
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

A PIPELINED VECTOR PROCESSOR
AND MEMORY ARCHITECTURE FOR

CYCLOSTATIONARY PROCESSING

by

Raymond F. Bernstein, Jr.

Dissertation Supervisor: Herschel H. Loomis, Jr.

Approved for public release; distribution is unlimited.

1 28 047

DISCLAIMER NOTICE

TfflS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE
form Approved
OMB No. 0704-0188

PuotK nooning Burden tor this collection of Information n estimated to average 1 hour o«r response, including the time (or reviewing instructions, searching emsting data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other asoect of this
collection of information, including suggestions for reducing this Burden, to Washington Headauarten Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office Of Management and Budget. Paperwork Reduction Project(0704-0IM). Washington, DC 20S03.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1995

3. REPORT TYPE AND OATES COVERED ~

Doctoral Dissertation
4. TITLE AND SUBTITLE

A Piplined Vector Processor and Memory Architecture

for Cyclostationary Processing

5. FUNDING NUMBERS ™

6. AUTHOR(S)
Raymond F. Bernstein, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this report are those of the author and do not reflect the

official policy or position of the Department of Defense or the United States Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION COOE

13. ABSTRACT (Maximum 200 words)
This work describes a scaleable, high performance, pipelined, vector processor architecture. Special emphasis is

placed on performing fast Fourier transforms with mixed-radix butterfly operations. The initial motivation for the

architecture was the computation of cyclostationary algorithms. However, the resulting architecture is capable of

general purpose vector processing as well. A major factor affecting the performance of the architecture is the memory

system design. The use of pipelining techniques, coupled with vector processing, places a substantial burden on the

memory system performance. The memory design is based on an interleaved memory philosophy with a buffering

technique referred to as split transaction memory (STM). A crucial aspect of the memory design is the memory

decoding scheme. A design methodology is described for the specification of permutation matrices that yield near

optimal performance for the memory system. Another important aspect of this work is the development of a software

based simulator that allows a STM to be specified. The simulator, operating at the register transfer level, emulates

the processing of an address stream by STM and records the events for post-processing. The STM simulator was used

to evaluate three types of vector processing address patterns: constant stride, constant geometry radix-r butterfly,

and digit reversed. A random address pattern was also analyzed in the context of general-purpose computing. STM

simulation verified the near optimal performance of the STM.

14. SUBJECT TERMS
computer architecture, pipelined vector processing, interleaved memory,

fast Fourier transform, permutation matrix

15. NUMBER OF PAGES
275

16. PRICE COOE

17. SECURITY CLASSIFICATION
OF REPORT

. UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7SA0-01-280-5500 Standard Form 298 (Rev. 2-89)

PrescriOfd by ANSI S<d. £39-18

u

Approved for public release; distribution unlimited.

A PIPELINED VECTOR PROCESSOR
AND MEMORY ARCHITECTURE FOR

CYCLOSTATIONARY PROCESSING

Raymond F. Bernstein, Jr.
B.S., Texas Tech University, 1977

M.S., Naval Postgraduate School, 1982

DOCTOR OF PHILOSOPHY IN
ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1995

Author:

Approved by

Douglas J. Fouts
Asst. Professor of Electrical
and Computer Engineering

Richard W. Hamming
Senior Lecturer of
Computer Science

//

R. Clark Robertson
Assoc. Professor of Electrical
and Computer Engineering

isg^ CA^isL ^oTih^A^ju^
Charles W. Therrien
Professor of Electrical and
Computer Engineering

t-e l). TäJ^A fangt*
Maurilce D. Weir
Professor of Mathematics

Herschel H. Loomis, Jr.
Professor of Electrical and
Computer Engineering
and Space Systems,
Dis^grtatioß-Supervisor

Approved by:
Herschel H. Loomis, Jr., Chairman

Department of Electrical and Computer Engineering

Approved by: ^ i, 4rU-<~
Mauricle D. Weir, Associate Provost for Instruction

1X1

3V

ABSTRACT

This work describes a scaleable, high-performance, pipelined, vector processor

architecture. Special emphasis is placed on performing fast Fourier transforms with

mixed-radix butterfly operations. The initial motivation for the architecture was the

computation of cyclostationary algorithms. However, the resulting architecture is capable

of general-purpose vector processing as well. A major factor affecting the performance

of the architecture is the memory system design. The use of pipelining techniques,

coupled with vector processing, places a substantial burden on the memory system

performance. The memory design is based on an interleaved memory philosophy with a

buffering technique referred to as split transaction memory (STM). A crucial aspect of

the memory design is the memory decoding scheme. A design methodology is described

for the specification of permutation matrices that yield near-optimal performance for the

memory system. Another important aspect of this work is the development of a software

based simulator that allows a STM to be specified. The simulator, operating at the

register transfer level, emulates the processing of an address stream by STM and records

the events for post-processing. The STM simulator was used to evaluate three types of

vector processing address patterns: constant stride, constant geometry radix-r butterfly,

and digit reversed. A random address pattern was also analyzed in the context of general-

purpose computing. STM simulation verified the near-optimal performance of the STM.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. VECTOR ARCHITECTURE 3

C. PROBLEM STATEMENT 5

D. ORGANIZATION OF DISSERTATION 7

E. ORIGINAL CONTRIBUTION 8

II. HISTORICAL PERSPECTIVE AND RELATED RESEARCH 11

A. THE GENERAL PROBLEM 11

B. MEMORY ADDRESS STREAM 14

C. CACHE MEMORY 18

D. INTERLEAVED MEMORY 22

III. BUTTERFLY MACHINE ARCHITECTURE 41

A. INTRODUCTION 41

B. BASIC ARCHITECTURAL CONCEPTS 43

C. PERFORMANCE MEASURES 50

D. FAST FOURIER TRANSFORM 51

E. PERMUTATION-BASED MEMORY DECODING SCHEME 55

F. ONE-CHIP ARCHITECTURE 67

G. PARALLEL ARCHITECTURE 71

IV. DESCRIPTION OF SPLIT TRANSACTION MEMORY 75

A. PHYSICAL DESCRIPTION 75

B. SIMULATION MODEL 85

1. Signal Generators 85

2. STM Simulator 88

3. Graphics Programs 93

V. THEORETICAL PERFORMANCE ANALYSIS OF STM 99

VII

A. CONSTANT STRIDE 99

B. RADIX-/? BUTTERFLY ADDRESSING 107

C. DIGIT REVERSAL Ill

D. PERMUTATION-BASED DECODING PERFORMANCE 114

E. RANDOM ADDRESSING 124

VI. SIMULATION STUDIES 127

A. OVERVIEW 127

B. VECTOR PROCESSING EXPERIMENTS 147

1. Constant Stride: Conventional Memory Decoding 147

2. Constant Stride: Permutation-Based Memory Decoding 162

3. Radix-r Butterfly: Conventional Memory Decoding 177

4. Radix-r Butterfly: Permutation-Based Memory Decoding 187

5. Digit Reversed: Conventional Memory Decoding 200

6. Digit Reversed: Permutation-Based Memory Decoding 204

C. GENERAL-PURPOSE COMPUTING EXPERIMENT 210

VII. CONCLUSIONS 213

A. DESIGN DECISIONS 213

B. STM DESIGN METHODOLOGY 215

C. GENERAL CONCLUSIONS 216

LIST OF REFERENCES 219

APPENDIX MATLAB SOURCE CODE FOR STM SIMULATOR 223

INITIAL DISTRIBUTION LIST 253

VIII

LIST OF FIGURES

1.1 Spectral Correlation Function for BPSK Signal 2

III Generic Vector Processor Architecture 13

11.2 General-Purpose Processor 15

11.3 Vector Processor 17

11.4 Cache Memory System 19

11.5 Interleaved Memory Block Diagram 23

11.6 Cray I Memory Hierarchy 28

11.7 Interleaved Memory With Queues 34

11.8 Split Transaction Memory Overview 37

11.9 Comparison of Buffers Versus Cache Elements 39

ULI Butterfly Machine Environment 42

111.2 General Vector Machine Architecture 44

111.3 Vector Timing Diagram 45

111.4 1024-Point FFT: Pass 1 48

IH.5 1024-Point FFT: Pass 2 48

111.6 1024-Point FFT: Pass 3 49

111.7 Timing Characteristics for 1024-Point FFT 49

III. 8 Radix-2 In-place Decimation-in-frequency Flow Graph 52

m.9 Radix-2 Constant-Geometry Decimation-in-frequency Flow Graph 52

III. 10 Radix-4/Radix-2 In-place Decimation-in-frequency Flow Graph 54

III. 11 Permutation Address Pattern Maps 65

III. 12 Comparison of Permutation Address Patterns 66

III. 13 Simulation Permutation Matrix: NoBanks=4 66

III. 14 Simulation Permutation Matrix: NoBanks=8 66

III. 15 Simulation Permutation Matrix: NoBanks=16 67

III. 16 Simulation Permutation Matrix: NoBanks=32 67

III. 17 One-Chip Architecture 68

III. 18 SSCA Functional Diagram 68

III. 19 SSCA Execution: Channelization 69

IX

111.20 SSCA Execution: Correlation Multiply 70

111.21 SSCA Execution: N FFT 70

111.22 Parallel Architecture (One Board) 72

111.23 Process Allocation: Ratio of Backend to Channelizer Cycles 73

111.24 Processing Efficiency for SSCA (Ten Processor System) 74

IV.l Split Transaction Memory Overview 76

IV.2 Cache Element 77

IV.3 Top Level Memory System 79

IV.4 Smart Cache Design 81

IV.5 Relationship Between Smart Cache Counters 82

IV.6 Block A for Figure V-4 84

IV.7 STM Simulation Overview 86

IV.8 Simplified Algorithmic Description of stm 92

IV.9 Example Plot From m_anal Function 96

IV. 10 Example Mesh Plot for the Performance Parameter Speedup 97

V.l Interleaved Memory Address Space: Conventional Bank Selection 100

V.2 Timing Diagram: Optimal Throughput 103

V.3 Timing Diagram: Non-Optimal Throughput (cont.) 106

V.4 Radix-2 Constant Geometry Decimation-in-Frequency FFT 108

V.5 Timing Diagram for Radix-4 Butterfly Pattern (Standard Interleaving) 109

V.6 Timing Diagram for Radix-4 Butterfly Pattern STM(4,5,4) 111

V.7 Required Mappings When the Stride Equals the Number of Banks 118

V.8 Mapping Required When Stride is One Half the Number of Banks 121

VI.l Steady-State Throughput for Strides=l,3,5,7,9 (Conventional Decoding) 130

VI.2 Maximum Latency for Strides= 1,3,5,7,9 (Conventional Decoding) 130

VI.3 Steady-State Throughput for Stride=2, 6 (Conventional Decoding) 131

VI.4 Maximum Latency for Stride=2, 6 (Conventional Decoding) 131

VI.5 Steady-State Throughput for Stride=4 (Conventional Decoding) 132

VI.6 Maximum Latency for Stride=4 (Conventional Decoding) 132

VI.7 Steady-State Throughput for Stride=8 (Conventional Decoding) 133

VI.8 Maximum Latency for Stride=8 (Conventional Decoding) 133

VI.9 Steady-State Throughput for Stride=2* for k = 0,1,2 ...

(Permutation-Based Decoding) 135

VI. 10 Maximum Latency for Stride=2* for k = 0,1,2 ...

(Permutation-Based Decoding) 135

VI. 11 Steady-State Throughput for Radix=2 (Conventional Decoding) 137

VI. 12 Maximum Latency for Radix=2 (Conventional Decoding) 137

VI.13 Maximum Latency for Radix=4 (Conventional Decoding) 138

VI. 14 Maximum Latency for Radix=8 (Conventional Decoding) 138

VI. 15 Maximum Latency for Radix= 16 (Conventional Decoding) 139

VI. 16 Steady-State Throughput for Radix=2, 4, 8, and 16

(Permutation-Based Decoding) 140

VI. 17 Maximum Latency for Radix=2, 4, 8, and 16

(Permutation-Based Decoding) 140

VI. 18 Steady-State Throughput for Radix=2 (Conventional Decoding) 141

VI. 19 Steady-State Throughput for Radix=2/NoDigits=10

(Permutation-Based Decoding) 143

VI.20 Maximum Latency for Radix=2/NoDigits=10

(Permutation-Based Decoding) 143

VI.21 Steady-State Throughput for Radix=4/NoDigits=5

(Permutation-Based Decoding) 144

VI.22 Maximum Latency for Radix=4/NoDigits=5

(Permutation-Based Decoding) 144

VI.23 Steady-State Throughput for Radix=8/NoDigits=4

(Permutation-Based Decoding) 145

VI.24 Maximum Latency for Radix=8/NoDigits=4

(Permutation-Based Decoding) 145

VI.25 Steady-State Throughput for Radix=16/NoDigits=3

(Permutation-Based Decoding) 146

VI.26 Maximum Latency for Radix=16/NoDigits=3

XI

(Permutation-Based Decoding) 146

VI.27 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Strides=l,3,5,7,9 (Conventional Decoding) 149

VI.28 Comparison of Theoretical Versus Simulated Maximum Latency for

Strides=l,3,5,7,9 (Conventional Decoding) 150

VI.29 Detailed Simulation Run for Stride=l STM(4,2,4) 151

VI.30 Detailed Simulation Run for Stride=l STM(32,2,32) 152

VI.31 Average Simulated Throughput for Stride=l (Conventional Decoding) 153

VI.32 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Stride=2 (Conventional Decoding) 154

VI.33 Comparison of Theoretical Versus Simulated Maximum Latency

for Stride=2 (Conventional Decoding) 155

VI.34 Detail Simulation Run for Stride=2 STM(32,3,32)

(Conventional Decoding) 156

VI.35 Average Simulated Throughput for Stride=2 (Conventional Decoding) 157

VI.36 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Stride=4 (Conventional Decoding) 158

VI.37 Comparison of Theoretical Versus Simulated Maximum Latency

for Stride=4 (Conventional Decoding) 159

VI.38 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Stride=8 (Conventional Decoding) 160

VI.39 Comparison of Theoretical Versus Simulated Maximum Latency

for Stride=8 (Conventional Decoding) 161

VI.40 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Stride=l (Permutation-Based Decoding) 165

VI.41 Comparison of Theoretical Versus Simulated Maximum Latency

for Stride=l (Permutation-Based Decoding) 166

VI.42 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Stride=2 (Permutation-Based Decoding) 167

VI.43 Comparison of Theoretical Versus Simulated Maximum Latency

Xll

for Stride=2 (Permutation-Based Decoding) 168

VI.44 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Stride=64 (Permutation-Based Decoding) 169

VI.45 Comparison of Theoretical Versus Simulated Maximum Latency

for Stride=64 (Permutation-Based Decoding) 170

VI.46 Detailed Simulation Run for Stride=64 STM(4,3,4)

(Permutation-Based Decoding) 171

VI.47 Detail Simulation Run for Stride=64 STM(32,3,32)

(Permutation-Based Decoding) 172

VI.48 Second Detailed Simulation Run for Stride=64 STM(32,3,32)

(Permutation-Based Decoding) 173

VI.49 Simulated Average Throughput for Stride=64

(Permutation-Based Decoding) 174

VI.50 Simulated Steady-State Throughput and Average Throughput for

Stride=3 (Permutation-Based Decoding) 175

VI.51 Simulated Steady-State Throughput and Average Throughput for

Stride=5 (Permutation-Based Decoding) 176

VI.52 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=2 (Conventional Decoding) 178

VI.53 Comparison of Theoretical Versus Simulated Maximum Latency

for Radix=2 (Conventional Decoding) 179

VI.54 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=4 (Conventional Decoding) 180

VI.55 Comparison of Theoretical Versus Simulated Maximum Latency

for Radix=4 (Conventional Decoding) 181

VI.56 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=8 (Conventional Decoding) 182

VI.57 Comparison of Theoretical Versus Simulated Maximum Latency

for Radix=8 (Conventional Decoding) 183

VI.58 Comparison of Theoretical Versus Simulated Steady-State Throughput

X1I1

for Radix=16 (Conventional Decoding) 184

VI.59 Comparison of Theoretical Versus Simulated Maximum Latency

for Radix=16 (Conventional Decoding) 185

VI.60 Average Throughput for Radix-2 Butterfly Pattern (Conventional Decoding).... 186

VI.61 Average Throughput for Radix-16 Butterfly Pattern

(Conventional Decoding) '. 187

VI.62 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=2 (Permutation-Based Decoding) 189

VI.63 Comparison of Theoretical Versus Simulated Maximum Latency for

Radix=2 (Permutation-Based Decoding) 190

VI.64 Detail Simulation Run for Radix-2 STM(8,3,8)

(Permutation-Based Decoding) 191

VI.65 Detail Simulation Run for Radix-2 STM(8,4,8)

(Permutation-Based Decoding) 192

VI.66 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=4 (Permutation-Based Decoding) 194

VI.67 Comparison of Theoretical Versus Simulated Maximum Latency

for Radix=4 (Permutation-Based Decoding) 195

VI.68 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=8 (Permutation-Based Decoding) 196

VI.69 Comparison of Theoretical Versus Simulated Maximum Latency

for Radix=8 (Permutation-Based Decoding) 197

VI.70 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=16 (Permutation-Based Decoding) 198

VI.71 Comparison of Theoretical Versus Simulated Maximum Latency

for Radix=16 (Permutation-Based Decoding) 199

VI.72 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=2 / NoDigits= 10 (Conventional Decoding) 201

VI.73 Detail Simulation Run for Radix=2/NoDigits= 10 STM(4,3,4)

(Conventional Decoding) 202

xiv

VI.74 Detail Simulation Run for Radix=2/NoDigits= 10 STM(32,3,32)

(Conventional Decoding) 203

VI.75 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=2 / NoDigits= 10 (Permutation-B ased Decoding) 205

VI.76 Comparison of Theoretical Versus Simulated Maximum Latency for

Radix=2 / NoDigits=10 (Permutation-Based Decoding) 206

VI.77 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=4 / NoDigits=5 (Permutation-B ased Decoding) 207

VI.78 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix=8 / NoDigits=4 (Permutation-B ased Decoding) 208

VI.79 Comparison of Theoretical Versus Simulated Steady-State Throughput

for Radix= 16 / NoDigits=3 (Permutation-B ased Decoding) 209

VI.80 General-Purpose Experiment: Speedup 211

VI.81 General-Purpose Experiment: Throughput 211

VI.82 General-Purpose Experiment: Maximum Latency 212

xv

XVI

LIST OF TABLES

III. 1 Pass Definition 46

111.2 Pass Description 47

111.3 Binary Counting Sequence 61

IV.1 Digit Reversal for Three Digits Base 2 87

VI.1 Vector Processor Experiments 128

VI.2 NoCE Evaluated in the Third Vector Processor Experiment 136

VI.3 NoCE Evaluated in the Sixth Vector Processor Experiment 142

VI.4 General-Purpose Computer Experiment 147

VI.5 Comparison of Analytic Versus Simulated Speedup 210

XVH

XVIH

ACKNOWLEDGMENT

I give thanks to my committee for their dedication to my education. A very

special thank you to my advisor, Professor Herschel. H. Loomis Jr. His support and

guidance have been unfailing. This gift of knowledge is one which I can never repay.

This endeavor would not have been possible without his long term commitment.

As much credit must go to my wife and friend Anna Lee, as to me for her patience

and endurance over the past six years. Thank you also for bringing into this life Lauren,

Paul, and Claire during this time period.

All praise and glory to my Lord and Savior Jesus Christ who makes all things

possible.

xix

XX

INTRODUCTION

BACKGROUND

This research began with an investigation of computer architectures for computing

digital implementations of the Spectral Correlation Function (SCF), the central function of

spectral correlation or cyclostationary analysis. The SCF is defined as:

S^n^^jX^wJ + ^X^Wj-^dW
(1.1)

where

XT (t, f) = \'+T/2 x(w)e-i2niwdw. [Ref 1] (1.2)

and T is the length of a time window for Equation (1.2). The variable / is called the

spectral location parameter and corresponds to the frequency parameter of a Fourier

transform pair. It is expressed as

' = *

a\
f + ir\+ f~ 2)

a

\ 2)
(1.3)

a is the spectral separation parameter representing a frequency of second-order

periodicity, a, also referred to as the cycle frequency, is expressed as

cc =
(a\ („ a^
/+7 " '"7 • (L4)

XT(t, f) is the Fourier transform of the time series signal x(t) of length T centered

at time t.

The SCF of most man-made signals result in non-zero cycle frequencies. An

example of a magnitude plot of a SCF for a binary phase shift keyed (BPSK) signal is

shown in Figure 1.1. Each non-zero line (called a feature) in the plot corresponds to a

unique value of a. The traditional power spectral density is a special case of spectral

correlation analysis (i.e., the line for a = 0). The power spectral density is the feature at

the back of the plot. Three smaller cycle features as well as a large cycle feature can be

seen in the plot. Unlike the power spectral density, noise present in other cycle

frequencies will not correlate, and with sufficient averaging, will yield a feature

regardless of the noise level. This provides a means for detecting a weak signal hidden in

noise.

2.581 -,

0.498

/

Figure 1.1 Spectral Correlation Function for BPSK Signal

Several digital algorithms have been developed for estimating the SCF including

the Frequency Smoothing Method (FSM) and the time smoothed variants FFT

Accumulation Method (FAM) and the Strip Spectral Correlation Algorithm (SSCAJ [Ref

2] [Ref 3]. Each of these algorithms are heavily based on vector processing in general

and FFT techniques in particular. The computational complexity of these algorithms has

been extensively analyzed. Applications for cyclostationary analysis can be found in

Gardner [Ref 1] and Gardner [Ref 4]. The computational complexity for the SSCA will

be discussed further in Chapter 0, Section F. A computer designed to exploit spectral

correlation features is referred to as a spectral correlation analyzer (SCA).

A variety of architectures were investigated for computing the SCF including

networks of general-purpose computers, digital signal processing (DSP) architectures,

and more specialized architectures based on vector processing techniques.

For example, the SSCA was implemented on a network of Sun workstations

connected with an Ethernet. The software used to facilitate communications and control

of the distributed application was Parallel Virtual Machine (PVM). It was found that the

SSCA could be partitioned in such a way to permit effective parallel execution on

numerous workstations. This provides a means for computing a computationally

intensive instance of the SSCA during off peak hours of the computing facilities.

The primary focus however was to find computer architectures that would

compute the SCF in real or near-real time. Transputers were examined to determine

feasibility of real time and near-real time computation for the fast Fourier transforms

(FFTs) in particular and spectral correlation algorithms in general. The Transputer is a

general-purpose processor that contains support for quick context switching and

communications on chip. It is designed to be scaleable and is a valid technology for

many application domains. However, the number of Transputers that would be required

to provide the needed computation was found to be too many for a reasonable

implementation for this application.

Highly specialized architectures have also been considered for several

cyclostationary algorithms. Architectures for both frequency and time smoothing

algorithms may be found in Roberts [Ref 5] and [Ref 6]. These architectures are based on

mapping hardware onto the algorithmic requirements thereby providing architectures that

can yield optimal performance. A practical disadvantage to this approach is the reduced

cost effectiveness of a hardware implementation that is dedicated to a particular

algorithm.

B. VECTOR ARCHITECTURE

Another architecture reviewed was based on vector array processors. This

approach, the subject of this dissertation, is based on streaming data through a highly

pipelined vector processor with, in the ideal case, no wait states. The basic concept can

be used to build highly optimized architectures for many but not all of the functions

needed in a SCA (i.e., those portions that can be vectorized). Alternatively, this basic

approach can be used to build a more generalized vector processor that might be used for

any problem that lends itself to vector processing. This more generalized approach will

be referred to hereafter as the butterfly machine architecture. The butterfly machine

(BFM) architecture can also be scaled. An architecture designed with multiple vector

processors will also be described and is referred to as the parallel butterfly machine

architecture. This name is not to be confused with the BBN Butterfly by BBN Advanced

Computers [Ref 7].

Given the technology available today, the key issue to consider when evaluating

the butterfly machine architecture is the requirements of the memory system. The

streaming of data through the pipelined vector processor requires a data reference from

each vector each clock cycle. A typical vector operation requires two input vectors and

creates one output vector, therefore implying three data references per clock cycle per

processor. Given that the vector processor is pipelined, the clock rate applied to the

processor will be on the higher end of the scale available with current technology.

Multiple memory references per clock cycle and a high clock rate suggest that designing a

memory to accommodate this requirement is a primary area of concern.

As will be seen in Chapter 0, the butterfly machine architecture calls for several

large memories for each vector processor. Given the data rate requirements stated above,

such a memory system could be accommodated by using fast static random access

memory (SRAM). This is not a desirable solution because SRAMs are much more

expensive per bit relative to the dynamic random access memory (DRAM) alternative.

Secondary factors favoring a bulk storage approach such as DRAM include their need for

less power and circuit board real-estate. The issue of cost becomes more acute when

considering the parallel butterfly machine architecture. Therefore, a cost effective

implementation of the butterfly machine architecture will use bulk storage technology

such as DRAM instead of SRAM given the current technology base.

DRAM has been the memory technology for implementing main memory in

general-purpose computers for some time. Almost any general-purpose computer

acquired today will have a memory system that is composed of a main memory consisting

of DRAM technology coupled with one or two levels of SRAM-based cache memory.

However, vector array machines frequently rely on some form of banked interleaved

memory (i.e., a memory system consisting of parallel memories that attempts to exploit

the parallelism to increase throughput). The relative merits of cache versus interleaved

memory techniques for a memory system will be discussed in detail in Chapter II.

C. PROBLEM STATEMENT

This dissertation describes a computer architecture that is optimized for vector

processing in general and cyclostationary processing in particular. The memory system

design is the key component of this architecture for the reasons discussed in Section B

above.

There are two characteristics of the butterfly machine environment that

distinguish it from a general-purpose computing environment and have a substantial

effect on the solution to the memory system. First, the memory references are very dense

when compared to the general-purpose computing case. As indicated in the discussion

above, a data reference is required for each vector on each cycle. This imposes a

requirement of the memory system that is more stringent than would be expected for a

general-purpose computer.

The second characteristic of the butterfly machine environment is that all memory

addresses are known before the first elements of the vector are processed. Therefore, a

memory reference stream can be generated with certainty for instructions and data to be

executed in the future. This implies that substantial latency can be tolerated given that

the vector length is long relative to the latency. Note that this is in sharp contrast to the

general-purpose computing architecture where very little latency can be tolerated without

having a substantial impact on performance. It will be shown how this latency is traded

for memory bandwidth using interleaved memory.

Two aspects of the butterfly machine architecture diminish the usefulness of

traditional caching techniques. First, since memory must operate at the same speed as the

processor, there are no "processing only" cycles that can be used for loading the cache in

parallel. This becomes increasingly more important when the size of the cache lines are

large with respect to the bus size. Additionally, address reference patterns associated

with vector processing often do not meet the locality of reference criteria needed for a

memory system using a cache.

The primary objective of this dissertation is to define a low-cost attached vector

processor architecture that is well suited for cyclostationary analysis. In particular, this

architecture will perform fast Fourier transforms (FFTs) and other vector operations to

include complex addition and multiplication. By low cost, it is meant that the vector

processor architecture is compatible with workstations rather than mainframes or

supercomputers. A key component of this architecture is a memory system that

incorporates low-cost bulk storage memory. Although DRAMs, the current choice given

today's technology continue to increase in capability, their access speeds are slower than

microprocessors by as much as a factor of ten or more. This research addresses the

design of a memory system, based primarily on relatively slow bulk storage devices, that

will provide memory bandwidth that is sufficient to maintain optimum processor

performance. The technique used to construct such a memory is referred to as Split

Transaction Memory (STM).

STM will also be analyzed in the context of general-purpose computing. This

investigation into general-purpose computing provides a more comprehensive

understanding of the use of STM for other computing environments.

Architectures for computing FFTs have been studied since the late sixties. One of

the earliest works is by Pease [Ref 8]. A hardwired signal processor for radar

applications is described by Groginsky [Ref 9]. Another developed by Lincoln Labs

Massachusetts Institute of Technology, is found in Filip [Ref 10]. This processor is

designed using multiple microprocessors that communicate via a bus. Two methods for

resolving the bit-reversal problem are discussed by Dieffenderfer [Ref 11]. Another

hardwired processor, using a radix-4 butterfly, is presented by Corinthios [Ref 12]. This

processor supports real-time applications transforming 256-point vectors with signal

sampling rates up to 1.6 million samples a second. A VLSI architecture is proposed by

Sapiecha [Ref 13]. This architecture consists of two and three dimensional arrays of

processor elements. Two real-time processors include a Winograd Fourier transform

processor presented by Sommer [Ref 14] and a processor designed for synthetic-aperture-

radar applications Franceschetti [Ref 15].

The work contained in this document is distinguished from the work noted above

in that the processor is designed for general vector processing as well as FFT

computation. The architecture presented in this dissertation is particularly well suited for

input vectors of length 220 and larger. The application is scaleable providing a real-time

or near-real-time response. Major emphasis is on a low-cost memory design.

D. ORGANIZATION OF DISSERTATION

The following conventions will be used to more clearly identify features of the

document. Regular text is in Times New Roman font. Computer program names,

algorithms, and variables are printed with Arial font. Other variables discussed in a

different context than a program are shown as italic Times New Roman.

The remainder of this dissertation is organized as follows. Chapter n, Historical

Perspective and Related Research, provides a brief description and comparison of several

computer architectures and a comparison of cache and interleaving memory schemes. A

history of related research in interleaved memory is then presented.

The next chapter, Butterfly Machine Architecture, describes the butterfly machine

architecture and provides a context for use of STM.

Chapter IV, Description of Split Transaction Memory (STM), presents STM first

at a conceptual level, followed by a hardware design. A description of the STM

Simulator is then presented.

A theoretical model of STM performance parameters is described in Chapter V,

first using conventional bank number decoding, followed by permutation-based decoding.

Chapter VI, Simulation Studies, describes the experiments. The theoretical

performance of the STM, based on the results of Chapter V, is detailed for each

experiment. The results of the simulation runs of each experiment is described and

compared to the theoretical performance. Conclusions that are specific to an experiment

are also stated.

Chapter VE lists top level conclusions and describes further research.

The following section describes the original contributions of this work.

E. ORIGINAL CONTRIBUTION

The primary contribution of this research is an attached vector processor

architecture designed for executing algorithms that require an efficient implementation of

vector processing in general, and the fast Fourier transform (FFT) in particular. Classes

of problems addressed by this type of architecture include signal processing, spectral

analysis, digital filtering, and cyclostationary algorithms. Cyclostationary processing is

particularly appropriate for this architecture because of its computational complexity.

This architecture, referred to as the butterfly machine architecture, provides a scaleable

solution compatible with workstation environments. A key component of this

architecture is the memory design referred to as Split Transaction Memory (STM). STM

exploits the specific memory reference stream characteristics associated with

cyclostationary processing and provides a throughput to the vector processor that

approaches 1.0 for anticipated address patterns. There are two aspects of STM that are of

special note.

• STM is an interleaved memory that buffers memory references. The

primitive organizational element for buffering within a bank is referred to as a

cache element. The use of cache elements within banks provides a more

efficient organization than standard buffers when three or more cache

elements are called for in each bank.

• STM uses a memory decoding scheme that is optimized for memory

reference patterns that are characterized by powers of two. This is

accomplished by using permutation matrices to decode bank numbers. A

design methodology is developed for constructing permutation matrices that

are designed for address patterns with any constant stride of powers of two

that yield near ideal performance for interleaved memory systems. A second

methodology is presented that results in permutation matrices that yield near

ideal performance for constant geometry radix-r butterfly address patterns.

The radix-r butterfly permutation matrices, modified to support constant

stride of powers of two address patterns, provide near ideal performance for

constant stride and radix-r butterfly address patterns. The third address

pattern required for FFT-based vector processing, digit reversal, also yields

near ideal performance when the radix of the butterfly is equal to or greater

than the number of banks. When this condition is not met, the actual

performance varies from near ideal to fair. Theory is developed for steady

state throughput and maximum latency for each of the address patterns.

Another unique contribution of this research is an event driven software simulator

that provides for analysis of STM memory systems. The STM simulator accepts a

description of the STM memory and a memory reference stream. When this memory

reference stream is processed, details of each cycle are stored at the register level for later

analysis. Post analysis routines provide plots and tables for analysis of the simulation

run. Programs have also been developed to generate input address streams for constant

stride, radix-r butterfly, digit reversed, and random address streams.

10

II. HISTORICAL PERSPECTIVE AND RELATED

RESEARCH

A. THE GENERAL PROBLEM

A well designed computer system is one that exhibits a balance of processing

capability and communication bandwidth among the various components, delivered at a

favorable cost-performance ratio. This balance is established in the context of an existing

technology base. Since the advent of the microprocessor, processor design has been at

the forefront of computer architecture. Further, the combination of advances in clock

rates made available with improvements in the electronics, and architectural advances

such as the issuing of multiple instructions per clock cycle, has resulted in an increasing

gap between processor computational capability and the ability for memory systems to

provide data at sufficient bandwidth to support these computations for general-purpose

processors Comerford [Ref 16]. This chapter will summarize techniques that have been

explored to enhance the memory system of computers.

Before proceeding further, it should be noted that the scope of memory design

techniques has been strongly influenced by the type of computer architecture under

consideration. The advent of a variety of multiprocessor architectures has provided both

new challenges as well as opportunities. Classes of computer architectures that will be

discussed below in the context of the processor-memory imbalance are the multiple

instruction multiple data (MIMD) and the vector processor architectures.

Two prominent MIMD architectures that have evolved and are prominent today

are the distributed-memory architecture, and the shared-memory architecture. The

distributed-memory architecture extends the von Neumann architecture by connecting

single-instruction single-data (SISD) machines with local and wide-area networks. This

provides an alternative to larger monolithic computer systems, namely a system of

smaller computers networked together. To the degree that this implies the need for

smaller less capable processors in the networked system, the processor-memory

imbalance is eased.

11

The shared-memory architecture is based on two or more processes sharing a

memory address space. These processors may be centralized or distributed physically as

indicated in Hennessy [Ref 17]. Clearly increasing the ratio of processors to a memory

further increases the imbalance between processor capabilities and the corresponding

demands on the memory system. However, this architecture provides an opportunity to

exploit economies of scale of the memory system. Further, this architecture generates an

address stream that is a composite of the address streams generated by the individual

processors. This multiprocessor address stream may have characteristics that are

exploitable for improving memory performance.

A generic vector processor architecture is shown in Figure II. 1. The vector

processor architecture usually consists of one or more special purpose vector processors

serviced by a memory system. A vector supercomputer, such as the Cray Research Y-MP

is typically designed with vector processors and also contains one or more general-

purpose processors that can operate on scalar values. But as the name suggests, the

processor is specially designed to operate upon one or more vectors. Typically, a single

processor will accept two vectors and generate a third vector as an output. The resulting

output vector of one processor may serve as an input vector to a second processor. This

provides for high-level pipelining of the algorithm. Since the operation performed by a

vector processor is also typically pipelined, a new piece of data is generally required for

each clock cycle. For a vector processor accepting two vectors as inputs and generating a

third as output, three memory references are needed each cycle. Further, pipelining the

processor allows these processors to operate at higher clock rates than normally found in

computer systems. The high clock rate, the need for a data element from each vector each

clock cycle, and the existence of multiple vectors provides a substantial load on the

memory system.

