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ABSTRACT 

This work describes a scaleable, high-performance, pipelined, vector processor 

architecture. Special emphasis is placed on performing fast Fourier transforms with 

mixed-radix butterfly operations. The initial motivation for the architecture was the 

computation of cyclostationary algorithms. However, the resulting architecture is capable 

of general-purpose vector processing as well. A major factor affecting the performance 

of the architecture is the memory system design. The use of pipelining techniques, 

coupled with vector processing, places a substantial burden on the memory system 

performance. The memory design is based on an interleaved memory philosophy with a 

buffering technique referred to as split transaction memory (STM). A crucial aspect of 

the memory design is the memory decoding scheme. A design methodology is described 

for the specification of permutation matrices that yield near-optimal performance for the 

memory system. Another important aspect of this work is the development of a software 

based simulator that allows a STM to be specified. The simulator, operating at the 

register transfer level, emulates the processing of an address stream by STM and records 

the events for post-processing. The STM simulator was used to evaluate three types of 

vector processing address patterns: constant stride, constant geometry radix-r butterfly, 

and digit reversed. A random address pattern was also analyzed in the context of general- 

purpose computing. STM simulation verified the near-optimal performance of the STM. 
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INTRODUCTION 

BACKGROUND 

This research began with an investigation of computer architectures for computing 

digital implementations of the Spectral Correlation Function (SCF), the central function of 

spectral correlation or cyclostationary analysis. The SCF is defined as: 

S^n^^jX^wJ + ^X^Wj-^dW 
(1.1) 

where 

XT (t, f) = \'+T/2 x(w)e-i2niwdw. [Ref 1 ] (1.2) 

and T is the length of a time window for Equation (1.2). The variable / is called the 

spectral location parameter and corresponds to the frequency parameter of a Fourier 

transform pair. It is expressed as 

' = * 

a\ 
f + ir\+ f~ 2) 

a 

\      2) 
(1.3) 

a is the spectral separation parameter representing a frequency of second-order 

periodicity, a, also referred to as the cycle frequency, is expressed as 

cc = 
(     a\   („   a^ 
/+7 " '"7 • (L4) 

XT(t, f) is the Fourier transform of the time series signal x(t) of length T centered 

at time t. 

The SCF of most man-made signals result in non-zero cycle frequencies. An 

example of a magnitude plot of a SCF for a binary phase shift keyed (BPSK) signal is 

shown in Figure 1.1. Each non-zero line (called a feature) in the plot corresponds to a 

unique value of a. The traditional power spectral density is a special case of spectral 

correlation analysis (i.e., the line for a = 0). The power spectral density is the feature at 

the back of the plot. Three smaller cycle features as well as a large cycle feature can be 

seen in the plot. Unlike the power spectral density, noise present in other cycle 



frequencies will not correlate, and with sufficient averaging, will yield a feature 

regardless of the noise level. This provides a means for detecting a weak signal hidden in 

noise. 

2.581   -, 

0.498 

/ 

Figure 1.1 Spectral Correlation Function for BPSK Signal 

Several digital algorithms have been developed for estimating the SCF including 

the Frequency Smoothing Method (FSM) and the time smoothed variants FFT 

Accumulation Method (FAM) and the Strip Spectral Correlation Algorithm (SSCAJ [Ref 

2] [Ref 3]. Each of these algorithms are heavily based on vector processing in general 

and FFT techniques in particular. The computational complexity of these algorithms has 

been extensively analyzed. Applications for cyclostationary analysis can be found in 

Gardner [Ref 1] and Gardner [Ref 4]. The computational complexity for the SSCA will 

be discussed further in Chapter 0, Section F. A computer designed to exploit spectral 

correlation features is referred to as a spectral correlation analyzer (SCA). 



A variety of architectures were investigated for computing the SCF including 

networks of general-purpose computers, digital signal processing (DSP) architectures, 

and more specialized architectures based on vector processing techniques. 

For example, the SSCA was implemented on a network of Sun workstations 

connected with an Ethernet. The software used to facilitate communications and control 

of the distributed application was Parallel Virtual Machine (PVM). It was found that the 

SSCA could be partitioned in such a way to permit effective parallel execution on 

numerous workstations. This provides a means for computing a computationally 

intensive instance of the SSCA during off peak hours of the computing facilities. 

The primary focus however was to find computer architectures that would 

compute the SCF in real or near-real time. Transputers were examined to determine 

feasibility of real time and near-real time computation for the fast Fourier transforms 

(FFTs) in particular and spectral correlation algorithms in general. The Transputer is a 

general-purpose processor that contains support for quick context switching and 

communications on chip. It is designed to be scaleable and is a valid technology for 

many application domains. However, the number of Transputers that would be required 

to provide the needed computation was found to be too many for a reasonable 

implementation for this application. 

Highly specialized architectures have also been considered for several 

cyclostationary algorithms. Architectures for both frequency and time smoothing 

algorithms may be found in Roberts [Ref 5] and [Ref 6]. These architectures are based on 

mapping hardware onto the algorithmic requirements thereby providing architectures that 

can yield optimal performance. A practical disadvantage to this approach is the reduced 

cost effectiveness of a hardware implementation that is dedicated to a particular 

algorithm. 

B.        VECTOR ARCHITECTURE 

Another architecture reviewed was based on vector array processors. This 

approach, the subject of this dissertation, is based on streaming data through a highly 

pipelined vector processor with, in the ideal case, no wait states. The basic concept can 



be used to build highly optimized architectures for many but not all of the functions 

needed in a SCA (i.e., those portions that can be vectorized). Alternatively, this basic 

approach can be used to build a more generalized vector processor that might be used for 

any problem that lends itself to vector processing. This more generalized approach will 

be referred to hereafter as the butterfly machine architecture. The butterfly machine 

(BFM) architecture can also be scaled. An architecture designed with multiple vector 

processors will also be described and is referred to as the parallel butterfly machine 

architecture. This name is not to be confused with the BBN Butterfly by BBN Advanced 

Computers [Ref 7]. 

Given the technology available today, the key issue to consider when evaluating 

the butterfly machine architecture is the requirements of the memory system. The 

streaming of data through the pipelined vector processor requires a data reference from 

each vector each clock cycle. A typical vector operation requires two input vectors and 

creates one output vector, therefore implying three data references per clock cycle per 

processor. Given that the vector processor is pipelined, the clock rate applied to the 

processor will be on the higher end of the scale available with current technology. 

Multiple memory references per clock cycle and a high clock rate suggest that designing a 

memory to accommodate this requirement is a primary area of concern. 

As will be seen in Chapter 0, the butterfly machine architecture calls for several 

large memories for each vector processor. Given the data rate requirements stated above, 

such a memory system could be accommodated by using fast static random access 

memory (SRAM). This is not a desirable solution because SRAMs are much more 

expensive per bit relative to the dynamic random access memory (DRAM) alternative. 

Secondary factors favoring a bulk storage approach such as DRAM include their need for 

less power and circuit board real-estate. The issue of cost becomes more acute when 

considering the parallel butterfly machine architecture. Therefore, a cost effective 

implementation of the butterfly machine architecture will use bulk storage technology 

such as DRAM instead of SRAM given the current technology base. 



DRAM has been the memory technology for implementing main memory in 

general-purpose computers for some time. Almost any general-purpose computer 

acquired today will have a memory system that is composed of a main memory consisting 

of DRAM technology coupled with one or two levels of SRAM-based cache memory. 

However, vector array machines frequently rely on some form of banked interleaved 

memory (i.e., a memory system consisting of parallel memories that attempts to exploit 

the parallelism to increase throughput). The relative merits of cache versus interleaved 

memory techniques for a memory system will be discussed in detail in Chapter II. 

C.        PROBLEM STATEMENT 

This dissertation describes a computer architecture that is optimized for vector 

processing in general and cyclostationary processing in particular. The memory system 

design is the key component of this architecture for the reasons discussed in Section B 

above. 

There are two characteristics of the butterfly machine environment that 

distinguish it from a general-purpose computing environment and have a substantial 

effect on the solution to the memory system. First, the memory references are very dense 

when compared to the general-purpose computing case. As indicated in the discussion 

above, a data reference is required for each vector on each cycle. This imposes a 

requirement of the memory system that is more stringent than would be expected for a 

general-purpose computer. 

The second characteristic of the butterfly machine environment is that all memory 

addresses are known before the first elements of the vector are processed. Therefore, a 

memory reference stream can be generated with certainty for instructions and data to be 

executed in the future. This implies that substantial latency can be tolerated given that 

the vector length is long relative to the latency. Note that this is in sharp contrast to the 

general-purpose computing architecture where very little latency can be tolerated without 

having a substantial impact on performance. It will be shown how this latency is traded 

for memory bandwidth using interleaved memory. 



Two aspects of the butterfly machine architecture diminish the usefulness of 

traditional caching techniques. First, since memory must operate at the same speed as the 

processor, there are no "processing only" cycles that can be used for loading the cache in 

parallel. This becomes increasingly more important when the size of the cache lines are 

large with respect to the bus size. Additionally, address reference patterns associated 

with vector processing often do not meet the locality of reference criteria needed for a 

memory system using a cache. 

The primary objective of this dissertation is to define a low-cost attached vector 

processor architecture that is well suited for cyclostationary analysis. In particular, this 

architecture will perform fast Fourier transforms (FFTs) and other vector operations to 

include complex addition and multiplication. By low cost, it is meant that the vector 

processor architecture is compatible with workstations rather than mainframes or 

supercomputers. A key component of this architecture is a memory system that 

incorporates low-cost bulk storage memory. Although DRAMs, the current choice given 

today's technology continue to increase in capability, their access speeds are slower than 

microprocessors by as much as a factor of ten or more. This research addresses the 

design of a memory system, based primarily on relatively slow bulk storage devices, that 

will provide memory bandwidth that is sufficient to maintain optimum processor 

performance. The technique used to construct such a memory is referred to as Split 

Transaction Memory (STM). 

STM will also be analyzed in the context of general-purpose computing. This 

investigation into general-purpose computing provides a more comprehensive 

understanding of the use of STM for other computing environments. 

Architectures for computing FFTs have been studied since the late sixties. One of 

the earliest works is by Pease [Ref 8]. A hardwired signal processor for radar 

applications is described by Groginsky [Ref 9]. Another developed by Lincoln Labs 

Massachusetts Institute of Technology, is found in Filip [Ref 10]. This processor is 

designed using multiple microprocessors that communicate via a bus. Two methods for 

resolving the bit-reversal problem are discussed by Dieffenderfer [Ref 11]. Another 



hardwired processor, using a radix-4 butterfly, is presented by Corinthios [Ref 12]. This 

processor supports real-time applications transforming 256-point vectors with signal 

sampling rates up to 1.6 million samples a second. A VLSI architecture is proposed by 

Sapiecha [Ref 13]. This architecture consists of two and three dimensional arrays of 

processor elements. Two real-time processors include a Winograd Fourier transform 

processor presented by Sommer [Ref 14] and a processor designed for synthetic-aperture- 

radar applications Franceschetti [Ref 15]. 

The work contained in this document is distinguished from the work noted above 

in that the processor is designed for general vector processing as well as FFT 

computation. The architecture presented in this dissertation is particularly well suited for 

input vectors of length 220 and larger. The application is scaleable providing a real-time 

or near-real-time response. Major emphasis is on a low-cost memory design. 

D.      ORGANIZATION OF DISSERTATION 

The following conventions will be used to more clearly identify features of the 

document. Regular text is in Times New Roman font. Computer program names, 

algorithms, and variables are printed with Arial font. Other variables discussed in a 

different context than a program are shown as italic Times New Roman. 

The remainder of this dissertation is organized as follows. Chapter n, Historical 

Perspective and Related Research, provides a brief description and comparison of several 

computer architectures and a comparison of cache and interleaving memory schemes. A 

history of related research in interleaved memory is then presented. 

The next chapter, Butterfly Machine Architecture, describes the butterfly machine 

architecture and provides a context for use of STM. 

Chapter IV, Description of Split Transaction Memory (STM), presents STM first 

at a conceptual level, followed by a hardware design. A description of the STM 

Simulator is then presented. 

A theoretical model of STM performance parameters is described in Chapter V, 

first using conventional bank number decoding, followed by permutation-based decoding. 



Chapter VI, Simulation Studies, describes the experiments. The theoretical 

performance of the STM, based on the results of Chapter V, is detailed for each 

experiment. The results of the simulation runs of each experiment is described and 

compared to the theoretical performance. Conclusions that are specific to an experiment 

are also stated. 

Chapter VE lists top level conclusions and describes further research. 

The following section describes the original contributions of this work. 

E.       ORIGINAL CONTRIBUTION 

The primary contribution of this research is an attached vector processor 

architecture designed for executing algorithms that require an efficient implementation of 

vector processing in general, and the fast Fourier transform (FFT) in particular. Classes 

of problems addressed by this type of architecture include signal processing, spectral 

analysis, digital filtering, and cyclostationary algorithms. Cyclostationary processing is 

particularly appropriate for this architecture because of its computational complexity. 

This architecture, referred to as the butterfly machine architecture, provides a scaleable 

solution compatible with workstation environments. A key component of this 

architecture is the memory design referred to as Split Transaction Memory (STM). STM 

exploits the specific memory reference stream characteristics associated with 

cyclostationary processing and provides a throughput to the vector processor that 

approaches 1.0 for anticipated address patterns. There are two aspects of STM that are of 

special note. 

• STM is an interleaved memory that buffers memory references. The 

primitive organizational element for buffering within a bank is referred to as a 

cache element. The use of cache elements within banks provides a more 

efficient organization than standard buffers when three or more cache 

elements are called for in each bank. 

• STM uses a memory decoding scheme that is optimized for memory 

reference patterns that are characterized by powers of two. This is 



accomplished by using permutation matrices to decode bank numbers. A 

design methodology is developed for constructing permutation matrices that 

are designed for address patterns with any constant stride of powers of two 

that yield near ideal performance for interleaved memory systems. A second 

methodology is presented that results in permutation matrices that yield near 

ideal performance for constant geometry radix-r butterfly address patterns. 

The radix-r butterfly permutation matrices, modified to support constant 

stride of powers of two address patterns, provide near ideal performance for 

constant stride and radix-r butterfly address patterns. The third address 

pattern required for FFT-based vector processing, digit reversal, also yields 

near ideal performance when the radix of the butterfly is equal to or greater 

than the number of banks. When this condition is not met, the actual 

performance varies from near ideal to fair. Theory is developed for steady 

state throughput and maximum latency for each of the address patterns. 

Another unique contribution of this research is an event driven software simulator 

that provides for analysis of STM memory systems. The STM simulator accepts a 

description of the STM memory and a memory reference stream. When this memory 

reference stream is processed, details of each cycle are stored at the register level for later 

analysis. Post analysis routines provide plots and tables for analysis of the simulation 

run. Programs have also been developed to generate input address streams for constant 

stride, radix-r butterfly, digit reversed, and random address streams. 
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II.      HISTORICAL PERSPECTIVE AND RELATED 

RESEARCH 

A.        THE GENERAL PROBLEM 

A well designed computer system is one that exhibits a balance of processing 

capability and communication bandwidth among the various components, delivered at a 

favorable cost-performance ratio. This balance is established in the context of an existing 

technology base. Since the advent of the microprocessor, processor design has been at 

the forefront of computer architecture. Further, the combination of advances in clock 

rates made available with improvements in the electronics, and architectural advances 

such as the issuing of multiple instructions per clock cycle, has resulted in an increasing 

gap between processor computational capability and the ability for memory systems to 

provide data at sufficient bandwidth to support these computations for general-purpose 

processors Comerford [Ref 16]. This chapter will summarize techniques that have been 

explored to enhance the memory system of computers. 

Before proceeding further, it should be noted that the scope of memory design 

techniques has been strongly influenced by the type of computer architecture under 

consideration. The advent of a variety of multiprocessor architectures has provided both 

new challenges as well as opportunities. Classes of computer architectures that will be 

discussed below in the context of the processor-memory imbalance are the multiple 

instruction multiple data (MIMD) and the vector processor architectures. 

Two prominent MIMD architectures that have evolved and are prominent today 

are the distributed-memory architecture, and the shared-memory architecture. The 

distributed-memory architecture extends the von Neumann architecture by connecting 

single-instruction single-data (SISD) machines with local and wide-area networks.    This 

provides an alternative to larger monolithic computer systems, namely a system of 

smaller computers networked together. To the degree that this implies the need for 

smaller less capable processors in the networked system, the processor-memory 

imbalance is eased. 
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The shared-memory architecture is based on two or more processes sharing a 

memory address space. These processors may be centralized or distributed physically as 

indicated in Hennessy [Ref 17]. Clearly increasing the ratio of processors to a memory 

further increases the imbalance between processor capabilities and the corresponding 

demands on the memory system. However, this architecture provides an opportunity to 

exploit economies of scale of the memory system. Further, this architecture generates an 

address stream that is a composite of the address streams generated by the individual 

processors. This multiprocessor address stream may have characteristics that are 

exploitable for improving memory performance. 

A generic vector processor architecture is shown in Figure II. 1. The vector 

processor architecture usually consists of one or more special purpose vector processors 

serviced by a memory system. A vector supercomputer, such as the Cray Research Y-MP 

is typically designed with vector processors and also contains one or more general- 

purpose processors that can operate on scalar values. But as the name suggests, the 

processor is specially designed to operate upon one or more vectors. Typically, a single 

processor will accept two vectors and generate a third vector as an output. The resulting 

output vector of one processor may serve as an input vector to a second processor. This 

provides for high-level pipelining of the algorithm. Since the operation performed by a 

vector processor is also typically pipelined, a new piece of data is generally required for 

each clock cycle. For a vector processor accepting two vectors as inputs and generating a 

third as output, three memory references are needed each cycle. Further, pipelining the 

processor allows these processors to operate at higher clock rates than normally found in 

computer systems. The high clock rate, the need for a data element from each vector each 

clock cycle, and the existence of multiple vectors provides a substantial load on the 

memory system. 

The preceding discussion suggests that there are many computer architectures and 

that the features of the particular architecture will have an impact on the memory 

requirements and design. This dissertation will focus on a variation of the vector 

processor architecture. This architecture, referred to as the butterfly architecture, will be 

presented in the next chapter. As a vector processor, it has many of the properties 
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described for the vector processor architecture above. It differs in that it is exclusively a 

vector machine (i.e., it does not perform any scalar operations). 
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Figure II.l Generic Vector Processor Architecture 

The remaining portion of this chapter will describe in some detail the two primary 

techniques used to build memory systems. These techniques are known as cache and 

interleaved memory systems. Before discussing cache and interleaved memory system, a 

brief discussion of the characteristics of a memory address stream will be presented. 

Those characteristics that effect the memory address stream will also be addressed. 

13 



Much of the material presented in this chapter is a summary of ideas that can be 

found in many sources. Cache and interleaved memory concepts can be found in Stone 

[Ref 18]. Another source for cache memory is Hennessy [Ref 19]. 

B.        MEMORY ADDRESS STREAM 

In this section, the characteristics of a memory address stream will be described 

for a general-purpose processor and for a vector processor. Any method used to describe 

or characterize the memory address stream for the purpose of anticipating future memory 

references is referred to as a characteristic. 

The first factor to consider that effects the characteristic of a memory reference 

stream is the type of processor that is generating the address stream. Two types of 

processors will be considered here: a general-purpose processor and a vector processor. 

First, the general-purpose processor will be considered. A much utilized example 

of a memory reference stream characteristic for general-purpose processors is locality of 

reference. It has been postulated and confirmed under many circumstances that addresses 

close by in the memory space to the most recently accessed memory address, are more 

likely to be addressed in the near future than those that are not nearby. Another example 

of a general-purpose processor characteristic is that instruction fetches have a tendency to 

be sequential or linear (i.e., the execution of a set of instructions that do not contain 

branches will follow one after the other.) 

A model of general-purpose processing architecture (i.e., von Neumann) with the 

three basic components of processor, interconnect, and memory is shown Figure II.2. 

The processor establishes the de facto requirements for memory accesses for 

which the interconnect and memory must respond. Said in another way, the processor is 

usually thought of as taking the active role generating the memory reference stream. This 

is accomplished by repeating the execution cycle consisting minimally of a fetch, decode, 

and execution cycles. The two types of memory references generated by the processor are 

instruction fetches and data read or write references. As indicated earlier, instruction 

references demonstrate a linearity property because they are typically segments of 
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instructions in a program that will execute without branching. Another characteristic of 

instruction fetches is that they are almost always read only. 
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Instruction Set 
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Figure II.2 General-Purpose Processor 

The address stream characteristics are influenced by the following factors: 

• characteristics of the processor, 

• characteristics of the software development tools, and 

• application program characteristics. 

Characteristics of the processor include first the instruction set architecture (ISA). 

The majority of the instructions in a complex set instruction computer (CISC) architecture 

such as the Motorola 680X0 series contain memory references as an integral part of the 

instruction (i.e., one or two memory references are made as a result of the execution of 

the instruction. This is in contrast to a reduced instruction set computer (RISC) ISAs 

where all memory references are accomplished with dedicated memory reference 

instructions. The ratio of instruction references to data references is generally higher 

because the set of RISC instructions is simpler and fewer by design. Therefore, the 

sequential characteristic is more pronounced. 

The number of registers available to the processor also effects the memory address 

stream. The more registers available, the more variables can be maintained at the 

processor without read and write accesses back to main memory. For a larger number of 

registers, the number of memory references will decline in general, and the ratio of the 
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number of instruction references to data references will increase. Most programs 

however cannot use more than 20 to 30 registers. Thus, the more recent RISC designs are 

based on 32 registers. When more silicon is allocated to registers such as with the Sun 

Sparc design, the number of registers for one context is limited to 32 registers. [Ref 20] 

Software languages and their corresponding compilers also have an impact on the 

character of the memory reference stream. Extensive use of looping constructs such as 

the WHILE statement provides for locality of reference whenever the loop executes 

multiple times. Also, the longer the loop, the greater the linearity of the memory 

reference stream. The programming practice of modular decomposition and the use of 

the function construct also yields locality of reference. Allocation of memory for data 

also provides some locality of reference. For example, in the C programming language, 

local variables of a function are stored together. Variable passing using the stack 

provides some locality of reference. However, dynamic allocation of memory is 

accomplished from a data structure referred to as a heap. Dynamic allocation can result 

in variable references to be spread about the address space if they are allocated and 

deallocated frequently. 

The last factor, application program characteristics, provides the biggest 

uncertainty regarding the memory reference stream. A program language provides 

substantial flexibility regarding the implementation of a program. Given the particular 

design decisions of any memory system, it is possible to write an application that will 

exploit the weaknesses of the memory system. 

The other type of processor that will be discussed is the vector processor. A 

vector processor accepts one or more vectors as input, as well as an operation or function 

code, that specifies the function to be performed as shown in Figure II.3. The vector 

processor will accept one data input from each input vector on each clock cycle. Further, 

the processor will perform an operation repeatedly on a finite number of data points. For 

example, if the operation was addition, then the processor would add each pair of points 

from two vectors. A radix-4 operation would perform the butterfly operation on data sets 
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of four points at a time. In general, input data vectors for a radix-r operation include the 

data vector and a vector containing twiddle factors. 
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Figure II.3 Vector Processor 

An important aspect of the vector processor is that the operation to be performed 

is by nature repetitive and therefore the need for instruction fetches is sparse relative to 

data references. Therefore, for practical purposes, the instruction fetches may be ignored 

in some circumstances. 

The data reference stream has several important properties. First, for a given 

vector operation, a vector is either an input or an output for all data points. Therefore, the 

memory reference stream will either be a series of reads or writes with respect to the 

vector. Further, for a given operation, vectors are accessed in a well defined path and not 

subject to run time decisions. In other words, the memory address pattern for data 

references for a vector machine are primarily determined at compile time. For one vector 

operation and the associated data, a vector processor could generate the entire memory 

reference stream prior to executing the first instruction! This is in sharp contrast to the 

general-purpose computing case where the next memory reference may be determined by 

the results of executing the current instruction. At a higher level of program control, 

there may be conditional branch instructions that may have to be evaluated before a 

particular vector operation can be executed. 
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There are three addressing patterns that are of interest for the butterfly machine 

architecture to be described in Chapter 0: 

• constant stride s, 

• constant geometry radix-r butterfly, and 

• digit reversal. 

The most common addressing patterns used in vector machines are patterns of 

constant stride s, where s is the spacing between the references. For example, a vector 

multiply of two vectors would require a constant stride of one for each input vector as 

well as the output vector. 

The constant geometry radix-r butterfly, and the digit-reversed pattern are both 

used to compute FFTs. The constant geometry radix-r butterfly pattern is composed of a 

number of constant stride sequences. One pass of the digit reversal pattern is required for 

each FFT. A discussion of these memory reference patterns can be found in Oppenheim 

[Ref21]. 

C.       CACHE MEMORY 

There are two basic memory enhancement techniques that have been developed to 

minimize the impact of the processor-memory imbalance, namely cached and interleaved 

memory. Cache memory is by far the most pervasive because it has been found to be 

effective when dealing with the general-purpose computer architecture. It is so successful 

that almost any computer system acquired today will have at least one cache in the 

memory system and frequently more than one. A cache memory system exploits the 

locality of reference property described in the section above. 

Banked interleaved memory has been used in a general-purpose architecture as a 

secondary enhancement technique to cache memory. However, it is the primary means 

for increasing memory bandwidth for vector processor architectures such as 

supercomputer vector processors. 

Figure II.4 illustrates the physical organization of a cache memory system. The 

cache memory is a small memory when compared with the main memory, but operates at 
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the same speed as the processor. It logically can be divided into a cache memory, and a 

cache memory controller. From the processor's interface looking down, the cache looks 

like main memory where the memory response time is not constant. To main memory, 

the cache appears to be a bus master that always requests a block of memory references at 

a time. 
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Figure II.4 Cache Memory System 

The cache memory is organized into equal sized blocks referred to as lines or 

cache lines. Representative sizes for cache lines, /, range between 16 and 64 bytes. Main 

memory is logically organized into blocks of length /. 

