing the state trajectory in the phase plane of the 

system, where the states are naturally the physical variables angle and angle rate. 

Fuzzy control rules can easily be written down from the physical phase plane analysis 

and fine tuned through simulation [17, 34]. 

A moments reflection upon the method of generating the fuzzy rules shows 

that the resultant controller is equivalent to a classical proportional-derivative (PD) 

type with nonlinear gain elements. A review of the history leading to the popular 

PID controller shows this means (of rule generation) was the prevailing method of 

controller design in the 1920s [3]. By observing skilled operators, it was shown 

the appropriate control to mimic the operator is the sum of three terms related to 
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the error, derivative of error (transients), and the integral of error (steady-state) 

[3]. This is confirmed by the wide applicability/acceptance of the PID controller. 

Conversely, it can be said that a conventional PID controller is a FLC [3]. In a 

FLC, the rules are used to generate a smooth mapping from error state to controller 

output. For example, a large error should receive a large corrective action. The 

desired mapping can therefore be accomplished by a nonlinear continuous map. As 

shown in Section 2.4.1 the fuzzy map may be viewed as an approximation to this 

nonlinear map, or vice-versa. Actually, in the field of fuzzy identification it has been 

shown that such fuzzy maps are dense in the space of real valued continuous functions 

on the universe of discourse [44]. Thus, the mystical performance gain over linear 

controllers attributed to FLCs is due to this nonlinear action. What is noteworthy 

here is that the nonlinear elements of the controller arise naturally within the FLC 

framework. 

Hence, this type of system is referred to as "simple" since, albeit nonlinear, 

the dynamics are of low order and monotonic, so the control rules are simple to 

heuristically "figure out". Also, the plant can be adequately controlled using only 

the output error and the error rate. That is, in a "simple system" the plant has a 

sense of directionality and an increase in its system input directly translates into a 

corresponding increase in its output and vice versa. Now "order" is only an attribute 

of scalars. This is why there have been problems in designing a FLC for anything 

other than simple low order systems. A truly valid design technique must be capable 

of handling a system that is non-minimum phase or one that contains an inherent 

time delay, none of which are properly addressed. Most of the current FLC literature 

rely on such "simple systems" as examples, which unfortunately for FLC, are being 

advertised as complex. 

In the case of more complex systems, the fuzzy rules are hard to determine. 

The very nature of the fuzzy rule, IF A, THEN B, implies that these rules are 

known and the FLC is merely implementing the known control law in a smooth 
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way. The current FLC literature is seriously lacking in the areas of multiple-input 

multiple-output (MIMO) and non-minimum phase or dynamic control problems. 

In summary, the current literature is lacking in the very important areas ad- 

dressed by this research. These include the ability to deal with high order systems, 

and systems possessing complex dynamics. This must be accomplished while dealing 

with the inevitability of a nonlinear system with varying system dynamics over its 

entire range of operation as well as structured parametric uncertainty. The tech- 

niques which have tried to address some of these issues have attempted controlling 

with fixed optimized gains or adaptive gains to meet the challenge which will not 

adequately control a large class of systems [8]. This research seeks a systematic 

means of adaptively including dynamic compensation to obtain an acceptable control 

solution for nonlinear dynamic plants in a multivariable context. A true and mean- 

ingful contribution to the field. Fuzzy Logic will be used to an advantage by means 

of its proven smoothing characteristics (see Chapter II) and heuristic appeal, not on 

claimed mystical problem solving capabilities. This should all be accomplished using 

optimization when meaningful and in a manner which yields insight to the control 

engineer throughout the design process, rather than arbitrary trial and error to ob- 

tain a solution. This will be accomplished via a fuzzy supervisory layer of control, 

allowing the designer freedom in choice of point-wise design tools at his disposal to 

aid in the overall design of a full envelope controller. Furthermore, a multivariate 

FLC theory is developed providing the tools for MIMO control. 

1.6    Organization 

This research consists of five chapters and supporting appendices. Chapter II 

develops the multivariate Fuzzy Logic paradigm. The classical scalar logic is gen- 

eralized to a vector representation providing the basic tools to be used in the re- 

search. This provides the ability to address the multivariable control problem and 

advance a theory of fuzzy state feedback control.   Chapter III develops the gen- 
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eral n-dimensional solution of fuzzy controller scheduling by properly posing the 

optimization to be performed along with a multi-dimensional example. Chapter IV 

contains detailed analysis of additional examples of a strongly nonlinear plant and 

a USAF C-135 lateral controller. Theses examples illustrate the goodness of the 

developed Fuzzy Logic controller scheduling paradigm, which is the object of this 

research. Finally, Chapter V offers conclusions and suggestions for further research. 

In this research plant models are generated from analytic first principles as 

opposed to system identification, therefore their description is a set of differiental 

equations. For completion, in Appendix A, the utility of Fuzzy Logic for system 

identification is investigated along with examples of how Fuzzy Logic may be used to 

blend models together. Next, in Appendix B, preliminary experiments are performed 

to provide insight into many of the design decisions as well as point out areas that 

must be addressed by the final technique. Appendices D and C contain supporting 

material for Chapters IV and III respectively. 
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27.   Multivariate Fuzzy Logic 

In this Chapter the development of multivariate Fuzzy Logic is undertaken 

which draws upon previous work [34]. Fuzzy sets and fuzzy logic constitute the basis 

for fuzzy logic control. 

2.1    Fuzzy Sets and Membership Functions 

The description/specification of the underlying "fuzzy sets" is a crucial step in 

setting up any Fuzzy Logic problem and the subsequent synthesis of the proposed 

Fuzzy Logic based controller scheduling. Thus, the fuzzy sets construct allows for 

the measurements recorded by the sensors to be transformed into linguistic labels 

which feature in the preconditions of the "Expert System"-like rules. Using the 

conventions of Fuzzy Logic, the following terminology is maintained. 

Let X be a set of objects. The "classical" set A C X is defined as a collection of 

elements x € X such that each x either belongs to or does not belong to A. By defining 

a characteristic or membership function (MF) on each element of x, the classical 

set can be represented by a set of ordered pairs (x,0) and (x,l) representing non- 

membership and membership to the set A respectively. Unlike classical sets, fuzzy 

sets allow partial membership and indicate the degree of which an element belongs 

to the set. That is, their membership functions are not binary (or crisp) but multi- 

valued. Now the fuzzy set A can be represented by the set of ordered pairs 

A- {(x,fj,A(x)) I x G X} 

where \ij, is the membership function defined on X and X is referred to as the universe 

of discourse. For each membership function defined on the universe of discourse, 

associate a fuzzy variable (FV) which takes on values (linguistic labels) for each. For 

example, suppose there are two fuzzy variables "a; is small" and ux is BIG" with 
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respective membership functions //s and //&. Then each x in the universe of discourse 

is "small" to degree fis(x) and "BIG" to degree (J,b(x). 

A (multivariable) fuzzy set A is a pair specified by: 

• Its "support", which is a classical set AC|" that encompasses the so called 

"universe of discourse", and 

• A non-negative membership (or weight) function // (whose support is the set 

A), where, 

H : A    -»•    R+ 

fi(x) =0   for   x $ A 

If in addition 

max{^(a:)} = 1 

then the weighing function fj, is referred to as "normalized". 

In this research, a class of multivariable membership (or weighing) functions, 

which are based on the Multivariate Gaussian distribution, is used. This is motivated 

by the analytical properties of the Gaussian function. 

Thus, consider the multivariable fuzzy set Ai- The normalized membership 

function ßAi{x) is 

fiA.(x) = e-U*-*i)'KH*-*i) ?      v x  € Rn (2.1) 

The weighing function /U^,(a;) completely characterizes the fuzzy set Ai. In other 

words, the underlying "support" set A; C W1 of the fuzzy set Ai is explicitly pa- 

rameterized by its "center point" Xi G Rn and by its "size", which is determined by 

the square roots of the eigenvalues of the real symmetric and positive definite n x n 

matrix R;. 
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Indeed, in this approach, the fuzzy set's description is almost exclusively rel- 

egated to the membership function, because, strictly speaking, its support is all of 

Rn. Thus, the membership function is constructed around an underlying "support" 

set A. The set Acl" under consideration is inscribed in an ellipsoid specified by 

the pair of parameters (x,R), where x is a vector in n-dimensional Euclidean space 

and R is a n x n real symmetric positive definite matrix. The following association 

is made: 

A = [x | (x-xYR-^x-x) <c2] 

That is 

e^~ < HA{X) < 1    V x € A 

1    2 
or in terms of "a-level set" terminology, a = e^c for some constant c; without loss 

of generality, chose c — 1. Hence, the ellipsoidal set 

A^ixKx-xy-R-^x-x)^!] (2.2) 

is an approximation of the original set A that is of interest and, in fact, it directly 

determines the parameters x and R. The latter parameterizes the Gaussian mem- 

bership function /^,.(a;). For example, a scalar (ACE1) membership function 

HA[x) = e  2^ 

is illustrated in Figure 2.1 for varying values of a. Close examination of the figure 

indicates why the fuzzy set, say A, could assume the linguistic description or the 

A label "x is zero". Indeed, the membership function HA{X) from above assigns a 

membership value of 1 to x = 0 and, for | x |w 0, it assigns membership values close 

to 1.   Furthermore, by choosing the parameter IT< 1, the meaning of "zero", or 
ux is small" is sharpened and, conversely, by choosing the a parameter large, the 
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Figure 2.1    Gaussian Membership Function for Varying a 

meaning of "zero" or "x is small" is broadened and made quite inaccurate, so the 

verbal statements ux is zero" or ux is small" are then fuzzy. Moreover, one can set 

the "center of gravity" of the membership function [ij, at some prespecified value x 

of the variable x, viz., 

HA{X) - e     2a'; 

thereby giving a meaning to the fuzzy verbal statement ux is x", or ux is near xn. 

Obviously, x close to x, e.g., x 3 \ x — x |w 0, will be assigned by the membership 

function a value close to 1. Furthermore, by choosing the parameter a small, only x 

very close to x will be assigned a high degree of membership in this set (fJ>(x) ~ 1). 

Conversely, a large a causes x relatively far away from x to be considered x, by 

virtue of their membership function assigned value being pretty close to 1. 
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In general, the domain of definition of the membership function is the whole 

of R™, rather than an underlying support set A; however, from a practical point of 

view there is an underlying set A, implicitly specified by its "center" point (vector) 

x € R™ and by the square roots of the n eigenvalues of the "covariance" matrix 

R, which determine its dimensions. Furthermore, similar to the scalar case, if all 

the eigenvalues of the R matrix are small, then the Gaussian membership function 

rapidly decreases to zero and in the limiting case of |R| —> 0, one obtains the function 

PA (x) = (2?r)t^/det (R) 6(x - x) 

where S(-) is the multivariable "delta" function defined on R™ [34]. Hence, in this 

limiting case the fuzzy variable A is rendered a crisp (deterministic) variable which 

assumes the value x. 

If some eigenvalues of the R covariance matrix —> 0, this then indicates a 

crisp subspace in the x vector space, thus allowing for mixed fuzzy/crisp variables 

modeling. However, technically speaking, in the FLC calculations it is convenient to 

directly treat the fuzzy components, and at the same time momentarily consider the 

crisp state components to be known parameters. This is indeed a course of action 

that is adhered to in probability problems, where both random and deterministic 

variables are involved. 

Finally, the universe of discourse can be further restricted by confining one's 

attention to a set Ar C I", which then constitutes the domain of the above defined 

membership function. 

For example, in the scalar case, the membership function is virtually 0 at "3cr", 

as is illustrated in Figure 2.1; hence, one can then say that the underlying set A is 

the segment A = [—3<r, 3er]. In addition, the domain of definition of the membership 
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function can be chosen to correspond to a restricted universe of discourse of, say, 

Ar = [0, 2a}. 

In conclusion: A multivariable membership function approach is advocated. 

These weighing functions are modeled on the classical multivariate Gaussian proba- 

bility density functions and their support is the whole of Rn. Given an underlying 

set Acln, the parameters of the corresponding Gaussian probability density func- 

tions are chosen, according to Eq. (2.2), to roughly model the state space region of 

interest in W1, in particular a region of the parameter space P. Hence, the weigh- 

ing/membership function is relatively high there and it is very small outside this 

region - as required. The universe of discourse can be further delimited by specify- 

ing the domain Ar of the membership function. 

2.2   Fuzzy Rules 

Two types of linguistic "Rules" will be explored, for n states and m inputs: 

1. Crisp (deterministic) output TZf. IF x is Ai, THEN apply a mapping.  The 

mapping may be either 

state transition: The mapping /,• :  Rn —> Rn, i.e., it is the function fi(x). 

or 

input: The mapping gi :  M.m —> M.n, i.e., it is the function gi(u). 

2. Fuzzy (variable) output TZ{: IF x is Ai, THEN the output y is B;. 

In case 2, similar to the set Ai in the ith rule's antecedent, the fuzzy set Bi is defined 

by having recourse to a membership function Vß^y), where 

vBi :  Rn 
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for the fuzzy state transition mapping, or 

vB. :  Rm 

for the fuzzy input mapping. 

The above membership functions are parameterized by j/; G Rn and the n x n 

real symmetric positive definite matrix S,- for the state transition map, or for the 

input map y,- G !Lm, in which case the real symmetric positive definite matrix S; is 

m x m. Hence, the membership function is 

vBi(y) = e~2^-«)'Siü/-w) _ 

This is as far as fuzzification goes. 

2.3    Fuzzy Set Operations 

In this research, the above outlined vector space approach is employed, where 

the fuzzy variables x or y represent points in Euclidean n dimensional or m dimen- 

sional vector spaces. Each component of the x or y vectors represents a particular 

fuzzy variable, but all the norm fuzzy variables aggregated in the x or y vectors are 

jointly treated. Hence, the need to use composite clauses in the rules' antecedents, 

such as, K: IF xr is "zero" AND x2 is "positive medium" , THEN ... is obviated. 

Thus, the big advantage of the multivariable/vector space approach is that one need 

not, in some way, combine the antecedents' premises in order to calculate the TZ rule 

antecedent's strength, according to either the "Min rule" 

(1TZ(XI,X2) = min(//i(a;i), ^2(^2)) 
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or, alternatively, the sometimes preferred "product rule" 

m{xi,x2) = fJ-i(xi) fi2{x2) 

In the currently proposed approach, one instead needs to judiciously set up the 

problem, according to the following modeling steps. 

The procedure is first introduced for the special case of scalar fuzzy variables. 

Here, the fuzzy variables are Xi, X2 and the scalar universes of discourse are Xi C 

R\ X2 C E1 and xx € R1, x2 € R1. 

1. Universe of Discourse: Form the cross product of the elementary, one 

dimensional, universes of discourse Xi and X2 and generate the universe of discourse 

X = Xi x X2 C ]R . Thus, if x\ G Xi and x2 £ X2, then x = (a?i, x2) £ X. 

2. Fuzzification example: Let x2 > 0 represent what is considered to be a 

medium sized value of the variable x2. The x2 values of the variable X2, that are 

within a distance 3a2 of the "benchmark" x2, are considered "positive medium". 

Also, in the spirit of fuzzy logic, consider values of X\ that are in absolute value 

less than 3cri, to virtually be "zero". Hence, the membership functions of the fuzzy 

variables "Xi is zero" and "X2 is positive medium" are 

_ifi. 
PXiM   =    e  2CT

I 

fJ-x2{x2)   =   e 
1 (*2-S2)2 

'2 „2 

respectively. 

3. Logical "AND" injunction operation: Create the membership function 

pn (x) = H(Xl AND x2)(x) = e 

xl   1  (f2-£2) 
~T 1 2  
°1 °2 
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Logical AND injunction operation Logical OR Injunction operation 

a) AND  G\ = o\ = 0.1 b) OR a\ = a\ = 0.1 

Logical AND injunction operation Logical OR Injunction operation 

c) AND   a\ = 0.1, a\ = 0.5 d) OR a\ = 0.1, a\ = 0.5 

Figure 2.2    Surface Plots of Bivariate Fuzzy Logical Injunction Operators 

where x = (xj, £2). The above membership function possesses the desired attributes, 

for it penalizes deviations away from both X\ = 0 and x2 = ^2- Furthermore, in 

view of the well known properties of the exponential function, it is now evident 

that the approach constitutes a generalization of the above mentioned "product 

rule" for the "AND" injunction. The construction is illustrated in Figure 2.2a for 

x2 = 1, o\ = a\ = 0.1 and in Figure 2.2c for a\ = 0.1, a\ = 0.5. 
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4. Logical "OR" injunction operation: If in the % rule example from above the 

"AND" logical injunction is replaced by the "OR" logical injunction, the strength 

of the rule's antecedent is obtained as follows. 

Consider Figure 2.2b. The ^I0R^) membership function should be rela- 

tively high in the cruciform - like region, which is the union of the two strips in the 

Euclidean plane that represent the respective support sets x\ — 0\ < x\ < x\ -f &\ 

and x2 — o-2 < x2 < x2 + 0"2. The ensuing cross - like region is not convex. The fuzzy 

union could be obtained using the "Max" operator, but this does not yield a smooth 

transition. It is required that the membership function be relatively large inside the 

above mentioned region, and for it to be small outside the region. Hence, to obtain 

a smooth result let 

ß(X1ORX2){x) = t*Xi(xl) + ßX2{
x2) ~ V(X1ANDX2){

X) 

where the /J,(XI AND X2) membership function has been constructed according to 2 

above and x = (xi,a;2). Therefore, 

1*1 1 (*2~*2)2 _lU?      t~--*~V 

V(x1OKX2){xi,X2) = e      * +e *      -e 
1 1 (*2-*2r 

this is in fact the functions depicted in Figures 2.2b,d. 

5. Logical "NOT" injunction operation: Is shown in Figure 2.3 for a;2 = 1, a\ 

<y\ = 0.1 when defined as 

/«(NOT X)(x) = 1 - px(x) 

It transpires from Step 3 in the above discussion how, from given scalar fuzzy 

variables, multidimensional fuzzy variables are being built up. 
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a) NOT Xx b) NOT X2 

Figure 2.3    Surface Plots of Fuzzy Logical NOT Injunction Operator 

In the general case, the multidimensional fuzzy sets Xx and X2 are considered. 

The "Universes of Discourse" are then Xi C R"1 and X2 C Rn2; m > 1, n2 > 1. The 

general modeling procedure is given in the sequel. 

1. Universe of Discourse: 

X = Xx x X2 C E"1+n2 

with x = (#1, x2), where ii £ Xi, x2 G X2. 

2. Fuzzification: Let the "representative" vectors be x\ G Rni, x2 £ 1R"2, and 

where R4 and R2 are real symmetric nx x ni and n2 x n2 positive definite 

matrices, respectively. Thus, the membership functions are 

^2(x2)   =   e-s^-^)'^"1^-^) 
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3. Logical "AND" injunction operation: 

l*K (X) = l*{Xl AND *,)(*) = e-iK*i-*i)'Br1^-«i) + (*»-*a)'aa-1^-*»»       (2.3) 

where x = (x\, X2). 

4. Logical "OR" injunction operation: 

pn{x) - H(X1ORX2){X)   =   fiXl{xi) + fJ.x2{
x2) ~ V(Xi AND x2){x) 

_e-|[(a;i-£i)'Rr1(:ri_si)+(:r2-S2)'B.^1(a;2-£2)]   (2 4) 

where a; = (x\, x2). 

5. Logical "NOT" injunction operation:   Given a fuzzy variable X, the fuzzy 

variable "NOT A"' is specified by its membership function 

M(NOT *)(*) = 1 - t*x(x) = 1 - e-K-*)'*-1^) (2.5) 

where a; G X C Rni+n2. 

Theorem 1   The above constructed function /J-(X1ORX2)(
X

) '• Rni+n2 —> R1 is indeed 

a "membership function".  That is, 

1. It is non-negative, i.e., 

^(X1ORX2){XI,X2) > o   V Xl e Rni ,x2 e 

2. It is bounded above: 

M(*iOR#2) (zi,x2) < 1    V Xi e Rni, x2 € 
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3. It is normalized, i.e., 

max ^l0R^) (xi,x2) = ß(x1ORX2) {xi,x2) = 1 

4. It assumes relatively large values for x G A, where A is a nonconvex cruciform 

set 

A = [x | x = (£1,212), (zi - x^'R^Xi - xi) < 1, (x2 - x2)'R2"1(a;2 - x2) < 1] 

and for x ^ A, the membership function "vanishes". 

Proof 

For 1: By the definition of the "OR" operator 

I*(X1ORX2)(XI,X2)   =   fJ.x1(xi) + fix2(x2) - fix1(x1)fix2(x2) (2.6) 

=   ßXiix^l - fix3(x2)] + fixa(x2) (2.7) 

>   0 

Since 

Px2 (x2) < 1 

and the Gaussian multivariate distributions /^(xi) and nx2{x2) are non-negative. 

For 2: Application of the triangle inequality to Eq. (2.6), using the fact that 

Gaussian multivariate distributions are non-negative yields. 

\P(X1ORX2)(XI,X2)\   <    I/A^ZI)! + \nx2(x2)\ - lliXiMWftXiMl    V xi € Rni, x2 G 

< 1+1-1 

< 1 
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which, along with 1 above, implies 2. 

For 3: Calculate the maximum of the function //(^ ORAT2) (xiix2) on ^ni  "2- 

To this end, set 

d(i{x1ORX2) jxi,x2) _ 0 

dxi 

Eq. (2.7) thus yields 

[1 - M*,(a3)]fyg:fJl) = "[I ~ ^M] [RT1^! ~ *i)] M*»(*i)  =  0 

The above equation implies that an extremum point may be attained if either x\ = 

xi, or nx2(x2) = 1 which occurs at x2 — x2. A similar conclusion is reached if the 

partial with respect to x2 of the above function is set to zero. Hence, X\ and x2 

constitute an extremal point, where a candidate local maximum may be attained. 

Inserting xi = x\ and x2 = x2 into Eq. (2.7) above gives the value of unity. Thus 

(x\,x2) is a global maximum, by 2 above, and part 3 is proven. 

For 4: This follows directly from the analytic properties of the multivariate 

Gaussian distribution. 

■ 

In conclusion, the modeling approach presented in steps 1-5 has the following 

advantages. 

• It is analytic, in contrast to the non-smooth membership functions that ensue 

when the Max and Min operators are invoked for the "OR" and "AND" logical 

injunctions, respectively. 

• The proposed modeling approach is in the true spirit of Probability Theory. 

2.4    More Fuzzy Logic 

In the same vein, the following additional issues are addressed. 
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2.4-1 Conflict Resolution. Consider a set of TV crisp (type 1) rules. The 

need for "Conflict Resolution" arises in the instance where more than one, say TV, 

Fuzzy Logic Control rule fires at one time. It is treated as follows. The fuzzified 

mapping from W1 to R+   then is 

f{x) = Tti HA* {x) fi(x) 

ET=i ^. (*) 

REMARK: If the mappings fi(x) = g(x) V i = 1,2,..., TV, then the fuzzified mapping 

f(x)=g(x). 

Hence, the fuzzified mapping is explicitly given by 

N 
/(')=-»  e-|„i,,R-.,I-,,)£e-^'-.''T1(.-».)A(l)      »ier       (2.8) 

In the special case where the fuzzy variables are "similar", viz., R; = R for every 

i = 1,2,..., TV, the above formula is 

1 N 

f(x) =  -  'Ves'R~1(:c~2Si)f-(x) 

Also, note that: 

• All the TV rules come into play, V x £ Ar, i.e., the domain of the ensuing 

fuzzified mapping f(x) is the whole universe of discourse. 

• f(x) is analytic. 

Example: a; is a scalar and the universe of discourse is the set Ar = [—2, 2]. The 

membership functions, which characterize the fuzzy variables X\ ux is Negative", 

X-i ux is Zero" and X3 "x is Positive" have the common universe of discourse Ar and 

are parameterized by äj,-, <7j, i = 1,2,3, respectively, where x± = —2, x2 = 0, x3 = 2 

and o"i = cr2 = cr3 = 1. These membership functions are illustrated in Figure 2.4. 
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Fuzzy Sets 

1 1.5 2 

Figure 2.4    Fuzzy Variables "a: is Negative", ux is Zero", and ux is Positive" 

Next, consider the following three fuzzy rules which verbally describe a fuzzy 

state transition mapping f(x) of a hard saturation element; these linguistic rules 

are: 

Kx:  IF a: is "Negative" THEN fx(x) = -1. 

K2:  IF x is "Zero" THEN /2(a;) = x. 

1l3:  IF x is "Positive" THEN /3(x) = +1. 

The ensuing fuzzified state transition mapping 

m _e-f(*+2)2 + xe-\# + e-|(^-2)2 

e-^+2)2 + e-^
a
+e-^-2)a 

_e-2(l+») + x + e-2(l-af) 

e-2(l+z) + 1 + e-^1-*) 

x + 2e-2 sinh (2a;) 

l + 2e-2cosh (2a;)' 

is graphically depicted in Figure 2.5a. 

Additional example: Consider the fuzzy state transition mapping: 
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Figure 2.5    Fuzzified Mapping of Continuous Nonlinear Elements 

fti:  IF x is "Negative" THEN f^x) = 2x + 1. 

ft2:  IF x is "Zero" THEN /2(x) = x. 

TZ3:  IF x is "Positive" THEN f3(x) = 2x - 1. 

The ensuing fuzzified state transition mapping is 

(2x + l)e-§(*+2)2 + xe-l*2 + (2x - l)e-^-2)2 

/(*) 
e-I(a!+2)»+e-Ix»+e-I(x-2)» 

x[l + 4e~2 cosh (2a;)] - 2e~2 sinh (2a;) 

1 + 2e~2 cosh (2x) 

and it is graphically depicted in Figure 2.5b. 

In Figure 2.5, the ensuing nonlinear fuzzy maps are plotted alongside the un- 

derlying original piece-wise linear maps that were featured in the fuzzy rules. The 

fuzzy maps are smooth, viz., they are, by construction, analytic, and the fit is re- 

markably good. 
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a) b) 

Figure 2.6    Fuzzifled Mapping of Discontinuous Nonlinear Elements 

In the above examples, the original map featured in the fuzzy rules is "continu- 

ous". Two additional examples, where the map in the fuzzy rules is "discontinuous", 

are presented in Figure 2.6. In Figure 2.6a, the fuzzy state transition mapping is: 

fti:   IF x is "Negative" THEN h(x) = 2x. 