The preceding discussion suggests that there are many computer architectures and

that the features of the particular architecture will have an impact on the memory

requirements and design. This dissertation will focus on a variation of the vector

processor architecture. This architecture, referred to as the butterfly architecture, will be

presented in the next chapter. As a vector processor, it has many of the properties

12

described for the vector processor architecture above. It differs in that it is exclusively a

vector machine (i.e., it does not perform any scalar operations).

Scalar
Processor

1

Vector
Register

Bank

t

Main
Memory

Interconnect

Vector
Processor

#1

•

•

f
Vector

Processor
#k

Figure II.l Generic Vector Processor Architecture

The remaining portion of this chapter will describe in some detail the two primary

techniques used to build memory systems. These techniques are known as cache and

interleaved memory systems. Before discussing cache and interleaved memory system, a

brief discussion of the characteristics of a memory address stream will be presented.

Those characteristics that effect the memory address stream will also be addressed.

13

Much of the material presented in this chapter is a summary of ideas that can be

found in many sources. Cache and interleaved memory concepts can be found in Stone

[Ref 18]. Another source for cache memory is Hennessy [Ref 19].

B. MEMORY ADDRESS STREAM

In this section, the characteristics of a memory address stream will be described

for a general-purpose processor and for a vector processor. Any method used to describe

or characterize the memory address stream for the purpose of anticipating future memory

references is referred to as a characteristic.

The first factor to consider that effects the characteristic of a memory reference

stream is the type of processor that is generating the address stream. Two types of

processors will be considered here: a general-purpose processor and a vector processor.

First, the general-purpose processor will be considered. A much utilized example

of a memory reference stream characteristic for general-purpose processors is locality of

reference. It has been postulated and confirmed under many circumstances that addresses

close by in the memory space to the most recently accessed memory address, are more

likely to be addressed in the near future than those that are not nearby. Another example

of a general-purpose processor characteristic is that instruction fetches have a tendency to

be sequential or linear (i.e., the execution of a set of instructions that do not contain

branches will follow one after the other.)

A model of general-purpose processing architecture (i.e., von Neumann) with the

three basic components of processor, interconnect, and memory is shown Figure II.2.

The processor establishes the de facto requirements for memory accesses for

which the interconnect and memory must respond. Said in another way, the processor is

usually thought of as taking the active role generating the memory reference stream. This

is accomplished by repeating the execution cycle consisting minimally of a fetch, decode,

and execution cycles. The two types of memory references generated by the processor are

instruction fetches and data read or write references. As indicated earlier, instruction

references demonstrate a linearity property because they are typically segments of

14

instructions in a program that will execute without branching. Another characteristic of

instruction fetches is that they are almost always read only.

Processor Interconnect Memory

Instruction Set
Floating Point
Local memory

support

Figure II.2 General-Purpose Processor

The address stream characteristics are influenced by the following factors:

• characteristics of the processor,

• characteristics of the software development tools, and

• application program characteristics.

Characteristics of the processor include first the instruction set architecture (ISA).

The majority of the instructions in a complex set instruction computer (CISC) architecture

such as the Motorola 680X0 series contain memory references as an integral part of the

instruction (i.e., one or two memory references are made as a result of the execution of

the instruction. This is in contrast to a reduced instruction set computer (RISC) ISAs

where all memory references are accomplished with dedicated memory reference

instructions. The ratio of instruction references to data references is generally higher

because the set of RISC instructions is simpler and fewer by design. Therefore, the

sequential characteristic is more pronounced.

The number of registers available to the processor also effects the memory address

stream. The more registers available, the more variables can be maintained at the

processor without read and write accesses back to main memory. For a larger number of

registers, the number of memory references will decline in general, and the ratio of the

15

number of instruction references to data references will increase. Most programs

however cannot use more than 20 to 30 registers. Thus, the more recent RISC designs are

based on 32 registers. When more silicon is allocated to registers such as with the Sun

Sparc design, the number of registers for one context is limited to 32 registers. [Ref 20]

Software languages and their corresponding compilers also have an impact on the

character of the memory reference stream. Extensive use of looping constructs such as

the WHILE statement provides for locality of reference whenever the loop executes

multiple times. Also, the longer the loop, the greater the linearity of the memory

reference stream. The programming practice of modular decomposition and the use of

the function construct also yields locality of reference. Allocation of memory for data

also provides some locality of reference. For example, in the C programming language,

local variables of a function are stored together. Variable passing using the stack

provides some locality of reference. However, dynamic allocation of memory is

accomplished from a data structure referred to as a heap. Dynamic allocation can result

in variable references to be spread about the address space if they are allocated and

deallocated frequently.

The last factor, application program characteristics, provides the biggest

uncertainty regarding the memory reference stream. A program language provides

substantial flexibility regarding the implementation of a program. Given the particular

design decisions of any memory system, it is possible to write an application that will

exploit the weaknesses of the memory system.

The other type of processor that will be discussed is the vector processor. A

vector processor accepts one or more vectors as input, as well as an operation or function

code, that specifies the function to be performed as shown in Figure II.3. The vector

processor will accept one data input from each input vector on each clock cycle. Further,

the processor will perform an operation repeatedly on a finite number of data points. For

example, if the operation was addition, then the processor would add each pair of points

from two vectors. A radix-4 operation would perform the butterfly operation on data sets

16

of four points at a time. In general, input data vectors for a radix-r operation include the

data vector and a vector containing twiddle factors.

Function
Code

Input Vector #1

Input Vector #2

Vector
Processor

Output Vector

Figure II.3 Vector Processor

An important aspect of the vector processor is that the operation to be performed

is by nature repetitive and therefore the need for instruction fetches is sparse relative to

data references. Therefore, for practical purposes, the instruction fetches may be ignored

in some circumstances.

The data reference stream has several important properties. First, for a given

vector operation, a vector is either an input or an output for all data points. Therefore, the

memory reference stream will either be a series of reads or writes with respect to the

vector. Further, for a given operation, vectors are accessed in a well defined path and not

subject to run time decisions. In other words, the memory address pattern for data

references for a vector machine are primarily determined at compile time. For one vector

operation and the associated data, a vector processor could generate the entire memory

reference stream prior to executing the first instruction! This is in sharp contrast to the

general-purpose computing case where the next memory reference may be determined by

the results of executing the current instruction. At a higher level of program control,

there may be conditional branch instructions that may have to be evaluated before a

particular vector operation can be executed.

17

There are three addressing patterns that are of interest for the butterfly machine

architecture to be described in Chapter 0:

• constant stride s,

• constant geometry radix-r butterfly, and

• digit reversal.

The most common addressing patterns used in vector machines are patterns of

constant stride s, where s is the spacing between the references. For example, a vector

multiply of two vectors would require a constant stride of one for each input vector as

well as the output vector.

The constant geometry radix-r butterfly, and the digit-reversed pattern are both

used to compute FFTs. The constant geometry radix-r butterfly pattern is composed of a

number of constant stride sequences. One pass of the digit reversal pattern is required for

each FFT. A discussion of these memory reference patterns can be found in Oppenheim

[Ref21].

C. CACHE MEMORY

There are two basic memory enhancement techniques that have been developed to

minimize the impact of the processor-memory imbalance, namely cached and interleaved

memory. Cache memory is by far the most pervasive because it has been found to be

effective when dealing with the general-purpose computer architecture. It is so successful

that almost any computer system acquired today will have at least one cache in the

memory system and frequently more than one. A cache memory system exploits the

locality of reference property described in the section above.

Banked interleaved memory has been used in a general-purpose architecture as a

secondary enhancement technique to cache memory. However, it is the primary means

for increasing memory bandwidth for vector processor architectures such as

supercomputer vector processors.

Figure II.4 illustrates the physical organization of a cache memory system. The

cache memory is a small memory when compared with the main memory, but operates at

18

the same speed as the processor. It logically can be divided into a cache memory, and a

cache memory controller. From the processor's interface looking down, the cache looks

like main memory where the memory response time is not constant. To main memory,

the cache appears to be a bus master that always requests a block of memory references at

a time.

Processor

i
Dedicated
Interconnect

r
Cache

i

1

i
w
B

[emory
us

Main
Memory

Figure II.4 Cache Memory System

The cache memory is organized into equal sized blocks referred to as lines or

cache lines. Representative sizes for cache lines, /, range between 16 and 64 bytes. Main

memory is logically organized into blocks of length /.

Whenever a read-memory reference is made by the processor to the cache, the

reference is either contained in the cache or it is not. This is termed a cache hit or miss

respectively. When a program begins, the cache is empty and therefore the first reference

is by definition a miss. Under these circumstances, the cache must obtain the memory

19

reference from main memory. The cache will obtain the entire line associated with the

reference, store the line in a cache line, and pass the reference back to the processor. The

cache is then ready to process another memory request.

On the next memory reference request, if the request is not located in the cache

(i.e., if the request is not located within the cache line that was previously loaded), then

the process repeats as before. If however, the reference is contained in the cache, then the

cache simply responds with the data. The dedicated interconnect between the cache and

the processor will generally allow the data access to proceed at the processor clock rate.

The bandwidth of a cache-based memory system may be modeled in terms of the

effective cycle time. The effective cycle time Teff is defined as the average cycle time to

access one word when filling a cache line, adjusted for the number of elements of the line

not actually used and the number of elements of a line used more than once. This is the

effective bandwidth as seen by the processor. The effective bandwidth can be expressed

as:

T" = T-T.lk- ahl>

where,

Tca=J> (H.2)

and

Tc is the time required to fill a cache line,

/ is the number of words in a cache line,

la is the number of words in a cache line that are accessed by the processor, and

lr is the number of times that words in a cache line are accessed by the processor

after the first access (i.e., repeat accesses).

The first term of Equation (II. 1), Tca represents the average cycle time to access

one word. The second and third terms reflect adjustments based on the degree that the

locality of reference property is present. The second term is the fraction of the words in

20

the line actually utilized by the processor. If all of the words are accessed, then this

reduces to unity. If a fraction of the words are used, then the average cycle time is

adjusted by the reciprocal of that fraction. The third term reflects the benefit for reusing a

word without having to fetch it back from main memory. If no words are reused, the term

reduces to unity. If each term was reused once, then the term would be one half.

Equation (II. 1) illustrates that the effective bandwidth provided by the cache can vary

substantially in either direction from the average cycle time to load a cache line,

depending upon the locality of reference.

Caches are classified based on the kind of information that is to be cached. There

are instruction caches, data caches, and combined caches. An instruction cache is easier

to build because the instruction fetches are read-only and therefore the hardware

necessary for maintaining consistency between the instructions in the cache, and

instructions in main memory is not necessary. Further, if it is determined that the locality

of reference is different for instructions and data, then separate data and instruction

caches can be better tailored to their respective needs. However, a combined data and

instruction cache can use the cache resources efficiently.

A short discussion on the time-varying characteristics of cache is in order before

leaving the discussion of cache memory. When a process begins, none of the process's

instructions or data is contained in the cache. Most of the initial references are misses,

but as the process progresses, more and more of the program and data necessary for the

process are loaded into the cache. The contents of the cache are "demand driven" by the

processor's references. A point in time is reached where almost all of the address

references are in the cache and therefore most references are cache hits. This assumes

that the cache has sufficient capacity to support the process. The period of time between

the start of the process, until the process is mostly cache hits is referred to as the transient

time. That period of time beginning with mostly cache hits is referred to as steady-state

time. When a process transitions to another part of the program, or when another

process's context is switched in, then another transient is experienced followed by a

steady-state period.

21

A process's memory address space as well as the cache lines can be illustrated

graphically. The area of the memory address space that is contained in the cache or

alternatively, those cache lines that contain the process's references at the point of steady

state, is referred to as the process's, foot print. If such a graphic were available and

updated in real time, it would show at any instant that portion of the memory space that is

active. The time-varying dynamics of the memory address space and the cache would be

viewed through continually updated graphics throughout the life cycle of the processes.

[Ref22]

D. INTERLEAVED MEMORY

The other memory management technique to be described is interleaved memory.

A block diagram of a banked interleaved memory is shown in Figure II.5. Memory

devices (e.g., DRAMs) are mapped into the address space such that the memory address

space is partitioned evenly among the banks. The primary parameters that define an

interleaved memory scheme include the number of banks and the scheme for mapping

memory addresses to a bank number and index within a bank pair. This will be referred

to as the bank number decoding and bank index decoding schemes respectively. In

general it is desirable to have a large number of banks since the potential data rate is

greater. Electrical properties such as fanout suggest a cost associated with more banks

and therefore a cost benefit tradeoff must be evaluated for a given application. As is

indicated in the discussion below, the bank number selection criteria also may have an

impact on the number of banks chosen.

The following is a brief description of the operation of a banked memory system

that incorporates interleaving to increase memory performance. A bank will accept a

memory request if the bank is not processing a previous memory request. Therefore, as

many as k memory requests can be pending at a time (i.e., one from each bank). If a busy

bank is selected (i.e., if it is processing a previous memory request) then the memory

system stalls. A memory system is said to stall when the current memory request is not

accepted. No other memory requests will be allowed until the selected bank has

22

completed the current memory request. The stalled memory request is then accepted and

the process continues.

Sus

Bank
#0

Bank
#1

Bank
#k-l

1 t it

IF H

Processor

Figure II.5 Interleaved Memory Block Diagram

If each of the banks can be kept busy, then a total memory bandwidth of kB words

per second can be obtained from the memory system where k is the number of banks and

B is the bandwidth of a single bank. In order for this to occur, all banks must be

continuously processing memory access requests and the memory ratio must be less than

or equal to the number of banks. This is accomplished for example, if the banks are

selected in a round robin fashion (e.g., 0, 1, 2, 3 ... k-2,k-l, 0, 1, 2, ... k-2, k-\, 0, 1 ...

where k is the number of banks). The effectiveness of interleaved memory is then

directly related to the ability to keep the banks busy which is accomplished by providing a

work distribution that is approximately uniform over time.

The three primary performance measurements of interest for interleaved memory

systems in this effort are:

• latency (L),

• throughput (TP), and

23

• speedup (S).

Latency (L) is defined as the number of memory cycles from the time a processor

attempts to issue a memory reference request, until the time the request is completed.

Note that latency contains two basic components. First, latency occurs due to the delay in

the memory bank necessary to service a memory request. Second, latency will increase if

the memory system is saturated and therefore the memory system does not accept

additional memory references.

Latency is also time-varying, and can be measured at each point a memory

response is completed. This time-varying view of latency can also be depicted

graphically. Scalar measures of latency include maximum latency (Lmax), average latency

(Lavg), and the standard deviation of the latency (Lstd).

The memory ratio (MR), introduced in the cache memory section, is directly

related to latency in interleaved memory systems. The minimum latency for an

interleaved memory system is the memory ratio plus any overhead related to the

interleaved memory system. Interleaved memory systems generally use registers to

receive an input and for placing data onto the bus for read requests. This adds two cycles

to the minimal latency and therefore the minimum latency for an interleaved memory

system will be

Lmin=MR + 2. (113)

The throughput is defined to be the ratio of the total number of memory cycles

required for an ideal memory device to complete a set of memory references, to the actual

number of memory cycles used to complete the set of memory references for a particular

memory design. An ideal memory device is defined as one that can service a memory

reference in one cycle. Throughput may be expressed as:

TP = —J*sL (H.4)
r

actual

where:

Cideal is the total number of memory cycles for a given task, for an ideal memory

device. This is equivalent to total number of memory references.

Cactuai is the actual number of memory cycles necessary to complete the same task

and,

The memory design can never be better than the ideal memory device, therefore

0 < TP < 1. (II.5)

Throughput is a measure of how well the processor is serviced by the memory

system. In this analysis, it is assumed unless otherwise stated, that the processor will

issue one memory access per system clock cycle unless the memory system blocks the

request. Therefore, a throughput of 1.0 indicates that the processor is provided one

"memory response" for each clock cycle.

Another measure of throughput is the steady-state throughput. In a manner

analogous to cache memories, there is a period of time when the memory goes through a

transitory period which is reflected in an irregular output. This is followed by a period

where is output is periodic (e.g., frequently a constant). These two periods will be

referred to as the transient and the steady-state response of the interleaved memory

system. Of particular interest are:

• The length of the transient response (Ttr). It is desirable that this figure

approach the minimum latency, and that it be a small fraction of the length of

the vector processed.

• Steady-state throughput (TPSS). The steady-state throughput is a better

measure of throughput because it eliminates the effects of the transient.

However, this measurement is only valid when the transient response is a

small fraction of the vector length as indicated above.

Speedup is a performance measure that focuses on the relative improvement

gained when adding additional memory components. Speedup (5) is defined as the ratio

25

of number of memory cycles necessary to complete a given task using one memory bank

to the number of memory cycles necessary to complete the same task using k banks or

S =£-, (II.6)

where:

C\ is the number of memory cycles required for one bank, and

C/c is the number of memory cycles required for k banks.

Note that C\ is the product of the number of memory references, Cideai, and the

memory ratio (MR). It can be seen that the relationship between throughput and speedup

is a mutiplicative factor of the memory ratio as shown below:

Sk = 'deal'MR = Tp. MR (IL7)

Both throughput and speedup are performance measures of memory bandwidth.

Both will be viewed as a scalar measure of performance as defined by the formulas

above. Throughput may also be defined as a moving average, capturing the time-varying

quantity of throughput. This can be illustrated as a line graph.

One characteristic of bulk memory that has motivated the use of banked

interleaved memory is the difference between the memory access time (ta) and the cycle

time (tc). Many devices (e.g., DRAMs) have a cycle time that is greater than the access

time because of overhead tasks that must be completed prior to beginning another access.

For example, a read operation to a DRAM memory cell destroys the contents of the cell.

The original contents must be written back to the cell to preserve the value. The

relationship between the access and cycle times can be expressed as

tc<k-ta k = 2,3,4- (IL8)

If the number of banks is selected such that

B>k (II.9)

26

where B is the number of banks, then the overhead time can be absorbed if all banks can

be kept busy. The memory can then operate at the access rate rather than the cycle rate.

Although banked interleaved memory has been used to enhance a cached memory

scheme, the number of banks is small typically two or four. Generally, an interleaved

memory with a large number of banks is used for vector processing. One category of

vector processing is supercomputer vector machines such as the Cray I, the Burroughs

Scientific Processor (BSP), and the Convex C3800. Another category is the attached

vector processor. An example of an attached vector processor is Floating-Point System's

FPS-164[Ref23].

Two important characteristics of vector processors include the ability to perform

scalar operations and a memory system that is hierarchical. The need for scalar

operations is clear in a supercomputer where a relatively large computational problem, is

expected to be solved without additional computer support.

The Cray I, illustrated in Figure II.6, is an example of a supercomputer with a

memory hierarchy, and the ability to perform scalar as well as vector operations. There is

one main memory which provides for the majority of storage. The fastest memories are

connected directly to the pipelined arithmetic units. The Arithmetic Units perform scalar

as well as vector operations. By placing the highest speed memories next to the

processor, the processor can operate at an optimal speed so long as the data is contained

in the high-speed memories.

This is valid when the algorithm can be written in such a way that data is

repeatedly accessed before returning to main memory. Alternatively, it can be said that

the data has locality of reference at a high level of granularity. However, in this instance,

the programmer is responsible for managing all of the levels of memory (i.e., it is not

accomplished automatically as was done with cached memory in the general-purpose

computing case).

27

When an attached processor is used in conjunction with a personal computer or

workstation, it is reasonable to expect that the workload can be partitioned such that a

part of the algorithm will be executed on the host's general-purpose processor, the

remainder on the vector processor. In order to reduce complexity and cost, the vector

machine may be optimized to perform vector operations and therefore mitigate the need

for scalar operations on the vector processor. The lack of scalar operations will in turn,

reduce the likelihood of repeated use of data before returning it to the main memory.

This in turn suggests that memory schemes without a hierarchy may be appropriate for an

attached vector processor.

12 Pipelined
Arithmetic Units

8 Vector Registers
64 Operands/Register

64 Buffer
T Registers

64 Buffer
B Registers

Instruction
Register 256 Register

Instruction
Buffer Program

Counter

Figure II.6 Cray I Memory Hierarchy [Ref24]

Interleaved memory systems are also designed to take advantage of a

characteristic of the memory reference stream. Therefore, as was the case for cache

memory systems, the performance of the interleaved memory system is highly dependent

on the particular program executed.

28

For example, it has been observed that a purely random addressing pattern has a

speedup that can be expressed as

S = fJ
k^B~1)]«B0-56 (11.10)

where B is the number of banks [Ref 25]. This is a disappointing result, given that the

bandwidth is proportional to the square root of the number of banks. This result, coupled

with the large values for latency, has discouraged the use of interleaved memories with a

large number of banks in general-purpose computing.

However, the memory reference pattern based on accesses to vectors is quite

different than a memory reference pattern generated by a general-purpose computer.

These patterns are deterministic and they are characterized as having patterns with

constant stride. Operations such as vector addition and multiplication have a constant

stride of one. Other operations have constant strides other than one. More complex

address patterns are found with operations such as a radix-r butterfly and digit reversal.

However, these more complex patterns have multiple series of constant stride embedded

in the address pattern. A model for memory address patterns, as they related memory

performance, is presented in Chapter V.

Several memory decoding schemes will be described below. Memory decoding

for banked interleaved memory systems includes determination of the bank number and

the index within a bank Frequently, the index within a bank is accomplished in a straight

forward manner using a subset of the address bits. The primary focus of the discussion

below will be in the selection of a bank number. The motivation for the different bank

selection schemes is to find a scheme that will spread memory references evenly to all of

the banks (i.e., in a round robin pattern), for the memory address patterns most likely to

occur. It is also desired that the bank selection scheme have the following properties:

• an implementation that is inexpensive in terms of hardware

• have a small propagation delay, and

29

• imposes the fewest restrictions on the number of banks.

The simplest decoding or interleaving scheme of the memory space uses the least

significant bits to directly select a bank, and the remaining higher order bits to select a

word from the selected bank. This will be referred to as the conventional decoding or

interleaving scheme. Conventional decoding has no implementation requirements but

requires the number of banks to be a power of two. From a performance perspective, an

address pattern with a constant stride of one will result in a round robin selection of the

banks for optimal utilization of the banks when the banks are decoded using the

conventional scheme. However, only a subset of the banks will be selected whenever the

stride is not relatively prime to the number of banks. Specifically, for a given stride s, the

number of banks that will be selected is:

B_

gcd(B,s)
Beff= „„ , (11.11)

where

B is the total number of banks in the memory system,

s is the stride of a constant-stride address pattern,

Beff is the effective number of banks. By effective, it is meant that an effective

bank is one that is actually given memory references for the specified address

pattern.

gcd(a,b) is the greatest common divisor for a and b.

A bank that is referenced for a given addressing pattern is referred to as an

effective bank. For example if the stride equals the number of banks (or a multiple of the

number of banks) a single bank will receive all of the memory requests regardless of the

number of banks in the memory system. The effect on the number of banks, stride, and

bank selection criteria will be described in detail in Chapter V. Given the problems noted

above with strides that are not relatively prime to the number of banks, coupled with the

fact that many algorithms such as the fast Fourier transform frequently use powers of two

strides, other bank selection criteria have been investigated.

30

Linear data skewing schemes have been proposed where the memory bank

selection for a data element contained in an array at location row column indices i,j is

mapped to bank ip\ +jp2- This method is hampered by the need for arithmetic operations

to compute the bank number. The hardware is relatively more complex, but more

importantly the time needed to compute the bank number has a negative impact on

memory performance. However, one data skewing scheme referred to as 1-Skew, has an

implementation that requires only logic operators. For an address i, the bank number is

computed as:

/
B; 1 +

V

I

B

\
mod£, (11.12)

J

where

Bt is the computed bank number,

i is the memory address,

mod is the modulus operator, and

B is the number of banks.

Note that the division and the modulo operations are trivial when B is a power of

two. This leaves only the addition operation to perform.

Considering Equation (II. 11), it can be seen that if the number of banks in a

system is a prime number, then the number of effective banks would always be equal to

the number of banks except when the stride is equal to a multiple of the number of banks.

The biggest problem with using a prime number of banks is that a direct implementation

of such a scheme is requires arithmetic operations that are expensive and incur more

propagation delay than is tolerable for performance. Several techniques have been

proposed to mitigate this problem. In general the following equations are used to

compute the bank number B\ and index into the bank /:

B{ = i mod B, (H.13)

/= — (11.14)
B

31

where

i is the address, and

B is the number of banks.

The Burroughs Scientific Processor used a scheme that reduced the complexity of

bank selection to a single adder plus logic operators. This approach to memory selection

logic is accomplished in part by selecting a smaller value of B in Equation (11.14) than in

Equation (II. 13). For a smaller value of B=5', this results in the loss of

B-B'

B

of the memory. [Ref 26]

An alternative method pipelines the computation of the bank selection [Ref 27].

This approach is dependent on a constant-stride address pattern. The proposed

architecture described in Chapter 0 requires addressing patterns that are not strictly

constant stride.

The last bank selection technique to be reviewed is permutation-based

interleaving [Ref 28]. Permutation-based interleaving is based on the same principles as

Hamming error detection and correction codes. The bank number M is calculated using

the matrix equation:

b = P a, (11.15)

where

b is a (k x 1) column vector representing the bank number,

a is a (r x 1) column vector representing some number (possibly all) of the bits of

the memory address, and

P is a (k x r) matrix that specifies the bank number mapping.

The matrix multiplication indicated in the equation is similar to matrix

multiplication except that the multiplication operations are logical ANDs and the

summation of product terms is a logical exclusive OR. Note that this scheme requires

32

only logical operations and therefore can be implemented with little propagation delay.

Further, a wide array of mappings can be specified. Note that the conventional bank

decoding scheme is a subset of permutation-based scheme when the P matrix is an

identity matrix or rank equal to the number of bits in the bank number. Bank selection

using permutation-based techniques are explored further in Chapter 0 Section E.

It has been shown that for constant-stride address patterns where the stride ranges

from two through 64, Skew-1 and Permutation-Based bank selection schemes have

substantially better performance than conventional bank decoding. Permutation-Based

bank selection has slightly better performance than Skew-1. The performance

measurement in this study was throughput. [Ref 29]

An enhancement to interleaved memory architecture is the use of input and output

buffers for each memory bank. An interleaved memory model with input and output

buffers is illustrated in Figure II.7. An input buffer of length bin is a first-in first-out

(FIFO) queue that allow a memory bank to accept bin memory requests (i.e., a memory

bank can accept memory requests without completing a memory request that is currently

in progress. A standard interleaved memory architecture is defined in this work to be

one that has one input and output buffer. A memory system with more than one butter

is referred to as a STM memory.

Buffers are useful for smoothing out irregularities in the memory address pattern.

They do not improve throughput if there is an insufficient number of effective banks. To

illustrate, consider a standard interleaved memory system with eight banks and an

effective memory ratio of eight. For a stride of two, one possible bank selection pattern is

{0,2,4,6,0,2,4,6,...}.

There are four effective banks and the resulting throughput will be 0.5. Adding

buffers will not improve throughput regardless of the number of buffers added since the

four banks that are in use are effectively used 100 percent of the time.

33

A ddress
S ource

D ata
S ink

D ata
S equencer

^g-

I

I
Bo

I

I

I

Input
B uffers

O utput
B uffers

1

Figure II.7 Interleaved Memory With Queues [Ref 30]

34

Compare this to the situation where the same interleaved memory system is

presented an address pattern such that the bank selection pattern is

{0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,0,0,1,1,...}.

The first memory reference will be accepted followed by a stall because bank 0 is

busy with the first request. Once the first request is completed, the second memory

reference is accepted by bank 0. On the next cycle, the third memory reference is

accepted followed by a stall. This pattern continues until the vector is processed.

Now consider the case where each memory bank can accept two memory requests

(i.e., the bank can be processing one memory request, and accept another. In this case,

each memory bank will accept the two memory requests on the first cycle. Since 16

cycles will have passed between the time bank 0 received the first memory reference, and

the time that the second cycle begins, each bank will have sufficient time to process the

memory requests as they are presented. The throughput will be optimal in the steady

state. Observe that this use of buffers will increase latency.

The Split Transaction Memory (STM), described in Chapter IV, incorporates the

concept of buffers in interleaved memory. A high-level view of STM is shown in Figure

n.8. Each memory bank consists of three components:

• The bulk storage module is the device that provides for data storage. The

bulk storage module contains one or more chips (DRAMs with current

technology) and the refresh circuitry.

• The cache elements are high-speed memory that serves as an intermediate

staging area for data requests from the processor, and memory responses from

the bulk storage module.

• Controllers for the interfaces between the bulk storage module and the cache

elements, and the interface between the cache elements and the memory bus.

On each cycle, a STM module may perform none or all of the following

operations:

35

• Accept a memory request from the processor. A memory request is accepted

if the bank is selected and if the bank is not full (i.e., there is room in the

cache element for another request). Accepting a read or a write request

requires that the address or address and data be stored in a cache element

respectively.

• Manage the bulk storage module. This includes issuing memory requests to

the bulk storage module and accepting data from a memory read request.

• Placing data on the bus in response to a memory read.

The cache elements are managed as a circular queue with three indices. The first

is used for marking the next free cache element available for accepting new memory

requests. The second index is used to track which memory request should be processed

by the bulk storage module. The last index points to data associated with a processed

memory read output.

The key difference in buffers and cache elements is the organization and use of

registers. As illustrated in Figure H9, both buffers and cache elements are used to

facilitate the transfer of data between the bulk store in a bank and the bus. However, a

buffer pair uses one data register for the input buffer and another data register for the

output register. A single buffer provides pipelining of memory requests since a new

memory request can be placed in the input register in parallel with the bulk store

providing a memory response in the output register. On the other hand, a cache element

only has one data register and therefore two cache elements would be required to provide

pipelining as described above for a single buffer.

A comparison of the representative storage requirements for buffers and cache elements is

also shown in Figure Ü.9. Both schemes must store the address and provide

administrative data to maintain the sequential ordering of the memory requests. Two

indices are needed when maintaining an input and output buffer scheme as shown in

36

/

Bank 2

Bulk Storage Module

1
Smart Cache

BSM-CE
Controller

1
Cache Elements (CE)

l
CE-Bus

Controller

r~r
Memory

Control Address Data

1 Bank
#1

Bank
#2

#9 • Bank
#k

!
Processor

1 L i i II k ; i ■ >
JS 1

I

Address Bi

1 ' i ' 1
' Data Bus i

f

Control
Data/Ad d ress—►

Figure II.8 Split Transaction Memory Overview

37

Figure H.7. For purposes of comparison, it is assumed that addresses and data are stored

as four byte words and the indices and other control data is contained in one byte.

Implementation of standard interleaving (i.e. using a single buffer) is more efficient using

the buffer organization since one buffer requires 14 bytes. To obtain the equivalent

pipelining with cache elements requires two cache elements and therefore 18 bytes of

storage. However, if a design calls for k levels of buffering, the cache element scheme

becomes more efficient for even small values of k. In general, £+1 cache elements are

required to obtain the equivalent level of pipelining with k buffers. For example for k=2,

28 bytes are needed for the buffer scheme versus 27 bytes for the cache element scheme.

The number of cache elements needed for a memory system is explored in detail in

Chapters V and VI.

Extensive research has been conducted in the area of interleaved memories. One

focus of this research has been the nature of the address stream. Early work includes

Hellerman [Ref 31] which is based on a random address stream. Later efforts include

Chang [Ref 32] and Rau [Ref 33] which provide several dependency models of the data.

Several studies have proposed architectural enhancements such as the separation of

instruction and data accesses to the memory system Coffman [Ref 34]. Burnett [Ref 35]

and Dbois [Ref 36], and Sohi [Ref 37] have investigated different uses of buffers.

Multiprocessor structures are analyzed in Baskett [Ref 38] and Briggs [Ref 39]. Fault

tolerance is described in the context of interleaved memories in Cheung [Ref 40].

In the next chapter, an architecture for an attached vector processor designed to

compute spectral correlation functions will be described. The need for an efficient low-

cost memory system will become clear as this design is described.

38

Queue Storage Registers: '
2 Data (8 bytes)
1 Address (4 bytes)
2 Index (2 bytes)

Total: 14 bytes

\

Cache Element Storage Registers: I
1 Data (4 bytes)
1 Address (4 bytes)
1 Index (1 bytes)

Total: 9 bytes

1

i
Input

Register

Bulk Storage
Module

Output
Register r

a) One I Buffer

Bulk Storage
Module

Cache Element

r

b) One Cach e Element

Figure II.9 Comparison of Buffers Versus Cache Elements

39

40

III. BUTTERFLY MACHINE ARCHITECTURE

A. INTRODUCTION

The following is a description of the butterfly machine architecture. Much of the

material is summarized from previous work in Loomis [Ref 41] and Bernstein [Ref 42].

The butterfly machine architecture was developed to provide a high-performance, low-

cost solution for cyclostationary processing in particular, and other digital signal

processing algorithms that lend themselves to vector operations in general. The butterfly

machine is designed to perform only vector processing (i.e., no scalar operations). To

obtain high performance, the objective is to approach vector computations with no stalls

in the pipeline.

In the following discussion, the term radix-r is used as a parameter of the fast

Fourier transform (FFT) algorithm as described by Oppenheim in [Ref 43] and not to be

confused with the floating point representation of the hardware. The value of r indicates

the number of inputs and outputs generated with a single butterfly operation. The floating

point representation is not discussed but assumed to be 32 bit IEEE-754 format.

VLSI technology has made it possible to develop specialized digital signal

processing (DSP) chips that perform FFT butterfly operations for a variety of radices in

real time with some latency. When relatively high radices are used compared to radix-2,

FFTs can be computed at substantially faster rates than are possible with traditional

processors. These processors are also well suited for performing vector operations on

data. A computer architecture composed of such DSP chips can compute the vast

majority of operations required for cyclostationary algorithms. An architecture is

proposed that takes advantage of these specialized DSP chips (referred to as butterfly

machines (BFMs). An architecture using one BFM is defined and is referred to as the

one-chip architecture. An implementation of the cyclostationary algorithm, Strip Spectral

Correlation Algorithm(SSCA) is illustrated using the one-chip architecture. The one-chip

architecture is then expanded into a parallel architecture. Examples of this type of chip

technology can be found in the literature [Ref 44], [Ref 45], [Ref 46], [Ref 47].

41

A block diagram of the processing environment for the butterfly machine is

shown in Figure IE. 1. The host computer is responsible for basic process coordination

and scalar operations. The butterfly machine can operate in two modes. In the first

mode, the butterfly machine waits for requests from the host computer. When a request is

received from the host computer, the butterfly machine responds by accepting data,

processing the data, and then sending the processed data back to the host. The input data

can come from either an external data channel referred to in Figure III.l as the input data

channel, or from the host computer via the system bus.

Input Data
Channel Vector

Processor

Host
Computer

Host Computer
System Bus

Figure III.l Butterfly Machine Environment

In the second mode, the butterfly machine performs a function on a stream of data,

sent to the butterfly machine in data sets. For example, the data could originate from

sampled data from the input data channel. The resulting processed data is then sent to the

host for display and analysis. The butterfly machine program is provided by the host to

the butterfly machine via the host computer system bus. What constitutes a program for

the butterfly machine will be described below.

42

There is a traditional tradeoff between specialization of hardware and the scope of

functions that can be performed by the architecture. This architecture represents a

continuation of a trend toward specialization of silicon to a problem domain. Presently,

there are several chips that have been tailored to DSP applications. Notable examples

include Intel's i860, Texas Instrument's TMS320C40, and Motorola's 96002. The design

of each of these chips reflect tradeoffs between maximizing performance on the one hand

while attempting to maximize the number of problems that they can address effectively

on the other. An example of a highly specialized architecture for several cyclostationary

algorithms may be found in Roberts [Ref 5].