Whenever a read-memory reference is made by the processor to the cache, the 

reference is either contained in the cache or it is not. This is termed a cache hit or miss 

respectively. When a program begins, the cache is empty and therefore the first reference 

is by definition a miss. Under these circumstances, the cache must obtain the memory 
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reference from main memory. The cache will obtain the entire line associated with the 

reference, store the line in a cache line, and pass the reference back to the processor. The 

cache is then ready to process another memory request. 

On the next memory reference request, if the request is not located in the cache 

(i.e., if the request is not located within the cache line that was previously loaded), then 

the process repeats as before. If however, the reference is contained in the cache, then the 

cache simply responds with the data. The dedicated interconnect between the cache and 

the processor will generally allow the data access to proceed at the processor clock rate. 

The bandwidth of a cache-based memory system may be modeled in terms of the 

effective cycle time. The effective cycle time Teff is defined as the average cycle time to 

access one word when filling a cache line, adjusted for the number of elements of the line 

not actually used and the number of elements of a line used more than once. This is the 

effective bandwidth as seen by the processor. The effective bandwidth can be expressed 

as: 

T" = T-T.lk- ahl> 

where, 

Tca=J> (H.2) 

and 

Tc is the time required to fill a cache line, 

/ is the number of words in a cache line, 

la is the number of words in a cache line that are accessed by the processor, and 

lr is the number of times that words in a cache line are accessed by the processor 

after the first access (i.e., repeat accesses). 

The first term of Equation (II. 1), Tca represents the average cycle time to access 

one word. The second and third terms reflect adjustments based on the degree that the 

locality of reference property is present. The second term is the fraction of the words in 
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the line actually utilized by the processor. If all of the words are accessed, then this 

reduces to unity. If a fraction of the words are used, then the average cycle time is 

adjusted by the reciprocal of that fraction. The third term reflects the benefit for reusing a 

word without having to fetch it back from main memory. If no words are reused, the term 

reduces to unity. If each term was reused once, then the term would be one half. 

Equation (II. 1) illustrates that the effective bandwidth provided by the cache can vary 

substantially in either direction from the average cycle time to load a cache line, 

depending upon the locality of reference. 

Caches are classified based on the kind of information that is to be cached. There 

are instruction caches, data caches, and combined caches. An instruction cache is easier 

to build because the instruction fetches are read-only and therefore the hardware 

necessary for maintaining consistency between the instructions in the cache, and 

instructions in main memory is not necessary. Further, if it is determined that the locality 

of reference is different for instructions and data, then separate data and instruction 

caches can be better tailored to their respective needs. However, a combined data and 

instruction cache can use the cache resources efficiently. 

A short discussion on the time-varying characteristics of cache is in order before 

leaving the discussion of cache memory. When a process begins, none of the process's 

instructions or data is contained in the cache. Most of the initial references are misses, 

but as the process progresses, more and more of the program and data necessary for the 

process are loaded into the cache. The contents of the cache are "demand driven" by the 

processor's references. A point in time is reached where almost all of the address 

references are in the cache and therefore most references are cache hits. This assumes 

that the cache has sufficient capacity to support the process. The period of time between 

the start of the process, until the process is mostly cache hits is referred to as the transient 

time. That period of time beginning with mostly cache hits is referred to as steady-state 

time. When a process transitions to another part of the program, or when another 

process's context is switched in, then another transient is experienced followed by a 

steady-state period. 
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A process's memory address space as well as the cache lines can be illustrated 

graphically. The area of the memory address space that is contained in the cache or 

alternatively, those cache lines that contain the process's references at the point of steady 

state, is referred to as the process's, foot print. If such a graphic were available and 

updated in real time, it would show at any instant that portion of the memory space that is 

active. The time-varying dynamics of the memory address space and the cache would be 

viewed through continually updated graphics throughout the life cycle of the processes. 

[Ref22] 

D.       INTERLEAVED MEMORY 

The other memory management technique to be described is interleaved memory. 

A block diagram of a banked interleaved memory is shown in Figure II.5. Memory 

devices (e.g., DRAMs) are mapped into the address space such that the memory address 

space is partitioned evenly among the banks. The primary parameters that define an 

interleaved memory scheme include the number of banks and the scheme for mapping 

memory addresses to a bank number and index within a bank pair. This will be referred 

to as the bank number decoding and bank index decoding schemes respectively. In 

general it is desirable to have a large number of banks since the potential data rate is 

greater. Electrical properties such as fanout suggest a cost associated with more banks 

and therefore a cost benefit tradeoff must be evaluated for a given application. As is 

indicated in the discussion below, the bank number selection criteria also may have an 

impact on the number of banks chosen. 

The following is a brief description of the operation of a banked memory system 

that incorporates interleaving to increase memory performance. A bank will accept a 

memory request if the bank is not processing a previous memory request. Therefore, as 

many as k memory requests can be pending at a time (i.e., one from each bank). If a busy 

bank is selected (i.e., if it is processing a previous memory request) then the memory 

system stalls. A memory system is said to stall when the current memory request is not 

accepted. No other memory requests will be allowed until the selected bank has 
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completed the current memory request. The stalled memory request is then accepted and 

the process continues. 
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Figure II.5 Interleaved Memory Block Diagram 

If each of the banks can be kept busy, then a total memory bandwidth of kB words 

per second can be obtained from the memory system where k is the number of banks and 

B is the bandwidth of a single bank. In order for this to occur, all banks must be 

continuously processing memory access requests and the memory ratio must be less than 

or equal to the number of banks. This is accomplished for example, if the banks are 

selected in a round robin fashion (e.g., 0, 1, 2, 3 ... k-2,k-l, 0, 1, 2, ... k-2, k-\, 0, 1 ... 

where k is the number of banks). The effectiveness of interleaved memory is then 

directly related to the ability to keep the banks busy which is accomplished by providing a 

work distribution that is approximately uniform over time. 

The three primary performance measurements of interest for interleaved memory 

systems in this effort are: 

• latency (L), 

• throughput (TP), and 
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•     speedup (S). 

Latency (L) is defined as the number of memory cycles from the time a processor 

attempts to issue a memory reference request, until the time the request is completed. 

Note that latency contains two basic components. First, latency occurs due to the delay in 

the memory bank necessary to service a memory request. Second, latency will increase if 

the memory system is saturated and therefore the memory system does not accept 

additional memory references. 

Latency is also time-varying, and can be measured at each point a memory 

response is completed. This time-varying view of latency can also be depicted 

graphically. Scalar measures of latency include maximum latency (Lmax), average latency 

(Lavg), and the standard deviation of the latency (Lstd). 

The memory ratio (MR), introduced in the cache memory section, is directly 

related to latency in interleaved memory systems. The minimum latency for an 

interleaved memory system is the memory ratio plus any overhead related to the 

interleaved memory system. Interleaved memory systems generally use registers to 

receive an input and for placing data onto the bus for read requests. This adds two cycles 

to the minimal latency and therefore the minimum latency for an interleaved memory 

system will be 

Lmin=MR + 2. (113) 

The throughput is defined to be the ratio of the total number of memory cycles 

required for an ideal memory device to complete a set of memory references, to the actual 

number of memory cycles used to complete the set of memory references for a particular 

memory design. An ideal memory device is defined as one that can service a memory 

reference in one cycle. Throughput may be expressed as: 

TP = —J*sL (H.4) 
r 

actual 

where: 



Cideal is the total number of memory cycles for a given task, for an ideal memory 

device. This is equivalent to total number of memory references. 

Cactuai is the actual number of memory cycles necessary to complete the same task 

and, 

The memory design can never be better than the ideal memory device, therefore 

0 < TP < 1. (II.5) 

Throughput is a measure of how well the processor is serviced by the memory 

system. In this analysis, it is assumed unless otherwise stated, that the processor will 

issue one memory access per system clock cycle unless the memory system blocks the 

request. Therefore, a throughput of 1.0 indicates that the processor is provided one 

"memory response" for each clock cycle. 

Another measure of throughput is the steady-state throughput. In a manner 

analogous to cache memories, there is a period of time when the memory goes through a 

transitory period which is reflected in an irregular output. This is followed by a period 

where is output is periodic (e.g., frequently a constant). These two periods will be 

referred to as the transient and the steady-state response of the interleaved memory 

system. Of particular interest are: 

• The length of the transient response (Ttr). It is desirable that this figure 

approach the minimum latency, and that it be a small fraction of the length of 

the vector processed. 

• Steady-state throughput (TPSS). The steady-state throughput is a better 

measure of throughput because it eliminates the effects of the transient. 

However, this measurement is only valid when the transient response is a 

small fraction of the vector length as indicated above. 

Speedup is a performance measure that focuses on the relative improvement 

gained when adding additional memory components. Speedup (5) is defined as the ratio 
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of number of memory cycles necessary to complete a given task using one memory bank 

to the number of memory cycles necessary to complete the same task using k banks or 

S =£-, (II.6) 

where: 

C\ is the number of memory cycles required for one bank, and 

C/c is the number of memory cycles required for k banks. 

Note that C\ is the product of the number of memory references, Cideai, and the 

memory ratio (MR). It can be seen that the relationship between throughput and speedup 

is a mutiplicative factor of the memory ratio as shown below: 

Sk =      'deal'MR = Tp. MR (IL7) 

Both throughput and speedup are performance measures of memory bandwidth. 

Both will be viewed as a scalar measure of performance as defined by the formulas 

above. Throughput may also be defined as a moving average, capturing the time-varying 

quantity of throughput. This can be illustrated as a line graph. 

One characteristic of bulk memory that has motivated the use of banked 

interleaved memory is the difference between the memory access time (ta) and the cycle 

time (tc). Many devices (e.g., DRAMs) have a cycle time that is greater than the access 

time because of overhead tasks that must be completed prior to beginning another access. 

For example, a read operation to a DRAM memory cell destroys the contents of the cell. 

The original contents must be written back to the cell to preserve the value. The 

relationship between the access and cycle times can be expressed as 

tc<k-ta    k = 2,3,4- (IL8) 

If the number of banks is selected such that 

B>k (II.9) 
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where B is the number of banks, then the overhead time can be absorbed if all banks can 

be kept busy. The memory can then operate at the access rate rather than the cycle rate. 

Although banked interleaved memory has been used to enhance a cached memory 

scheme, the number of banks is small typically two or four. Generally, an interleaved 

memory with a large number of banks is used for vector processing. One category of 

vector processing is supercomputer vector machines such as the Cray I, the Burroughs 

Scientific Processor (BSP), and the Convex C3800. Another category is the attached 

vector processor. An example of an attached vector processor is Floating-Point System's 

FPS-164[Ref23]. 

Two important characteristics of vector processors include the ability to perform 

scalar operations and a memory system that is hierarchical. The need for scalar 

operations is clear in a supercomputer where a relatively large computational problem, is 

expected to be solved without additional computer support. 

The Cray I, illustrated in Figure II.6, is an example of a supercomputer with a 

memory hierarchy, and the ability to perform scalar as well as vector operations. There is 

one main memory which provides for the majority of storage. The fastest memories are 

connected directly to the pipelined arithmetic units. The Arithmetic Units perform scalar 

as well as vector operations. By placing the highest speed memories next to the 

processor, the processor can operate at an optimal speed so long as the data is contained 

in the high-speed memories. 

This is valid when the algorithm can be written in such a way that data is 

repeatedly accessed before returning to main memory. Alternatively, it can be said that 

the data has locality of reference at a high level of granularity. However, in this instance, 

the programmer is responsible for managing all of the levels of memory (i.e., it is not 

accomplished automatically as was done with cached memory in the general-purpose 

computing case). 
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When an attached processor is used in conjunction with a personal computer or 

workstation, it is reasonable to expect that the workload can be partitioned such that a 

part of the algorithm will be executed on the host's general-purpose processor, the 

remainder on the vector processor. In order to reduce complexity and cost, the vector 

machine may be optimized to perform vector operations and therefore mitigate the need 

for scalar operations on the vector processor. The lack of scalar operations will in turn, 

reduce the likelihood of repeated use of data before returning it to the main memory. 

This in turn suggests that memory schemes without a hierarchy may be appropriate for an 

attached vector processor. 

12 Pipelined 
Arithmetic Units 

8 Vector Registers 
64 Operands/Register 

64 Buffer 
T Registers 

64 Buffer 
B Registers 

Instruction 
Register 256 Register 

Instruction 
Buffer Program 

Counter 

Figure II.6 Cray I Memory Hierarchy [Ref24] 

Interleaved memory systems are also designed to take advantage of a 

characteristic of the memory reference stream. Therefore, as was the case for cache 

memory systems, the performance of the interleaved memory system is highly dependent 

on the particular program executed. 
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For example, it has been observed that a purely random addressing pattern has a 

speedup that can be expressed as 

S = fJ
k^B~1)]«B0-56 (11.10) 

where B is the number of banks [Ref 25]. This is a disappointing result, given that the 

bandwidth is proportional to the square root of the number of banks. This result, coupled 

with the large values for latency, has discouraged the use of interleaved memories with a 

large number of banks in general-purpose computing. 

However, the memory reference pattern based on accesses to vectors is quite 

different than a memory reference pattern generated by a general-purpose computer. 

These patterns are deterministic and they are characterized as having patterns with 

constant stride. Operations such as vector addition and multiplication have a constant 

stride of one. Other operations have constant strides other than one. More complex 

address patterns are found with operations such as a radix-r butterfly and digit reversal. 

However, these more complex patterns have multiple series of constant stride embedded 

in the address pattern. A model for memory address patterns, as they related memory 

performance, is presented in Chapter V. 

Several memory decoding schemes will be described below. Memory decoding 

for banked interleaved memory systems includes determination of the bank number and 

the index within a bank Frequently, the index within a bank is accomplished in a straight 

forward manner using a subset of the address bits. The primary focus of the discussion 

below will be in the selection of a bank number. The motivation for the different bank 

selection schemes is to find a scheme that will spread memory references evenly to all of 

the banks (i.e., in a round robin pattern), for the memory address patterns most likely to 

occur. It is also desired that the bank selection scheme have the following properties: 

• an implementation that is inexpensive in terms of hardware 

• have a small propagation delay, and 
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•     imposes the fewest restrictions on the number of banks. 

The simplest decoding or interleaving scheme of the memory space uses the least 

significant bits to directly select a bank, and the remaining higher order bits to select a 

word from the selected bank. This will be referred to as the conventional decoding or 

interleaving scheme. Conventional decoding has no implementation requirements but 

requires the number of banks to be a power of two. From a performance perspective, an 

address pattern with a constant stride of one will result in a round robin selection of the 

banks for optimal utilization of the banks when the banks are decoded using the 

conventional scheme. However, only a subset of the banks will be selected whenever the 

stride is not relatively prime to the number of banks. Specifically, for a given stride s, the 

number of banks that will be selected is: 

B_ 

gcd(B,s) 
Beff=      „„   , (11.11) 

where 

B is the total number of banks in the memory system, 

s is the stride of a constant-stride address pattern, 

Beff is the effective number of banks. By effective, it is meant that an effective 

bank is one that is actually given memory references for the specified address 

pattern. 

gcd(a,b) is the greatest common divisor for a and b. 

A bank that is referenced for a given addressing pattern is referred to as an 

effective bank. For example if the stride equals the number of banks (or a multiple of the 

number of banks) a single bank will receive all of the memory requests regardless of the 

number of banks in the memory system. The effect on the number of banks, stride, and 

bank selection criteria will be described in detail in Chapter V. Given the problems noted 

above with strides that are not relatively prime to the number of banks, coupled with the 

fact that many algorithms such as the fast Fourier transform frequently use powers of two 

strides, other bank selection criteria have been investigated. 
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Linear data skewing schemes have been proposed where the memory bank 

selection for a data element contained in an array at location row column indices i,j is 

mapped to bank ip\ +jp2- This method is hampered by the need for arithmetic operations 

to compute the bank number. The hardware is relatively more complex, but more 

importantly the time needed to compute the bank number has a negative impact on 

memory performance. However, one data skewing scheme referred to as 1-Skew, has an 

implementation that requires only logic operators. For an address i, the bank number is 

computed as: 

/ 
B; 1 + 

V 

I 

B 

\ 
mod£, (11.12) 

J 

where 

Bt is the computed bank number, 

i is the memory address, 

mod is the modulus operator, and 

B is the number of banks. 

Note that the division and the modulo operations are trivial when B is a power of 

two. This leaves only the addition operation to perform. 

Considering Equation (II. 11), it can be seen that if the number of banks in a 

system is a prime number, then the number of effective banks would always be equal to 

the number of banks except when the stride is equal to a multiple of the number of banks. 

The biggest problem with using a prime number of banks is that a direct implementation 

of such a scheme is requires arithmetic operations that are expensive and incur more 

propagation delay than is tolerable for performance. Several techniques have been 

proposed to mitigate this problem. In general the following equations are used to 

compute the bank number B\ and index into the bank /: 

B{ = i mod B, (H.13) 

/= — (11.14) 
B 
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where 

i is the address, and 

B is the number of banks. 

The Burroughs Scientific Processor used a scheme that reduced the complexity of 

bank selection to a single adder plus logic operators. This approach to memory selection 

logic is accomplished in part by selecting a smaller value of B in Equation (11.14) than in 

Equation (II. 13). For a smaller value of B=5', this results in the loss of 

B-B' 

B 

of the memory. [Ref 26] 

An alternative method pipelines the computation of the bank selection [Ref 27]. 

This approach is dependent on a constant-stride address pattern. The proposed 

architecture described in Chapter 0 requires addressing patterns that are not strictly 

constant stride. 

The last bank selection technique to be reviewed is permutation-based 

interleaving [Ref 28]. Permutation-based interleaving is based on the same principles as 

Hamming error detection and correction codes. The bank number M is calculated using 

the matrix equation: 

b = P a, (11.15) 

where 

b is a (k x 1) column vector representing the bank number, 

a is a (r x 1) column vector representing some number (possibly all) of the bits of 

the memory address, and 

P is a (k x r) matrix that specifies the bank number mapping. 

The matrix multiplication indicated in the equation is similar to matrix 

multiplication except that the multiplication operations are logical ANDs and the 

summation of product terms is a logical exclusive OR. Note that this scheme requires 
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only logical operations and therefore can be implemented with little propagation delay. 

Further, a wide array of mappings can be specified. Note that the conventional bank 

decoding scheme is a subset of permutation-based scheme when the P matrix is an 

identity matrix or rank equal to the number of bits in the bank number. Bank selection 

using permutation-based techniques are explored further in Chapter 0 Section E. 

It has been shown that for constant-stride address patterns where the stride ranges 

from two through 64, Skew-1 and Permutation-Based bank selection schemes have 

substantially better performance than conventional bank decoding. Permutation-Based 

bank selection has slightly better performance than Skew-1. The performance 

measurement in this study was throughput. [Ref 29] 

An enhancement to interleaved memory architecture is the use of input and output 

buffers for each memory bank. An interleaved memory model with input and output 

buffers is illustrated in Figure II.7. An input buffer of length bin is a first-in first-out 

(FIFO) queue that allow a memory bank to accept bin memory requests (i.e., a memory 

bank can accept memory requests without completing a memory request that is currently 

in progress. A standard interleaved memory architecture is defined in this work to be 

one that has one input and output buffer. A memory system with more than one butter 

is referred to as a STM memory. 

Buffers are useful for smoothing out irregularities in the memory address pattern. 

They do not improve throughput if there is an insufficient number of effective banks. To 

illustrate, consider a standard interleaved memory system with eight banks and an 

effective memory ratio of eight. For a stride of two, one possible bank selection pattern is 

{0,2,4,6,0,2,4,6,...}. 

There are four effective banks and the resulting throughput will be 0.5. Adding 

buffers will not improve throughput regardless of the number of buffers added since the 

four banks that are in use are effectively used 100 percent of the time. 
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Figure II.7 Interleaved Memory With Queues   [Ref 30] 
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Compare this to the situation where the same interleaved memory system is 

presented an address pattern such that the bank selection pattern is 

{0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,0,0,1,1,...}. 

The first memory reference will be accepted followed by a stall because bank 0 is 

busy with the first request. Once the first request is completed, the second memory 

reference is accepted by bank 0. On the next cycle, the third memory reference is 

accepted followed by a stall. This pattern continues until the vector is processed. 

Now consider the case where each memory bank can accept two memory requests 

(i.e., the bank can be processing one memory request, and accept another. In this case, 

each memory bank will accept the two memory requests on the first cycle. Since 16 

cycles will have passed between the time bank 0 received the first memory reference, and 

the time that the second cycle begins, each bank will have sufficient time to process the 

memory requests as they are presented. The throughput will be optimal in the steady 

state. Observe that this use of buffers will increase latency. 

The Split Transaction Memory (STM), described in Chapter IV, incorporates the 

concept of buffers in interleaved memory. A high-level view of STM is shown in Figure 

n.8. Each memory bank consists of three components: 

• The bulk storage module is the device that provides for data storage. The 

bulk storage module contains one or more chips (DRAMs with current 

technology) and the refresh circuitry. 

• The cache elements are high-speed memory that serves as an intermediate 

staging area for data requests from the processor, and memory responses from 

the bulk storage module. 

• Controllers for the interfaces between the bulk storage module and the cache 

elements, and the interface between the cache elements and the memory bus. 

On each cycle, a STM module may perform none or all of the following 

operations: 
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• Accept a memory request from the processor. A memory request is accepted 

if the bank is selected and if the bank is not full (i.e., there is room in the 

cache element for another request). Accepting a read or a write request 

requires that the address or address and data be stored in a cache element 

respectively. 

• Manage the bulk storage module. This includes issuing memory requests to 

the bulk storage module and accepting data from a memory read request. 

• Placing data on the bus in response to a memory read. 

The cache elements are managed as a circular queue with three indices. The first 

is used for marking the next free cache element available for accepting new memory 

requests. The second index is used to track which memory request should be processed 

by the bulk storage module. The last index points to data associated with a processed 

memory read output. 

The key difference in buffers and cache elements is the organization and use of 

registers. As illustrated in Figure H9, both buffers and cache elements are used to 

facilitate the transfer of data between the bulk store in a bank and the bus. However, a 

buffer pair uses one data register for the input buffer and another data register for the 

output register. A single buffer provides pipelining of memory requests since a new 

memory request can be placed in the input register in parallel with the bulk store 

providing a memory response in the output register. On the other hand, a cache element 

only has one data register and therefore two cache elements would be required to provide 

pipelining as described above for a single buffer. 

A comparison of the representative storage requirements for buffers and cache elements is 

also shown in Figure Ü.9. Both schemes must store the address and provide 

administrative data to maintain the sequential ordering of the memory requests. Two 

indices are needed when maintaining an input and output buffer scheme as shown in 
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Figure H.7. For purposes of comparison, it is assumed that addresses and data are stored 

as four byte words and the indices and other control data is contained in one byte. 

Implementation of standard interleaving (i.e. using a single buffer) is more efficient using 

the buffer organization since one buffer requires 14 bytes. To obtain the equivalent 

pipelining with cache elements requires two cache elements and therefore 18 bytes of 

storage. However, if a design calls for k levels of buffering, the cache element scheme 

becomes more efficient for even small values of k. In general, £+1 cache elements are 

required to obtain the equivalent level of pipelining with k buffers. For example for k=2, 

28 bytes are needed for the buffer scheme versus 27 bytes for the cache element scheme. 

The number of cache elements needed for a memory system is explored in detail in 

Chapters V and VI. 

Extensive research has been conducted in the area of interleaved memories. One 

focus of this research has been the nature of the address stream. Early work includes 

Hellerman [Ref 31] which is based on a random address stream. Later efforts include 

Chang [Ref 32] and Rau [Ref 33] which provide several dependency models of the data. 

Several studies have proposed architectural enhancements such as the separation of 

instruction and data accesses to the memory system Coffman [Ref 34]. Burnett [Ref 35] 

and Dbois [Ref 36], and Sohi [Ref 37] have investigated different uses of buffers. 

Multiprocessor structures are analyzed in Baskett [Ref 38] and Briggs [Ref 39]. Fault 

tolerance is described in the context of interleaved memories in Cheung [Ref 40]. 

In the next chapter, an architecture for an attached vector processor designed to 

compute spectral correlation functions will be described. The need for an efficient low- 

cost memory system will become clear as this design is described. 
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III.    BUTTERFLY MACHINE ARCHITECTURE 

A.       INTRODUCTION 

The following is a description of the butterfly machine architecture. Much of the 

material is summarized from previous work in Loomis [Ref 41] and Bernstein [Ref 42]. 

The butterfly machine architecture was developed to provide a high-performance, low- 

cost solution for cyclostationary processing in particular, and other digital signal 

processing algorithms that lend themselves to vector operations in general. The butterfly 

machine is designed to perform only vector processing (i.e., no scalar operations). To 

obtain high performance, the objective is to approach vector computations with no stalls 

in the pipeline. 

In the following discussion, the term radix-r is used as a parameter of the fast 

Fourier transform (FFT) algorithm as described by Oppenheim in [Ref 43] and not to be 

confused with the floating point representation of the hardware. The value of r indicates 

the number of inputs and outputs generated with a single butterfly operation. The floating 

point representation is not discussed but assumed to be 32 bit IEEE-754 format. 

VLSI technology has made it possible to develop specialized digital signal 

processing (DSP) chips that perform FFT butterfly operations for a variety of radices in 

real time with some latency. When relatively high radices are used compared to radix-2, 

FFTs can be computed at substantially faster rates than are possible with traditional 

processors. These processors are also well suited for performing vector operations on 

data. A computer architecture composed of such DSP chips can compute the vast 

majority of operations required for cyclostationary algorithms. An architecture is 

proposed that takes advantage of these specialized DSP chips (referred to as butterfly 

machines (BFMs). An architecture using one BFM is defined and is referred to as the 

one-chip architecture. An implementation of the cyclostationary algorithm, Strip Spectral 

Correlation Algorithm(SSCA) is illustrated using the one-chip architecture. The one-chip 

architecture is then expanded into a parallel architecture. Examples of this type of chip 

technology can be found in the literature [Ref 44], [Ref 45], [Ref 46], [Ref 47]. 
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A block diagram of the processing environment for the butterfly machine is 

shown in Figure IE. 1. The host computer is responsible for basic process coordination 

and scalar operations. The butterfly machine can operate in two modes. In the first 

mode, the butterfly machine waits for requests from the host computer. When a request is 

received from the host computer, the butterfly machine responds by accepting data, 

processing the data, and then sending the processed data back to the host. The input data 

can come from either an external data channel referred to in Figure III.l as the input data 

channel, or from the host computer via the system bus. 