Tl2:  IF x is "Zero" THEN f2(x) = x. 

K3:  IF x is "Positive" THEN /3(x) = 2x. 

whose fuzzifled state transition mapping is expressed by 

/(*)=    2 
1 

l + 2e-2cosh (2x)t 

In Figure 2.6b, the fuzzy state transition mapping is: 

fti:  IF x is "Negative" THEN h(x) = \x. 

H2:  IF x is "Zero" THEN f2(x) = 2x. 

n3:  IF x is "Positive" THEN f3(x) = \x. 
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whose fuzzified state transition mapping is expressed by 

lae-H^)a+2xe-H + lxe-^(«-»)a 

/W     _ e-*(*+2)2 + e-H+e-|(*-2)2 

1    4 + 2e~2 cosh (2a) 

2^ 1 + 2e~2 cosh (2a;) 

2.^.2 Defuzzification. For fuzzy rules of type 2 above, the requirement of a 

crisp (deterministic) output variable entails a "defuzzification" step. Thus, assume 

that the fuzzy variables B{ i = 1,2,..., JV have a common universe of discourse and 

are parameterized by the set of N pairs (?/,-, S,-), where y,- € H£m and the real symmetric 

positive definite matrices S; are m x m. A "Maximum Likelihood" formulation is 

proposed, where the output 

y      Ef=i^,(*) 

Hence 

In the special case where all input variables are "similar", viz., R, = R for every 

i = 1,2,..., JV, the above formula simplifies to 

N 

E£ie*{a'"1(*-»*)Ü 
y(x) - i re'ir'(l-^)i/ 

In the current formulation, the input/output mapping 

y{x)   :  Rn -> Rm 

which is given by the above closed - form Eq. (2.9), is defined for all x G Ar and it 

is analytic. 
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In the special case where the (common) universe of discourse is Em, the above 

formula reduces to the often used Center Of Area (COA) rule, for then ?/,• is the 

center point of the fuzzy set B{, i = 1,2,..., N. 
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177.   The n-Dimensional Scheduler 

The net product of this research is the development of a control synthesis 

method applicable to nonlinear systems with structured parametric uncertainty. This 

controller acknowledges the sensitivity of the plant's model to the operating point 

within the entire envelope of the system. The solution is obtained by scheduling sev- 

eral parallel point controllers (which may be robust with specified operating regions), 

each independently designed, on measurements of both fast internal states and vary- 

ing parameters on which the plant's model is dependent. It is the scheduling on the 

fast states as opposed to only 'slow' states or scheduling parameters (e.g., dynamic 

pressure q in flight control), and uncertain parameters, which allows for the direct 

handling of system nonlinearities. The developed synthesis technique of this research 

not only gives the means of scheduling the point designs during operation, but also 

the actual location of the point designs themselves, yielding the total solution of the 

controller. 

The resulting controller is for multiple-input single-output (MISO) systems. 

The dimension of the input for the scheduler is that of the plant under control, 

plus additional elements of a parameter vector. As such, the technique can be 

used in conjunction with multiple-input multiple-output (MIMO) controller design 

techniques whose solutions requires solving several MISO problems, thus bridging the 

gap to full envelope control of MIMO nonlinear systems with parametric variation. 

This is accomplished without the need for trial and error in the placement of point 

controllers or their respective membership functions. 

Let p denote a vector whose n elements are comprised of both the internal states 

and the varying model parameters which are to be scheduled upon. Each element 

of p has a range of admissible values dictated by the desired operational envelope 

of the controlled system. The admissible domain of p then defines the parameter 

space, P C E", or the domain of the system over which the point controllers must be 
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scheduled. For a fixed p £ P the plant of interest is represented by a deterministic 

nonlinear set of equations. Conventional LTI theory can be used to design a point 

controller for a linear model obtained by linearization about this operating point. 

However, the controller's performance is only "as designed" in a yet to be determined 

"region of attraction" about this operating point. Or in the case of robust controllers, 

this region may be known but it is not large enough to encompass all of P. Since 

the objective is to achieve a specified level of performance over the entire envelope, 

the size of these individual valid control regions effects the total number, as well as 

placement, of "point" controllers that will be required. 

Denote a set of points in P as G = {pi}^. Given a set of iV point con- 

trollers, each designed about pi £ G, a scheduling scheme is based upon multivariate 

Fuzzy Logic as developed in Chapter II. The control authority of each controller is 

the normalized membership value of the current operating point within each con- 

troller's corresponding membership function. That is, the implementation of the 

fuzzy scheduling block of Figure 1.1 on page 1-6, while operating at p £ P C M.n, is 

performed by scaling each controller's output by Wi(p) where 

Wi{p) = ^{P\ , (3-1) 

The experiments contained in Appendix B provide a basis for the selection of 

the above controller structure. They also highlight the need to quantify the two 

coupled problems of point controller location and membership function parameter 

selection, to be addressed in the sequel. 

This research addresses the question of placement and number of point con- 

trollers by means of an optimization scheme with constraints on the controlled sys- 

tem's performance. The optimization is posed such that the solution of the Kuhn- 

Tucker equations [27, 28] yield the desired result. This is achieved by use of a Se- 

quential Quadratic Programming (SQP) routine in the examples to follow, though 
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the problem is posed to allow choice of an optimization algorithm. The multivariate 

membership functions are chosen as Gaussian, each centered at pi G G with variance 

parameter matrices R; obtained from an optimization (derived in Section 3.4) based 

upon the location of all the other point designs. In the case of robust point designs, 

Pi can be viewed as the center of mass of the controller's specified operating region 

in P. 

3.1    Location of Point Controllers 

The objective is to design a full envelope controller for a given system. This 

controller is to provide not only stable, but "acceptable" tracking performance, for 

step commands over the entire operational envelope, P, of the system. Being able to 

slew the nonlinear system is a nontrivial task and a primary objective. To guide the 

design process, an optimality condition should be chosen which yields the desired 

results. 

One could choose to try for the "best" response, where in order to yield an 

implementable solution the number of allowable point designs must be constrained. 

This goal has two problems: 1) identifying the best, and 2) constraining the number 

of point designs a priori. Defining a "best" response can be very subjective in many 

tasks. In a much larger class of problems, a response can be judged as good enough 

or no better/worse than another response in a more objective fashion. The number 

of design points required is discussed in the sequel, for now assume a sufficient 

number exist. Instead of the best response, a more useful preliminary performance 

optimization criterion is chosen as: 

Given the operational envelope, P, find the minimum number of point designs 

which yield "acceptable" responses over P. 

The constraint is now in the form of a functional operating on the output 

response. The resulting point controllers are now guaranteed to provide sufficient 

cover by means of meeting the performance constraint.   There now exists a means 
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of quantifying sufficient cover, and it is a direct byproduct of the optimization. 

However, since the topology of the optimal cover is part of the solution, it is not 

known a priori. 

To quantify the number of point designs required, in the optimization scheme 

to follow, one assumes a priori that the number chosen can provide sufficient cover of 

the operational envelope P. If the assumption proves false, one merely increases the 

number and obtains a new solution. Hence, rather then directly solving the above 

stated preliminary optimization, it is chosen to solve the dual problem of: 

Maximize the coverage of the scheduler, given a fixed number of available point 

controllers, such that "acceptable" responses are achieved. 

This problem statement requires specifying the number of controllers, a priori, 

but the optimization guarantees maximal cover over the resulting region. For this 

fixed number of controllers, TV G N, if the scheduler's coverage exceeds P then TV may 

be reduced. If the scheduler does not cover the full envelope, TV must be increased. 

At this time a quantitative specification of cover is required, and it is taken as the 

volume of the convex hull (c IRn) generated by G. Denote this map as H : G —> R+. 

For the n-dimensional scheduling problem at hand, pi is the point at which the zth 

controller is designed. Then, for a fixed TV, the optimization problem is: 

max H{G) (3.2) 
Pi€P 

such that (3.3) 

C(y(t)) = 0 (3.4) 

where y{t) is the system response and C is the yet to be defined constraint functional. 

An equality constraint is used since the constraint functional will be developed similar 

to a cost function which will not penalize acceptable responses but yield positive cost 

for unacceptable responses. 
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At this time it is necessary to quantify the meaning of full envelope control 

with respect to the response constraint for LTI and non-LTI plants. There are two 

requirements of the controller: stability and transient response for tracking com- 

mands. In the case of an LTI plant, one is only scheduling on parameter uncertainty, 

say for instance r, and this is how scheduling is classically used. This is an easier 

task than scheduling for model uncertainty, such as using the LTI approximation of 

a non-LTI plant, since it is more structured and is fully modeled by the parametric 

representation of the LTI plant. For a given r, one has a deterministic LTI closed 

loop system and stability is determined by its eigenvalues. All bounded step com- 

mands are admissible, and in fact their responses are identical if normalized so only 

unity steps need be used. The stability and transient performance are independent 

of the initial trim point, and therefore are started from zero. This is not the case for 

Linear Time-Varying (LTV) and nonlinear plants. The initial condition and com- 

mand strength, as well as sign of the command all effect the stability and transient 

performance. The following clarifies the interpretation of full envelope control for 

non-LTI systems. 

Given that the system starts at rest from some trim condition, ifP, define 

the set of admissible step commands, Sx, as those which take the system from x to 

another point z £ P such that the convex combination of the x and z remains in P. 

That is, 

Sx = {z-x\Xz-(\-l)x  e   P,    VA€[0,1]} (3.5) 

When P is convex, 

Sx = {z-x | ze P} (3.6) 

Define the action of the controlled system on the input s G Sx from trim 

condition x 6 P as $(s|x) = y(t), where y(t) is the output response.  For stability, 
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one requires V x £ P and every s in its corresponding Sx that 

||$(s|a;)-*|| < e€ R+ as t -+ oo (3.7) 

where e represents a bounded maximum steady-state tracking error. 

Next, the transient response is considered, and it is quantified by the functional 

C to be developed in the sequel. One could apply the transient constraints on all 

admissible commanded inputs. However, the intent is to allow the designer to use 

linear control tools at the design points, and to be able to design the point controllers 

independent of each other. Allowing this amount of design freedom and constraining 

the responses of all admissible commands may over constrain the optimization until 

no solution exists. A more appropriate scheme is to apply the transient constraints 

to some subset of S^. In this work, a slewing between point designs paradigm is 

chosen. That is, the transient constraint is applied only to responses commanded 

to points in the region of P bounded by the closest point designs in every direction. 

So, the solution guarantees transient response as it slews between point designs and 

stability is checked against all admissible commands, S^. 

3.2    Nearest Neighbor in n-Dimensions 

In the above definition of transient constraints, it is required to determine the 

nearest neighbors of a point in n-dimensions. One might choose to interpret this by 

means of orthogonal projections of p — pi G P. Although this may be appropriate 

if one assumes a uniform spacing of the point controllers in P, this assumption is a 

poor one. The placement of the point controllers is the outcome of a constrained 

optimization based upon the dynamics of the plant. One innovation of the developed 

technique is that the resulting point controller locations reflect the model's dynamics. 

The points are more spread out in regions where the model is insensitive to changes 

in operating point, and the points are closer together in regions where the model 
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is more sensitive to such changes. Thus, the spacing reflects the size and shape of 

the regions about each point that a linearized model is valid. Uniform placement of 

plants is indicative of a nearly linear system. 

Instead, and following the computational geometry paradigm, a better defini- 

tion is used. Define the set of nearest neighbors of point pj as Nj C G. For point 

Pj € G, form the bisecting hyperplanes B; between pj and pi € G, i ^ j. Then form 

the hypercell V, C Rn as 

Vj = r|B,-,    i+i (3-8) 
1=1 

Points in the interior of this cell are closer to pj than to any other element of 

G. The resulting boundary faces of this cell are subsets of the bisecting hyperplanes 

of nearest neighbors. That is, 

Pi eNj  <=► B,-nVi^0 (3.9) 

The cell that is formed and the neighbors it defines is of great use in the general 

n-dimensional scheduler that is developed. 

The constructed cells have been used in many fields of Applied Mathematics, 

dating back to 1908, and are known as Voronoi diagrams or Thiessan Polygons [9]. 

This research introduces the Voronoi diagram to control, and, in particular, the field 

of n-dimensional scheduling of controllers, a natural extension of its application. 

Since the impetus for its consideration is to find generalized neighbors of points, 

its geometric dual, the Delaunay triangulation, is used instead [9]. The Delaunay 

diagram can be viewed as the unique triangulation which connects each point of a 

set with all of its neighbors as generated from the Voronoi diagram. Examples of 

these diagrams are depicted in Figure 3.1 for an arbitrary set of points in R . 
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Figure 3.1    Generalized Neighbors 

Generation of these constructs on a finite precision computer is a problem of 

current interest in Computational Geometry. The approach taken in this research is 

a composite of many suggested techniques [9, 14, 37, 24] from the current literature. 

The set of MATLAB® functions to generate these constructs are contained in Ap- 

pendix C. The problem can also be posed for solution by neural networks where the 

appropriate geometry can be extracted by Topology Representing Networks (TRNs) 

[31, 41]. The TRN approach becomes increasingly attractive as the dimension of the 

parameter space increases. 

3.3   Development of the Constraint Functional 

As mentioned earlier, the goal of the constraint functional is to quantify whether 

or not the system's transient response is "acceptable". It is therefore used to validate 

sufficient cover between point designs. Classically this is performed by inspection of 

the transients or one of two quantification methods; output error from some refer- 

ence or remaining within acceptable transient thumb prints. While these methods 

have their merits, all have major shortfalls. Visual inspection does not lend itself 

to automated and autonomous (with no human intervention) techniques and hence 
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Figure 3.2    Acceptable Thumb Print Specification and Example Responses 

is limited in use for optimization. While output error is the most common measure 

used in optimization, it is inappropriate in transient analysis since it has no inherent 

means for dealing with acceptable variations in the response. Recall that optimiza- 

tion entails the minimization of a scalar variable. That is, an otherwise very good 

response may be rejected because it differs too much from the reference response. 

Output error is particularly sensitive to time lags or a bias between two responses. 

For example, given a response and a duplicate of itself shifted slightly in either the 

x (time) or y (magnitude) directions. While these responses are nearly identical, the 

output error can be rather large. An attempt to avoid the problems of output error 

is the use of an acceptable thumb print specifications such as that in Figure 3.2, 

where a response is judged acceptable if it lies within the envelope formed by the 

two boundary responses (solid curves). However, this technique does not detect 'bad' 

responses within the envelope, such as highly oscillatory ones. 

To avoid such shortcomings, and provide a transient analysis constraint use- 

ful in the optimization, a novel constraint functional is developed which attains the 

merits of the above mentioned techniques. First, a vector valued mapping, F, from 

the system response y(t) to its feature space is constructed. This is compared to a 
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specification vector, 77, and the results are weighted and summed. The specification 

vector is comprised of classical figures of merit as well as other meaningful measures 

and its dimension is decided upon by the designer. The weights give a degree of 

freedom to highlight importance of individual specifications and provide direction- 

ality to search algorithms. These weights may be constants or nonlinear functions 

themselves. In the examples contained in the sequel, eight tracking specifications are 

checked and hence the feature space is R8. Eight functionals are derived to extract 

the tracking features of each response, each an element of the feature vector, v. 

Fl{y{t)) = vi (3.10) 

Then a threshold function, T, is applied to the feature vector v comparing it 

to the specifications 77 i.e., T(y) = 7 £ 1R8. Thus, 

7 = T{v) = 
\v — 771    ,    v > 77 

0        ,    v < 77 
(3.11) 

Finally, the weighing functions are evaluated to w € K8 and the inner product 

with 7 gives the constraint as C(y(t)) = wT~f, or 

C(y(t)) = wTT(F(y(t))) (3.12) 

The values used for w and 77, to evaluate tracking performance, as well as the 

definitions of 77, are given in Table 3.1. 

A subtle point, which often goes unaddressed in gauging MISO system perfor- 

mance, is now presented. Evaluating the output response in multiple input systems 

is not as straight forward as in the SISO case. With a single output and single input, 

one desires to either track a commanded input or have the system not react to some 

external input (disturbance rejection).  Up until this point, the emphasis has been 
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i w V Specification 
1 1 0.98 -1 x Minimum % peak value 
2 1 1.25 Maximum % peak value 
3 5 4 Maximum number of extrema prior to settle time 
4 1 0.4 Maximum ratio of consecutive extrema 
5 1 1.0 Maximum % tracking error 
6 1 10 Maximum time of peak value 
7 1 5 Maximum 2% settle time 
8 1 10 Maximum rise time 

Table 3.1    Tracking Specifications and Weights Used 

tracking. In multiple input systems, this is handled by applying decoupled inputs, 

usually one command at a time, and comparing each response to different specifica- 

tions depending on the input. This is somewhat unrealistic in real world operation 

but allows for a level of performance evaluation. This technique can be used when 

all inputs are to be tracked, but requires uncertain parameters to be fixed during 

the simulation. It is also appropriate when all commands are zero and response 

to only parameter variation is investigated in a disturbance rejection problem. In 

the case of MISO scheduling which includes both a commanded tracking input and 

varying parameters, this means of response evaluation is indeed inappropriate. In 

such a case the specification should indicate a blending of tracking and disturbance 

rejection specifications. 

The objective of this research is to traverse the parameter space which includes 

both physical variables to be tracked, and structured uncertain parameters. There- 

fore, such a blending of specifications is required. If the parameters were restricted 

to being fixed, one would actually be using a discrete parameter as the truth model 

and may as well reduce the order of the parameter space. The approach taken in 

this technique to handle the blending is to use piece-wise linear functions to yield 

a continuous mapping from tracking to disturbance rejection specifications, based 

upon the slope of the system's trajectory in the parameter space P. Care must be 

taken in generating this mapping since many tracking specifications become unde- 
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fined in the disturbance rejection (zero commanded input) setting. Modifying the 

weights would be an inappropriate solution, since a constrained optimization is used 

and due to the form of the constraint functional, this would merely change the slope 

information for the optimization routine. 

The MATLAB® functions used to extract the features (fom_nl .m) and cal- 

culate the constraints (fuz_cost .m) are contained in Appendix C. This two stage 

evaluation of the constraints allows for modification of the specifications dependent 

upon command strength and the amount of parameter variation during the simula- 

tion. 

The constraint functional now identifies responses which are clearly acceptable, 

yet it does not catch all responses that should be judged satisfactory, by perhaps 

visual inspection, due to the finite dimension of the feature space. Hence, the so- 

lution is more conservative than it could be and somewhat suboptimal. The multi- 

dimensional scheduler example to follow uses the developed constraint functional of 

this research. However, the constraint functional does yield a multitude of responses 

which could be used as references and an output error measure could be meaningfully 

applied to these. This is examined in an example in Chapter IV. 

3.4    Selection of Membership Function Variance Parameters 

The final portion of the synthesis technique is the selection of membership 

function parameters to describe which region of the parameter space is best suited 

to represent each point controller. Having chosen the multivariate Gaussian MFs 

of Chapter II centered at the point pi, at which a controller is designed, the real, 

symmetric and positive definite variance parameter matrix R; must be chosen. This 

is accomplished in a manner which approximates the Voronoi diagram of the set of 

points G. The resulting scheduling surface can be viewed as a Fuzzy Voronoi diagram. 

Throughout this development it is assumed that all points in G are unique. 
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The novel method of selecting these parameters, developed in this research, 

addresses several shortcomings of current techniques. First, a closed form solution 

can be obtained, avoiding trial and error. Second, the physical meaning of member- 

ship function is maintained. Often in finding MFs by optimization, this is lost by the 

numeric algorithm even though this physical meaning of fuzzy variables is a main 

reason for using Fuzzy Logic in the first place. Finally, the effects of normalizing 

the weights over the entire universe of discourse is addressed. These issues can be 

best visualized by first digressing to a 1-dimensional problem where each member- 

ship function has a scalar variance parameter af to be chosen. Define r 6 E as 

the vector whose elements are the variance parameters for each of the membership 

functions. 

The selection of the elements of r could be addressed in one of two ways. 

It may be treated as another parameter in the overall optimization, or generated 

automatically by some rule. Unconstrained optimization on r can take away from 

the physical meaning of membership function and therefore is not used. Generation 

of a meaningful constraint yields an elegant solution. The selected procedure is 

based upon the physical meaning of the parameter and the effects it has on the 

normalized weights of the controllers. The membership function, fj,(, is used to 

specify the degree of membership an operating point has with respect to the fuzzy 

variable "Pj. Where Vi represents the ith point controller. This membership must 

be unity at pi and near zero at the other elements of G, since there are controllers 

for these operating points which are designed for that point, and should therefore be 

used instead. Define the cross-membership of pj with respect to pi as ßi(pj) where 

i ^ j. Thus, one should choose the elements of the vector r such that all cross- 

memberships are below some threshold e > 0. Since normalized weights are used, 

this scheme converges to hard switching between controllers as e —> 0. Since the 

primary objective is smooth switching, a lower bound should also be placed on e and 
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hence r,\ This is accomplished by selecting r,- = cr,- such that 

max /*,•(?,■) = e,   j 7^ i (3.13) 
pyeG 

Now turn to the selection of a value of e. If the cross-membership (cross 

coverage) is too large, the normalized weights are inappropriately low at the center 

points as in Figure 3.3a. A value of e = 0.001 is chosen, from empirical analysis, and 

representative results are shown in Figure 3.3b. Figure 3.3c shows what can happen 

to the normalized weights when the effect of cross-membership is ignored. 

This selection has the desired attributes by approximating the Voronoi diagram 

of points in R1. Clearly in the 1-dimensional case, the only possible active constraints 

are the point's nearest neighbors, those to the left and/or right of pi on the real line. 

Since the Gaussian function is symmetric, the active constraint is its closest neighbor 

pc E G and from there one needs to solve for af as 

2 = _5(Pi-Pc? (3-14) 

' lne 

The extension to the generalized n-dimensional case is obtained by realizing 

that the above procedure maximizes the length (volume) of the constant membership 

interval (contour) of ß(x) = e where x G X C P. The set X is the convex region 

containing pi such that no other point design is contained within its interior. Also, 

the only active constraints were Delaunay neighbors of p{. 

For the general case, the solution is to maximize the volume of the n-dimensional 

ellipsoid formed by the membership function contour 

fi(x) = e,   IGX (3.15) 
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where X C P is convex and 

Pi   E   X (3.16), 

Pi   $   int x>    Pj G G,   i ^ i (3.17) 

It is desired that the active constraints be the neighbors from the Delaunay 

diagram, however this is not always feasible. In the development which follows, two 

additional constraints are placed on the optimization. 

1. The points possessing the minimum Euclidean distance from pi are constrained 

to lie on the constant membership contour. Relaxation of this requirement can 

yield undesirable solutions. 

2. The variance parameter matrix R; is diagonal. This assumption makes for a 

much cleaner solution while its implications on the shape of the contour are 

reduced by the normalization of the membership functions over P. 

Note that in dimensions greater than one, the above optimization may still be 

ill conditioned due to the location of the elements of G. In such cases the optimum 

solution may give infinite or degenerate (trivial) results, and additional constraints 

must be added for meaningful results. This is in part due to the form of R chosen, 

but is easily remedied. Possible choices are further restricting X to the convex hull 

of G or to the region bounded by the extreme projections of all points onto R™. 

3.4-1 2-Dimensional Variance Solution. To illustrate the selection of the 

variance parameters, the solution for a set of points in R2, to be used in the following 

example, is derived. The resultant constraint membership contours are now ellipses 

aligned with the x and y axes, of which the constrained maximal area is desired, 

resulting in the following non-convex optimization. 
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The solution is found by translating the point of interest to the origin and 

removing it from consideration. Denote the remaining points as S where 

N-l 
s   =   {(*i,w)}?=-i 

(0,0) i s 

and define 

(a;,y) = argmin ||(xj,%)|| (3.18) 

Then to maximize the area of the ellipse with semi-axes a, b 

max   ab, (3.19) 
a,feeR+ 

such that 

2 2 

% + %   >   IV; (3.20) 
a1      bl 

£4 =i (3-2i) 
To assure finite non-degenerate solutions, restrict amjn < a < amax and 6min < b < 

bmax with amin, 6min > 0. For a well conditioned set of points, these bounding values 

are achieved by the Delaunay neighbors and other elements of S. If not, they must 

be imposed, perhaps as suggested above. Now define 

x   =   ^ (3.22) 

V   =   y2 (3-23) 

Clearly x, y G R+ and max ab ^=^ min xy and the limits on a, b impose limits on 

x,y. The new constraints are 

x}x + y]y   >   1  Vj (3.24) 
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x2x + fy   =   1 (3.25) 

The isocost surfaces of min xy are hyperbolas, symmetric about the line x = y in 

the positive cone of R2, which have local solutions at x^n and t/^in. These refined 

minima, from those imposed to generate finite solutions, are developed below. From 

the equality constraint, 

y = l-^ (3-26) 
y2 

yielding the combined inequality constraint on x as 

2      2/j -2 
yi 

y2 

x>l-^  Vj (3.27) 
r 

x    >    — for    <y.j > 0 

X    <    — 
Ctj 

for    ctj < 0 

denote the above quantities such that 

<*jx > ßj  V j (3.28) 

It is easily verified that a may change sign requiring 

(3.29) 

(3.30) 

A parallel development results in constraints on y. In the sequel, it is shown that 

ctj = 0 need not be' addressed. Combining the, at most N — 1, evaluations of of these 

constraints for both x and y along with the original x^n (amax) and ymin (bmax) yield 

Z^iin and 2/min giving Solutions 

\X   5 y   )      =       I ^min) ~jß I 

or 
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the global minimum being that which yields the smallest value of x*y*. This gives 

b*   = 

x* 

y* 

Since R, is diagonal, these values can be used twice in Eq. (3.14) where a* 

and b* represent the quantity (p,- —pc), thus totally describing the membership func- 

tion with desired cross-membership. The MATLAB® function find_2dv.m which 

performs this optimization is contained in Appendix C 

To visualize this process, examples of cross-membership contours and the re- 

sulting membership functions, both regular and normalized, for the set of points in 

R used in Figure 3.1 are contained in Figure 3.4. In particular, Figure 3.4d is a 

fuzzified version of Figure 3.1a. 