B. BASIC ARCHITECTURAL CONCEPTS

The architectures described below represent an additional level of specialization,

relative to the DSP chips noted above, although not as specialized as the application-

specific architectures described in Roberts [Ref 5]. These architectures are limited to

vector operations such as vector multiply or add, radix-r butterflies, and the dot product

of two vectors. The most distinguishing feature of architectures incorporating BFMs is

that a single operation type (e.g., radix-2 butterfly) is performed on a block of data.

Further, they are fully pipelined such that any operation can be completed in the same

number of cycles as there are resultants to be stored plus latency.

A typical BFM architecture is shown in Figure IE.2. For each pass, the BFM is

initialized with an operation code (op code) and data flow information. Data is then

streamed through the BFM from an input buffer to an output buffer. The op code

specifies the particular operation to the performed on the data. Address generators (AGs)

are necessary for each buffer to ensure that the proper data is passed at the appropriate

time. The AGs receive control signals from the controller which decodes the flow control

code to produce these signals. Given that the memories can service references at the clock

speed of the processor, the vectors can be processed efficiently.

There are however, two sources of conflicts that can diminish the efficiency of

this highly pipelined architecture: memory conflicts and processor conflicts. The timing

diagram of Figure III.3a illustrates a vector processor that flushes the processor pipeline

43

prior to beginning a new pass. This flushing time is equal to the latency of the operation.

In Figure III.3a, D cycles are required to flush the pipeline, each requiring Tc seconds.

The situation where a processor does not have sufficient resources to begin a new

operation without completing the previous operation is called a processor conflict. Figure

in.3b illustrates the performance of a vector processor that can operate without processor

conflicts.

Input
Data

Address
Generator Output

Data
Channel Channel

y
Address

Generator
Coefficient

Buffer
Address

Generator

t * y

Buffer A

*
A Butterfly „
A . , *»

Machine —

Buffer B
(Vector

Scratch Pad)
A k

Control
Memory

 ►
* To AG &
• Memories
 •►

'

 ■► Controller

^

Address
Generator

 ► Output
Port

Figure III.2 General Vector Machine Architecture

44

 Processing, 1 Processingi+1

- NTC \-DTc-^ NTe \-DTc-\ NTC HDTC~\ NTC \-DTc~\ • « »

a) Pipeline Conflicts

Processing j I Processing i+1

" NTC 1 NTC 1 NTC 1 NTC i NTC 1 NTC

b) No Pipeline Conflicts

Figure III.3 Vector Timing Diagram

Suppose that a processor contains sufficient resources so that no conflicts will

occur. In order to process data as shown in Figure III.3b, the memory system must

provide data to the processor at the appropriate time. The situation where the memory

system fails to process memory references at the rate required by the processor is called a

memory conflict. Therefore, conflict-free operations occur only when both the processor

has sufficient resources to avoid flushing the pipeline between operations, and when the

memory system can process memory references as the processor requests them.

The effect of conflicts on performance is illustrated in Figure III.3. Each pass has

associated with it a vector of length N, and an operation with an associated latency of D

cycles. Efficiency of the pipeline can be expressed as the ratio of the number of cycles

required with no latency and the number of cycles actually required for a given operation

N
E = . (III.1)

N + D

The value iV is a function of the problem domain whereas D is a characteristic of

the implementation of the processor. The efficiency is clearly related to the ratio of N and

D. A reasonable range of D is from 10 to 60 where 60 represents the latency for a radix-

16 operation. Cyclostationary algorithms generally operate on large data sets as large as

220 or greater. The loss in efficiency is low and the corresponding simplicity in design is

significant in both the processor and memory design when the pipeline is flushed between

each pass.

45

The program is loaded into the control memory through the input data channel.

Vectors of data are then sent to the DSP architecture through the input data channel.

Each vector is processed using one or more passes, and then sent to the output data

channel through the output port. This basic architecture and the concept of a four port

device in particular, is borrowed from Array Microsystems [Ref 44] and Sharp [Ref 45].

The heart of a program for the BFM is a list of passes. A pass results in streaming

a set of data from one buffer to another through the BFM, performing some operation. A

pass is defined as shown in Table HI. 1. A block, the organizational unit for the BFM

software, consists of a list of passes plus an input specification to indicate the origin of

data for the first pass, and an output specification that states where to send the resulting

data. Programs are constructed by stringing blocks together and through the use of super-

blocks.

pass := source(s),

destination,

op code

source: buffer id

base address

address sequence type

port id

destination: buffer id

base address

address sequence type

port id

Table ULI Pass Definition

To illustrate a simple use of an architecture incorporating BFMs, consider the

computation of a 1024 point (210) FFT with the architecture illustrated in Figure III.2.

Assuming that radix-2 and 16 butterflies are available in the BFM, the FFT may be

computed by performing one radix-2 and two radix-16 butterfly passes for a total of three

passes on the data. The definition of the passes for this example is contained in

46

Table DI.2 and illustrated in Figure III.4 through Figure III.6. In Figure III.4, the

operation to be performed is a radix-2 butterfly beginning with data in buffer A. The

input vector enters the processor through port A, is streamed through the processor, and

stored in buffer B. The weighting factors are supplied from the coefficient buffer through

port C. The second pass, illustrated in Figure m.5, has a radix-16 operation with data

now in buffer B and streamed back to buffer A. The coefficient buffer serves in an

analogous role but for radix-16 weighting factors. A second radix-16 pass is executed in

pass three to complete the 210 point FFT as shown in Figure III.6. The destination buffer

is the output port for this pass.

Pass#

1 Source(s) Buf_AO,0,bit_rev,port_A

Buf_Coef, 1024,radix2,port_C

Destination Buf_B,0,linear,port_B

2 Source(s) Buf_BO,0,const_geo,port_B

Buf_Coef ,0,radix 16,port_C

Destination Buf_A,0,linear,port_A

3 Source(s) Buf_AO,0,const_geo,port_A

Buf_Coef, 1024,radix 16,port_C

Destination Buf_Out,0,linear,port_B

Table III.2 Pass Description

47

Input
Data
Channel

Address
Generator

1
Buffer A

Address
Generator

Address
Geiieraior

1
Coefficient

Buffer

tr
Butterfly
Machine

Output
Port

Address
Generator

1
Buffer B
(Vector

Scratch Pad)

Data Connect
Data Flow

Output
Data
Channel

Figure III.4 1024-Point FFT: Pass 1

Input
Data
Channel

^»

Address
Generator

1
Buffer A

Address
Generator

Address
Generator

1
Coefficient

Buffer

II
Buttern?
Machine

Address
Generator

1
Buffer B
(Vector

Scratch Pad)

Data Connect
Data Flow

Output
Data
Channel

Figure III.5 1024-Point FFT: Pass 2

48

Input
Data
Channel

Address
Generator

1
Buffer A

Address
Generatcr

Address
Generator

1
Coefficient

Buffer

a
c

I Butterfly
Machine

H
Output

Port

Address
Generator

1
Buffer B
(Vector

Scratch Pad)

Output
Data
Channel

Data Connect
Data Flow

Figure III.6 1024-Point FFT: Pass 3

A timing diagram for the 1024 point FFT is shown in Figure in.7. Note that N is

the number of elements in the vector. D2 and D16 are the latencies associated with the

radix-2 and 16 operations respectively. Notice that it indicates that input, and output can

be overlapped with processing keeping the processor fully utilized. This is possible by

-NTC r-D277T-

Input i+l

■NTh

Processing,

NTC Y-DI6TJ NTC

Output i+1

NT,

Processing i+l

"*W NT, -D2TT\ • • •

Input i+2

■NTh

Figure III.7 Timing Characteristics for 1024-Point FFT

49

carefully selecting the ordering of buffers between which the data is passed. The

selection depends upon whether there will be an odd or even number of passes.

Additionally, buffer A must be dual ported in order to provide the overlap of input,

processing, and output indicated in Figure III.2. This will be discussed further with the

one-chip architecture.

C. PERFORMANCE MEASURES

There are several performance measures that are appropriate to consider when

discussing BFMs. Factor of real time, Fj is defined as the ratio of computation time to

collect time and represents the percentage of data that can be processed given that data is

collected continuously. [Ref 48]

_ Computation Time _ „ Phu .TTT ~
T ~ Collect Time " NT, ' (UL2)

where

Cu is the number of computations for hardware type u,

Phu is the number of hardware units of hardware type u,

Tc is the clock interval,

TV is the number of samples taken, and

Ts is the sample interval.

This reduces to

*-wf' (IIL3>
when there is only one computational hardware resource type as is the case for BFMs.

The computation time for BFMs is defined as the sum of the product of the number of

passes and the pass length, for each type of operation.

Efficiency of a parallel architecture is defined as

Ek=^- (HI.4)

50

where

'Reqk CReak = -^~, (IIL5)

and ÜReqi is the number of processing cycles required to compute a function with a single

BFM and Cused is the number of cycles actually used by a ^-processor BFM.

D. FAST FOURIER TRANSFORM

The set of fast Fourier transform (FFT) algorithms selected for the butterfly

machine architecture is those that are developed using decimation-in-frequency. The

butterfly machine architecture includes radix-2, 4, and 16 butterflies. Butterflies with

radices with powers of two have been selected for their efficient implementation gained

though algorithmic techniques. Further, the radix-4 butterfly has a straightforward

hardware implementation due to the fact that the complex exponential takes on values of

±1 and ±j, which allows the use of hardware addition in place of multiplication in some

cases. Butterflies of radix-2 are supported to allow FFTs of any vector of length 2k.

Two early works concerning implementation of the FFT can be found in Singleton

[Ref 49] and Pease [Ref 50]. The decimation-in-frequency algorithm discussed below is

described in Oppenheim [Ref 51] for a radix-2 butterfly. Figure in.8 is a signal flow

graph for the decimation-in-frequency algorithm for an eight point vector. Although this

algorithm can be implemented for the butterfly machine architecture, the addressing

reference stream causes two problems. First, the radix-2 butterfly pattern varies from

pass to pass. In the first radix-2 pass, the butterfly indices are separated by four (e.g., x(0)

and x(4)). In the second and third passes, the indices are separated by two and one

respectively. This variation in address patterns must take into account by the address

generators (see Figure IEL2). Second, the analysis of memory performance is made more

difficult by the address pattern changes from pass to pass.

Both problems are simplified by replacing the in-place signal flow graph with a

constant geometry signal flow graph. The corresponding constant geometry signal flow

graph for Figure III.8 is shown in Figure III.9.

51

-^

~^*

—g^

-^

-^

£® X(0)

*-# X(4)

t» X(2)

*►# X(6)

£* X(l)

£* X(5)
-1

*^ä X(3)

X(7)

Figure IIL8 Radix-2 In-place Decimation-in-frequency Flow Graph

■^^■^R— B**®.

^Ä
w° VVN

i\

W1
VV

N

f-l ^

W2

•
-1

W3
N

ktt W°
'-1

VVN

'-1

f™

A
W2

rw
-1

_►W

w2

-1

3* X(0)

>
f-1

X(4)

J« X(2)

-1
X(6)

X(l)

-1
X(5)

X(3)

-® X(7)

Figure III.9 Radix-2 Constant-Geometry Decimation-in-freqnency Flow Graph

52

The following demonstrates decomposition with decimation-in-frequency for a

radix-4 butterfly. For a sequence

rfn]n = 0X...N-l, (III.6)

the Discrete Fourier Transform (DFT) is defined as

XM = £*["K* k = 0,l,...N-l (III.7)
n=0

where

WN=e N. (III.8)

The sequence x[n] is partitioned into the number of sets equal to the radix number. For a

radix-4 butterfly, Equation (H1.7) becomes:

X[k] = £*[«W + 2>[nK* + f>[«R"* + %x[n]W»k. (III.9)
n=0 n=% n=y2 n=™/t

A change of variables in the second, third, and forth summations yields

«=0 n=0 n=0 «=0

(111.10)

Moving the parts of the weighting factors that are not dependent on the summations and

using Equation (III. 8) yields

X[k] = 2>[«K* + W; f>[n + $]W? + W2
k %[n + $\W? + Wf £*[« + **] W*.

n=0 n=0 n=0 n=0

(111.11)

Consider the following four sets of X[k] such that k-4r, k = 4r + l, k = 4r + 2,

N
and k = 4r + 3 for r = 0,1, • • •, 1. Substituting these values of k into Equation (m. 11)

and again using Equation (III.8) yields the following four equations for X[k]:

53

%-'
Xi4r] = Z [*M+ An + f] + x[n + f] + x[n + *£■]] W% (111.12)

n=0

X[Ar + \}^YXAA-ix[n + i}-x[n + ^ + jx[n + ^Wn
N W% (HI.13)

n=0

X[4r + 2]=^[x[n]-x[n + i] + x[n + i]-x[n + ±f\]wZn W% (111.14)

Z[4r + 3]= £[x[n] + >[« + f]-x[n + f]-7x[n + ^]]w^ W£. (111.15)
n=0

Figure EL 10 illustrates the use of Equations(III.12) through (HI. 15) to compute in

part, an FFT using a radix-4 butterfly. The eight point vector is passed through a radix-4

followed by a radix-2 butterfly. The second radix-4 butterfly is not shown for clarity.

The constant-geometry version is constructed in an analogous manner as the radix-2

version shown above.

Figure 111.10 Radix-4/Radix-2 In-place Decimation-in-frequency Flow Graph

54

E. PERMUTATION-BASED MEMORY DECODING SCHEME

The memory decoding scheme selected for the butterfly machine architecture is

permutation based, as described in Section D of Chapter II. This selection is based on

finding the least expensive implementation that provides excellent throughput for the

memory system. Conventional memory decoding performs poorly for algorithms that

have a characteristic of powers of two. These algorithms include radix-r butterflies

where r=2k and the digit-reversed patterns which are required for the last pass of the FFT,

as described in Section D above. The 1-Skew and prime number memory decoding

schemes are more complex to implement than the permutation-based method. Also, most

prime number decoding schemes do not use all of the physical memory, as indicated in

Section D of Chapter II.

The following discussion of permutation-based memory decoding will first

describe a set of constraints necessary to construct a memory decoding scheme that yields

a valid interleaved memory system. Then, a set of constraints will be described that

yields the desirable properties for a memory used in the butterfly machine architecture. A

specific permutation matrix will then be constructed that is designed for the butterfly

machine architecture.

First, terminology concerning permutation-based memory decoding will be

established. The address space contains 2N words indexed 0...2* -1. A binary address

is written aN_xaN_2. ..axa0 where the most significant bit (MSB) of the address has an

index of N-\ and the least significant bit has an index of 0. An interleaved memory

system contains B banks, where each bank contains a total of K words indexed in the

conventional manner 0 through K-\. Therefore, the number of bits required to specify a

bank number is

n = log2(5) (111.16)

and the number of bits required to specify the index into a memory bank is

£ = log2 (K). (111.17)

The number of bits for the memory address space is then

55

R = n + k. (111.18)

The memory decoding scheme must specify a bank number and an index into the

bank. This index will be referred to as the bank index. In general, the bank number is

specified with the following matrix equation:

Vi
Jn-2

Po,o

Pl.0

Pn-1,0

or

Po,R-n

PlR-n

Pn-l,R-n

b = Pa

P0,r-l ' ar-\

P\,r-\ ar-2

7n-l,r-l _ _ ao .

.(111.19)

(111.20)

when shorthand notation is appropriate.

The resulting vector b is a binary representation of the bank number. The vector

a represents the r LSBs of the address used to decode the bank number. Note that

n<r<R. (IIL21)

Entries in the P matrix are either a 1 or a 0. A bit bt of the bank number is a result

of the normal dot product of the /th row of matrix P and the a column address vector

except that the multiplications are logical ANDs and the summation is a logical exclusive

OR. The /th bit of the bank number can be written as

b,=(pi.o-ak.l)®(piyak_2)®...®(p.ir_2-al)®(piir_ra0) (111.22)

revealing that each bit of the bank number can be thought of as an encoding based on the

parity of selected bits of the address as determined by the P matrix entries that are equal

tol.

To verify that permutation-based memory decoding provides a valid memory map,

it will first be shown that conventional memory decoding, which is a valid memory map

by inspection, is a subset of permutation-based memory decoding. Then, variations of

56

this equivalent conventional memory decoding scheme will be explored to determine the

constraints on the permutation matrix that are required to ensure a valid memory map.

As an initial point of reference for analysis of permutation memory decoding, note

that if the permutation matrix P is the identity matrix with dimensions n by n, then the

resulting permutation-based scheme is equivalent to conventional memory decoding.

Further, the bank index is computed by directly using the most significant k=R-n bits.

This decoding scheme for the bank index is assumed for the remainder of the document.

The permutation equation for computing the bank number, which is equivalent to

conventional decoding, is shown below for a bank number with n bits.

Jn-\

Jn-2

*n-l

ln-2

(111.23)

It is useful to organize the linear address space into equally-sized 2" blocks, where

each block begins at I ■ 2" for / = 0... 2R~" -1. For conventional memory decoding, the k

MSBs specify a memory location within a bank and the n LSBs specify the bank as

indicated in Equations (HI. 16) through (HI. 18). Therefore, for conventional decoding for

an arbitrary fixed index, the sequence 0.. .2" -1 on the n LSBs maps one-to-one and onto

the set of bank numbers. This sequence 0... 2" -1 will be referred to as the base

sequence. Since this one-to-one mapping is valid for all blocks, the mapping from the

linear address space to the bank number, bank index pair space is also one-to-one and

onto. The practical implication is that all of the capacity of the memory hardware is

utilized and the decoding scheme is valid for a memory system.

Now, consider any change to the P matrix specified above such that the

dimension of P is unchanged and the nonsingularity of the matrix is maintained. A

modified but nonsingular matrix P of equal dimension will yield a different mapping

(i.e., it will not be the identity mapping), but will still map the base sequence one-to-one

57

and onto for each block. Therefore, any such matrix P will produce a valid memory that

utilizes all of the memory. Also, any such matrix P generates the desired round robin

pattern for a sequential memory reference stream for an interleaved memory system since

each bank is selected exactly once for each base sequence.

Now consider a matrix P of dimension n by R (i.e., use possibly all of the address

bits to generate the bank number) which is constructed by concatenating columns to the

left of matrix P, described in the previous paragraph. All of the values in each of the new

columns are assumed to be 0 except for a single 1 in an arbitrary /th row and 7th column

as shown in Equation (HI. 24).

Jn-\

Jn-2

h

0 0 0

0

0 0

0 0 hi
0

0 0

0 0 0 0 0

*n-\

a n-2

flU

(111.24)

The identity matrix is used for illustration in Equation (ÜI.24) however, the

comments that follow apply equally to any matrix P where the identity sub-matrix is

replaced with a nonsingular sub-matrix of dimension n by n.

Consider the effect of puj -1 on bank selection for a base sequence. The address

bit cij that corresponds to ptJ in the P matrix is for a given address, either a 1 or a 0.

When it is a 0, it has no effect on the bank selection (i.e., the bank number is the same

number that would have been computed if ptj = 0. When the address bit a. = 1, the /th

bank bit, bl, is complemented from what it was when a. = 0 (or when pt. = 0). This

results in a permutation of the bank numbers generated for a base sequence. This

permutation can be illustrated by listing the original bank numbers generated when the

address bit ai = 0 as a table. Each row in the table is a bank number and the columns

represent bit positions for the bank numbers. The permuted set of bank numbers is found

by complimenting the /th column of the table. Clearly the new map is still one-to-one and

58

onto for each base sequence. Since this is valid for all blocks, the mapping represented

by the bank decoding scheme indicated in Equation (IH.24) is one-to-one and onto.

Recall that the element of the P matrix ptj = 1 was selected for an arbitrary i and

j. Further, once the mapping resulting from adding a 1 at pfj is established to be a one-

to-one and onto mapping, the P matrix can be modified again by selecting another

element pr, = 1. The P matrix continues to provide a one-to-one and onto mapping

based on the rational used for p.tJ. Other elements on the left-hand side of the P matrix

can be modified as desired while maintaining a memory decoding scheme that is one-to-

one and onto. In summary, it can be seen that as long as a nonsingular sub-matrix of

dimension n by n is positioned in the far right columns of the permutation matrix P, other

elements of the matrix P can be modified in an arbitrary fashion while maintaining a

valid memory decoding scheme which also utilizes all of the physical memory.

The next discussion will describe a set of constraints that ensure that a

permutation matrix will provide maximum throughput for address patterns with constant

stride s such that

s = V (111.25)

where v is an integer, greater than or equal to zero.

As indicated above, Equation (m.23) generates a round robin pattern of bank

numbers by selecting each bank once within a base. Also note that the base sequence is

an address sequence of constant stride of one. This is true for any matrix P such that the

sub-matrix lnxn has dimension n by n and is nonsingular.

Now consider Table III.3. Table m.3 contains the decimal and binary

representation of the counting sequence 0... 15. It is easily verified that the value of the

LSB (b0 in Table 111.3) does not change for a sequence with constant stride of two.

Further, if the b0 column of bits is removed from the counting sequence generated with a

constant stride of two and the resulting columns are relabeled such that bj is labeled bi_i,

for each i, then the result is a sequence equivalent to the original sequence (i.e., a

59

sequence with constant stride of one). Therefore, the LSB does not contribute to the

selection of a bank when the stride is two and the resulting sequence is a sequence with

stride of one when ignoring the column of the least significant bit. A similar set of

statements can be made for other strides of powers of two. In general, a stride s such that

s = 2k fe>0 an integer (111.26)

will not engage the kth LSBs and the resulting pattern when removing the k right most

columns will yield a sequence with stride of one.

Using Equation (111.24) as a point of reference, it is desired to modify the P

matrix such that address patterns with strides of two map to all of the banks within a base

sequence. It is clear that if the identity sub-matrix in Equation (m.24) is shifted one

position to the left, then the base sequence would map directly into the bank numbers, as

is the case for a base sequence in Equation (m.23). Further, if the shifted identity sub-

matrix were modified, but its order maintained and remained nonsingular, then the base

sequence would continue to map one-to-one and onto the banks. This would naturally

destroy the desired pattern for the constant stride of one. Therefore, the task is to find

modifications to the matrix P that will preserve the desirable properties of a constant

stride of one while enhancing the matrix P to accommodate address patterns with

constant stride of two. In general, the objective is to find a technique for enhancing a

matrix P that can accommodate constant strides up to a stride of 2', such that the matrix

can also accommodate strides up to 2'+1.

Consider the matrix Equation (m.27) where the sub-matrix P^x„ is dimension n

by n and nonsingular. In the following discussion, sub-matrices P^xn for various values

of v will be defined. In all cases, the dimension of these sub-matrices is n by n and the

subscript will be dropped in the text for brevity.

60

yn-2

nxR-n P:

*n-l

*n-2

(IIL27)

Decimal b3 b2 bi bo

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 0 0 0

9 0 0 1

10 0 1 0

11 0 1 1

12 1 0 0

13 1 0 1

14 1 1 0

15 1 1 1

Table III.3 Binary Counting Sequence

Based on the earlier results, the permutation matrix P in Equation (IH.27) provides a

proper mapping to bank numbers for a valid memory. The sub-matrix P also provides

for a one-to-one mapping of the base sequence, and therefore address patterns, with a

stride of one (2°) to bank numbers. It is constructed with the R-n-l through R-l

61

columns of the matrix P. Consider a new sub-matrix, P with dimension n by n,

beginning in column R-n-2 and ending in column R-2 as shown in Equation

(m.28).

~bn-\
bn-2

=

h
L^o J

0 nxR—n—1 ■ nxn

0
P0,n-1

0
Pn-2,n-\

0
Pn-l,n-l

an-l

fl0

(m.28)

None of the values of matrix P have changed from Equation (HI.27) to Equation (HI.28).

The sub-matrix P is defined to be the sub-matrix consisting of columns R-n-2

through R - 2 of matrix P. Clearly P1 is singular since the first column (R -n - 2 th

column of matrix P) is zero. However, if the first column is modified (i.e., replacing a 0

with a 1 in one or more rows of column R-n-2) such that P is nonsingular, then

address patterns of constant stride of two (21) will map one-to-one and onto the banks.

Consider the effect of replacing a 0 with a 1 in row i, column R-n-2 of matrix

P, on an address pattern with a constant stride of one. When the ai R_n_2 = 0, the base

sequence mapping is unchanged. When the aiiR_n_2 = 1, the /th bit of the bank number is

complemented, resulting in a new mapping but a mapping that is still one-to-one and

onto. Since aR_n_2 has one more bit of significance than the sub-matrix P^x„, one base

sequence will be mapped with aR_n_2 = 0 followed by one base sequence mapped with

aR-n-2 = 1 • This pattern will be repeated for address patterns greater than twice the base

sequence length.

The process for constructing P can be repeated for P , P , ... p^~" such that

each sub-matrix P' is nonsingular. Construction of each sub-matrix P' is accomplished

as described for P to support address patterns of constant stride of 2'.

62

The effect of constructing V1 on address sequences of constant stride of 2" where

v = 0.. .i -1 will now be described. Construction of P' involves modification of column

R-n-i-l which corresponds to the address bit an+i. There are 2n+' addresses where

an+i = 0 followed by 2n+' addresses where an+i = 1. This pattern repeats if the address

sequence is longer than 2"+,+1. For address patterns with constant stride of one (2°),

an+i - 0 for 2' base sequences (i.e., 2' base sequences are completed while an+i is

constant). For address patterns with constant stride of two (21), an+i = 0 for 2'-1 base

sequences followed by an+i = 1 for 2'-1 base sequences. In general, for address patterns

with constant stride of 2V, an+i = 0 for 2'"1' base sequences followed by an+i - 1 for 2'"v

base sequences.

The effect of a set of ones located at pt . for various i and j in the P matrix is

cumulative. In general, the row positions dictate the bit position(s) of the bank number to

be complimented. The mapping is unique to the row number or set of row numbers (e.g.,

a one in the ith row will generate a different map than a one in the fcth row. A one in both

the ith and feth row is a third mapping). The column number determines how many base

sequences will be spanned for a constant value of the address bit a , as described in the

previous paragraph.

Figure HI. 11 and Figure HI. 12 illustrate the address pattern generated, given the

permutation matrix P shown below:

0

1,

0

h
0

la
0

0

(111.29)

Figure HI. 11 illustrates the mapping generated by the nonzero bits on the left-hand

side of the dashed line of matrix P in Equation (ITJ.29). The top box of Figure 111.11

represents the bank pattern resulting from the base sequence given that all of the elements

on the left-hand side of the dashed line in Equation (HI.29) are zeros. The effect of

adding the element labeled la is to first generate the sequence of bank numbers generated

63

by the base sequence (this occurs when the address bit corresponding to la is zero) alone

followed by a permutation of the base sequence labeled mapping #1 in Figure HI. 11.

Adding the element marked lb results in a sequence consisting of the base sequence

followed by the mapping #1 sequence (address bit corresponding to lb is zero) followed

by a permutation of the base /mapping #1 sequence referred to as mapping #2 in the

figure.

The mapping generated as a result of the two elements in Equation (m.29) labeled

lc is similar to that described above for la and lb. First, the set containing the base

sequence concatenated with the mapping #1 sequence, concatenated with mapping #2 is

generated. A permuted version of this sequence is then passed and labeled mapping #3.

Figure HL 12 provides a comparative illustration of the sequences generated by the

nonzero elements in Equation (m.29). Figure HI. 12a) reflects the base sequence pattern

of bank numbers, given that all of the sub-matrix on the left-hand side is zero. This

results in the repetition of the block of base sequence bank numbers The bank number

pattern shown in Figure EL 12b) illustrates the effect of adding la to the matrix. Figure

m.l2c) and d) reflect the accumulative effect of adding lb and lc respectively to the

bank number pattern.

The simulation runs, based on permutation-based memory decoding described in

Chapter II, are based on the following specifications for the interleaved memory system:

• Number of Banks: 4, 8, 16 and 32.

• Linear Memory Space: 0... 224 -1.

• The permutation matrices used in the simulations for all address patterns

except radix-r butterflies are shown in Figure HI. 13 through Figure HI. 16.

Permutation matrices for radix-r butterfly patterns are described in Chapter

V.

In this section, permutation matrices are described in detail. Requirements

sufficient to ensure a valid memory map was described. In particular, if the rightmost n

by n sub-matrix of the permutation matrix is nonsingular, then the permutation matrix

64

generates a valid memory mapping. Further, if the n by n sub-matrix identified as P' is

nonsingular, then address patterns with stride = 2' will produce a bank selection pattern

that is near ideal for an interleaved memory system. The following section will present

the high-level architecture for a single vector processor.

Base Sequence
(BS)

ill
Base Sequence

(BS)
Mapping #1

(Ml)

ih.
BS+M1

Mapping #2
(M2)

Wie

BS+M1+2
Mapping #3

(M3)

Figure III. 11 Permutation Address Pattern Maps

65

a)

b)

c)

d)

BS BS BS BS BS BS BS BS

BS Ml BS Ml BS Ml BS Ml

BS Ml M2 BS Ml M2

BS Ml M2 M3

Tin le

BS -E
Ml -I

Sase Sequence
tapping #1

M2-
M3-

Mapping #2
Mapping #3

Figure III.12 Comparison of Permutation Address Patterns

"1 101 101 101 101101 101 101 10"

10110110110110110110110 1

Figure 111.13 Simulation Permutation Matrix: NoBanks=4

"l 0010010010010010010010 0"

011011011011011011011011

0 0100100100100100100100 1

Figure 111.14 Simulation Permutation Matrix: NoBanks=8

66

"10001000100010001000100 0"

010001000100010001000100

001000100010001000100010

0 00100010001000100010001

Figure 111.15 Simulation Permutation Matrix: NoBanks=16

"0 0001000010000100001000 0"

100001000010000100001000

010000100001000010000100

001000010000100001000010

0 00100001000010000100001

Figure 111.16 Simulation Permutation Matrix: NoBanks=32

F. ONE-CHIP ARCHITECTURE

The one-chip BFM architecture is illustrated in Figure HI. 17. This architecture

consists of a single BFM, six memory buffers, and data multiplexers to control data flow.

Not shown explicitly are address generators, necessary for each memory. Buffers A0, Al,

B0, and B1, and the auxiliary buffer serve as data sources and destinations. The

coefficient buffer contains any constants required by the function executed such as

weighting factors for radix-r butterfly operations, windowing data, frequency down

conversion data, etc.

Control for accepting data from the input data channel, sending data out onto the

output data channel, and computation by the BFM are independent. The basic model for

communicating data is message passing. This will be described in more detail when

discussing the parallel architecture.

The one-chip BFM will be used to execute the SSCA in the discussion below.

The functional diagram for the SSCA is shown in Figure III. 18. Three basic blocks are

required for the SSCA, namely channelization, correlation multiply, and back-end N FFT.

For illustration purposes, it is assumed that N' = 25 and TV = 217. Channelization will

require one pass for windowing, one radix-2 and one radix-16 butterfly pass for the 32-

67

Input
Data
Channel

Coefficient
Baffer Output

Data
Channel

M
U
X

Buffer

Buffer
Ä1

M
U
X

MUX

\

if

A »Bttcrily ..,
Mac hint1

u

M
U
X

Ituilvr
B0

Auxiliary
Xiuffcr

Buffer

M
U
X

Figure 111.17 One-Chip Architecture

-\2nkmUH'

x(mL+n)
-^ W

xk(mL)

N'
FFT

XDk(mL)

^(SD- Hold
XDk(mL+n)

y+
A *

x(mL+n)

N
FFT

Figure 111.18 SSCA Functional Diagram

point N' FFT, and one pass for down conversion. This channelization block must be

performed P= ANIN' times.

In order to maintain overlap of the input and output with the processing, input will

alternate between buffer AO and buffer Al. Assuming that input data is in buffer AO,

data flow for the channelization passes is as shown in Figure 111.19 (i.e., data moves from

68

buffer AO to the auxiliary buffer and back to buffer AO, then to buffer B and finally to

auxiliary buffer). Note that if the number of passes in channelization were odd, the data

path would be from buffer AO to buffer B, and then to the auxiliary buffer.

Input
Data
Channel

Coefficient
Buffer

I
Output
Data
Channel

MUX

<-*- Buffer
AO

^^-■^^

><-► Buffer
Al

I ^"

MUX

MUX

I
Butterfly
Machine

1,2

Data Connect
Data Flow

Q
MUX

Buffer
B

er
Source

Destination

Figure 111.19 SSCA Execution: Channelization

The second block, correlation multiply, consists of either a single pass of length L,

the decimation factor, a total of P times or, a single pass of length TV a total of N' times.

The latter is the method of choice for the one-chip architecture since it results in longer

but fewer passes. The former is the better choice for the parallel architecture since these

correlation multiplies can be accomplished incrementally by the back-end as each of the

TV' samples are passed from the channelizer. The correlation multiply pass is illustrated

in Figure IT1.20. Observe that the original TV data samples are used from buffer AO.

The third block, the back-end TV-point FFT, is computed with one radix-2 and four

radix-16 butterfly passes as shown in Figure m.21. Data is ping-ponged between buffer

B and the auxiliary buffer such that the final result is located in buffer B.

69

Input
Data
Channel

<^ ^ MUX

Buffer
AO

■<sX ^

Buffer
Al

I
MUX

Coefficient
Buffer

T

=^-

Data Connect ►
Data Flow !►

n
Auxilary
Buffer

Output
Data
Channel

MUX

* V

^11» ^Buffer. Butterfly
Machine « MUX «*->

Source IlLI

Destination ÜJ

Figure 111.20 SSCA Execution: Correlation Multiply

Input
Data
Channel

MUX

Buffer
AO

Buffer
Al

L

MUX

Data Connect ►
Data Flow ^'

Coefficient
Buffer

T
MUX

1
Butterfly
Machine

T
MUX

1,2,3,4

Auxilary
Buffer

Output
Data
Channel

Buffed
B N :

Source

Destination

Figure 111.21 SSCA Execution: N FFT

70

Observe that it is possible to chose appropriate paths such that the final result is in buffer

B. If the number of passes were odd, one pass would be made to buffer AO (e.g., for three

passes, from buffer B to buffer AO, to the auxiliary buffer, and finally back to buffer B.

A super block is used for each of these basic blocks in order to repeat each block

the appropriate number of times.

The number of cycles necessary to compute the SSCA, without taking into

account latency, using a BFM is

N'N N'N CBFM = —+ 8iV + 4Anog16 Ar + -_-log16Ar. (111.30)

The number of cycles necessary to compute the SSCA with a conventional

processor that is fully pipelined (i.e., each addition and multiplication can be

accomplished in a single cycle) is

CGPP = ^(^' + 4) + (12^)log2 N' + ^-\og2 N. (111.31)

Computation of the total number of cycles for BFM and a fully pipelined general-

purpose processor for N' varying between 24 and 210 and N varying between 216 and 222

reveals that there is approximately a 18 to 1 processing gain obtained with the BFM,

relative to the fully pipelined general-purpose processor. Note that the expression for a

fully pipelined processor is a theoretical upper bound. The ratio for an actual general-

purpose processor would be much higher. This factor reflects the parallelism inherent in

the butterfly processor.