Input Data 
Channel Vector 

Processor 

Host 
Computer 

Host Computer 
System Bus 

Figure III.l Butterfly Machine Environment 

In the second mode, the butterfly machine performs a function on a stream of data, 

sent to the butterfly machine in data sets. For example, the data could originate from 

sampled data from the input data channel. The resulting processed data is then sent to the 

host for display and analysis. The butterfly machine program is provided by the host to 

the butterfly machine via the host computer system bus. What constitutes a program for 

the butterfly machine will be described below. 
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There is a traditional tradeoff between specialization of hardware and the scope of 

functions that can be performed by the architecture. This architecture represents a 

continuation of a trend toward specialization of silicon to a problem domain. Presently, 

there are several chips that have been tailored to DSP applications. Notable examples 

include Intel's i860, Texas Instrument's TMS320C40, and Motorola's 96002. The design 

of each of these chips reflect tradeoffs between maximizing performance on the one hand 

while attempting to maximize the number of problems that they can address effectively 

on the other. An example of a highly specialized architecture for several cyclostationary 

algorithms may be found in Roberts [Ref 5]. 

B.        BASIC ARCHITECTURAL CONCEPTS 

The architectures described below represent an additional level of specialization, 

relative to the DSP chips noted above, although not as specialized as the application- 

specific architectures described in Roberts [Ref 5]. These architectures are limited to 

vector operations such as vector multiply or add, radix-r butterflies, and the dot product 

of two vectors. The most distinguishing feature of architectures incorporating BFMs is 

that a single operation type (e.g., radix-2 butterfly) is performed on a block of data. 

Further, they are fully pipelined such that any operation can be completed in the same 

number of cycles as there are resultants to be stored plus latency. 

A typical BFM architecture is shown in Figure IE.2. For each pass, the BFM is 

initialized with an operation code (op code) and data flow information. Data is then 

streamed through the BFM from an input buffer to an output buffer. The op code 

specifies the particular operation to the performed on the data. Address generators (AGs) 

are necessary for each buffer to ensure that the proper data is passed at the appropriate 

time. The AGs receive control signals from the controller which decodes the flow control 

code to produce these signals. Given that the memories can service references at the clock 

speed of the processor, the vectors can be processed efficiently. 

There are however, two sources of conflicts that can diminish the efficiency of 

this highly pipelined architecture: memory conflicts and processor conflicts. The timing 

diagram of Figure III.3a illustrates a vector processor that flushes the processor pipeline 
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prior to beginning a new pass. This flushing time is equal to the latency of the operation. 

In Figure III.3a, D cycles are required to flush the pipeline, each requiring Tc seconds. 

The situation where a processor does not have sufficient resources to begin a new 

operation without completing the previous operation is called a processor conflict. Figure 

in.3b illustrates the performance of a vector processor that can operate without processor 

conflicts. 
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Figure III.3 Vector Timing Diagram 

Suppose that a processor contains sufficient resources so that no conflicts will 

occur. In order to process data as shown in Figure III.3b, the memory system must 

provide data to the processor at the appropriate time. The situation where the memory 

system fails to process memory references at the rate required by the processor is called a 

memory conflict. Therefore, conflict-free operations occur only when both the processor 

has sufficient resources to avoid flushing the pipeline between operations, and when the 

memory system can process memory references as the processor requests them. 

The effect of conflicts on performance is illustrated in Figure III.3. Each pass has 

associated with it a vector of length N, and an operation with an associated latency of D 

cycles. Efficiency of the pipeline can be expressed as the ratio of the number of cycles 

required with no latency and the number of cycles actually required for a given operation 

N 
E = . (III.1) 

N + D 

The value iV is a function of the problem domain whereas D is a characteristic of 

the implementation of the processor. The efficiency is clearly related to the ratio of N and 

D. A reasonable range of D is from 10 to 60 where 60 represents the latency for a radix- 

16 operation. Cyclostationary algorithms generally operate on large data sets as large as 

220 or greater. The loss in efficiency is low and the corresponding simplicity in design is 

significant in both the processor and memory design when the pipeline is flushed between 

each pass. 
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The program is loaded into the control memory through the input data channel. 

Vectors of data are then sent to the DSP architecture through the input data channel. 

Each vector is processed using one or more passes, and then sent to the output data 

channel through the output port. This basic architecture and the concept of a four port 

device in particular, is borrowed from Array Microsystems [Ref 44] and Sharp [Ref 45]. 

The heart of a program for the BFM is a list of passes. A pass results in streaming 

a set of data from one buffer to another through the BFM, performing some operation. A 

pass is defined as shown in Table HI. 1. A block, the organizational unit for the BFM 

software, consists of a list of passes plus an input specification to indicate the origin of 

data for the first pass, and an output specification that states where to send the resulting 

data. Programs are constructed by stringing blocks together and through the use of super- 

blocks. 

pass := source(s), 

destination, 

op code 

source: buffer id 

base address 

address sequence type 

port id 

destination: buffer id 

base address 

address sequence type 

port id 

Table ULI Pass Definition 

To illustrate a simple use of an architecture incorporating BFMs, consider the 

computation of a 1024 point (210) FFT with the architecture illustrated in Figure III.2. 

Assuming that radix-2 and 16 butterflies are available in the BFM, the FFT may be 

computed by performing one radix-2 and two radix-16 butterfly passes for a total of three 

passes on the data. The definition of the passes for this example is contained in 

46 



Table DI.2 and illustrated in Figure III.4 through Figure III.6. In Figure III.4, the 

operation to be performed is a radix-2 butterfly beginning with data in buffer A. The 

input vector enters the processor through port A, is streamed through the processor, and 

stored in buffer B. The weighting factors are supplied from the coefficient buffer through 

port C. The second pass, illustrated in Figure m.5, has a radix-16 operation with data 

now in buffer B and streamed back to buffer A. The coefficient buffer serves in an 

analogous role but for radix-16 weighting factors. A second radix-16 pass is executed in 

pass three to complete the 210 point FFT as shown in Figure III.6. The destination buffer 

is the output port for this pass. 

Pass# 

1 Source(s) Buf_AO,0,bit_rev,port_A 

Buf_Coef, 1024,radix2,port_C 

Destination Buf_B,0,linear,port_B 

2 Source(s) Buf_BO,0,const_geo,port_B 

Buf_Coef ,0,radix 16,port_C 

Destination Buf_A,0,linear,port_A 

3 Source(s) Buf_AO,0,const_geo,port_A 

Buf_Coef, 1024,radix 16,port_C 

Destination Buf_Out,0,linear,port_B 

Table III.2 Pass Description 
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Figure III.6 1024-Point FFT: Pass 3 

A timing diagram for the 1024 point FFT is shown in Figure in.7. Note that N is 

the number of elements in the vector. D2 and D16 are the latencies associated with the 

radix-2 and 16 operations respectively. Notice that it indicates that input, and output can 

be overlapped with processing keeping the processor fully utilized. This is possible by 

-NTC r-D277T- 

Input i+l 

■NTh 

Processing, 

NTC Y-DI6TJ NTC 

Output i+1 

NT, 

Processing i+l 

"*W NT, -D2TT\ • • • 

Input i+2 

■NTh 

Figure III.7 Timing Characteristics for 1024-Point FFT 
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carefully selecting the ordering of buffers between which the data is passed. The 

selection depends upon whether there will be an odd or even number of passes. 

Additionally, buffer A must be dual ported in order to provide the overlap of input, 

processing, and output indicated in Figure III.2. This will be discussed further with the 

one-chip architecture. 

C.       PERFORMANCE MEASURES 

There are several performance measures that are appropriate to consider when 

discussing BFMs. Factor of real time, Fj is defined as the ratio of computation time to 

collect time and represents the percentage of data that can be processed given that data is 

collected continuously. [Ref 48] 

_ Computation Time _   „   Phu .TTT ~ 
T ~      Collect Time      "       NT,       ' (UL2) 

where 

Cu is the number of computations for hardware type u, 

Phu is the number of hardware units of hardware type u, 

Tc is the clock interval, 

TV is the number of samples taken, and 

Ts is the sample interval. 

This reduces to 

*-wf' (IIL3> 
when there is only one computational hardware resource type as is the case for BFMs. 

The computation time for BFMs is defined as the sum of the product of the number of 

passes and the pass length, for each type of operation. 

Efficiency of a parallel architecture is defined as 

Ek=^- (HI.4) 
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where 

'Reqk CReak = -^~, (IIL5) 

and ÜReqi is the number of processing cycles required to compute a function with a single 

BFM and Cused is the number of cycles actually used by a ^-processor BFM. 

D.       FAST FOURIER TRANSFORM 

The set of fast Fourier transform (FFT) algorithms selected for the butterfly 

machine architecture is those that are developed using decimation-in-frequency. The 

butterfly machine architecture includes radix-2, 4, and 16 butterflies. Butterflies with 

radices with powers of two have been selected for their efficient implementation gained 

though algorithmic techniques. Further, the radix-4 butterfly has a straightforward 

hardware implementation due to the fact that the complex exponential takes on values of 

±1 and ±j, which allows the use of hardware addition in place of multiplication in some 

cases. Butterflies of radix-2 are supported to allow FFTs of any vector of length 2k. 

Two early works concerning implementation of the FFT can be found in Singleton 

[Ref 49] and Pease [Ref 50]. The decimation-in-frequency algorithm discussed below is 

described in Oppenheim [Ref 51] for a radix-2 butterfly. Figure in.8 is a signal flow 

graph for the decimation-in-frequency algorithm for an eight point vector. Although this 

algorithm can be implemented for the butterfly machine architecture, the addressing 

reference stream causes two problems. First, the radix-2 butterfly pattern varies from 

pass to pass. In the first radix-2 pass, the butterfly indices are separated by four (e.g., x(0) 

and x(4)). In the second and third passes, the indices are separated by two and one 

respectively. This variation in address patterns must take into account by the address 

generators (see Figure IEL2). Second, the analysis of memory performance is made more 

difficult by the address pattern changes from pass to pass. 

Both problems are simplified by replacing the in-place signal flow graph with a 

constant geometry signal flow graph. The corresponding constant geometry signal flow 

graph for Figure III.8 is shown in Figure III.9. 
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The following demonstrates decomposition with decimation-in-frequency for a 

radix-4 butterfly. For a sequence 

rfn]n = 0X...N-l, (III.6) 

the Discrete Fourier Transform (DFT) is defined as 

XM = £*["K*    k = 0,l,...N-l (III.7) 
n=0 

where 

WN=e    N. (III.8) 

The sequence x[n] is partitioned into the number of sets equal to the radix number. For a 

radix-4 butterfly, Equation (H1.7) becomes: 

X[k] = £*[«W + 2>[nK* + f>[«R"* + %x[n]W»k.       (III.9) 
n=0 n=% n=y2 n=™/t 

A change of variables in the second, third, and forth summations yields 

«=0 n=0 n=0 «=0 

(111.10) 

Moving the parts of the weighting factors that are not dependent on the summations and 

using Equation (III. 8) yields 

X[k] = 2>[«K* + W; f>[n + $]W? + W2
k %[n + $\W? + Wf £*[« + **] W*. 

n=0 n=0 n=0 n=0 

(111.11) 

Consider the following four sets of X[k] such that k-4r, k = 4r + l, k = 4r + 2, 

N 
and k = 4r + 3 for r = 0,1, • • •, 1. Substituting these values of k into Equation (m. 11) 

and again using Equation (III.8) yields the following four equations for X[k]: 
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%-' 
Xi4r] = Z [*M+ An + f ] + x[n + f] + x[n + *£■ ]] W% (111.12) 

n=0 

X[Ar + \}^YXAA-ix[n + i}-x[n + ^ + jx[n + ^Wn
N W% (HI.13) 

n=0 

X[4r + 2]=^[x[n]-x[n + i] + x[n + i]-x[n + ±f\]wZn W% (111.14) 

Z[4r + 3]= £[x[n] + >[« + f]-x[n + f]-7x[n + ^]]w^ W£. (111.15) 
n=0 

Figure EL 10 illustrates the use of Equations(III.12) through (HI. 15) to compute in 

part, an FFT using a radix-4 butterfly. The eight point vector is passed through a radix-4 

followed by a radix-2 butterfly. The second radix-4 butterfly is not shown for clarity. 

The constant-geometry version is constructed in an analogous manner as the radix-2 

version shown above. 

Figure 111.10 Radix-4/Radix-2 In-place Decimation-in-frequency Flow Graph 
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E.        PERMUTATION-BASED MEMORY DECODING SCHEME 

The memory decoding scheme selected for the butterfly machine architecture is 

permutation based, as described in Section D of Chapter II. This selection is based on 

finding the least expensive implementation that provides excellent throughput for the 

memory system. Conventional memory decoding performs poorly for algorithms that 

have a characteristic of powers of two. These algorithms include radix-r butterflies 

where r=2k and the digit-reversed patterns which are required for the last pass of the FFT, 

as described in Section D above. The 1-Skew and prime number memory decoding 

schemes are more complex to implement than the permutation-based method. Also, most 

prime number decoding schemes do not use all of the physical memory, as indicated in 

Section D of Chapter II. 

The following discussion of permutation-based memory decoding will first 

describe a set of constraints necessary to construct a memory decoding scheme that yields 

a valid interleaved memory system. Then, a set of constraints will be described that 

yields the desirable properties for a memory used in the butterfly machine architecture. A 

specific permutation matrix will then be constructed that is designed for the butterfly 

machine architecture. 

First, terminology concerning permutation-based memory decoding will be 

established. The address space contains 2N words indexed 0...2* -1. A binary address 

is written aN_xaN_2. ..axa0 where the most significant bit (MSB) of the address has an 

index of N-\ and the least significant bit has an index of 0. An interleaved memory 

system contains B banks, where each bank contains a total of K words indexed in the 

conventional manner 0 through K-\. Therefore, the number of bits required to specify a 

bank number is 

n = log2(5) (111.16) 

and the number of bits required to specify the index into a memory bank is 

£ = log2 (K). (111.17) 

The number of bits for the memory address space is then 
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R = n + k. (111.18) 

The memory decoding scheme must specify a bank number and an index into the 

bank. This index will be referred to as the bank index. In general, the bank number is 

specified with the following matrix equation: 

Vi 
Jn-2 

Po,o 

Pl.0 

Pn-1,0 

or 

Po,R-n 

PlR-n 

Pn-l,R-n 

b = Pa 

P0,r-l   ' ar-\ 

P\,r-\ ar-2 

7n-l,r-l _ _ ao . 

.(111.19) 

(111.20) 

when shorthand notation is appropriate. 

The resulting vector b is a binary representation of the bank number. The vector 

a represents the r LSBs of the address used to decode the bank number. Note that 

n<r<R. (IIL21) 

Entries in the P matrix are either a 1 or a 0. A bit bt of the bank number is a result 

of the normal dot product of the /th row of matrix P and the a column address vector 

except that the multiplications are logical ANDs and the summation is a logical exclusive 

OR. The /th bit of the bank number can be written as 

b,=(pi.o-ak.l)®(piyak_2)®...®(p.ir_2-al)®(piir_ra0)        (111.22) 

revealing that each bit of the bank number can be thought of as an encoding based on the 

parity of selected bits of the address as determined by the P matrix entries that are equal 

tol. 

To verify that permutation-based memory decoding provides a valid memory map, 

it will first be shown that conventional memory decoding, which is a valid memory map 

by inspection, is a subset of permutation-based memory decoding. Then, variations of 
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this equivalent conventional memory decoding scheme will be explored to determine the 

constraints on the permutation matrix that are required to ensure a valid memory map. 

As an initial point of reference for analysis of permutation memory decoding, note 

that if the permutation matrix P is the identity matrix with dimensions n by n, then the 

resulting permutation-based scheme is equivalent to conventional memory decoding. 

Further, the bank index is computed by directly using the most significant k=R-n bits. 

This decoding scheme for the bank index is assumed for the remainder of the document. 

The permutation equation for computing the bank number, which is equivalent to 

conventional decoding, is shown below for a bank number with n bits. 

Jn-\ 

Jn-2 

*n-l 

ln-2 

(111.23) 

It is useful to organize the linear address space into equally-sized 2" blocks, where 

each block begins at I ■ 2" for / = 0... 2R~" -1. For conventional memory decoding, the k 

MSBs specify a memory location within a bank and the n LSBs specify the bank as 

indicated in Equations (HI. 16) through (HI. 18). Therefore, for conventional decoding for 

an arbitrary fixed index, the sequence 0.. .2" -1 on the n LSBs maps one-to-one and onto 

the set of bank numbers. This sequence 0... 2" -1 will be referred to as the base 

sequence. Since this one-to-one mapping is valid for all blocks, the mapping from the 

linear address space to the bank number, bank index pair space is also one-to-one and 

onto. The practical implication is that all of the capacity of the memory hardware is 

utilized and the decoding scheme is valid for a memory system. 

Now, consider any change to the P matrix specified above such that the 

dimension of P is unchanged and the nonsingularity of the matrix is maintained. A 

modified but nonsingular matrix P of equal dimension will yield a different mapping 

(i.e., it will not be the identity mapping), but will still map the base sequence one-to-one 
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and onto for each block. Therefore, any such matrix P will produce a valid memory that 

utilizes all of the memory. Also, any such matrix P generates the desired round robin 

pattern for a sequential memory reference stream for an interleaved memory system since 

each bank is selected exactly once for each base sequence. 

Now consider a matrix P of dimension n by R (i.e., use possibly all of the address 

bits to generate the bank number) which is constructed by concatenating columns to the 

left of matrix P, described in the previous paragraph. All of the values in each of the new 

columns are assumed to be 0 except for a single 1 in an arbitrary /th row and 7th column 

as shown in Equation (HI. 24). 

Jn-\ 

Jn-2 

h 

0 0 0 

0 

0 0 

0 0 hi 
0 

0 0 

0 0 0 0 0 

*n-\ 

a n-2 

flU 

(111.24) 

The identity matrix is used for illustration in Equation (ÜI.24) however, the 

comments that follow apply equally to any matrix P where the identity sub-matrix is 

replaced with a nonsingular sub-matrix of dimension n by n. 

Consider the effect of puj -1 on bank selection for a base sequence. The address 

bit cij that corresponds to ptJ in the P matrix is for a given address, either a 1 or a 0. 

When it is a 0, it has no effect on the bank selection (i.e., the bank number is the same 

number that would have been computed if ptj = 0. When the address bit a. = 1, the /th 

bank bit, bl, is complemented from what it was when a. = 0 (or when pt. = 0). This 

results in a permutation of the bank numbers generated for a base sequence. This 

permutation can be illustrated by listing the original bank numbers generated when the 

address bit ai = 0 as a table. Each row in the table is a bank number and the columns 

represent bit positions for the bank numbers. The permuted set of bank numbers is found 

by complimenting the /th column of the table. Clearly the new map is still one-to-one and 
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onto for each base sequence. Since this is valid for all blocks, the mapping represented 

by the bank decoding scheme indicated in Equation (IH.24) is one-to-one and onto. 

Recall that the element of the P matrix ptj = 1 was selected for an arbitrary i and 

j. Further, once the mapping resulting from adding a 1 at pfj is established to be a one- 

to-one and onto mapping, the P matrix can be modified again by selecting another 

element pr, = 1. The P matrix continues to provide a one-to-one and onto mapping 

based on the rational used for p.tJ. Other elements on the left-hand side of the P matrix 

can be modified as desired while maintaining a memory decoding scheme that is one-to- 

one and onto. In summary, it can be seen that as long as a nonsingular sub-matrix of 

dimension n by n is positioned in the far right columns of the permutation matrix P, other 

elements of the matrix P can be modified in an arbitrary fashion while maintaining a 

valid memory decoding scheme which also utilizes all of the physical memory. 

The next discussion will describe a set of constraints that ensure that a 

permutation matrix will provide maximum throughput for address patterns with constant 

stride s such that 

s = V (111.25) 

where v is an integer, greater than or equal to zero. 

As indicated above, Equation (m.23) generates a round robin pattern of bank 

numbers by selecting each bank once within a base. Also note that the base sequence is 

an address sequence of constant stride of one. This is true for any matrix P such that the 

sub-matrix lnxn has dimension n by n and is nonsingular. 

Now consider Table III.3. Table m.3 contains the decimal and binary 

representation of the counting sequence 0... 15. It is easily verified that the value of the 

LSB (b0 in Table 111.3) does not change for a sequence with constant stride of two. 

Further, if the b0 column of bits is removed from the counting sequence generated with a 

constant stride of two and the resulting columns are relabeled such that bj is labeled bi_i, 

for each i, then the result is a sequence equivalent to the original sequence (i.e., a 
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sequence with constant stride of one). Therefore, the LSB does not contribute to the 

selection of a bank when the stride is two and the resulting sequence is a sequence with 

stride of one when ignoring the column of the least significant bit. A similar set of 

statements can be made for other strides of powers of two. In general, a stride s such that 

s = 2k   fe>0 an integer (111.26) 

will not engage the kth LSBs and the resulting pattern when removing the k right most 

columns will yield a sequence with stride of one. 

Using Equation (111.24) as a point of reference, it is desired to modify the P 

matrix such that address patterns with strides of two map to all of the banks within a base 

sequence. It is clear that if the identity sub-matrix in Equation (m.24) is shifted one 

position to the left, then the base sequence would map directly into the bank numbers, as 

is the case for a base sequence in Equation (m.23). Further, if the shifted identity sub- 

matrix were modified, but its order maintained and remained nonsingular, then the base 

sequence would continue to map one-to-one and onto the banks. This would naturally 

destroy the desired pattern for the constant stride of one. Therefore, the task is to find 

modifications to the matrix P that will preserve the desirable properties of a constant 

stride of one while enhancing the matrix P to accommodate address patterns with 

constant stride of two. In general, the objective is to find a technique for enhancing a 

matrix P that can accommodate constant strides up to a stride of 2', such that the matrix 

can also accommodate strides up to 2'+1. 

Consider the matrix Equation (m.27) where the sub-matrix P^x„ is dimension n 

by n and nonsingular. In the following discussion, sub-matrices P^xn for various values 

of v will be defined. In all cases, the dimension of these sub-matrices is n by n and the 

subscript will be dropped in the text for brevity. 
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yn-2 

nxR-n P: 

*n-l 

*n-2 

(IIL27) 

Decimal b3 b2 bi bo 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 0 0 0 

9 0 0 1 

10 0 1 0 

11 0 1 1 

12 1 0 0 

13 1 0 1 

14 1 1 0 

15 1 1 1 

Table III.3 Binary Counting Sequence 

Based on the earlier results, the permutation matrix P in Equation (IH.27) provides a 

proper mapping to bank numbers for a valid memory. The sub-matrix P   also provides 

for a one-to-one mapping of the base sequence, and therefore address patterns, with a 

stride of one (2°) to bank numbers. It is constructed with the R-n-l through R-l 
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columns of the matrix P. Consider a new sub-matrix, P with dimension n by n, 

beginning in column R-n-2 and ending in column R-2 as shown in Equation 

(m.28). 

~bn-\ 
bn-2 

= 

h 
L^o J 

0 nxR—n—1 ■ nxn 

0 
P0,n-1 

0 
Pn-2,n-\ 

0 
Pn-l,n-l 

an-l 

fl0 

(m.28) 

None of the values of matrix P have changed from Equation (HI.27) to Equation (HI.28). 

The sub-matrix P is defined to be the sub-matrix consisting of columns R-n-2 

through R - 2 of matrix P. Clearly P1 is singular since the first column (R -n - 2 th 

column of matrix P) is zero. However, if the first column is modified (i.e., replacing a 0 

with a 1 in one or more rows of column R-n-2) such that P  is nonsingular, then 

address patterns of constant stride of two (21) will map one-to-one and onto the banks. 

Consider the effect of replacing a 0 with a 1 in row i, column R-n-2 of matrix 

P, on an address pattern with a constant stride of one. When the ai R_n_2 = 0, the base 

sequence mapping is unchanged. When the aiiR_n_2 = 1, the /th bit of the bank number is 

complemented, resulting in a new mapping but a mapping that is still one-to-one and 

onto. Since aR_n_2 has one more bit of significance than the sub-matrix P^x„, one base 

sequence will be mapped with aR_n_2 = 0 followed by one base sequence mapped with 

aR-n-2 = 1 • This pattern will be repeated for address patterns greater than twice the base 

sequence length. 

The process for constructing P can be repeated for P , P , ... p^~" such that 

each sub-matrix P' is nonsingular. Construction of each sub-matrix P' is accomplished 

as described for P to support address patterns of constant stride of 2'. 

62 



The effect of constructing V1 on address sequences of constant stride of 2" where 

v = 0.. .i -1 will now be described. Construction of P' involves modification of column 

R-n-i-l which corresponds to the address bit an+i. There are 2n+' addresses where 

an+i = 0 followed by 2n+' addresses where an+i = 1. This pattern repeats if the address 

sequence is longer than 2"+,+1. For address patterns with constant stride of one (2°), 

an+i - 0 for 2' base sequences (i.e., 2' base sequences are completed while an+i is 

constant). For address patterns with constant stride of two (21), an+i = 0 for 2'-1 base 

sequences followed by an+i = 1 for 2'-1 base sequences. In general, for address patterns 

with constant stride of 2V, an+i = 0 for 2'"1' base sequences followed by an+i - 1 for 2'"v 

base sequences. 

The effect of a set of ones located at pt . for various i and j in the P matrix is 

cumulative. In general, the row positions dictate the bit position(s) of the bank number to 

be complimented. The mapping is unique to the row number or set of row numbers (e.g., 

a one in the ith row will generate a different map than a one in the fcth row. A one in both 

the ith and feth row is a third mapping). The column number determines how many base 

sequences will be spanned for a constant value of the address bit a , as described in the 

previous paragraph. 