Claim: For ay = 0, the point (XJ, j/j) can be removed from the constraints. 

Proof: From the definition of a,- 

a,- 0    =» 
y]    y2 

Xj X 

Vi y 

X X 

y 
01 

y Vi 

This implies that (XJ,J/J) lies on either the line L, the line through (0,0) and (x, j/), 

or L', the reflection of L about an axis. From the definition of (x,y) 

[x^yj)\\ > ll(ä,y) 

Thus: 
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Figure 3.4    Membership Function Selection of Points in R2 

1. If equality holds, point (xj,yj) lies on the circle of radius ||x,y||. The constraint 

is equivalent to the one on (x,y) and can therefore be ignored. 

2. If ||(iCj, J/j)|| > ||(ic,?/)||, the point is clearly outside the circle of radius \\x,y\\ 

while being on L or V. This implies 

\XJ\ > \x\    and    \yj\ > \y\ 

=> x2j > x2    and    y2 > y2 
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Since x,y > 0 by definition, this gives 

x2x + y2y > x2x + y2y = 1, V x, y > 0 

Therefore: 

Point (xj,yj) lies outside the family of possible ellipses and can be removed 

from the constraints. 

3.5    2-Dimensional Scheduler Example 

With the mathematical formulation in hand, a solution to scheduling 10 LTI 

point controllers to control the nonlinear system, of Appendix B, with parameter 

uncertainty is obtained. 

3.5.1 Plant and Point Controllers. The nonlinear system with uncertain 

parameter, a, of interest is described by the system of equations 

xh    =   ~xh + axh (3-31) 

xh   =   -x\+u) (3.32) 

Vf   =   Xh (3-33) 

To linearize these equations define the full state xj as 

Xf = x + x 

where x is the trim state and x is the perturbation state.    Solving for the trim 

condition, the model yields xx — ax2 = ü. Further, define r = Zx\ = Zu2. This gives 
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the perturbation equations from the equilibrium point x as 

x\   =   —x\ + ax2 (3.34) 

X2     —     —TXi + TU (3.35) 

y   =   xi (3.36) 

When the two parameters r and a are considered fixed, an LTI model results. For a 

given set of these parameters, p — (r,a), the transfer function representation of the 

plant, at the trim condition, as a function of r and a is 

KM = l^kTr P-37> 

The scheduling solution (location of point controllers) is found by a numeric 

optimization, and the search algorithm requires several point evaluations for each 

step along the cost surface to determine the direction and size of step. Each point 

evaluation requires the design of N LTI point controllers, their corresponding mem- 

bership functions, and simulations of the resulting system to evaluate the constraint. 

These procedures are automated to allow for a hands off optimization, and all have 

been addressed with the exception of point controller design method which is left to 

the discretion of the designer. 

The design of LTI point controllers can be by any technique not requiring 

an interactive approach, such as LQR or pole placement. Using the linear control 

theory analysis of Appendix B as guidance, the scheduled controllers G{(s) designed 

at point pi = (T{, a,-), are of the form 

-^(s2 + s + am) 
Gi{s) = m± -, -^- (3.38) 
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Figure 3.6    Nonlinear Plant with Parameter Uncertainty 

3.5.2 The Fuzzy Scheduler. The fuzzy scheduler to control the plant over 

some region of the parameter space P is depicted in Figures 3.5 - 3.7. The number 

of LTI point controllers is arbitrarily chosen as N — 10. 

Some notes on the problem as modeled in Figure 3.5 are in order. Traversing 

P requires varying both of the parameters, T and a, during the simulation. Recall 

that r = ?>x\ is only used to generate approximate LTI models of the plant to aid in 
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the design of the point controllers. It is therefore advantageous to consider a varying 

T as T = x\ when dealing with non-LTI systems. Since x\ > 0, an equivalency is 

established between the two representations of P as either [r x a] or [x-y x a}. The 

implementation actually schedules on xi, the output of the nonlinear system. This is 

consistent, since the membership functions are actually found in the mapped space 

[xi x a}. So the Sch_on_tau block in the figure is actually scheduling on the output 

y as desired. This notation is maintained throughout the research. 
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The value Uo = Xi is the required command input to achieve trim, thus avoiding 

the calculation of controller state initial conditions. Appropriate initial conditions 

are calculated for the nonlinear plant's integrators. Changes in r are clearly accom- 

plished with steps commands of Xi, while the required changes in a are modeled as 

ramping from the initial a to the final value of aj over the duration of the simula- 

tion. Thus, a varies as is expected for a slowly changing external parameter over 

which the system has no control authority. This problem is specifically designed to 

generate such requirements and validate the synthesis technique's ability to handle 

them. As such, the specifications are modified from the pure tracking of Table 3.1, 

when a = a/, to pure disturbance rejection when the step function has zero strength. 

To clarify, the two blocks Sch_on_tau and Sch_on_a do not indicate independent 

scheduling of elements of P as is done in the current literature noted in Section 1.5. 

This is merely a result of assuming R; of the membership functionals to be diagonal 

and is implemented for speed of simulation. As presented earlier, although the cross- 

membership contours are aligned with the basis axes, the solution of the membership 

function fit is performed in the full n-dimensions. 

3.5.3 Optimization. Now that the problem statement is fully posed, the op- 

timization can be performed using any of a number of techniques. The optimization 

is performed by the Optimization Toolbox's function constr.m for MATLAB® , an 

SQP routine [28]. The simulations to evaluate performance constraints are obtained 

from SIMULINK® . The algorithm to achieve the solution is: 

1. Generate the argument of the optimization X € RNxn composed of the TV 

elements of G, each describing a point controller's location. 

2. Calculate the object function. That is the area of the convex hull of the G. 

3. Generate the TV point controllers Gi(s). 

4. Solve for the Delaunay neighbors of each of the TV point controllers. 
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5. Solve for the membership function variance parameter matrices. Schedule on 

[xi x a], 

6. Evaluate the constraints. For each point in G: 

(a) Trim the model to (äjj,ä,-) 

(b) Calculate the step strength, change in a, and slope of the trajectory in P 

from point pi to each of its Delaunay neighbors. 

(c) Simulate the scheduled system from point pi to each neighbor. 

(d) And for each response: Extract the response features, then calculate ap- 

propriate specifications, and evaluate the constraints of slewing to that 

neighbor. If no violations are found, the slewing goal is achieved between 

all neighbors and sufficient cover is demonstrated. 

7. Return the values of object function and constraint evaluations. 

8. Update the argument with a new set of point controller centers. 

3.5.4 Solution. The results of the optimization for N = 10 are presented, 

demonstrating the feasibility of the fuzzy scheduler. The objective of the optimiza- 

tion is to maximize the cover of the controller, while meeting performance constraints 

when slewing between controllers. Figure 3.8 shows an increase in area over 50 times 

larger than the initial location of controllers as supported by the two shaded areas. 

All performance specifications are met (see Table 3.1 page 3-11) as indicated 

by the optimization's constraint functional evaluating to C(y(t)) = 0 at the solution. 

The slewing responses of commanded input between all point designs are shown in 

Figure 3.9 

The issue of system stability is addressed by extensive simulation in the region 

of P defined by the convex hull of the solution G*. The spanning set of points, S, in 

Figure 3.10a is used for this purpose. A simulation is started from each s,- G S to all 
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other admissible points. Since the region of interest is convex, the admissible set in- 

cludes all other points of S. The results of these simulations are in Figure 3.10b. The 

tracking specifications are not applied to these responses since only bounded steady- 

state error is required for stability. However, the results are more than satisfactory 

and clearly indicate a smooth transition between the controllers as desired. 

Although this example gives total freedom to the optimization for the location 

of the point controllers, the synthesis technique has the ability to direct these loca- 

tions. One merely needs to include additional fixed points to the bank of controllers 

to achieve this. These points are not included in the argument of the optimization 

routine, but included in the membership function generation, simulation and con- 

straint evaluation portion of the algorithm. This allows the designer the freedom to 

include specific points of concern in P as well as firmly establishing the boundaries 

of the operational envelope. This can also allow the design to grow by fixing the 

results of one optimization, then adding new free controllers as the new argument of 

the optimization. An example of directing the solution is contained in Chapter IV. 
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To gain greater insight into the power of this technique, Chapter IV includes 1- 

dimensional examples with extensive analysis of the results. These examples include 

varying the fidelity of the truth model and its implications. 

3.6   Summary 

This Chapter develops the fuzzy scheduler of point controllers to provide full 

envelope control of nonlinear systems with parameter uncertainty. Scheduling is 

performed on the n-dimensional parameter space, P, over which the system is to 

operate. The scheduling is performed to provide a smooth transition between point 

controllers designed for specific regions of P. The solution is obtained from an op- 

timization which yields the point controller locations, and membership functions 

which maximize the coverage of the scheduled controller while providing a guar- 

anteed level of performance. The sufficient cover required of the point designs is 

quantified as a by product of the optimization process. The resulting controller is 

for use with MISO systems. The solution can therefore be used in conjunction with 

MIMO controller synthesis techniques which yield solutions by solving several MISO 

problems, thus bridging the gap to full envelope control of MIMO nonlinear systems 

with parametric variation. 

The developed synthesis technique allows one to use existing linear control 

techniques to design point controllers yielding satisfactory results for non-LTI plants. 

The use of standard linear control theory for the point controllers removes the re- 

striction of controlling only minimum phase and/or simple plants inherent in the 

standard application of fuzzy logic based on control. This ability to handle such 

plants is designed into the point controllers and is not violated by an application of 

error and error rate in the fuzzy logic inference engine. The resultant controller is 

able to perform high amplitude (not small signal) control, and the nonlinear plant 

can be slewed. 
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To obtain the solution, several novel concepts are introduced to the field. The 

use of the Voronoi diagram to quantify generalized nearest neighbors fits naturally 

into n-dimensional scheduling. The concept of cross-membership ellipsoids maintains 

the physical meaning of fuzzy variables while allowing an optimization to calculate 

the membership function parameters. When the MFs are obtained in this manner, 

normalizing the results provides a means of approximating the Voronoi diagram as 

an analytic scheduling/switching surface over P. This also assures sufficient control 

authority as the scheduling dimension increases. 

The direct attack on both model uncertainty due to nonlinearities and uncer- 

tainty of varying parameters points out the inadequacies of pure tracking/disturbance 

rejection specifications. The ability to achieve the demonstrated results is based upon 

formulating a constraint functional on the output response which embeds both clas- 

sical figures of merit and other meaningful features. This functional has the ability 

to smoothly blend the tracking and disturbance specifications required to traverse 

the parameter space. 

Finally, the applicability of the synthesis technique is demonstrated by the so- 

lution of a nontrivial strongly nonlinear control problem. This entails the solution of 

a 2-dimensional scheduling task of a strongly nonlinear plant with a varying param- 

eter. The results provide an improvement in the coverage of the scheduled system 

over that obtainable from the point designs used in a switching scheme. All this is 

achieved while maintaining the pre-specified level of performance. 
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IV.   1-Dimensional Scheduling Examples 

In Chapter III the solution to the general n-dimensional scheduling problem 

is developed and a non-trivial two-dimensional example is presented. To provide 

greater insight into the results of the fuzzy controller scheduler, simplifications are 

made to the plant and new solutions are obtained. The one-dimensional problems 

posed in Appendix B are now provided in full detail. Also included is a design 

of a lateral coordinated turn controller for an Air Force C-135 transport aircraft 

with restricted model information. This lack of information ties the hands of the 

scheduler and dose not allow for full freedom in the placement of point controllers. 

However, the ability to smoothly schedule conventional controllers used in flight 

control demonstrates the wide applicability of the technique. 

In Appendix B experiments are performed to evaluate fuzzy scheduling of in- 

dependent point controllers to obtain a full envelope controller. Results are obtained 

for Linear Time-Invariant, Linear Time-Varying, and nonlinear models of a strongly 

nonlinear plant. In this chapter, an optimal solution for the controller, which en- 

tails scheduling on a single variable, is derived. The resulting controller addresses 

the shortcomings noted in Appendix B as well as quantifying the "sufficient cover" 

required of the point designs, and yields smooth transitions between these point 

designs. The n-dimensional solution is applied in particular to the one-dimensional 

(no parameter variation) true nonlinear system, then the technique is applied to the 

LTI and LTV approximations of the system for completeness. 

The architecture of the controller is the same as in Chapter III except that the 

dependence on the varying parameter a is removed, i.e a = 1. The resulting block 

diagram for the nonlinear system is shown in Figures 4.1 - 4.3. 
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4-1    Simplifications Due to 1-Dimensional Scheduling 

Reducing the scheduling dimension from n to one simplifies many of the sched- 

uler's constructs. The simplifications below not only reduce the complexity of the 

optimization, but add a sense of directionality to the solution. Thus, one can visually 

appreciate the novelty of this research's contribution. 
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Figure 4.3    Bank of 10 Point Controllers 

1. The set of point design centers {pi}^ = G are now represented as an element 

ofR". 

2. Delaunay neighbors of pi are merely the points to the left and/or right on R1. 

3. Membership function variance parameters are obtained directly from Eq. (3.14). 

4. The object function, or cover to be maximized, is now the length of the interval 

\Pma.x       .Pmin|- 

5. Line intervals are convex, therefore all steps in its range are admissible. 
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6. Constraints: all commands are strictly tracking or disturbance rejection so no 

blending of specifications is needed. In this example all tasks are tracking. 

7. The net result of the optimization is to maximize the inter-point spacing. By 

adhering to the cross-membership constraint this maximization is accomplished 

independently for the end points defining the universe of discourse. The net 

effect is that the 1-dimensional scheduler can be solved sequentially. 

4-2    Variation on the Constraint Functional 

As alluded to earlier, the constraint functional developed in Chapter III iden- 

tifies responses which are clearly acceptable. It does not catch all responses that can 

be judged satisfactory, due to the finite dimension of the feature space. However, 

the functional does yield a multitude of acceptable responses that are acceptable as 

reference responses to which an output error measure can be applied. A modified 

version of the functional, which takes advantage of this property, is used in obtaining 

the 1-dimensional solution. As is shown in the sequel, C is not convex with regions 

that violate the constraint surrounded by regions that do not violate. Since it is 

assumed that the plant is continuous, the system's response varies continuously with 

respect to varying step inputs. That is for $(s\x) = y(t) and e > 0 there exist a 8 > 0 

such that \y(t)-y(t)\ < e for all \s-s\ < 8 where $(s\x) = y(t). So allowing for some 

small output error from a known good response, allows some responses that violate 

the mapping of C to be accepted, and thus reduce the unmodeled features in C. 

This second stage of constraint evaluation is used to check unacceptable responses 

as evaluated by C to the 'closest response' for which C(y(t)) = 0. The measure used 

is the mean squared output error of the responses normalized to their final value. 

4-3    Optimization 

With the mathematical formulation in hand, the solution to scheduling LTI 

point controllers to control the nonlinear system of Appendix B is obtained. 
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4-3.1 Set Up. The parametric linear controllers of the form G{(s) of Ap- 

pendix B are used. Gaussian membership functions, centered at pi, are used and 

their variance parameters are found by using a cross-membership of e = 0.001. 

To evaluate the constraint, simulations are performed starting with initial con- 

ditions at each point design, p,- G G. The responses are checked for maximum positive 

and negative steps to the closest point designs (left/right neighbors) to maximize the 

separation between them. The constraint, C, is not symmetric about the trim con- 

dition in general, so the limiting direction is chosen. As is shown in the simulations, 

this is always the positive step in the case of the nonlinear system. Once the spac- 

ing between point designs is maximized, based solely on the evaluation of C acting 

on the step responses from each pi to its neighboring point designs, G is consid- 

ered a candidate design for further checking. Since the constraint C is not convex, 

specifically on the region about pi bounded by its neighbors, an exhaustive search is 

performed in this region to check for violations of C. If no violations are found, the 

tracking performance is achieved on this region and sufficient cover is demonstrated. 

If violations of C are found, a normalized output error measure is applied to these 

responses. The reference used is the closest normalized response which satisfies the 

constraint C. If the measure is less then e = 5 x 10-4, found empirically, the response 

is judged acceptable and the region has been optimized as stated. In the case where 

there still exists violations of the constraints after the output error check, the region 

is rejected and the candidate G fails due to transient performance. A note is in order 

here with regards to the exhaustive search on the region, since the search can not be 

actually performed. A finite search is used with a fine partitioning of the region, this 

approximation is justified by the continuity of change of the output response. This 

is really a numeric optimization problem and does not distract from the contribution 

of the overall solution. 

Prior to obtaining the solution, one additional constraint is placed on the 

problem based upon engineering judgement.   That is, p\ — 1 is required since the 
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Figure 4.4    Results of Optimization 

nonlinearity is most severe as the origin is approached. This way, full control au- 

thority is available at the edge of the operational envelope which causes the most 

trouble. This is an example of directing the synthesis technique's solution. 

4-3.2 Solution. The optimization is performed using N = 10 point designs 

which is more than sufficient to cover the interval [1,2] attempted in Appendix B. 

The solution yields 

p*   = [1   1.11   1.244  1.408  1.602  1.846  2.163  2.6  3.207 4.388] (4.1) 

a2'   = [6.9e-5 6.9e-5 9.2e-5 1.2e-4 1.5e-4 2.1e-4 3.0e-4 4.8e-4 7.6e-4 2.2e-3] 

(4.2) 

where Figure 4.4a shows the controller membership functions and normalized weights. 

This suggests that the solution to the dual problem requires a maximum of 7 con- 

trollers of this type to cover the interval r = [1,2]. Figure 4.4b demonstrates the 

slewing between point controllers. 

The increase in spacing of the point designs, and corresponding width of mem- 

bership functions, as one moves away from the envelope bound at pi = 1 agrees 
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with the increase of the strength of the nonlinearity as one approaches the origin. 

As the nonlinearity becomes more severe, the region about each LTI model where 

it represents the nonlinear system is reduced. The strength of the nonlinearity can 

be quantified as a normalized error of the linearized model. This is depicted in 

Figure 4.5 for y = x3 and defined as S below. 

c A y{x + Ax) - y(x) - y'(x)Ax 

and Ax is fixed. Now, 

Ax2 

y(x + Ax) = y(x) + y'(x)Ax + y"(a:) — + ■ • • 

2y'(x)Ax      2      y'(x) 

^bCC2y>(x) 

So the case of the cubic nonlinearity y = x3 results in 

1 6x  _ 1 
bCC23x~>~x 

which is indicative of a very strong nonlinearity near the origin. 

4-4    Simulation Results 

The inherent directionality of the 1-dimensional problem suggests that stability 

be checked by commands to the extremes of the universe of discourse. The stability 

of the controller over r G [1,4.388] = P is checked by commanding the maximum 

positive/negative admissible steps from randomly generated trim conditions u0 G P. 

The results in Figure 4.6 indicate a stable system over all of P. 

In Appendix B an effective increase in cover is obtained by the scheduler 

over the individual point designs.   That is, each individual controller has a region 
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y  4 

Figure 4.5    Gauging the Strength of a Nonlinearity 

Full Envelope Random Simulation of Scheduled Controllers 
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Figure 4.6    Stability Analysis of the Scheduler 

4-8 



Bi(pi,ti) C P about it for which acceptable tracking performance is obtained. With 

the classical view of scheduling, one would require 

U  Bi(Pi,ei)DP (4.4) 

That is, place the point designs close enough together to provide overlap of these 

regions. However, since this research schedules controllers and not parameters, the 

controller is able to often bridge the gap between disconnected regions of adjacent 

controllers. The set P is no longer required to be a subset of the union of the iV 

regions. Thus allowing an increase in their separation and requiring fewer point con- 

trollers to do the job. This is observed in the n-dimensional controller of Chapter III 

but can be visualized much more clearly in the 1-dimensional examples. This is seen 

in Figure 4.7 where the error bars indicate regions of acceptable transient response 

for different trim conditions. Figure 4.7a shows the regions for the individual point 

designs which do not all have overlap. Figure 4.7b compares this with the regions of 

the scheduler which shows not only a drastic improvement in the regions, but also 

demonstrates sufficient cover and the ability to smoothly transverse point controllers. 

Responses corresponding to these increases in cover are contained in Appendix D. 

Evaluations of the constraint surface over the entire operational envelope gives 

an indication of the increase in performance. Figure 4.8 gives the surfaces before 

and after the fuzzy scheduling. 

To visualize the effects of the two step constraint evaluation, an example con- 

straint surface for pio = 4.388 is shown in Figure 4.9. The x-axis is v = \/T/3 = xi, 

the y-axis is C(y(t)), the • • • lines are the location of other point designs, and the 

— ■ — lines indicate the region of acceptable transient response as determined by C. 

The symbol * is used to show the value of the constraint evaluation after the nor- 

malized output error comparison. Constraint surfaces for other trim conditions are 
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Point Design Number 

a) Cover of Point Controllers 

■T      x° 

Point Design Number 

b) Cover of Scheduler 

8 10 12 

Figure 4.7    Increase in Cover 

Constraint Surface After Output Error Comparison Constraint Surface After Output Error Comparison 

1-2 Trim Point 

1.3 

Commanded Value, v Commanded Value, v 

a) Point Controllers b) Scheduler 

Figure 4.8    Performance Surface Before and After Scheduling 

found in Appendix D.  Figure 4.10 depicts an evaluation of the normalized output 

error measure for a response where C(y(t)) > 0 in the interval [pg,Pio]- 
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Constraint Surface for Point Design 10 at tau = 4.388 or v = 1.209 
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Figure 4.9    Constraint Surface for pw where u0 = 1.209 

From Point Design 10atv= 1.209 to cmd = 1.115 

Figure 4.10    Visualization of Mean Normalized Output Error 

4-5    LTI and LTV Results 

The optimizations for the two systems of Appendix B, used to approximate 

the true nonlinear system, are performed using TV = 4 point designs. This number 

allows for covering of the specified operational envelope as well as confirming the 

ability to slew and transverse several controllers. 
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Figure 4.11    Results of Optimization of the LTV System 

4-5.1    Solution for the LTV System.      The solution for the LTV system yields 

p*   = [1   1.761  3.106  5.615] (4.5) 

.2* [2.685e-3 2.685e - 3 4.545e - 3 8.897e - 3] (4.6) 

where Figure 4.11a shows the controller membership functions and normalized weights. 

This suggests that the solution to the dual problem requires a maximum of 3 con- 

trollers of this type to cover the interval r = [1,2]. As shown in the sequel, far greater 

than 3 point controllers of this type would be required if a conventional scheduling 

scheme were used. Figure 4.11b demonstrates the slewing between point controllers. 

The stability of the controller over r € [1,5.615] = P is checked in the same 

manner as for the nonlinear system. The results in Figure 4.12 indicate a stable 

system over all of P. Note that for the LTV system, it is the negative commanded 

steps which are the limiting case. 

For the LTV system, a much greater increase in effective cover is observed as 

shown in Figure 4.13a. There is no overlap between any two regions where individ- 
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Figure 4.12    Stability Analysis of the Scheduler for the LTV System 

ual point controllers provide acceptable tracking performance. Hence, convention 

scheduling would require greater than the at most three point controllers needed 

for the fuzzy scheduler. The slewing performance surface in Figure 4.13b depicts a 

controller with nearly full envelope slewing capability in the LTI sense. This is due 

to the LTV system being closer to the linear models used to design the point designs. 

Notice that in starting from a trim condition near the 4th controller, the per- 

formance is less robust for positive steps than from staring near the center of the 

envelope. For the edge controller, any positive step is away from its valid model and 

there are no other models that better represent the system. This situation exists for 

the entire transient. However, from other trim points a combination of models is 

available during a large portion of the transient. Therefore, when the system reaches 

the edge of the designated envelope it is in a closer state to the commanded value. 

4-5.2 Solution for the LTI System. Previously it was noted that the LTI 

system actually poses a different, easier, problem. It is also the most often solved due 

to the analytic tools available. In cases where the the plant is accurately modeled 

as an LTI system, this is indeed appropriate and this assumption is made for the 

example below. However, when the LTI model is obtained by linearizing a nonlinear 
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Figure 4.13    Performance of the LTV System 

system in order to use these analytic tools, the results can be very misleading. Classi- 

cally, this is only quantified after the design is complete by simulation, a shortcoming 

overcome by the synthesis technique of this research. In particular, the nonlinear 

plant of these examples is such a case where using LTI theory is totally inappropriate 

as shown by comparing the nonlinear and LTI solutions. 

Assuming an LTI truth model for the plant, the solution for N — 4 yields 

p*   = [1   1.4  1.9  2.5] (4.7) 

_2*J 

[8.8e-4  8.8e-4  8.8e - 4  9.4e - 4] (4.8) 

where Figure 4.14a shows the controller membership functions and normalized weights. 

This suggests that the solution to the dual problem requires a maximum of 4 con- 

trollers of this type to cover the interval r = [1,2].  The discussion of cover in the 

sequel shows that more than four point controllers of this type would be required if 

a conventional scheduling scheme were used. 
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Figure 4.14    Results of Optimization of the LTI System 

Figure 4.14b demonstrates the full envelope coverage of the scheduler, in the 

LTI sense defined below. That is, for the given plant of form 

Pr(s) 
s2 + s + r 

(4.9) 

and for any r E [1,2.5], the scheduler provides acceptable transient response to step 

inputs. So the optimization yields a robust controller with guaranteed performance 

characterizations on the output. These performance guarantees are not just a mini- 

mization of an error, which can sometimes be of little true interest. They embed the 

important specifications on the output and allow for deviations in the response that 

do not violate them. The performance is also more constrained than in the use of 

thumb print specifications, and therefore much more useful. Most techniques that 

promise these results require human intervention to aid in the process, and are not 

hands off. 