G. PARALLEL ARCHITECTURE

One board of the parallel architecture is shown in Figure III.22. The parallel

architecture consists of two or more of these boards with a common input data channel,

cross data channel and output data channel. A single board of this architecture is similar

to that of a one-chip architecture with the addition of the cross data bus for inter-BFM

communications. This parallel architecture represents a tradeoff between programming

71

flexibility and performance. A BFM architecture that is optimized for the SSCA is

described in Loomis [Ref 41].

Each processor has an independent clock for each bus and processor. Data

communication is accomplished with a message passing scheme. A message consists of a

control packet consisting of a message id, message type, data packet length, the number

of additional parameters, and the additional parameters. When a processor is ready to

send data to a processor, it first sends the control packet. If the message is accepted, a

ready to receive signal is passed back and the data transfer begins. The two types of

transfers possible on the bus are "one to one" and "one to many".

Input
Data
Channel

M
U
X

Buffer
AM

Äiiiiliiii

ss8-&»

JJnffejt;! ̂ =^3-^-

M
U
X

Coefficient

Buffer

I
M
U
X

i
A ßimvrtly B

iVfccliine
i;

T
-\u\iliary

Buffer
;i«gg) 6^

M
U
X

T
M
U
X

T
M
U
X

Cross Output
Data Data
Channel Channel

Cross
Data Bus

Controller

Buffer

BufTv
Bl

^^g~^^^

Output
Bus

Controller

Figure 111.22 Parallel Architecture (One Board)

The relative number of computations required for channelization versus the

correlation multiplies and NFFTs varies considerably with the input parameters JV" and

N. The ratio of the number of cycles required for the back-end (i.e., the correlation

multiply and the N FFT) versus channelization is

72

R

NN'
_ 2

(l + [log16(/V)"|)
BE-Ch 8JV+4JV[logI6(Ar)l

(111.32)

and is shown in Figure 111.23 for various N' and TV. Processors are allocated statically

based on this ratio.

I 1 zuu

 180

—160

—140
L-120

—100 R atio of Cycles

— 80

9 --60

9 --40

—20

JIIJWEIJJVIT 4-0
^■^»P^SI -J!»^^^^ T

T ""•VJSS'MHBI*1 C\J CM

'v'^WSffE CD

^ 00 ^ coT
<M CD

CX)
CN1

LT1
CN1

ID

N '
T O W S T to ro

^— Oü LO
CO

CO
CO
CO

1—

Figure 111.23 Process Allocation: Ratio of Backend to Channelizer Cycles

Execution of SSCA using the parallel architecture is similar to that of the one-

chip architecture except that blocks must be allocated to processors. The simplest scheme

based on the data shown in Figure III.23 is to dedicate one BFM to channelization and the

remainder to the back-end processing. The efficiency obtained using this approach is

illustrated for a ten processor system in Figure m.24.

73

"">100%

N-80%
4-70%
4 60%
4 50%
440%

r~ ^^^m-BB BBl

4,194304 "5:wBBBa
1,048,5^

262,144 IBlHi
65,536 ll|

N 16,384 ^B
CO

■HraSBI ^P» :'•'-"' CJ ,: J

^■UBP'-i^'" ■.* >- ^ W^mm^^1 OQ U-) Ln ,_*
IPP5^ -T CM CM

CM <^> *~
m

N'

S-30%
4-20%
j-10%
4-0%

Figure 111.24 Processing Efficiency for SSCA (Ten Processor System)

74

IV. DESCRIPTION OF SPLIT TRANSACTION MEMORY

A. PHYSICAL DESCRIPTION

Split Transaction Memory (STM) is a memory architecture that is designed to

support a vector processing architecture with a throughput that approaches one, as defined in

Equation (H4). STM takes advantage of addressing patterns that are characteristic of

constant stride. Of particular importance is the ability of STM to support radix-r and digit

reversal address patterns where r is a power of two.

STM provides better throughput than cached memory because it takes advantage of

the predominate characteristic found in the butterfly machine architecture: patterns of

constant stride and particularly constant strides of powers of two. Although the memory

reference patterns exhibit some locality of reference, the data sets are frequently too large to

support a caching strategy.

STM is an implementation of standard interleaved memory that takes advantage of

more than one local buffer in each bank. To customize the memory system to the target

problem domain, (e.g., a vector architecture supporting cyclostationary processing), STM

incorporates a memory decoding scheme based on permutation decoding. In particular, this

version of STM is designed to provide a throughput that approaches one for radix-r and digit

reversal address patterns as well as address patterns of constant stride.

STM is based on the premise that some latency can be absorbed by the processor. In

particular, memory requests can be made in advance of completing the current instruction.

In general, memory requests may be made so long as the memory system has the capacity

to accept the request. Memory capacity will be described later in this section.

A high-level view of this concept is shown in Figure IV. 1. Memory is partitioned

into k banks. Each bank consists of a smart cache and a bulk storage module. The smart

cache contains memory referred to as cache elements that operates at the same speed as the

processor. The BSM-CE controller and CE-bus controller are responsible for interfacing the

cache elements with the bulk storage and the system data/address buses respectively. The

CE-bus controller drives two control lines that are used for handshaking with the processor.

75

One line is used to signal when memory requests can be made by the processor. The other

line is used to indicate when memory responses are available to the processor.

When the processor makes a memory access, the bank which recognizes the memory

access latches the request (i.e., the address, whether it is a read or write request, and data if it

is a write request) into a cache element. A cache element (CE) is that set of data necessary to

support one memory access to the memory bank. The cache element's in-use bit, is also set.

When the cache element has been processed (i.e., data has been either written to or read from

the bulk storage for a write or read access respectively), the cache element's ready bit is set.

The components of a cache element are illustrated in Figure IV.2. Each request is

uniquely identified with an index which is used for synchronization of memory accesses with

the processor. This synchronization will be discussed in the context of the request and

response counters later in this section.

Bank
#1

81

/

'Memory

Bank
#2

& A

<i 'J<.
Bank

#k

Bank 2

Bulk Storage Module

Smart Cache
BSM-CE

Controller
1

Cache Elements (CE)

1
CE-Bus

Controller

\ \ t *
Control Address Data

Processor

Address Bus

Data Bus

Control
Data/Address-*-

Figure IV.l Split Transaction Memory Overview

76

The smart cache manages cache elements and requests for memory read and write

accesses. There are three activities that take place on each clock cycle:

• Memory requests are recognized and accepted if the memory system has

available capacity. The concept of memory capacity will be explored later in

this section.

• Memory read responses, ready for the processor, are placed on the data bus in

a synchronized order.

• The BSM, when not busy, is tasked with the next pending read or write

operation.

Request
Index Address Data In Use

bit
Read/Write

bit
Ready

bit

Request Index Value obtained from Request Counter.
Address Physical address.
Data Value to be read or written.
In Use Bit Bit indicating whether cache element is available for use.
Read/Write Bit Bit indicating the type of memory access type..
Ready Bit Bit indicating whether memory request has been serviced.

This is used for a read transaction to indicate that the
data has been retrieved from DRAM.

Figure IV.2 Cache Element

Memory accesses are usually initiated within a bank without waiting for previous

access responses to be completed, either within the bank or from the memory system in

general. For a read access, the smart cache retrieves the required data from the bulk or main

storage and stores it into the associated cache element of the smart cache. A write request is

sent by the processor to the smart cache. This data is later written to the bulk storage by the

BSM-CE controller. For the design that follows, the BSM-CE controller processes requests

in the order they were requested within a bank. All memory accesses are returned to the

processor in the order that they were requested (for all banks).

77

Coordination of the STM is accomplished with two counters and two control lines.

The two counters, request counter and the response counter, are used to link a memory

request and the associated response for read accesses. These counters are shown in Figure

IV.3. Initially, the request counter and the response counter are set to zero. When a memory

request is accepted from the processor, the value of the request counter is placed into the

request index field of the cache element (see Figure IV.2) that is used to store the request.

The request counter is then incremented by one.

The response counter contains the index for the next read response needed by the

processor. When a CE-Bus controller detects that a read response is ready for a cache

element and its request index is equal to the current value of the response counter, a memory

response cycle is performed. The CE-Bus controller associated with this response, places the

associated data contained in the cache element onto the data bus. The response counter is

then incremented by one. The latency of a memory access is

L = (Request Counter - Response Counter)rto (IV.l)

where Tbus is the bus cycle interval. This expression does not take into account for

latency as a result of a stall.

A key issue of the STM design is the mapping of addresses to bank numbers and

indices within a bank. Several methods were described in Chapter II Section D that can be

used. Conventional interleaving results in poor performance for FFT related memory

reference patterns when the radix of the FFT and the number of banks are both powers of

two. One solution is to pick a stride and number of banks that are relatively prime. Two

strategies described in Chapter II select a prime number of banks. These solutions either

incur excessive propagation delay in the bank selection hardware, or assume an addressing

pattern that is not appropriate for the butterfly machine architecture.

The two control lines used in this design are the grant request and response enable

control lines. Memory access requests by the processor are controlled by the grant request

(GR) control line. Each memory bank's CE-Bus Controller enables the GR as long as there

are available cache elements. All GR lines from the banks are wire-ORed to form a single

output signal to the processor resulting in a single ready signal for all of the memory banks.

78

This is done to provide a simpler interface to the processor, rather than having a line for each

memory bank. If any bank does not have cache elements available (i.e., if it is "full"), the

GR line becomes inactive and the processor will refrain from further memory accesses until a

cache element in the full memory bank is freed.

CLK

Bulk
Storage

i"v
Request
Counter

V
I

Bulk
Storage

Smart
Cache

HUAA

re T
Response
Counter

GR
RE

V
1

Bulk
Storage

Smart
Cache

un AM

V
I

Smart
Cache

an AA

Address Bus

Data Bus □ Global Counters

Figure IV.3 Top Level Memory System

The response enable (RE) control line performs a similar role to that of GR, but for

memory responses. Each bank's CE-bus controller generates a RE signal that is in turn wire-

ORed to form a single control line to the processor. The default for the RE line is to be

disabled. The next response required by the processor (i.e., the one pointed to by the

response counter), can only be serviced by one bank. If the response is for a read and the

data has been retrieved from bulk storage, the RE line is enabled by that bank and the data is

placed on the data bus for the processor. The response counter is then incremented.

One design of the STM smart cache is shown in Figure IV.4. The data and address

buses and the read-write line enter the smart cache in the upper left-hand corner of Figure

IV.4 labeled Data, ADDR, and R/W respectively. The cache elements are located in the

79

middle of the figure with the CE-Bus and BSM-CE controllers located to the left and right of

the cache elements. The bulk storage module may be found in the far right of the figure.

Notice that in this design, the request and response counters are logically global (i.e.,

at any instant in time, there is a single value for each counter). However, the value of the

counters are maintained on each smart cache as a hardware counter and the global signals

GR and RE are used as a control signal to increment all request counters and response

counters respectively in a memory system rather than a single request counter and response

counter as shown in Figure IV.3.

Before looking at the specifics of this design, it is useful to describe the semantics of

three counters in the smart controller. The definitions for three counters follow:

« Next Available Counter (NAC) - This counter is used as an index to the next

available cache element to be used to store a new memory request.

• Currently Processed Counter (CPC) - This counter points to the next cache

element that has a memory request pending for the bulk storage module that

has not been completed.

» Output Counter (OC) - The output counter points to the cache element that

will contain the next memory read response in the bank.

The relationship among the three counters is illustrated in Figure IV.5. All three

counters are initialized to zero. This is the defined condition for an empty memory bank. By

empty, it is meant that the bank has no pending memory requests. The NAC always points to

the next available free cache element. As memory requests are accepted by the bank, the

NAC is advanced after each request accepted. The CPC follows the NAC and advances

whenever a memory request to bulk storage is completed by the BSM-CE controller. If the

bank is kept busy (i.e., if there is always a memory request to process by the BSM-CE

controller), this counter will generally advance at a frequency of the memory ratio. Finally,

the OC advances whenever a read request is processed and passed back to the processor.

The OC is also advanced whenever it points to a cache element containing a write request.

80

DATA

R/W

ADDR

GR

,'

t>
Request
Counter

GRI

Next
Available
Counter

Decoder
E

f

Bank
ID

RE

—jtj = L^—I—r ^

" u

1

"v
Index I Address |R/W Ready Data

Cache Elements

Response
Counter

i t^QC I™

DATA ~^r

REI
tr^3

E
Buffer

B
U
F

Currently
Processed
Counter

Decoder

Bulk
Storage

tUi

Output
Counter

E

+ 1

Global Counters

Figure IV.4 Smart Cache Design

The relationship of these three counters can be thought of as pointers to a circular

queue where the NAC is the lead pointer with the CPC following the NAC, and the OC

following the CPC. Several possible conditions may arise and can be illustrated with Figure

IV.5. If all three counters point to the same location, the memory bank is empty (i.e., no

pending memory requests for the bulk storage or output responses). This is the initial state of

the memory bank. If NAC ==CPC, then there are no pending memory requests for the bulk

storage for the bank. If CPC == OC, then there are no pending read responses from the bank.

The three counters can be thought of as chasing one another (CPC chasing the NAC, OC

chasing the CPC, and finally the NAC chasing the OC.) Observe that the CPC is allowed to

catch up with the NAC and the OC is allowed to catch up CPC. However, NAC is not

allowed to catch OC. If (NAC+l)==OC, then no cache elements are available and the

memory is said to be full. This definition for an available cache element utilizes k-\ of the

cache elements rather than all k of them. This is done to simplify the logic for detecting

when the memory bank is empty or full.

81

Returning to Figure IV.4, the CE-bus controller may be divided into two principal

components: that part that is responsible for accepting memory requests and the other that is

responsible for coordinating the read memory response. Accepting memory requests is

accomplished with the request counter, the next available counter, and the logic required to

drive the GR signal. As indicated above, the request counter and response counter are

initialized to zero. The request counter serves as the input to the request index register for

the selected cache element. The NAC is a modulo-fc counter where k is the total number of

cache elements in a memory bank. The NAC is used in conjunction with the decoder, to

select the cache element to be used for the next memory request. The NAC and decoder are

enabled with the GR Internal (GRI) signal, resulting in the increment of the NAC and the

selection and loading of the cache element registers. The request counter increments

whenever any bank accepts a memory read request. The request counter is enabled with GR.

Figure IV.5 Relationship Between Smart Cache Counters

82

The logic within a bank, driving the GR line, is the logical ORing of two conditions.

This condition is:

((OC +1) ~= NAC) OR Empty. (IV.2)

The first condition tests whether there is an available cache element as described

above. The second condition, whether the bank is empty, is specified with the empty flag.

The GR internal (GRI) line is the logical AND of the GR line and the logic determining

whether a bank is selected. The quantity labeled Bank ID is compared to n address lines to

make this determination. The least significant address bits are assumed unless otherwise

indicated in this study. The Bank ID may be stored in a register set by either with hardware

switches or software.

The output response is implemented with the response counter, output counter, and

the logic required to drive the RE and RE internal (REI) signals. The response counter is

incremented whenever RE is active. RE is the wired logical ORing of each bank's REI line.

For each bank, REI is the logical ANDing of two conditions,

(Response Counter = Index[OC]) AND Ready [OC]. (I V.3)

The first part of the condition checks whether this bank contains the next memory

read response to be sent to the processor. The second condition is a check to ensure that the

data has been acquired from the bulk storage. Data[OC] is passed to the data bus by enabling

the tristate buffer.

The BSM-CE controller is responsible for managing requests to the bulk storage.

The currently processed counter is a modulo-k counter pointing to the cache element to be

processed by the bulk storage. The CPC selects the appropriate cache element to be

processed using a multiplexer. For read requests, the resulting data is written into the

appropriate cache element through the use of a decoder.

The cache elements obtain data from either the data bus for memory writes or the

BSM for memory reads. The logic in Figure IV.6 illustrates the interaction between the data

sources, control lines, and registers for one cache element.

83

Dbus -7* \

D DRAM /
/-

CLK

GRI E DRAM

E

EN

>

Box A

V) V)
/
/

D

/
/

Figure IV.6 Block A for Figure V-4

B. SIMULATION MODEL

The STM simulation program was written to explore characteristics of STM

memory designs and to determine their effectiveness for a given memory reference

pattern. The relationship and interaction between the STM simulation and related

computer programs is shown in Figure IV.7. The STM simulation program is referred to

simply as STM in the figure. All programs were written in Matlab™ and can be found in

Appendix A.. The following discussion of the STM simulator will be partitioned into the

signal generators, STM simulator, and the graphics programs.

1. Signal Generators

The STM simulator accepts three parameters that define the memory system and

the memory reference stream that the STM simulator will be given to process. The

memory reference stream is contained in a file referred to in Figure IV.7 as the address

stream. The address stream is a list of integer pairs, the first representing an address of

the reference and the second a flag indicating whether it is a read or a write operation.

Four programs (gen_const, gen_cfft, gen_dr, and gen_rand), referred to

collectively as signal generators in the figure, were written to generate different classes of

memory reference streams to be used as inputs to the simulator. The first three programs,

gen_const, gen_cfft and gen_dr were written to generate address patterns common to

digital signal processing applications. The gen_rand program provides an address

stream that yields a random address pattern.

The first program gen_const generates the most basic address pattern for vector

processors; patterns of constant stride. The program gen_const interface is

ResultVect = gen_const(N, Stride, fname)

where:

N - Number of addresses to generate

Stride - Stride of the pattern, and

fname - Name of the file containing the resulting address patterns.

85

The program gen_cfft generates memory reference patterns consistent with

constant geometry fast Fourier transforms (EFT) with butterfly passes with a radix of R.

The program gen_cfft has the following calling interface:

ResultVect = gen_cfft(N, R, fname)

where:

N is the number of addresses to generate,

R is one of the factors of N, such that N = N1 *R, and

fname is the name of the file containing the resulting address patterns.

For realistic patterns, it is expected that R«N1.

Address
Pattern
Description

Signal
Generators

! Address
! Stream

STM Parameters
•NoBanks
•NoCE
•MemRatio

Si»

STM

Graphics
Programs

Event
Traces &
Performance
Parameters

Figure IV.7 STM Simulation Overview

The program gen_dr provides for generating digit reversal patterns necessary for

one pass of an FFT. The digit reversal pass is found in the last pass of a FFT for the class

of FFT algorithms described in Section D of Chapter 0.

Table IV. 1 illustrates the bit reversal pattern for a base of two with three digits. The

program gen_dr has the following calling interface:

ResultVect = gen_dr(NoDigits, Base, fname)

86

where:

NoDigits is the number of digits in the address pattern,

Base is the base of the number system used, and

f name is the name of the file to store the resulting address patterns.

Normal Pattern
(Base 10)

Normal Pattern
(Base 2)

Bit Reversed
Pattern (Base 10)

Bit Reversed
Pattern (Base 2)

0 000 0 000

1 001 4 100

2 010 2 010

3 011 6 110

4 100 1 001

5 101 5 101

6 110 3 011

7 111 7 111

Table IV.l Digit Reversal for Three Digits Base 2

The last program, gen_rand generates a sequence such that the probability that

the next address will be sequential or linear is p, and therefore a probability of \-p that the

next address will be a jump to a random address. The calling sequence for gen_rand is:

ResultVect = gen_rand(N, p, seed, fname)

where:

N is the number of addresses to generate,

p is the probability that the next instruction is the next address,

seed is the random number generation seed, and

NoBanks is the number of banks in simulation.

This function is used to generate address patterns characteristic of general-purpose

computing. When p>0, there exists a sequential address characteristic that simulates

address patterns that occur when fetching instructions. The random nature of the

simulated address pattern captures data references as well as program branching.

87

2. STM Simulator

The STM Simulation program consists of the function stm and a collection of

support functions called by stm. The program stm accepts a memory address stream

described above, and three parameters that define the memory system:

• number of memory banks (NoBanks),

• the number of cache elements per memory bank (NoCE) and,

• the ratio between the dynamic memory cycle time to the static memory cycle

time (MemRatio). This parameter specifies the number of static memory

cycles required to complete one dynamic memory cycle.

The calling sequence for stm is:

stm(Fname,ASCII,Level)AList,NoBanks,NoCE,MemRatio,MemDecode,A)

where

Fname is the file name of the saved data,

ASCII specifies the format of the output file (either ASCII or binary).

Level specifies the level of detail of output saved in sf_name. There are three

levels of detail that can be saved. Level 0 is a complete dump of all of the

memory bank registers for each clock cycle. This level is used primarily for test

and validation of the program. Level 1 provides a tabular listing of events. Level

2 generates a file suitable for input into the graphics programs.

AList is the memory address list. This is a matrix where each row is of the form:

[Address RWFlag]

NoBanks specifies the number of banks to be used in the simulation,

NoCE is the number of cache elements to be used in each bank of the simulation,

MemRatio is the ratio of dynamic memory cycle time to static memory cycle

time,

Mem Decode is a flag that specifies the type of memory decoding, and

83

A is the permutation matrix when MemDecode=l and undefined otherwise.

The program stm models all of the counters, registers, and flags for each bank of

the memory under simulation. These variables can be categorized as bank counters,

global counters, the cache element array, control signals, flags, and other variables. The

following three variables are used to model the counters for each memory bank:

• Next Available Counter (NAC) This counter points to the next available

cache element (CE) available for a memory (read or write) request.

• Output Counter (OC) This counter points to the next CE containing a read

that has data ready to be sent back to the processor.

• Currently Processed Counter (CPC) This counter points to the CE that is

currently involved in either a dynamic read or write cycle when PDC ==

TRUE.

The program uses global counters as shown in Figure IV.3, rather than replicating them in

each memory bank as indicated in Figure IV.4. They as defined as:

• Request Counter (ReqC) This counter is used to ensure that each read

request is matched with the read response. ReqC is loaded into the next

available CE's Reqlndex field during a memory request cycle. Note: This

counter is conceptually global in that every memory bank has access to the

ReqC contents.

• Response Counter (ResC) The response counter is also conceptually a

global counter and is used in conjunction with the ReqC. ResC is compared

with the Reqlndex value selected by output counter (OC). If they are equal,

the corresponding Ready bit is set. ResC is incremented when a read

response is returned on the bus.

• Dynamic Memory Cycle Counter (DCount) This counter is initialized to

ReqCount at the beginning of a dynamic memory cycle and decremented for

each system cycle.

89

The Cache Element (CE) of each bank is represented by the cache element array.

The cache element array is the focus of the STM design. Each CE is a resource for

processing one read or write request and is the central interface between the main system

bus and the dynamic memory module. The cache element array consists of the following

components:

• Request Index Array (Reqlndex) The index of the CE, addressed by the

next available counter (NAC), is loaded with the value of the request counter

(ReqC) when a memory reference is serviced. Note that this value serves as

a unique identifier for sending data back to the requester (e.g., the processor).

• Address Array (Address) The Address of the CE, selected by the next

available counter (NAC), is loaded with the value of the address bus (ADDR)

when a memory reference is serviced.

• R/W Bit Array (RW) The RW bit of the CE, selected by the next available

counter (NAC), is loaded with the value of the address bus signal indicating

either a read or a write request when a memory reference is serviced.

• Ready Bit Array (Ready) The Ready bit of the CE, selected by the next

available counter (NAC), is reset, indicating either data for a read request is

not available or a write request has not been completed when a memory

reference is serviced. This bit is set for a read request when the data has been

loaded from the dynamic memory.

• Data Array (Data) The Data Array is used differently for read and write

memory requests. For a memory read, the Data array of the CE, selected by

the currently processed counter (CPC), is loaded at the end of a dynamic

write cycle. This is followed by the Data array being read and passed to the

Data Bus (DATA), when referenced by the output counter (OC) and the

Request Enable (RE) line is active. For a memory write, the contents of the

DATA bus is written into the Data array of the CE, selected by the next

available counter (NAC).

90

The control signals for stm are defined as follows:

• Grant Request Internal (GRI) When active, this signal indicates that a

bank is ready to accept requests from the processor.

• Grant Request (GR) When active, this signal indicates that the memory

system is ready to accept requests from the processor. The GR signal is

formed by a wired AND of all of the GRI signals.

• Response Enable Internal (REI) When active, this signal indicates that a

bank is ready to send data requested with a read request, back to the

processor.

• Response Enable (RE) When active, this signal indicates that the memory

system is ready to send data requested with a read request, back to the

processor. The RE signal is formed by a wired AND of all of the REI

signals.

• Bank Select (BS) When active, this signal indicates that this bank has been

selected for a memory access.

• Start Dynamic Read Cycle (SDRC) This signal indicates the beginning of

a dynamic read cycle.

• Start Dynamic Write Cycle (SDWC) This signal indicates the beginning of

a dynamic write cycle.

The following is a list of the flags defined in stm:

• Empty This flag is active whenever there are no memory requests in the

smart cache.

• Processing Dynamic Cycle (PDC) This flag is active whenever the dynamic

memory subsystem is processing a memory request.

ReqCount is a variable defined in stm that specifies the total number of system

cycles required to process a dynamic memory cycle.

91

A simplified algorithmic description of stm is shown in Figure IV.8. The style

used to describe the algorithm is borrowed from the Matlab language. Formal variables

are not shown except where they provide clarity to the algorithm. Other details, such as

file I/O, are also not shown.

The first function, initialize(), represents all one-time initialization required for

Stm, such as initializing counters and cache element arrays for the banks. The work is

accomplished in the WHILE loop which executes until the variable done is set to TRUE

by the function simulation_complete(), which returns TRUE when there are no more

addresses to process and when all of the memory banks are empty.

stm(AList,NoBanks,NoCE,MemRatio)

initialize();

done = FALSE;

while -done,

GRI = evaluate_gri();

REI = evaluate_rei();

Empty = evaluate_empty();

generate_address();

for BankNo = 1:NoBanks,

memory_response();

service_dynamic_memory();

service_memory_request();

end;

done = simulation_complete();

save_results();

System_Clock = System_Clock + 1;

end;

Figure IV.8 Simplified Algorithmic Description of stm

Each pass of the WHILE loop processes one clock cycle. Each memory bank is

evaluated to determine the status of GRI, REI, and Empty with the calls to

evaluate_gri(), evaluate_rei(), and evaluate_empty(). The function

92

generate_address() then conditionally generates an address if the memory system is

able to accept a new request. The conditional nature of the address generation is not

shown explicitly here. Each bank is then evaluated in the FOR loop.

There are up to three events that may occur with each memory bank. These

events are defined as follows:

• Accept a memory request,

• Generate a bulk storage memory cycle. This comes in three types, generate a

read bulk storage memory cycle, generate a write bulk storage memory cycle,

and generate a Processing bulk storage cycle.

• Send a read response.

These events are processed by the functions memory_response(),

service_dynamic_memory(), and service_memory_request() respectively. The

variable done is then set, results for this cycle are saved with the function

save_results(), and the system clock is incremented.

The results are saved in a file that can be processed using graphics programs

described in the next section.

3. Graphics Programs

The graphics programs shown in Figure IV.7 provide graphic plots of the memory

traces and compute scalar performance measurements of the simulation results. The

primary graphics function is called m_anal(). This program produces plots that are used

to obtain quantitative and qualitative insight into a particular simulation run. Its calling

convention is as follows:

[TP,S,MaxL,AvgL,StdL] =

m_anal(fname,ASCII,Apattern,WinLen,PlotFlag,Length,PrintFlag)

where

f name is the name of the file containing data produced by stm to process.

93

ASCII is a flag indicating whether fname is stored as ASCII or binary file. A 0

and 1 specifies binary and ASCII respectively.

Apattern is a short description of the Address pattern to be used for the title of the

graph.

WinLen is the length of the smoothing window for computing instantaneous

throughput.

PlotFlag is a flag indicating the number and types of plots to be produced. Valid

values are 0 and 1, indicating no plots or one plot respectively.

Length specifies the number of points used in a plot. A value of 0 means use all

of the points. Any value greater than 0 indicates the number of point to plot.

PrintFlag is a flag indicating the types of output desired. A value of 0 means

print to the screen, a value of 1 means print to a postscript file, and a value of 2

means send directly to a printer.

This function produces the scalar output statistics of throughput (TP), speedup

(S), maximum latency (MaxL), average latency (AvgL), and the standard deviation

(StdL) for the simulation. These statistics may be an end result in themselves or they can

be used as input into the graphics program p_mesh() described below.

An example of the plot produced by m_anal() is shown in Figure IV.9. The input

parameters (i.e., a short description of the memory address stream, and the three

parameters that define a STM memory) are shown above the top graph. The plot on the

top is the instantaneous latency versus time. For this example, the latency begins at nine

and becomes 16 at steady state.

Scalar performance parameters are displayed above the middle plot. These

parameters are speedup, average throughput, maximum throughput, average throughput,

and the standard deviation of the throughput. The middle plot is a moving average of the

throughput based on a window of length WinLen. Those plots shown in this document

were constructed with WinLen = 8 unless otherwise stated. The plot on the bottom is a

time series display of the control lines grant request (GR) and request enable (RE). GR is

94

active if the line is high (at the GR level) and inactive otherwise. RE may be interpreted

in a similar manner.

The second graphics function is called p_mesh(). This function is responsible

for constructing a mesh plot of one type of scalar performance measurement (e.g.,

speedup) produced by m_anal. This type of plot is used to compare a set of performance

measurements when two variables (NoCE and NoBanks) are varied over a range. In

Figure IV. 10, the performance variable speedup is plotted for NoCE ranging from 1 to 64

and NoBanks ranging from 4 to 64.

95

Addr Type: Radix 2 # Banks=16 # CEs=16 Mem Ratio=8

15
ü

§ 10
4—«

CO

0

./I :::::::::::J :::..::
o 10 20 30 40 50

S=7.595 AvgTP=0.9494 MaxL=16 AvgL=15.98 StdL=0.3938

0 10

T
hr

ou
gh

pu
t

p

In

-»

■

/ n
20 30 40 50

RE
CO

CO
•I—•

en
GR

(7)

0 10 20 30
Time (Cycles)

40 50

Figure IV.9 Example Plot From m_anal Function

96

Speedup

81

6^

4-

2>
64 ^s

8
16

32
"^~64

Cache Elements 4
Banks

Figure IV. 10 Example Mesh Plot for the Performance Parameter Speedup

97

98

V. THEORETICAL PERFORMANCE ANALYSIS OF STM

In this section, performance of the STM will be investigated and described in

terms of memory parameters and characteristics of the input memory reference vector.

The conventional bank number decoding scheme is assumed as described in Section D of

Chapter II for Sections A through C. In Section D, the effects of permutation-based

decoding will be examined. The bank selection pattern will be described in terms of the

characteristic of the input memory reference vector and the memory parameters. The

bank selection patterns will then be used to determine expressions for the performance

parameters, steady-state throughput (TPSS), and the maximum latency (Lmax).

The following analysis assumes that all memory references are read requests.

This provides for the worst case analysis for STM. This analysis will begin with the

simplest of the input reference streams, those streams with constant stride. Information

gained from this analysis will then be used to address radix-r butterfly and digit-reversed

patterns.

A. CONSTANT STRIDE

The parameters pertinent to performance measures for constant-stride address

patterns are:

• Stride length (S),

• Number of banks in the memory system (B),

• Number of cache elements per memory bank (CE),

• Ratio of bulk store to static memory cycle time (MR).

The expression for the effective number of banks is repeated below for

convenience. Given a stride S, and a number of banks B, the number of memory banks

that will actually be used can be expressed as:

«r = . , (V.l) gcd(S, B)

99

where gcd(a,b) is the greatest common denominator of a and b. Beff will be referred to as

the effective number of banks. For example, if S and B are relatively prime, then Beff=B.

Alternatively if B is a factor of S, then Beff = 1.

For the set of Beff effective banks for a given input memory reference vector, the

constant-stride address pattern distributes the addresses evenly with a size of one. By

"evenly" it is meant that each of the effective banks is presented addresses in a round

robin pattern. By "with a size of one," it is meant that each bank is given one address at a

time. Figure V. 1 illustrates a memory system with Beff banks, each bank with CE cache

elements. This figure assumes that all of the banks are effective, or alternatively, only the

effective banks are shown. The entries in each cache element represent the placement of

the sequence number of each memory address where the addresses are distributed evenly

with a size of one as described above. This is, in fact, the optimum placement within the

effective banks because the work is spread evenly. At any point in time, the bank that

will receive the next memory request will be the bank that is the least busy. Additionally,

the use of input and output buffers for standard interleaving and cache elements for STM,

provide pipelining of memory requests to each bank. This allows each bank to execute

memory references with no wait cycles as long as there are memory references to process.

Bank #0
CE Index Addr #

0 0000
1 Beff

•
•

CE-l (CE-l)Beff

Bank #1
CE Index Addr#

0 0001
1 Beff+l

• *

CE-l (CE-\)Beff+\

• • •

Bank #Beff -1
CE Index

0

CE-l

Addr#

%"!
2Beff - 1

CEBplr - 1

Figure V.l Interleaved Memory Address Space: Conventional Bank Selection

The round robin pattern coupled with the use of pipelining ensure that the bulk

storage modules associated with the effective banks will be fully utilized for the constant-

stride address pattern.

100

For any interleaved memory system, the steady-state throughput is determined by

the memory ratio, the number of effective banks, and the efficiency with which the

effective banks are utilized. As indicated above, there is full utilization for the constant

stride pattern. The following discussion describes the relationship between the memory

ratio and the number of effective banks.

The total number of bulk storage cycles (CBSMr) required to process NA memory

requests is

CBSM,r = NAMR (V.2)

The number of bulk storage cycles available (CBSMa) with a memory consisting of

B effective banks (ße#) during N cycles is:

CBSM.a=Bejf-N. (V.3)

The banks can be assured to be used efficiently, for the reasons described above

and therefore all of the available bulk storage cycles will be used. Setting Equation (V.2)

equal to Equation (V.3), and applying the definition of throughput of Equation (II.6),

yields:

Tp = Q^L = ^L = _sL for R < MR. (V.4)
C N MR ff
^actual ly mIK

Note that the range of clock cycles used to compute the steady-state throughput is

assumed to be in the steady-state region when applying Equation (II.4). The banks cannot

process more memory requests than are available. If Beff > MR then the maximum

throughput is obtained, therefore:

TPss = 1.0 for Beff > MR. (V.5)

If the number of effective banks is less than MR, then throughput will be

proportional to the memory ratio as shown in Equation (V.4).

Under ideal conditions, latency is expressed as

Lmin = MR + 2 (V.6)

101

since MR cycles are required to process a memory request and one cycle is required for

the input and another for the output of the memory request. If the number of banks is

equal to or exceeds the memory ratio, the minimum latency is obtained for constant stride

addressing patterns because there is sufficient memory capacity to process the memory

requests, and the memory references are allocated efficiently to the banks. Therefore,

Lmax = MR + 2 when Beff > MR and NoCE > 2 (V.7)

for STM and standard interleaving.

If the throughput is not optimum, (i.e., MR > Beff), then the steady-state latency

becomes a function of the memory ratio and the number of effective cache elements.

Throughput not optimum implies that there are more memory requests than can be

processed per unit of time. The steady-state latency associated with a constant-stride

address pattern when the throughput is not optimal will be described shortly with the aid

of Figure V.3.

The relationships between the performance measures and memory parameters for

a constant-stride address pattern is illustrated in Figure V.2 and Figure V.3. The timing

diagram in Figure V.2 is for a four bank memory (labeled BO through B3) each with two

cache elements indicated by the letters a and b The top row is a clock for reference

purposes. The row labeled Bus reflects the corresponding bank numbers of the address

stream driven by the processor. The superscripts on the bank numbers are used to

uniquely identify each memory reference.