Figure HI. 11 and Figure HI. 12 illustrate the address pattern generated, given the 

permutation matrix P shown below: 

0 

1, 

0 

h 
0 

la 
0 

0 

(111.29) 

Figure HI. 11 illustrates the mapping generated by the nonzero bits on the left-hand 

side of the dashed line of matrix P in Equation (ITJ.29). The top box of Figure 111.11 

represents the bank pattern resulting from the base sequence given that all of the elements 

on the left-hand side of the dashed line in Equation (HI.29) are zeros. The effect of 

adding the element labeled la is to first generate the sequence of bank numbers generated 
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by the base sequence (this occurs when the address bit corresponding to la is zero) alone 

followed by a permutation of the base sequence labeled mapping #1 in Figure HI. 11. 

Adding the element marked lb results in a sequence consisting of the base sequence 

followed by the mapping #1 sequence (address bit corresponding to lb is zero) followed 

by a permutation of the base /mapping #1 sequence referred to as mapping #2 in the 

figure. 

The mapping generated as a result of the two elements in Equation (m.29) labeled 

lc is similar to that described above for la and lb. First, the set containing the base 

sequence concatenated with the mapping #1 sequence, concatenated with mapping #2 is 

generated. A permuted version of this sequence is then passed and labeled mapping #3. 

Figure HL 12 provides a comparative illustration of the sequences generated by the 

nonzero elements in Equation (m.29). Figure HI. 12a) reflects the base sequence pattern 

of bank numbers, given that all of the sub-matrix on the left-hand side is zero. This 

results in the repetition of the block of base sequence bank numbers The bank number 

pattern shown in Figure EL 12b) illustrates the effect of adding la to the matrix. Figure 

m.l2c) and d) reflect the accumulative effect of adding lb and lc respectively to the 

bank number pattern. 

The simulation runs, based on permutation-based memory decoding described in 

Chapter II, are based on the following specifications for the interleaved memory system: 

• Number of Banks: 4, 8, 16 and 32. 

• Linear Memory Space:    0... 224 -1. 

• The permutation matrices used in the simulations for all address patterns 

except radix-r butterflies are shown in Figure HI. 13 through Figure HI. 16. 

Permutation matrices for radix-r butterfly patterns are described in Chapter 

V. 

In this section, permutation matrices are described in detail. Requirements 

sufficient to ensure a valid memory map was described. In particular, if the rightmost n 

by n sub-matrix of the permutation matrix is nonsingular, then the permutation matrix 
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generates a valid memory mapping. Further, if the n by n sub-matrix identified as P' is 

nonsingular, then address patterns with stride = 2' will produce a bank selection pattern 

that is near ideal for an interleaved memory system. The following section will present 

the high-level architecture for a single vector processor. 

Base Sequence 
(BS) 

ill 
Base Sequence 

(BS) 
Mapping #1 

(Ml) 

ih. 
BS+M1 

Mapping #2 
(M2) 

Wie 

BS+M1+2 
Mapping #3 

(M3) 

Figure III. 11 Permutation Address Pattern Maps 
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Figure III.12 Comparison of Permutation Address Patterns 

"1    101    101    101    101101    101    101    10" 

10110110110110110110110    1 

Figure 111.13 Simulation Permutation Matrix: NoBanks=4 

"l    0010010010010010010010    0" 

011011011011011011011011 

0   0100100100100100100100    1 

Figure 111.14 Simulation Permutation Matrix: NoBanks=8 
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"10001000100010001000100 0" 

010001000100010001000100 

001000100010001000100010 

0 00100010001000100010001 

Figure 111.15 Simulation Permutation Matrix: NoBanks=16 

"0 0001000010000100001000 0" 

100001000010000100001000 

010000100001000010000100 

001000010000100001000010 

0 00100001000010000100001 

Figure 111.16 Simulation Permutation Matrix: NoBanks=32 

F.        ONE-CHIP ARCHITECTURE 

The one-chip BFM architecture is illustrated in Figure HI. 17. This architecture 

consists of a single BFM, six memory buffers, and data multiplexers to control data flow. 

Not shown explicitly are address generators, necessary for each memory. Buffers A0, Al, 

B0, and B1, and the auxiliary buffer serve as data sources and destinations. The 

coefficient buffer contains any constants required by the function executed such as 

weighting factors for radix-r butterfly operations, windowing data, frequency down 

conversion data, etc. 

Control for accepting data from the input data channel, sending data out onto the 

output data channel, and computation by the BFM are independent. The basic model for 

communicating data is message passing. This will be described in more detail when 

discussing the parallel architecture. 

The one-chip BFM will be used to execute the SSCA in the discussion below. 

The functional diagram for the SSCA is shown in Figure III. 18. Three basic blocks are 

required for the SSCA, namely channelization, correlation multiply, and back-end N FFT. 

For illustration purposes, it is assumed that N' = 25 and TV = 217. Channelization will 

require one pass for windowing, one radix-2 and one radix-16 butterfly pass for the 32- 
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Figure 111.18 SSCA Functional Diagram 

point N' FFT, and one pass for down conversion. This channelization block must be 

performed P= ANIN' times. 

In order to maintain overlap of the input and output with the processing, input will 

alternate between buffer AO and buffer Al. Assuming that input data is in buffer AO, 

data flow for the channelization passes is as shown in Figure 111.19 (i.e., data moves from 
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buffer AO to the auxiliary buffer and back to buffer AO, then to buffer B and finally to 

auxiliary buffer). Note that if the number of passes in channelization were odd, the data 

path would be from buffer AO to buffer B, and then to the auxiliary buffer. 
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Figure 111.19 SSCA Execution: Channelization 

The second block, correlation multiply, consists of either a single pass of length L, 

the decimation factor, a total of P times or, a single pass of length TV a total of N' times. 

The latter is the method of choice for the one-chip architecture since it results in longer 

but fewer passes. The former is the better choice for the parallel architecture since these 

correlation multiplies can be accomplished incrementally by the back-end as each of the 

TV' samples are passed from the channelizer. The correlation multiply pass is illustrated 

in Figure IT1.20. Observe that the original TV data samples are used from buffer AO. 

The third block, the back-end TV-point FFT, is computed with one radix-2 and four 

radix-16 butterfly passes as shown in Figure m.21. Data is ping-ponged between buffer 

B and the auxiliary buffer such that the final result is located in buffer B. 
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Observe that it is possible to chose appropriate paths such that the final result is in buffer 

B. If the number of passes were odd, one pass would be made to buffer AO (e.g., for three 

passes, from buffer B to buffer AO, to the auxiliary buffer, and finally back to buffer B. 

A super block is used for each of these basic blocks in order to repeat each block 

the appropriate number of times. 

The number of cycles necessary to compute the SSCA, without taking into 

account latency, using a BFM is 

N'N N'N CBFM = —+ 8iV + 4Anog16 Ar + -_-log16Ar. (111.30) 

The number of cycles necessary to compute the SSCA with a conventional 

processor that is fully pipelined (i.e., each addition and multiplication can be 

accomplished in a single cycle) is 

CGPP = ^(^' + 4) + (12^)log2 N' + ^-\og2 N. (111.31) 

Computation of the total number of cycles for BFM and a fully pipelined general- 

purpose processor for N' varying between 24 and 210 and N varying between 216 and 222 

reveals that there is approximately a 18 to 1 processing gain obtained with the BFM, 

relative to the fully pipelined general-purpose processor. Note that the expression for a 

fully pipelined processor is a theoretical upper bound. The ratio for an actual general- 

purpose processor would be much higher. This factor reflects the parallelism inherent in 

the butterfly processor. 

G.        PARALLEL ARCHITECTURE 

One board of the parallel architecture is shown in Figure III.22. The parallel 

architecture consists of two or more of these boards with a common input data channel, 

cross data channel and output data channel. A single board of this architecture is similar 

to that of a one-chip architecture with the addition of the cross data bus for inter-BFM 

communications. This parallel architecture represents a tradeoff between programming 
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flexibility and performance. A BFM architecture that is optimized for the SSCA is 

described in Loomis [Ref 41]. 

Each processor has an independent clock for each bus and processor. Data 

communication is accomplished with a message passing scheme. A message consists of a 

control packet consisting of a message id, message type, data packet length, the number 

of additional parameters, and the additional parameters. When a processor is ready to 

send data to a processor, it first sends the control packet. If the message is accepted, a 

ready to receive signal is passed back and the data transfer begins. The two types of 

transfers possible on the bus are "one to one" and "one to many". 
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Figure 111.22 Parallel Architecture (One Board) 

The relative number of computations required for channelization versus the 

correlation multiplies and NFFTs varies considerably with the input parameters JV" and 

N. The ratio of the number of cycles required for the back-end (i.e., the correlation 

multiply and the N FFT) versus channelization is 
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(111.32) 

and is shown in Figure 111.23 for various N' and TV. Processors are allocated statically 

based on this ratio. 
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Execution of SSCA using the parallel architecture is similar to that of the one- 

chip architecture except that blocks must be allocated to processors. The simplest scheme 

based on the data shown in Figure III.23 is to dedicate one BFM to channelization and the 

remainder to the back-end processing. The efficiency obtained using this approach is 

illustrated for a ten processor system in Figure m.24. 
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IV.    DESCRIPTION OF SPLIT TRANSACTION MEMORY 

A.      PHYSICAL DESCRIPTION 

Split Transaction Memory (STM) is a memory architecture that is designed to 

support a vector processing architecture with a throughput that approaches one, as defined in 

Equation (H4). STM takes advantage of addressing patterns that are characteristic of 

constant stride. Of particular importance is the ability of STM to support radix-r and digit 

reversal address patterns where r is a power of two. 

STM provides better throughput than cached memory because it takes advantage of 

the predominate characteristic found in the butterfly machine architecture: patterns of 

constant stride and particularly constant strides of powers of two. Although the memory 

reference patterns exhibit some locality of reference, the data sets are frequently too large to 

support a caching strategy. 

STM is an implementation of standard interleaved memory that takes advantage of 

more than one local buffer in each bank. To customize the memory system to the target 

problem domain, (e.g., a vector architecture supporting cyclostationary processing), STM 

incorporates a memory decoding scheme based on permutation decoding. In particular, this 

version of STM is designed to provide a throughput that approaches one for radix-r and digit 

reversal address patterns as well as address patterns of constant stride. 

STM is based on the premise that some latency can be absorbed by the processor. In 

particular, memory requests can be made in advance of completing the current instruction. 

In general, memory requests may be made so long as the memory system has the capacity 

to accept the request. Memory capacity will be described later in this section. 

A high-level view of this concept is shown in Figure IV. 1. Memory is partitioned 

into k banks. Each bank consists of a smart cache and a bulk storage module. The smart 

cache contains memory referred to as cache elements that operates at the same speed as the 

processor. The BSM-CE controller and CE-bus controller are responsible for interfacing the 

cache elements with the bulk storage and the system data/address buses respectively. The 

CE-bus controller drives two control lines that are used for handshaking with the processor. 
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One line is used to signal when memory requests can be made by the processor. The other 

line is used to indicate when memory responses are available to the processor. 

When the processor makes a memory access, the bank which recognizes the memory 

access latches the request (i.e., the address, whether it is a read or write request, and data if it 

is a write request) into a cache element. A cache element (CE) is that set of data necessary to 

support one memory access to the memory bank. The cache element's in-use bit, is also set. 

When the cache element has been processed (i.e., data has been either written to or read from 

the bulk storage for a write or read access respectively), the cache element's ready bit is set. 

The components of a cache element are illustrated in Figure IV.2. Each request is 

uniquely identified with an index which is used for synchronization of memory accesses with 

the processor. This synchronization will be discussed in the context of the request and 

response counters later in this section. 
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The smart cache manages cache elements and requests for memory read and write 

accesses. There are three activities that take place on each clock cycle: 

• Memory requests are recognized and accepted if the memory system has 

available capacity. The concept of memory capacity will be explored later in 

this section. 

• Memory read responses, ready for the processor, are placed on the data bus in 

a synchronized order. 

• The BSM, when not busy, is tasked with the next pending read or write 

operation. 

Request 
Index Address Data In Use 

bit 
Read/Write 

bit 
Ready 

bit 

Request Index    Value obtained from Request Counter. 
Address             Physical address. 
Data                   Value to be read or written. 
In Use Bit           Bit indicating whether cache element is available for use. 
Read/Write Bit    Bit indicating the type of memory access type.. 
Ready Bit           Bit indicating whether memory request has been serviced. 

This is used for a read transaction to indicate that the 
data has been retrieved from DRAM. 

Figure IV.2 Cache Element 

Memory accesses are usually initiated within a bank without waiting for previous 

access responses to be completed, either within the bank or from the memory system in 

general. For a read access, the smart cache retrieves the required data from the bulk or main 

storage and stores it into the associated cache element of the smart cache. A write request is 

sent by the processor to the smart cache. This data is later written to the bulk storage by the 

BSM-CE controller. For the design that follows, the BSM-CE controller processes requests 

in the order they were requested within a bank. All memory accesses are returned to the 

processor in the order that they were requested (for all banks). 
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Coordination of the STM is accomplished with two counters and two control lines. 

The two counters, request counter and the response counter, are used to link a memory 

request and the associated response for read accesses. These counters are shown in Figure 

IV.3. Initially, the request counter and the response counter are set to zero. When a memory 

request is accepted from the processor, the value of the request counter is placed into the 

request index field of the cache element (see Figure IV.2) that is used to store the request. 

The request counter is then incremented by one. 

The response counter contains the index for the next read response needed by the 

processor. When a CE-Bus controller detects that a read response is ready for a cache 

element and its request index is equal to the current value of the response counter, a memory 

response cycle is performed. The CE-Bus controller associated with this response, places the 

associated data contained in the cache element onto the data bus. The response counter is 

then incremented by one. The latency of a memory access is 

L = (Request Counter - Response Counter)rto (IV.l) 

where Tbus is the bus cycle interval. This expression does not take into account for 

latency as a result of a stall. 

A key issue of the STM design is the mapping of addresses to bank numbers and 

indices within a bank. Several methods were described in Chapter II Section D that can be 

used. Conventional interleaving results in poor performance for FFT related memory 

reference patterns when the radix of the FFT and the number of banks are both powers of 

two. One solution is to pick a stride and number of banks that are relatively prime. Two 

strategies described in Chapter II select a prime number of banks. These solutions either 

incur excessive propagation delay in the bank selection hardware, or assume an addressing 

pattern that is not appropriate for the butterfly machine architecture. 

The two control lines used in this design are the grant request and response enable 

control lines. Memory access requests by the processor are controlled by the grant request 

(GR) control line. Each memory bank's CE-Bus Controller enables the GR as long as there 

are available cache elements. All GR lines from the banks are wire-ORed to form a single 

output signal to the processor resulting in a single ready signal for all of the memory banks. 
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This is done to provide a simpler interface to the processor, rather than having a line for each 

memory bank. If any bank does not have cache elements available (i.e., if it is "full"), the 

GR line becomes inactive and the processor will refrain from further memory accesses until a 

cache element in the full memory bank is freed. 

CLK 

Bulk 
Storage 

i"v 
Request 
Counter 

V 
I 

Bulk 
Storage 

Smart 
Cache 

HUAA 

re T 
Response 
Counter 

GR 
RE 

V 
1 

Bulk 
Storage 

Smart 
Cache 

un AM 

V 
I 

Smart 
Cache 

an AA 

Address Bus 

Data Bus □ Global Counters 

Figure IV.3 Top Level Memory System 

The response enable (RE) control line performs a similar role to that of GR, but for 

memory responses. Each bank's CE-bus controller generates a RE signal that is in turn wire- 

ORed to form a single control line to the processor. The default for the RE line is to be 

disabled. The next response required by the processor (i.e., the one pointed to by the 

response counter), can only be serviced by one bank. If the response is for a read and the 

data has been retrieved from bulk storage, the RE line is enabled by that bank and the data is 

placed on the data bus for the processor. The response counter is then incremented. 

One design of the STM smart cache is shown in Figure IV.4. The data and address 

buses and the read-write line enter the smart cache in the upper left-hand corner of Figure 

IV.4 labeled Data, ADDR, and R/W respectively. The cache elements are located in the 
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middle of the figure with the CE-Bus and BSM-CE controllers located to the left and right of 

the cache elements. The bulk storage module may be found in the far right of the figure. 

Notice that in this design, the request and response counters are logically global (i.e., 

at any instant in time, there is a single value for each counter). However, the value of the 

counters are maintained on each smart cache as a hardware counter and the global signals 

GR and RE are used as a control signal to increment all request counters and response 

counters respectively in a memory system rather than a single request counter and response 

counter as shown in Figure IV.3. 

Before looking at the specifics of this design, it is useful to describe the semantics of 

three counters in the smart controller. The definitions for three counters follow: 

«     Next Available Counter (NAC) - This counter is used as an index to the next 

available cache element to be used to store a new memory request. 

•     Currently Processed Counter (CPC) - This counter points to the next cache 

element that has a memory request pending for the bulk storage module that 

has not been completed. 

»     Output Counter (OC) - The output counter points to the cache element that 

will contain the next memory read response in the bank. 

The relationship among the three counters is illustrated in Figure IV.5. All three 

counters are initialized to zero. This is the defined condition for an empty memory bank. By 

empty, it is meant that the bank has no pending memory requests. The NAC always points to 

the next available free cache element. As memory requests are accepted by the bank, the 

NAC is advanced after each request accepted. The CPC follows the NAC and advances 

whenever a memory request to bulk storage is completed by the BSM-CE controller. If the 

bank is kept busy (i.e., if there is always a memory request to process by the BSM-CE 

controller), this counter will generally advance at a frequency of the memory ratio. Finally, 

the OC advances whenever a read request is processed and passed back to the processor. 

The OC is also advanced whenever it points to a cache element containing a write request. 
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Figure IV.4 Smart Cache Design 

The relationship of these three counters can be thought of as pointers to a circular 

queue where the NAC is the lead pointer with the CPC following the NAC, and the OC 

following the CPC. Several possible conditions may arise and can be illustrated with Figure 

IV.5. If all three counters point to the same location, the memory bank is empty (i.e., no 

pending memory requests for the bulk storage or output responses). This is the initial state of 

the memory bank. If NAC ==CPC, then there are no pending memory requests for the bulk 

storage for the bank. If CPC == OC, then there are no pending read responses from the bank. 

The three counters can be thought of as chasing one another (CPC chasing the NAC, OC 

chasing the CPC, and finally the NAC chasing the OC.) Observe that the CPC is allowed to 

catch up with the NAC and the OC is allowed to catch up CPC. However, NAC is not 

allowed to catch OC. If (NAC+l)==OC, then no cache elements are available and the 

memory is said to be full. This definition for an available cache element utilizes k-\ of the 

cache elements rather than all k of them. This is done to simplify the logic for detecting 

when the memory bank is empty or full. 
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Returning to Figure IV.4, the CE-bus controller may be divided into two principal 

components: that part that is responsible for accepting memory requests and the other that is 

responsible for coordinating the read memory response. Accepting memory requests is 

accomplished with the request counter, the next available counter, and the logic required to 

drive the GR signal. As indicated above, the request counter and response counter are 

initialized to zero. The request counter serves as the input to the request index register for 

the selected cache element. The NAC is a modulo-fc counter where k is the total number of 

cache elements in a memory bank. The NAC is used in conjunction with the decoder, to 

select the cache element to be used for the next memory request. The NAC and decoder are 

enabled with the GR Internal (GRI) signal, resulting in the increment of the NAC and the 

selection and loading of the cache element registers. The request counter increments 

whenever any bank accepts a memory read request. The request counter is enabled with GR. 

Figure IV.5 Relationship Between Smart Cache Counters 
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The logic within a bank, driving the GR line, is the logical ORing of two conditions. 

This condition is: 

((OC +1) ~= NAC) OR Empty. (IV.2) 

The first condition tests whether there is an available cache element as described 

above. The second condition, whether the bank is empty, is specified with the empty flag. 

The GR internal (GRI) line is the logical AND of the GR line and the logic determining 

whether a bank is selected. The quantity labeled Bank ID is compared to n address lines to 

make this determination. The least significant address bits are assumed unless otherwise 

indicated in this study. The Bank ID may be stored in a register set by either with hardware 

switches or software. 

The output response is implemented with the response counter, output counter, and 

the logic required to drive the RE and RE internal (REI) signals. The response counter is 

incremented whenever RE is active. RE is the wired logical ORing of each bank's REI line. 

For each bank, REI is the logical ANDing of two conditions, 

(Response Counter = Index[OC]) AND Ready [OC]. (I V.3) 

The first part of the condition checks whether this bank contains the next memory 

read response to be sent to the processor. The second condition is a check to ensure that the 

data has been acquired from the bulk storage. Data[OC] is passed to the data bus by enabling 

the tristate buffer. 

The BSM-CE controller is responsible for managing requests to the bulk storage. 

The currently processed counter is a modulo-k counter pointing to the cache element to be 

processed by the bulk storage. The CPC selects the appropriate cache element to be 

processed using a multiplexer. For read requests, the resulting data is written into the 

appropriate cache element through the use of a decoder. 

The cache elements obtain data from either the data bus for memory writes or the 

BSM for memory reads. The logic in Figure IV.6 illustrates the interaction between the data 

sources, control lines, and registers for one cache element. 
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B.        SIMULATION MODEL 

The STM simulation program was written to explore characteristics of STM 

memory designs and to determine their effectiveness for a given memory reference 

pattern. The relationship and interaction between the STM simulation and related 

computer programs is shown in Figure IV.7. The STM simulation program is referred to 

simply as STM in the figure. All programs were written in Matlab™ and can be found in 

Appendix A.. The following discussion of the STM simulator will be partitioned into the 

signal generators, STM simulator, and the graphics programs. 

1. Signal Generators 

The STM simulator accepts three parameters that define the memory system and 

the memory reference stream that the STM simulator will be given to process. The 

memory reference stream is contained in a file referred to in Figure IV.7 as the address 

stream. The address stream is a list of integer pairs, the first representing an address of 

the reference and the second a flag indicating whether it is a read or a write operation. 

Four programs (gen_const, gen_cfft, gen_dr, and gen_rand), referred to 

collectively as signal generators in the figure, were written to generate different classes of 

memory reference streams to be used as inputs to the simulator. The first three programs, 

gen_const, gen_cfft and gen_dr were written to generate address patterns common to 

digital signal processing applications. The gen_rand program provides an address 

stream that yields a random address pattern. 

The first program gen_const generates the most basic address pattern for vector 

processors; patterns of constant stride. The program gen_const interface is 

ResultVect = gen_const(N, Stride, fname) 

where: 

N - Number of addresses to generate 

Stride - Stride of the pattern, and 

fname - Name of the file containing the resulting address patterns. 
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The program gen_cfft generates memory reference patterns consistent with 

constant geometry fast Fourier transforms (EFT) with butterfly passes with a radix of R. 

The program gen_cfft has the following calling interface: 

ResultVect = gen_cfft(N, R, fname) 

where: 

N is the number of addresses to generate, 

R is one of the factors of N, such that N = N1 *R, and 

fname is the name of the file containing the resulting address patterns. 

For realistic patterns, it is expected that R«N1. 
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Figure IV.7 STM Simulation Overview 

The program gen_dr provides for generating digit reversal patterns necessary for 

one pass of an FFT. The digit reversal pass is found in the last pass of a FFT for the class 

of FFT algorithms described in Section D of Chapter 0. 

Table IV. 1 illustrates the bit reversal pattern for a base of two with three digits. The 

program gen_dr has the following calling interface: 

ResultVect = gen_dr(NoDigits, Base, fname) 
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where: 

NoDigits is the number of digits in the address pattern, 

Base is the base of the number system used, and 

f name is the name of the file to store the resulting address patterns. 

Normal Pattern 
(Base 10) 

Normal Pattern 
(Base 2) 

Bit Reversed 
Pattern (Base 10) 

Bit Reversed 
Pattern (Base 2) 

0 000 0 000 

1 001 4 100 

2 010 2 010 

3 011 6 110 

4 100 1 001 

5 101 5 101 

6 110 3 011 

7 111 7 111 

Table IV.l Digit Reversal for Three Digits Base 2 

The last program, gen_rand generates a sequence such that the probability that 

the next address will be sequential or linear is p, and therefore a probability of \-p that the 

next address will be a jump to a random address. The calling sequence for gen_rand is: 

ResultVect = gen_rand(N, p, seed, fname) 

where: 

N is the number of addresses to generate, 

p is the probability that the next instruction is the next address, 

seed is the random number generation seed, and 

NoBanks is the number of banks in simulation. 

This function is used to generate address patterns characteristic of general-purpose 

computing. When p>0, there exists a sequential address characteristic that simulates 

address patterns that occur when fetching instructions. The random nature of the 

simulated address pattern captures data references as well as program branching. 
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2.        STM Simulator 

The STM Simulation program consists of the function stm and a collection of 

support functions called by stm. The program stm accepts a memory address stream 

described above, and three parameters that define the memory system: 

• number of memory banks (NoBanks), 

• the number of cache elements per memory bank (NoCE) and, 

• the ratio between the dynamic memory cycle time to the static memory cycle 

time (MemRatio). This parameter specifies the number of static memory 

cycles required to complete one dynamic memory cycle. 

The calling sequence for stm is: 

stm(Fname,ASCII,Level)AList,NoBanks,NoCE,MemRatio,MemDecode,A) 

where 

Fname is the file name of the saved data, 

ASCII specifies the format of the output file (either ASCII or binary). 

Level specifies the level of detail of output saved in sf_name. There are three 

levels of detail that can be saved. Level 0 is a complete dump of all of the 

memory bank registers for each clock cycle. This level is used primarily for test 

and validation of the program. Level 1 provides a tabular listing of events. Level 

2 generates a file suitable for input into the graphics programs. 

AList is the memory address list. This is a matrix where each row is of the form: 

[Address   RWFlag] 

NoBanks specifies the number of banks to be used in the simulation, 

NoCE is the number of cache elements to be used in each bank of the simulation, 

MemRatio is the ratio of dynamic memory cycle time to static memory cycle 

time, 

Mem Decode is a flag that specifies the type of memory decoding, and 
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A is the permutation matrix when MemDecode=l and undefined otherwise. 