The stability of the controller over r € [1,2.5] = P, may be checked by obtain- 

ing the eigenvalues of the system as a function of r. For any fixed r, the closed loop 

system is a deterministic LTI system whose stability is dictated by its eigenvalues, 
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which can be found by block diagram manipulation or circuit analysis. Define a(r) 

as 

«M = £ ^ (4.io) 

where W{(T) is the normalized weight, Eq. (3.1), of the ith controller designed about 

Pi. Designating the fuzzy scheduler, for fixed r, as Gsck(s) and combining the N 

parallel point controllers yields an open-loop system of 

n    , x T, / x 24r (a2s2 + as + 1) , 
Gsch(s)PT(s) = l ;      l  > 4.11 

5 [s2 + 8s + 16) (a-2 + s + T) 

The characteristic equation of the resulting closed-loop system is then 

s5 + 9s4 + (r + 24)s3 + (24ra + 8r + 16)s2 + (24ra + 16r)s + 24r (4.12) 

Since there is no closed form solution for r in terms of a, a Routhian analysis 

is performed instead of finding the eigenvalues directly. Clearly the first constraint 

is 24r > 0. The detailed analysis for general iV provides additional constraints, one 

of which is redundant, yielding the requirements on stability of 

0   <   r (4.13) 

0   <   (l-24a)r + 200 (4.14) 

0   <   (-72a2 - 21a+ l)r2 +(309a+ 67)r +400 (4.15) 

0   <   (-1728a3 -1656a2- 240a + 13)r2 + 

(7416a2 + 8928a + 760)r + 9600a - 8000 (4.16) 

Plots for 3 of the constants and a, as a function of r, for the design are given 

in Figure 4.15 from which it is seen that the system is stable for all r G (0,11.21). 

Note that a is analytic for all finite N. 
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Figure 4.15    Evaluation of Routhian Constraints 

For the LTI system, the increase in effective cover is demonstrated by noting 

that none of the point designs in Figure 4.16 overlap one another. Yet the resulting 

scheduler covers the interval r 6 [0.88,2.69] D P. Hence, conventional scheduling 

would require greater than the at most four point controllers needed for the fuzzy 

scheduler! 
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Figure 4.16    Increase of Cover of the LTI System 

4-6    C-135 Aircraft Example 

An additional example is presented which entails the control of a USAF C-135 

transport aircraft. This example is provided to compare the synthesis technique's 

performance to that of previous designs from the literature [1, 6, 10]. The model 

used in these designs [12, 13] does not contain sufficient aerodynamic stability deriva- 

tives to allow for the full optimization of the point controllers locations. However, 

the ability to smoothly schedule conventionally designed flight controllers and the 

robustness achieved demonstrates the wide applicability of the technique. 

The goal is to design a coordinated turn controller for the aircraft. This is 

accomplished by designing the controller such that aileron inputs command bank 

angle, <f>, while minimizing the side slip angle ß. 

4-6.1    The Aircraft Model. The model presented is the nonlinear three 

degree-of-freedom lateral directional equations of motion representing a fixed winged 

aircraft. Only the variables of direct interest are defined here. The notation used is 

standard for flight control applications and the reader is referred to an aerodynamics 

text or source materials [7, 12, 13] for a complete description. 
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The equations are: 

Sum of the forces in the lateral Y direction 

v + U0r- g^ sin 90 - g<j>cos 0o = Yrr + Yvv + Yhv + Ypp + Y6a8a + YSr8r      (4.17) 

Sum of the rolling moments 

p - y?-f = Lrr + Lvv + L{,v + Lpp + LSaSa + LSrSr (4.18) 

Sum of the yawing moments 

r - j^p = Nrr + Nvv + Nii + Npp + NsJa + NSrSr 
■Lzz 

(4.19) 

Standard small perturbation assumptions are made to linearize the equations. 

The net result of which are the assumptions 

ß 

=   P 

v 

W0 

(4.20) 

(4.21) 

(4.22) 

Substituting the results of these assumptions into the differential equations and 

taking the Laplace transform of the resulting equations gives: 

-Yps-gcos$0 

U0 
s-Yv 

Yrs        g sin 80 
0         U0             U0 V 0 YSr 

u0 

s2 - LpS -Lß 
-Lu.s2 - lrS 

i XX ß = Lsa Lsr 

_I^S2 _ NpS -NßS - Nß s2 - Nrs y. . Ni« Nör 

(4.23) 

It is desired to obtain the state variable representation x — Ax + Bu. To accomplish 

this, using the small perturbation definitions, augment the states p (roll rate) and r 
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(yaw rate) giving the state vector 

x = \p r <f> ß V']J 

which gives 

0 0 1 0 0 

0 0 0 0 1 

0 0 0 1 0 

1   *xz 
J-xx 

0 0 0 

±xz 
Izz 

1 0 ~Nß 0 

X 

1      I 

0 

YE    XL. 
v0    v0 

Np      Nr 

The system is of the form 

0 

0 

+       0 

Lsa 

Nsa 

Mx + Nx = Du 

0 

0 

Vo 

UT 

NSr 

0 

0 

g cos VQ 

0 

0 

0 

0 

Yv 

Lß 

Nß 

0 

0 

Uo 

0 

0 

(4.24) 

(4.25) 

(4.26) 

defining a five state system with two inputs. Since M is invertible for IXXIZZ ^ I, 2 
xz 

x = -M_1Na; + M_1Du = Ax + B« (4.27) 

From Eq. (4.25) the desired LTI plants are obtained as a function of the flight 

condition (stability derivatives). The value of the parameters for each flight condition 

are contained in Table 4.1, where the angular measure is degrees. 

These flight conditions were chosen in the previous work since they reportedly 

represent the aircraft well over the flight envelope for lateral dynamics [1, 6, 10]. 
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Flight Condition Cruise 1 Cruise 2 Power Approach 

Altitude (ft) 42,000 25,000 Sea Level 

U0 (ft/sec) 726 660 275 
Mach No. 0.75 0.65 — 

Weight (lbs) 190,000 250,000 165,000 
q slugs/(ft-sec2) 141.1562 232.1748 89.9181 

Stability Derivative Fit Cond # 1 Fit Cond # 2 Fit Cond # 3 

Yv -0.0574 -0.0946 -0.1279 

Yi 0 0 0 

YP -1.337 -1.583 -2.294 

Yr 2.621 3.204 4.277 

Ysa 0 0 0 

YSr 16.68 18.73 10.55 

h -2.384 -3.109 -1.631 

h 0 0 0 

Lp -0.4695 -0.6381 -0.9074 

1JT 0.2341 0.3248 0.5943 

LSa 0.7227 0.7114 1.433 

Lgr 0.2235 0.3162 0.1223 

Nß 0.5089 0.7745 0.2345 

Nß 0.0110 0 0.0162 

Np -0.0587 -0.0921 -0.1293 
Nr -0.0927 -0.1506 -0.1503 

N5a 0.0363 0.0600 0.0403 

N6r -0.4965 -0.8278 -0.3305 

*xx 3.602 x10s 4.013 xlO6 2.813xl06 

±zz 8.648 xlO6 8.737xl06 7.687xl06 

J-xz -7.235x10s -2.483xl05 -2.561 xlO5 

Oo (deg) 0 0 -3.0 

Table 4.1    C-135 Flight Conditions and Stability Derivatives 

4-6.2 Problem Statement. With the aero data so severely limited, mean- 

ingful nonlinear simulations of the aircraft is not possible. Instead, the LTI models 

of the equations about the flight conditions are used as "truth models". Therefore, 

the results of the scheduler are interpreted in the LTI sense of the previous section. 

That is, the performance of the scheduler checks only the robustness, by operating 

at a flight condition within the available flight envelope but not at a condition that 
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is a point controller location. To model the aircraft at this non-design point requires 

using one of the available flight conditions and removing it from point controller 

consideration. The scheduled point controllers are designed for the other two flight 

conditions. 

It is interesting to note that none of the attempts at this problem in the 

literature [1, 6, 10] validate their designs in such a rigorous manner. While they 

make claims of robust designs, their simulations are only performed at points for 

which the controller was designed. No attempts are made to check performance at 

off design flight conditions. Claims of a controller's robust performance based solely 

upon testing against deterministic models for which they were specifically designed 

are clearly suspect. 

Given this situation of scheduling between two controllers, the logical choice of 

scheduling on one parameter is taken. The question is which parameter of Table 4.1 

to use. Although dynamic pressure, q, does not appear in any equation explicitly, 

it is common practice in flight control to schedule on barq [7]. The flight conditions 

used to design point controllers are clearly the ones with the minimum and maximum 

q, #3 and #2 respectively. The remaining condition (#1), not specifically designed 

for, is used to test the robustness of the scheduler. 

4-6.3 Controller Design. The point controllers are designed in the spirit of 

classical flight control by use of sequential loop closure [7]. Their design is depicted 

in Figure 4.17. The first loop is closed using positive feedback of yaw rate,r, with a 

washout filter in the feedback path to the rudder command. This loop dampens the 

C-135's severe dutch roll mode. The second loop uses negative feedback of sideslip 

angle, ß, to rudder command. This loop provides aircraft coordination. Finally, the 

third loop uses negative feedback of the bank angle, <£, to aileron command, with 

a cascade lead compensator in the forward path. An equivalent controller in an 

appropriate configuration for scheduling is shown in Figure 4.18. 
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The fuzzy scheduler is shown in Figure 4.19. The blending is performed by 

the components of Figure 4.20 where a cross-membership of 0.001 is used to find the 

variance parameters. 

To evaluate the scheduler's performance, simulations are performed at flight 

condition #1, which are shown in Figure 4.21 The comparison is made against the 

response of the two point designs controlling the LTI aircraft at condition #1. The 

response shows an improvement over the controller for point #3 but noticeable degra- 

dation from the controller for point #2, although they may very well be considered 

acceptable. 

This performance is due to the restrictions placed on the scheduling tech- 

nique by fixing all model locations. The synthesis technique is designed to generate 
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Figure 4.21    Controllers' Performance at Flight Condition #1 

membership functions based on point controller locations. The argument of the op- 

timization is the location of these points, so by fixing them the optimization's design 

freedom is is removed. Fixing these points fixes the MFs, hence contradicting the 

established paradigm. Thus, the point designs can not be designed independently, 

a main goal of the synthesis technique. Proceeding with the above restrictions, the 

use of two fixed points yields symmetric weightings as shown in Figure 4.22. 
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Figure 4.22    Scheduling Surface 

The responses of Figure 4.21 shows that the point controller at #2 is robust 

enough to still perform well at this point. The controller at point #3 has begun 

to degrade somewhat. However, the location of the test point #1 is closer to flight 

condition #3 in terms of q, as shown in Figure 4.22. Hence, controller #3 is weighted 

more heavily and the scheduler's response resembles it more than that of #2. A 

more appropriate approach, when the model descriptions are fixed, is to modify the 

Gaussian membership functions and the resulting normalized weights. 

Another suspect area is the scheduling on q which is not explicitly in the 

equations. The obvious conclusion is that the problem at hand is ill posed for the 

synthesis technique developed in this research. More model information is required 

to use its full potential. However, the gains of the smooth scheduling provided is 

evidenced by the blending of the two point controller's characteristics. To match 

the performance claims of the previous designs [1, 6, 10], one could merely design a 

third point controller at the last flight condition as they have done. Then rely on the 

demonstrated smooth scheduling to address off design point performance. However, 

as pointed out earlier, any conclusion based on such an evaluation is of little value. 
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4-7   Summary 

The fuzzy scheduler developed in Chapter III is used to obtain the full solutions 

to the problems of Appendix B. The technique is applied to the full nonlinear 

plant, as well as two simplified models of the plant. In thoroughly exploring the 

1-dimensional scheduler and its inherent directionality, this chapter allows one to 

visualize the gains obtained by the technique. Most notably the increase in controller 

coverage and the smooth transition between point controllers. It is also pointed out 

that this sense of directionality allows for a sequential form of optimization to obtain 

the solution. 

A variation on the constraint functional of Chapter III is explored which de- 

creases the amount of over design in the scheduler. The modified constraint embeds 

both classical figures of merit and a limit on reference output error. The key to using 

an output error measure as a valid consideration in specifications is establishing a 

set of acceptable reference outputs, not a single best transient response. 

Stability is demonstrated by simulation for nonlinear and LTV plants, and 

proven in the case of an underlying LTI plant. However, the claim of stability based 

upon the LTI system when the true system possess such a strong nonlinearity as 

presented here is obviously of little value. 

The design of lateral controller for a C-135 transport aircraft using scheduling is 

also presented. Lack of necessary model information makes the problem improperly 

posed to use the synthesis technique to it's fullest. Using LTI models to approximate 

the aircraft, an evaluation of the scheduler's robustness is performed. The results 

suggest that in cases where controller locations are fixed a different optimization on 

the membership function variance parameters is more appropriate. This could act 

as the degree of freedom that is removed by fixing the controller locations. However, 

the blending performed by the controller still presents a viable means of switching 

between point designs. 
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V.   Conclusions and Recommendations 

In this research, a novel full envelope controller synthesis technique is developed 

which directly addresses the control of nonlinear systems with uncertain parameters. 

This is performed by using Fuzzy Logic to schedule independently designed point 

controllers over the operational envelope and parameter space of the system's model. 

These point controllers are synthesized by techniques chosen by the designer, thus 

allowing an unprecedented amount of design freedom to the controls engineer. By 

using established control theory for the point controllers, and a Fuzzy Logic sched- 

uler, the resulting nonlinear dynamic controller is able to handle the dynamics of 

complex systems which can not otherwise be addressed by the direct use of Fuzzy 

Logic Control alone. 

5.1    Conclusions 

The previous chapters show that the developed synthesis technique provides a 

viable solution to nonlinear control problems and uncertain systems with structured 

parametric uncertainty. The proposed new approach directly addresses those critical 

areas of FLC and of conventional scheduling design at which the above mentioned 

paradigms are the weakest. 

The use of point controllers based upon established LTI control theory allows 

for the handling of plants whose complex dynamics require dynamic compensation. 

This task can not be accomplished with standard FLCs. Thus, the second-order 

plant example of Chapter III demonstrates non-minimum phase responses which are 

now controlled appropriately. Nonlinear action is brought in by the FL scheduler. 

Analytically solving for the membership functions' parameters in the FL scheduler 

to approximate the Voronoi diagram associated with the point controllers' locations, 

removes the need to hand tune the MFs or blindly perform an optimization on them, 

as is usually done in a FLC. Moreover, the normalizing of the membership functions, 
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along with the concept of cross-membership, ensure adequate and proper cover of 

the universe of discourse (viz., the plant's operational envelope and the parameter 

space) even in n-dimensions. 

The problem areas for such a task, when attempted by conventional control 

techniques, are where to place the point controllers in the operational envelope and 

parameter space, and how/when to either: switch between controllers or schedule 

parameters in an otherwise fixed controller. In the proposed approach, the draw- 

backs of mismatched controller/plant energy inherent in switching techniques are 

now avoided by the smooth transition across a bank of parallel controllers, all un- 

der continuous full operation as determined by the fedback plant's state trajectory. 

This same smooth (analytic over all P) controller weighting surface establishes the 

scheduling scheme, and hence avoids the ad-hoc nature of conventional scheduling. It 

is this scheduling on fast internal variables, as opposed to slowly drifting parameters 

in conventional scheduling, which provides the ability to directly handle nonlinear 

plants. The generation of this normalized weighting surface is performed directly 

in the n-dimensional state and parameter space in a truly multivariable way, and 

not by assuming independence of the scheduling parameters. This provides assured 

control authority over all of P and requires no hand tuning. The placement of the 

point controllers is a direct outcome of the optimization scheme and is based upon 

a very meaningful criterion, viz., the system performance while slewing the nonlin- 

ear plant. Found in this manner, the spacing between point controllers reflects the 

relative strengths of the plants nonlinearities and thus requires a fewer number of 

point controllers than achieved by existing techniques, where uniform spacing over 

P is employed. It is also noted that an effective increase in cover over the individual 

point designs is achieved. Therefore, this solution quantifies the required sufficient 

cover of the point controllers which is unknown a priori. 

The result of this research is a systematic methodology resulting in a controller 

which smoothly transitions the n-dimensional parameter and state space while meet- 
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ing pre-specified performance requirements. The technique directly handles nonlin- 

ear plants with uncertain parameters and does not require "after the design" hand 

tuning or modifications. It is also demonstrated that the proposed FLC paradigm 

is directly applicable to uncertain LTI and LTV systems. 

5.2    Contributions 

In the development of this synthesis technique, several unique contributions to 

the field of control are introduced: 

1. Full envelope control of dynamic multivariable nonlinear plants. 

2. Directly design for plant nonlinearities and parameter variation using conven- 

tional LTI control design tools embedded in a Fuzzy Logic paradigm. The 

solution is obtained in a systematic manner which does not require modifica- 

tions or hand tuning when evaluated against the uncertain nonlinear plant. 

3. Physically meaningful method of analytically generating true multivariable n- 

dimensional membership functions. 

4. Introduced novel computational geometry concepts of Voronoi/Delaunay di- 

agrams into control theory, to allow for systematic multi-dimensional (mul- 

tivariable) scheduling. These concepts are also applicable, and in fact are 

appropriate, to other multivariable scheduling or switching techniques. 

5. Analytic means of quantifying point design cover and switching surface gen- 

eration by approximating multi-dimensional Voronoi diagrams with same di- 

mension multivariable Gaussian membership functions. 

6. Formal definition of cross-membership provides a means of dealing with a set 

of non uniformly distributed multi-dimensional membership functions without 

compact support. 
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7. Solutions obtained by the developed technique extend the coverage of individ- 

ual point designs, therefore requiring less point controllers than required by 

existing switching/scheduling schemes. 

8. Removed FL requirement of using composite clauses in the antecedent by 

means of multivariate fuzzy AND operator. 

9. Accomplished scheduling of a bank of dynamic controllers that avoids mis- 

matched energy between controller and plant, that provides smooth transitions 

between point controllers. 

10. A current shortfall in FLC addressed: Use of LTI control tools instead of 

direct fuzzy inference allows for the handling of systems possessing complex 

dynamics. Thus, dynamic compensation is ported into FLC. 

11. Optimization maximizes cover of convex hull (operational envelope) while meet- 

ing output response specifications. Thus, the solution to the minimum number 

of point controllers required to cover a specified envelope is readily obtained. 

12. Posed a performance functional combining figures of merit and output error 

with regards to various reference signals. This gives the output error metric a 

much larger class of applications than that of model following. 

5.3    Recommendations for Further Study 

Given the fuzzy controller scheduler architecture developed in this research, 

several areas are suggested as topics of further research. They fall into two categories: 

those which improve the ability to obtain a solution, and those which extend the 

work presented here. 

Improving the convergence to a solution would perhaps most benefit from 

changes in the optimization routine used to obtain the solution. The technique in 

Chapter III is posed such that any routine which can solve a constrained optimization 
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(minimization) could be used. In particular, the multi-dimensional example of this 

research uses the Sequential Quadratic Programming routine from MATLAB® 's Op- 

timization Toolbox [28]. Modifications such as two-sided finite differences, to estimate 

gradients, should aid in progress towards a solution. Also, additional optimization 

algorithms should be investigated. 

The ability to include the second step of evaluating the constraint C(y(t)) in 

dimensions greater than one would aid the solution in that its effect is to ease the 

constraints. This area could also be improved by refining of the feature extracting 

functionals and the specification vector. In particular, the relationships regarding 

ratios of oscillations in the output response are conservative. In its current form, the 

ratios specification properly identifies a class of responses as acceptable and properly 

penalizes another class that is hard to identify as unacceptable by conventional time 

specifications. However, this spec does effectively reject certain responses which 

would probably be judged acceptable by observation; thus, over constraining the 

system and increasing the difficulty in obtaining a numerical solution. 

Finally, there is a need for employing more efficient computational geome- 

try algorithms in calculating the Voronoi and Delaunay diagrams, especially as the 

scheduling dimension increases. 

To extend the technique past its current development, the two main areas of 

analysis and application are considered. For analysis, the question of system stability 

could be addressed. In this research, stability is addressed by extensive simulation 

over the operational envelope. One could instead attempt a general stability analysis 

of either the general fuzzy controller structure, or a stability proof of a specific 

controller after the design has been completed. 

In the area of application, the demonstration of full MIMO control by means 

of solving several equivalent MISO subproblems can now be addressed. The design 

of such a controller would demonstrate the full power of the synthesis technique 

developed in this research. 
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5.4    Summary 

This research has made major contributions to full envelope nonlinear control 

and dynamic Fuzzy Logic control. Presented is a systematic means of developing 

a nonlinear controller which accommodates the system model's nonlinearities and 

parameter variation. The technique seeks to maximize the coverage of the opera- 

tional envelope while guaranteeing a pre-specified transient performance and smooth 

transitions across the envelope. The resulting controller does not require on-line 

adaptation, estimation, prediction or model identification to achieve this objective. 

Complex dynamics are handled by relying on conventional control theory for the 

point designs and avoiding the use the system's error state for the fuzzy inference 

engine. A meaningful analytic solution of the membership function variance al- 

lows the optimization to yield the location of point designs: both quantifying the 

controller's coverage, and eliminating the need of extensive hand tuning of these 

parameters. 

The above is a significant contribution to the field even in the case of scheduling 

one parameter for a nonlinear SISO plant. Beyond this, the geometric primitives used 

in the solution all have higher dimensional interpretations (convex hull, ellipsoid, 

Voronoi/Delaunay diagrams) which allow for a direct generalization to scheduling 

on n-dimensions including uncertainty due to nonlinearities and parameter variation. 

This is all achieved in a direct systematic manner which requires no hand tuning 

of multi-dimensional membership functions. Since many MIMO controller design 

techniques are accomplished by solving several MISO problems, this work bridges 

the gap to full envelope control of MIMO nonlinear systems with parameter variation. 
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Appendix A.   Fuzzy Identification 

There are two methods to obtain models of physical systems: 

1. From first principles, using the physical sciences and their mathematical 

descriptions. 

2. Take a statistical/ black box approach, where one fits a model to empiri- 

cally obtained input/output data. Fuzzy Logic can play a role in this approach to 

modeling. 

In the main research, the emphasis is for the application of Fuzzy Logic con- 

cepts in the case when approach 1 is taken. In contrast, the discussion of this 

appendix examines approach 2 and is included for completeness. That is, in this 

appendix, the assumption is made that due to a lack of confidence in a mathe- 

matical model of the plant but the availability of empirical data, one may attempt 

identification based solely upon the input/output pairs. 

To gain insight from the underlying fuzzy inference engine, system identifica- 

tion using Fuzzy Logic modeling is investigated in two areas. The first entails the 

representation of an unknown input/output mapping by a fuzzy inference engine, 

using input/output data. The second addresses the class of problems where the 

fuzzy system's structure is known and one is concerned with the identification of the 

underlying fuzzy rules from input/output data. Examples, using polynomial mod- 

els and a logical XOR device, respectively illustrate the two proposed fuzzy logic 

modeling/identification paradigms. 

The direct application of Fuzzy Logic as a controller requires imbedding rules 

in a fuzzy inference engine. However, in the case of complex systems, the fuzzy rules 

are not so easy to come by. Thus, there is a need for system (rule) identification as 

an inherent part of the FLC based design process. In particular, when the resultant 
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Controller description is in the form of rules in a fuzzy inference engine, the need for 

fuzzy identification becomes obvious. 

A.l    Fuzzy Logic ID Paradigm 

Much of the work in this area assumes total ignorance of the plant and attempts 

identification based purely on plant input/output data, a data driven approach. Such 

cases can be handled by using Neural Networks which are being trained to respond 

similarly to the actual plant, and therefore may be used as the implicit repository of 

the underlying rule base [4, 18]. An alternative approach assumes a generic form of 

parametrically represented membership functions and performs an optimization on 

these parameters to obtain a good fit to the input/output data. The result provides 

a fuzzy rule set which best fits the provided data, given the form of the membership 

functions [19, 22]. 

In this appendix [20] a class of systems is considered in which expertise on the 

plant's operation is available. That is, much is known about the plant in question, 

but mathematical equations are not reliable due to either unmodeled dynamics or 

parameter uncertainties. This class of problems includes those in which experienced 

operators can control the system but can not verbalize the rule set. In particular, 

problems are discussed for which sufficient prior information exists to stipulate the 

following: 

1. The universe of discourse 

2. The number of fuzzy input/output variables required 

3. Fuzzy variable values (i.e. small, medium or large) 

4. Appropriate membership functions 

To complete the hypotheses, fuzzification (min/max, product, etc.) and de- 

fuzzification (centroid, etc.) algorithms must be specified. Finally, the "plant" being 
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modeled can represent an actual physical plant or a human operator controlling the 

physical plant. In the case of modeling the plant's controller, one is tying to emulate 

the experienced operator's rules in the FLC. 

A.2   Identification Concept 

The set R is defined as the finite set of all feasible rule sets (which adhere to 

the hypotheses). This set is well defined and one can perform an exhaustive search 

to find the optimal elemental rule set r* G R which best represents the system of 

interest. In line with the classical system ID paradigm, the mean-squared output 

error metric of the rule's action on the input data set, r(xi), versus actual output 

data, ?/;, is used. In the scalar case with input/output data (x,j/), the optimal rule 

set r* € R satisfies: 

1   n 

r* = arg min - ]T (r(xi) - yf)
2 (A.l) 

Obviously, analysis cannot be brought to bear on the solution of the above 

discrete optimization problem. As the number of fuzzy variables increase, minimiza- 

tion by exhaustive search over R suffers from a combinatorial explosion. However, it 

allows for a well posed problem in which an optimum exists. Suboptimal solutions 

are provided by genetic algorithms [11, 19] or other numeric optimization methods. 

The proposed system ID paradigm is demonstrated in two examples: 1) By iden- 

tifying noise corrupted polynomial input/output mappings and 2) By identifying a 

logic XOR gate. 

A.3    Polynomials 

A system with the following fuzzy hypotheses, obtained from experience, is 

used for this example. 
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Figure A.l    Triangular Fuzzy Variables for Input/Output 

The universe of discourse is scaled to the interval [0,1]. Five input fuzzy vari- 

ables (FV) and three output FVs are used. Their linguistic labels are 1-5 and 1-3 

respectively where triangular membership functions represent these variables. These 

are illustrated in Figures A.la and A.lb. The fuzzification and defuzzification algo- 

rithms are the min/max and centroid methods, respectively. 

A single rule maps an input to an output, e.g., 

Example Rule H: IF   input is 2,      THEN output is 1. 

A rule set is a set of rules mapping each input FV to a unique output FV. 