The first memory reference, 0° is placed on the bus at clock cycle 0 and accepted

by first cache element of bank 0 (50a) at clock cycle 1 as indicated by the entry 0°. The

next four entries, pi, p2, p3, andp4 indicate the time required for the bulk memory to

process the memory request. The next entry 0°out indicates that the memory response is

passed back to the processor.

The memory ratio is four (as indicated by the pi through pA entries). Therefore,

based on Equation (V.5), the memory will support maximum throughput for an address

stream with constant stride of one which is suggested by the round robin bank pattern

102

shown on the bus. The first memory response occurs at clock cycle six with a latency of

six. The memory system responds with an output every cycle thereafter yielding a

throughput of 1.0. Note that in general, a memory request is accepted in a bank when the

currently processed memory request is in its fourth cycle, thereby queuing up the new

memory request just in time to keep the bulk memory continuously busy. By inspection,

it can be seen that the latency is six for all memory references. There is substantial

regularity in this example because of the constant stride of one address pattern and

because there are sufficient banks to support a throughput of 1.0.

Clk 0 1 2 3 i 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18

Bus 0° 1° 2° 3° ! o1 1' 21 3' o2
l2 22 32 o3

l3 23 33 o4
l4 24

BOa ol Pi pl\ pi PA
out o2

in Pi P2 pi p4
out o4 -

BOb ol pi P2 Pi p4
out ol Pi p2 pi P4 03

M

Bla 1° pi ! P2 p3 P4
out l2

in pi P2 Pi P4 4 ll
Bib iL pi P2 pi p4 iL ll pi P2 pi p4

Bla 2° ! pi p2 pi P4 21 out 22
in Pi P2 pi P4 2L out

Bib 2l pi P2 pi P4 21 23
in Pi p2 pi

Bia \i° 1 in pi P2 pi PA 31 out 3- pi P2 P3 P4 3L out

Bib 3' w Pi p2 pi p4 31 out 33 pi p2

Figure V.2 Timing Diagram: Optimal Throughput

Figure V.3 again illustrates a constant stride of one address pattern with an

interleaved memory system with a memory ratio of four. In this instance however, there

are only three effective banks labeled BOx through B2x where the x is either an

a, b, or a c indicating the three cache elements for each bank.

The first 17 cycles are shown in Figure V.3a. The first memory request of each

bank is accepted and processed in the same manner as in Figure V.2. However, the

second memory request of bank B0 represented by 0 is accepted during the third

processing cycle (p3) of the previous memory request rather than on the fourth cycle as in

Figure V.2. This requires the second memory request to wait one cycle (indicated by the

w in cycle five) for the bulk store memory to become available. This scenario is repeated

103

for each bank (see 1 and 2). The result is that each bank incurs one wait state. The

next set of memory requests labeled 0,1, and 22 result in a second wait state. In

general, an additional wait state is added after each additional memory request is

processed until a total of six wait states have been accumulated (see 0(, 1', and 2', for

i=\.. .6). Memory request 07 cannot be accepted on cycle 22 since all cache elements are

in use. Cache element b of bank 0 becomes free on cycle 23, freeing cache element c.

Once the cache elements become saturated as described above, each cache

element is associated with a memory request that is either waiting to be processed or is in

process. Using 08 as an example, four processing cycles are used to process

0 , 07, and 08, each requiring four cycles. Therefore, the maximum latency can be seen

to be equal to the number of cache elements plus one, times the memory ratio minus the

number of effective banks. This relationship is expressed as

Lnua = (NoCE + l)MR- Beff (V.8)

and is applicable to both STM and to standard interleaving.

Following the transient, which ends at cycle five, each set of four cycles (e.g., six

through nine) contains three outputs (one from each bank) and one cycle with no output.

This yields the anticipated 0.75 throughput as specified in Equation (V.4).

The next section will describe the theoretical memory performance for radix-r

butterfly address patterns.

104

r- in
CN £ £ ^ u-, -s £ co

O, * o.

VO 1~ ^£ * ^ £ ^ ^f * 'S-

m t> 5= «a. o. ^^s *

TT -<* <£,! £ 'S. t.^ £ <8. * -4-J

3

co ** t.'b5 * CO
OH £ «2, *

J3
D£
3
O

(N
■fe ^ * o. £ OH ^ ^ XS

H
T—H «8. * 'S, ^_i m .5 ^ * s
O rn

'S. ^ -0s * 'S. ->. co
* o.

a
O

ON t> * *. * % r< .5 <N
(N O,

a
o
Z

OO * ^ «^ <3. «^ 'S. ^ E
C8

r» <N <bsCo\
t3 1—(

o 5 Ö, *. *
DC

5
VO "Ö b1 ^ Ü * co „ K

O, (NT
wo

»o "cs *. *
CO K

O.
§

• mm

H

"d- -
CO __ =
o. 13- o. 'S >

CO "CD

o

OH

Y—(

O,

'S,

o_S

o ■=
CN s

wo

- o °os

O <b

g§§ 03 CQ ä § ä

IT)
o

00
co 00 s

0

co a.

CO
co
ex, CN

co
CN

a

co 'S. O a
co a.

co
CO £ <* a,

CO
a

CN a.

<N
co £ co

a. CN
a 'S, *0 5 CN

CO £ CN
a. 'a, 3 £ a

o
CO £ ^

3

0 £ a. £ co
a

ON £ £ a £ CO a. oo .£
CN £ CN a.

oo
CN

oo
CN £ £ CO

a. 00 .5 £ CN
a CN

£ 'S,

CN
OO 00 .=

0 £ CN a, £ 'S, ■3- a. £ £
xT

CN
oo o 3

0 5: 'S, a. £ £ co
a 5 £

in
CN

oo o a, £ 5 co
a £ £ CN

a r- •£
CN £

CN <N
co £ £ CN

a, r- -S £ "a.
a

CN
£

co
CN

r- CN
O £ 'S, £ £ "3"

a *

CN
CN

r- o 'a. O £ £ ■3- a. S £ CO
a, £

CN o £ a, * £ co
a S £ CN a. vo .£ CN

O
CN £ CO a. £ £ CN

a ,c .5 £ "a. CN

ON VO £ CN a. M3 .S
O £ 'S, £ £ a.

oo
1—I o £ 'S. 0 £ * a, CN ä CO a.

f-
CN £ £ a. m ■£ *

CO
a, £ CN

a

MD w-i

O £ CO
a *

CN a. CN 5
CN

£ 'S,
05
0
«5

8
CO

0
=q

^

5 Ä 5
0

5 CN
cq

-0
CN

0
CN
cq

c o u

s a.
JS
0£
3 o u

H

£
'S a
O

1

G
©

CD a

>
u
S en
s

©

B. RADIX-/? BUTTERFLY ADDRESSING

The set of fast Fourier transform algorithms known as the Cooly-Tukey

algorithms [Ref 52] provide a technique for computing FFTs for vectors of length N

where N is defined as,

N = r^-r^ r„\ (V.9)

where N, n, and k are all integers. The set of algorithms used in this architecture are

derived using decimation-in frequency [Ref 51]. A derivation of a radix-4 butterfly

decimation-in frequency algorithm can be found in Chapter 0.

There are three types of address patterns related to constant geometry fast Fourier

transform (FFT). Figure V.4 depicts an eight point decimation-in-frequency FFT using

radix-2 butterflies and will be used to illustrate the address patterns related to the

computation of FFTs of interest in this dissertation.

To initialize the input data vector, the input data must be placed in sequential

order which requires a constant stride pattern of stride one. The analysis for this pass is

described in the previous section.

The input address pattern for each intermediate pass is constructed by partitioning

the input array into r parts where r is the radix of the butterfly. The first element of each

partition is accessed to compute the first butterfly. The second element of each partition

is then accessed for the second butterfly, etc., until all points of the array have been used.

This results in an address pattern of constant stride for each radix-r butterfly. The stride

is:

S = — (V.10)
r

where

N is the length of the input vector (eight in the example), and

r is the radix of the butterfly (two in the example).

107

These relatively short sequences of length r are concatenated to form the radix-r memory

reference stream for a pass. This memory reference pattern is the focus in this section.

The last memory address pattern is digit reversal which is required to access the

results of the last pass, as can be seen in Figure V.4. Performance analysis of digit

reversal patterns will be addressed in the next section.

Figure V.4 Radix-2 Constant Geometry Decimation-in-Frequency FFT

The significance of the above discussion to STMs is that data is selected with a

stride S as defined in Equation (V. 10). For a STM with a memory composed of B banks,

up to Bsei banks will be selected where Bsei can be expressed as

B
B sei

gcd(S,B)'
(V.11)

But, since only the first r elements of Bsel are taken for the butterfly operation, the

actual number of banks selected within a set of numbers for one butterfly can never be

greater than r.

108

On the other hand, since the address used in each partition increases by one for

each set of numbers used in a butterfly operation, all banks will be used. In the worst

case, B is a factor of S, and Bsei = 1. In this case, a single bank will receive all r of the

memory requests for a given butterfly. However, the next set of r numbers taken for the

butterfly, will be sent to another bank. All banks will be given a task within B sets of

butterflies or within r ■ B samples. If the number of banks and the radix are both powers

of two, this worst case scenario is the case.

The steady-state throughput and maximum latency can be visualized for standard

interleaving with the aid of Figure V.5 which contains a segment of a timing diagram for

a radix-4 butterfly address pattern for a standard interleaved memory with four banks.

Note only three banks are shown.

Clk 0 1 1 3 i 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Bus 02 o3 o3
03 1 03 1° l1 l1 l1 l1 l2 l2 l2 l2 l3 I3 l3 l3 2°

SO

pA
Pi

o1 v
out

pi ! p3 p4

! o3
i "in

o2

pi pi P3 pA o3 v
out

B\ 1° lin pi pi P3 PA

4
1° lout

pi pi P3

l2 l
in

pA
Pi

lout

P2 P3 PA lout

Pi
Bl 2°

Figure V.5 Timing Diagram for Radix-4 Butterfly Pattern (Standard Interleaving)

First consider the steady-state throughput. It is assumed in this diagram that only

one bank is selected for each butterfly as described above. In this case, a bank ß(will

receive r consecutive memory requests followed by r memory requests to bank 5(+1.

When the last bank receives its memory requests, the process repeats with the first bank.

From the figure, it can be seen that the pattern is cyclic and contains two regions of

activity as it relates to throughput. For a given bank, the first and last memory references

are processed in parallel with the previous and next banks, respectively. This is the first

type of region referred to above. One such region is located between cycles six through

ten, and the next between cycles 19 through 23 (Only cycles 18 and 19 are shown in the

figure). The other type of region is found between instances of the first type of region. In

this second type of region, one bank is processing memory requests alone (i.e., no other

109

banks have requests to process). The representative region shown in the figure is between

cycles 11 though 18. Therefore, one representative period of this cyclic pattern begins

with cycle six and ends with cycle 18. Since the pattern is cyclic, the throughput

represented by this period is the steady-state throughput.

The number of cycles represented by the two regions is MR +1 and (r - 2)MR,

respectively, for a total of MR + l + (r- 2)MR cycles. During this period of time, two

outputs occur in the first region and r-2 outputs occur in the second region for a total of

r + 2 outputs. The steady-state throughput is the ratio of the number of outputs to the

total number of cycles during the period and is expressed as

TPss = ; : when B > MR ss MR + \ + (r-2)MR

r
(V.12)

{r-l)MR + V

This analysis assumes that the number of banks is matched to the memory ratio.

The maximum latency can be determined by inspection of Figure V.5. Consider

one memory request such as 1 . It is available initially on the bus at cycle six and must

first wait for 1 to finish processing. This results in a delay of MR cycles. Processing of

1 requires MR more cycles. One additional cycle is needed to transfer the result back to

the processor for a total maximum latency

Lmax=2MR + l (V.13)

when B> MR.

Now consider STM memory architectures. As indicated above, all banks are

utilized in radix-r address patterns. Further, a maximum of r consecutive memory

requests can be made to a bank. Therefore, the banks will be utilized efficiently if

NoCE>r + \ (V.14)

because this ensures that a bank will not stall when presented with r consecutive memory

requests. The steady-state throughput is then

110

TR. =
B_

MR
when NoCE>r + \ (V.15)

for all STM cases since all banks will be effectively engaged for a radix-r pattern.

The latency for a STM memory will be described with the aid of Figure V.6. A

total of r ■ MR cycles are required to process all of the r memory requests sent to a bank.

The last memory request must wait for the others to finish. This analysis assumes that the

number of banks is sufficient to obtain optimum throughput and represents the maximum

latency for the address pattern. The last memory request is not available to the memory

system until r- 2 cycles, with respect to the first memory request. Further, an additional

cycle is needed to return the memory response to the processor. The maximum latency is

therefore

Lmax = r-MR-(r-2) + l whenB> MR NoCE>r + l

= r(MR-\) + 3
(V.16)

for STM memories.

Clk 0 1 2 3 4 5 6 7 8 9 10 11 12

Bus 0° o1 o2 o3

BOa 0? Pi p2 p3 pA 0°
BOb 0]h pi p2 P3 pA o1

BOc 0?
BOd o3 ... o3

Figure V.6 Timing Diagram for Radix-4 Butterfly Pattern STM(4,5,4)

C. DIGIT REVERSAL

An address can be expressed as

index = anr" +an_xr
n +—\-a2r +axr + a0 (V.17)

where

r is the radix of the butterfly operation raised to the z'th power,

111

at is a digit of the base r number system, and

index is the index into the data array. It will be assumed that the array begins at

address 0, making the index equivalent to the address. This is a valid assumption

since shifting the array in the address space does not effect the analysis.

The equivalent digit-reversed number representation is then

index^ = a0r
n + ajn~x + a2r

n~2 +■■■ + an_xr + an (V.18)

where indexdr is the digit-reversed index.

The digit-reversed address pattern is a constant stride pattern with a stride of one

that is digit reversed. The resulting sequence is one that increments by r" as a0 cycles

from 1 to r-1. When a0 = 0, ax increments. The relationship holds for a, and a,./ for

each i.

Therefore, it can be seen that the digit reversal address pattern is composed of a

set of constant stride sequences of length r that are concatenated together. Equation (V. 1)

provides insight into the effectiveness of an interleaved memory system with

conventional decoding. Within a sequence, the effective number of banks is

Beff= fk oV (V.19)
gcd(r\ B)

If r and B are relatively prime, then Beff = B for each sequence and for the address

pattern at large. If, however, both the number of banks and the radix is a power of two,

then the effective number of banks is one for all practical situations. Therefore, when the

number of banks and the radix are a power of two, the throughput approaches 1/5.

This result is based on the assumption that the number of cache elements is

relatively small with respect to the length of the input vector. Suppose that the number of

cache elements is sufficiently large to accept all memory requests without a stall. The

digit-reversed address pattern has the property that each bank receives N/B consecutive

memory requests, where TV is the length of the input vector and B is the number of banks.

Because each bank has a sufficient number of cache elements (N/B) to accept all of the

112

memory requests without a stall, all memory requests are delivered in N cycles. The last

bank receives its first memory request at cycle

B B

Assuming that the number of banks is matched to the memory ratio, the number

of cycles required for the last bank to process its memory requests is

— MR = N. (V.21)
B

Therefore, the number of cycles required to process all of the memory requests is

NB-N Ar NB-N + NB 2NB-N „, „„,
 + N = = . (V.22)

B B B

The average throughput is defined as the ratio of the number of cycles needed

with an ideal memory device to the actual number of cycles required (see Equation II.4)

therefore

N B
TP = n Am AT = (V.23) 2NB-N 2J3-1

B

when NoCE > N/B. Although this represents a substantial improvement from the

previous result, it is achieved at a substantial cost in hardware. In any case, it provides a

throughput of approximately 0.5 for even a modest number of banks.

The poor performance of an interleaved memory system using conventional

decoding for the digit-reversed case, strongly suggests that a modification is required in

order to obtain satisfactory throughput for the digit reversal pattern when that base of the

digit is a power of two. The modification selected is permutation-based memory

decoding as described in Section E of Chapter 0. The following discussion describes the

anticipated performance for constant stride, radix-2, and digit-reversed address patterns

when permutation-based decoding is used.

113

D. PERMUTATION-BASED DECODING PERFORMANCE

In this section, the performance of the three memory address patterns described

above will be analyzed based on a bank decoding scheme using a permutation matrix as

described in Section E of Chapter 0. Following the approach above for conventional

decoding, the simplest addressing pattern, addresses with constant stride will be analyzed

first. Results from this analysis will then be applied to the radix-r butterfly and digit-

reversed addressing patterns.

Permutation based decoding was pursued due to the poor performance

encountered when the number of banks in the memory system and the characteristic of

the addressing pattern (e.g., the stride in constant stride addressing patterns) were not

relatively prime. The problem is most severe for digit-reversed patterns that are

characterized with sequences with large constant strides.

As shown in Chapter 0, Section E , each bank is selected once and only once

within a base sequence when a non singular permutation matrix with dimension n by n is

used to decode the bank number. An expanded permutation matrix that uses more

address bits for bank selection results in the base sequence of bank numbers to be

permuted as illustrated in Figure EL 12. All of the bank numbers are represented in each

block although the order will usually vary.

Therefore, the worst case scenario is that the last bank number of one block will

be followed by the same bank number of another block. For example, for a four-bank

memory, the first and second blocks could be {0 1 2 3} and {3 2 10} respectively. If

these were the only permutations of the bank number pattern, the banks 3 and 1 would

always be given two consecutive memory references.

The following describes the steady-state throughput and maximum latency when

permutation-based bank decoding is in use. In a standard interleaved memory, the lower

bound of the steady-state throughput can be derived by observing a cyclic pattern of the

output. Within a set of bank numbers, each bank receives a request, processes the

request, and then places its response on the bus at the appropriate time. The memory

system responds with a total of MR outputs. Since the first processing cycle for the

114

second request of the last bank occurs as the last bank sends the first output back to the

processor, there will be MR-1 cycles with no output. Therefore, there are MR cycles with

output followed by MR-1 cycles with no outputs. Since the banks accept and process the

requests of the second set with no further delay (after the second memory request of the

last bank is accepted) then MR outputs occur following the MR-1 period of no outputs.

At this point, two consecutive memory requests are encountered by the first bank and the

pattern repeats. Therefore, for a standard interleaved memory system, the worst case

steady-state throughput is

Tplb > MR = _MR_ forB MR^
ss MR + (MR-l) 2MR-1

Under these circumstances, the upper bound of the maximum latency is incurred

by the second consecutive memory request to a bank. This memory request must first

wait for the preceding memory request to be processed (MR cycles), followed by MR

cycles to process this memory request, and finally a cycle to return the memory response.

Therefore, the upper bound for the maximum latency for constant-stride address patterns

for standard interleaving is

L1^ < 2MR +1 for B > MR.. (V.25)

Since all of the banks are utilized, a STM with three or more cache elements will

provide sufficient buffering to ensure full utilization of all of the banks. Therefore, the

steady-state throughput for a STM memory is

TP,, = — for B < MR and NoCE>3. (V.26) ss MR

The latency for STM memories is the same as for standard interleaving for

constant-stride address patterns, given that the number of banks is matched to the

memory ratio and the number of cache elements is three or more. The only difference

between standard interleaving and a STM memory is that the second memory request is

not accepted by the memory in the standard interleaving case until the last processing

cycle, whereas the STM memory will accept it when the request first appears on the bus

(i.e., the memory request is not accepted for first MR cycles in standard interleaving but is

115

accepted by STM) In either case, there are MR cycles required to process the first request

followed by MR cycles to process the second request and a cycle to return the processed

memory response. Therefore, the upper bound of the maximum latency for constant

stride patterns for both the standard interleaving as well as for STM memories is

Lu£ax <2MR + \iorB> MR, and NoCE > 3.. (V.27)

Now consider the use of permutation-based decoding for a radix-r butterfly

address stream. The radix-r butterfly addressing pattern provides a unique bank for each

of the inputs to a single radix-r butterfly calculation because this is a sequence of constant

stride (s = N/r) as long as the number of banks is greater than the radix-r. If the number

of banks is less than r, the bank numbers will repeat and there exists the possibility that

two consecutive bank numbers can occur when crossing over a block boundary. This

situation is similar to the constant stride case where the last bank of one base set can be

the first bank in the next set. Clearly if the radix is smaller than the number of banks,

then only a subset of the banks will be selected.

The major concern for radix-r butterfly address patterns when using permutation-

based bank decoding is the relationship between the sets of banks selected for the

butterfly operations. This address pattern can be viewed as an interleaving of r streams of

constant stride of one address pattern. The effect of this r-way interleaving is not clear,

given the current set of constraints on the address stream, namely that it consists of a

sequence of blocks where each block contains a permutation of the bank numbers. The

larger the value of r, the greater the potential impact to the desired properties of the

address stream.

To clarify this last point, note that for a radix-2 butterfly, two constant-stride

address patterns with a stride of one are interleaved. Suppose the number of banks is

eight. The following is an example of the problems possible with radix-2 addressing:

Sequence #1: {1,2,3,4 ...}

Sequence#2 {2,3,4,5...}

116

with a resulting sequence of {1, 2, 2, 3, 3,4, 4, 5 ... }• A worse case scenario occurs if

both sequences are on a boundary with a repeating bank number resulting in one bank

number four consecutive times. As the radix increases, the potential for disrupting the

desired pattern increases.

An alternative to this dilemma is to construct a permutation matrix that has

properties favorable for radix-r addressing patterns. The following discussion will

describe one technique for constructing such a matrix.

The matrices designed with the technique described below are tailored both to the

number of banks as well as to the stride s. The use of tailored matrices requires that the

permutation matrix be loaded prior to using the memory. The permutation matrix cannot

be changed until the data inside the memory is not required anymore. A review of Figure

m.9 indicates that a memory engaged in the radix-r pattern will also be required to accept

a constant stride pattern with a stride of one. Therefore, the constraints necessary to

ensure good performance for constant-stride address patterns will also be applied to the

matrices designed for radix-r patterns.

The following description for constructing permutation-based matrices for radix-r

address patterns will use a STM that has 16 banks to illustrate the construction process.

Other STM configurations can readily be constructed by applying the principles described

below.

Figure V.7 illustrates the desired mapping to the address space when the stride of

the radix-r butterfly is 16 by a permutation matrix to be described below. The address

space is represented by the matrix with column order (i.e., the first 16 elements of the

address space are represented by the first column. The contents of each element is its

bank number. For simplicity, the first 16 elements are mapped with the identity matrix as

indicated in the figure and the permutation matrix shown in the following equation

0 0 ! 0 0 0 1

0 0 | 0 0 1 0

1 0 JO 1 0 0
0 ill 000

1 0 0 0"

0 1 0 0

0 0 1 0

0 0 0 1

(V.28)

117

r-H o ,_! o ,_, o ^^ o
*—1 T—1 o o T—1 1—1 o o

1—1 o o o o

lH o ,_! o (o t o
T—H T—1 o o r-H r-H o o
T—1 r—1 T—1 r-H o o o c~>
o o o o o o o o

H o ,_ o , o f o
r-H T—1 o o T-H r-H o <-)
o o o o

^_ o _l o ,_! o ,_! o
1—1 T—(o o T—* T-H o o o o o o T-H 1—1

f^l o o o o o o o o

s 1—1 o ^H o T-H o r-H o o o T-H T—1 o o r-H

T-H o o o o

1 1 o , o ,_, o (o
o o T—1 r-H o o r—t
T-H r-H T—1 r-H o o o o
o o o o o o o o

i-H o . , o l (r> ^ , r->
o o T-H r-H o o r-H

o o o o r-H

, o T—(o , o r-H o
o o T—i r-H o o r_H

o o o o ^—* r—t r-H

o o o o o o O o • e .

o r-H o r-H o T-H o
1—1 T-H o o r-H r-H o o

1—1 o O o o

o ,_! o ,_ o ^ o ^ !
T—H r-H o o r—i T—i o o
r-H r—1 r-H r-H o o o o

c» o o o o o o o o
a,

s o T-H o T-H o T-H o r-H
r-H T—< o o r-H T-H o o
o o o o

o ,_! o ,_, o 1 (o _H

T—(•r-H o o T-H ,__(o r>
o o o o T-H T-H

o o o o o O o o

o r-H o , o t o (
o o r-H T-H o o 1—1

T '-, r-H ,—' "-^ o o o o
£

<S

s o T—I o T-H o ,—1 o -H

o o T—1 r-H o o r-H
r-H T—* r-H T-H o O o o
o o o o o o o o

2
a o r-H o r-H o o ^

o o r-H o o i-H

VH o o o O T—1 T-H T—I 1—1

a* o ^ o r-H o 1—1 o r-H o ^H o 1 l o o _
C3 o o r—t r-H o o T-H r-H o o T—t r-> o 1—1 T-H

o o o O ,-H r-H r-H r-H o o o o r-H T-H wi o o o O o o o o
_

s a
M
CM
O
U

£
s
Z

OJ
J3
■*J

3
cr

W
tu s "E
*J

a»
J3
*J

C
<u

J3

»5
two
s
'a

-a
a> t.

'13

r--
i>
V u
13
WO

GO

Note that only the first eight rows of the matrix are filled in addition to the first

column, and that the bank numbers are in binary. By inspection of Equation (V.28), the

permutation matrix consist of the identity matrix (four rightmost columns) preceded by

four columns that will now be discussed. The first mapping, labeled Ml in Figure V.7, is

a result of p05 = 1 in Equation (V.28) followed (in the order in which they are applied to

the sequence) by pl>4 = 1, p23 -1, and p32 = 1, labeled M2 through M4 respectively.

The matrix is zero indexed with the origin in the upper left-hand corner.

As indicated before, this matrix is designed for a stride of 16. Assuming that the

first element of the sequence is at the origin, the sequence making up this stride of 16

consists of a row-wise ordering of the matrix. Thus far, the radix of the butterfly has not

been specified. Suppose first that r=16. In this case, the first butterfly operation will

receive the first row of the matrix in Figure V.7; the second butterfly operation will

receive the second row, etc. In this instance, it can be seen that the effect of mappings

Ml through M4 is to permute the first element in a row to all possible bank numbers.

Therefore, since the matrix will be accessed in row order, an address stream is generated

that has the same properties as that of an address stream with a constant stride of 16. The

resulting performance of this radix-r address stream should be consistent with a constant

stride addressing stream described above.

Suppose now that the radix is not 16, but rather two, four, or eight (these are the

radices of interest in this effort). For any other radix, the addressing pattern remains row

wise. However, only the first r elements of the matrix are taken for each butterfly

operation. Assuming that the first reference is at the upper left-hand corner of the matrix,

the addresses for the first butterfly operation is the first r elements of the first row. The

next butterfly operation uses the first r elements in the second row, etc.

Consider first a radix-2 butterfly address stream. The Ml mapping results in the

selection of each bank after eight butterfly operations or 16 memory references. This is

accomplished by the Ml mapping by toggling the b3 bank bit for the base sequence. This

maps elements 0000 through 0111 to the second half of the 0000 through 1111 sequence,

thereby ensuring all sixteen banks are accessed with the radix-2 pattern. An inspection of

119

Figure V.7 will verify that similar statements hold for radix-4 and 8 sequences which also

require the M2 and M3 mappings respectively, to get the desired result.

Radix-r sequences with strides longer than sixteen will take advantage of the

permutation matrix elements to the left of those used to implement mappings Ml through

M4 (p0 2 and pl3 are shown in Equation (V.28)). The effect of these mappings is to

map the results of Ml through M4 to other permutations. However, the relationship

between the banks is preserved through these mappings, and therefore the desired

properties are preserved.

Recall that one of the requirements for these matrices is that they meet the

conditions required for constant stride matrices. In particular, all sub-matrices of the

permutation matrix of dimension n by n, where n is the number of bits required to

represent the bank number, must be nonsingular. In Equation (V.28), this is clearly not

the case because each row contains a string of four or more zeros. This can be easily

fixed however by inserting zeros at positions p0l, plx, p62, and at p7 2, which satisfies

the requirements for constant stride matrices while maintaining the requirements for

radix-r matrices.

Two additional situations must be addressed: when the stride is less than the

number of banks and when the stride is greater than the number of banks. First, suppose

that the stride is less than the number of banks. For example, if the stride were a half of

the number of banks, the first and the eight elements of the base sequence address would

be accessed. In this situation, the permutation matrix needs to transform these two

elements to the remaining elements. Using a similar strategy as that above, three

mappings, Ml, M2, and M3 map the first half of the base sequence into the first row and

the second half of the base sequence into row eight, as shown in Figure V.8 using the

permutation matrix of Equation (V.29).

0 0 1|000

0 1 0 | 0 0 1

1 0 0 | 0 1 0

0 0 0 ! 1 0 0

1 0 0 0"

0 1 0 0

0 0 1 0

0 0 0 1_

a. (V.29)

120

A radix-16 sequence of banks is the interleaving of the first and eighth rows

{0000, 1000,0100, 1100,0010, 1010, ... 0111, 1111} for the first radix. The second

radix operation has a similar pattern for the second and ninth rows.

Observe that a radix-2 pattern will produce the sequence of bank numbers {0000,

1000, 0001, 1001, 0010 ...} and that the radix-4 sequence results in {0000, 0100, 1000,

1100,0001,0101, 1001, 1101,0010...}. Observe that in each case, each bank number is

encountered once every 16 memory references.

Base M1 Ptf M2 p2 4 M3 p3 3

0000 0100 0010 0110 0001 0101 0011 0111

0001 0101 0011 0111 0000 0100 0100 0110

0010

•

0011

0100

0101

0110

0111

1000 1100 1010 1110 1001 1101 1011 mi
1001 1101 1011 1100 1000 1100 1010 1101
1010

•

1011

1100

1101

1110

mi

Figure V.8 Mapping Required When Stride is One Half the Number of Banks

The last situation is when the stride is greater than the number of banks. Only the

first element of the base sequence is referenced (as in the case when the stride was equal

to the number of banks). The required sequence of mappings Ml through M4 is shown in

Equation (V.28). However, this mapping must be shifted to the left within the matrix.

For example, if the stride is two times the number of banks, the mappings Ml through

M4 must be shifted one position to the left (four times two positions, etc.). Such a matrix

121

hi "i i !
b2 o l !

b. 1 o |

w\ o l !

0 0 0 1 0 o !
0 0 1 0 1 o !
0 i 0 0 0 i i

i 0 0 0 1 l !

l 0 0 0"

0 i 0 0

0 0 1 0

0 0 0 1_

is shown in Equation (V.30) for a stride of four times the number of banks when the

number of banks is 16. The two columns between the identity matrix and the mappings

provide the necessary shifting of the mapping matrix.

(V.30)

In summary, a radix-r addressing pattern requires tailored matrices to yield

satisfactory performance for radix values greater than two. The matrices must be tailored

to the stride of the radix-r address pattern. In general, the three cases that must be taken

into account are when the stride is less than, equal to, or greater than the number of

banks. When these matrices are used, the performance of the radix-r address patterns are

equivalent to those of constant stride with respect to steady-state throughput and

maximum latency. The next section will address digit-reversed address patterns when

permutation-based bank decoding is used.

The steady-state throughput for a digit-reversed pattern is primarily governed by

maximum stride which is equal to the place value of the most significant digit of the

address of the input vector. This stride is repeated r times where r is the radix of the

butterfly used to compute the fast Fourier transform. These constant stride sequences of

length r and stride r ~ , where k is the number of digits in the address, are concatenated

together to form the digit-reversed pattern.

Permutation based decoding will ensure that the banks selected within a constant

stride sequence will be unique up to the number of banks. If the radix is equal to or

greater than the number of banks, then each set of constant stride sequences will contain

an equal number of references to each bank. This will yield a steady-state throughput and

maximum latency consistent with constant stride addresses.

If the radix is smaller than the number of banks, then unique banks will be

selected within each r length sequence. However the relationship between the bank

122

numbers between sequences is not known. Therefore, the same banks could be selected

again.

The large number of permuted patterns suggested by Figure HI. 12 and the

permutation matrices in Figure ULI3 through Figure HI. 15 suggest that a variety of banks

can be selected under these circumstances.

The lower bound for the steady-state throughput in this situation is

TP lh > — for r < B and NoCE > 3. (V.31) ss.lb MR

The maximum latency is governed by the number of cache elements and the memory

ratio under these circumstances. The maximum latency is

l}tx<{NoCE + \)MR-\. (V.32)

In this chapter, performance of both standard interleaving memories as well as

STM memories were analyzed first for conventional memory decoding and then for

permutation-based memory decoding. Addressing patterns analyzed include constant

stride, radix-r butterfly, and digit-reversed addressing patterns.

Constant-stride address patterns provide optimum performance under

conventional decoding when the stride and number of banks is relatively prime. The

steady-state throughput is 1.0 and the maximum latency is MR + 2. However, the

architecture in Chapter 0 requires strides that are powers of two. Address streams with

these strides perform poorly using conventional decoding as described in Equation (V.4).

Performance for constant stride patterns that are not powers of two is not specified based

on the theory of the permutation matrices developed.

When constant-stride address patterns with strides of powers of two are applied to

a STM memory with permutation-based decoding, the steady-state throughput is optimal

and the latency increases to a upper bound of 2MR +1. This is slightly less than double

that incurred with conventional decoding.

Radix-r address patterns yield an optimal steady-state throughput for all radix

values (r = 2,4,8, and 16) but with latencies proportional to the product of the radix and

123

the memory ratio. Standard interleaving performed very poorly for this case because this

pattern for the cases of interest result in r consecutive hits to the same bank.

Little can be said regarding performance when using the permutation-based

matrices for radix-r butterfly patterns. However, when tailored permutation matrices are

used for radix-r butterfly patterns, optimal throughput with an upper-bound latency

consistent with constant stride patterns (i.e., 2MR +1) are predicted.

Conventional decoding performs poorly for digit reverse address patterns because

the digit-reversed patterns of interest are characterized by sequences of length r constant

stride with the stride a power of two. The steady-state throughput is expected to be

inversely proportional to the number of banks when the number of cache elements is

small. If the number of cache elements is large (i.e., ~ N/B) then the average throughput

is

B

25-1

where B is the number of banks. The gain in throughput is obtained by a substantial

investment of hardware. Standard interleaving is also expected to perform poorly with a

steady-state throughput inversely proportional to the number of banks because this pattern

is characterized by long sequences to a single bank.

The permutation-based theoretical results are mixed when applied to digit-

reversed address patterns. When the radix is equal to or greater than the number of

banks, then the projected performance is consistent with constant-stride address patterns

using permutation-based techniques. When the radix is less than the number of banks, a

loose lower bound expression for the steady-state throughput is r/MR and the latency is

an upper-bound expression that is proportional to the product of the number of cache

elements and the memory ratio.

E. RANDOM ADDRESSING

As indicated in Equation (11.10), the speedup of a standard interleaved memory

system (i.e., one without any buffering) yields a speedup that is approximately the square

124

root of the number of banks. It is desirable to know the impact of buffering on the

performance of the interleaved memory system, given that the input address stream is

random.

Queuing theory provides a framework for analyzing this problem. For

background information on this topic see Trivedi [Ref 53] and Allen [Ref 54]. The

following discussion is based on an address stream consistent with Equation (11.10),

developed by Hellerman [Ref 25], that assumes each bank is equally likely to be selected

for each memory address issued to a memory system that contains MR banks. If the

problem is modeled in a queuing theory context, each of the banks can be modeled as a

queue with a single server (i.e., the bulk storage unit). This server has a service

distribution that is deterministic with a constant service cycle time of MR.