The program stm models all of the counters, registers, and flags for each bank of 

the memory under simulation. These variables can be categorized as bank counters, 

global counters, the cache element array, control signals, flags, and other variables. The 

following three variables are used to model the counters for each memory bank: 

• Next Available Counter (NAC) This counter points to the next available 

cache element (CE) available for a memory (read or write) request. 

• Output Counter (OC) This counter points to the next CE containing a read 

that has data ready to be sent back to the processor. 

• Currently Processed Counter (CPC) This counter points to the CE that is 

currently involved in either a dynamic read or write cycle when PDC == 

TRUE. 

The program uses global counters as shown in Figure IV.3, rather than replicating them in 

each memory bank as indicated in Figure IV.4. They as defined as: 

• Request Counter (ReqC) This counter is used to ensure that each read 

request is matched with the read response. ReqC is loaded into the next 

available CE's Reqlndex field during a memory request cycle. Note: This 

counter is conceptually global in that every memory bank has access to the 

ReqC contents. 

• Response Counter (ResC) The response counter is also conceptually a 

global counter and is used in conjunction with the ReqC. ResC is compared 

with the Reqlndex value selected by output counter (OC). If they are equal, 

the corresponding Ready bit is set. ResC is incremented when a read 

response is returned on the bus. 

• Dynamic Memory Cycle Counter (DCount) This counter is initialized to 

ReqCount at the beginning of a dynamic memory cycle and decremented for 

each system cycle. 
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The Cache Element (CE) of each bank is represented by the cache element array. 

The cache element array is the focus of the STM design. Each CE is a resource for 

processing one read or write request and is the central interface between the main system 

bus and the dynamic memory module. The cache element array consists of the following 

components: 

• Request Index Array (Reqlndex) The index of the CE, addressed by the 

next available counter (NAC), is loaded with the value of the request counter 

(ReqC) when a memory reference is serviced. Note that this value serves as 

a unique identifier for sending data back to the requester (e.g., the processor). 

• Address Array (Address) The Address of the CE, selected by the next 

available counter (NAC), is loaded with the value of the address bus (ADDR) 

when a memory reference is serviced. 

• R/W Bit Array (RW) The RW bit of the CE, selected by the next available 

counter (NAC), is loaded with the value of the address bus signal indicating 

either a read or a write request when a memory reference is serviced. 

• Ready Bit Array (Ready) The Ready bit of the CE, selected by the next 

available counter (NAC), is reset, indicating either data for a read request is 

not available or a write request has not been completed when a memory 

reference is serviced. This bit is set for a read request when the data has been 

loaded from the dynamic memory. 

• Data Array (Data) The Data Array is used differently for read and write 

memory requests. For a memory read, the Data array of the CE, selected by 

the currently processed counter (CPC), is loaded at the end of a dynamic 

write cycle. This is followed by the Data array being read and passed to the 

Data Bus (DATA), when referenced by the output counter (OC) and the 

Request Enable (RE) line is active. For a memory write, the contents of the 

DATA bus is written into the Data array of the CE, selected by the next 

available counter (NAC). 
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The control signals for stm are defined as follows: 

• Grant Request Internal (GRI) When active, this signal indicates that a 

bank is ready to accept requests from the processor. 

• Grant Request (GR) When active, this signal indicates that the memory 

system is ready to accept requests from the processor. The GR signal is 

formed by a wired AND of all of the GRI signals. 

• Response Enable Internal (REI) When active, this signal indicates that a 

bank is ready to send data requested with a read request, back to the 

processor. 

• Response Enable (RE) When active, this signal indicates that the memory 

system is ready to send data requested with a read request, back to the 

processor. The RE signal is formed by a wired AND of all of the REI 

signals. 

• Bank Select (BS) When active, this signal indicates that this bank has been 

selected for a memory access. 

• Start Dynamic Read Cycle (SDRC) This signal indicates the beginning of 

a dynamic read cycle. 

• Start Dynamic Write Cycle (SDWC) This signal indicates the beginning of 

a dynamic write cycle. 

The following is a list of the flags defined in stm: 

• Empty This flag is active whenever there are no memory requests in the 

smart cache. 

• Processing Dynamic Cycle (PDC) This flag is active whenever the dynamic 

memory subsystem is processing a memory request. 

ReqCount is a variable defined in stm that specifies the total number of system 

cycles required to process a dynamic memory cycle. 
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A simplified algorithmic description of stm is shown in Figure IV.8. The style 

used to describe the algorithm is borrowed from the Matlab language. Formal variables 

are not shown except where they provide clarity to the algorithm. Other details, such as 

file I/O, are also not shown. 

The first function, initialize(), represents all one-time initialization required for 

Stm, such as initializing counters and cache element arrays for the banks. The work is 

accomplished in the WHILE loop which executes until the variable done is set to TRUE 

by the function simulation_complete(), which returns TRUE when there are no more 

addresses to process and when all of the memory banks are empty. 

stm(AList,NoBanks,NoCE,MemRatio) 

initialize(); 

done = FALSE; 

while -done, 

GRI = evaluate_gri(); 

REI = evaluate_rei(); 

Empty = evaluate_empty(); 

generate_address(); 

for BankNo = 1:NoBanks, 

memory_response(); 

service_dynamic_memory(); 

service_memory_request(); 

end; 

done = simulation_complete(); 

save_results(); 

System_Clock = System_Clock + 1; 

end; 

Figure IV.8 Simplified Algorithmic Description of stm 

Each pass of the WHILE loop processes one clock cycle. Each memory bank is 

evaluated to determine the status of GRI, REI, and Empty with the calls to 

evaluate_gri(), evaluate_rei(), and evaluate_empty(). The function 
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generate_address() then conditionally generates an address if the memory system is 

able to accept a new request. The conditional nature of the address generation is not 

shown explicitly here. Each bank is then evaluated in the FOR loop. 

There are up to three events that may occur with each memory bank. These 

events are defined as follows: 

• Accept a memory request, 

• Generate a bulk storage memory cycle. This comes in three types, generate a 

read bulk storage memory cycle, generate a write bulk storage memory cycle, 

and generate a Processing bulk storage cycle. 

• Send a read response. 

These events are processed by the functions memory_response(), 

service_dynamic_memory(), and service_memory_request() respectively. The 

variable done is then set, results for this cycle are saved with the function 

save_results(), and the system clock is incremented. 

The results are saved in a file that can be processed using graphics programs 

described in the next section. 

3. Graphics Programs 

The graphics programs shown in Figure IV.7 provide graphic plots of the memory 

traces and compute scalar performance measurements of the simulation results. The 

primary graphics function is called m_anal(). This program produces plots that are used 

to obtain quantitative and qualitative insight into a particular simulation run. Its calling 

convention is as follows: 

[ TP,S,MaxL,AvgL,StdL] = 

m_anal(fname,ASCII,Apattern,WinLen,PlotFlag,Length,PrintFlag) 

where 

f name is the name of the file containing data produced by stm to process. 
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ASCII is a flag indicating whether fname is stored as ASCII or binary file. A 0 

and 1 specifies binary and ASCII respectively. 

Apattern is a short description of the Address pattern to be used for the title of the 

graph. 

WinLen is the length of the smoothing window for computing instantaneous 

throughput. 

PlotFlag is a flag indicating the number and types of plots to be produced. Valid 

values are 0 and 1, indicating no plots or one plot respectively. 

Length specifies the number of points used in a plot. A value of 0 means use all 

of the points. Any value greater than 0 indicates the number of point to plot. 

PrintFlag is a flag indicating the types of output desired. A value of 0 means 

print to the screen, a value of 1 means print to a postscript file, and a value of 2 

means send directly to a printer. 

This function produces the scalar output statistics of throughput (TP), speedup 

(S), maximum latency (MaxL), average latency (AvgL), and the standard deviation 

(StdL) for the simulation. These statistics may be an end result in themselves or they can 

be used as input into the graphics program p_mesh() described below. 

An example of the plot produced by m_anal() is shown in Figure IV.9. The input 

parameters (i.e., a short description of the memory address stream, and the three 

parameters that define a STM memory) are shown above the top graph. The plot on the 

top is the instantaneous latency versus time. For this example, the latency begins at nine 

and becomes 16 at steady state. 

Scalar performance parameters are displayed above the middle plot. These 

parameters are speedup, average throughput, maximum throughput, average throughput, 

and the standard deviation of the throughput. The middle plot is a moving average of the 

throughput based on a window of length WinLen. Those plots shown in this document 

were constructed with WinLen = 8 unless otherwise stated. The plot on the bottom is a 

time series display of the control lines grant request (GR) and request enable (RE). GR is 
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active if the line is high (at the GR level) and inactive otherwise. RE may be interpreted 

in a similar manner. 

The second graphics function is called p_mesh(). This function is responsible 

for constructing a mesh plot of one type of scalar performance measurement (e.g., 

speedup) produced by m_anal. This type of plot is used to compare a set of performance 

measurements when two variables (NoCE and NoBanks) are varied over a range. In 

Figure IV. 10, the performance variable speedup is plotted for NoCE ranging from 1 to 64 

and NoBanks ranging from 4 to 64. 
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V.      THEORETICAL PERFORMANCE ANALYSIS OF STM 

In this section, performance of the STM will be investigated and described in 

terms of memory parameters and characteristics of the input memory reference vector. 

The conventional bank number decoding scheme is assumed as described in Section D of 

Chapter II for Sections A through C. In Section D, the effects of permutation-based 

decoding will be examined. The bank selection pattern will be described in terms of the 

characteristic of the input memory reference vector and the memory parameters. The 

bank selection patterns will then be used to determine expressions for the performance 

parameters, steady-state throughput (TPSS), and the maximum latency (Lmax). 

The following analysis assumes that all memory references are read requests. 

This provides for the worst case analysis for STM. This analysis will begin with the 

simplest of the input reference streams, those streams with constant stride. Information 

gained from this analysis will then be used to address radix-r butterfly and digit-reversed 

patterns. 

A.        CONSTANT STRIDE 

The parameters pertinent to performance measures for constant-stride address 

patterns are: 

• Stride length (S), 

• Number of banks in the memory system (B), 

• Number of cache elements per memory bank (CE), 

• Ratio of bulk store to static memory cycle time (MR). 

The expression for the effective number of banks is repeated below for 

convenience. Given a stride S, and a number of banks B, the number of memory banks 

that will actually be used can be expressed as: 

*«r =      .*      , (V.l) gcd(S, B) 
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where gcd(a,b) is the greatest common denominator of a and b. Beff will be referred to as 

the effective number of banks. For example, if S and B are relatively prime, then Beff=B. 

Alternatively if B is a factor of S, then Beff = 1. 

For the set of Beff effective banks for a given input memory reference vector, the 

constant-stride address pattern distributes the addresses evenly with a size of one. By 

"evenly" it is meant that each of the effective banks is presented addresses in a round 

robin pattern. By "with a size of one," it is meant that each bank is given one address at a 

time. Figure V. 1 illustrates a memory system with Beff banks, each bank with CE cache 

elements. This figure assumes that all of the banks are effective, or alternatively, only the 

effective banks are shown. The entries in each cache element represent the placement of 

the sequence number of each memory address where the addresses are distributed evenly 

with a size of one as described above. This is, in fact, the optimum placement within the 

effective banks because the work is spread evenly. At any point in time, the bank that 

will receive the next memory request will be the bank that is the least busy. Additionally, 

the use of input and output buffers for standard interleaving and cache elements for STM, 

provide pipelining of memory requests to each bank. This allows each bank to execute 

memory references with no wait cycles as long as there are memory references to process. 

Bank #0 
CE Index Addr # 

0 0000 
1 Beff 

• 
• 

CE-l (CE-l)Beff 

Bank #1 
CE Index Addr# 

0 0001 
1 Beff+l 

• * 

CE-l (CE-\)Beff+\ 

• • • 

Bank #Beff -1 
CE Index 

0 

CE-l 

Addr# 

%"! 
2Beff - 1 

CEBplr - 1 

Figure V.l Interleaved Memory Address Space: Conventional Bank Selection 

The round robin pattern coupled with the use of pipelining ensure that the bulk 

storage modules associated with the effective banks will be fully utilized for the constant- 

stride address pattern. 
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For any interleaved memory system, the steady-state throughput is determined by 

the memory ratio, the number of effective banks, and the efficiency with which the 

effective banks are utilized. As indicated above, there is full utilization for the constant 

stride pattern. The following discussion describes the relationship between the memory 

ratio and the number of effective banks. 

The total number of bulk storage cycles (CBSMr) required to process NA memory 

requests is 

CBSM,r = NAMR (V.2) 

The number of bulk storage cycles available (CBSMa) with a memory consisting of 

B effective banks (ße#) during N cycles is: 

CBSM.a=Bejf-N. (V.3) 

The banks can be assured to be used efficiently, for the reasons described above 

and therefore all of the available bulk storage cycles will be used. Setting Equation (V.2) 

equal to Equation (V.3), and applying the definition of throughput of Equation (II.6), 

yields: 

Tp = Q^L = ^L = _sL for R   < MR. (V.4) 
C N      MR ff 
^actual ly mIK 

Note that the range of clock cycles used to compute the steady-state throughput is 

assumed to be in the steady-state region when applying Equation (II.4). The banks cannot 

process more memory requests than are available. If Beff > MR then the maximum 

throughput is obtained, therefore: 

TPss = 1.0   for   Beff > MR. (V.5) 

If the number of effective banks is less than MR, then throughput will be 

proportional to the memory ratio as shown in Equation (V.4). 

Under ideal conditions, latency is expressed as 

Lmin = MR + 2 (V.6) 
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since MR cycles are required to process a memory request and one cycle is required for 

the input and another for the output of the memory request. If the number of banks is 

equal to or exceeds the memory ratio, the minimum latency is obtained for constant stride 

addressing patterns because there is sufficient memory capacity to process the memory 

requests, and the memory references are allocated efficiently to the banks. Therefore, 

Lmax = MR + 2 when Beff > MR and NoCE > 2 (V.7) 

for STM and standard interleaving. 

If the throughput is not optimum, (i.e., MR > Beff), then the steady-state latency 

becomes a function of the memory ratio and the number of effective cache elements. 

Throughput not optimum implies that there are more memory requests than can be 

processed per unit of time. The steady-state latency associated with a constant-stride 

address pattern when the throughput is not optimal will be described shortly with the aid 

of Figure V.3. 

The relationships between the performance measures and memory parameters for 

a constant-stride address pattern is illustrated in Figure V.2 and Figure V.3. The timing 

diagram in Figure V.2 is for a four bank memory (labeled BO through B3) each with two 

cache elements indicated by the letters a and b The top row is a clock for reference 

purposes. The row labeled Bus reflects the corresponding bank numbers of the address 

stream driven by the processor. The superscripts on the bank numbers are used to 

uniquely identify each memory reference. 

The first memory reference, 0° is placed on the bus at clock cycle 0 and accepted 

by first cache element of bank 0 (50a) at clock cycle 1 as indicated by the entry 0°. The 

next four entries, pi, p2, p3, andp4 indicate the time required for the bulk memory to 

process the memory request. The next entry 0°out indicates that the memory response is 

passed back to the processor. 

The memory ratio is four (as indicated by the pi through pA entries). Therefore, 

based on Equation (V.5), the memory will support maximum throughput for an address 

stream with constant stride of one which is suggested by the round robin bank pattern 
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shown on the bus. The first memory response occurs at clock cycle six with a latency of 

six. The memory system responds with an output every cycle thereafter yielding a 

throughput of 1.0. Note that in general, a memory request is accepted in a bank when the 

currently processed memory request is in its fourth cycle, thereby queuing up the new 

memory request just in time to keep the bulk memory continuously busy. By inspection, 

it can be seen that the latency is six for all memory references. There is substantial 

regularity in this example because of the constant stride of one address pattern and 

because there are sufficient banks to support a throughput of 1.0. 

Clk 0      1      2 3   i  4 5 6 1 8 9 10 11 12 13 14 15 16 17     18 

Bus 0°    1°     2° 3° ! o1 1' 21 3' o2 
l2 22 32 o3 

l3 23 33 o4 
l4      24 

BOa ol   Pi pl\ pi PA 
out o2 

in Pi P2 pi p4 
out o4    - 

BOb ol pi P2 Pi p4 
out ol Pi p2 pi P4    03

M 

Bla 1° pi ! P2 p3 P4 
out l2 

in pi P2 Pi P4 4 ll 
Bib iL pi P2 pi p4 iL ll pi P2 pi    p4 

Bla 2°   ! pi p2 pi P4 21 out 22 
in Pi P2 pi P4 2L out 

Bib 2l pi P2 pi P4 21 23 
in Pi p2     pi 

Bia \i° 1       in pi P2 pi PA 31 out 3- pi P2 P3 P4 3L out 

Bib 3' w Pi p2 pi p4 31 out 33 pi     p2 

Figure V.2 Timing Diagram: Optimal Throughput 

Figure V.3 again illustrates a constant stride of one address pattern with an 

interleaved memory system with a memory ratio of four. In this instance however, there 

are only three effective banks labeled BOx through B2x where the x is either an 

a, b, or a c indicating the three cache elements for each bank. 

The first 17 cycles are shown in Figure V.3a. The first memory request of each 

bank is accepted and processed in the same manner as in Figure V.2. However, the 

second memory request of bank B0 represented by 0  is accepted during the third 

processing cycle (p3) of the previous memory request rather than on the fourth cycle as in 

Figure V.2. This requires the second memory request to wait one cycle (indicated by the 

w in cycle five) for the bulk store memory to become available. This scenario is repeated 
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for each bank (see 1   and 2 ). The result is that each bank incurs one wait state. The 

next set of memory requests labeled 0,1, and 22 result in a second wait state. In 

general, an additional wait state is added after each additional memory request is 

processed until a total of six wait states have been accumulated (see 0(, 1', and 2', for 

i=\.. .6). Memory request 07 cannot be accepted on cycle 22 since all cache elements are 

in use. Cache element b of bank 0 becomes free on cycle 23, freeing cache element c. 

Once the cache elements become saturated as described above, each cache 

element is associated with a memory request that is either waiting to be processed or is in 

process. Using 08 as an example, four processing cycles are used to process 

0 , 07, and 08, each requiring four cycles. Therefore, the maximum latency can be seen 

to be equal to the number of cache elements plus one, times the memory ratio minus the 

number of effective banks. This relationship is expressed as 

Lnua = (NoCE + l)MR- Beff (V.8) 

and is applicable to both STM and to standard interleaving. 

Following the transient, which ends at cycle five, each set of four cycles (e.g., six 

through nine) contains three outputs (one from each bank) and one cycle with no output. 

This yields the anticipated 0.75 throughput as specified in Equation (V.4). 

The next section will describe the theoretical memory performance for radix-r 

butterfly address patterns. 
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B.        RADIX-/? BUTTERFLY ADDRESSING 

The set of fast Fourier transform algorithms known as the Cooly-Tukey 

algorithms [Ref 52] provide a technique for computing FFTs for vectors of length N 

where N is defined as, 

N = r^-r^ r„\ (V.9) 

where N, n, and k are all integers. The set of algorithms used in this architecture are 

derived using decimation-in frequency [Ref 51]. A derivation of a radix-4 butterfly 

decimation-in frequency algorithm can be found in Chapter 0. 

There are three types of address patterns related to constant geometry fast Fourier 

transform (FFT). Figure V.4 depicts an eight point decimation-in-frequency FFT using 

radix-2 butterflies and will be used to illustrate the address patterns related to the 

computation of FFTs of interest in this dissertation. 

To initialize the input data vector, the input data must be placed in sequential 

order which requires a constant stride pattern of stride one. The analysis for this pass is 

described in the previous section. 

The input address pattern for each intermediate pass is constructed by partitioning 

the input array into r parts where r is the radix of the butterfly. The first element of each 

partition is accessed to compute the first butterfly. The second element of each partition 

is then accessed for the second butterfly, etc., until all points of the array have been used. 

This results in an address pattern of constant stride for each radix-r butterfly. The stride 

is: 

S = — (V.10) 
r 

where 

N is the length of the input vector (eight in the example), and 

r is the radix of the butterfly (two in the example). 
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These relatively short sequences of length r are concatenated to form the radix-r memory 

reference stream for a pass. This memory reference pattern is the focus in this section. 

The last memory address pattern is digit reversal which is required to access the 

results of the last pass, as can be seen in Figure V.4. Performance analysis of digit 

reversal patterns will be addressed in the next section. 

Figure V.4 Radix-2 Constant Geometry Decimation-in-Frequency FFT 

The significance of the above discussion to STMs is that data is selected with a 

stride S as defined in Equation (V. 10). For a STM with a memory composed of B banks, 

up to Bsei banks will be selected where Bsei can be expressed as 

B 
B sei 

gcd(S,B)' 
(V.11) 

But, since only the first r elements of Bsel are taken for the butterfly operation, the 

actual number of banks selected within a set of numbers for one butterfly can never be 

greater than r. 
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On the other hand, since the address used in each partition increases by one for 

each set of numbers used in a butterfly operation, all banks will be used. In the worst 

case, B is a factor of S, and Bsei = 1. In this case, a single bank will receive all r of the 

memory requests for a given butterfly. However, the next set of r numbers taken for the 

butterfly, will be sent to another bank. All banks will be given a task within B sets of 

butterflies or within r ■ B samples. If the number of banks and the radix are both powers 

of two, this worst case scenario is the case. 

The steady-state throughput and maximum latency can be visualized for standard 

interleaving with the aid of Figure V.5 which contains a segment of a timing diagram for 

a radix-4 butterfly address pattern for a standard interleaved memory with four banks. 

Note only three banks are shown. 

Clk 0 1 1 3   i  4      5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
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Figure V.5 Timing Diagram for Radix-4 Butterfly Pattern (Standard Interleaving) 

First consider the steady-state throughput. It is assumed in this diagram that only 

one bank is selected for each butterfly as described above. In this case, a bank ß( will 

receive r consecutive memory requests followed by r memory requests to bank 5(+1. 

When the last bank receives its memory requests, the process repeats with the first bank. 

From the figure, it can be seen that the pattern is cyclic and contains two regions of 

activity as it relates to throughput. For a given bank, the first and last memory references 

are processed in parallel with the previous and next banks, respectively. This is the first 

type of region referred to above. One such region is located between cycles six through 

ten, and the next between cycles 19 through 23 (Only cycles 18 and 19 are shown in the 

figure). The other type of region is found between instances of the first type of region. In 

this second type of region, one bank is processing memory requests alone (i.e., no other 
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banks have requests to process). The representative region shown in the figure is between 

cycles 11 though 18. Therefore, one representative period of this cyclic pattern begins 

with cycle six and ends with cycle 18. Since the pattern is cyclic, the throughput 

represented by this period is the steady-state throughput. 

The number of cycles represented by the two regions is MR +1 and (r - 2)MR, 

respectively, for a total of MR + l + (r- 2)MR cycles. During this period of time, two 

outputs occur in the first region and r-2 outputs occur in the second region for a total of 

r + 2 outputs. The steady-state throughput is the ratio of the number of outputs to the 

total number of cycles during the period and is expressed as 

TPss = ; :        when B > MR ss    MR + \ + (r-2)MR 

r 
(V.12) 

{r-l)MR + V 

This analysis assumes that the number of banks is matched to the memory ratio. 

The maximum latency can be determined by inspection of Figure V.5. Consider 

one memory request such as 1 . It is available initially on the bus at cycle six and must 

first wait for 1   to finish processing. This results in a delay of MR cycles. Processing of 

1  requires MR more cycles. One additional cycle is needed to transfer the result back to 

the processor for a total maximum latency 

Lmax=2MR + l (V.13) 

when B> MR. 

Now consider STM memory architectures. As indicated above, all banks are 

utilized in radix-r address patterns. Further, a maximum of r consecutive memory 

requests can be made to a bank. Therefore, the banks will be utilized efficiently if 

NoCE>r + \ (V.14) 

because this ensures that a bank will not stall when presented with r consecutive memory 

requests. The steady-state throughput is then 
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TR. = 
B_ 

MR 
when NoCE>r + \ (V.15) 

for all STM cases since all banks will be effectively engaged for a radix-r pattern. 

The latency for a STM memory will be described with the aid of Figure V.6. A 

total of r ■ MR cycles are required to process all of the r memory requests sent to a bank. 

The last memory request must wait for the others to finish. This analysis assumes that the 

number of banks is sufficient to obtain optimum throughput and represents the maximum 

latency for the address pattern. The last memory request is not available to the memory 

system until r- 2 cycles, with respect to the first memory request. Further, an additional 

cycle is needed to return the memory response to the processor. The maximum latency is 

therefore 

Lmax = r-MR-(r-2) + l        whenB> MR NoCE>r + l 

= r(MR-\) + 3 
(V.16) 

for STM memories. 

Clk 0 1 2 3 4 5 6 7 8 9 10 11     12 

Bus 0° o1 o2 o3 

BOa 0? Pi p2 p3 pA 0° 
BOb 0]h pi p2 P3 pA o1 

BOc 0? 
BOd o3 ...    o3 

Figure V.6 Timing Diagram for Radix-4 Butterfly Pattern  STM(4,5,4) 

C.        DIGIT REVERSAL 

An address can be expressed as 

index = anr" +an_xr
n   +—\-a2r +axr + a0 (V.17) 

where 

r is the radix of the butterfly operation raised to the z'th power, 
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at is a digit of the base r number system, and 

index is the index into the data array. It will be assumed that the array begins at 

address 0, making the index equivalent to the address. This is a valid assumption 

since shifting the array in the address space does not effect the analysis. 

The equivalent digit-reversed number representation is then 

index^ = a0r
n + ajn~x + a2r

n~2 +■■■ + an_xr + an (V.18) 

where indexdr is the digit-reversed index. 

The digit-reversed address pattern is a constant stride pattern with a stride of one 

that is digit reversed. The resulting sequence is one that increments by r" as a0 cycles 

from 1 to r-1. When a0 = 0, ax increments. The relationship holds for a, and a,./ for 

each i. 