So for n input FVs and m output FVs, the set R contains mn possible rule sets 

(combinations of rules). Results for data generated from noise free 1st and 2nd order 

polynomials are shown in Figures A.2a and A.2b respectively. The identification 

is performed in MATLAB® [29]. In the first example, R contains 243 possible rule 

sets with five rules each; hence, the second order fit requires 55 = 3125 different 

possibilities to be investigated. In Figure A.2a the truth model y = x is compared 

to the output of the best rule set as applied to the universe of discourse [0,1]. In 

Figure A.2b, the true values are the discrete points, while the curve is the output of 
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Figure A.2    Fuzzy Fit of Polynomials 

the best fuzzy rule set. In both figures the fuzzification is performed by the min/max 

operators. The exhaustive search may be greatly reduced by first eliminating any of 

the possible rules that are never activated by a point in the data set. 

Of course, there are many ways to fit polynomials, but this validates the use- 

fulness of the above outlined search. 

A great advantage of a fuzzy modeled system becomes evident when the finite, 

and hence incomplete, data set appears to be discontinuous, while one has every 

reason to believe that the underlying true system is continuous. An example of such 

data can be seen in Figure A.3a along with two attempts at fitting the data. To 

avoid the dangers of over-fitting data with higher order polynomials, the solid lines 

represent 1st order fits in a least-squares sense. The one using the entire domain [0,2] 

is continuous, but yields a poor fit to the data. When the interval is broken into 

[0,1] and [1,2] excellent fits are obtained, but this results in a discontinuous system. 

However, if one defines overlapping membership functions, in order to combine the 

discontinuous fits, a continuous transition is obtained along the entire [0,2] interval. 

Figure A.3b depicts this for several values of overlap from 5% to 40%.   Again the 
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Figure A.3    Fuzzy Blending as a Function of Overlap 

fuzzification uses min/max. A smooth blending of the two separate fits is obtained 

when a "product rule" for combination and analytic membership functions are used. 

A.4    XOR Gate Plant Example 

A classical system (in Neural Networks) is considered with two inputs and one 

output which is believed to be a noise corrupted binary device. Because of this it 

is decided to model each input and the output with two FVs, "small" and "big". 

This establishes a truth table which shows that there are only 16 possible rule sets, 

of 4 rules each, to search. Nearly all measurements are in the interval [-1,2], so 

this is used as the universe of discourse. This time, Gaussian membership functions 

centered at 0 and 1 are chosen to represent the fuzzy variables "small" and "big" 

respectively. The fuzzy AND operator is implemented with the product rule. 

(*-ir 
H(x) = fis(x)fj,b(x) = e2°* e   2ab 

Defuzzification is again accomplished by the center of area method. 
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Inputs 16 Possible outputs 
1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
s S S S S S S S S S B B B B B B B B 
s B S S s S B B B B S s S S B B B B 
B S S s B B S S B B S s B B S S B B 
B B S B s B S B S B s B S B S B S B 

Table A.l    All Possible Rule Sets for 2-input 1-output Binary Device 

Membership Functions wilh var - 0.1 

Figure A.4    Gaussian Fuzzy Variables for all Channels 

The input/output truth data set for identification is generated using a fuzzy 

XOR gate as the truth model (rule 7 in Table A.l) from the above membership 

functions /J,s(x) and /J.b(x) with variance parameter a\ 2 _ ^2 _ at = a = 0.1.   These 

membership functions are shown in Figure A.4. The inputs are fed to every possible 

rule set and the output is compared to that obtained from the truth model (the 

original XOR). During an actual search one would not know the variance either, 

so that the problem entails both structural identification (rule set) and parameter 

identification (cr). 

An exhaustive search with fixed a is made to find the minimum error, and 

hence best fit. However, a is unknown and hence R is infinite. The problem is not 
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a) Correct Rule, a2 = 0.1 b) Mis-Identification, <r   = 0.5 

Figure A.5    Identification Results:   Error vs. Rule Set 

convex with respect to the rule sets in general, so finding the global minimum is no 

longer assured by a non-exhaustive (finite) search. 

If there were a guarantee that for any fixed a2 one could identify the correct 

rule set the process would indeed be straight forward. One would fix a2 and identify 

the true rule set (truth table), then one would merely minimize with respect to a2. 

However, this may not be the case, as shown in Figures A.5a and A.5b, which show 

different identified rule sets for different a and where rule set 7 represents a logical 

XORgate, see Table A. 1. 

Figure A.5a shows the correct rule set (7) identified for a2 = 0.1. Now, let 

a2 — 0.5 in all 16 rule sets for which the fit of the data is to be performed (Note: 

the I/O data is generated for the nominal a2). Figure A.5b shows that rule 15 (with 

a2 = 0.5) now has the smallest output error, and hence the incorrect rule set has 

been identified. 

The reason behind the above mis-identification plagues all identification tech- 

niques that rely solely on output error minimization. Thus, these system identifi- 

cation techniques require "good" excitation in order to work. These techniques are 
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Figure A.6    Performance for Spanning Input/Output Data 

dependent upon how well the data represents or spans the input and output spaces 

of the system. The input data for Figures A.5a and A.5b are randomly generated 

from the universe of discourse and then run through the fuzzy XOR. This is equiv- 

alent to taking passive noisy input/output measurements to use in identification. 

Unfortunately, the data points are not spread about (do not cover) the entire input 

space. Thus they do not excite the entire dynamic range of the system and actually 

misrepresent the plant. Notice from Table A.l that spanning, or covering the input 

space requires sufficient points from the four input antecedents (s,s), (s,b), (b,s), 

(b,b). When input pairs are purposely chosen in an attempt to span the input space 

over [-1,2] error surfaces similar to Figures A.6a and A.6b are obtained. That is, for 

any <r, rule set seven is identified, and then minimizing the output error with respect 

to the variance parameter gives a2 — 0.1. 

Hence, as is well known in classical system identification, good excitation is a 

prerequisite for successful identification. If the data points available do not appear to 

span the spaces very well, heuristically one should start with a very small a. Then, 

for the fixed a find the best rule set and its goodness of fit.  Increase a and repeat 

A-9 



until the optimal rule set changes or until a increases beyond a reasonable value for 

the system. For each rule set identified as optimal for some a, minimize with respect 

to a varying a. Choose the best global fit as the "model". It is believed that the 

identified rule set corresponding to the smallest a is the global optimum with respect 

to the hypothesized membership functions, but no proof is provided. This has been 

observed in all simulations performed. The results are found to be invariant with 

respect to varying the variance parameter as well as the rule set used in generating 

the truth data. 

A.5    Summary 

Rule identification clearly plays a central role in the application of fuzzy logic 

control, where a human expert's plant and/or control knowledge needs to be cap- 

tured. Although there are techniques which provide these rules merely from in- 

put/output data, they often overlook prior and/or side information which can im- 

prove their performance. One should strive to encode all available knowledge of the 

system into the fuzzy model at the onset. This information adds structure to the 

problem, allowing a more efficient and correct solution. If properly posed, the prob- 

lem may lend itself to an exhaustive search, guaranteeing an optimal solution. The 

use of such a search in some illustrative examples is presented. Identification exper- 

iments are performed, where the quality of the ID algorithm is validated, since the 

underlying truth model (which encoded the data) is available in the experiment. If 

an exhaustive search for optimization is too expensive, the use of genetic algorithms 

is suggested, as they very naturally fit the proposed paradigm [11, 19]. 

The requirement for good excitation in system identification is also shown 

in this appendix. Without it, the results can be misleading and have dramatic 

effects when the fuzzy model is used away from its nominal operating point where 

the ID experiment is performed. Indeed, a word of caution that applies to all ID 

work is in order:   Obtaining a small output error is no prerequisite to correct ID, 
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except in the case where the ID experiment is performed under conditions of "good" 

excitation. This reconfirms what is known from classical system identification, where 

the following dictum should be adhered to: If the excitation is poor, don't ID. A 

challenging problem in its own right is the independent and (input/output) data 

driven determination of the excitation level. 

The above work demonstrates the blending capabilities of a fuzzy supervisor 

in Figure A.3b, where the "point designs" are the two separate linear fits to the 

data. The result is continuous when the normal fuzzy operations (min/max) are 

used. However, in the blending of dynamic controllers, one desires a smooth tran- 

sition between point designs. Hence, the choice of analytic membership functions is 

suggested. 
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Appendix B.   Experiments 

Experimentation is valuable to the engineer and mathematician, often pro- 

viding new insights and confirmation or denial of mathematical formulations and 

previously held opinions. Experimentation is most valuable and empowering when 

used to disprove previously held truths, as is often the case in exploratory research. 

Since the goal in this research is to develop new theory, these experiments can be 

used to guide the way and eliminate paths that would not be as successful. It is de- 

sired to develop a technique which uses Fuzzy Logic to provide full envelope control 

for nonlinear MIMO systems with complex dynamics. 

B.l    Nonlinear Plant Formulation 

Consider the general control problem as it applies to the nonlinear "bare" plant 

for which the controller is to be designed. Assume that a model of the plant, albeit 

complex, may be represented in the form 

xf = f(xf,uf,p) 

where the mapping / is sufficiently smooth in all of its arguments to use a first order 

Taylor's series expansion where Xf G Kn and uj £ Rm are the state and control 

vectors, respectively. The subscript / indicates full states as opposed to perturbation 

states, and for most physical systems n> m. To indicate the dependency on current 

operating conditions, an additional parameters' vector p € P is also included. 

Complete state observation is stipulated by assuming the system's state mea- 

surement Xf is available for feedback. As noted previously, components of the state 

vector Xf can be both fuzzy or crisp. If the entire state vector is considered fuzzy, 

Xf's crisp components mandate a "singular" covariance matrix R. 
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Consider the operating point/equilibrium condition, or in aeronautical termi- 

nology, trim condition (x,u). Since by definition this is a static equilibrium point, 

if — 0 giving 

/(x,«;p) = 0 (B.l) 

Linearizing about the specified trim condition (x,ü), yields the linear time-invariant 

(LTI) plant 

x = Ax + Bw 

where x and u are the perturbation variables 

X = Xf — X ,        U = Uf — ü 

and the matrices A and B are the Jacobians of the nonlinear mapping f(xf,Uf) 

evaluated at the relevant trim condition (x,ü), e.g. 

A= df(xf,uf) 

dxf 

B= df{xf,uf) 

(x,u) duf (x,u) 

Clearly, 

A = A(x,u;p),        B = B(x,u;p) 

In most cases of interest Eq. (B.l) has a non-unique solution (x, ü) generating, 

a possibly infinite, set of equilibria points, each yielding a different A and B. The 

above LTI perturbation model represents the underlying nonlinear plant as long as 

the higher order terms of the Taylor expansion are sufficiently small. That is, the 

LTI model is "good enough" in some region about the trim point (x,u). Since the 

objective is to design for the entire range of operation, this will require a number 

of trim conditions of interest, say N, that "cover" the operational envelope in Rn. 
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Denote the N trim conditions of interest by (xi,ui),..., (XN,UN).  Hence, N LTI 

plants (Ai, Bi),..., (Ajv, BAT) are obtained, where 

Ai = A(xi,üi;p),      Bi = B(xi,üi;p) 

Thus, the perturbed state and control vectors satisfy 

x = AiX + BiU       Vi = l,2,...,JV (B.2) 

Returning momentarily to the trim condition Eq. (B.l), observe that, for a 

given parameter vector p, it entails n equations in the n + m unknowns iGE" and 

ü G Rm. Hence, under relatively mild conditions, elaborated on shortly, the control 

üj required for trim is determined by m components of the equilibrium state xf, this 

m-dimensional subspace of the trim state vector X{ thus defines an m-dimensional 

projection of the operational envelope. In other words, there exists a function ft : 

Rm -»■ Rm, such that 

«t = ft{x\m);p) 

where the xy"' G Rm vector consists of the above mentioned m components of the 

state. Moreover, there also exists a function gt :  W1 —> Rn_m, such that 

where the n — m dimensional vector xf~m' consists of the remaining n — m compo- 

nents of the state vector xj, i.e., 

xf = [xf\ xf-my]> 
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Thus, the (nonlinear) trim equation yields the trim control ü{ and n — m components 

x\n m' of the trim state, as a function of the remaining m components x\ of the 

trim state. Indeed, the m-dimensional vector of independent trim variables x\ 

renders the operational envelope m-dimensional. This will result in exploring an m- 

dimensional projection of the operational envelope, that is specified by the m state 

components of xf1 . Hence, the N m-dimensional trim "states" x\m\ i = 1,2,..., N 

must properly "cover" the m-dimensional operational envelope. 

Furthermore, the above functions ft and gt are continuous, provided the below 

Jacobians are non-singular [34]. 

rank [B(xt-, üt-; p)] = m       V i — 1,..., N 

B.2    Two State Nonlinear Example 

In order to probe the applicability of the desired technique, experiments are 

performed with a strongly nonlinear two-state SISO plant with parametric uncer- 

tainty taken from an investigation into intelligent control [25, 26].   The model is 

i/j    =   — Xfo + axf2     a £ [0.5,1.5] (B-3) 

"f: 2 -4+uJ (B.4) 

Vf   =   xfl (B.5) 

When addressing only uncertainty due to linearization, a is set to 1. This is a 

particularly difficult nonlinear plant. The nonlinearity does not constitute a small 

perturbation of an otherwise linear plant. The cubic nonlinearity is particularly 

severe. Furthermore, the inherently nonlinear dynamics are faster than the dynamics 

of the linearized plant, to be shown shortly. That is, the trim states move faster than 

the linearized dynamics. This means that scheduling would be particularly difficult 
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as one would have to schedule on fast variables. In control design practice, fast 

variables are used as primary feedback and scheduling is performed on slow variables 

[34]. This is particularly true as Xf —> 0 where the plant becomes uncontrollable. 

Also, recall that in the case of a cubic nonlinearity, it is impossible to predict the 

stability of the nonlinear plant from the linearized dynamics [26]. 

The Mathworks, Inc. products [29] MATLAB® (numeric computation and vi- 

sualization) and SIMULINK® (dynamic simulation environment) are used through- 

out these examples. 

At a static equilibrium point one has if = [if1,if2]' = 0. Thus, using the 

previously defined notation and solving for the trim condition, the model yields 

xi — ax2 = ü. This gives the perturbation equations as 

-1 a 
X + 

0     1 

[ -34 0 
Xf, =X-[ [ -3«? J 

u 

uf=U 

y X\ 

Defining r = ?>x\ = 3u2 and evaluating the above matrices at the equilibrium point 

gives the LTI system as 

#i   =   —xi + axi 

i2   =   — rx\ + TU 

y  =  xi 

(B.6) 

(B.7) 

(B.8) 

This plant is used in this appendix to perform a preliminary exploration into 

the effects of nonlinearities and parameter variation on the scheduling of LTI con- 

trollers. This demonstrates the non-trivial nature of the problem at hand, and points 

to many concerns which must be addressed by the final synthesis technique.   The 
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plant's use in Chapter IV of the main document allows for validation of the final 

technique. 

Note that if the nonlinear system is represented as a time varying linear system 

by allowing r to vary as 3xi the eigenvalues of the linearized model are 

= -l±VT^f = -
1 ± V1 - 12"^ (Bg) 

Thus, the matrix A varies rapidly with time, especially for large commanded inputs. 

Much of the linear analysis assumes that the plant is considered piece-wise LTI, but 

it has been shown that this is precisely the type of plant which frequently violates 

these assumptions [33]. 

The research in [25] showed that this SISO system can pose quite a prob- 

lem when dealing with nonlinearities, let alone uncertain parameters. Additional 

complications and dynamics are induced from combining separate controllers which 

certainly makes the design task non-trivial. The drastic effects of mis-matched en- 

ergy between controller and plant, including the proper handling of non-zero initial 

conditions on either, must be addressed in any attempt to hand-off control during 

continuous operation [25]. The research in [25] was exploratory in nature and raised 

such issues. Using the above system some of the concerns for the SISO case are ad- 

dressed in the sequel. The results of Chapter III answer these concerns and provide 

a solution that properly addresses the MIMO generalization by means of multiple 

MISO solutions. Chapter IV then provides the solution for the plant without pa- 

rameter variation (a = 1) with detailed analysis for nonlinear, LTV, and LTI truth 

models. 

B.3    Fuzzy Logic Control of a Family of Two Plants 

In this section the application of the Fuzzy Logic concept of blending con- 

trollers, or fuzzy controller scheduling,   is investigated. 
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The plants under consideration are 

Pi 

Xl    =    -xi + x2 

X2     =     -TiXl + TiU i = 1,2 

y  =  xx 

where the parameter r» is arbitrarily chosen as T\ = 1 and T2 = 2. Furthermore, 

suppose that the parameter is dependent on an exogenous "measurable" variable, 

say v where, 

r = 3v2 

Thus, if v = Vi = 4g then r = T\ = 1 and if v = v2 = ^4= then r = T2 = 2. Note that 

for v = y the output, this is a particular case of the nonlinear problem developed 

in the last section where the operational envelope (in E2) has been partitioned into 

two regions about Pi and P2 with fixed a = 1. That is, the nonlinear plant without 

parameter variation is to be addressed. The merits of the FLC approach to schedul- 

ing depicted in Figure B.l is explored, where Gi(s) and G2(s) are two separate LTI 

controllers independently designed to control P1|2(s) respectively. 

Simulation experiments are performed to "validate" the approach and point 

out shortcomings which must be addressed by the final synthesis technique. 

Three cases are explored in the sequel depending on the fidelity of the plant's 

truth model. These being an LTI plant, an LTV plant, and the full nonlinear plant. 

B.3.1 Linear Time-Invariant Plant. In the spirit of gain scheduling, first 

treat the problem as two separate plants; i.e. control Pi and P2 and design an 

independent controller for each.   From the model given for a fixed r, the transfer 
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Figure B.l    Adaptive Control Structure for two Point Controller Designs 

function of the plant as a function of r is 

Pr(s) 
S2 + S + T 

(B.10) 

A very common and benign appearing system to handle with linear control. 

Controllers Gi(s) and 6*2(5) are now designed to provide some specified perfor- 

mance. The chosen desired performance is to track a step input, r, with zero error 

and have an approximate 2nd order linear response with damping ratio ( = 0.5, and 

natural frequency w„ = 2. That is, the performance specifications for a step input 

are a 4 second settling time and a 16% overshoot [8]. To design these controllers 

a technique is used which in general, yields a very poor solution due to inevitable 

parameter/modeling uncertainty. However, it is shown how fuzzy controller schedul- 

ing can remove such draw backs.  The controller is formed by canceling the plants 
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Root Locus lor either Single Plant Single Plant Closed Loop Response 
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a) b) 

Figure B.2    Root Locus and Closed-Loop Performance for either P1)2 

dynamics and replacing them with a desired open-loop transfer function. 

Gi(s) 
^S' + S + T,) 

s(s + A)(s + 4:) 
(B.11) 

Root Locus analysis gives k = 24 to yield the desired closed-loop performance. The 

selection of k and the closed-loop response of Gi(s)Pi(s) = G2(s)P2(s) are shown in 

Figure B.2. Note that this form of controller is impractical as r —» 0+. 

In the remainder of the discussion, reference to the run numbers listed in 

Table B.l is made. These points are obtained by first linearly varying v over it's 

range between the two plants, and then linearly varying r over it's range. So the 

nominal cases, those that yield the response of Figure B.2b, are run #7 for Pi and 

run #8 for P2. 

As noted earlier, these designs in a point-wise or classical gain scheduling 

context are really mathematical trickery and can not normally be considered as 

feasible since they rely on perfect cancellation of the plants' dynamics. It is well 

known that this is not really possible since small deviations in r from the designed 
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Run # V r 
1 0.6371 1.218 

2 0.6969 1.457 

3 0.7567 1.718 

4 0.6455 1.25 

5 0.7071 1.5 
6 0.7637 1.75 

7 0.5774 1 
8 0.8165 2 

Table B.l    Run Number vs. r and v    (r = 3v2) 

cases leave dominant poles near the original poles. That is, for any of the runs listed, 

except for the nominal cases, one can expect performance degradation. This is shown 

in Figure B.3 where a single compensator is used to control P(s) and r varies (for 

both G\ and G2) as in Table B.l. 

It is seen that either design by itself is unacceptable. However, when posed in 

the setting of the problem statement, the results are entirely different. The fuzzy 

scheduler is implemented in SIMULINK® as in Figure B.4. The state space block 

of the figure is constant during the entire simulation using either T\ or r2 depending 

on one's objective. The fuzzy logic inference used is merely the fuzzification of the 

crisp measurement of v, since only weighing the amount of control effort from each 

controller to apply is used. That is, the blending of the controllers is performed in 

Figure B.4 by giving each point design an amount of control authority based upon 

the current operating point's degree of membership in the fuzzy variable V%. Placing 

this in the standard rule statement one has: 

IF Plant is Vi, THEN W{ = 1 for i = 1,2. 

Rule conflicts are settled using a non-normalized summation of the two weighted 

controller outputs. 

The scheduling is performed using both the triangular and Gaussian member- 

ship functions (//i(u),//2(u)) shown in Figure B.5.   The functions are fit such that 
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0 2           3           4           5 
Tlme(secs) 

3           7           8           9          1 0 

c) Varying Plant using G\ 
7 8 9 10 

d) Varying Plant using Cr2 

Figure B.3    System Response using Single Fixed Controller Over Range of r 

both controllers are equally weighted at the midpoint of u's universe of discourse, 

vv = -, 2/3 — J1/3) Ps 0.6969. This is dictated by use of triangular membership 

functions (MFs) if total overlap of the MFs is desired, and allows the same vari- 

ance for both MFs to be used in the Gaussian case. However, the controllers are 

designed in r-space and it "seems more correct" to have H\{vT) = fi2(vT) = 0.5, 

where vT = J-^- f« 0.7071. For the examples to follow, only the centering at vv is 

used. Optimal selection of this trade off point must be addressed in the final design 

technique. 
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Figure B.4    Block Diagram of Fuzzy Scheduler 

Triangle Membership Functions Membership Functions with var - 0.01 

a) Triangular 
0.6 0.65 0.7 0.75 

b) Gaussian 

Figure B.5    Membership Functions used for v 

B-12 



Response Envelope Triangular MFs Response Envelope Gaussian MFs 

a) 

5 
Time(secs) 

b) 

Figure B.6    Fuzzy Scheduled Controller Response Over Applicable Range of r 

The results using both MFs as r varies according to Table B.l are excellent 

and are shown in Figure B.6. The resulting fuzzy scheduler displays nearly invariant 

response over the entire range of r despite the nonlinear relationship between v and 

r. A comparison using MFs based upon vT is not performed. It is noted that the 

triangular MF based controller out performs the Gaussian one in the sense that less 

variation in output is observed. It is felt that this is due to the inherent normalization 

of the weights across the universe of discourse. That is, since Wi = /Jj(u), for the 

triangular MFs, W\ + W2 = 1. Although the weights for the Gaussian MFs can be 

normalized, no attempt is currently made since it's response is so good. The effects 

of normalization increase as the dimension of spaces increase due to the use of a 

"product rule" in multivariate FL, as developed in Chapter II, and the fact that any 

individual membership is bounded above by unity. 

In the analysis so far, only the uncertainty due to the variation in T which is 

generated by the underlying nonlinearities is addressed. A controller must also deal 

with model parameter uncertainty. Experimentation is made to explore the effects 

of the parameter a from Eq. (B.6) on page B-5. Since no attempt is made to design 
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1.5 
tau. 1.0,1.5, 2.0: a-0.5, 1.0,1.5 

// 0.5   

Figure B.7    Thumb Print Response of System for T G {1,1.5,2}, a G {0.5,1.5} 

for a, it is no surprise that its variation drastically effects the system's response as 

shown in the "thumb print" in Figure B.7. 

However, one can gain insight from these simulations through Figure B.8. As 

previously demonstrated, the design is very robust for variations in r G [1,2]. Now 

for the three fixed T,£ {1,1.5,2} vary the parameter a G {0.5,1,1.5}. The results are 

shown in Figures B.8a-c, and are not impressive. If instead one views the responses 

by collecting on similar values for a the results in Figures B.8d-f are obtained. These 

figures show the common dynamics as a function of a. They suggest that if the 

uncertainty in a were treated as that of r, one should be able to schedule on a to 

obtain the desired response over the uncertain region in this 2-dimensional parameter 

space. Thus, this uncertain SISO plant becomes a MISO fuzzy scheduling problem. 

B.S.2    Linear Time-Varying Plant. The next level of increased model 

fidelity is to implement Eqs. (B.6)-(B.8) on page B-5 with a dynamic T, representing 

incremental changes in the trim point. This yields an LTV plant. Now, define 

r(t) = 3xl(t) where the perturbation state x\ = y varies as the output during the 

simulations. In the sequel, the notation indicating T'S dependence on time is dropped 
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Figure B.8    Clustering of Response for r G {1,1.5,2}, a G {0.5,1.5} 

B-15 



Lfl^^gj .Q 

lau-ln  fcfr-, xaiot   i—i 

y_out 

u_ln 

0- 

Figure B.9    LTV Plant with Externally Denned r 

for brevity. Where as Eq. (B.7) is linear in r, the LTV plant is nonlinear in x and 

u. The SIMULINK® block diagram for the LTV plant with externally defined r is 

shown in Figure B.9. 

The current two point controller only applies "sufficient cover" of the parameter 

space on the interval [TI,T2], therefore simulations should be restricted to this range 

to have any merit. Clearly this is of no concern for the LTI truth model. Therefore, 

the simulations are performed starting from the trim point represented by ri, with 

step inputs up to the trim point representing r2. Since r already varies as the output, 

the indication of acceptable performance is the response for an admissible command 

input. The simulation diagram is depicted in Figure B.10. To avoid solving for the 

initial conditions on all of the compensator states, a nominal input of ü = J1/3 

is applied to the LTV plant (Uo in the simulation diagram). The plant's initial 

conditions are set at, referring to the linearization, x\ = ax2 = ü, with a = 1. 

The response to 4 admissible commanded step inputs is shown in Figure B.ll. 

The system shows good, approximately linear, responses for the smaller three com- 

mands. Slight degradation is noted on the largest command which, although it may 

still be judged acceptable, has a final value of v/2/3 representing r2.  A reason for 
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Figure B.10    Simulation Diagram for LTV Plant 

the change in performance may be that this command forces r > r?, and hence out 

of the designed for region in P. Clearly the LTI model is inadequate to describe this 

system, but its inclusion in analysis stages provides a larger set of mathematical 

tools to gain insight. 