The input rate to the memory system (i.e., all of the banks) is one request per

cycle. The equal probability assumption on bank selection results in a geometric

distribution for the interarrival time with a mean arrival time of If MR, or equivalently

l/B where B is the number of banks. Given a queue length of k, a single bank can be

described using queuing theory notation as a M/D/l/k queuing problem where M1

represents the distribution of the interarrival time, D is the distribution of the server time,

the 1 indicates a single server, and as indicated above, the k is the queue length of the

input queue to the server. At times it may be useful to assume that k = <=°.

There are several features of this problem that distinguish it from traditional

queuing problems. The queue length is finite and there is no balking (i.e., a customer

does not leave a line no matter how long the customer must wait). Further, since read

cycles are assumed, the order in which the requests are made must be preserved across all

of the banks. The implication is that a given customer cannot leave the queue until all of

the customers that preceded it leave their respective queues. This can lead to nonsensical

situations when interpreted as a typical service line for humans. For example, it is

possible for a bank to have a full queue of processed customers that are waiting for the

1 M is generally reserved to represent the exponential distribution, which is the continuous counterpart to the discrete-
time geometric distribution.

125

proper turn to be sent back to the processor. Therefore, even though the queue is full, the

server has nothing to process and cannot accept new requests until a serviced customer

exits the queue.

A closed-form solution was not obtained for this queuing problem. However, the

following observations are made concerning this process. Because the number of banks

is matched to the memory ratio, the banks must be fully utilized in order for the service

rate to be equal to the input rate. This is possible only if the inputs are assigned in a

round robin fashion as described earlier in this section. The random nature of the input

stream will certainly not provide this type of assignment and therefore the service rate

will be less than the input rate. So long as the input rate exceeds the service rate, the

queue length will grow and if the queue length is modeled as infinite, there is no steady-

state solution. If, however, finite queue lengths are assumed, then stalls that occur when

queues fill up serve to regulate the input and a steady-state condition is obtained.

One experiment will be generated to analyze this problem.

126

VI. SIMULATION STUDIES

A. OVERVIEW

The following section is a description of the split transaction memory (STM)

simulations executed for the purposes of this dissertation. The major emphasis of these

simulation runs is to verify the analytic results obtained in Chapter V and to provide data

for making architectural choices for the vector processor architecture. A secondary goal

is to explore the use of STM for general-purpose computing.

The simulation studies are organized into two major groups. The first group is

concerned with vector processing. The second group consists of a single experiment

focused on general-purpose computing. Input variables pertinent to both groups include

the architectural parameters number of bank (NoBanks), number of cache elements

(NoCE), and memory ratio (MemRatio). The memory decoding scheme (MemDecode)

is an important parameter for the vector processor simulations but not those concerning

general-purpose computing. The type of address pattern is the another key input to a

simulation run. The vector processor simulations are organized by the three address

patterns discussed in Chapter V: constant stride, radix-r butterfly, and digit-reversed

address patterns. The random address pattern is analyzed for the general-purpose case.

The primary measurements of performance that are analyzed for both simulation

groups are the steady-state throughput (SSTP) and the maximum latency (ML). Note

that all of the performance parameters described in Section D of Chapter II are measured

during each simulation and are included in the discussion below when appropriate.

Speedup is also addressed in the general-purpose computing simulation.

The vector processing experiments are summarized in Table VI. 1. They are

organized into three pairs, each corresponding to an address pattern. Each pair first

addresses conventional memory decoding followed by permutation-based memory

decoding.

The first set of experiments deals with constant-stride address patterns. The first

experiment is designed to verify the problems associated with using conventional

127

decoding when the stride and the number of banks are not relatively prime. This

experiment also demonstrates optimal STM performance when the stride and the number

of banks are relatively prime and thereby places an upper bound on the goodness of STM

performance for the remaining experiments.

Name Purpose Scope

Constant Stride
(conventional
decoding)

Verify constant stride analysis for
conventional decoding.

Stride = 1,2,3,4,5,6,
7, 8, and 9

Constant Stride
(PB decoding)

Evaluate the performance of STM
using PB for constant-stride address
patterns where s=2A, k-l,2,..

Stride = 1,2,3,4,5,8,
16, 32, 64, and 128.

Radix-r Butterfly
(conventional
decoding)

Verify radix-r analysis for
conventional decoding.

r=2,4, 8, and 16.

Radix-r Butterfly
(PB decoding)

Evaluate the performance of STM
using PB for radix-r butterfly address
patterns.

r = 2, 4, 8, and 16.

Digit Reversal
(conventional
decoding)

Verify digit-reversed analysis for
power of two base number systems
using conventional decoding.

base 1 NoDigits= 2/10,
4/5, 8/4, and 16/4.

Digit Reversal
(PB decoding)

Evaluate the performance of STM
using PB for digit-reversed address
patterns for power of two base number
systems.

base / NoDigits= 2/10,
4/5, 8/4, and 16/4.

Table VI.l Vector Processor Experiments

The set of parameters used in the first experiment is:

NoBanks = 4, 8, 16, 32

MemRatio = NoBanks

NoCE = 1, 2, 3,

(VI.1)

where NoCE=1 is to be understood as a single buffer in standard interleaving rather than

a STM with one cache element. This convention will be assumed hereafter for the

following experiments. The values for the number of banks and the corresponding values

for the memory ratio are also used in all of the other vector processor experiments. The

number of banks is matched to the memory ratio based on the premise that an optimal

128

throughput is obtainable without increasing the number of banks to obtain throughput.

The range of values for the number of cache elements is tailored for each experiment.

The standard interleaving case is always provided for comparison (NoCE =1) to the STM

cases. The number of cache elements that is expected to provide an optimum steady-state

throughput based on the analysis in Chapter V (NoCE =2 for the experiment above) is

also included. Additional values for the number of cache elements may be provided to

explore the sensitivity of the performance values to the number of cache elements (NoCE

= 3 above).

This experiment is designed to validate expressions for the steady-state

throughput and latency as expressed in Equations (V.4) through (VI.8). Plots generated

based on these equations are shown in Figure VI. 1 through Figure VI.8. Figure VI. 1 and

Figure VI.2 illustrate the steady-state throughput and maximum latency, respectively, for

those strides that are relatively prime to the number of banks (i.e., strides 1, 3, 5, 7, and

9). These figures show the best performance possible for an interleaved memory system.

Figure VI.3 and Figure VI.4 reflex the throughput and latency for a stride of two. The

steady-state throughput is 0.5 for all values because the number of effective banks is half

of the total number of banks, which is in turn equal to the memory ratio. A similar

relationship holds for a stride of four except the effective number of banks is one fourth

of the total number of banks as shown in Figure VI.5. The corresponding maximum

latencies for a stride of four are reflected in Figure VI.6. The steady-state throughput is

slightly more complicated for a stride of eight because the effective number of banks is a

fourth of the total number of banks when the number of banks is four. For the cases

where the number of banks is eight and sixteen, the effective number of banks drops to

one eight of the total number as shown in Figure VI.7. This is due to the greatest

common denominator operation in Equation (V.l). The corresponding maximum

latencies are shown in Figure VI.8.

129

Theoretical Steady-State Throughput

2v

1s

3

2^

NoCEs 1 4
NoBanks

32

Figure VI.1 Steady-State Throughput for Strides=l?3,5,7,9 (Conventional
Decoding)

Theoretical Maximum Latency

32

NoCEs 8
NoBanks

Figure VI.2 Maximum Latency for Strides=l,3,5,7,9 (Conventional Decoding)

130

Theoretical Steady-State Throughput

2v

K

Os

3

2^

NoCEs 1^ 8 1 4
NoBanks

32

Figure VI.3 Steady-State Throughput for Stride=2, 6 (Conventional Decoding)

Theoretical Maximum Latency

150v

100s

50s

0^
3

2 NX

NoCEs 1 ̂ 8
4

NoBanks

16
32

Figure VI.4 Maximum Latency for Stride=2,6 (Conventional Decoding)

131

Theoretical Steady-State Throughput

2x

1s

Os

3

2^

NoCEs
_- —"~^~~~~~~ " 16
1^ 8 1 4

NoBanks

32

Figure VI.5 Steady-State Throughput for Stride=4 (Conventional Decoding)

Theoretical Maximum Latency

150.

10(k

50 x

0±
3

2 NX

NoCEs 1 ̂ 8
4

NoBanks

16
32

Figure VI.6 Maximum Latency for Stride=4 (Conventional Decoding)

132

Theoretical Steady-State Throughput

0.25.

0.2s

0.15s

o.u
3

■•■•'"- '^V x. __J^k

2^

NoCEs
X-—-— "^ " " 16
1^ 8 1 4

NoBanks

32

Figure VI.7 Steady-State Throughput for Stride=8 (Conventional Decoding)

Theoretical Maximum Latency

150s

100s

50 s

0y
3

2 XX

NoCEs 1 ̂ 8
4

NoBanks

16
32

Figure VI.8 Maximum Latency for Stride=8 (Conventional Decoding)

133

The second experiment is designed to validate the effectiveness of permutation-

based techniques when applied to constant-stride address streams. Further, the effects on

latency will be examined carefully because the latency analysis only provides an

expression for an upper bound. The parameter values for the number of banks and the

memory ratio is the same as in the previous experiment. The values used for the number

of cache elements:

NoCE = 1,3,4. (VI.2)

The first value provides for the standard interleaving case. A value of three is the

value required for optimal steady-state throughput. The value of four is added for

sensitivity analysis.

This experiment is designed to validate expressions for the steady-state

throughput and latency as expressed in Equations (VI.24) through (VI.27). Plots

generated based on these equations are shown in Figure VI.9 and Figure VI. 10. Figure

VI.9 illustrates the steady-state throughput of unity for all strides that are a power of two

when permutation-based decoding is used. The corresponding upper bound of the

maximum latency is shown in Figure VI. 10. Note that no theoretical results exist for

strides that are not a power of two for permutation-based memory decoding. Two strides

(stride=3 and 5) are simulated to provide exemplar performance parameters when the

stride is not a power of two. Although it is desirable for all strides to yield optimal

performance, those strides which are not powers of two are not required for the vector

architecture described in Chapter 0.

134

Lower Bound for Steady-State Throughput

NoCEs
NoBanks

32

Figure VI.9 Steady-State Throughput for Stride=2* for k = 0,1,2 ... (Permutation-
Based Decoding)

Upper Bound for Maximum Latency

10CK

NoCEs 8

NoBanks

32

Figure VI.10 Maximum Latency for Stride=2* for k = 0,1,2 ... (Permutation-Based
Decoding)

135

The third experiment is designed to verify the steady-state throughput and

maximum latency for radix-r butterfly address patterns when conventional decoding is

used. Expressions for steady-state throughput and maximum latency are found in

Equations (VI.12), (VI. 13), (VI. 15), and (VI. 16). The number of banks and memory ratio

parameters are identical to those used above. The values used for the number of cache

elements are adjusted for each radix. In general, the number of cache elements must be

equal to r+1 where r is the radix value. The values used for each radix in indicated in

Table VI.2. As in the previous experiments, the standard interleaving case is included as

well as the value that the analysis indicates will provide optimum steady-state throughput.

Radix NoCE Evaluated

2 1,3,4

4 1,5,6

8 1,9, 10

16 1, 17,18

Table VI.2 NoCE Evaluated in the Third
Vector Processor Experiment

The plots for these theoretical results are shown in Figure VI. 11 through Figure

VI. 15. Figure VI. 11 illustrates the theoretical steady-state throughput for radix-2 butterfly

address patterns for conventional decoding. Note that for the standard interleaving cases,

the value represents a lower bound. The remaining steady-state throughput plots (radix-4,

8, and 16) are not shown because the variation in these plots is within four percent of that

shown in Figure VI. 11 and that variation occurs only for the standard interleaving cases.

The upper bound for the maximum latencies are shown in Figure VI.12 through Figure

VI. 15 for radices of two, four, eight, and 16 respectively. Although the basic shape of

these plots are similar, the scale is seen to increase as the value of the radix increases.

136

Theoretical Steady-State Throughput

32

NoCEs 8
NoBanks

Figure VI.11 Steady-State Throughput for Radix=2 (Conventional Decoding)

Theoretical Maximum Latency

100

32

NoCEs 8

NoBanks

Figure VI.12 Maximum Latency for Radix=2 (Conventional Decoding)

137

Theoretical Maximum Latency

150.

100s

50 s

0±
6

5 X\

NoCEs 1 ̂ ~~~ ~"~ 8
4

NoBanks

16
32

Figure VI.13 Maximum Latency for Radix=4 (Conventional Decoding)

Theoretical Maximum Latency

300 v

200 s

100s

0^
10 XX

9 ^X

16
32

NoCEs 1 ^ 8
4

NoBanks

Figure VI. 14 Maximum Latency for Radix=8 (Conventional Decoding)

138

Theoretical Maximum Latency

600 v

400 s

200 s

0^
18

17 \

NoCEs 1 ̂ 8
4

NoBanks

16
32

Figure VI.15 Maximum Latency for Radix=16 (Conventional Decoding)

The fourth vector processor experiment is similar to the previous experiment

except that permutation-based decoding is used and the values selected for the number of

cache elements are adjusted to yield optimum steady-state throughput for radix-r address

patterns for tailored permutation-based memory encoding. The values used for the

number of cache elements are

NoCE = 1, 2, 3, 4

for all radices. Pertinent performance expressions are found in Equations (VI.24) through

(VI.27). These are the equations for constant stride but are also appropriate for radix-r

butterfly patterns when the specialized matrices are used.

The plots for these theoretical results are shown in Figure VI. 16 and Figure VI. 17.

Figure VI. 16 illustrates the theoretical lower bound for steady-state throughput for radix-r

butterfly address patterns for all radices for permutation-based decoding. The maximum

latency plot for all radices is shown in Figure VI. 17. Observe that the maximum latency

for this case is anticipated to be substantially lower than for the conventional decoding for

the higher radices.

139

Lower Bound for Steady-State Throughput

32

NoCEs 8
NoBanks

Figure VI.16 Steady-State Throughput for Radix=2, 4, 8, and 16 (Permutation-
Based Decoding)

100

Upper Bound for Maximum Latency

NoCEs

32

NoBanks

Figure VI.17 Maximum Latency for Radix=2, 4, 8, and 16 (Permutation-Based
Decoding)

The fifth and sixth vector processor experiments use digit-reversed address

patterns. The fifth experiment uses conventional decoding. Digit-reversed address

patterns are characterized by r-length sequences of constant stride r""D's"s_l where r is the

radix of the FFT and NoDigits is the number of digits required to represent the address of

the vector. Since the effective number of banks is governed by Equation (V. 1) the

effective number of banks is always one when r and the number of banks are both a

power of two. The following data set is used to validate this result:

NoBanks = 4, 8, 16, 32

MemRatio = NoBanks

NoCE = 1, 3, 4.

The theoretical steady-state throughput is illustrated in Figure VI. 18. Observe that

the steady-state throughput is inverse of the number of banks and this value is invariant to

the number of cache elements.

Simulated Steady-State Throughput

NoCE
NoBanks

Figure VI.18 Steady-State Throughput for Radix=2 (Conventional Decoding)

The sixth experiment evaluates several digit-reversed patterns using permutation-

based memory decoding. Expressions for steady-state throughput and maximum latency

are found in Equations (VI.31) and (VI.32), as well as (VI.24) through (VI.27). The

141

number of banks and memory ratio parameters are identical to those used above. The

values used for the number of cache elements are shown in Table VI.3. In general, the

number of cache elements used in this experiment is the same as those used in the second

experiment. Note that the value of five was added for radix eight and sixteen after one

iteration of simulations. This will be discussed further in the next section.

Radix/NoDigits NoCE Evaluated

2/10 1,3,4

4/5 1,3,4

8/4 1,3,4,5

16/3 1,3,4,5

Table VI.3 NoCE Evaluated in the
Sixth Vector Processor Experiment

The theoretical results for the steady-state throughput and maximum latency for

the four cases shown in Table VI.3 are shown in Figure VI. 19 through Figure VI.26. The

steady-state throughput plots are lower bounds except when the throughput is optimum.

The lower bound occurs whenever the base is less than the number of banks as described

in Chapter V Section D.

142

Lower Bound for Steady-State Throughput

NoCEs 8
NoBanks

32

Figure VI.19 Steady-State Throughput for Radix=2/NoDigits=10 (Permutation-
Based Decoding)

Upper Bound for Maximum Latency

200

100-

NoCEs 8
NoBanks

32

Figure VI.20 Maximum Latency for Radix=2/NoDigits=10 (Permutation-Based
Decoding)

143

Lower Bound for Steady-State Throughput

32

NoCEs 8
NoBanks

Figure VI.21 Steady-State Throughput for Radix=4/NoDigits=5 (Permutation-
Based Decoding)

200

100-

Upper Bound for Maximum Latency

NoCEs 8

NoBanks

32

Figure VI.22 Maximum Latency for Radix=4/NoDigits=5 (Permutation-Based
Decoding)

144

Lower Bound for Steady-State Throughput

NoCEs

32

8
NoBanks

Figure VI.23 Steady-State Throughput for Radix=8/NoDigits=4 (Permutation-
Based Decoding)

Upper Bound for Maximum Latency

200

100

NoCEs 8

NoBanks

32

Figure VI.24 Maximum Latency for Radix=8/NoDigits=4 (Permutation-Based
Decoding)

145

Lower Bound for Steady-State Throughput

32

NoCEs 8
NoBanks

Figure VI.25 Steady-State Throughput for Radix=16/NoDigits=3 (Permutation-
Based Decoding)

200

100

Upper Bound for Maximum Latency

NoCEs 8

NoBanks

32

Figure VI.26 Maximum Latency for Radix=16/NoDigits=3 (Permutation-Based
Decoding)

The second group of experiments pertain to general-purpose computing and are

summarized in Table VI.4. This experiment examines the marginal effectiveness of

adding additional memory banks and cache elements. The number of memory banks is

matched to the memory ratio such that if the memory banks are used optimally, then the

speedup obtained from the memory system is equal to the number of banks. The address

stream is completely random to allow comparison with results in the literature [Ref 55].

The parameters used for this experiment are

NoBanks = 1, 4, 8, 16, 32

MemRatio = NoBanks

NoCE = 1, 2, 4, 8, 16, 32, 64
P = 0.

(VI.3)

Name Purpose Scope

Speedup Analysis Investigate the affect to speedup
when varying STM parameters.
Set/?=0 for historical comparison.

MemRatio == NoBanks
for all cases.

Table VI.4 General-Purpose Computer Experiment

The next two sections contains the results of each of the simulation runs described

above for vectoring processing and general-purpose computing respectively.

B. VECTOR PROCESSING EXPERIMENTS

1. Constant Stride: Conventional Memory Decoding

A comparison of the theoretical and simulated results for the first vector processor

experiment are shown in Figure VI.27 through Figure VI.39. The plots for stride of one

are shown in Figure VI.27 and Figure VI.28. For both of these performance measures,

the theoretical and simulated results are identical.

Examples of two simulation runs, the first with four banks and two cache

elements and the second with 32 banks and two cache elements are shown in Figure

VI.29 and Figure VI.30 respectively. In each plot, the grant request line (GR) indicating

memory requests are accepted by the memory, is active on the first cycle and remains

active until all memory responses are accepted. The response enable (RE) line becomes

147

active indicating that output is available for the processor, and remains on until the last

response is sent to the processor. In each case, the RE line follows the GR line after the

necessary latency of six and 34, respectively (i.e., MR+2). This is the best performance

that can be obtained from the memory systems. One of the tradeoffs of using a larger

number of memory banks is the latency, as illustrated in Figure VI.29 and Figure VI.30.

This latency results in a average throughput of 0.9624 and 0.795 for four versus 32 banks

respectively. Figure VI.31 illustrates the effect on average throughput when varying the

number of banks for the case of a stride of one. The penalty of a larger number of banks

is clearly shown when the vectors are relatively small (128 points).

148

Theoretical Steady-State Throughput

NoCEs 8

NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.27 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Strides=l,3,5,7,9 (Conventional Decoding)

149

Theoretical Maximum Latency

NoCEs

32

NoBanks

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.28 Comparison of Theoretical Versus Simulated Maximum Latency for
Strides=l,3,5,7,9 (Conventional Decoding)

150

Plot ID: slcn # Banks=4 # CEs=2 Mem Ratio=4

>>

£4 o
OS

0
20 40 60 80 100 120

S=3.85 AvgTP=0.9624 MaxL=6 AvgL=6 StdL=0

.

Q.
_£Z

P0.5

0
0 20 40 60 80 100 120

RE
CO

•i—«

CO
4—»

GR
C/D

SSTP=1 TR=6

0 20 40 60 80 100 120
Time (Cycles)

Figure VI.29 Detailed Simulation Run for Stride=l STM(4,2,4)

151

Plot ID: slcn # Banks=32 # CEs=2 Mem Ratio=32
40

30
o
£ 20
03
_l

10

0

- t I I I I -I I 4

0 20 40 60 80 100 120 140 160

S=25.44 AvgTP=0.795 MaxL=34 AvgL=34 StdL=0

1
■*-»

3
Q.

O)
13 ^ r- o 0.5

0

.

0 20 40 60 80 100 120 140 160

RE

GR
CO

SSTP=1 TR=34

0 20 40 60 80 100 120 140 160
Time (Cycles)

Figure VI.30 Detailed Simulation Run for Stride=l STM(32,2,32)

152

Simulated Throughput

NoBanks

Figure VI.31 Average Simulated Throughput for Stride=l (Conventional
Decoding)

A comparison of the theoretical versus simulated steady-state throughput and

maximum latency is shown in Figure VI.32 and Figure VI.33, respectively, for a stride of

two. Notice that the simulated steady-state throughput varies by as much as four percent

from the theoretical for thirty two banks. The steady-state throughput is calculated by

taking the average of the last twenty five percent of the throughput values. This

occasionally results in a bias error when the steady-state value of the throughput is not

constant. Such a steady-state is illustrated in Figure VI.34 for thirty two banks and three

cache elements.

The simulated maximum latency is in agreement with the theoretical plot for

stride of two as shown in Figure VI.33. The average throughput, shown in Figure VI.35,

indicates a consistent pattern with a stride of one. The average throughput obtained with

four banks (approximately 0.495) is within one percent of the steady-state ceiling of 0.5.

153

Theoretical Steady-State Throughput

NoCEs 8
NoBanks

32

a)

Simulated Steady-State Throughput

0.54-

0.52-

NoCE
NoBanks

b)

Figure VI.32 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Stride=2 (Conventional Decoding)

154

Theoretical Maximum Latency

NoCEs 8
NoBanks

32

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.33 Comparison of Theoretical Versus Simulated Maximum Latency for
Stride=2 (Conventional Decoding)

155

Plot ID: slcn # Banks=32 # CEs=3 Mem Ratio=32

100
o c
0
co 50

0
0 50 100 150 200 250

S=15 AvgTP=0.4689 MaxL=112 AvgL=90.1 StdL=20.69

100 150 200 250

CO

CO

0 50 100 150 200
Time (Cycles)

SSTP= 0.5362 TR=258

RE

i i i -

GR

i i i

250

Figure VL34 Detail Simulation Run for Stride=2 STM(32?3,32) (Conventional
Decoding)

156

Simulated Throughput

NoCE
NoBanks

Figure VI.35 Average Simulated Throughput for Stride=2 (Conventional
Decoding)

A comparison of the theoretical and simulated steady-state throughput and

maximum latency for stride of four is shown in Figure VI.36 and Figure VI.37

respectively. The results are similar to that for stride=2. The simulated steady-state

throughput varies by less than two percent from the theoretical results and the simulated

and theoretical maximum latencies are identical.

A comparison of the theoretical and simulated steady-state throughput and

maximum latency for stride=8 is shown in Figure VI.38 and Figure VI.39, respectively.

The results are also similar to those above. However, the simulated steady-state

throughput as well as the maximum latency is identical to the theoretical results.

157

NoCEs

Theoretical Steady-State Throughput

8

NoBanks

32

a)

NoCE

Simulated Steady-State Throughput

NoBanks

b)

Figure VI.36 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Stride=4 (Conventional Decoding)

158

Theoretical Maximum Latency

NoCEs 8
NoBanks

32

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.37 Comparison of Theoretical Versus Simulated Maximum Latency for
Stride=4 (Conventional Decoding)

159

Theoretical Steady-State Throughput

NoCEs 8
NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.38 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Stride=8 (Conventional Decoding)

160

Theoretical Maximum Latency

NoCEs 8
NoBanks

32

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.39 Comparison of Theoretical Versus Simulated Maximum Latency for
Stride=8 (Conventional Decoding)

161

In conclusion, the first experiment verifies the theoretical expressions for steady-

state throughput and maximum latency for constant-stride address patterns. These

address patterns illustrate optimal results from interleaved memory systems as well as

substantial performance degradation when the stride is not relatively prime to the number

of banks. STM memories and standard interleaved memories generally have equivalent

steady-state throughput performance for constant-stride address patterns when compared

to standard interleaving. Further, when the stride is not relatively prime, STM memories

incur more latency than standard interleaving.

For the architecture presented in Chapter 0 for FFT computation, those strides that

are not relatively prime are the strides required rather than those that are relatively prime.

The following experiment is used to validate performance when strides are not relatively

prime when permutation-based decoding is used.

2. Constant Stride: Permutation-Based Memory Decoding

An analysis of the second experiment will be divided into strides that are a power

of two (e.g., one, two, four,...) and a selected set of strides not a power of two (e.g., three

and five). It is important to recall that the estimates for the maximum latency for

permutation-based memories are always upper-bound estimates. The theoretical steady-

state throughput results for the radix-r butterfly and digit-reversed address patterns are

also lower bounds. However, for address patterns with constant stride, the theoretical

results are exact for the STM cases (i.e., when the number of cache elements is greater

than one).

A comparison of the theoretical and simulated results for strides of one, two, and

sixty four are shown in Figure VI.40 through Figure VI.45. This selection of strides is

presented as a representative of all of the strides of powers of two possible, given the

permutation matrices used in the simulation and documented in Figure HI. 13 through

Figure HI. 16.

The most striking characteristic of the plots contained in Figure VI.40 through

Figure VI.45 is that they are for all practical purposes the same. Plots for stride of one are

shown in Figure VI.40 and Figure VI.41. The simulated steady-state throughput is

162

identical to the theoretical for all STM cases (they are always optimum). The theoretical

standard interleaving cases are characterized by a decreasing lower-bound steady-state

throughput as the number of banks increases. Recall that this lower bound is based on the

possibility that a bank will receive two consecutive requests at the boundaries of the base

sequences (refer to Chapter V Section D for a discussion of this topic). Figure VI.40

suggests that with the permutation matrices used, this is not the case. Further, as the

number of banks increases, the probability decreases.

Several observations can be made concerning the theoretical and simulated

maximum latencies shown in Figure VI.41. First, the basic shape of the theoretical and

simulated maximum latencies are similar in that they both increase with the number of

banks and are relatively invariant to the number of cache elements. The simulated

maximum latency is, however, equal to the theoretical maximum for four-bank memory

with a substantial differential between them for the 32-bank memory. This is due to the

relative length of the input vector to the number of banks. This issue will be explored

more fully in the permutation-based digit-reversed experiment below.

Examples of two simulation runs, the first with four banks and three cache

elements and the second with thirty two banks and three cache elements are shown in

Figure VI.46 and Figure VI.47, respectively. It is not possible to anticipate when latency

will be incurred. For a small number of banks, it is more likely that the maximum latency

will be incurred earlier than in a memory configured with more memory banks because

the likelihood of two banks being close is greater when the number of banks is small.

Observe the distribution of the latency in Figure VI.46 versus Figure VI.47. In the first

plot with four banks, the maximum latency is incurred early in the run in contrast to the

thirty two bank simulation where the maximum latency (in the plot) is not obtained until

half way through the simulation run. In Figure VI.48, the simulation is run with an input

vector of 1,024 and it can be seen that the maximum latency is not reached until

approximately cycle 600.

The tradeoff between latency and the number of memory banks can be seen in the

detailed plots by the amount of time required to obtain the first memory response. The

163

ratio of time between the minimum latency and the length of the input vector dictates the

best average throughput (i.e., the greater the ratio, the greater the penalty). This latency

results in a average throughput of 0.78, as shown above the throughput plot in Figure

VI.47. This reflects a modest increase in latency from the conventional decoding case.

Figure VI.49 illustrates the effect of varying the number of banks on average throughput

for the case of stride=64. The penalty of a larger number of banks is clearly shown for

STM memories when the vectors are relatively small. In general, STM performance is

better than standard interleaving except when the number of banks is 32, where the

performance is approximately the same.

The steady-state throughput and average throughput for strides of three and five

are illustrated in Figure VI.50 and Figure VI.51. Clearly the throughput is diminished

from the powers of two cases shown above. The steady-state throughput for stride of

three falls steadily as the number of banks increases, whereas the stride of five case has

the same steady-state throughput for four and 32 banks but reduced throughput for 16

banks. These figures seem to confirm the erratic behavior of permutation-based

performance for strides that are relatively prime to strides of two. The average

throughput for four and eight bank systems suggest moderate performance that might be

tolerated if the address pattern was not frequently used.

164

Lower Bound for Steady-State Throughput

NoCEs

32

NoBanks

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.40 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Stride=l (Permutation-Based Decoding)

165

Upper Bound for Maximum Latency

100

NoCEs 8
NoBanks

32

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.41 Comparison of Theoretical Versus Simulated Maximum Latency for
Stride=l (Permutation-Based Decoding)

166

Lower Bound for Steady-State Throughput

NoCEs 8

NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.42 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Stride=2 (Permutation-Based Decoding)

167

100

NoCEs

Upper Bound for Maximum Latency

8

NoBanks

32

a)

NoCE

Simulated Maximum Latency

NoBanks

b)

Figure VI.43 Comparison of Theoretical Versus Simulated Maximum Latency for
Stride=2 (Permutation-Based Decoding)

168

Lower Bound for Steady-State Throughput

32

NoBanks

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.44 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Stride=64 (Permutation-Based Decoding)

169

Upper Bound for Maximum Latency

100

NoCEs

32

NoBanks

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.45 Comparison of Theoretical Versus Simulated Maximum Latency for
Stride=64 (Permutation-Based Decoding)

170

Plot ID: s64pb # Banks=4 # CEs=3 Mem Ratio=4

J ;
10-

o

I 5

0
0 20 40 60 80 100 120

S=3.765 AvgTP=0.9412 MaxL=9 AvgL=8.89 StdL=0.5666

1
D
Q.

SZ
CD

O0.5
sz

0
0 20 40 60 80 100 120

RE
CO
ZJ
■I—»

CO

GR
en

SSTP=1 TR=13

0 20 40 60 80 100 120
Time (Cycles)

Figure VI.46 Detailed Simulation Run for Stride=64 STM(4,3,4) (Permutation-
Based Decoding)

171

Plot ID: s64pb # Banks=32 # CEs=3 Mem Ratio=32

40

|-30

10

0

 : , \ '_] \ : : : '—

0 20 40 60 80 100 120 140 160

S=24.98 AvgTP=0.7805 MaxL=37 AvgL=36.02 StdL=1.263

1
ZJ
Q.

P0.5

0

I I

/

/ u
\ J

/ i

0 20 40 60 80 100 120 140 160

RE
CO

cc
CO

GR
co

SSTP=1 TR=101

 I : —1] : r-l : : —

0 20 40 60 80 100 120 140 160
Time (Cycles)

Figure VI.47 Detail Simulation Run for Stride=64 STM(32,3,32) (Permutation-
Based Decoding)

172

Plot ID: s64pb # Banks=32 # CEs=4 Mem Ratio=32

60
>.
ü

©40
CO
_l

20

0
0 200 400 600 800 1000

S=30.12 AvgTP=0.9412 MaxL=65 AvgL=54.96 StdL=11.33

1

Q.
JC
D)

o0.5
.c

0
0 200

nnn i \ ^
400 600 800 1000

RE
CO
13

■4-»

CO *—*
CO

GR
CO

0

SSTP=1 TR=577

200 400 600
Time (Cycles)

800 1000

Figure VL48 Second Detailed Simulation Run for Stride=64 STM(32,3,32)
(Permutation-Based Decoding)

173

Simulated Throughput

NoCE
NoBanks

Figure VI.49 Simulated Average Throughput for Stride=64 (Permutation-Based
Decoding)

This experiment demonstrates that permutation-based decoding can provide

favorable performance for address patterns with a constant stride of powers of two.

Specifically, the steady-state throughput is optimum when the number of cache elements

is at least three. Further, this is accomplished with a modest increase in the latency when

the vector length is small (e.g., 128 in the examples). For larger vector lengths where the

maximum latency is realized, the increase in the latency is approximately doubled.

The next section will address radix-r butterfly address patterns when conventional

decoding is in place.

174

Simulated Steady-State Throughput

NoCE
NoBanks

a)

Simulated Throughput

NoCE
NoBanks

b)

Figure VI.50 Simulated Steady-State Throughput and Average Throughput for
Stride=3 (Permutation-Based Decoding)

175

Simulated Steady-State Throughput

NoCE
NoBanks

a)

Simulated Throughput

NoCE
NoBanks

b)

Figure VI.51 Simulated Steady-State Throughput and Average Throughput for
Stride=5 (Permutation-Based Decoding)

176

3. Radix-r Butterfly: Conventional Memory Decoding

A comparison of the theoretical versus simulated steady-state throughput and

maximum latency are shown in Figure VI.52 through Figure VI.59 for radices two, four,

eight, and 16. The simulated steady-state throughput is in agreement with the theoretical

results for all radices. An inspection of Figure VI.52 reveals that all STM memories yield

a throughput of 1.0 as expected. Standard interleaving cases suffer significant

degradation because each bank is given consecutive memory requests equal to the radix.

The greater the number of banks, the more banks there are not performing as indicated for

all radices.

The simulated maximum latency is in complete agreement for the radix-2 and

radix-4 cases as shown in Figure VI.53 and Figure VI.55, respectively. However,

variances occur for both the radix-8 (32 banks) and radix-16 (16 and 32 banks) cases. In

both cases, the maximum latency rather than continuing to rise as the expressions would

suggest, flatten out. This phenomena is due to the relationship between the "stride" in

effect for radix-r patterns and the expression for the effective number of banks.

Whenever the effective stride becomes smaller than the number of banks, then the latency

will be reduced. For example, for the radix-16 case, the effective stride is

24

and the effective number of banks is

B = B = 16 =2 eff gcd(5,S) gcd(16,8)

Recall that Beff under most circumstances is one when the radix and number of banks is a

power of two. If N is doubled, the expression for latency used to construct the theoretical

plots will be valid.

177

Theoretical Steady-State Throughput

32

NoBanks

a)

NoCE

Simulated Steady-State Throughput

NoBanks

b)

Figure VI.52 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=2 (Conventional Decoding)

178

Theoretical Maximum Latency

100

NoCEs 8
NoBanks

32

a)

Simulated Maximum Latency

100

NoCE
NoBanks

b)

Figure VI.53 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=2 (Conventional Decoding)

179

NoCEs

Theoretical Steady-State Throughput

8
NoBanks

32

a)

NoCE

Simulated Steady-State Throughput

NoBanks

b)

Figure VI.54 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=4 (Conventional Decoding)

180

Theoretical Maximum Latency

NoCEs 8
NoBanks

32

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.55 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=4 (Conventional Decoding)

181

Theoretical Steady-State Throughput

4
8

NoBanks

32

a)

NoCE

Simulated Steady-State Throughput

NoBanks

b)

Figure VL56 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=8 (Conventional Decoding)

182

Theoretical Maximum Latency

NoCEs

32

NoBanks

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.57 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=8 (Conventional Decoding)

183

Theoretical Steady-State Throughput

NoCEs 8
NoBanks

32

a)

NoCE

Simulated Steady-State Throughput

NoBanks

b)

Figure VI.58 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=16 (Conventional Decoding)

184

Theoretical Maximum Latency

NoCEs 8
NoBanks

32

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.59 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=16 (Conventional Decoding)

185

One last issue to address for conventional decoding of radix-r butterfly address

patterns is the average throughput. Average throughput of a radix-2 and radix-16 address

patterns are displayed in Figure VI.60 and Figure VI.61. The radix-2 butterfly yields

average throughput values between 0.9 and 0.7, approximately five to ten percent lower

than the constant stride patterns. The radix-16 butterfly average throughput is

considerably worse beginning at 0.7 with a lower end of 0.5. The lower end would, of

course, be worse for longer vectors. Therefore, this must be taken into account when

calculating the efficiency of the vector processor or when determining the most effective

combination of radix passes to use for a given length vector.