Therefore, it can be seen that the digit reversal address pattern is composed of a 

set of constant stride sequences of length r that are concatenated together. Equation (V. 1) 

provides insight into the effectiveness of an interleaved memory system with 

conventional decoding. Within a sequence, the effective number of banks is 

Beff=     fk oV (V.19) 
gcd(r\ B) 

If r and B are relatively prime, then Beff = B for each sequence and for the address 

pattern at large. If, however, both the number of banks and the radix is a power of two, 

then the effective number of banks is one for all practical situations. Therefore, when the 

number of banks and the radix are a power of two, the throughput approaches 1/5. 

This result is based on the assumption that the number of cache elements is 

relatively small with respect to the length of the input vector. Suppose that the number of 

cache elements is sufficiently large to accept all memory requests without a stall. The 

digit-reversed address pattern has the property that each bank receives N/B consecutive 

memory requests, where TV is the length of the input vector and B is the number of banks. 

Because each bank has a sufficient number of cache elements (N/B) to accept all of the 
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memory requests without a stall, all memory requests are delivered in N cycles. The last 

bank receives its first memory request at cycle 

B B 

Assuming that the number of banks is matched to the memory ratio, the number 

of cycles required for the last bank to process its memory requests is 

— MR = N. (V.21) 
B 

Therefore, the number of cycles required to process all of the memory requests is 

NB-N    Ar    NB-N + NB    2NB-N „, „„, 
 + N = = . (V.22) 

B B B 

The average throughput is defined as the ratio of the number of cycles needed 

with an ideal memory device to the actual number of cycles required (see Equation II.4) 

therefore 

N B 
TP = n Am    AT =  (V.23) 2NB-N     2J3-1 

B 

when NoCE > N/B. Although this represents a substantial improvement from the 

previous result, it is achieved at a substantial cost in hardware. In any case, it provides a 

throughput of approximately 0.5 for even a modest number of banks. 

The poor performance of an interleaved memory system using conventional 

decoding for the digit-reversed case, strongly suggests that a modification is required in 

order to obtain satisfactory throughput for the digit reversal pattern when that base of the 

digit is a power of two. The modification selected is permutation-based memory 

decoding as described in Section E of Chapter 0. The following discussion describes the 

anticipated performance for constant stride, radix-2, and digit-reversed address patterns 

when permutation-based decoding is used. 
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D.        PERMUTATION-BASED DECODING PERFORMANCE 

In this section, the performance of the three memory address patterns described 

above will be analyzed based on a bank decoding scheme using a permutation matrix as 

described in Section E of Chapter 0. Following the approach above for conventional 

decoding, the simplest addressing pattern, addresses with constant stride will be analyzed 

first. Results from this analysis will then be applied to the radix-r butterfly and digit- 

reversed addressing patterns. 

Permutation based decoding was pursued due to the poor performance 

encountered when the number of banks in the memory system and the characteristic of 

the addressing pattern (e.g., the stride in constant stride addressing patterns) were not 

relatively prime. The problem is most severe for digit-reversed patterns that are 

characterized with sequences with large constant strides. 

As shown in Chapter 0, Section E , each bank is selected once and only once 

within a base sequence when a non singular permutation matrix with dimension n by n is 

used to decode the bank number. An expanded permutation matrix that uses more 

address bits for bank selection results in the base sequence of bank numbers to be 

permuted as illustrated in Figure EL 12. All of the bank numbers are represented in each 

block although the order will usually vary. 

Therefore, the worst case scenario is that the last bank number of one block will 

be followed by the same bank number of another block. For example, for a four-bank 

memory, the first and second blocks could be {0 1 2 3} and {3 2 10} respectively. If 

these were the only permutations of the bank number pattern, the banks 3 and 1 would 

always be given two consecutive memory references. 

The following describes the steady-state throughput and maximum latency when 

permutation-based bank decoding is in use. In a standard interleaved memory, the lower 

bound of the steady-state throughput can be derived by observing a cyclic pattern of the 

output. Within a set of bank numbers, each bank receives a request, processes the 

request, and then places its response on the bus at the appropriate time. The memory 

system responds with a total of MR outputs. Since the first processing cycle for the 
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second request of the last bank occurs as the last bank sends the first output back to the 

processor, there will be MR-1 cycles with no output. Therefore, there are MR cycles with 

output followed by MR-1 cycles with no outputs. Since the banks accept and process the 

requests of the second set with no further delay (after the second memory request of the 

last bank is accepted) then MR outputs occur following the MR-1 period of no outputs. 

At this point, two consecutive memory requests are encountered by the first bank and the 

pattern repeats. Therefore, for a standard interleaved memory system, the worst case 

steady-state throughput is 

Tplb > MR = _MR_ forB    MR^ 
ss     MR + (MR-l)    2MR-1 

Under these circumstances, the upper bound of the maximum latency is incurred 

by the second consecutive memory request to a bank. This memory request must first 

wait for the preceding memory request to be processed (MR cycles), followed by MR 

cycles to process this memory request, and finally a cycle to return the memory response. 

Therefore, the upper bound for the maximum latency for constant-stride address patterns 

for standard interleaving is 

L1^ < 2MR +1 for B > MR.. (V.25) 

Since all of the banks are utilized, a STM with three or more cache elements will 

provide sufficient buffering to ensure full utilization of all of the banks. Therefore, the 

steady-state throughput for a STM memory is 

TP,, = — for B < MR and NoCE>3. (V.26) ss    MR 

The latency for STM memories is the same as for standard interleaving for 

constant-stride address patterns, given that the number of banks is matched to the 

memory ratio and the number of cache elements is three or more. The only difference 

between standard interleaving and a STM memory is that the second memory request is 

not accepted by the memory in the standard interleaving case until the last processing 

cycle, whereas the STM memory will accept it when the request first appears on the bus 

(i.e., the memory request is not accepted for first MR cycles in standard interleaving but is 
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accepted by STM) In either case, there are MR cycles required to process the first request 

followed by MR cycles to process the second request and a cycle to return the processed 

memory response. Therefore, the upper bound of the maximum latency for constant 

stride patterns for both the standard interleaving as well as for STM memories is 

Lu£ax <2MR + \iorB> MR, and NoCE > 3.. (V.27) 

Now consider the use of permutation-based decoding for a radix-r butterfly 

address stream. The radix-r butterfly addressing pattern provides a unique bank for each 

of the inputs to a single radix-r butterfly calculation because this is a sequence of constant 

stride (s = N/r) as long as the number of banks is greater than the radix-r. If the number 

of banks is less than r, the bank numbers will repeat and there exists the possibility that 

two consecutive bank numbers can occur when crossing over a block boundary. This 

situation is similar to the constant stride case where the last bank of one base set can be 

the first bank in the next set. Clearly if the radix is smaller than the number of banks, 

then only a subset of the banks will be selected. 

The major concern for radix-r butterfly address patterns when using permutation- 

based bank decoding is the relationship between the sets of banks selected for the 

butterfly operations. This address pattern can be viewed as an interleaving of r streams of 

constant stride of one address pattern. The effect of this r-way interleaving is not clear, 

given the current set of constraints on the address stream, namely that it consists of a 

sequence of blocks where each block contains a permutation of the bank numbers. The 

larger the value of r, the greater the potential impact to the desired properties of the 

address stream. 

To clarify this last point, note that for a radix-2 butterfly, two constant-stride 

address patterns with a stride of one are interleaved. Suppose the number of banks is 

eight. The following is an example of the problems possible with radix-2 addressing: 

Sequence #1:  {1,2,3,4 ...} 

Sequence#2   {2,3,4,5...} 
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with a resulting sequence of {1, 2, 2, 3, 3,4, 4, 5 ... }• A worse case scenario occurs if 

both sequences are on a boundary with a repeating bank number resulting in one bank 

number four consecutive times. As the radix increases, the potential for disrupting the 

desired pattern increases. 

An alternative to this dilemma is to construct a permutation matrix that has 

properties favorable for radix-r addressing patterns. The following discussion will 

describe one technique for constructing such a matrix. 

The matrices designed with the technique described below are tailored both to the 

number of banks as well as to the stride s. The use of tailored matrices requires that the 

permutation matrix be loaded prior to using the memory. The permutation matrix cannot 

be changed until the data inside the memory is not required anymore. A review of Figure 

m.9 indicates that a memory engaged in the radix-r pattern will also be required to accept 

a constant stride pattern with a stride of one. Therefore, the constraints necessary to 

ensure good performance for constant-stride address patterns will also be applied to the 

matrices designed for radix-r patterns. 

The following description for constructing permutation-based matrices for radix-r 

address patterns will use a STM that has 16 banks to illustrate the construction process. 

Other STM configurations can readily be constructed by applying the principles described 

below. 

Figure V.7 illustrates the desired mapping to the address space when the stride of 

the radix-r butterfly is 16 by a permutation matrix to be described below. The address 

space is represented by the matrix with column order (i.e., the first 16 elements of the 

address space are represented by the first column. The contents of each element is its 

bank number. For simplicity, the first 16 elements are mapped with the identity matrix as 

indicated in the figure and the permutation matrix shown in the following equation 

0 0 ! 0   0   0    1 

0 0 | 0   0    1    0 

1 0 JO    1    0   0 
0 ill    000 

1 0 0 0" 

0 1 0 0 

0 0 1 0 

0 0 0 1 

(V.28) 
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Note that only the first eight rows of the matrix are filled in addition to the first 

column, and that the bank numbers are in binary. By inspection of Equation (V.28), the 

permutation matrix consist of the identity matrix (four rightmost columns) preceded by 

four columns that will now be discussed. The first mapping, labeled Ml in Figure V.7, is 

a result of p05 = 1 in Equation (V.28) followed (in the order in which they are applied to 

the sequence) by pl>4 = 1, p23 -1, and p32 = 1, labeled M2 through M4 respectively. 

The matrix is zero indexed with the origin in the upper left-hand corner. 

As indicated before, this matrix is designed for a stride of 16. Assuming that the 

first element of the sequence is at the origin, the sequence making up this stride of 16 

consists of a row-wise ordering of the matrix. Thus far, the radix of the butterfly has not 

been specified. Suppose first that r=16. In this case, the first butterfly operation will 

receive the first row of the matrix in Figure V.7; the second butterfly operation will 

receive the second row, etc. In this instance, it can be seen that the effect of mappings 

Ml through M4 is to permute the first element in a row to all possible bank numbers. 

Therefore, since the matrix will be accessed in row order, an address stream is generated 

that has the same properties as that of an address stream with a constant stride of 16. The 

resulting performance of this radix-r address stream should be consistent with a constant 

stride addressing stream described above. 

Suppose now that the radix is not 16, but rather two, four, or eight (these are the 

radices of interest in this effort). For any other radix, the addressing pattern remains row 

wise. However, only the first r elements of the matrix are taken for each butterfly 

operation. Assuming that the first reference is at the upper left-hand corner of the matrix, 

the addresses for the first butterfly operation is the first r elements of the first row. The 

next butterfly operation uses the first r elements in the second row, etc. 

Consider first a radix-2 butterfly address stream. The Ml mapping results in the 

selection of each bank after eight butterfly operations or 16 memory references. This is 

accomplished by the Ml mapping by toggling the b3 bank bit for the base sequence. This 

maps elements 0000 through 0111 to the second half of the 0000 through 1111 sequence, 

thereby ensuring all sixteen banks are accessed with the radix-2 pattern. An inspection of 

119 



Figure V.7 will verify that similar statements hold for radix-4 and 8 sequences which also 

require the M2 and M3 mappings respectively, to get the desired result. 

Radix-r sequences with strides longer than sixteen will take advantage of the 

permutation matrix elements to the left of those used to implement mappings Ml through 

M4 (p0 2  and pl3 are shown in Equation (V.28)). The effect of these mappings is to 

map the results of Ml through M4 to other permutations. However, the relationship 

between the banks is preserved through these mappings, and therefore the desired 

properties are preserved. 

Recall that one of the requirements for these matrices is that they meet the 

conditions required for constant stride matrices. In particular, all sub-matrices of the 

permutation matrix of dimension n by n, where n is the number of bits required to 

represent the bank number, must be nonsingular. In Equation (V.28), this is clearly not 

the case because each row contains a string of four or more zeros. This can be easily 

fixed however by inserting zeros at positions p0l, plx, p62, and at p7 2, which satisfies 

the requirements for constant stride matrices while maintaining the requirements for 

radix-r matrices. 

Two additional situations must be addressed: when the stride is less than the 

number of banks and when the stride is greater than the number of banks. First, suppose 

that the stride is less than the number of banks. For example, if the stride were a half of 

the number of banks, the first and the eight elements of the base sequence address would 

be accessed. In this situation, the permutation matrix needs to transform these two 

elements to the remaining elements. Using a similar strategy as that above, three 

mappings, Ml, M2, and M3 map the first half of the base sequence into the first row and 

the second half of the base sequence into row eight, as shown in Figure V.8 using the 

permutation matrix of Equation (V.29). 

0 0    1|000 

0 1    0 | 0   0    1 

1 0   0 | 0    1    0 

0 0   0 ! 1    0   0 

1 0 0 0" 

0 1 0 0 

0 0 1 0 

0 0 0 1_ 

a. (V.29) 
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A radix-16 sequence of banks is the interleaving of the first and eighth rows 

{0000, 1000,0100, 1100,0010, 1010, ... 0111, 1111} for the first radix. The second 

radix operation has a similar pattern for the second and ninth rows. 

Observe that a radix-2 pattern will produce the sequence of bank numbers {0000, 

1000, 0001, 1001, 0010 ...} and that the radix-4 sequence results in {0000, 0100, 1000, 

1100,0001,0101, 1001, 1101,0010...}. Observe that in each case, each bank number is 

encountered once every 16 memory references. 

Base M1 Ptf M2 p2 4 M3 p3 3 

0000 0100 0010 0110 0001 0101 0011 0111 

0001 0101 0011 0111 0000 0100 0100 0110 

0010 

• 

0011 

0100 

0101 

0110 

0111 

1000 1100 1010 1110 1001 1101 1011 mi 
1001 1101 1011 1100 1000 1100 1010 1101 
1010 

• 

1011 

1100 

1101 

1110 

mi 

Figure V.8 Mapping Required When Stride is One Half the Number of Banks 

The last situation is when the stride is greater than the number of banks. Only the 

first element of the base sequence is referenced (as in the case when the stride was equal 

to the number of banks). The required sequence of mappings Ml through M4 is shown in 

Equation (V.28). However, this mapping must be shifted to the left within the matrix. 

For example, if the stride is two times the number of banks, the mappings Ml through 

M4 must be shifted one position to the left (four times two positions, etc.). Such a matrix 

121 



hi "i   i ! 
b2 o   l ! 

b. 1   o | 

w\ o   l ! 

0 0 0 1 0 o ! 
0 0 1 0 1 o ! 
0 i 0 0 0 i i 

i 0 0 0 1 l ! 

l 0 0 0" 

0 i 0 0 

0 0 1 0 

0 0 0 1_ 

is shown in Equation (V.30) for a stride of four times the number of banks when the 

number of banks is 16. The two columns between the identity matrix and the mappings 

provide the necessary shifting of the mapping matrix. 

(V.30) 

In summary, a radix-r addressing pattern requires tailored matrices to yield 

satisfactory performance for radix values greater than two. The matrices must be tailored 

to the stride of the radix-r address pattern. In general, the three cases that must be taken 

into account are when the stride is less than, equal to, or greater than the number of 

banks. When these matrices are used, the performance of the radix-r address patterns are 

equivalent to those of constant stride with respect to steady-state throughput and 

maximum latency. The next section will address digit-reversed address patterns when 

permutation-based bank decoding is used. 

The steady-state throughput for a digit-reversed pattern is primarily governed by 

maximum stride which is equal to the place value of the most significant digit of the 

address of the input vector. This stride is repeated r times where r is the radix of the 

butterfly used to compute the fast Fourier transform. These constant stride sequences of 

length r and stride r ~ , where k is the number of digits in the address, are concatenated 

together to form the digit-reversed pattern. 

Permutation based decoding will ensure that the banks selected within a constant 

stride sequence will be unique up to the number of banks. If the radix is equal to or 

greater than the number of banks, then each set of constant stride sequences will contain 

an equal number of references to each bank. This will yield a steady-state throughput and 

maximum latency consistent with constant stride addresses. 

If the radix is smaller than the number of banks, then unique banks will be 

selected within each r length sequence. However the relationship between the bank 
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numbers between sequences is not known. Therefore, the same banks could be selected 

again. 

The large number of permuted patterns suggested by Figure HI. 12 and the 

permutation matrices in Figure ULI3 through Figure HI. 15 suggest that a variety of banks 

can be selected under these circumstances. 

The lower bound for the steady-state throughput in this situation is 

TP lh > — for r < B and NoCE > 3. (V.31) ss.lb       MR 

The maximum latency is governed by the number of cache elements and the memory 

ratio under these circumstances. The maximum latency is 

l}tx<{NoCE + \)MR-\. (V.32) 

In this chapter, performance of both standard interleaving memories as well as 

STM memories were analyzed first for conventional memory decoding and then for 

permutation-based memory decoding. Addressing patterns analyzed include constant 

stride, radix-r butterfly, and digit-reversed addressing patterns. 

Constant-stride address patterns provide optimum performance under 

conventional decoding when the stride and number of banks is relatively prime. The 

steady-state throughput is 1.0 and the maximum latency is MR + 2. However, the 

architecture in Chapter 0 requires strides that are powers of two. Address streams with 

these strides perform poorly using conventional decoding as described in Equation (V.4). 

Performance for constant stride patterns that are not powers of two is not specified based 

on the theory of the permutation matrices developed. 

When constant-stride address patterns with strides of powers of two are applied to 

a STM memory with permutation-based decoding, the steady-state throughput is optimal 

and the latency increases to a upper bound of 2MR +1. This is slightly less than double 

that incurred with conventional decoding. 

Radix-r address patterns yield an optimal steady-state throughput for all radix 

values (r = 2,4,8, and 16) but with latencies proportional to the product of the radix and 
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the memory ratio. Standard interleaving performed very poorly for this case because this 

pattern for the cases of interest result in r consecutive hits to the same bank. 

Little can be said regarding performance when using the permutation-based 

matrices for radix-r butterfly patterns. However, when tailored permutation matrices are 

used for radix-r butterfly patterns, optimal throughput with an upper-bound latency 

consistent with constant stride patterns (i.e., 2MR +1) are predicted. 

Conventional decoding performs poorly for digit reverse address patterns because 

the digit-reversed patterns of interest are characterized by sequences of length r constant 

stride with the stride a power of two. The steady-state throughput is expected to be 

inversely proportional to the number of banks when the number of cache elements is 

small. If the number of cache elements is large (i.e., ~ N/B) then the average throughput 

is 

B 

25-1 

where B is the number of banks. The gain in throughput is obtained by a substantial 

investment of hardware. Standard interleaving is also expected to perform poorly with a 

steady-state throughput inversely proportional to the number of banks because this pattern 

is characterized by long sequences to a single bank. 

The permutation-based theoretical results are mixed when applied to digit- 

reversed address patterns. When the radix is equal to or greater than the number of 

banks, then the projected performance is consistent with constant-stride address patterns 

using permutation-based techniques. When the radix is less than the number of banks, a 

loose lower bound expression for the steady-state throughput is r/MR and the latency is 

an upper-bound expression that is proportional to the product of the number of cache 

elements and the memory ratio. 

E.        RANDOM ADDRESSING 

As indicated in Equation (11.10), the speedup of a standard interleaved memory 

system (i.e., one without any buffering) yields a speedup that is approximately the square 
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root of the number of banks. It is desirable to know the impact of buffering on the 

performance of the interleaved memory system, given that the input address stream is 

random. 

Queuing theory provides a framework for analyzing this problem. For 

background information on this topic see Trivedi [Ref 53] and Allen [Ref 54]. The 

following discussion is based on an address stream consistent with Equation (11.10), 

developed by Hellerman [Ref 25], that assumes each bank is equally likely to be selected 

for each memory address issued to a memory system that contains MR banks. If the 

problem is modeled in a queuing theory context, each of the banks can be modeled as a 

queue with a single server (i.e., the bulk storage unit). This server has a service 

distribution that is deterministic with a constant service cycle time of MR. 

The input rate to the memory system (i.e., all of the banks) is one request per 

cycle. The equal probability assumption on bank selection results in a geometric 

distribution for the interarrival time with a mean arrival time of If MR, or equivalently 

l/B where B is the number of banks. Given a queue length of k, a single bank can be 

described using queuing theory notation as a M/D/l/k queuing problem where M1 

represents the distribution of the interarrival time, D is the distribution of the server time, 

the 1 indicates a single server, and as indicated above, the k is the queue length of the 

input queue to the server. At times it may be useful to assume that k = <=°. 

There are several features of this problem that distinguish it from traditional 

queuing problems. The queue length is finite and there is no balking (i.e., a customer 

does not leave a line no matter how long the customer must wait). Further, since read 

cycles are assumed, the order in which the requests are made must be preserved across all 

of the banks. The implication is that a given customer cannot leave the queue until all of 

the customers that preceded it leave their respective queues. This can lead to nonsensical 

situations when interpreted as a typical service line for humans. For example, it is 

possible for a bank to have a full queue of processed customers that are waiting for the 

1 M is generally reserved to represent the exponential distribution, which is the continuous counterpart to the discrete- 
time geometric distribution. 
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proper turn to be sent back to the processor. Therefore, even though the queue is full, the 

server has nothing to process and cannot accept new requests until a serviced customer 

exits the queue. 

A closed-form solution was not obtained for this queuing problem. However, the 

following observations are made concerning this process. Because the number of banks 

is matched to the memory ratio, the banks must be fully utilized in order for the service 

rate to be equal to the input rate. This is possible only if the inputs are assigned in a 

round robin fashion as described earlier in this section. The random nature of the input 

stream will certainly not provide this type of assignment and therefore the service rate 

will be less than the input rate. So long as the input rate exceeds the service rate, the 

queue length will grow and if the queue length is modeled as infinite, there is no steady- 

state solution. If, however, finite queue lengths are assumed, then stalls that occur when 

queues fill up serve to regulate the input and a steady-state condition is obtained. 

One experiment will be generated to analyze this problem. 
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VI.    SIMULATION STUDIES 

A.       OVERVIEW 

The following section is a description of the split transaction memory (STM) 

simulations executed for the purposes of this dissertation. The major emphasis of these 

simulation runs is to verify the analytic results obtained in Chapter V and to provide data 

for making architectural choices for the vector processor architecture. A secondary goal 

is to explore the use of STM for general-purpose computing. 

The simulation studies are organized into two major groups. The first group is 

concerned with vector processing. The second group consists of a single experiment 

focused on general-purpose computing. Input variables pertinent to both groups include 

the architectural parameters number of bank (NoBanks), number of cache elements 

(NoCE), and memory ratio (MemRatio). The memory decoding scheme (MemDecode) 

is an important parameter for the vector processor simulations but not those concerning 

general-purpose computing. The type of address pattern is the another key input to a 

simulation run. The vector processor simulations are organized by the three address 

patterns discussed in Chapter V: constant stride, radix-r butterfly, and digit-reversed 

address patterns. The random address pattern is analyzed for the general-purpose case. 

The primary measurements of performance that are analyzed for both simulation 

groups are the steady-state throughput (SSTP) and the maximum latency (ML). Note 

that all of the performance parameters described in Section D of Chapter II are measured 

during each simulation and are included in the discussion below when appropriate. 

Speedup is also addressed in the general-purpose computing simulation. 

The vector processing experiments are summarized in Table VI. 1. They are 

organized into three pairs, each corresponding to an address pattern. Each pair first 

addresses conventional memory decoding followed by permutation-based memory 

decoding. 

The first set of experiments deals with constant-stride address patterns. The first 

experiment is designed to verify the problems associated with using conventional 
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decoding when the stride and the number of banks are not relatively prime. This 

experiment also demonstrates optimal STM performance when the stride and the number 

of banks are relatively prime and thereby places an upper bound on the goodness of STM 

performance for the remaining experiments. 

Name Purpose Scope 

Constant Stride 
(conventional 
decoding) 

Verify constant stride analysis for 
conventional decoding. 

Stride = 1,2,3,4,5,6, 
7, 8, and 9 

Constant Stride 
(PB decoding) 

Evaluate the performance of STM 
using PB for constant-stride address 
patterns where s=2A, k-l,2,.. 

Stride = 1,2,3,4,5,8, 
16, 32, 64, and 128. 

Radix-r Butterfly 
(conventional 
decoding) 

Verify radix-r analysis for 
conventional decoding. 

r=2,4, 8, and 16. 

Radix-r Butterfly 
(PB decoding) 

Evaluate the performance of STM 
using PB for radix-r butterfly address 
patterns. 

r = 2, 4, 8, and 16. 

Digit Reversal 
(conventional 
decoding) 

Verify digit-reversed analysis for 
power of two base number systems 
using conventional decoding. 

base 1 NoDigits= 2/10, 
4/5, 8/4, and 16/4. 

Digit Reversal 
(PB decoding) 

Evaluate the performance of STM 
using PB for digit-reversed address 
patterns for power of two base number 
systems. 

base / NoDigits= 2/10, 
4/5, 8/4, and 16/4. 

Table VI.l Vector Processor Experiments 

The set of parameters used in the first experiment is: 

NoBanks = 4, 8, 16, 32 

MemRatio = NoBanks 

NoCE = 1, 2, 3, 

(VI.1) 

where NoCE=1 is to be understood as a single buffer in standard interleaving rather than 

a STM with one cache element. This convention will be assumed hereafter for the 

following experiments. The values for the number of banks and the corresponding values 

for the memory ratio are also used in all of the other vector processor experiments. The 

number of banks is matched to the memory ratio based on the premise that an optimal 
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throughput is obtainable without increasing the number of banks to obtain throughput. 

The range of values for the number of cache elements is tailored for each experiment. 

The standard interleaving case is always provided for comparison (NoCE =1) to the STM 

cases. The number of cache elements that is expected to provide an optimum steady-state 

throughput based on the analysis in Chapter V (NoCE =2 for the experiment above) is 

also included. Additional values for the number of cache elements may be provided to 

explore the sensitivity of the performance values to the number of cache elements (NoCE 

= 3 above). 