B.3.3    Nonlinear Plant. Finally the fuzzy scheduler's ability to control 

the "true" nonlinear plant is investigated. The plant is given by Eqs. (B.3)-(B.5) 

on page B-4 and is implemented in SIMULINK® as in Figure B.12. For reasons 

given earlier, the simulations are restricted to the same interval as for the LTV case, 

[TI,T2], and the same commanded inputs are used. The simulation is implemented 

as in Figure B.13 and the system response is shown in Figure B.14. 
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Linear Time Varying plant response lor Fuzzy Scheduler 
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Figure B.ll    LTV Plant Response of Fuzzy Scheduler 
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Figure B.12    Nonlinear Plant Implementation 

Clearly the response is unacceptable, and the strong nonlinearity of the plant 

is evident. Design techniques that make performance claims based upon only the 

LTI models do not hold in the real world for this plant. Although the LTI models are 

"good enough" in sufficiently small regions about the nominal design points, these 

regions must be quantified, and the proper means is by way of nonlinear simulation. 
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Figure B.13    Simulation Diagram for Nonlinear Plant 

Nonlinear plant response for Fuzzy Scheduler 
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Figure B.14    Nonlinear Plant Response of Fuzzy Scheduler 
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B-4    Summary 

The approach for this system shows promise of interesting and fruitful results 

for the LTI and LTV truth models. The Linear (in r) Time-Varying case does 

warrant closer investigation given the above performance. The nonlinear system's 

performance visualizes the difficulty facing the proposed technique and demonstrates 

the requirement of validation by simulation. Rigorous mathematical analysis may 

provide promises of stability or even asymptotic tracking, both of which the cur- 

rent design exhibits. However, transient response dictates the acceptability of the 

design and the simulations quantify the current designs deficiencies. There are also 

additional, more subtle, points of interest. 

There are additional complexities that will be inherent in real world problems 

that are not addressed in this example. For instance plant dynamics being a function 

of more than one variable that "requires" scheduling. How does one combine or 

weight the individual controllers then? In most techniques complexity increases as 

the model order increases to a MIMO controller. This is not the case here, assuming 

that the fixed MIMO controllers have been built, the complexity increases with the 

number of scheduling measurements (dimension of parameter space P) and how does 

one combine these to assign weights to the individual controllers. These concerns 

are properly addressed by the solution given in Chapter III. 

Also the small universe of discourse did not excite the nonlinearity in r very 

much. Of course in theory one should be able to keep this under control by sufficiently 

partitioning of the operating envelope. This may lead to a lot of point designs and 

thus more complexity. However, this is not really any different then any problem 

that "requires" scheduling. As long as the concerns of the previous paragraph can 

be addressed, the only added complexity is the fuzzification of measurements and 

there are commercial chips which handle this in a parallel fashion [39, 46]. 
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Of course there are the standard difficulties of any nonlinear design technique 

such as stability. Short of a totally analytic solution, these concerns are best ad- 

dressed by extensive, realistic simulation. 
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Appendix C.   Support Data for Chapter III 

C.l    Listing of MATLAB Function voronoi.m 
function [vertices,numvert]=voronoi(D,A,domain,p) 

'/. voronoi Find the voronoi diagram of D=(x,y;), a set of at least 3 points 

'/, in R~2. Each row of D must be a unique 2-D vector. A is the square 

'/, Adjacency matrix representing the delaunay diagram where A(i,j)=j if node 

'/, i, D(i,: ) = (x(i) ,y(i)) , is connected to node j and A(i,j)=0 otherwise. If 

'/. A is empty it is generated using A=delaunay(D). domain is the region of 

'/, interest in R"2 specified as domain=[min_x max_x min_y max_y] .  If omitted 

'/, one based on D is used (see below for details). If no output arguments 

'/, are specified or p=l, a plot generated. 

'/, CALLS con.hull.m and optionally delaunay.m 

'/. 
'/, Notes on format of output. Currently the 2 outputs are: 1) numvert, an 

'/, n element column vector (n= # of distinct points) of index information. 

'/, Where numvert(i) is the number of vertices of the Voronoi cell for point 

'/, i specified by D(i,:). 2) vertices, a sum(numvert) by 2 matrix containing 

'/, Voronoi cell vertices appended in order of the elements of D. So the 

'/, vertices of the cell for point 1 are vertices([l :numvert (1)] ,:), and for 

'/. the i"th cell, i = 2,...,n the vertices are 

'/. vert ices ( [sum(numvert([l: i-1] ))+l :sum(numvert([l :i] ))] ,:) 
"/, For cells that lie on the convex hull, the first and last vertex are used 

'/, to identify the unbounded polygon forming the cell. Their output depends 

'/, upon the input domain specified. When domain is specified, the cells 

'/, are vaild only in the region of R"2 specified by domain.  If domain is 

'/, unspecified (empty), infinit bisecting rays are indicated in yellow in the 

'/, plot and the following holds. If the ray forming a side of the cell is 

'/, horizontal or vertical, the vertex is correct for any element of R"2; 

'/, otherwise it is merely directionally correct (+/-inf). This is useful to 

'/, provide a flag to such cells and simplify closing of the cells in the plot. 

'/, Either way can give suspect results when a vertex of an interior cell 

'/, exceeds the domain (specified or default which is the axis limits of plot). 

'/, Increasing the axis beyond the domain after running voronoi can also be 

'/, confusing. The work around is to specify a large enough domain, rerun, 

'/, than expand the plot by changing the axis. 

'/. 
'/, This isn't really the best way to deplict the information, since it has 2 

'/, main problems. 1) We have to calulate a single finite vertex at least 3 

'/, seperate times (infinite twice). 2) Because of this, finite precision 
'/, may result in different answers for the same index. Both of these could 

'/. be solved by a different data structure.  In particular, construct an 
'/, adjacency matrix and make a queue of vertex labels. Then as each vertex 

'/, is solved remove its label from the queue. Now each vertex is solved for 

'/. once and obiviously unique. However, since I use the Delaunay Diagram 

'/, for all my calculations I haven't bothered solving the adjacency problem. 

'/. 
'/, see refs for developement and proof of completness 
'/, 1) Du, Ding-Zu and Hwanf, F., Computing in Euclidean Geometry, 
'/. World Scientific, 1992, QA447.C573 p. 210 

'/. 2) Guibas ft Stolfi, ACH Tans, on Graphics 4(2):74-123, 1985 

'/. 
'/, [vert ices, numvert] =voronoi (D, A, domain, p) 

•/. 
'/, NAME: voronoi 

'/. LAST REVISION: 21 Nov 94 HatLab 4.2 

'/. Author: TOM KQBYLARZ Air Force Institute of Tech WPAFB, OH 

'/, tkobylar@afit.af.mil 

'/. figure out input format and output requested by parameters provided 

if nargout==0,pl=l;else,pl=0;end 
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if (nargin >4),eval(['help voronoi']) , error('wrong number of input arguments.'); end 

if nargin==0,eval(['help voronoi']),return; end 

npts=length(D); 

if nargin==l ,A=[] ;domain=[] ;end 

if nargin==2,domain=[];end 

if nargin==4,pl=p;end 

if size(D,2)~=2 

eval(['help voronoi']); 

error('    D must contain 2 columns, each row a 2-D vector'); 

end 

if npts < 3 

eval(['help voronoi']); 

errorC    D must contain at least 3 sets of points (x,y)'); 

end 

if isempty(A)    '/, If delaunay diagram of D not given create it 

A=delaunay(D); 

else 

if (npts ~= size(A,D) I (npts ~= size(A,2)) 

eval(['help voronoi']); 

errorC    A must be square and of the form returned by A=delaunay(D)'); 

end 

end 

if isempty(domain) 

domainflag=0; 

else 

domainflag=l; 
if (domain(l)>=domain(2)) I (domain(3)>=domain(4)) I (length(domain)~=4) 

eval(['help voronoi']) ; 

error('    domain must be of form domain=[min_x max.x min.y max_y]'); 

end 

end 

hull=con_hull(D,'i') ; '/, get hull to catch unbounded regions of hull points 

vertices=[] ; 

numvert=zeros(npts,1); 

'/, dom, ax and infrays are used to display infinite rays from hull point 

"/, cells. See help for technique to use these to obtain finite but large 

*/, vertices, dom is the domain of interest, infrays are line segments of 

'/, the infinite rays, and ax is the axis used in the plot 

ax=[min(D(: ,1)) max(D(:,D) min(D(:,2)) max(D(: ,2))] ; 

ax=[ax(l)-abs(.l*(ax(2)-ax(l))) ax(2)+abs(.l*(ax(2)-ax(l))) ax(3)-abs(.l*(ax(4)-ax(3))) ax(4)+abs(.l*(ax(4)-ax(3)))]; 

infrays=[] ; 

if domainflag==l 

dom=domain; 

else 

dom=ax; 

end 

'/, Generate the seperating hyperplanes for each unique point. By shifting 

'/, to the origin we can find bisecting midpoints and perp slope easily 

for i=l:npts 

neigh=f ind(A(i,:)); '/, only interested in nearest neighbors from A 

Dn=D(neigh,:); 

z=.5*[Dn(: ,1)-D(i,l) Dn(: ,2)-D(i,2)] ; '/, the bisector mid point 

'/, place perp slope in third column, for no duplicates (0,0) not in z 

z(:,3)=-l*z(:,l)./z(:,2); 

'/, obtain a cyclic ordering to find intersections 

rays=atan2(z( : ,2) ,z(: ,1));      '/. atan2 returns +/- pi 

wrap=f ind(rays<0); '/, wrap correction to keep 0-2pi 

rays(wrap)=rays(wrap) + 2*pi * ones(size(wrap),1); 

[junk,I]=sort(rays); 

neigh=neigh(I); '/, redorder all working variables 
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z=z(I,:); 

ishull=(find(i==hull)); 

if "isempty(ishull) 

'/, do stuff here to avoid solving for intersection of 2 hull bisectors 

if ishull==length(hull) 

startat=hull(l); 

else 

startat=hull(ishull+l); 

end 

first=find(neigh==startat); 

if first~=l "/, if it is no need to reorder 

1=[first:length(neigh) 1:first-i]; 

neigh=neigh(I); '/, redorder all working variables 

z=z(I,:); 

end 

*/, HOB for a representation of the vertices at infinity 
infvert=zeros(2,2); 

hn=[l length(neigh)]; 

ray=atan2(z(hn,2) ,z(hn,D); 

if ray(2)>0 '/, swap orientation since reference from current pt 

ray(2)=ray(2)-pi; 
else 

ray(2)=ray(2)+pi; 
end 

for k=l:2 

if abs(ray(k))<eps 

infvert(k,:)=[z(hn(k),1)+D(i,l) -inf]; 
elseif abs(abs(ray(k))-pi)<eps 

infvert(k,:)=[z(hn(k),1)+D(i,l) inf]; 

elseif abs(ray(k)-pi/2)<eps 

infvert(k,:) = [inf z(hn(k) ,2)+D(i,2)]; 

elseif abs(ray(k)+pi/2)<eps 

infvert(k,:)=[-inf z(hn(k),2)+D(i,2)]; 

elseif ray(k)>0 ft ray(k)<pi/2 

infvert(k,:)=[inf -inf]; 

elseif ray(k)>pi/2 ft ray(k)<pi 

infvert(k,:)=[inf inf]; 
elseif ray(k)>-pi ft ray(k)<-pi/2 

infvert(k,;)=[-inf inf]; 

elseif ray(k)>-pi/2 ft ray(k)<0 

infvert(k,;)=[-inf -inf]; 

end 

end 

else   '/, we will be wrapping around interior points 
neigh=[neigh neigh(l)] ; 

z=[z;z(l,:)]; 

end 

'/, solve for intersections of perp bisectors 

vertex=zeros(length(neigh)-l,2); 

for k=l:length(neigh)-i 

bil=z(k,[l,2])+D(i,:); 

bi2=z(k+l,[l,2])+D(i,:); 

if finite(z(k,3)) ft finite(z(k+l,3)) 

x=(z(k,3)*bil(l)-bil(2)-z(k+l,3)*bi2(l)+bi2(2) )/(z(k,3)-z(k+l,3)); 

y=z(k,3)*(x-bil(D) + bil(2); 

else '/, catch vericle bisectors assuming no duplicates 

if finite(z(k,3))   '/, k+1 must be verticle 
x=bi2(l); 

y=z(k,3)*(x-bil(D) + bil(2); 

else 

x=bil(l); 

y=z(k+l,3)*(x-bi2(D) + bi2(2) ; 

end 

end 

vertex(k,:)=[x y]; 
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end '/, next k 

if "isempty(ishull) '/, add representation of infinite vertices for hull pts 
bi=z(hn)[l,2]) + [D(i,:);D(i,:)]; 

x=dom([infvert(: ,1)>0] + [1 ;1] )'; '/, select the correct directions 
y=z(hn,3).*(x-bi(:,D) + bi(:,2); 

if isinf(y(D) '/, catch verticle ecu rays 

y(l)=dom(sign(sign(infvert(l,2))+l)+3); 

x(l)=vertex(l,l); 

end 

if isinf(y(2)) '/, catch verticle CH rays 

y(2)=dom(sign(sign(infvert(2,2))+l)+3); 
x(2)=vertex(length(neigh)-l,1); 

end 

infrays=[infrays; vertexd,:) x(l) y(D] ; 
if domainflag==l 

infvert=[x y] ; 
end 

vertex=[infvert(l,:);vertex;infvert(2,:)]; 
end 

numvert(i)=length(vertex); 

vertices=[vertices;vertex] ; 
end "/, next i 

if pl==l 

elf 

start=l; 

for i=l:npts 

stop=start+numvert(i)-1; 
vertex=vertices([start:stop] ,:); 
plot([vertex(: ,1); vertexd,D] , [vertex( : ,2); vertexd ,2)] , 'r') 
hold on 
start=stop+l; 

end 

for H=l:hpts,text(D(N,l),D(H,2),int2str(H)),end 
axis(ax) 

if domainflag"=l '/. don't plot redundant data 

for i=l :length(hull) '/. plot the inf rays from hull edges 

plot([infrays(i,l),infrays(i,3)],[infrays(i,2),infrays(i,4)]) 
end 

end 

hold off 

title('Voronoi Diagram') 

end 
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C.2    Listing of MATLAB Function delaunay.m 
function A=delaunay(D,p) 

'/.delaunay Find the delaunay diagram of D=(x,y), a set of at least 3 points 
'/,  in R~2. Each row of D must be a unique 2-D vector. If no output arguments 

'/,  specified or p=l, a plot generated. The returned A is the Adjacency matrix 

'/,  representing the diagram where A(i,j)=j if node i, D(i,: ) = (x(i) ,y(i)) , is 

'/,  connected to node j and A(i,j)=0 otherwise. Use gplot(A.D) to obtain plot. 

'/,  CALLS triangle.m, con.hull.m, ccw.m, incircle.m 

*/. 
'/, see refs for developement and proof of completness 

'/, 1) Du, Ding-Zu and Hwanf, F., Computing in Euclidean Geometry, 

'/.   World Scientific, 1992, Q.A447. C573 p. 210 

'/. 2) Guibas ft Stolfi, ACM Tans, on Graphics 4(2):74-123, 1985 

'/. 
'/,   A = delaunay(D.p) 

V. 
'/. NAHE: delaunay 

'/. LAST REVISION: 13 Dec 94 HatLab 4.2 

'/. Author: TDM KOBYLARZ Air Force Institute of Tech HPAFB, OH 

'/,        tkobylarSafit.af.mil 

'/, figure out input format and output requested by parameters provided 

if nargout==0,pl=l;else,pl=0;end 
if (nargin >2),eval(['help delaunay']), error('wrong number of input arguments.'); end 

if nargin==0,eval(['help delaunay']),return; end 

if nargin==2,pl=p;end 
if length(D)<3 

eval(['help delaunay']); 

error('    D must contain at least 3 sets of points (x,y)'); 

end 

if size(D,2)~=2 '/, try to get D in required format 

D=D' ; 

end 

if size(D,2)"=2 '/, check to see if ok now 

eval(['help delaunay']); 
error('    D must contain 2 columns, each row a 2-D vector'); 

end 

[tri ,hull]=triangle(D).; '/.Get Indices of cw traingles and ccw hull pts. 

if isempty(tri)       '/, all points were colinear manually build A 

dispC !! All points are colinear !!') 

npts=length(hull); 

A=zeros(npts); 

A(hull(l) ,hull(2))=hull(2) ; */. ends pts only have 1 neighbor 

A(hulKnpts) ,hull(npts-l))=hull(npts-l); 

for i=2:npts-l '/, all others have 2 

A(hull(i),hull(i-l))=hull(i-l); 

A(hull(i),hull(i+l))=hull(i+l); 
end 

return 

end 

Dtri=[tri(: ,1) tri(:,3) tri(:,2)]; '/. convert to ccw triangles 

nt=size(Dtri,1); 

'/, Now form a queue of all non-directional interior edges of Dtri 

edges=[Dtri(:,[l 2]); Dtri( : , [2 3] ); Dtri(: , [3 1] )] ; 

temp=sort(edges') ' ; '/, make non-directional i.e. (1 2) = (2 1) 

'/. sort by x when a tie occurs sort on y. So sort on y first 

[junk,yi]=sort(temp(:,2)); 

[junk,I]=sort(temp(yi,1)); 

xi=yi(I); 

edges=temp(xi,:); '/, The ordered redundant edges 

'/, remove duplicates 
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dups=find(diff(edges(:,1))==0 ft diff(edges(:,2))==0); 
edges(dups+1,:)=[]; 

'/.Test to ensure we have all edges 

n=length(D); '/, number of points (assuming no duplicates) 
k=length(hull); '/, # points on final hull 

t=3*(n-l)-k; '/, # of expected triangles 
if t"=size(edges,l) 

disp([' ']);disp(' Number of edges is incorrect, suspect duplicate points'); 
end 

'/, now form the hull edges and remove from queue 

hulle=[hull [hull([2:length(hull)]);hull(l)]]; 
hulle=sort(hulle>)'; '/, make non-directional i.e. (1 2) = (2 1) 
hei=[]; 

for i=l:size(hulle,1) 

hei=[hei;find(edges(:,i)==hulle(i,l) ft edges(: ,2)==hulle(i,2))]; 

end 

edges(hei,: ) = [] ; '/, the interior non-directional edges 

degen=[] ;       '/, initialize as no degenerative (co-circular) pts 

'/. use flip routine while edges is not empty 

while "isempty(edges) 

edge=edges(l,:); 

del_edge=find(edges(: , 1) ==edge (1) ft edges(: ,2)==edge(2)); '/. find all 

edges(del_edge,:)=[] ; "/. remove occurances although it may be added later 

'/, get the triangles that share edge 

opp=find((edge(l)==Dtri(:,l)|edge(l)==Dtri(:,2)|edge(l)==Dtri(:,3)) ft... 

(edge(2)==Dtri(:,l)|edge(2)==Dtri(:,2)|edge(2)==Dtri(:,3))); 
if length(opp)"=2,error(' Exactly 2 triangles share an interior edge');end 

tril=Dtri(opp(l),:); 

tri2=Dtri(opp(2),:); 

cl=find(tril~=edge(l) ft tril"=edge(2)); 

c2=find(tri2~=edge(l) ft tri2~=edge(2)); 

'/. Bow check if ABCD locally Delaunay as is 

test=incircle(D(tril(l),:),D(tril(2),:),D(tril(3),:),D(tri2(c2),:)); 
if test==l 

newl=[edge(l) tril(cl) tri2(c2)] ; '/. new tri vertices (make ccw) 

if ccw(D(newl(l),:)>D(newl(2),:),D(newl(3),:))~=1,newl=newl([2,1,3]);end 

new2=[tril(cl) tri2(c2) edge(2)]; 

if ccw(D(new2(l),:),D(new2(2),:),D(new2(3),:))"=1,new2=new2([2,l,3] );end 

Dtri(oppd) , :)=newl; '/. update the triangulirization 

Dtri(opp(2),:)=new2; 

'/, Now add supect edges of quad involved in flip to queue excluding those on the hull 

qhull=[tril tri2(c2)] ; 

temp=con_hull(D([tril tri2(c2)] ,:),'i') ; 

qhull=qhull(temp); 

temp=[qhull; [qhull([2:4]) qhull(l)]]; 

qhull=sort(temp)'; '/, make non-directional i.e. (1 2) = (2 1) 
hei=[]; 

for i=l:4 

if ~isempty(find(hulle(:,l)==qhull(i,l) ft hulle(:,2)==qhull(i,2))),hei=[hei;i];end 
end 

qhulKhei,: )=[] ; '/, the interior non-directional edges 

edges= [edges;qhull] ; '/, add suspect to queue 

'/, disp([' Swapped diagonal and added ' ,int2str(size(qhull,D),' suspect edges to the queue']) 
elseif test== -i 

'/, dispC locally Delaunay') 

else 

junk=[tril(l),tril(2),tril(3),tri2(c2)]; 

disp([' points ['.sprintf (''/.3.2g', junk), ' ] are cocircular'] ) 
degen=[degen;edge]; 

end 

end '/, all edges deleted and we are done 

C-6 



*/, currently we have a Delaunay Triangularization which is not the 

'/. Delaunay Diagram when degenerative cases exist. First we'll 

"/, generate the Adjacency Matrix A to Represent the Triangularization 

'/, where A(i,j)~=0 iff node i is connected to node j. I set A(i,j)=j. 

nn=length(D) ; '/, assumes no duplicate nodes in D 

A=zeros(nn,nn); 

for i=l:nn 

junk=find(i==Dtri(:,1)Ii==Dtri(:,2)|i==Dtri(:,3)); 

temp=Dtri(junk,:); 
junk=temp(:); 

temp=sort(junk); 

delnode=find(diff([0;temp])==0 I temp==i); 

temp(delnode)=[]; 

A(i,temp)=temp'; 

end 

% Now remove any extra edges (stored in degen) from degenerate cases 

'/, to form the Diagram by zeroing them out in A 

for i=l:size(degen,l) 

A(degen(i,l),degen(i,2))=0; 

A(degen(i,2),degen(i,l))=0; 

end 

if pl==l 

gplot(A.D) 

hold on 

for 11=1: size (D,l),text(D(H,l),D(N,2),int2str(N)),end 

hold off 

title('Delaunay Diagram') 

end 
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C.3   Listing of MATLAB Function triangle.m 
function [Dtri,hull]=triangle(D,p) 
'/.triangle Find a triangularization of D=(x,y), a set of at least 3 
'/. non-colinear points in R"2. Each row of D must be a 2-D vector. If no 
'/, output arguments are specified or p=l, a plot generated. The optional 
'/, returned vector hull contains the ecu indices returned from 
'/. con_hull(D,'i'). Dtri is a tx3 matrix where 
'/, t = 2*((# of nonredundant pts in D)-l)-(# of hull points). 
'/, Each row of Dtri contains indices of D which form a cw triangle. A ccw 
'/, set of triangles can be obtained by switching 2 adjacent columns of Dtri. 
'/. 
'/. [Dtri,hull]=triangle(D,p) 
'/. 
*/. NAME: triangle 
•/. LAST REVISION: 12 Jan 94 MatLab 4.2 
'/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH 
'/, tkobylarQafit.af.mil 

'/, figure out input format and output requested by parameters provided 
if nargout==0,pl=l;else,pl=0;end 
if (nargin >2),eval(['help triangle']), error('wrong number of input arguments.'); end 
if nargin==0,eval(['help triangle']),return; end 
if nargin==2,pl=p;end 
if length(D)<3 
eval(['help triangle']); 
error('    D must contain at least 3 sets of points (x,y)'); 

end 
if size(D,2)~=2 '/, try to get D in required format 
D=D'; 

end 
if size(D,2)"=2 '/, check to see if ok now 
eval(['help triangle']); 
error('    D must contain 2 columns, each row a 2-D vector'); 

end 

'/. sort by x when a tie occurs sort on y. So sort on y first 
[oD,xi]=sort_nd(D, [] ,100); 
dups=find(abs(diff (oD(: ,l))X=100*eps ft abs(diff (oD(: ,2)))<=100*eps); 
if "isempty(dups) 
disp(['     Duplicate Points Removed']); 
oD(dups+l, :) = []; 
xi(dups+l)=[]; 

end 

'/. build up triangularization by adding sites. The vertices are s_{i}, 
'/. s_{i-l}, and another on the bounadry facing s_{i}. I will generate cw 
'/, triangles below so start with same orientation as rest will be made 

'/, requires special handling if the first 3 or more sorted points are colinear 
flag=0;  '/, colinear flag 
tri=[]; 
j=2; 
while flag==0 
ftri=ccw(oD(l,:),oD(j,:),oD(j+l,:)); 
if ftri== 1 '/, 1st 3 are ccw 
tri=[tri;j+l j j-1] ; 
flag=l; 

elseif ftri== -1 "/, 1st 3 are cw 
tri=[tri;j-l j j+1] ; 
flag=l; 

else 
tri=[tri;j-l j 0]; '/, these 3 are colinear and no triangle formed yet 

end 
j=j+l;   '/, shift another point 
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if j+1 > length(oD) ft flag==0 

hull=con_hull(D,'i'); 

Dtri=[]; 

dispC !!  All points are colinear: no triangulization, only hull returned !!'); 

return 

end 

end 

oldhull=[l: j] '; '/, intialize first non-colinear hull 

'/, now replace zeros in tri with first non-colinear point 

junk=find(tri==0); 

if "isempty(junk) '/, have to make sure the first couple are cw 

tri(junk)=j+zeros(l,length(junk)); 

for i=l:size(tri,l)-l 

if ccw(oD(tri(i,l),:),oD(tri(i,2),:),oD(tri(i,3),:))==1 

tri(i,:)=tri(i,[l 3 2]); 

end 

end 

end 

for i=j+l:length(xi) 

temp=con_hull(oD(oldhull,:) ,'i'); '/. form hull ignoring interior points 
hull=oldhull(temp); '/, return to original indices 

last=f ind(hull==(i-l)); '/. the sort makes each new pt on the hull 

'/, straigten out hull index, ccw starting at s_{i-l} and wrapping around 

hull=[hull([last:length(hull)]);hull([l:last])]; 

'/, When we traverse the newest hull ccw from s_{i-l}=oD(last, :)=oD(hull(l) ,:) 

'/, and s_{i}=oD(i,:) is to the right then form a triangle 

for k=l:length(hull)-l 

if ccw(oD(hull(k),:)>oD(hull(k+l),:) ,oD(i,:))== -1 '/. to the right 

tri=[tri; i hull(k) hull(k+l)]; '/. form cw traingle 
end 

end 

oldhull=hull; 

oldhull(length(oldhull))=i; '/, add current point for next check 

end 

'/, Dtri is tri in terms of original D indices 

Dtri=reshape(xi(tri),size(tri,1).size(tri,2)); 

'/.Test to ensure we have all triangles where 

n=size(oD,l) ;        '/, number of points (minus duplicates) 

temp=con_hull(oD(oldhull,:),'i'); 

hull=xi(oldhull(temp)); '/, return to original indices 

k=length(hull) ;       '/, # points on final hull 

t=2*(n-i)-k; '/, # of expected triangles 

if t~=size(tri,l) 

'/, next should be error 

disp([' ']);disp(' Number of triangles is incorrect'); 
end 

if pl==l '/, To see whats going on 

plot(D(:,1),D(:,2),'.') 

hold on 

for B=l:size(D,l) 

text(D(H,l),D(H,2),int2str(N)) 
end 

for i=i;size(tri,1) 

plot(oD(tri(i,[l:3,l]),l),oD(tri(i,[1:3,1]),2),'r') 

end 

hold off 

end 
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C-4    Listing of MATLAB Function incircle.m 
function inside=incircle(A,B,C,D) 

'/, incircle - Used to determine if D is interior to the region of the plane 
'/, that is bounded by the oriented circle ABC and lies to the left of it. 