This experiment validates that conventional decoding coupled with STM with a

sufficient number of banks will provide an optimum throughput, but at higher latencies

than encountered with either conventional or permutation-based decoding of constant

strides. The following section will investigate permutation-based decoding of radix-r

address patterns.

Simulated Throughput

NoCE
NoBanks

Figure VI.60 Average Throughput for Radix-2 Butterfly Pattern (Conventional
Decoding)

186

Simulated Throughput

NoCE
NoBanks

Figure VI.61 Average Throughput for Radix-16 Butterfly Pattern (Conventional
Decoding)

4. Radix-r Butterfly: Permutation-Based Memory Decoding

The theoretical and simulated results for the steady-state throughput and

maximum latency are illustrated for radices two, four, eight, and 16 in Figure VI.62

through Figure VI.71. The theoretical steady-state results are lower bounds for the

standard interleaving case. The theoretical maximum latency is an upper bound for all

values. The simulation runs were executed with the tailored permutation matrices for

radices four, eight, and 16. Although it is possible to develop a tailored permutation

matrix for radix 2, radix 2 patterns yield good performance without it. Further, there are

operational constraints that make it desirable not to have a specialized permutation matrix

for radix 2. For more details, see the conclusions in Chapter VII.

The simulated values for steady-state throughput and maximum latency are shown

in Figure VI.62 and Figure VI.63, respectively. The steady-state throughput is 1.0 for all

STM simulations with three or more cache elements, except for the eight bank cases with

three and four cache elements which have a steady-state throughput of 0.89 and 0.96,

respectively. The detailed simulation runs for eight banks with three and four cache

elements are shown in Figure VI.64 and Figure VI.65 respectively. The three-cache-

187

element-configured simulation reveals the GR becoming inactive for approximately 15

cycles indicating an insufficient number of cache elements. The additional cache element

in Figure VI.65 eliminates all but two of these cycles. The radix-2 set of simulations

represent a situation where a few more cache elements may be useful even though they

are not needed most of the time. Figure VI.63 reveals that the simulated maximum

latency is consistent with constant stride upper bound except for the eight-bank cases.

188

Lower Bound for Steady-State Throughput

NoCEs

32

NoBanks

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.62 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=2 (Permutation-Based Decoding)

189

Upper Bound for Maximum Latency

100

NoCEs 8
NoBanks

32

a)

100s.

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.63 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=2 (Permutation-Based Decoding)

190

Plot ID: r2pb # Banks=8 # CEs=3 Mem Ratio=8
30

>>20
c
a>
CO

1

 !.../]

i

 {[n
■ f 1 L^ i

i i

10

0
0 50 100 150 200 250

S=6.919 AvgTP=0.8649 MaxL=25 Avgl_=17.81 StdL=2.603

100 150 200 250

CO

CO
■4—«

CO

RE

GR

CO

SSTP=0.8933 TR=237

50 100 150 200
Time (Cycles)

250

Figure VI.64 Detail Simulation Run for Radix-2 STM(8,3,8) (Permutation-Based
Decoding)

191

Plot ID: r2pb # Banks=8 # CEs=4 Mem Ratio=8
30

^20
c
CD

■•-»

CO
10

0

i i

i i_ i

r f

i i

0 50 100 150 200 250

S=7.237 AvgTP=0.9046 MaxL=25 AvgL=22.14 Stdl_=3.762

100 150 200 250

RE
CO

co
■+-»
CO

GR
CO

0

SSTP=0.9577 TR=224

50 100 150 200
Time (Cycles)

250

Figure VI.65 Detail Simulation Run for Radix-2 STM(8,4,8) (Permutation-Based
Decoding)

192

The steady-state throughput for radix four, eight and 16 shown in Figure VI.66,

Figure VI.68, and Figure VI.70 reveal an ideal steady-state throughput for all STM cases

where the number of cache elements is three or four, as the theory predicts. There is

substantial degradation for most standard interleaving cases. A two-cache-element STM

performs better for a larger number of banks and poorly for four bank scenarios. The

maximum latency was equal to the theoretical upper bound in all cases, except for the 32-

bank configurations for radix eight and 16 simulations as shown in Figure VI.67, Figure

VI.69, and Figure VI.71.

In summary, with the aid of permutation matrices tailored to the stride between a

radix butterfly operation, the resulting pattern has the features of a constant stride pattern

resulting in an optimal steady-state throughput when at least three cache elements are

present. Further, the maximum latency is limited to approximately twice the ideal latency

for interleaved memory systems. These results apply to radices of four, eight, and 16.

Radix-2 butterfly patterns were found to yield good performance although not quite as

good as with the tailored matrices using a generic constant stride permutation matrix as

shown in Figure HI. 13 through Figure HI. 16.

The next section will describe the performance obtained when applying

conventional decoding to digit-reversed address patterns.

193

Lower Bound for Steady-State Throughput

NoCEs 8
NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.66 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=4 (Permutation-Based Decoding)

194

Upper Bound for Maximum Latency

100

8
NoBanks

32

a)

100

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.67 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=4 (Permutation-Based Decoding)

195

NoCEs

Lower Bound for Steady-State Throughput

8

NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.68 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=8 (Permutation-Based Decoding)

196

100

NoCEs

Upper Bound for Maximum Latency

8
NoBanks

32

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.69 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=8 (Permutation-Based Decoding)

197

Lower Bound for Steady-State Throughput

8

NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.70 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=16 (Permutation-Based Decoding)

198

Upper Bound for Maximum Latency

100

NoCEs 8
NoBanks

32

a)

Simulated Maximum Latency

NoCE
NoBanks

b)

Figure VI.71 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=16 (Permutation-Based Decoding)

199

5. Digit Reversed: Conventional Memory Decoding

One experiment was conducted to demonstrate the performance when using

conventional decoding for digit-reversed address patterns. The input stream was a digit-

reversed pattern for a radix of two with ten digits, yielding a stride of 29 for the radix

operation. A comparison of the theoretical versus simulated steady-state throughput is

shown in Figure VI.72. The theoretical results matches the simulated results perfectly. A

steady-state throughput is obtained that is the reciprocal of the number of banks and is

independent of the number of cache elements.

A detailed simulation for a memory with four banks and three cache elements is

shown in Figure VI.73. An examination of the STM Status plot indicates that the RE line

is active once every four cycles yielding a throughput of 0.25. Note that the GR signal is

active for a short period of time allowing the one active bank's cache elements to be filled

with requests. Thereafter, the RE line is active filling the one available cache element

followed by processing time for a memory request and then an output signaled by an

active RE line. This pattern is repeated until the simulation is completed. Figure VI.74

contains a similar plot for a memory system with 32 banks. The primary difference is that

the active RE lines are separated by 32 cycles rather than four as in Figure VI.73 because

the memory ratios are matched to the number of banks. The resulting throughput is 1/32

or approximately 0.03125 as indicated on the figure.

This result presents a major obstacle to the architecture described in Chapter 0

because one such pass is needed for each FFT. The next section describes the results

obtained when permutation-based decoding is used for digit-reversed address patterns.

200

Theoretical Steady-State Throughput

NoCEs

32

NoBanks

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.72 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=2 / NoDigits=10 (Conventional Decoding)

201

Plot ID: b2cn # Banks=4 # CEs=3 Mem Ratio=4

:

15

I10
■4—»

5-

0
0 20 40 60 80 100 120

S=0.9846 AvgTP=0.2462 MaxL=15 AvgL=14.86 Stdl_=0.9785

1

Q. .c
D)

2 0.5
si

0
0 20 40 60 80 100 120

w

CO

(X)

RE

GR
CO

SSTP=0.25 TR=3

0 20 40 60 80
Time (Cycles)

100 120

Figure VI.73 Detail Simulation Run for Radix=2 / NoDigits=10 STM(4,3,4)
(Conventional Decoding)

202

Plot ID: b2cn # Banks=32 # CEs=3 Mem Ratio=32
150F

£100
c
CD

CO

50

0

 ' * i I I- -

'■'..'.'.

 ■■ .- -

0 200 400 600 800 1000

S=0.9981 AvgTP=0.03119 MaxL=127 AvgL=126.8 StdL=3.618

1
■i—»

Q.
SZ
O)

O0.5
_c
H

0
0 200 400 600 800 1000

RE
CO

'S
CO

GR
CO

SSTP=0.03161 TR=1019

0 200 400 600
Time (Cycles)

800 1000

Figure VI.74 Detail Simulation Run for Radix=2 / NoDigits=10 STM(32,3,32)
(Conventional Decoding)

203

6. Digit Reversed: Permutation-Based Memory Decoding

As indicated in Chapter V, the digit reversal pattern should be equivalent to

constant-stride address performance if the radix is equal to or greater than the number of

banks. In the case of radix-2 with ten digit simulation, the condition is not met for any of

the simulations. In spite of this, the performance in this instance is almost perfect as can

be seen by viewing the steady-state throughput and the maximum latencies contained in

Figure VI.75 and Figure VI.76.

Figure VI.77, Figure VI.78, and Figure VI.79 contain the steady-state throughput

plots for radix-4, 8 and 16 respectively. For each plot, when the radix is equal to or

greater than the number of banks, an optimal steady-state throughput is obtained, as

predicted in Chapter V (i.e., for four banks in Figure VI.77, four and eight banks in

Figure VI.78, and four, eight, and sixteen banks in Figure VI.79). When the condition is

not met, good performance is sometimes obtained anyway (e.g., 16 banks in Figure

VI.77). In some instances poor performance is improved substantially by adding another

cache element (e.g., eight banks in Figure VI.77 and 32 banks in Figure VI.78).

In summary, the permutation-based digit-reversed simulation results confirmed

the analysis described in Chapter V. In particular, when the radix is equal to or greater

than the number of banks, performance is consistent with constant-stride address patterns.

When it is not, the performance is mixed but over all it provides performance that may be

acceptable, given this address pass is required only once for each FFT.

204

Lower Bound for Steady-State Throughput

NoCEs 8
NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.75 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=2 / NoDigits=10 (Permutation-Based Decoding)

205

200

100

NoCEs

Upper Bound for Maximum Latency

4
8

NoBanks

32

a)

100

NoCE

Simulated Maximum Latency

NoBanks

b)

Figure VI.76 Comparison of Theoretical Versus Simulated Maximum Latency for
Radix=2 / NoDigits=10 (Permutation-Based Decoding)

206

Lower Bound for Steady-State Throughput

NoCEs 8
NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.77 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=4 / NoDigits=5 (Permutation-Based Decoding)

207

Lower Bound for Steady-State Throughput

NoCEs 8
NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.78 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=8 / NoDigits=4 (Permutation-Based Decoding)

208

Lower Bound for Steady-State Throughput

NoCEs 4
8

NoBanks

32

a)

Simulated Steady-State Throughput

NoCE
NoBanks

b)

Figure VI.79 Comparison of Theoretical Versus Simulated Steady-State
Throughput for Radix=16 / NoDigits=3 (Permutation-Based Decoding)

209

C. GENERAL-PURPOSE COMPUTING EXPERIMENT

The speedup, throughput, and latency plots for the general-purpose computer

experiment are shown in Figure VI.80 through Figure VI.82. Adding cache elements

increases both the speedup and throughput. However, this is accompanied by much

larger latencies for the simulation runs with a larger number of banks. For four banks,

speedup increases by 382 percent from standard interleaving simulation to the STM

simulation with 64 cache elements. However, 294 percent of this improvement was

obtained when the number of cache elements was increased to only four. The 64-bank

simulations recorded a similar trend with 406 percent total improvement and 241 percent

obtained with four cache elements from the standard interleaving case.

Notice that although the speedup continues to improve when cache elements and

the number of banks are increased, the throughput actually falls as the number of banks

increases. This is because the memory ratio is matched to the number of banks and the

difficulty of the problem increases proportionally as the number of banks increases.

Recall the relationship between speedup, throughput, and the memory ratio as shown in

Equation (II.7).

A comparison of the standard interleaving case to the analytical results is shown

in Table VI.5. Although the simulated results correlate with the analytic results, there is a

constant bias of approximately one for each value.

In summary, the general-purpose computing simulation suggests that speedup and

throughput are enhanced by adding cache elements. Diminishing marginal returns is

observed when only a few cache elements are added to the standard interleaving case.

Number of
Banks 50.56

Simulated
Results

4 2.2 1.2
8 3.2 2.2
16 4.7 3.7
32 7.0 5.8

Table VL5 Comparison of Analytic
Versus Simulated Speedup

210

Simulated Speedup

NoCE
NoBanks

Figure VI.80 General-Purpose Experiment: Speedup

Simulated Throughput

NoCE
NoBanks

Figure VI.81 General-Purpose Experiment: Throughput

211

Simulated Maximum Latency

600

400-

200-

NoCE
NoBanks

Figure VI.82 General-Purpose Experiment: Maximum Latency

212

VII. CONCLUSIONS

This section first summarizes the design decisions for the Butterfly Machine

(BFM) Architecture followed by a design methodology for constructing this type of

computer. The last section contains additional conclusions concerning this effort.

A. DESIGN DECISIONS

The computational complexity of cyclostationary processing, combined with the

requirement to design to a factor of real time FT and sample interval Ts, drives the need

for a scaleable number of processors in the architecture. The BFM Architecture is based

on pipelined vector processing techniques because it yields an efficient implementation

for FFTs in particular, and vector operations in general.

Radix-2* algorithms were selected based on the availability of efficient

implementations in hardware and their widespread use and popularity. The radix values

supported are two, four, eight, and sixteen.

The number of memory banks allowed in the architecture is a power of two. This

constraint simplifies the bank number selection hardware although 2k ± 1 bank

architectures are almost competitive.

The use of radix values and number of banks that are both powers of two require

an alternative to conventional bank number decoding. Properly designed permutation-

based bank decoding provides an efficient utilization of the memory.

Another design decision is programmable permutation matrices. This provides

for flexibility in general. The primary motivation is to enhance performance by allowing

radix-r specific matrices. This design decision is closely related to two additional design

decisions:

• The decision not to use a specialized permutation matrix for the radix-2

butterfly.

• The decision to require that all specialized radix-r butterfly matrices also

support constant strides of powers of two.

213

The computation of an FFT on an input vector of length 2* requires that a

decision be made concerning the size of the radices and order in which the different radix

operations are applied. The strategy taken for this architecture is to rewrite the length of

the input vector as

2* = Rm R (VII.l)

where R is the largest valid radix for the length of the input vector. The largest value of

m is chosen such that

2'ar'a"d (VII.2)
R>R.

Therefore, m radix-i? butterfly passes will be made on the input vector followed by at

most one radix - R butterfly pass.

An inspection of Figure III.9 reveals that the memory that initially holds the input

vector must be accessed by an address pattern of constant stride of one followed by a

radix-i? pattern. Therefore, this memory will be loaded with the appropriate radix-/?

permutation matrix. Each additional pass is characterized by a memory that will accept a

set of inputs with a constant stride of one followed by read operation with a radix-r

butterfly address pattern. The corresponding memory will use the appropriate radix-r

permutation matrix. The appropriate matrix is the radix-i? permutation matrix for all

passes with the possible exception of the last pass which will use the radix-/?

permutation matrix if R exists for the decomposition of Equation (VII.l).

The right-most memory in Figure (III.9) is written into with a constant stride of

one. The data is read out with a digit-reversed pattern. In those cases where the vector

length is such that the decomposition of Equation (VII.l) does not contain the factor R,

then the required addressing pattern is a digit-reversed address pattern. If on the other

hand, there is a factor of R in Equation (VII.l), then the address pattern is not strictly

digit-reversed. However, the address pattern does have a characteristic of a constant

stride of a power of two. In either case, if the radix is greater than the number of banks,

then the performance is near optimum.

214

When the radix is less than the number of bank, the simulation results suggest that

the steady-state throughput is near optimal when four cache elements are used for those

cases examined in Chapter VI (See Figure VI.77 and Figure VI.78). These address

patterns must be simulated in any final design to verify performance and to adjust the

permutation matrices if the performance is not acceptable.

The permutation matrices used for the digit-reversed pattern experiments were the

constant stride powers of two matrices. A future research topic is to determine whether a

tailored permutation matrix can be found for the digit reversed case.

B. STM DESIGN METHODOLOGY

The design methodology for developing an STM memory begins with the

processor and bulk store memory cycle times desired for the architecture. The ratio of the

bulk store cycle time to the processor cycle time is the memory ratio, one of the three

parameters necessary for STM memory. The memory ratio can be expressed as

MR =
T pr

(VII.3)

where

Tbs is the cycle time for the bulk store, and

T is the cycle time for the processor.

The ceiling function must be taken on the bulk store / processor cycle time ratio to yield

an integer value that will permit the memory to process a memory request.

The memory ratio dictates the number of banks required for the memory system.

The number of banks is required to be a power of two in this design for simplicity of bank

selection and must be greater than or equal to the memory ratio.

The results in Chapter VI suggest that overall performance is constrained by the

maximum latency and the maximum latency is approximately twice the memory ratio

when permutation matrices are utilized for bank decoding. Since the memory ratio is tied

directly to the number of banks, there is motivation to minimize the number of banks.

215

Once the number of banks has been selected, the last parameter to fix is the

number of cache elements. Based on the results of Chapter VI, the number of cache

elements is likely to be not less than four. However, cache elements are relatively

inexpensive, assuming that they are implemented with very large scale integration. The

actual number chosen is likely the largest number possible within the economic bounds of

the fabrication process.

Programmable permutation matrices allow the incorporation of performance

enhancements when more advanced permutation matrices are discovered. In some

circumstances, the performance of these matrices may be dependent upon more cache

elements than was previously required.

The last step of the design process it to construct permutation matrices for the

architecture. Although there are many possible addressing patterns, there are a relatively

small number when compared to general-purpose computing. All, or a selected set, can

be simulated to verify the anticipated performance. The number of cache elements can be

varied for sensitivity analysis. Permutation matrices may also be fine tuned to improve

performance.

C. GENERAL CONCLUSIONS

The preceding chapters describe a pipelined vector computer architecture

designed to compute fast Fourier transforms (FFTs) efficiently. Other vector processing

operations such as vector multiplication are also well suited for this architecture. Use of

the constant geometry radix butterfly organization is a key design decision providing

simplification in the address stream generation for radix-r passes.

The memory system is the key component of a vector processor architecture.

Addressing stream characteristics for general-purpose and vector processors are described

in Chapter n. Banked interleaved memory remains the technique of choice for vector

processors because of the high-performance requirements and the promise of exploiting

the constant-stride address stream characteristic. This architecture is based on the

requirement that data be fed into a vector processor at the rate of one data element per

clock cycle for each vector. The constant-stride address stream characteristic is exploited

216

through the use of specially designed permutation matrices used for bank number

decoding.

The performance of STM memories using both conventional and permutation-

based matrices was analyzed in Chapter V and Chapter VI. The preferred bank decoding

scheme was with permutation matrices, based on performance. The results of Chapter VI

indicate that optimum steady-state throughput is possible in all cases for constant-stride

address patterns with a stride that is a power of two, as well as for radix-r butterfly

patterns using tailored permutation matrices. In fact, both of these cases yield an upper

bound of twice the memory ratio plus one. This is excellent given that the minimum

latency for any interleaved system is the memory ratio plus two! The other address

pattern, digit-reversed addressing, also yields the same performance as indicated above

for constant-stride and radix-r butterfly addressing when the radix is greater than or equal

to the number of banks. When it is not, the actual performance is in some instances

similar to that noted above, and in others is somewhat less. These cases need to be

simulated to determine the specific performance characteristics. One possible area of

study is to determine whether permutation matrices can be designed specifically for digit-

reversed patterns and still retain their suitability for constant stride and radix-r address

patterns.

The following is a list of further conclusions concerning the butterfly machine

architecture and the STM memory described previously:

• The use of BFMs provide a practical method for reducing the clock time

needed for cyclostationary computing. The amount of reduction is variable

and is determined by the degree to which parallelism is exploited.

• The use of BFMs is scaleable over a substantial processing range and is

limited by the number of backplane slots supported by the host. An

architecture using a single BFM chip is first described which provides a

baseline capability. Due to the parallelism inherent in many cyclostationary

algorithms, a natural extension is to develop an architecture that incorporates

217

multiple copies of the one-chip architecture and connect them with dedicated

high-speed data busses for data sharing.

The BFM architecture requires large quantities of memory. This memory

requirement can be accommodated using relatively slow low-cost bulk

memory devices. In this investigation, each addressing stream had a

dedicated memory. One area of future study is to determine if it is more

effective to construct fewer larger memories than the configuration shown in

Figure HI. 17.

A good design requires that the number of banks be greater than or equal to

the memory ratio. With the appropriate permutation matrix, the number of

banks need not be greater than the memory ratio. Further, the number of

cache elements can be limited to approximately four in most circumstances.

STM is an effective technique for using relatively slow, inexpensive, bulk

storage with the BFM architecture when the array lengths are large, relative to

the latency.

£18

LIST OF REFERENCES

1. Gardner, W. A., Statistical Spectral Analysis: A Nonprobabilistic Theory,
Englewood Clifts, NJ: Prentice-Hall, 1987.

2. Brown, W. A., and Loomis H. H., Jr., "Digital Implementations of Spectral Correlation
Analyzers," IEEE Trans. On Signal Processing, Vol. 41, pp. 703-720, February 1993.

3. Roberts, R. S., Brown W. A., Loomis H. H., Jr., "A Review of Digital Spectral
Correlation Analysis: Theory and Implementation" Article 6 of Cyclostationary in
Communications and Signal Processing, Piscataway, NJ, IEEE Press, 1994.

4. Gardner, W. A., Cyclostationary in Communications and Signal Processing,
Piscataway, NJ, IEEE Press, 1994.

5. Roberts, R. S., "Architectures for Digital Cyclic Spectral Analysis", Ph.D.
Dissertation University of California, Davis, September 1989.

6. Roberts, R. S., Loomis, H. H., Jr., "Parallel Computation Structures for a Class of
Cyclic Spectral Analysis Algorithms", Journal of VLSI Signal Processing, pp. 25-
40, October 1995.

7. BBN Advanced Computers Inc., TC2000 Technical Product Summary, November
1989.

8. Pease, M. C, "Organization of Large Scale Fourier Processors," Journal of ACM,
Vol.16, No. 3, pp. 474-482, July 1969.

9. Groginsky, H. L., and Works, G. A., "A Pipeline Fast Fourier Transform," IEEE
Transactions on Computers, Vol. C-19, pp. 1015-1019, November 1970.

10. Filip, A. E., Frankovich, J. M., Purdy, R. J., and Blankenship, P. E., Digital Signal
Processor Designs for Radar Applications, Vol. 1 and 2, MIT-LIN-TN-1974-5 8,
Lincoln Laboratory, 1974.

11. Dieffenderfer, J. W., Hancke, P. J., and Schoenfeld, R. F., "Pipeline Fast Fourier
Transform Processor," IBM Technical Disclosure Bulletin, Vol. 16, No. 2, July
1973.

12. Corinthios, M. J., Smith, K. C, and Yen, J. L., "A Parallel Radix-4 Fast Fourier
Transform Computer," IEEE Transactions on Computers, Vol. C-24, pp. 80-92,
January 1975.

13. Sapiecha, K., and Jarocki, R., "Modular Architecture for High Performance
Implementation of the FRR Algorithm," IEEE Transactions on Computers, Vol. C-
39, pp. 1464-1468, December 1990.

14. Sommer, R. E., and Mehalic, M. A., "Design Enhancements for the Air Force
Institute of Technology's Winograd Fourier Transform Processor," Proceedings of
the IEEE 1991 National Aerospace and Electronics Conference NAECON1991,
Vol. 1, pp. 90-97, 1991.

15. Franceschetti, G., Mazzeo, A., Mazzocca, N., Pascazio, V., and Schirinzi, G, "An
Efficient SAR Parallel Processor," IEEE Transactions on Aerospace and Electronic
Systems, Vol. 27, Issue 2, pp. 343-353, March 1991.

16. Comerford, R., and Watson, G. F., "Memory Catches Up," IEEE Spectrum, pp. 34-
35, October 1992.

219

17. Hennessy, J. L., and Patterson, D. A., Computer Architecture A Quantitative
Approach, San Mateo, Morgan Kaufmann, pp. 576-578, 1990.

18. Stone, H. S., High-Performance Computer Architecture, Reading, Massachusetts,
Addison-Wesley, pp. 24-103 and pp. 292-324, 1993.

19. Hennessy, J. L., and Patterson, D. A., Computer Architecture A Quantitative
Approach, San Mateo, Morgan Kaufmann, pp. 403-485, 1990.

20. Hennessy, J. L., and Patterson, D. A., Computer Architecture A Quantitative
Approach, San Mateo, Morgan Kaufmann, pp. 92, 167, 1990.

21. Oppenheim, A. V., and Schäfer, R. W., Discrete-Time Signal Processing,
Englewood Cliffs: Prentice Hall, pp. 609-618, 1989.

22. Stone, H. S., High-Performance Computer Architecture, Reading, Massachusetts,
Addison-Wesley, p75-77, 1993.

23. Charlesworth, A. E., and Gustafson, J. L., "Introducing Replicated VLSI to
Supercomputing: the FPS-164/MAX Scientific Computer." Computer, Vol. 19,
No. 3 pp. 10-23, March 1986.

24. Stone, H. S., High-Performance Computer Architecture, Reading, Massachusetts,
Addison-Wesley pp. 303, 1993.

25. Hellerman, H., Digital Computer System Principles, New York: McGraw-Hill,
pp. 245, 1973.

26. Lawrie, D. H., Vora, C. R., "The Prime Memory System for Array Access," IEEE
Transactions on Computers, Vol. C-31, pp. 435-442, May 1982.

27. Chiueh, T., Verma, M., et al, "Efficient Implementation Techniques for Vector
Memory Systems," IEEE 1994 International Symposium on Parallel Architectures,
Algorithms, and Networks, pp. 270-277, 1994.

28. Sohi, G. S., "High-Bandwidth Interleaved Memories for Vector Processors-A
Simulation Study," IEEE Transactions on Computers, Vol. C-42, No. 1, pp. 34-44,
January 1993.

29. Sohi, G. S., "High-Bandwidth Interleaved Memories for Vector Processors-A
Simulation Study," IEEE Transactions on Computers, Vol. C-42, No. 1, pp. 34-44,
January 1993.

21. Sohi, G. S., "High-Bandwidth Interleaved Memories for Vector Processors-A
Simulation Study," IEEE Transactions on Computers, Vol. C-42, No. 1, pp. 38,
January 1993.

31. Hellerman, H., "On the Average Speed of a Multiple-Module Storage System,"
IEEE Transactions on Computers, Vol. C-15, p. 670, August 1966.

32. Chang, D. Y., Kuck, D. J., and Lawrie, D. H., "On the Effective Bandwidth of
Parallel Memories," IEEE Transactions on Computers, Vol. C-26, pp. 480-489,
May 1977.

33. Rau, B. R., "Program Behavior and the Performance of Interleaved Memories,"
IEEE Transactions on Computers, Vol. C-28, pp. 191-199, March 1979.

34 Coffman, E. G., Jr., Burnett G. J., and Snowdon, R. A., "On the Performance of
Interleaved Memories With Multi-Word Bandwidth," IEEE Transactions on
Computers, Vol. C-20, pp. 1570-1573, December 1971.

220

35. Burnett, G. J., and Coffman, E. G., Jr., "Analysis of Interleaved Memory Systems
Using Blockage Buffers, " Communications of the ACM, Vol. 18, pp. 91-95,
February 1975.

36. Dubois, M., Scheurich C, and Briggs, F., "Memory Access Buffering in
Multiprocessors," Proceedings of the 13' International Symposium on Computer
Architecture, Tokyo, Japan, pp. 434-442, June 1986.

37. Sohi, G. S., "High-Bandwidth Interleaved Memories for Vector Processors-A
Simulation Study," IEEE Transactions on Computers, Vol. C-42, pp. 34-44,
January 1993.

38. Baskett, F., and Smith, A. J., "Interference in Multiprocessor Computer Systems
With Interleaved Memory," Communications of ACM, Vol. 19, pp. 327-334, June
1976.

39. Briggs, F. A., and Davidson, E. S., "Organization of Semiconductor Memories for
Parallel-Pipelined Processor," IEEE Transactions on Computers, Vol. C-26, pp.
162-169, February 1977.

40. Cheung, K. C, Sohi, G. S., Saluja, K. K., and Pradham, D. K., "Design and
Analysis of a Graceful Degrading Interleaved Memory System," IEEE Transactions
on Computers, Vol. C-39, pp. 63-71, January 1990.

41. Loomis, H. H., Jr., and Bernstein, R. F., Jr., "High Speed Pipeline Processor and
Memory Architectures for Cyclostationary Processing, " Twenty Eighth Asilomar
Conference on Circuits, Systems, and Computers, Pacific Grove, California, August
1994.

42. Bernstein, R. F., Jr., and Loomis, H. H., Jr., "Cyclostationary Processing Using
Butterfly Machines," Proceedings of the 1994 Conference on Information Science
and Systems, pp. 868-872, Princeton University, NJ, March 1994.

43. Oppenheim, A. V., and Schäfer, R. W., Discrete-Time Signal Processing,
Englewood Cliffs: Prentice Hall, pp. 609-618, 1989.

44. Digital array Signal Processor a66110/a66111 User's Guide, Array Microsystems,
1420 Quail Lake Loop, Colorado Springs, Colorado 80906, July 1991.

45. LH9124 Digital Signal Processor Real Time Simulator User's Guide, Sharp
Electronics Corp., Reference Code SMT90055 Rev A 4/30/93.

46. Zimmer, M. L., "A VLSI Design of a Radix-4 Floating Point FFT Butterfly",
Masters Thesis Navy Postgraduate School, December 1991.

47. Jackson, K. L., "A CMOS, VLSI, Implementation of a FFT for Cyclic Spectral
Analysis", Master's Thesis Navy Postgraduate School, March 1995.

48. Brown, W. A., Loomis, H. H., Jr., "Digital Implementations of Spectral Correlation
Analyzers, " IEEE Trans. On Signal Processing, Vol. 8, No. 2, pp. 38-49, April
1991.

49. Singleton, R. C, "On Computing the Fast Fourier Transform," Communications of
the ACM, Vol. 10, pp. 647-654, 1967.

50. Pease, M. C, "Adaptation of the Fast Fourier Transform for Parallel Processing,"
Journal of the ACM, Vol. 15, pp. 252-264, 1968.

51. Oppenheim, A. V., and Schäfer, R. W., Discrete-Time Signal Processing,
Englewood Cliffs: Prentice Hall, pp. 599-605, 1989.

52. Cooley, J. W., and Tukey, J. W., "An Algorithm for the Machine Computation of
Complex Fourier Series,", Mathematics of Computation, Vol. 19, pp. 297-301,
April 1965.

221

53. Trivedi, K. S., Probability and Statistics with Reliability, Queuing, and Computer
Science Applications, Englewood Cliffs: Prentice Hall, 1982.

54. Allen, A. O., Probability, Statistics, and Queuing Theory With Computer Science
Applications, Boston: Academic Press, Inc., 1990.

55. Hellerman, H., Digital Computer System Principles, New York: McGraw-Hill,

pp. 244-245, 1973.

Appendix Matlab™ Source Code for STM Simulator

%
%
/o

Yo
%
%
%
%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

'o

%
'o

'o

%
'o

File Name:
Description:
Programmer:
Date Mod:

stm.m
Top level driver for split transaction memory
Raymond F. Bernstein Jr.
27 Oct 95

%
%

%
%

%
%

Comments:
3/08: Empty modified to be a SF variable rather

than a variable!
3/13: Slight cleanup of comments
3/16: Add event flags to catch activity to/from

DRAM as is done to/from CPU.
3/26: Modify to accept only an address. Bank #

is computed in gen_addr()
4/14: Modify to measure latency from the point of

of issue by the processor
4/22: Modify to allow both ASCII and binary output
4/23: Performance enhancements (init_rec)
10/27: Add PB bank selection

function [] =
stm(Fname,ASCII,Level,AList,NoBanks,NoCE,MemRatio,MemDecode,A)
where

Fname File name for saved data
ASCII Determines the format of the output file
Level Determines the level of detail of ouput saved in

Fname.
AList Address List. This is a matrix. Each row

is of the form: [Address Bank# RW]

NoBanks Number of banks to be used in the simulation
NoCE Number of Cache Elements to be used in the

simulation
MemRatio Ratio of Dynamic to Static memory cycle time
MemDecode

0 - Conventional decoding
1 - PB decoding using matrix A

A PB decoding matrix

223

function [] = ...
stm(Fname,ASCII,Level,AList,NoBanks,NoCE,MemRatio,MemDecode,A)

% Check input arguments
if ((MemDecode==0) & ((nargin<8)l(nargin>9))),

fprintf(1,'Input Parm Error 1\n');
exit(-1);

end;
if ((MemDecode==1) & (nargin~=9)),

fprintf(1,'Input Parm Error 2\n');
exit(-1);

end;
if ((NoCE<1) I (MemDecode<0) I (MemDecode>1) I (NoBanks<1) I ...
(LevekO) I (Level>2) I (ASCIkO) I (ASCII>1) I ...
((Level==2)&(ASCII==0))) ,

fprintf(1,'Input Parm Error: 3\n');
exit(-1);

end;
if (MemDecode==1),

ADim = size(A);
if (2AADim(1)~=NoBanks),

fprintf(1,"Input Parm Error: 4\n');
exit(-1);

end;
clear ADim

end;

% If Permutation based decoding is chosen, permute the addresses
% using the A matrix
if (MemDecode==1),

Addr = AList;
[ResultVect,NoDigits] = pb_int(Addr, A, 0);
AList(:,1) = ResultVect';

end;
%%% Parameter initialization %%%
% Simulation Parameters
SysClk = 1;
Curlnd = 1;
%%% These variables are used for data collection %%%
MemResp = zeros(1,2); % 1 st variable is Boolean
% 1-response occured;
% 0-response did not occur.
% 2nd variable indicates Bank responding
ReqAllowed = zeros(1,3); % 1st variable is Boolean.
% 1-request was allowed;
% 0-request was not allowed.