This experiment is designed to validate expressions for the steady-state 

throughput and latency as expressed in Equations (V.4) through (VI.8). Plots generated 

based on these equations are shown in Figure VI. 1 through Figure VI.8. Figure VI. 1 and 

Figure VI.2 illustrate the steady-state throughput and maximum latency, respectively, for 

those strides that are relatively prime to the number of banks (i.e., strides 1, 3, 5, 7, and 

9). These figures show the best performance possible for an interleaved memory system. 

Figure VI.3 and Figure VI.4 reflex the throughput and latency for a stride of two. The 

steady-state throughput is 0.5 for all values because the number of effective banks is half 

of the total number of banks, which is in turn equal to the memory ratio. A similar 

relationship holds for a stride of four except the effective number of banks is one fourth 

of the total number of banks as shown in Figure VI.5. The corresponding maximum 

latencies for a stride of four are reflected in Figure VI.6. The steady-state throughput is 

slightly more complicated for a stride of eight because the effective number of banks is a 

fourth of the total number of banks when the number of banks is four. For the cases 

where the number of banks is eight and sixteen, the effective number of banks drops to 

one eight of the total number as shown in Figure VI.7. This is due to the greatest 

common denominator operation in Equation (V.l). The corresponding maximum 

latencies are shown in Figure VI.8. 
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Figure VI.1 Steady-State Throughput for Strides=l?3,5,7,9 (Conventional 
Decoding) 
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Figure VI.2 Maximum Latency for Strides=l,3,5,7,9 (Conventional Decoding) 
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Figure VI.3 Steady-State Throughput for Stride=2, 6 (Conventional Decoding) 
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Figure VI.4 Maximum Latency for Stride=2,6 (Conventional Decoding) 
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Figure VI.5 Steady-State Throughput for Stride=4 (Conventional Decoding) 
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Figure VI.6 Maximum Latency for Stride=4 (Conventional Decoding) 
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Figure VI.7 Steady-State Throughput for Stride=8 (Conventional Decoding) 
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Figure VI.8 Maximum Latency for Stride=8 (Conventional Decoding) 
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The second experiment is designed to validate the effectiveness of permutation- 

based techniques when applied to constant-stride address streams. Further, the effects on 

latency will be examined carefully because the latency analysis only provides an 

expression for an upper bound. The parameter values for the number of banks and the 

memory ratio is the same as in the previous experiment. The values used for the number 

of cache elements: 

NoCE = 1,3,4. (VI.2) 

The first value provides for the standard interleaving case. A value of three is the 

value required for optimal steady-state throughput. The value of four is added for 

sensitivity analysis. 

This experiment is designed to validate expressions for the steady-state 

throughput and latency as expressed in Equations (VI.24) through (VI.27). Plots 

generated based on these equations are shown in Figure VI.9 and Figure VI. 10. Figure 

VI.9 illustrates the steady-state throughput of unity for all strides that are a power of two 

when permutation-based decoding is used. The corresponding upper bound of the 

maximum latency is shown in Figure VI. 10. Note that no theoretical results exist for 

strides that are not a power of two for permutation-based memory decoding. Two strides 

(stride=3 and 5) are simulated to provide exemplar performance parameters when the 

stride is not a power of two. Although it is desirable for all strides to yield optimal 

performance, those strides which are not powers of two are not required for the vector 

architecture described in Chapter 0. 
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Figure VI.9 Steady-State Throughput for Stride=2* for k = 0,1,2 ... (Permutation- 
Based Decoding) 
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Figure VI.10 Maximum Latency for Stride=2* for k = 0,1,2 ... (Permutation-Based 
Decoding) 
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The third experiment is designed to verify the steady-state throughput and 

maximum latency for radix-r butterfly address patterns when conventional decoding is 

used. Expressions for steady-state throughput and maximum latency are found in 

Equations (VI.12), (VI. 13), (VI. 15), and (VI. 16). The number of banks and memory ratio 

parameters are identical to those used above. The values used for the number of cache 

elements are adjusted for each radix. In general, the number of cache elements must be 

equal to r+1 where r is the radix value. The values used for each radix in indicated in 

Table VI.2. As in the previous experiments, the standard interleaving case is included as 

well as the value that the analysis indicates will provide optimum steady-state throughput. 

Radix NoCE Evaluated 

2 1,3,4 

4 1,5,6 

8 1,9, 10 

16 1, 17,18 

Table VI.2 NoCE Evaluated in the Third 
Vector Processor Experiment 

The plots for these theoretical results are shown in Figure VI. 11 through Figure 

VI. 15. Figure VI. 11 illustrates the theoretical steady-state throughput for radix-2 butterfly 

address patterns for conventional decoding. Note that for the standard interleaving cases, 

the value represents a lower bound. The remaining steady-state throughput plots (radix-4, 

8, and 16) are not shown because the variation in these plots is within four percent of that 

shown in Figure VI. 11 and that variation occurs only for the standard interleaving cases. 

The upper bound for the maximum latencies are shown in Figure VI.12 through Figure 

VI. 15 for radices of two, four, eight, and 16 respectively. Although the basic shape of 

these plots are similar, the scale is seen to increase as the value of the radix increases. 
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Figure VI.11 Steady-State Throughput for Radix=2 (Conventional Decoding) 
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Figure VI.12 Maximum Latency for Radix=2 (Conventional Decoding) 
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Figure VI.13 Maximum Latency for Radix=4 (Conventional Decoding) 
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Figure VI. 14 Maximum Latency for Radix=8 (Conventional Decoding) 
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Figure VI.15 Maximum Latency for Radix=16 (Conventional Decoding) 

The fourth vector processor experiment is similar to the previous experiment 

except that permutation-based decoding is used and the values selected for the number of 

cache elements are adjusted to yield optimum steady-state throughput for radix-r address 

patterns for tailored permutation-based memory encoding. The values used for the 

number of cache elements are 

NoCE = 1, 2, 3, 4 

for all radices. Pertinent performance expressions are found in Equations (VI.24) through 

(VI.27). These are the equations for constant stride but are also appropriate for radix-r 

butterfly patterns when the specialized matrices are used. 

The plots for these theoretical results are shown in Figure VI. 16 and Figure VI. 17. 

Figure VI. 16 illustrates the theoretical lower bound for steady-state throughput for radix-r 

butterfly address patterns for all radices for permutation-based decoding. The maximum 

latency plot for all radices is shown in Figure VI. 17. Observe that the maximum latency 

for this case is anticipated to be substantially lower than for the conventional decoding for 

the higher radices. 
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Figure VI.16 Steady-State Throughput for Radix=2, 4, 8, and 16 (Permutation- 
Based Decoding) 
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Figure VI.17 Maximum Latency for Radix=2, 4, 8, and 16 (Permutation-Based 
Decoding) 



The fifth and sixth vector processor experiments use digit-reversed address 

patterns. The fifth experiment uses conventional decoding. Digit-reversed address 

patterns are characterized by r-length sequences of constant stride r""D's"s_l where r is the 

radix of the FFT and NoDigits is the number of digits required to represent the address of 

the vector. Since the effective number of banks is governed by Equation (V. 1) the 

effective number of banks is always one when r and the number of banks are both a 

power of two. The following data set is used to validate this result: 

NoBanks = 4, 8, 16, 32 

MemRatio = NoBanks 

NoCE = 1, 3, 4. 

The theoretical steady-state throughput is illustrated in Figure VI. 18. Observe that 

the steady-state throughput is inverse of the number of banks and this value is invariant to 

the number of cache elements. 

Simulated Steady-State Throughput 

NoCE 
NoBanks 

Figure VI.18 Steady-State Throughput for Radix=2 (Conventional Decoding) 

The sixth experiment evaluates several digit-reversed patterns using permutation- 

based memory decoding. Expressions for steady-state throughput and maximum latency 

are found in Equations (VI.31) and (VI.32), as well as (VI.24) through (VI.27). The 
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number of banks and memory ratio parameters are identical to those used above. The 

values used for the number of cache elements are shown in Table VI.3. In general, the 

number of cache elements used in this experiment is the same as those used in the second 

experiment. Note that the value of five was added for radix eight and sixteen after one 

iteration of simulations. This will be discussed further in the next section. 

Radix/NoDigits NoCE Evaluated 

2/10 1,3,4 

4/5 1,3,4 

8/4 1,3,4,5 

16/3 1,3,4,5 

Table VI.3 NoCE Evaluated in the 
Sixth Vector Processor Experiment 

The theoretical results for the steady-state throughput and maximum latency for 

the four cases shown in Table VI.3 are shown in Figure VI. 19 through Figure VI.26. The 

steady-state throughput plots are lower bounds except when the throughput is optimum. 

The lower bound occurs whenever the base is less than the number of banks as described 

in Chapter V Section D. 
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Figure VI.19 Steady-State Throughput for Radix=2/NoDigits=10 (Permutation- 
Based Decoding) 
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Figure VI.20 Maximum Latency for Radix=2/NoDigits=10 (Permutation-Based 
Decoding) 
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Figure VI.21 Steady-State Throughput for Radix=4/NoDigits=5 (Permutation- 
Based Decoding) 
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Figure VI.22 Maximum Latency for Radix=4/NoDigits=5 (Permutation-Based 
Decoding) 
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Figure VI.23 Steady-State Throughput for Radix=8/NoDigits=4 (Permutation- 
Based Decoding) 
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Figure VI.24 Maximum Latency for Radix=8/NoDigits=4 (Permutation-Based 
Decoding) 
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Figure VI.25 Steady-State Throughput for Radix=16/NoDigits=3 (Permutation- 
Based Decoding) 
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Figure VI.26 Maximum Latency for Radix=16/NoDigits=3 (Permutation-Based 
Decoding) 



The second group of experiments pertain to general-purpose computing and are 

summarized in Table VI.4. This experiment examines the marginal effectiveness of 

adding additional memory banks and cache elements. The number of memory banks is 

matched to the memory ratio such that if the memory banks are used optimally, then the 

speedup obtained from the memory system is equal to the number of banks. The address 

stream is completely random to allow comparison with results in the literature [Ref 55]. 

The parameters used for this experiment are 

NoBanks = 1, 4, 8, 16, 32 

MemRatio = NoBanks 

NoCE = 1, 2, 4, 8, 16, 32, 64 
P = 0. 

(VI.3) 

Name Purpose Scope 

Speedup Analysis Investigate the affect to speedup 
when varying STM parameters. 
Set/?=0 for historical comparison. 

MemRatio == NoBanks 
for all cases. 

Table VI.4 General-Purpose Computer Experiment 

The next two sections contains the results of each of the simulation runs described 

above for vectoring processing and general-purpose computing respectively. 

B. VECTOR PROCESSING EXPERIMENTS 

1. Constant Stride: Conventional Memory Decoding 

A comparison of the theoretical and simulated results for the first vector processor 

experiment are shown in Figure VI.27 through Figure VI.39. The plots for stride of one 

are shown in Figure VI.27 and Figure VI.28. For both of these performance measures, 

the theoretical and simulated results are identical. 

Examples of two simulation runs, the first with four banks and two cache 

elements and the second with 32 banks and two cache elements are shown in Figure 

VI.29 and Figure VI.30 respectively. In each plot, the grant request line (GR) indicating 

memory requests are accepted by the memory, is active on the first cycle and remains 

active until all memory responses are accepted. The response enable (RE) line becomes 
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active indicating that output is available for the processor, and remains on until the last 

response is sent to the processor. In each case, the RE line follows the GR line after the 

necessary latency of six and 34, respectively (i.e., MR+2). This is the best performance 

that can be obtained from the memory systems. One of the tradeoffs of using a larger 

number of memory banks is the latency, as illustrated in Figure VI.29 and Figure VI.30. 

This latency results in a average throughput of 0.9624 and 0.795 for four versus 32 banks 

respectively. Figure VI.31 illustrates the effect on average throughput when varying the 

number of banks for the case of a stride of one. The penalty of a larger number of banks 

is clearly shown when the vectors are relatively small (128 points). 
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Figure VI.27 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Strides=l,3,5,7,9 (Conventional Decoding) 
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Figure VI.28 Comparison of Theoretical Versus Simulated Maximum Latency for 
Strides=l,3,5,7,9 (Conventional Decoding) 
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Figure VI.30 Detailed Simulation Run for Stride=l STM(32,2,32) 
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Simulated Throughput 

NoBanks 

Figure VI.31 Average Simulated Throughput for Stride=l (Conventional 
Decoding) 

A comparison of the theoretical versus simulated steady-state throughput and 

maximum latency is shown in Figure VI.32 and Figure VI.33, respectively, for a stride of 

two. Notice that the simulated steady-state throughput varies by as much as four percent 

from the theoretical for thirty two banks. The steady-state throughput is calculated by 

taking the average of the last twenty five percent of the throughput values. This 

occasionally results in a bias error when the steady-state value of the throughput is not 

constant. Such a steady-state is illustrated in Figure VI.34 for thirty two banks and three 

cache elements. 

The simulated maximum latency is in agreement with the theoretical plot for 

stride of two as shown in Figure VI.33. The average throughput, shown in Figure VI.35, 

indicates a consistent pattern with a stride of one. The average throughput obtained with 

four banks (approximately 0.495) is within one percent of the steady-state ceiling of 0.5. 
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Figure VI.32 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Stride=2 (Conventional Decoding) 
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Figure VI.33 Comparison of Theoretical Versus Simulated Maximum Latency for 
Stride=2 (Conventional Decoding) 
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Figure VL34 Detail Simulation Run for Stride=2 STM(32?3,32) (Conventional 
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Simulated Throughput 
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Figure VI.35 Average Simulated Throughput for Stride=2 (Conventional 
Decoding) 

A comparison of the theoretical and simulated steady-state throughput and 

maximum latency for stride of four is shown in Figure VI.36 and Figure VI.37 

respectively. The results are similar to that for stride=2. The simulated steady-state 

throughput varies by less than two percent from the theoretical results and the simulated 

and theoretical maximum latencies are identical. 

A comparison of the theoretical and simulated steady-state throughput and 

maximum latency for stride=8 is shown in Figure VI.38 and Figure VI.39, respectively. 

The results are also similar to those above. However, the simulated steady-state 

throughput as well as the maximum latency is identical to the theoretical results. 
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Figure VI.36 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Stride=4 (Conventional Decoding) 
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Figure VI.37 Comparison of Theoretical Versus Simulated Maximum Latency for 
Stride=4 (Conventional Decoding) 
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Figure VI.38 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Stride=8 (Conventional Decoding) 
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Figure VI.39 Comparison of Theoretical Versus Simulated Maximum Latency for 
Stride=8 (Conventional Decoding) 
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In conclusion, the first experiment verifies the theoretical expressions for steady- 

state throughput and maximum latency for constant-stride address patterns. These 

address patterns illustrate optimal results from interleaved memory systems as well as 

substantial performance degradation when the stride is not relatively prime to the number 

of banks. STM memories and standard interleaved memories generally have equivalent 

steady-state throughput performance for constant-stride address patterns when compared 

to standard interleaving. Further, when the stride is not relatively prime, STM memories 

incur more latency than standard interleaving. 

For the architecture presented in Chapter 0 for FFT computation, those strides that 

are not relatively prime are the strides required rather than those that are relatively prime. 

The following experiment is used to validate performance when strides are not relatively 

prime when permutation-based decoding is used. 

2. Constant Stride: Permutation-Based Memory Decoding 

An analysis of the second experiment will be divided into strides that are a power 

of two (e.g., one, two, four,...) and a selected set of strides not a power of two (e.g., three 

and five). It is important to recall that the estimates for the maximum latency for 

permutation-based memories are always upper-bound estimates. The theoretical steady- 

state throughput results for the radix-r butterfly and digit-reversed address patterns are 

also lower bounds. However, for address patterns with constant stride, the theoretical 

results are exact for the STM cases (i.e., when the number of cache elements is greater 

than one). 

A comparison of the theoretical and simulated results for strides of one, two, and 

sixty four are shown in Figure VI.40 through Figure VI.45. This selection of strides is 

presented as a representative of all of the strides of powers of two possible, given the 

permutation matrices used in the simulation and documented in Figure HI. 13 through 

Figure HI. 16. 

The most striking characteristic of the plots contained in Figure VI.40 through 

Figure VI.45 is that they are for all practical purposes the same. Plots for stride of one are 

shown in Figure VI.40 and Figure VI.41. The simulated steady-state throughput is 
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identical to the theoretical for all STM cases (they are always optimum). The theoretical 

standard interleaving cases are characterized by a decreasing lower-bound steady-state 

throughput as the number of banks increases. Recall that this lower bound is based on the 

possibility that a bank will receive two consecutive requests at the boundaries of the base 

sequences (refer to Chapter V Section D for a discussion of this topic). Figure VI.40 

suggests that with the permutation matrices used, this is not the case. Further, as the 

number of banks increases, the probability decreases. 

Several observations can be made concerning the theoretical and simulated 

maximum latencies shown in Figure VI.41. First, the basic shape of the theoretical and 

simulated maximum latencies are similar in that they both increase with the number of 

banks and are relatively invariant to the number of cache elements. The simulated 

maximum latency is, however, equal to the theoretical maximum for four-bank memory 

with a substantial differential between them for the 32-bank memory. This is due to the 

relative length of the input vector to the number of banks. This issue will be explored 

more fully in the permutation-based digit-reversed experiment below. 

Examples of two simulation runs, the first with four banks and three cache 

elements and the second with thirty two banks and three cache elements are shown in 

Figure VI.46 and Figure VI.47, respectively. It is not possible to anticipate when latency 

will be incurred. For a small number of banks, it is more likely that the maximum latency 

will be incurred earlier than in a memory configured with more memory banks because 

the likelihood of two banks being close is greater when the number of banks is small. 

Observe the distribution of the latency in Figure VI.46 versus Figure VI.47. In the first 

plot with four banks, the maximum latency is incurred early in the run in contrast to the 

thirty two bank simulation where the maximum latency (in the plot) is not obtained until 

half way through the simulation run. In Figure VI.48, the simulation is run with an input 

vector of 1,024 and it can be seen that the maximum latency is not reached until 

approximately cycle 600. 

The tradeoff between latency and the number of memory banks can be seen in the 

detailed plots by the amount of time required to obtain the first memory response. The 

163 



ratio of time between the minimum latency and the length of the input vector dictates the 

best average throughput (i.e., the greater the ratio, the greater the penalty). This latency 

results in a average throughput of 0.78, as shown above the throughput plot in Figure 

VI.47. This reflects a modest increase in latency from the conventional decoding case. 

Figure VI.49 illustrates the effect of varying the number of banks on average throughput 

for the case of stride=64. The penalty of a larger number of banks is clearly shown for 

STM memories when the vectors are relatively small. In general, STM performance is 

better than standard interleaving except when the number of banks is 32, where the 

performance is approximately the same. 

The steady-state throughput and average throughput for strides of three and five 

are illustrated in Figure VI.50 and Figure VI.51. Clearly the throughput is diminished 

from the powers of two cases shown above. The steady-state throughput for stride of 

three falls steadily as the number of banks increases, whereas the stride of five case has 

the same steady-state throughput for four and 32 banks but reduced throughput for 16 

banks. These figures seem to confirm the erratic behavior of permutation-based 

performance for strides that are relatively prime to strides of two. The average 

throughput for four and eight bank systems suggest moderate performance that might be 

tolerated if the address pattern was not frequently used. 
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Figure VI.40 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Stride=l (Permutation-Based Decoding) 
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Figure VI.41 Comparison of Theoretical Versus Simulated Maximum Latency for 
Stride=l (Permutation-Based Decoding) 
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Figure VI.42 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Stride=2 (Permutation-Based Decoding) 
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Figure VI.43 Comparison of Theoretical Versus Simulated Maximum Latency for 
Stride=2 (Permutation-Based Decoding) 
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Figure VI.44 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Stride=64 (Permutation-Based Decoding) 
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Figure VI.45 Comparison of Theoretical Versus Simulated Maximum Latency for 
Stride=64 (Permutation-Based Decoding) 
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Figure VI.49 Simulated Average Throughput for Stride=64 (Permutation-Based 
Decoding) 

This experiment demonstrates that permutation-based decoding can provide 

favorable performance for address patterns with a constant stride of powers of two. 

Specifically, the steady-state throughput is optimum when the number of cache elements 

is at least three. Further, this is accomplished with a modest increase in the latency when 

the vector length is small (e.g., 128 in the examples). For larger vector lengths where the 

maximum latency is realized, the increase in the latency is approximately doubled. 

The next section will address radix-r butterfly address patterns when conventional 

decoding is in place. 
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Figure VI.50 Simulated Steady-State Throughput and Average Throughput for 
Stride=3 (Permutation-Based Decoding) 
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Figure VI.51 Simulated Steady-State Throughput and Average Throughput for 
Stride=5 (Permutation-Based Decoding) 
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3. Radix-r Butterfly: Conventional Memory Decoding 

A comparison of the theoretical versus simulated steady-state throughput and 

maximum latency are shown in Figure VI.52 through Figure VI.59 for radices two, four, 

eight, and 16. The simulated steady-state throughput is in agreement with the theoretical 

results for all radices. An inspection of Figure VI.52 reveals that all STM memories yield 

a throughput of 1.0 as expected. Standard interleaving cases suffer significant 

degradation because each bank is given consecutive memory requests equal to the radix. 

The greater the number of banks, the more banks there are not performing as indicated for 

all radices. 

The simulated maximum latency is in complete agreement for the radix-2 and 

radix-4 cases as shown in Figure VI.53 and Figure VI.55, respectively. However, 

variances occur for both the radix-8 (32 banks) and radix-16 (16 and 32 banks) cases. In 

both cases, the maximum latency rather than continuing to rise as the expressions would 

suggest, flatten out. This phenomena is due to the relationship between the "stride" in 

effect for radix-r patterns and the expression for the effective number of banks. 

Whenever the effective stride becomes smaller than the number of banks, then the latency 

will be reduced. For example, for the radix-16 case, the effective stride is 

24 

and the effective number of banks is 

B   =       B      =      16      =2 eff    gcd(5,S)    gcd(16,8) 

Recall that Beff under most circumstances is one when the radix and number of banks is a 

power of two. If N is doubled, the expression for latency used to construct the theoretical 

plots will be valid. 
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Figure VI.52 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=2 (Conventional Decoding) 

178 



Theoretical Maximum Latency 

100 

NoCEs 8 
NoBanks 

32 

a) 

Simulated Maximum Latency 

100 

NoCE 
NoBanks 

b) 

Figure VI.53 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=2 (Conventional Decoding) 
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Figure VI.54 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=4 (Conventional Decoding) 
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Figure VI.55 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=4 (Conventional Decoding) 
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Figure VL56 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=8 (Conventional Decoding) 
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Figure VI.57 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=8 (Conventional Decoding) 

183 



Theoretical Steady-State Throughput 

NoCEs 8 
NoBanks 

32 

a) 

NoCE 

Simulated Steady-State Throughput 

NoBanks 

b) 

Figure VI.58 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=16 (Conventional Decoding) 
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Figure VI.59 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=16 (Conventional Decoding) 
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One last issue to address for conventional decoding of radix-r butterfly address 

patterns is the average throughput. Average throughput of a radix-2 and radix-16 address 

patterns are displayed in Figure VI.60 and Figure VI.61. The radix-2 butterfly yields 

average throughput values between 0.9 and 0.7, approximately five to ten percent lower 

than the constant stride patterns. The radix-16 butterfly average throughput is 

considerably worse beginning at 0.7 with a lower end of 0.5. The lower end would, of 

course, be worse for longer vectors. Therefore, this must be taken into account when 

calculating the efficiency of the vector processor or when determining the most effective 

combination of radix passes to use for a given length vector. 

This experiment validates that conventional decoding coupled with STM with a 

sufficient number of banks will provide an optimum throughput, but at higher latencies 

than encountered with either conventional or permutation-based decoding of constant 

strides. The following section will investigate permutation-based decoding of radix-r 

address patterns. 
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Figure VI.60 Average Throughput for Radix-2 Butterfly Pattern (Conventional 
Decoding) 
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Figure VI.61 Average Throughput for Radix-16 Butterfly Pattern (Conventional 
Decoding) 

4. Radix-r Butterfly: Permutation-Based Memory Decoding 

The theoretical and simulated results for the steady-state throughput and 

maximum latency are illustrated for radices two, four, eight, and 16 in Figure VI.62 

through Figure VI.71. The theoretical steady-state results are lower bounds for the 

standard interleaving case. The theoretical maximum latency is an upper bound for all 

values. The simulation runs were executed with the tailored permutation matrices for 

radices four, eight, and 16. Although it is possible to develop a tailored permutation 

matrix for radix 2, radix 2 patterns yield good performance without it. Further, there are 

operational constraints that make it desirable not to have a specialized permutation matrix 

for radix 2. For more details, see the conclusions in Chapter VII. 

The simulated values for steady-state throughput and maximum latency are shown 

in Figure VI.62 and Figure VI.63, respectively. The steady-state throughput is 1.0 for all 

STM simulations with three or more cache elements, except for the eight bank cases with 

three and four cache elements which have a steady-state throughput of 0.89 and 0.96, 

respectively. The detailed simulation runs for eight banks with three and four cache 

elements are shown in Figure VI.64 and Figure VI.65 respectively. The three-cache- 
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element-configured simulation reveals the GR becoming inactive for approximately 15 

cycles indicating an insufficient number of cache elements. The additional cache element 

in Figure VI.65 eliminates all but two of these cycles. The radix-2 set of simulations 

represent a situation where a few more cache elements may be useful even though they 

are not needed most of the time. Figure VI.63 reveals that the simulated maximum 

latency is consistent with constant stride upper bound except for the eight-bank cases. 
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Figure VI.62 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=2 (Permutation-Based Decoding) 
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Figure VI.63 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=2 (Permutation-Based Decoding) 
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The steady-state throughput for radix four, eight and 16 shown in Figure VI.66, 

Figure VI.68, and Figure VI.70 reveal an ideal steady-state throughput for all STM cases 

where the number of cache elements is three or four, as the theory predicts. There is 

substantial degradation for most standard interleaving cases. A two-cache-element STM 

performs better for a larger number of banks and poorly for four bank scenarios. The 

maximum latency was equal to the theoretical upper bound in all cases, except for the 32- 

bank configurations for radix eight and 16 simulations as shown in Figure VI.67, Figure 

VI.69, and Figure VI.71. 