'/, In particular this implies that D is inside the circle ABC if the points 

'/, A,B, and C define a counterclockwise oriented triangle and outside if 

'/, they define a clockwise oriented one. 

'/■ All inputs must be distinct elements of R"2 
'/, Interpetation of results 

'/,    inside = 1, D is inside the oriented circle ABC 
'/,    inside = 0, D is on the oriented circle ABC 

'/.    inside = -1, D is outside the oriented circle ABC 

'/. 
% see ref for developement 

'/. Guibas ft Stolfi, ACH Tans, on Graphics 4(2) :74-123, 1985 page 106 

•/. 
*/,   inside = incircle(A,B,C,D) 

'/. 
'/, NAME:  incircle 

'/. LAST REVISION: 14 Sep 94 HatLab 4.2 

'/. Author: TOM KOBYLARZ Air Force Institute of Tech HPAFB, OH 

'/.        kobylar8afit.af.mil 

if (nargin~=4),eval(['help incircle']), error('wrong number of input arguments.'); end 

if size(A,2)~=2 '/, try to get elements in required format 

A=A'; 

end 

if size(A,2)~=2 '/, check to see if ok now 

eval(['help incircle']); 

error('    A must be an element of R"2'); 

end 

if size(B,2)~=2 '/, try to get elements in required format 

B=B'; 

end 

if size(B,2)"=2 '/, check to see if ok now 

eval(['help incircle']); 

error('    B must be an element of R*2'); 

end 

if size(C,2)"=2 '/, try to get elements in required format 
C=C' ; 

end 

if size(C,2)"=2 */, check to see if ok now 

eval(['help incircle']); 

error('    C must be an element of R"2'); 

end 

if size(D,2)~=2 '/, try to get elements in required format 
D=D'; 

end 

if size(D,2)"=2 '/, check to see if ok now 

eval(['help incircle']); 

error('    D must be an element of R~2'); 

end 

ordet=det([A sum(A."2) 1;B sum(B."2) 1;C sum(C."2) 1;D sum(D.*2) 1]); 

'/.if abs(ordet) <= 2*eps 

if abs(ordet) <= 100*eps 

inside=0; '/, try try minimize numerical error 

else 

inside=sign(ordet) ; 

end 
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C.5   Listing of MATLAB Function ccw.m 
function orientation=ccw(A,B,C) 

'/, ccw - counterclockwise. Used to determine orientation of 3 points in R"2, 
'/, positive when pt C lies to the left of the directed line segment AB 

'/. 
'/. Interpetation of results 

'/,    orientation = 1,  Ordered points have a counterclockwise orientation 

'/,    orientation = 0,  Ordered points are colinear 

'/,    orientation = -1, Ordered points have a clockwise orientation 

'/. 
'/, see refs for explaination and extensions to higher dimensions 

'/, 1) Du, Ding-Zu and Hwanf, F., Computing in Euclidean Geometry, 

'/,   World Scientific, 1992, QA447.C573 p. 210 

'/. 2) Guibas ft Stolfi, ACM Tans, on Graphics 4(2):74-123, 1985 

'/. 
'/.   orientation = ccw(A,B,C) 

'/. 
'/. HAME: ccw 

'/. LAST REVISION: 14 Sep 94 HatLab 4.2 

'/, Author: TOH KOBYLARZ Air Force Institute of Tech WPAFB, OH 

'/,        tkobylar@afit.af.mil 

if (nargin~=3),eval(['help ccw']), error('wrong number of input arguments.'); end 

if size(A,2)"=2 '/, try to get elements in required format 

A=A' ; 

end 

if size(A,2)~=2 */. check to see if ok now 
eval(['help ccw']); 

errorC    A must be an element of R"2'); 
end 

if size(B,2)~=2 '/, try to get elements in required format 

B=B'; 

end 

if size(B,2)"=2 '/, check to see if ok now 
eval(['help ccw']); 

error('    B must be an element of R"2'); 
end 

if size(C,2)"=2 '/, try to get elements in required format 

C=C>; 
end 

if size(C,2)"=2 '/, check to see if ok now 
eval(['help ccw']); 

error('    C must be an element of R"2'); 
end 

ordet=det([A i;B 1;C 1]); 
'/.if abs(ordet) <= 2*eps 

if abs(ordet) <= 100*eps 

orientation=0; '/, try try minimize numerical error 

else 

orientation=sign(ordet); 

end 
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C.6   Listing of MATLAB Function conJiull.m 
function edge=con_hull(z,s,p) 

'/.con.hull Find the Convex hull of z=(x,y), a set of at least 2 points in 

'/, R"2. Each row of z must be a 2-D vector, s is a switch to determine 

'/, the ouput format, if s='i' indecies are returned instead of point values 
'/, If no output arguments are specified or p=l, a plot generated. 

'/, The returned vector edge, contains an ordered subset of z, by row 

'/, (index or value (default) depending on s) , which generates a counter 

'/, clockwise oriented convex hull of z.  This must be noted when the results 

'/, are used for instance in a line integral. An example use which generates 

'/, correct results for computing the area of the ccw hull of z when values 

'/, are returned is:  cover = area(edge( : ,1) ,edge( : ,2)) 

'/. 
'/. edge = con.hull(z ,s,p) 

'/. 
'/, NAHE: con_hull 
'/. LAST REVISIOlf: 10 Feb 95 HatLab 4.2 

'/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH 

'/, tkobylarSafit,af.mil 

'/, figure out input format and output requested by parameters provided 

if nargout==0,pl=l;else,pl=0;end 

if (nargin >3),eval(['help con_hull']), error('wrong number of input arguments.'); end 
if nargin==0,eval(['help con.hull']),return; end 
if nargin==l,s='p';end 

if nargin==3,pl=p;end 

if min(size(z))<2 

eval(['help con.hull']); 

error('    z must contain at least 2 sets of points (x,y)'); 
end 

if size(z,2)"=2 "/, try to get z in required format 
z=z' ; 

end 

if size(z,2)"=2 '/. check to see if ok now 

eval(['help con.hull']); 

errorO    z must contain 2 columns, each row a 2-D vector'); 

end 

done=0;  '/, Hull is complete Flag 

*/. Jump right to a point z(i) KHOUH to be on the boundary such as min(y) which 

'/, assures 0 <= rays(:) <= pi. When ties in min y value occur we have a horizontal 

'/. bottom edge. To properly terminate need to ID min(x) of tied y.mins 

[z,yi]=sort_nd(z,[2,l],100); 

dups=find(abs(diff(z(: ,l))X=100*eps ft abs(diff(z(: ,2)))<=100*eps); 
if  "isempty(dups) 

disp([' Duplicate Points Removed']); 
z(dups+l, :) = [] ; 
yi(dups+l)=[]; 

end 
x=z(:,l);y=z(:,2); 

i=l; '/, By means of the sorting 

zt=[x-x(i) y-y(i)] ; '/, translate to origin 

rays=atan2(zt(: ,2) ,zt(: ,1)); '/, atan2 returns +/- pi 

rays(i)=5; '/, avoid skewing min by translation 

[minr,nl]=min(rays); 

nlv=f ind(abs(rays-minr)<=1000*eps); "/, index of possible colinear segment 

nl=nlv(l); 

rays(i)=0; '/, restore ray 
[maxr,n2]=max(rays); 
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'/, Once the edge is found should be able to stay on it 

'/, By starting at min(y) ===> 0 <= rays(:) <= pi 

'/, ===> z(n2,:) lies to the left of z(i,:) and z(nl,:) is to the right 

edge=[i; nl];'/, safest to get only two points since this is always a corner 

i=nl; '/. set index to last point in edge 

if pl==i, 

plot(z(:,i),z(:,2),'.') 
hold on 

plot(x(edge(i)) ,y(edge(D), 'g*') '/, The origin 

plot(x(i) ,y(i),'c+') '/. first ordered point index 

for N=l :size(z,l) ,text (z(N,l) ,z(N,2) ,int2str(yi(N))) ,end '/, number points 

end 

'/, Fix for when all points are colinear 

if abs(maxr-minr) <= 1000*eps 

dispC  ');disp('   Points form a straight line') 

edge=l :length(yi)'; '/, works for vert £ non-vert due to sort 

done=l; 

end 

'/, How that we're on the boundary use Jarvis' March (Gift Wrap Approach) 

while done"=l "/, find all points on the boundary 

zt=[x-x(i) y-y(i)] ; '/, translate to origin 

rays=atan2(zt(: ,2) ,zt (: ,1)) ;      '/, atan2 returns +/- pi 

rays(i)=5; '/, avoid skewing min by translation 

[minr,ni]=min(rays); 

rays(i)= -5; */, avoid skewing max by translation 

[maxr,n2]=max(rays); 

rays(i)=0; '/, restore ray 

if maxr-minr > pi  '/, performing wrap correction to keep < 180 deg 

wrap=find(rays<0); 

rays(wrap)=rays(wrap) + 2*pi * ones(size(wrap),1); 

rays(i)=5; '/, avoid skewing min by translation 

[minr,ni]=min(rays); 

rays(i)=0; '/, restore ray 

[maxr,n2]=max(rays); 
end '/, end of wrap correction 

nlv=find(abs(rays-minr)<=1000*eps) ; "/, index of possible colinear segment 

if length(nlv)>l 

nlv(f ind(nlv==i))=[] ; '/, remove the current point if here 

sidel=find(min(abs(nlv-i))==abs(nlv-i)); 

if sidel"=l ,nlv=flipud(nlv) ;end '/. sort away from point 
nl=nlv(l); '/. adjacent point in this direction 

end 

n2v=f ind(abs(rays-maxr)<=1000*eps); '/, index of possible colinear segment 

if length(n2v)>l 

n2v(f ind(n2v==i))=[] ; '/, remove the current point if here 

side2=find(min(abs(n2v-i))==abs(n2v-i)); 

if side2~=l,n2v=flipud(n2v);end '/, sort away from point 

n2=n2v(l); '/, adjacent point in this direction 

end 

if edge(size(edge,l)-l) == nl   '/, maintain same direction 

i=n2; 

i=n2v(size(n2v,D); 

nv=n2v; 

else 

i=nlv(size(nlv,D) ; 

nv=nlv; 

end 

if pl==l.plot(x(nv),y(nv),'c+'),end 
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edge=[edge; nv] ; */, add pts to the edge 

if i==edge(l) '/, We wrapped around and are done 

done=l; 

edge(size(edge ,1)) = [] ; '/, remove origin 

end 

if length(edge) > length(x)+i 

done=l; 

dispC      Got an error here. Too many vertices'); 

end 

end 

if pl==l 

plot([x(edge);x(edge(l))],[y(edge);y(edge(l))],'r') 

hold off 

end 

'/, How do the line Integral to find the enclosed area. 

'/, Area returns positive for counter-clockwise orientation of edge 

*/,cover=area(x(edge) ,y(edge)) 

if strcmp(s,'i') 

edge=yi(edge) ; '/, convert back to original index 
else 

edge=[x(edge),y(edge)] ; 

end 
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C.7   Listing of MATLAB Function sort_nd.m 
function [sorted,index]=sort_nd(z,order,tol) 

'/, sort_nd     Sort the list of vectors z in ascending order where 
'/, the significance of elements is described in the vector order. 

'/, Each rovr of z is a vector and if order=[] the significance is 

'/. l:size(z,2).  NOTE: ELEMENTS WITHIN tol*EPS OF EACH OTHER ARE 

•/. CONSIDERED AND RETURNED AS IDENTICAL, the default is tol=100. 

'/, Example if elements in z are 2D z=[x,y;] then 
'/. sort_nd(z)=sort_nd(z , [1,2] ) and the elements are sorted on x 

'/. with ties being sorted on y final ties are sorted by original 

'/, index in z. sort(z, [2,1]) sorts on y 

% 
'/, [sorted, index] =sort_nd(z, order, tol) 

'/. 
'/. NAME: sort.nd 

'/. LAST REVISION: 14 Dec 94 HatLab 4.2 
•/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH 

'/, tkobylarfiafit,af.mil 

if nargin==0,eval(['help sort.nd']).return;  end 
[m,n]=size(z); 
if nargin-=l ,order=[l:n];end 
if narginO, tol=100;end 
if  isempty(order),order=[l:n];end 
if length(order)~=n  I   any(order>n), 

eval(['help sort.nd']),  errorC    Invalid significance order specified'); 
end 

sorted=z; 
index=[l :m] ' ; 

for i=n:-l:l 
[junk,in]=sort(sorted(:,order(i))); 
near=f ind(abs(diff (junk) )<=tol*eps) ; '/, catch numerics 
if "isempty(near) 

for j=l:length(near), 
sorted(in(near(j)+l).order(i))=sorted(in(near(j)),order(i)); 

end 

[junk,in]=sort(sorted(: ,order(i)));     '/. sort on y again 

end 
sorted=sorted(in,:); 

index=index(in) ; 

end 
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C.8   Listing of MATLAB Function fonuil.m 
function merit=fom_nl(t.output,cmd,pl) 

'/, LAST REVISION: 3 Feb 95 improved cmd=0 usage 
'/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH 

'/. 
'/, fom.nl   Calculate the Classical Figures of Merit of an output 

'/, response (output) given the commanded input (and) , both 

'/, of which must have the same time scale (t) unless cmd is 

'/, a scalar, in which case a step of value cmd with initial 

'/, condition output(l) is assumed. If cmd is omitted, zero 

'/, tracking error is assumed. Used to find a soft error norm 

'/, for evaluating nonlinear responses. 

'/. 
'/, merit=f om_nl(t .output,cmd,pi) 

*/. 
'/, If no left hand side argument is specified or pl=l, 

'/, the response is plotted indicating the figures of merit. 

'/, If a left hand argument is given, the result is a three 

"/, row matrix indicated below. The columns are zero padded 

'/, in case there are more extrema than FOMs (currently 7). 

'/. 
'/, | Mp   tp Te ts tr ref FV . . . 0 . . . I 

'/, merit = I [overshoots]           ... 0 ... I 
*/, | tstop [ratio]          ... 0 ... I 

*/. 
'/, ref Commanded Step Value               FV Final Value 

'/, tstop Duration of simulation           tp Peak Time 

'/. ts Actual 2'/. settling time to FV       tr 10'/. to 90% Rise Time 
'/. Mp Peak Value at tp                  Te Tracking error of FV 

'/. [overshoots] vector of percent overshoot at each local extrema prior to ts 

'/. [ratio] vector of overshoot ratios from one extrema to next 

'/. figure out input format by number or parameters provided 

if (nargin < 2) I (nargin > 4), 

eval('help fom_nl'), 

error('wrong number of input arguments.'); 

end 
if nargin"=4,pl=0;end '/, default is no plot 

'/, ensure we always start with row vectors 
if (min(size(t))>l), error('time argument must be a vector'); end 

if (size(t,2)>l), t=t' ; end 

if (min(size(output))>l) , error('response argument must be a vector'); end 

if (size(output,2)>1), output=output'; end 

if (length(t)"=length(output)), errorCtime arguments (t,output) must match.'); end 

npts=length(t); 

if (nargin ==2), 
cmd=0*output + output (npts);   '/.assumes zero tracking error 

cmd(l)=output(l); '/. assumes started from trim 

end 

if (length(cmd)==l), 

cmd=0*output + cmd; 

cmd(l)=output(l); '/, assumes started from trim 

end 

if (length(t)~=length(cmd)), 
error('time arguments (t,cmd) must match or cmd must be a scalar.'); 

end 
if nargout==0 I pl==l,DISP=1;else,DISP=0;end 

IC=output(l) ; '/, store initial condition 
y=output-IC; clear output; '/, Translate output to zero 
cmd=cmd-IC; '/, Translate command to zero 
if cmd(npts)<0 '/, Check for negative step and set flag 
negstep=l; 

cmd = -cmd; '/, make positive to obtain FOMs 
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y = -y; 
end 

tstop=t(npts); 

FV=y(npts); '/, Final Value - should be >0 except very small commands 

ref=cmd(npts); '/, Commanded step strength 

'/, Check for dead time on first i points when y(i)=y(l) 

dti=2; 

while y(l) == y(dti), 

if dti==npts, 

if DISP==1 

disp('      !!!!!!!!!!!!!    No deviation from trim value    !!!!!!!!!') 
end 

merit=zeros(3,7); 

return 

end 

dti=dti+i; 

end 

'/, check initial deviation from trim for non minimum phase responses for STEP INPUT 

if (y(dti)-y(dti-l))*(cmd(2)-cmd(D) <0 '/. assumes monotonic cmd 

if DISP==1 

dispC Non-Hinimum Phase Response') 

end 

nonmin=l; '/, flag for non-minimum phase response 

'/, MM needs to be expanded when NHP response has cost 

else 

nonmin=0; 

end 

[Mp,tpi]=max(y); '/, gives index of 1st occurrence of max 

tp=t(tpi); '/, assumes max value is unique may cause problems 

Te=100*abs(FV-ref )/ref; '/, Steady state tracking error percent 

Os=100*(Mp-FV)/FV; '/. Percent overshoot of FV at Hp 

f irstdif=diff (y([dti-l :npts] ));  '/, look for extrema or inflextion after initial dead time 

'/, when curve is FLAT between 2 points 1st diff=0 

secdif=diff(sign(firstdif));     %  since sign=(-l|0|1) then secdif=(-2|-l|0|1|2) 
'/, look for mins(secdef=2) and maxs(secdef=-2) 

'/, but secdif=(-l |0| 1) may be min/max/inflex 

local=f ind(abs(secdif )==2)+dti-l; '/, since sign=0 when firstdif=0 

flat=find(abs(secdif )==l)+dti-l; '/, adjust indices to y 

if length(flat)==l '/, fix for step looking things 

local=[local;flat] ; 

flat=[]; 

end 

if ("isempty(flat)) '/, Flat spots need extra work 

if rem(length(flat) ,2)==1     '/, since true flats come in pairs 

flat(length(flat) ,:) = [] ;    '/, remove last row if odd 
end 

squeeze3[flat.secdif(flat-dti+1)] 

for i=l :2:length(flat)-l '/, average the index to find middle 

squeeze(i,l)=fix((squeeze(i,l)+squeeze(i+l,l))/2); 

squeezed,2)=squeeze(i ,2)+squeeze(i+l,2);   '/, add the 2 about the flat spot 
squeeze(i+1,:)=squeeze(i,:); 

end 

i=[l:2:length(flat)-l] ; 

squeeze=squeeze(i,:); '/.remove redundant rows 

squeeze=squeeze(find(abs(squeeze(: ,2))"=0),:); '/.remove inflextion points 
flat=squeeze(:,1); 

end 

extremi=sort([local;flat] );     '/. order local extremum indecies 

extrem=[t(extremi) ,y(extremi)] ; '/, extract local extremum & time 
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above=min(find Cabs Cy - FV) < abs( .02*FV))); '/, first time enters 2*/. band 
below=max(f ind(abs(y - FV). > abs( .02*FV))); '/, last time outside 2'/, band 

tsi=maxCabove,below); '/, for monotonic ? 

tsettle=t(tsi); 

if isempty(tsettle) '/. catch, probably unstable response 

tsettle=inf; 

end 

if size(extrem,l) > 1 

extrem=extrem(f ind(extrem( : ,l)<tsettle), :); '/, ignore extremum in tail 
end 

if isempty(extrem)  '/, to cover monotonic responses 

extrem = [tp Hp] ; 

end 

if nonmin==l '/, assumes one non-min phase excursion belo» zero extremCl,:) 
if extremCl,2)>0 

dispC' ');disp('   !! error in tracking non-min phase extrema');disp(' ') 
else 

if size(extrem,l)>l 

extremCl ,:) = [] ;   '/• currently no fom specified, remove from list 

end 

end 

end 

if extremCl,:) "= [tp Hp] 

if DISP==1 

dispCC Peak overshoot is not first Maximum']) 
end 

badpeak=l;   '/, flag for maybe bad response, compare with nonmim 

end 

overshoots=100*CextremC: ,2)-FV)/FV; '/, percent error at each local extremum 
overshoots=overshoots'; 

for i=l :lengthCovershoots)-l    */, find ratios of consecutive extrema 

ratioCi)=overshootsCi+l)/overshootsCi); 
end 

trli=l ;tr2i=tpi;  '/, initialize just incase problems with rise time 

for i = l:tpi '/, find rise time 

if yCi) < C.l * FV), trli = i; end 

if yCi) < C.9 * FV), tr2i = i; end 
end 

trl=tCtrli);ytrl=yCtrli); 

tr2=tCtr2i);ytr2=yCtr2i); 

tr=tr2-trl; 

merit=zeros(3,maxC7,lengthCovershoots))); 

meritCl,[l:7])=[Hp tp Te tsettle tr ref FV]; 

meritC2,[1:lengthCovershoots)])=overshoots; 

meritC3,[1:length(overshoots)])=[t(npts) ratio]; 

'/.   Pretty output if merit not specified 

if DISP==1, 

Mps=num2str(Mp); 

0ss=[num2strC0s),' '/,']; 

if ref==0 

Tes='Undefined, merit returns Inf; 

else 
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Tes=[num2str(Te),' '/.']; 

end 

FVs=num2str(FV); 

refs=num2str(ref); 

if isempty(ratio) 

Maxratios='undefined'; 

else 

Maxratios=num2str(ratio(find(abs(ratio)==max(abs(ratio))))); 
end 

if tr < tp ft tr~=0 

trs=num2str(tr); 

elseif (tr==tp I tr==0) 

trs=['poorly defined']; 

else 

trs=['very large']; 

end 

if tp < tstop 

tps=num2str(tp); 

else 

tps=['very large']; 

end 

if tsettle < tstop 

tsettles=num2str(tsettle); 
else 

tsettles=['very large'] ; 

end 

if nargout==0 

disp( ['Figures of merit']) 

disp([> ']) 

disp(['rise time 

disp(['peak time 

disp(['settling time 

disp(['peak value 

disp(['final value 

disp(['commanded value 

disp(['initial condition 

disp(['Percent Overshoot 

disp(['Hax ratio overshoot 

disp(['Percent Track error 

end 

,trs]) 

,tps]) 

.tsettles]) 

,Hps]) 

,FVs]) 

,refs]) 

,num2str(IC)]) 

,0ss]) 

,Haxratios]) 

,Tes]) 

plot(t,[y cmd] )        '/, System Response and command 
hold on 

plot([trl,trl] ,[0,ytrl] ,'c: ' , [tr2,tr2] , [0,ytr2] , 'c: >,[trl,tr2] ,[ytrl,ytrl] , 'c: ')    % tr Lines 
plot([tp,tp] ,[0,Mp] ,'m: \[0,tp] .[Mp.Mp] ,'m:>)      '/, Peak Time Lines 
plot ([tsettle, tsettle] ,[0,FV] ,'H: ',[O.t(npts)],[FV.FV] ,'r: ')'/, FV and ts Lines 
for i=l:size(extrem,l) '/, Indicate local extremum 

plot([extrem(i,l),extrem(i,1)],[FV,extrem(i,2)],'g') 
end 
title(['Figures of Merit: Response Translated to Trim Condition of ',num2str(IC)]) 
ylabel('Response'), xlabeK'time') 

text(.03*t(length(t)),0.95*Hp,['Hp = >,Mps]) 

text(l/4*(tr2+3*trl),1.3*(0.1*FV),['tr = ',trs]) 

text(0.9*tp,0.5*Hp,['tp = ',tps]) 

text(0.9*tsettle,0.25*FV,['ts = >,tsettles]) 

text(0.9*tsettle,0.8*FV,['local extrema']) 

text(0.9*tsettle,0.7*FV,[sprintf(' y.5.if '.overshoots)]) 

if 'isempty(ratio),text(0.9*tsettle,0.5*FV,['ratio of extrema']),end 

if "isempty(ratio) ,text(0.9*tsettle,0.4*FV, [sprintf (' '/.5.2f ' .ratio)] ) ,end 
hold off 

end 

return 
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FV .. 0 ... I 
.. 0 ... I 
.. 0 ... I 

FV: Final Value 

tp: Peak Time 

tr: 10'/. to 90'/, Rise Time 

Te: Tracking error of FV 

C.9   Listing of MATLAB Function fuz_cost .m 
function cost=fuz_cost(merit.display.weights,specifications) 

'/.fuz.cost   Calculate the cost of the response with figures of merit 

'/■ contained in the 3 ro» (zero padded) matrix merit 

'/. obtained from the m file  'fom_nl.m'  with form 

'/. 
'/. I Hp tp Te ts tr ref FV 

'/. merit = | [overshoots] 

'/. I tstop [ratio] 

'/. 
'/, ref: Commanded Step Value 

'/, tstop: Duration of simulation 

'/, ts:  Actual 2'/. settling time to FV 

'/, Hp: Peak Value at tp 

'/, [overshoots] : vector of percent overshoot at each local extrema prior to ts 

'/, [ratio] : vector of overshoot ratios from one extrema to next 

'/. 
'/. Call after using merit=fom.nl(t ,y,cmd) as 

'/. 
'/. cost=fuz_cost(merit,display,weights,specif ications) 

'/. 
'/, display: A switch to display violations when display=l (default is 0) 

'/, weights: A vector of weights to place relative importance upon 
'/, certain elements of the specification vector, defaults to 

'/. weights=[l 15  11111]; 
'/.specifications: The vector containing max allowable specs for each figure of 

'/, merit. If specs is not defined the default is used.  If only 

'/■ certain elements of specs are desired to be changed this is done 

'/■ by using a string to reset the elements separated by semicolons. 