224

o,

o,

% 2nd variable indicates Bank responding
% 3rd variable indicates address
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
LastAddr = 0;
%%% Key Parameters %%%
%NoBanks
%NoCE
%MemRatio
ReqCount = MemRatio;
%%% NoCE Adjustment for effective NoCE %%%
NoCE = NoCE+1;
%%% Bank Variables %%%
% Note that each variable is two dimensional; the first variable is used
% to specify an element within an array (e.g., Cache variables). The
% second index is used to specify the bank number.
%
%%% Cache Array Elements %%%
Index = zeros(NoCE,NoBanks);
IndexN = Index;
Address = zeros(NoCE,NoBanks);
AddressN = Address;
RW = zeros(NoCE,NoBanks);
RWN=RW;
Ready = zeros(NoCE,NoBanks);
ReadyN=Ready;
Data = zeros(NoCE,NoBanks);
DataN=Data;

%%% Counters %%%
NAC = ones(NoBanks,1);
NACN=NAC;
CPC = ones(NoBanks,1);
CPCN=CPC;
OC = ones(NoBanks,1);
OCN=OC;
DCount = zeros(NoBanks,1);
DCountN=DCount;

%%% Flags %%%
Empty = ones(NoBanks,1);
PDC = zeros(NoBanks,1);
PDCN=PDC;

225

%%% Signals %%%
GRI = ones(NoBanks,1); % Initially all TRUE
GR = 0;
REI = zeros(NoBanks,1); % Initially all FALSE
RE = 0;
BS = zeros(NoBanks,1);

%%% Global Counters %%%
ReqC = zeros(NoBanks,1);
ReqCN=ReqC;
ResC = zeros(NoBanks,1);
ResCN=ResC;

ODataLen = length(AList)*2;
OData = zeros(ODataLen,9);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% Program Begins Here %%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize Save File
if ASCII,

fid=init_sf(Fname,NoBanks,NoCE,MemRatio,Level);
end;
done = 0;
fprintf(1,'Simulation Begins ... \n');
fprintf(1,'# Banks: %d\n',NoBanks);
fprintf(1,'# Cache Elements: %d\n',NoCE-1);
fprintf(1 ,'# Memory Ratio: %d\n',MemRatio);
fprintf(1 ,'# Memory References: %d\n',length(AList));
Nlog = log10(length(AList));
if (Nlog <=2),

DelMark= 1;
fprintf(1,'Each tic is 1 cycle\n\n');

elseif (Nlog <=3)
DelMark = 10;
fprintf(1,'Each tic is 10 cycles\n\n');

else
DelMark=100;
fprintf(1 ,'Each tic is 100 cycles\n\n');

end;
Mark = 1;

226

while -done,
if (Mark >= DelMark),

fprintf(1,'.');
Mark = 1;

else
Mark = Mark + 1;

end;
if (rem(SysClk,50*DelMark)==0), fprintf(1,'\n');
end;
GRI = evaLgri(NoBanks,NAC,OC,Empty,NoCE);
REI = evaLrei(REI,ResC,lndex,OC,Ready);
Empty = ev_empty(NAC,OC,CPC,NoBanks);

[Addr,BankSelNo,WRFIag,LastAddr,Curlnd]...
= gen_addr(Curlnd,LastAddr,AList,NoBanks,GRI);

% Initialize recording variables for a time slice
[MemResp ReqAllowed DRAMResp DRAMIssued]...

= init_rec(NoBanks,Addr);
for BankNo = 1:NoBanks,

%%% Respond to Memory Read %%%
[OCN,ResCN,MemResp,OutData]= ...

mem_resp(lndex,RW,Ready,Data,NAC,CPC, ...
OC,REI,ResC.MemResp,BankNo,NoCE, ...
OCN.ResCN);

%%% Service Dynamic Memory %%%
[ReadyN,DataN,CPCN,DCountN,PDCN,DRAMResp,DRAMIssued]=

ser_dmem(Address,RW,Ready,Data,NAC,CPC,OC, ...
DCount,PDC,BankNo,ReqCount,NoCE, ...
ReadyN,DataN,CPCN,DCountN,PDCN, ...
DRAMResp.DRAMIssued);

%%% Service Memory Request %%%
if BankSeINo >=0,

[lndexN,AddressN,RWN,ReadyN,DataN,NACN,ReqCN,ReqAllowed]=
se^mem^lndex.Address.RW.Ready.Data.NAC.CPCOCGRI,...
BS,ReqC,ReqAllowed,BankNo,Addr,BankSelNo,WRFIag,NoCE, .
lndexN,AddressN,RWN,ReadyN,DataN,NACN,ReqCN);
end; % if BankSeINo

end; %for

lndex=lndexN; Address=AddressN; RW=RWN;
Data=DataN; Ready=ReadyN;
NAC=NACN; CPC=CPCN; OC=OCN; DCount=DCountN;
PDC=PDCN; ReqC=ReqCN; ResC=ResCN;

227

% Evaluate the SFs in order to record the values that exist
% during the cycle. It also causes the simulation to
% complete at the correct time.
GRI = evaLgri(NoBanks(NAC(OC,Empty,NoCE);
REI = evaLrei(REI,ResC,lndex,OC,Ready);
Empty = ev_empty(NAC,OC,CPC,NoBanks);
done = sim_comp(LastAddr,Empty);

% Save Results
if ASCII,

sav_res(lndex,Address,RW,Ready,Data,NAC,CPC, ...
OC,DCount,Empty,PDC,GRI,REI,BS,ReqC,ResC,SysClk,
NoBanks,BankSelNo,WRFIag,NoCE,fid,Level,MemResp,..
ReqAllowed,DRAMResp,DRAMIssued,MemRatio);

else,
if ReqAllowed(l);

ADDR = Address(modulo1(NAC(ReqAllowed(2))-1,NoCE), ...
ReqAllowed(2));

else
ADDR = -1;

end;
if MemResp(1);
ADDR2 = Address(modulo1(OC(MemResp(2))-1,NoCE),MemResp(2));
else

ADDR2 = -1;
end;
Epoch = [SysClk BankSeINo WRFlag ReqAllowed(l) ...

ReqAllowed(3) ADDR MemResp(1) ADDR2 MemResp(2)];
OData(SysClk,1:9) = Epoch;
if ODatal_en==SysClk,

ODataLen = ODataLen*2;
TData = OData;
OData = zeros(ODataLen,9);
OData(1 :SysClk,1:9) = TData;

end;
end;

SysClk = SysClk + 1;
end; %while

228

if ASCII,
fclose(fid);

else
OData = OData(1 :SysClk-1,1:9);
fname = [Fname, '.gr1'];
fid = fopen(fname,'w');
Tmp = [NoBanks NoCE Mem Ratio];
fwrite(fid,Tmp,'long');
fclose(fid);

fname = [Fname, '.gr2'];
fid = fopen(fname, V);
fwrite(fid,OData,'long');
fclose(fid);

end;
fprintf(1 AnTotal Number of Cycles= %d\n\n',SysClk-1);

229

% File Name:
% Description:
%
% Programmer:
% Date Mod:
%
% function Empty:
%

ev_empty.m
Evaluate the status of Empty flags
Internal flag within all banks.
Raymond F. Bernstein Jr.
07 Mar 95

= ev_empty(Empty,NAC,OC,CPC)

% where
%
% Empty
% NAC
% OC
% CPC

Empty flag
Next Available Counter
Output Counter
Current Processed Counter

%
function Empty = ev_empty(NAC,OC(CPC,NoBanks)

fori=1:NoBanks,
Empty(i) = (NAC(i)==CPC(i)) & (CPC(i)=OC(i));

end;

230

o,

% File Name: eval_gr.m
% Description: Evaluate the status of the Grant Request
%> control line based on the values of the Grant Request
% Internal controls within each CE.
% Programmer: Raymond F. Bernstein Jr.
% Date Mod: 6 Feb 95
%
% function status = evaLgr(GRI)
% where
% status TRUE if MR active; FALSE otherwise
% GRI Grant Request Internal
%
function status = evaLgr(GRI)

if min(GRI)==0,
status = 0;

else
status = 1;

end;

231

o,

% File Name: evaLgri.m
% Description: Evaluate the status of the Grant Request
% Internal signal within all banks.
% Programmer: Raymond F. Bernstein Jr.
% Date Mod: 22 Feb 95
%
% function GRI = eval_gri(GRI,NAC,OC,Empty)
% where
Vo GRI Grant Request Internal lines for the memory banks.
% 1 - indicates that bank is available;
% 0 - indicates that bank is unavailable.
% NAG Next Available Counter
Vo OC Output Counter
% Empty Empty flag
%
function GRI = eval_gri(NoBanks,NAC,OC,Empty,NoCE)

fori=1:NoBanks,
GRI(i) = (modulo1(NAC(i)+1,NoCE)~=OC(i)) I (Empty(i)==1);

end;

o,

232

% File Name: eval_rei.m
% Description: Evaluate the status of the Request Enable
% Internal signal within all banks.
% Programmer: Raymond F. Bernstein Jr.
% Date Mod: 21 Feb 95
%
% function REI = eval_rei(REI,ResC,lndex,OC,Ready);
% where
% REI Request Enable Internal lines for the memory banks.
% 1 - indicates bank has data available;
% 0 - indicates bank doesn't have data available.
% ResC Response Counter
% Index Processing Index
% OC Output Counter
% Ready Ready flag
%
function REI = eval_rei(REI,ResC,Index.OC,Ready)

N = length(REI);
for i=1:N,

REI(i) = (ResC(i)==lndex(OC(i),i)) & Ready(OC(i),i);
end;

233

% File Name: init_rec.m
% Description: Initializes the recording variables prior to servicing
Vo a bank. The recording variables, MemResp, ReqAllowed,
% DRAMResp, and DRAMIssued are used to record
Vo simulation events and are not a part of the simulation.
% Programmer: Raymond F. Bernstein Jr.
% Date Mod: 23 Jun 95 Expanded ReqAllowed to include address

o,

o,

%
o,

o,

% Evaluate GR (Grant Request)
% function [MemResp, ReqAllowed, DRAMResp, DRAMIssued] =
% init_rec(NoBanks)
% where
% MemResp Two field variable used to record the memory response
% First Field: Boolean indicating whether a memory response
% occurred
% Second field: Bank number of the responding field
% ReqAllowed Three field variable used to record whether a memory
% request was permitted
% First Field: Boolean indicating whether a memory request
% occurred
% Second field: Bank number of the responding field
% Third Field: Memory Address
% DRAMResp Boolean indicating the bulk store responded in the cycle
% DRAMIssued Boolean indicating the bulk store was issued during the %

cycle
Vo NoBanks Number of banks for the memory to be simulated
°/c
function [MemResp, ReqAllowed, DRAMResp, DRAMIssued] = ...

init_rec(NoBanks,Addr)

MemResp = [0 -1];
ReqAllowed = [0 -1 Addr];

DRAMResp = zeros (2, NoBanks);
DRAMResp(1,1 :NoBanks) = zeros(1 .NoBanks);
DRAMResp(2,1:NoBanks) = -1*ones(1,NoBanks);

DRAMIssued = zeros(3,NoBanks);
DRAMIssued(1,1 :NoBanks) = zeros(1 .NoBanks);
DRAMIssued(2,1:NoBanks) = -1*ones(1, NoBanks);
DRAMIssued(3,1:NoBanks) = -1*ones(1,NoBanks);

234

% inii _sf.m
% Initialize Save File
% fur
%
%wh

iction fid=init_sf(fname,NoBanks,NoCE,MemRatio,Level)

ere
% fid File id of the opened save file
% fname File name for saved data
% NoBanks Number of Memory Banks in the simulation
% NoCE Number of Cache Elements in the simulation
% Mem Ratio Ratio of dynamic to static memory cycle
%
%
funct

Level Level of detail to save for analysis

ion fid = init. _sf(fname, NoBanks, NoCE, MemRatio, Level)

fname = [fname, '.gr'];
fid = fopen(fname,'wt');

if Level==0;
fprintf(fid,' Number of Banks: %s ',num2str(NoBanks));
fprintf(fid,' Number of Cache Elements: %s\n',num2str(NoCE-1));
fprintf(fid,'Dynamic/Static Mem Cycle Time: %s\n\n',...

num2str(MemRatio));
elseif Level==1;

fprintf(fid,' Number of Banks: %s\n',num2str(NoBanks));
fprintf(fid,' Number of Cache Elements: %s\n',num2str(NoCE-1));
fprintf(fid,'Dynamic/Static Mem Cycle Time: %s\n\n',...

num2str(MemRatio));
fprintf(fid, ClkBank# WR ReqAllowed MemResp Bank#\n');

elseif Level==2;
fprintf(fid, %s\n',num2str(NoBanks));
fprintf(fid, %s\n',num2str(NoCE-1));
fprintfjfid, %s\n',num2str(MemRatio));

end;

235

% File Name: mem_resp.m
Vo Description: Evaluate and process a memory response if
% appropriate.
% Programmer: Raymond F. Bernstein Jr.
Vo Date Mod: 07 Mar 95

o,

o.

%
o, % Comments: 3/7: Empty modified to be a SF variable rather
% than a flag.
%

% function [lndex,Address,RW,Ready,Data,OC,Empty,REI,ResC]=
% mem_resp(lndex,Address,RW,Ready,Data,NAC,CPC,
% OC,Empty,REI,RE,ResC,BankNo,NoCE)
To

% See definitions in Chapter V, Section B, Subsection 1) for definitions
%
function [OCN,ResCN,MemResp,OutData]= ...

mem_resp(lndex,RW,Ready,Data,NAC,CPC, ...
OC,REI,ResC,MemResp,BankNo,NoCE,...
OCN.ResCN)

OutData = -1;
RE = max(REI);
if(REI(BankNo)==1),

OutData=Data(OC(BankNo),BankNo);
ResCN(BankNo) = ResC(BankNo) + 1;
OCN(BankNo) = modulo1(OC(BankNo)+1,NoCE);
MemResp = [1 BankNo];

elseif (RE==1)
ResCN(BankNo) = ResC(BankNo) + 1;

end;

236

% File Name: modulol .m
% Description: Performs the remainder operation on two numbers
% but the result is mapped to 1 ..K for modulol (x,k)
% Programmer: Raymond F. Berntsein Jr.
% Date Mod: 6 Feb 95
%
% function result = modulol (x,k)
% where
% k Is the modulus number.
% x Is the number to be acted upon.
%
function result = modulol (x,k)

result = rem(x,k);
if result==0,

result = k;
elseif result<0,

done = 0;
while -done,

result = result + k;
done = result>0;

end; %while
end;

237

% File Name: pb_int.m
% Description: generates a bank selection sequence based on a PB
%
%
% Programmer:

matrix A

Raymond F. Berntsein Jr.
% Date Mod: Oct95
% Notes:
%
% function [ResultVect, NoDigits] = pb_int(Addr, A, fname)
% where:
% ResuItVect Output vector of permuted bank numbers
% NoDigits Number of digits in address pattern. The return value
% Addr Input Address stream
% will be the number of bits required to represent the
% largest number in Addr.
% A Permutation matrix
% fname Name of the file to store the resulting bank selection
% patterns.
%
function [ResultVect.NoDigits] = pb_int(Addr, A, fname)

if ((nargin~=3)),
fprintf(1,'Invalid parameters for PB conversion type\n');
exit(-1);

end;
% Assuming working with base 2
B = 2;
% Make it a column matrix
s = size(Addr);
if s(2)>s(1),

Addr = Addr';
end;
% Make it addresses only (i.e., no read/write into)
ifs(2)~=1,

Addr = Addr(:,1);
end;
maxAddr = max(Addr);
Count = ceil(log10(maxAddr)/log10(2));
NoDigits = Count;
M = length(Addr);
done = 0;
i = 1;

238

while -done,
bm(:,i) = rem(Addr,2);
Addr = fix(Addr/2);
if i==Count,

done = 1;
eise,

i=i+1;
end;

end;
bm = fliplr(bm);

% Binary version of addr (bm) is complete. Now use only the k LSBs to
% compute the bank (i.e., k is the number of columns in A
As = size(A);
bms = size(bm);
NoColA = As(2);
NoColbm = bms(2);
if (bms(2)>As(2)),

bm = bm(:,NoColbm-NoColA+1:NoColbm);
elseif (bms(2)<As(2)),

A = A(:,NoColA-NoColbm+1 :NoColA);
end;
ResultVect = A*bm';
ResultVect = rem(ResultVect',2);

% Create a Powers matrix
PowerVect = ones(size(ResultVect));
s = size(ResultVect);
for i=0:s(2)-1,

PowerVect(:,s(2)-i) = PowerVect(:,s(2)-i)*(BAi);
end;

ResultVect = ResultVect.*PowerVect;
ResultVect = sum(ResultVect');

if fname~=0,
fid = fopen([fname,'.bks'],'wt');
fprintf(fid,'%d\n,,ResultVect');
fclose(fid);

end;

239

% File Name: sav_res.m
% Description: Save the results of the pass for analysis.
% Programmer: Raymond F. Bernstein Jr.
% Date Mod: 14Jun95
°/e o

% Comments: 3/13: Provide for 2 cycles per page for full dump.
% 6/14: Add address issued to calculate all latency
%> Level 2 only °/
0/ /o

% sav_res(lndex,Address,RW,Ready,Data,NAC)CPC, ...
% OC>DCountlEmpty,PDC>GRI>REI,BS,ReqC,ResC);
% where
%
% See definitions in Chapter V, Section B, Subsection 1) for definitions
%
function sav_res(lndex,Address,RW,Ready,Data,NAC,CPC, ...

OC,DCount,EmptyIPDC,GRI,REI,BS,ReqC>ResC>SysClk>...
NoBanks,BankSelNo,RWFIag,NoCE,fid,Level,MemResp,...
ReqAllowed,DRAMResp,DRAMIssued,MemRatio)

if Level == 0; % Full Dump
fprintf(fid,'***************** Clk=%3d ******************\n') SysClk);

fork=1:NoBanks,
fprintf(fid,'Bank#: %3d\n',k);
fprintf(fid,'***Cache Element Contents***\n');
fprintf(fid,'No Index AddrRW Rdy Data\n');
form=1:NoCE,

%% fprintf(1 ,'m= %d\n',m);
fprintf(fid,'%4d %5d %5d %2d %3d %8d', ...

m, lndex(m,k), Address(m,k), RW(m,k), Ready(m.k),
Data(m,k));

if (ReqAllowed(1)==1)...
& (ReqAllowed(2)==k)...
& (modulo1(NAC(k)-1,NoCE)==m),

fprintf(fid,' <--CPU\n');
elseif (MemResp(1)==1) ...

& (MemResp(2)==k)...
& (modulo1(OC(k)-1,NoCE)==m),

fprintf(fid,' ->CPU\n');
elseif (DRAMResp(1 ,k)==1) ...

& (DRAMResp(2,k)==k) ...
& (modulo1(CPC(k)-1,NoCE)==m),

fprintf(fid,' <--DRAM\n');
elseif (DRAMIssued(1,k)==1)...

& (DRAMIssued(2,k)==k)...
& (modulo1(CPC(k),NoCE)==m),

240

fprintf(fid/ -->DRAM\rV);
elsefprintf(fid,'\n');
end; % if.. elseif

end; % for m=1
fprintf(fid/NAC= %d',NAC(k));
fprintf(fid,'OC = %d',OC(k));
fprintf(fid,'CPC= %d',CPC(k));
fprintf(fid/DCount=%d\n',DCount(k));
fprintf(fid/Empty=%d',Empty(k));
fprintf(fid,'PDC= %d',PDC(k));
fprintf(fid,'GRI= %d',GRI(k));
fprintf(fid,'REI= %d\n',REI(k));
fprintf(fid,'ReqC= %d',ReqC(k));
fprintf(fid,,ResC=%d\n\n',ResC(k));

end; %for k=1
fprintf(fid,'ClkBank# WR MemResp Bank# ReqAllowed\n');
fprintf(fid,'%4d ',SysClk);
fprintf(fid,'%5d '.BankSeINo);
fprintf(fid,'%2d '.RWFlag);
fprintf(fid,'%7d ', MemResp(1));
fprintf(fid,'%5d', MemResp(2));
fprintf(fid,'%10d ', ReqAllowed(l));
if ~(rem(SysClk,2)), fprintf(fid,,\n\f);
else, fprintf(fid,'\n\n\n\n');
end;
%end; if Level==0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif Level == 1; % Validate paper studies

fprintf(fid,'%4d \SysClk);
fprintf(fid,'%5d ',BankSelNo);
fprintf(fid,'%2d \RWFIag);
fprintf(fid,'%10d ', ReqAllowed(l));
fprintf(fid,'%7d ', MemResp(1));
fprintf(fid,'%5d ', MemResp(2));
fprintf(fid,'\n');

%end; % elseif Level==1

241

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif Level == 2; % Data Analysis

fprintf(fid,'%4d \SysClk);
fprintf(fid,'%5d \BankSelNo);
fprintf(fid,'%2d \RWFIag);
fprintf(fid,'%10d %5d ,,ReqAllowed(1),ReqAllowed(3));
if ReqAllowed(l);

fprintf(fid,'%4d ', ...
lndex(modulo1 (NAC(ReqAllowed(2))-1 ,NoCE),ReqAllowed(2)));

else fprintf(fid," -1');
end;
fprintf(fid,'%7d ', MemResp(1));
if MemResp(1);

fprintf(fid,'%4d ',...
lndex(modulo1 (OC(MemResp(2))-1 ,NoCE),MemResp(2)));

else fprintf(fid,' -1');
end;
fprintf(fid,'%5d ', MemResp(2));
fprintf(fid,'\n');

end; % elseif Level==2

242

o,

% File Name: ser_dmem.m
% Description: Service dyamic memory within a bank
% Programmer: Raymond F. Bernstein Jr.
% Date Mod: 08 Mar 95
% Comments: 3/8: modified to require ReqCount cycles to complete a
Vo DRAM cycle rather than ReqCount+1 cycles.
% function [ReadyN,DataN,CPCN,DCountN,PDCN,DRAMResp,DRAMIssued]=
% ser_dmem(Address,RW,Ready,Data,NAC,CPC,OC, ...
% DCount,PDC,BankNo,ReqCount,NoCE, ...
% ReadyN,DataN,CPCN,DCountN,PDCN, ...
% DRAMResp.DRAMIssued);
%
% See definitions in Chapter V, Section B, Subsection 1) for definitions
%
function [ReadyN,DataN,CPCN,DCountN,PDCN, ...

DRAMResp,DRAMIssued]= ...
ser_dmem(Address,RW,Ready,Data,NAC,CPC,OC, ...

DCount,PDC,BankNo,ReqCount,NoCE, ...
ReadyN.DataN.CPCN.DCountN.PDCN, ...
DRAMResp.DRAMIssued)

SDRC = -PDC(BankNo) & (CPC(BankNo) ~= NAC(BankNo)) & ...
(RW(CPC(BankNo))==1);

SDWC = -PDC(BankNo) & (CPC(BankNo) ~= NAC(BankNo)) & ...
(RW(CPC(BankNo))==0);

if(SDRC==1),
DCountN(BankNo) = 1;
PDCN(BankNo) = 1;
DRAMIssued(:,BankNo) = [1; BankNo; 1];

elseif(SDWC==1), ;
DCountN(BankNo) = 1;
PDCN(BankNo) = 1;
DRAMIssued(:,BankNo) = [1; BankNo; 0];

elseif PDC(BankNo)==1,
DCountN(BankNo) = DCount(BankNo) + 1;
if DCountN(BankNo)==ReqCount,

DataN(CPC(BankNo),BankNo) = 77777;
ReadyN(CPC(BankNo), BankNo) = 1;
CPCN(BankNo) = modulo1(CPC(BankNo)+1,NoCE);
PDCN(BankNo) = 0;
DRAMResp(:,BankNo) = [1; BankNo];

end; % if
end; % elseif

243

o,

% File Name: ser_memr.m
% Description: Service memory requests from the processor.
Vo Programmer: Raymond F. Bernstein Jr.
% Date Mod: 14Jun95 Added address to ReqAllowed
%
% function [] ser_memr(lndex,Address,RW,Ready,Data,NAC,CPC, ...
Vo OCDCount.Empty.PDC.GRI.REI.BS.ReqCResC.NoCE);
3/o %
% See definitions in Chapter V, Section B, Subsection 1) for definitions
°/c o

function [lndexN,AddressN,RWN,ReadyN,...
DataN.NACN.ReqCN.ReqAllowed] = ...
ser_memr(lndex,Address,RW,Ready,Data,NAC,CPC,OC,GRI,...

BS.ReqC.ReqAllowed.BankNo.Addr.BankSelNo.RWFlag, ...
NoCE,lndexN,AddressN,RWN,ReadyN,DataN,NACN,ReqCN)

if BankSelNo>=0,
if (GRI(BankSelNo)==1) & (BankSelNo==BankNo),

lndexN(NAC(BankNo),BankNo) = ReqC(BankNo);
AddressN(NAC(BankNo),BankNo) = Addr;
RWN(NAC(BankNo),BankNo) = RWFlag;
DataN(NAC(BankNo),BankNo) = Addr;
ReadyN(NAC(BankNo),BankNo) = 0;
ReqCN(BankNo) = ReqC(BankNo) + 1;
NACN(BankNo) = modulo1(NAC(BankNo)+1,NoCE);
ReqAllowed = [1 BankNo Addr];

elseif GRI(BankSelNo)==1,
ReqCN(BankNo) = ReqC(BankNo) + 1;

end;
end;

244

% File Name: ser_memr.m
% Description: Service memory requests from the processor.
% Programmer: Raymond F. Bernstein Jr.
% Date Mod: 14 Jun 95 Added address to ReqAllowed
%
% function [] ser_memr(lndex,Address,RW,Ready,Data,NAC,CPC,...
% OC,DCount,Empty,PDC,GRI,REI,BS,ReqC,ResC,NoCE);
%
% See definitions in Chapter V, Section B, Subsection 1) for definitions
%
function [lndexN,AddressN,RWN,ReadyN,DataN,...

NACN.ReqCN,ReqAllowed] = ...
ser_memr(lndex,Address,RW,Ready,Data,NAC,CPC,OC,GRI,...

BS,ReqC,ReqAllowed,BankNo,Addr,BankSelNo,RWFIag,NoCE,
lndexN,AddressN,RWN,ReadyN,DataN,NACN,ReqCN)

if BankSelNo>=0,
if (GRI(BankSelNo)==1) & (BankSelNo==BankNo),

lndexN(NAC(BankNo),BankNo) = ReqC(BankNo);
AddressN(NAC(BankNo),BankNo) = Addr;
RWN(NAC(BankNo),BankNo) = RWFlag;
DataN(NAC(BankNo),BankNo) = Addr;
ReadyN(NAC(BankNo),BankNo) = 0;
ReqCN(BankNo) = ReqC(BankNo) + 1;
NACN(BankNo) = modulo1(NAC(BankNo)+1,NoCE);
ReqAllowed = [1 BankNo Addr];

elseif GRI(BankSelNo)==1,
ReqCN(BankNo) = ReqC(BankNo) + 1;

end;
end;

245

sim_comp.m
Evaluate if the simulation is completed
Raymond F. Bernstein Jr.
03 Mar 95

% File Name:
% Description:
% Programmer:
% Date Mod:
%
% function done = sim_comp(l_astAddr,Empty)
% where

done 1 - Indicates the the simulation is complete
0 - Indicates it is not complete

LastAddr 1 - Indicates more than one more memory references are
to come

0 - Indicates the last memory reference is being requested
1 - Indicates no more memory references will be requested

Empty Cache Element array indicating whether a memory bank
is empty (i.e., no memory requests are pending to be
processed.

%
%
%
%
%
%
%
%
%
%
function done = sim_comp(LastAddr,Empty)

AIIEmpty = min(Empty);
done = AIIEmpty & (LastAddr<0);

246

% File Name: m_anal.m
% Description:
%

Organize data in graphical form for analysis of memory
data from stm.

% Programmer:
% Date Mod:

Raymond F. Bernstein Jr.
29 Oct 95

% fname
% ASCII
%
%
% Apattern
% WinLen
% PlotFlag
%
%
% Length
% PrintFlag
%
%

%
% function [TP,S,MaxL,AvgL,StdL,SSTP,TR] =
% m_anal(fname,ASCII,Apattem,WinLen,PlotFlag,Length,PrintFlag)
% where

Name of the file containing data produced by stm
Indicates whether fname is stored as ASCII or binary
0 - Binary
1 - ASCII
Short description of the Address pattern
Length of the smoothing window for throughput
Specifies the number and types of plots
0 No plot
1 One plot
Specifies # pts used in a plot
0 - Print to Screen
1 - Print to postscript file
2 - Print directly to default printer

function [TP,S,MaxL,AvgL,StdL,SSTP,TR] = ...
m_anal(fname,ASCIi,Apattem,WinLen, PlotFlag, Length, PrintFlag)

if (ASCII<0)l(ASCII>1)l(WinLen<0)l(PlotFlag<0)l...
(PlotFlag>1)l(Length<0)l(PrintFlag>2)l(PrintFlag<0),

fprintf(1 ,'m_anal::lncorrect parameters!!!\n');
exit;

end;

% Read data in from the file
if ASCII,

fnamel = [fname, '.gr'];
fid = fopen(fname1 ,'rt);
NoBanks = fscanf(fid,'%d',1);
NoCE=fscanf(fid,'%d',1);
Mem Ratio = fscanf(fid,'%d',1);

[Data.COUNT] = fscanf(fid,'%d,,inf);
fclose(fid);
NoRows = COUNT/9;
for i=1:NoRows,
DAry(i,1:9)= Data((i-1)*9+1 :(i-1)*9+9)';

end;

247

else
fnamel = [fname, '.gr1'];
fid = fopen(fname1 ,'r');
Tmp = fread(fid,3,'long');
NoBanks = Tmp(1);
NoCE = Tmp(2);
MemRatio = Tmp(3);
fclose(fid);
fnamel = [fname, '.gr2'];
fid = fopen(fname1 ,'r');
[Data, COUNT] = fread(fid,inf,'long');
fclose(fid);
NoRows = COUNT/9;
for i=1:9,

DAry(1:NoRows,i) = ...
Data((i-1)*NoRows+1 :(i-1)*NoRows+NoRows);

end;
end;

% Calculate the Latency
% Handle the first one seperate
CAddr=DAry(1,6);
k = 1;
while DAry(k,8)~=CAddr,

k = k+1;
end; %while
OAry(1,1) = k;
LastLatency = OAry(1,1);
% Now do the remaining rows
for i=2:NoRows,

if DAry(i,5)==-1,
OAry(i,1) = LastLatency;

elseif DAry(i,5) == DAry(i-1,5),
OAry(i,1) = LastLatency;

else
k=i;
while (DAry(k,6)==-1),

k = k+1;
end;
Clndex = DAry(k,6);
while DAry(k,8)~=Clndex,

k = k+1;
end; %while
OAry(i,1) = k-i+1;
LastLatency = OAry(i,1);

end;

248

OAry(i,2)=DAry(i,4); % Request Allowed
OAry(i,3)=DAry(i,7); % Memory Response

end; %for

MaxL=max(OAry(:, 1));
Avgl_=mean(OAry(:,1));
StdL=std(OAry(:,1));

%%% Throughput %%%
SmoothWin = ones(Winl_en,1);
Throughput = conv(SmoothWin,OAry(:,3))/Winl_en;
OAry(:,4) = ThroughPut(1 :length(OAry));
TotalThroughPut = sum(OAry(:,3))/length(OAry);
TP = TotalThroughPut;

%%% Calculate length of effective response %%%
%%%%%%%%%%%%%%%%%%%%%%%%%
if Length==0 I Length>length(OAry),

Length = length(OAry);
XAxisLbl = 1:Length;

else
XAxisLbl = 1:Length; % Use user specified length

end;

%%% Steady State Throughput %%%
%%% Transient Time %%%%%%%%
SSTP = OAry(1,4);
TR=1;
for i=2:Length,

if OAry(i,4)~=SSTP,
SSTP = OAry(i,4);
TR = i;

end;
end;
TR = TR - WinLen+1;

%%% Check validity of SSTP %%%
if (TR>=0.5*Length)

SSTP = mean(OAry(0.50*Length:0.75*Length,4));
end;
if Length==0 I Length>length(OAry),

Length = length(OAry);
XAxisLbl = 1:Length;

else
XAxisLbl = 1:Length; % Use user specified length

end;

249

%%% Speed Up %%%
S = TotaiThroughPut*MemRatio;

%%% Clean Up %%%
0Ary(:,2) = OAry(:,2)*0.25; % Request Allowed (GR)
OAry(:,3) = OAry(:,3)*0.50; % Memory Response (RE)

%%% Graphics Plot %%%
if Length==0 I Length>length(OAry),

Length = length(OAry);
XAxisLbl = 1:Length;

eise
XAxisLbl = 1:Length; % Use user specified length

end;

if (PlotFlag==0),
% Do nothing

else % Plot one figure
if (PrintFlag==0),

figure;
end;
subplot(3,1,1);
plot(XAxisLbl,OAry(1:Length,1));grid;
ylabel('Latency');
title(['Plot ID: \Apattem, ...

'# Banks=,,num2str(NoBanks), ...
' #CEs=',num2str(NoCE), ...
' Mem Ratio=',num2str(MemRatio)]);

axis([0 Length 0 MaxL*1.2]);
subplot(3,1,2);
plot(XAxisLbl,OAry(1:Length,4));grid;
ylabel(Throughput');
title(['S=',num2str(S),...
'Avg TP=',num2str(TotalThroughPut), ...
'MaxL=',num2str(MaxL), ...
'AvgL=',num2str(AvgL), ...
'StdL=',num2str(StdL)]);
axis([0 Length 0 1.2]);
subplot(3,1,3);
plot(XAxisLbl,OAry(1:Length,2:3));grid;
xlabel(Time (Cycles)');
ylabelj'STM Status');
title(['SSTP=',num2str(SSTP), ...
TR=,,num2str(TR)]);

250

end;

axis([0 Length 0 0.6]);
ah = gca;
settah.'YTick'.tO; 0.25; 0.5])
se^ah/YTickLabels'.r VGR'i'RE']);
If (PrintFlag==1),

se^gcf/PaperPosition'^O^S 2.5 5.8 8.2]);
eval(['print ',fname,' -deps2']);
title(['S=',num2str(S),...

'AvgTP=',num2str(TotalThroughPut),
'MaxL=',num2str(MaxL), ...
'AvgL=',num2str(AvgL), ...
'StdL=',num2str(StdL)]);

end;
if (PrintFlag==2),

orient tal!
print;

end;

251

252

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Library, Code 13 2
Naval Postgraduate School
Monterey, CA 93943-5000

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Dr. Randy Roberts 1
MEE3, MS J580
Los Alamos National Laboratory
Los Alamos, NM 87545

5. Dr. William Brown 1
Mission Research Corporation
2300 Garden Road
Monterey, CA 93940

6. Dr. William A. Gardner 1
Department of Electrical and Computer Engineering
University of California, Davis
Davis, CA 95616

7. Naval Research Laboratory _ 1
Attn: CAPT Dwight Dennson, Code 9110
4555 Overlook Avenue SW
Washington DC 20375

8. Naval Research Laboratory 1
Attn: LCDR Barbara Bell, Code 9110
4555 Overlook Avenue SW
Washington DC 20375

253

9. Professor Maurice D. Weir, Code MA/Wc
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5216

10. Professor Herschel H. Loomis, Jr., Code EC/Lm
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

11. Professor Charles W. Therrien, Code EC/Ti
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

12. Professor R. Clark Robertson, Code EC/Re
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

13. Professor Richard W. Hamming, Code CS/Hg
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

14. Professor Douglas J. Fouts, Code EC/Fs
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

15. Professor Michael Shields, Code EC/SI
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

16. Professor Raymond F. Bernstein, Jr., Code EC/Be
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

254