'/, i.e. use 'specs(2)=l ;specs(5)=3;' to change the first and fifth 

'/. elements to 1 and 3 respectively. 

"/. See .m file code for use of specs in the cost function. 

'/. 
V. 12-3           45678 

'/, specs = [minHp maxHp max#overshoots maxratio maxerror maxtp maxts maxtr] 

'/, where the elements conform to: 

'/, 1,2: fraction of normalized step strength ie .98 and 1.3 for -2'/,/+30'/, overshoot 

'/, 3:  integer                           4:  positive real decimal 

'/, 5:  percent error ie 2 for 2'/, default,  6-8:  seconds 

'/. 
'/, LAST REVISION: 26 Jan 95 Handle trim conditions v 4.2c and slope for unstable 

'/, 9 Hov 94 define interactive mode to echo violations 
'/. 1 Aug 94 HatLab 4.0 

'/. Author: TOM KOBYLARZ Air Force Institute of Tech UPAFB, OH 

'/. figure out input format by number or parameters provided 
if (nargin==0 I nargin >4), 

eval('help fuz_cost') , 

error('wrong number of input arguments.'); 
end 

if (size(merit,1)~=3), errorCmerit must have form returned from fom.nl.m'); end 
tstop=merit(3,1); 

if nargin == 1, display=0; end 
if nargin < 3, 

weights=[] ; 

end 

specs=[.98 1.25 4 0.4 1.0 tstop 5.0 tstop]; 

if nargin == 4, 

eval(specifications); 

end 

merit(3,l)=0;  '/, to simplfy code below 

if isempty(weights), 
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»eights=[l 15  11111]; 
end 
penalty=0*weights; 

'/, ensure we always start with correct vectors 

if (min(size(specs))>l), error('specifications must be a vector'); end 

if (min(size(weights))>l), error('weights must be a vector'); end 

if (length(weights)~=8), error('weights must be an 8 element vector'); end 

'/, add a large cost and return if peak value is Inf or HaH 

'/. slope is provided by 10000*(l-tp/tstop) ie time to instabilty 

if ( isnan(merit(l,D) | isinf(merit(1,1)) ) 

cost=10000 + (l-(merit(l,2)/tstop))*10000; 
return 

end 

*/, Return zero cost and return if merit returned a valid trim case 
if any(any(merit))==0 

cost=0;return 

end 

V. Calculate penalties for deviating from spec 

violations=penalty; '/, initialize flags to display violations 

if merit(l,l) < specs(l)*merit(1,6) 

penalty(1)= (specs(1)«merit(1,6)-merit(1,1)); 
violations(l)=l; 

end 

if merit(l,l) > specs(2)*merit(1,6) 

penalty(2)= (merit(1,l)-specs(2)*merit(l,6)); 
violations(2)=l; 

end 

if length(find(merit(2,:))) > specs(3) 

penalty(3)= (length(find(merit(2,:))) - specs(3)); 
violations(3)=l; 

end 

if max(abs(merit(3,:))) > specs(4) 

penalty(4)= (max(abs(merit(3,:))) - specs(4)); 

violations(4)=l; 
end 

if abs(merit(l,3)) > abs(specs(5)) 

penalty(5)= (abs(merit(1,3)) - abs(specs(5))); 

violations(5)=l; 
end 

if merit(l,2) > specs(6) 

penalty(6)= (merit(l,2) - specs(6)); 

violations(6)=l; 
end 

if merit(l,4) > specs(7) 

penalty(7)= (merit(l,4) - specs(7)); 

violations(7)=l; 

end 

if merit(l,5) > specs(8) 

penalty(8)= (merit(l,5) - specs(8)); 
violations(8)=l; 

end 

if min(penalty)  < 0 
error(['negative cost  element, there is a problem in the code']) 
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end 

penalty; 

cost=sum(weights.»penalty); 

'/, Build up display of violations if requested 

if display==l, 

if max(violations)==l; 

dispMAT=str2mat([' '],[>    !!!  VIOLATED the following specifications !!!']); 

else 

dispMAT=str2mat([> '],['    All specifications satisfied']); 

end 

if violations(l)==l; 

dispMAT=str2mat(dispHAT,[> 

end; 

if violations(2)==l; 

dispMAT=str2mat(dispMAT,[' 

end; 

if violations(3)==l; 

dispHAT=st r2mat(dispHAT,[' 

end; 

if violations(4)==l; 

dispMAT=str2mat(dispMAT,[> 

end; 

if violations(5)==l; 

dispMAT=str2mat(dispMAT,[' 

end; 

if violations(6)==l; 

dispMAT=str2mat(dispMAT,[' 

end; 

if violations(7)==l; 

dispHAT=st r2mat(dispMAT,[' 

end; 

if violations(8)==l; 

dispHAT=str2mat(dispHAT,[> 

end 

disp(dispHAT) 

end 

return 

min Hp spec: ' ,num2str(specs(D),' of final value with ' ,num2str (merit (1 ,l)/meri 

max Hp spec: ',num2str(specs(2)),' of final value with ',num2str(merit(l,l)/meri 

max Humber of oscillations: ',num2str(specs(3)) ,' with >,num2str(length(find(mer 

max Ratio of oscillations: ',num2str(specs(4)),' with ',num2str(max(abs(merit(3, 

max Percent Tracking Error spec of > ,num2str(specs(5)),>'/. with ' ,num2str(merit(1 

max Peak Time spec of ',num2str(specs(6)),' sees with ',num2str(merit(l,2))]); 

max Settling Time spec of ',num2str(specs(7)),' sees with ',num2str(merit(l,4))] 

max Rise Time spec of ',num2str(specs(8)),' sees with ',num2str(merit(l,5))]); 
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CIO   Listing of MATLAB Function find_2dv.m 
function var=find_2dv(D,A,cm) 

'/,f ind_2dv Find the variance parameters var for the membership functions 

'/.  centered at D=[x;y] to provide cover of the 2D Universe of Discourse 

'/.  such that no point has a cross membership greater than cm (0< cm <1). 

'/,  The default cross membership is cm=.001 if not specified. D is a 

'/.  vector of 2 rows and at least 3 columns (points). Each column of D 

'/,  must be a unique 2-D vector. If D is colinear artifical bounds are 

'/,  used to obtain finite solutions. A, the adjacency matrix as returned 

'/,  from A=delaunay(D) . If A is not specified or empty it is calculated. 
'/,  If no output arguments are specified a plot is made. 

'/. 
'/.   var=f ind_2dv(D,A,cm) 

•/. 
'/. SÄHE: f ind_2dv 

'/. LAST REVISION: 15 Feb 95 Ignore Inf results as long as one valid max found 

'/, 8 Feb 95 Allowed for colinear and modified/invalid A 

•/. 1 Nov 94 MatLab 4.2 

'/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH 
'/.        tkobylar@afit.af.mil 

'/, figure out input format and output requested by parameters provided 

if nargout==0,pl=l;else,pl=0;end 

if (nargin >3),eval( ['help find_2dv']), error('wrong number of input arguments.'); end 

if nargin==0,eval(['help find_2dv']),return; end 

npts=size(D,2); 

if size(D,l)"=2 '/, check to see if D in required format 

eval(['help find_2dv']) ; 

error('    D must contain 2 rows, each column a 2-D vector'); 

end 

if npts < 3 

eval(['help find_2dv»]); 

error('    D must contain at least 3 sets of points [x;y]'); 

end 

if nargin==l, 

A=delaunay(D);        '/. Find Adjacency matrix for Delaunay Diagram 

end 

if isempty(A), 

A=delaunay(D);        '/, Find Adjacency matrix for Delaunay Diagram 
end 

if size(A,2)"=npts I size(A,l)~=npts 

eval(['help find_2dv']) ; 

error('    A must be the adjacency matrix as returned from A=delaunay(D)'); 

end 

if nargin<3,cm=.00i;end 

if cm<=0 | cm>=l '/, check for valid cross membership 
eval(['help find_2dv']); 

error('    Cross Membership must be in the range 0 < cm < 1'); 

end 

'/. SOLVE THE CONSTANT MEMBERSHIP ELLIPSE, ie maximize the area of a concentric 

'/, ellispe. centered at the point, closest other point on the ellipse and all 

'/, other points lie on or outside the ellipe. after the semi-major/minor axis 

'/, are determined, then solve for the required variance paramters such that 

'/, this ellipse reprsents a contour of the desired cross memebership. 

'/, use x"2*xstar+y"2*ystar=l for ellipse ==> xstar=l/a"2 ystar=l/b"2 
'/. The following assumes D is 2 by n 

var=0*D; 

for N=l:npts 

cpt=D(:,N); 

neigh=find(A(N,:)); 

opts=D(:,neigh); 
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'/, include all points in constraints but use max aftb 

'/, found from neighbors when they yield a finite solution 

normpts=D-cpt (: ,ones(l,npts)); '/. center points at cpt 
normptsC: ,N) = [] ; '/. remove cpt from consideration 

[junk,i]=min(sqrt(sum(normpts . "2)));     '/, find closest point 

closept=normpts(: ,i); '/, closest pt is on ellipse 

slope=closept(2)/closept(l); '/, for use in unconstrained pts 

normpts( : ,i) = [] ; '/, remove closest from consideration 

'/. form the constraints on a ft b for finite solutions 

amin=min(abs(cpt(l)-opts(l, 

amax=max(abs(cpt(l)-opts(l, 

bmin=min(abs(cpt(2)-opts(2, 

bmax=max(abs(cpt(2)-opts(2, 

))) 
))) 
))) 
))) 

'/, find min/max projections to neighbors 

'/, »hen induced constriants are from closest point we may still be unconstrained 

'/, catch for perp to axis and points with a single neighbor 

if amax < eps '/, all neighbours aligned in y. 

if max(abs(cpt(l)-D(l,:))) > eps 

amax=max(abs(cpt(l)-D(l,:))); 
disp(['  !!  Suspect Adjacency Matrix, check neighboors of point ',int2str(N)]) 

else '/. all points colinear in y. 

amax=abs(max(D(2, :))-min(D(2,:)));'/, artifical bound of span of y 

end 

end 

if bmax < eps '/, same as for amax but aligned in x 

if max(abs(cpt(2)-D(2,:))) > eps 

bmax=max(abs(cpt(2)-D(2,:))); 
disp(['  !!  Suspect Adjacency Matrix, check neighboors of point ',int2str(N)]) 

else '/, all points colinear in x. 

bmax=abs(max(D(l,:))-min(D(l,:))); 

end 

end 
'/. catch for colinear pts not perp to axis 

if amin==amax ft amin==abs(closept(l ,1)) '/, need to relax x constriant 

np=sort(abs(normpts(l,:))); '/, sorted queque of x projections 

i=l;flag=0; 

while flag==0 

if np(i) > amax 

amax=np(i); 

flag=l; 

else 

i=i+l; 
if i > length(np) 

flag=l; 

amax=abs(max(D(l,:))-min(D(l,:))); 

end 

end 

end 

end 
if bmin==bmax ft bmin==abs(closept(2,l)) '/, need to relax y constriant 

np=sort(abs(normpts(2,:))); '/, sorted queque of y projections 

i=l;flag=0; 

while flag==0 

if np(i) > bmax 

bmax=np(i); 

flag=l; 
else 

i=i+l; 

if i > length(np) 

flag=l; 
bmax=abs(max(D(2,:))-min(D(2,:))); 

end 
end 
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end 

end 

ab_bds=[amin amax;bmin bmax] ; '/, artifical bds must not violate inequalites found later 
xy_bds=l ./fliplr(ab_bds."2) ; '/, = [xmin xmax;ymin ymax] 

xy_const=[0 inf;0 inf]; 

xy_lim=xy_const; 

'/, Find constraints such that no other point interrior to ellipses 

if abs(closept(2))>eps 

alphax=[normpts(l,:)."2 - (closept(1)/closept(2))"2*normpts(2,:)."2]'; 

betax=[l - (normpts(2,:)/closept(2))."2]'; 

neg=find(alphax<-eps);pos=find(alphax>eps); 

if "isempty(pos),xy.const(1,l)=max(betax(pos)./alphax(pos));end 

if "isempty(neg),xy.const(1,2)=min(betax(neg)./alphax(neg));end 

else 

xy.const(1,:)=abs([closept(1) closept(1)]); 

end 

if abs(closept(l))>eps 

alphay=[normpts(2,:)."2 - (closept(2)/closept(l))"2*normpts(i,:)."2] '; 

betay=[l - (normptsd , :)/closept(D) ."2] '; 
neg=find(alphay<-eps);pos=find(alphay>eps); 

if "isempty(pos),xy_const(2,l)=max(betay(pos)./alphay(pos));end 

if "isempty(neg),xy_const(2,2)=min(betay(neg)./alphay(neg));end 
else 

xy.const(2,:)=abs([closept(2) closept(2)]); 

end 

'/, combine these constraints to generate resonable ellipses based upon 

'/. xy.bds. NOTE: must ensure the analytical constraints of xy.const 

"/• are not violated in the process. 

xy_lim(:,1)=[min(max(xy.const(:,1),xy_bds(:,1)),xy.const(:,2))] ; 

xy_lim(:,2)=[max(min(xy.const(:,2),xy_bds(:,2)),xy.const(:,1))]; 

'/, Solve for the ellipse based on amax 

xstar=xy_lim(l,l); 

astar=l/sqrt(xstar); 

ystar=(l-xstar*closept(l)~2)/closept(2)"2; 

bstar=l/sqrt(ystar); 

circum_area=[astar bstar astar*bstar]; 

if pl==l 

'/, generate points on amax ellipse to plot 

x= -astar+eps:astar/50:0; 

ye=sqrt((1-x.~2*xstar)/ystar); 

x=[x fliplr(-x) -x fliplr(x)]; 

ye=[ye fliplr(ye) -ye fliplr(-ye)]; 

end 

'/, Solve for the ellipse based on bmax 

ystar=xy_lim(2,l); 

bstar=l/sqrt(ystar); 
xstar=(l-ystar*closept(2)"2)/closept(l)"2; 
astar=l/sqrt(xstar); 
circum_area=[circum_area;  astar bstar astar*bstar]; 

if pl==l 

'/. generate points on bmax ellipse to plot 

y= -bstar+eps:bstar/50:0; 

xe=sqrt((l-y.~2*ystar)/xstar); 

y=[y fliplr(-y) -y fliplr(y)] ; 

xe=[xe fliplr(xe) -xe fliplr(-xe)]; 

plot (normptsd,:) ,normpts(2,:) , 'o') 

hold on 
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plot(opts(1,:)-cpt(l),opts(2,:)-cpt(2),»x>) 

plot(x,ye,'r',xe,y,'c') 
plot(0,0,>g+',closept(l),closept(2),'wx') 

title(['Point ',int2str(B)]) 

hold off 

'/, dispC   Hit any key to continue'); pause 

axis('equal') 

pause(.1) 

end 

'/, choose the largest and find corresponding var parameters 
'/, just incase still poorly constrained zero that result 

still_bad=find(isinf(circum_area(:,3))|isnan(circum_area(:,3))); 

if ~isempty(still_bad) 

circum_area(still_bad,3)=0; */, as longs as one is finite we're ok 

end 
best=find(max(circum_area(:,3))-circum_area(:,3)<100*eps); 

if length(best)==2 '/. select better orientation in a tie 

ratio=circum_area(:,1)./circum_area(:,2); 

if abs(slope)>=l 

best=find(max(ratio)==ratio); 

else 

best=find(min(ratio)==ratio); 

end 

end 

if length(best)==2,best=l;end "/, incase their identical 

var(l1B)=cros_mem(0)circum_area(best,1),cm); 

var(2,N)=cros_mem(0,circum_area(best,2),cm); 

end  '/, next N 

if min(min(var))<=0, 

disp(['  var has an element <=0 something is wrong']).break 

end 

if pl==l 
HF=[D',var>] ; 
gauss_2d('plot.it',HF,'s',[l 0 0]); 

*/.    gauss_2d( 'plot.it' ,HF, 's', [1 0 0  [100*cm 10*cm cm]]); 
•/.    u=[min(D(l,:)) max(D(l,:)) min(D(2,:)) max(D(2,:))] ; 
'/.    w=[u(2)-u(l) u(4)-u(3)]; 
'/.    axis(u +   .2*[-w(l) w(l)  -w(2)  w(2)]); 
end 
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C.ll    Listing of MATLAB Function crosjtiem.m 
function var=cros_mem(center,other.pts,weight) 

"/.     var = cros_mem(center,other_pts,weight) 

V. 
'/. Used to find the variance paramters for Gaussian membership functions 

'/, centered at other_pts such that their membership value is equal to 

*/, weight »hen evaluated at the point center. That is solve 

'/.      weight=exp(-l/2*(center-other_pts) *2/var) 

'/. for var.  Requires that :  0 < weight < 1 

if (nargin~=3),eval(['help cros.mem']), error('wrong number of input arguments.'); end 

if (weight<=0 I weight>=l), 

eval(['help cros.mem']), error('Invalid weight specified'); 

end 

var = -.5 * (center-other_pts)."2/log(weight); 
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Appendix D.   Support Data for Chapter IV 

D.l    Increase in Cover by Scheduler: Nonlinear System 

Max Acceptable Commands: Point Design 1 vs. Scheduler at tau = 1 

Figure D.l    Increase in Slewing Capability from Point Design 1 
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Max Acceptable Commands: Point Design 2 vs. Scheduler at tau = 1.11 
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Figure D.2    Increase in Slewing Capability from Point Design 2 
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Max Acceptable Commands: Point Design 3 vs. Scheduler at tau = 1.244 

8 9 10 

Figure D.3    Increase in Slewing Capability from Point Design 3 

Max Acceptable Commands: Point Design 4 vs. Scheduler at tau = 1.408 

Figure D.4    Increase in Slewing Capability from Point Design 4 

D-2 



Max Acceptable Commands: Point Design 5 vs. Scheduler at tau = 1.602 
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Figure D.5    Increase in Slewing Capability from Point Design 5 

Max Acceptable Commands: Point Design 6 vs. Scheduler at tau = 1.846 
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Figure D.6    Increase in Slewing Capability from Point Design 6 
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0.95 
Max Acceptable Commands: Point Design 7 vs. Scheduler at tau = 2.163 

9 10 

Figure D.7    Increase in Slewing Capability from Point Design 7 

Max Acceptable Commands: Point Design 8 vs. Scheduler at tau = 2.6 
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Figure D.8    Increase in Slewing Capability from Point Design 8 
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Max Acceptable Commands: Point Design 9 vs. Scheduler at tau = 3.207 

Figure D.9    Increase in Slewing Capability from Point Design 9 

Max Acceptable Commands: Point Design 10 vs. Scheduler at tau = 4.388 

Figure D.10    Increase in Slewing Capability from Point Design 10 

D-5 



D.2    Constraint Surface Plots of Point Controllers: Nonlinear System 

Constraint Surface for Point Design 1 at tau = 1 or v = 0.5774 
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Figure D.ll    Constraint Surface for Point Controller 1 

10 
Constraint Surface for Point Design 2 at tau - 1.11 or v - 0.6083 
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Figure D.12    Constraint Surface for Point Controller 2 
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10r 
Constraint Surface for Point Design 3 at tau = 1.244 or v = 0.6439 

Figure D.13    Constraint Surface for Point Controller 3 

Constraint Surface for Point Design 4 at tau = 1.408 or v = 0.6851 

Figure D.14    Constraint Surface for Point Controller 4 
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Constrai nt Surface for Point Design 5 at tau = 1.602 or v = 0.7308 
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Figure D.15    Constraint Surface for Point Controller 5 

10 
Constraint Surface for Point Design 6 at tau - 1.846 or v - 0.7844 
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Figure D.16    Constraint Surface for Point Controller 6 
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Constraint Surface for Point Design 7 at tau = 2.163 or v = 0.8491 
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Figure D.17    Constraint Surface for Point Controller 7 

10r 
Constraint Surface for Point Design 8 at tau = 2.6 or v = 0.9309 
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Figure D.18    Constraint Surface for Point Controller 8 
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Constraint Surface (or Point Design 9 at tau = 3.207 or v = 1.034 
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Figure D.19    Constraint Surface for Point Controller 9 
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Constraint Surface for Point Design 10 at tau = 4.388 or v = 1.209 
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Figure D.20    Constraint Surface for Point Controller 10 
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Constraint Surface From C(y(t)) 

Trim Point 

Commanded Value, v 

Figure D.21    Constraint Surface of Point Controllers, C(y(t)) 

Constraint Surface After Output Error Comparison 

Trim Point 

Commanded Value, v 

Figure D.22    Constraint Surface of Point Controllers after Normalized Output Error 
Check 
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D.3    Constraint Surface Plots of Scheduler: Nonlinear System 

Constraint Surface for Scheduler from Point 1 at tau = 1 or v = 0.5774 

Figure D.23    Constraint Surface for Scheduler from Point 1 

Constraint Surface for Scheduler from Point 2 at tau = 1.11 or v = 0.6083 

Figure D.24    Constraint Surface for Scheduler from Point 2 
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Constraint Surface for Scheduler from Point 3 at tau = 1.244 or v = 0.6439 
10n 

Figure D.25    Constraint Surface for Scheduler from Point 3 

Constraint Surface for Scheduler from Point 4 at tau = 1.408 or v = 0.6851 

Figure D.26    Constraint Surface for Scheduler from Point 4 
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Constraint Surface for Scheduler from Point 5 at tau = 1.602 or v = 0.7308 

Figure D.27    Constraint Surface for Scheduler from Point 5 

Constraint Surface for Scheduler from Point 6 at tau = 1.846 or v = 0.7844 
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Figure D.28    Constraint Surface for Scheduler from Point 6 
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Constraint Surface for Scheduler from Point 7 at tau = 2.163 or v = 0.8491 

Figure D.29    Constraint Surface for Scheduler from Point 7 

Constraint Surface for Scheduler from Point 8 at tau = 2.6 or v = 0.9309 
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Figure D.30    Constraint Surface for Scheduler from Point 8 
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Constraint Surface for Scheduler from Point 9 at tau = 3.207 or v = 1.034 
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Figure D.31    Constraint Surface for Scheduler from Point 9 

Constraint Surface for Scheduler from Point 10 at tau = 4.388 or v = 1.209 

Figure D.32    Constraint Surface for Scheduler from Point 10 
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Constraint Surface From C(y(t)) 

10-1 

Commanded Value, v 

Figure D.33    Constraint Surface of Scheduler, C(y(t)) 

Constraint Surface After Output Error Comparison 

10-, 

Commanded Value, v 

Figure D.34    Constraint Surface of Scheduler after Normalized Output Error Check 
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D.4    Increase in Cover by Scheduler: LTV System 

LTV Max Acceptable Commands: Point Design 1 vs. Scheduler at tau = 1 

Figure D.35    Increase in Slewing Capability from Point Design 1 

LTV Max Acceptable Commands: Point Design 2 vs. Scheduler at tau = 1.761 
1.8r 

Figure D.36    Increase in Slewing Capability from Point Design 2 
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1.8r 
LTV Max Acceptable Commands: Point Design 3 vs. Scheduler at tau = 3.106 

Figure D.37    Increase in Slewing Capability from Point Design 3 

LTV Max Acceptable Commands: Point Design 4 vs. Scheduler at tau = 5.615 

■c    1 - 

Figure D.38    Increase in Slewing Capability from Point Design 4 
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D.5    Constraint Surface Plots of Point Controllers: LTV System 

Constraint Surface for Point Design 1 at tau = 1 or v = 0.5774 
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Figure D.39    Constraint Surface for Point Controller 1 

Constraint Surface for Point Design 2 at tau = 1.761 or v = 0.7662 

Figure D.40    Constraint Surface for Point Controller 2 

D-20 



Constraint Surface for Point Design 3 at tau = 3.106 or v = 1.018 

Figure D.41    Constraint Surface for Point Controller 3 
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Constraint Surface for Point Design 4 at tau = 5.615 or v = 1.368 
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Figure D.42    Constraint Surface for Point Controller 4 
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LTV Point Constraint Surface From C(y(t)) 

Trim Point 

Commanded Value, v 

Figure D.43    Constraint Surface of Point Controllers, C(y(t)) 

LTV Point Constraint Surface After Output Error Comparison 

Trim Point 

Commanded Value, v 

Figure D.44    Constraint Surface of Point Controllers after Normalized Output Error 
Check 
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D.6    Constraint Surface Plots of Scheduler: LTV System 

Constraint Surface for LTV Scheduler from Point 1 at tau = 1 or v = 0.5774 
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Figure D.45    Constraint Surface for Scheduler from Point 1 

Constraint Surface for LTV Scheduler from Point 2 at tau = 1.761 or v = 0.7662 
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Figure D.46    Constraint Surface for Scheduler from Point 2 
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Constraint Surface for LTV Scheduler from Point 3 at tau = 3.106 or v = 1.018 
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Figure D.47    Constraint Surface for Scheduler from Point 3 

Constraint Surface for LTV Scheduler from Point 4 at tau = 5.615 or v = 1.368 
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Figure D.48    Constraint Surface for Scheduler from Point 4 
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LTV Scheduler Constraint Surface From C(y(t)) 

Trim Point 
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Figure D.49    Constraint Surface of Scheduler, C(y(t)) 

LTV Scheduler Constraint Surface After Output Error Comparison 
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Figure D.50    Constraint Surface of Scheduler after Normalized Output Error Check 
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