In summary, with the aid of permutation matrices tailored to the stride between a 

radix butterfly operation, the resulting pattern has the features of a constant stride pattern 

resulting in an optimal steady-state throughput when at least three cache elements are 

present. Further, the maximum latency is limited to approximately twice the ideal latency 

for interleaved memory systems. These results apply to radices of four, eight, and 16. 

Radix-2 butterfly patterns were found to yield good performance although not quite as 

good as with the tailored matrices using a generic constant stride permutation matrix as 

shown in Figure HI. 13 through Figure HI. 16. 

The next section will describe the performance obtained when applying 

conventional decoding to digit-reversed address patterns. 
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Figure VI.66 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=4 (Permutation-Based Decoding) 
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Figure VI.67 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=4 (Permutation-Based Decoding) 
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Figure VI.68 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=8 (Permutation-Based Decoding) 
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Figure VI.69 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=8 (Permutation-Based Decoding) 
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Figure VI.70 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=16 (Permutation-Based Decoding) 
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Figure VI.71 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=16 (Permutation-Based Decoding) 
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5.        Digit Reversed: Conventional Memory Decoding 

One experiment was conducted to demonstrate the performance when using 

conventional decoding for digit-reversed address patterns. The input stream was a digit- 

reversed pattern for a radix of two with ten digits, yielding a stride of 29 for the radix 

operation. A comparison of the theoretical versus simulated steady-state throughput is 

shown in Figure VI.72. The theoretical results matches the simulated results perfectly. A 

steady-state throughput is obtained that is the reciprocal of the number of banks and is 

independent of the number of cache elements. 

A detailed simulation for a memory with four banks and three cache elements is 

shown in Figure VI.73. An examination of the STM Status plot indicates that the RE line 

is active once every four cycles yielding a throughput of 0.25. Note that the GR signal is 

active for a short period of time allowing the one active bank's cache elements to be filled 

with requests. Thereafter, the RE line is active filling the one available cache element 

followed by processing time for a memory request and then an output signaled by an 

active RE line. This pattern is repeated until the simulation is completed. Figure VI.74 

contains a similar plot for a memory system with 32 banks. The primary difference is that 

the active RE lines are separated by 32 cycles rather than four as in Figure VI.73 because 

the memory ratios are matched to the number of banks. The resulting throughput is 1/32 

or approximately 0.03125 as indicated on the figure. 

This result presents a major obstacle to the architecture described in Chapter 0 

because one such pass is needed for each FFT. The next section describes the results 

obtained when permutation-based decoding is used for digit-reversed address patterns. 
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Figure VI.72 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=2 / NoDigits=10 (Conventional Decoding) 
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6.        Digit Reversed: Permutation-Based Memory Decoding 

As indicated in Chapter V, the digit reversal pattern should be equivalent to 

constant-stride address performance if the radix is equal to or greater than the number of 

banks. In the case of radix-2 with ten digit simulation, the condition is not met for any of 

the simulations. In spite of this, the performance in this instance is almost perfect as can 

be seen by viewing the steady-state throughput and the maximum latencies contained in 

Figure VI.75 and Figure VI.76. 

Figure VI.77, Figure VI.78, and Figure VI.79 contain the steady-state throughput 

plots for radix-4, 8 and 16 respectively. For each plot, when the radix is equal to or 

greater than the number of banks, an optimal steady-state throughput is obtained, as 

predicted in Chapter V (i.e., for four banks in Figure VI.77, four and eight banks in 

Figure VI.78, and four, eight, and sixteen banks in Figure VI.79). When the condition is 

not met, good performance is sometimes obtained anyway (e.g., 16 banks in Figure 

VI.77). In some instances poor performance is improved substantially by adding another 

cache element (e.g., eight banks in Figure VI.77 and 32 banks in Figure VI.78). 

In summary, the permutation-based digit-reversed simulation results confirmed 

the analysis described in Chapter V. In particular, when the radix is equal to or greater 

than the number of banks, performance is consistent with constant-stride address patterns. 

When it is not, the performance is mixed but over all it provides performance that may be 

acceptable, given this address pass is required only once for each FFT. 
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Figure VI.75 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=2 / NoDigits=10 (Permutation-Based Decoding) 
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Figure VI.76 Comparison of Theoretical Versus Simulated Maximum Latency for 
Radix=2 / NoDigits=10 (Permutation-Based Decoding) 
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Lower Bound for Steady-State Throughput 
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Figure VI.77 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=4 / NoDigits=5 (Permutation-Based Decoding) 
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Figure VI.78 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=8 / NoDigits=4 (Permutation-Based Decoding) 
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Figure VI.79 Comparison of Theoretical Versus Simulated Steady-State 
Throughput for Radix=16 / NoDigits=3 (Permutation-Based Decoding) 
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C.        GENERAL-PURPOSE COMPUTING EXPERIMENT 

The speedup, throughput, and latency plots for the general-purpose computer 

experiment are shown in Figure VI.80 through Figure VI.82. Adding cache elements 

increases both the speedup and throughput. However, this is accompanied by much 

larger latencies for the simulation runs with a larger number of banks. For four banks, 

speedup increases by 382 percent from standard interleaving simulation to the STM 

simulation with 64 cache elements. However, 294 percent of this improvement was 

obtained when the number of cache elements was increased to only four. The 64-bank 

simulations recorded a similar trend with 406 percent total improvement and 241 percent 

obtained with four cache elements from the standard interleaving case. 

Notice that although the speedup continues to improve when cache elements and 

the number of banks are increased, the throughput actually falls as the number of banks 

increases. This is because the memory ratio is matched to the number of banks and the 

difficulty of the problem increases proportionally as the number of banks increases. 

Recall the relationship between speedup, throughput, and the memory ratio as shown in 

Equation (II.7). 

A comparison of the standard interleaving case to the analytical results is shown 

in Table VI.5. Although the simulated results correlate with the analytic results, there is a 

constant bias of approximately one for each value. 

In summary, the general-purpose computing simulation suggests that speedup and 

throughput are enhanced by adding cache elements. Diminishing marginal returns is 

observed when only a few cache elements are added to the standard interleaving case. 

Number of 
Banks 50.56 

Simulated 
Results 

4 2.2 1.2 
8 3.2 2.2 
16 4.7 3.7 
32 7.0 5.8 

Table VL5 Comparison of Analytic 
Versus Simulated Speedup 
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Simulated Speedup 

NoCE 
NoBanks 

Figure VI.80 General-Purpose Experiment: Speedup 

Simulated Throughput 

NoCE 
NoBanks 

Figure VI.81 General-Purpose Experiment: Throughput 
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Simulated Maximum Latency 
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Figure VI.82 General-Purpose Experiment: Maximum Latency 
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VII.   CONCLUSIONS 

This section first summarizes the design decisions for the Butterfly Machine 

(BFM) Architecture followed by a design methodology for constructing this type of 

computer. The last section contains additional conclusions concerning this effort. 

A.       DESIGN DECISIONS 

The computational complexity of cyclostationary processing, combined with the 

requirement to design to a factor of real time FT and sample interval Ts, drives the need 

for a scaleable number of processors in the architecture. The BFM Architecture is based 

on pipelined vector processing techniques because it yields an efficient implementation 

for FFTs in particular, and vector operations in general. 

Radix-2* algorithms were selected based on the availability of efficient 

implementations in hardware and their widespread use and popularity. The radix values 

supported are two, four, eight, and sixteen. 

The number of memory banks allowed in the architecture is a power of two. This 

constraint simplifies the bank number selection hardware although 2k ± 1 bank 

architectures are almost competitive. 

The use of radix values and number of banks that are both powers of two require 

an alternative to conventional bank number decoding. Properly designed permutation- 

based bank decoding provides an efficient utilization of the memory. 

Another design decision is programmable permutation matrices. This provides 

for flexibility in general. The primary motivation is to enhance performance by allowing 

radix-r specific matrices. This design decision is closely related to two additional design 

decisions: 

• The decision not to use a specialized permutation matrix for the radix-2 

butterfly. 

• The decision to require that all specialized radix-r butterfly matrices also 

support constant strides of powers of two. 
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The computation of an FFT on an input vector of length 2* requires that a 

decision be made concerning the size of the radices and order in which the different radix 

operations are applied. The strategy taken for this architecture is to rewrite the length of 

the input vector as 

2* = Rm R (VII.l) 

where R is the largest valid radix for the length of the input vector. The largest value of 

m is chosen such that 

2'ar'a"d (VII.2) 
R>R. 

Therefore, m radix-i? butterfly passes will be made on the input vector followed by at 

most one radix - R butterfly pass. 

An inspection of Figure III.9 reveals that the memory that initially holds the input 

vector must be accessed by an address pattern of constant stride of one followed by a 

radix-i? pattern. Therefore, this memory will be loaded with the appropriate radix-/? 

permutation matrix. Each additional pass is characterized by a memory that will accept a 

set of inputs with a constant stride of one followed by read operation with a radix-r 

butterfly address pattern. The corresponding memory will use the appropriate radix-r 

permutation matrix. The appropriate matrix is the radix-i? permutation matrix for all 

passes with the possible exception of the last pass which will use the radix-/? 

permutation matrix if R exists for the decomposition of Equation (VII.l). 

The right-most memory in Figure (III.9) is written into with a constant stride of 

one. The data is read out with a digit-reversed pattern. In those cases where the vector 

length is such that the decomposition of Equation (VII.l) does not contain the factor R, 

then the required addressing pattern is a digit-reversed address pattern. If on the other 

hand, there is a factor of R in Equation (VII.l), then the address pattern is not strictly 

digit-reversed. However, the address pattern does have a characteristic of a constant 

stride of a power of two. In either case, if the radix is greater than the number of banks, 

then the performance is near optimum. 
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When the radix is less than the number of bank, the simulation results suggest that 

the steady-state throughput is near optimal when four cache elements are used for those 

cases examined in Chapter VI (See Figure VI.77 and Figure VI.78). These address 

patterns must be simulated in any final design to verify performance and to adjust the 

permutation matrices if the performance is not acceptable. 

The permutation matrices used for the digit-reversed pattern experiments were the 

constant stride powers of two matrices. A future research topic is to determine whether a 

tailored permutation matrix can be found for the digit reversed case. 

B.        STM DESIGN METHODOLOGY 

The design methodology for developing an STM memory begins with the 

processor and bulk store memory cycle times desired for the architecture. The ratio of the 

bulk store cycle time to the processor cycle time is the memory ratio, one of the three 

parameters necessary for STM memory. The memory ratio can be expressed as 

MR = 
T pr 

(VII.3) 

where 

Tbs is the cycle time for the bulk store, and 

T   is the cycle time for the processor. 

The ceiling function must be taken on the bulk store / processor cycle time ratio to yield 

an integer value that will permit the memory to process a memory request. 

The memory ratio dictates the number of banks required for the memory system. 

The number of banks is required to be a power of two in this design for simplicity of bank 

selection and must be greater than or equal to the memory ratio. 

The results in Chapter VI suggest that overall performance is constrained by the 

maximum latency and the maximum latency is approximately twice the memory ratio 

when permutation matrices are utilized for bank decoding. Since the memory ratio is tied 

directly to the number of banks, there is motivation to minimize the number of banks. 
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Once the number of banks has been selected, the last parameter to fix is the 

number of cache elements. Based on the results of Chapter VI, the number of cache 

elements is likely to be not less than four. However, cache elements are relatively 

inexpensive, assuming that they are implemented with very large scale integration. The 

actual number chosen is likely the largest number possible within the economic bounds of 

the fabrication process. 

Programmable permutation matrices allow the incorporation of performance 

enhancements when more advanced permutation matrices are discovered. In some 

circumstances, the performance of these matrices may be dependent upon more cache 

elements than was previously required. 

The last step of the design process it to construct permutation matrices for the 

architecture. Although there are many possible addressing patterns, there are a relatively 

small number when compared to general-purpose computing. All, or a selected set, can 

be simulated to verify the anticipated performance. The number of cache elements can be 

varied for sensitivity analysis. Permutation matrices may also be fine tuned to improve 

performance. 

C.       GENERAL CONCLUSIONS 

The preceding chapters describe a pipelined vector computer architecture 

designed to compute fast Fourier transforms (FFTs) efficiently. Other vector processing 

operations such as vector multiplication are also well suited for this architecture. Use of 

the constant geometry radix butterfly organization is a key design decision providing 

simplification in the address stream generation for radix-r passes. 

The memory system is the key component of a vector processor architecture. 

Addressing stream characteristics for general-purpose and vector processors are described 

in Chapter n. Banked interleaved memory remains the technique of choice for vector 

processors because of the high-performance requirements and the promise of exploiting 

the constant-stride address stream characteristic. This architecture is based on the 

requirement that data be fed into a vector processor at the rate of one data element per 

clock cycle for each vector. The constant-stride address stream characteristic is exploited 
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through the use of specially designed permutation matrices used for bank number 

decoding. 

The performance of STM memories using both conventional and permutation- 

based matrices was analyzed in Chapter V and Chapter VI. The preferred bank decoding 

scheme was with permutation matrices, based on performance. The results of Chapter VI 

indicate that optimum steady-state throughput is possible in all cases for constant-stride 

address patterns with a stride that is a power of two, as well as for radix-r butterfly 

patterns using tailored permutation matrices. In fact, both of these cases yield an upper 

bound of twice the memory ratio plus one. This is excellent given that the minimum 

latency for any interleaved system is the memory ratio plus two! The other address 

pattern, digit-reversed addressing, also yields the same performance as indicated above 

for constant-stride and radix-r butterfly addressing when the radix is greater than or equal 

to the number of banks. When it is not, the actual performance is in some instances 

similar to that noted above, and in others is somewhat less. These cases need to be 

simulated to determine the specific performance characteristics. One possible area of 

study is to determine whether permutation matrices can be designed specifically for digit- 

reversed patterns and still retain their suitability for constant stride and radix-r address 

patterns. 

The following is a list of further conclusions concerning the butterfly machine 

architecture and the STM memory described previously: 

• The use of BFMs provide a practical method for reducing the clock time 

needed for cyclostationary computing. The amount of reduction is variable 

and is determined by the degree to which parallelism is exploited. 

• The use of BFMs is scaleable over a substantial processing range and is 

limited by the number of backplane slots supported by the host. An 

architecture using a single BFM chip is first described which provides a 

baseline capability. Due to the parallelism inherent in many cyclostationary 

algorithms, a natural extension is to develop an architecture that incorporates 
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multiple copies of the one-chip architecture and connect them with dedicated 

high-speed data busses for data sharing. 

The BFM architecture requires large quantities of memory. This memory 

requirement can be accommodated using relatively slow low-cost bulk 

memory devices. In this investigation, each addressing stream had a 

dedicated memory. One area of future study is to determine if it is more 

effective to construct fewer larger memories than the configuration shown in 

Figure HI. 17. 

A good design requires that the number of banks be greater than or equal to 

the memory ratio. With the appropriate permutation matrix, the number of 

banks need not be greater than the memory ratio. Further, the number of 

cache elements can be limited to approximately four in most circumstances. 

STM is an effective technique for using relatively slow, inexpensive, bulk 

storage with the BFM architecture when the array lengths are large, relative to 

the latency. 
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Appendix  Matlab™ Source Code for STM Simulator 

% 
% 
/o 

Yo 
% 
% 
% 
% 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

'o 

% 
'o 

'o 

% 
'o 

File Name: 
Description: 
Programmer: 
Date Mod: 

stm.m 
Top level driver for split transaction memory 
Raymond F. Bernstein Jr. 
27 Oct 95 

% 
% 

% 
% 

% 
% 

Comments: 
3/08:   Empty modified to be a SF variable rather 

than a variable! 
3/13:   Slight cleanup of comments 
3/16:   Add event flags to catch activity to/from 

DRAM as is done to/from CPU. 
3/26:   Modify to accept only an address. Bank # 

is computed in gen_addr() 
4/14:   Modify to measure latency from the point of 

of issue by the processor 
4/22:   Modify to allow both ASCII and binary output 
4/23:   Performance enhancements (init_rec) 
10/27: Add PB bank selection 

function [] = 
stm(Fname,ASCII,Level,AList,NoBanks,NoCE,MemRatio,MemDecode,A) 
where 

Fname File name for saved data 
ASCII Determines the format of the output file 
Level Determines the level of detail of ouput saved in 

Fname. 
AList Address List. This is a matrix. Each row 

is of the form: [Address Bank# RW] 

NoBanks       Number of banks to be used in the simulation 
NoCE Number of Cache Elements to be used in the 

simulation 
MemRatio     Ratio of Dynamic to Static memory cycle time 
MemDecode 

0 - Conventional decoding 
1 - PB decoding using matrix A 

A                   PB decoding matrix 
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function [] = ... 
stm(Fname,ASCII,Level,AList,NoBanks,NoCE,MemRatio,MemDecode,A) 

% Check input arguments 
if ((MemDecode==0) & ((nargin<8)l(nargin>9))), 

fprintf(1,'Input Parm Error 1\n'); 
exit(-1); 

end; 
if ((MemDecode==1) & (nargin~=9)), 

fprintf(1,'Input Parm Error 2\n'); 
exit(-1); 

end; 
if ((NoCE<1) I (MemDecode<0) I (MemDecode>1) I (NoBanks<1) I ... 
(LevekO) I (Level>2) I (ASCIkO) I (ASCII>1) I ... 
((Level==2)&(ASCII==0))) , 

fprintf(1,'Input Parm Error: 3\n'); 
exit(-1); 

end; 
if (MemDecode==1), 

ADim = size(A); 
if (2AADim(1)~=NoBanks), 

fprintf(1,"Input Parm Error: 4\n'); 
exit(-1); 

end; 
clear ADim 

end; 

% If Permutation based decoding is chosen, permute the addresses 
% using the A matrix 
if (MemDecode==1), 

Addr = AList; 
[ResultVect,NoDigits] = pb_int(Addr, A, 0); 
AList(:,1) = ResultVect'; 

end; 
%%% Parameter initialization %%% 
% Simulation Parameters 
SysClk = 1; 
Curlnd = 1; 
%%% These variables are used for data collection %%% 
MemResp = zeros(1,2);     % 1 st variable is Boolean 
% 1-response occured; 
% 0-response did not occur. 
% 2nd variable indicates Bank responding 
ReqAllowed = zeros(1,3);   % 1st variable is Boolean. 
% 1-request was allowed; 
% 0-request was not allowed. 
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% 2nd variable indicates Bank responding 
% 3rd variable indicates address 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
LastAddr = 0; 
%%% Key Parameters %%% 
%NoBanks 
%NoCE 
%MemRatio 
ReqCount = MemRatio; 
%%% NoCE Adjustment for effective NoCE %%% 
NoCE = NoCE+1; 
%%% Bank Variables %%% 
% Note that each variable is two dimensional; the first variable is used 
% to specify an element within an array (e.g., Cache variables). The 
% second index is used to specify the bank number. 
% 
%%% Cache Array Elements %%% 
Index = zeros(NoCE,NoBanks); 
IndexN = Index; 
Address = zeros(NoCE,NoBanks); 
AddressN = Address; 
RW = zeros(NoCE,NoBanks); 
RWN=RW; 
Ready = zeros(NoCE,NoBanks); 
ReadyN=Ready; 
Data = zeros(NoCE,NoBanks); 
DataN=Data; 

%%% Counters %%% 
NAC = ones(NoBanks,1); 
NACN=NAC; 
CPC = ones(NoBanks,1); 
CPCN=CPC; 
OC = ones(NoBanks,1); 
OCN=OC; 
DCount = zeros(NoBanks,1); 
DCountN=DCount; 

%%% Flags %%% 
Empty = ones(NoBanks,1); 
PDC = zeros(NoBanks,1); 
PDCN=PDC; 
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%%% Signals %%% 
GRI = ones(NoBanks,1); % Initially all TRUE 
GR = 0; 
REI = zeros(NoBanks,1); % Initially all FALSE 
RE = 0; 
BS = zeros(NoBanks,1); 

%%% Global Counters %%% 
ReqC = zeros(NoBanks,1); 
ReqCN=ReqC; 
ResC = zeros(NoBanks,1); 
ResCN=ResC; 

ODataLen = length(AList)*2; 
OData = zeros(ODataLen,9); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Program Begins Here %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Initialize Save File 
if ASCII, 

fid=init_sf(Fname,NoBanks,NoCE,MemRatio,Level); 
end; 
done = 0; 
fprintf(1,'Simulation Begins ... \n'); 
fprintf(1,'# Banks: %d\n',NoBanks); 
fprintf(1,'# Cache Elements: %d\n',NoCE-1); 
fprintf(1 ,'# Memory Ratio: %d\n',MemRatio); 
fprintf(1 ,'# Memory References: %d\n',length(AList)); 
Nlog = log10(length(AList)); 
if (Nlog <=2), 

DelMark= 1; 
fprintf(1,'Each tic is 1 cycle\n\n'); 

elseif (Nlog <=3) 
DelMark = 10; 
fprintf(1,'Each tic is 10 cycles\n\n'); 

else 
DelMark=100; 
fprintf(1 ,'Each tic is 100 cycles\n\n'); 

end; 
Mark = 1; 

226 



while -done, 
if (Mark >= DelMark), 

fprintf(1,'.'); 
Mark = 1; 

else 
Mark = Mark + 1; 

end; 
if (rem(SysClk,50*DelMark)==0), fprintf(1,'\n'); 
end; 
GRI = evaLgri(NoBanks,NAC,OC,Empty,NoCE); 
REI = evaLrei(REI,ResC,lndex,OC,Ready); 
Empty = ev_empty(NAC,OC,CPC,NoBanks); 

[Addr,BankSelNo,WRFIag,LastAddr,Curlnd]... 
= gen_addr(Curlnd,LastAddr,AList,NoBanks,GRI); 

% Initialize recording variables for a time slice 
[MemResp ReqAllowed DRAMResp DRAMIssued]... 

= init_rec(NoBanks,Addr); 
for BankNo = 1:NoBanks, 

%%% Respond to Memory Read %%% 
[OCN,ResCN,MemResp,OutData]= ... 

mem_resp(lndex,RW,Ready,Data,NAC,CPC, ... 
OC,REI,ResC.MemResp,BankNo,NoCE, ... 
OCN.ResCN); 

%%% Service Dynamic Memory %%% 
[ReadyN,DataN,CPCN,DCountN,PDCN,DRAMResp,DRAMIssued]= 

ser_dmem(Address,RW,Ready,Data,NAC,CPC,OC, ... 
DCount,PDC,BankNo,ReqCount,NoCE, ... 
ReadyN,DataN,CPCN,DCountN,PDCN, ... 
DRAMResp.DRAMIssued); 

%%% Service Memory Request %%% 
if BankSeINo >=0, 

[lndexN,AddressN,RWN,ReadyN,DataN,NACN,ReqCN,ReqAllowed]= 
se^mem^lndex.Address.RW.Ready.Data.NAC.CPCOCGRI,... 
BS,ReqC,ReqAllowed,BankNo,Addr,BankSelNo,WRFIag,NoCE, . 
lndexN,AddressN,RWN,ReadyN,DataN,NACN,ReqCN); 
end; % if BankSeINo 

end; %for 

lndex=lndexN; Address=AddressN; RW=RWN; 
Data=DataN; Ready=ReadyN; 
NAC=NACN; CPC=CPCN; OC=OCN; DCount=DCountN; 
PDC=PDCN; ReqC=ReqCN; ResC=ResCN; 
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% Evaluate the SFs in order to record the values that exist 
% during the cycle. It also causes the simulation to 
% complete at the correct time. 
GRI = evaLgri(NoBanks(NAC(OC,Empty,NoCE); 
REI = evaLrei(REI,ResC,lndex,OC,Ready); 
Empty = ev_empty(NAC,OC,CPC,NoBanks); 
done = sim_comp(LastAddr,Empty); 

% Save Results 
if ASCII, 

sav_res(lndex,Address,RW,Ready,Data,NAC,CPC, ... 
OC,DCount,Empty,PDC,GRI,REI,BS,ReqC,ResC,SysClk, 
NoBanks,BankSelNo,WRFIag,NoCE,fid,Level,MemResp,.. 
ReqAllowed,DRAMResp,DRAMIssued,MemRatio); 

else, 
if ReqAllowed(l); 

ADDR = Address(modulo1(NAC(ReqAllowed(2))-1,NoCE), ... 
ReqAllowed(2)); 

else 
ADDR = -1; 

end; 
if MemResp(1); 
ADDR2 = Address(modulo1(OC(MemResp(2))-1,NoCE),MemResp(2)); 
else 

ADDR2 = -1; 
end; 
Epoch = [SysClk BankSeINo WRFlag ReqAllowed(l) ... 

ReqAllowed(3) ADDR MemResp(1) ADDR2 MemResp(2)]; 
OData(SysClk,1:9) = Epoch; 
if ODatal_en==SysClk, 

ODataLen = ODataLen*2; 
TData = OData; 
OData = zeros(ODataLen,9); 
OData(1 :SysClk,1:9) = TData; 

end; 
end; 

SysClk = SysClk + 1; 
end; %while 
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if ASCII, 
fclose(fid); 

else 
OData = OData(1 :SysClk-1,1:9); 
fname = [Fname, '.gr1']; 
fid = fopen(fname,'w'); 
Tmp = [NoBanks NoCE Mem Ratio]; 
fwrite(fid,Tmp,'long'); 
fclose(fid); 

fname = [Fname, '.gr2']; 
fid = fopen(fname, V); 
fwrite(fid,OData,'long'); 
fclose(fid); 

end; 
fprintf(1 AnTotal Number of Cycles= %d\n\n',SysClk-1); 
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% File Name: 
% Description: 
% 
% Programmer: 
% Date Mod: 
% 
% function Empty: 
% 

ev_empty.m 
Evaluate the status of Empty flags 
Internal flag within all banks. 
Raymond F. Bernstein Jr. 
07 Mar 95 

= ev_empty(Empty,NAC,OC,CPC) 

% where 
% 
%       Empty 
%       NAC 
%       OC 
%       CPC 

Empty flag 
Next Available Counter 
Output Counter 
Current Processed Counter 

% 
function Empty = ev_empty(NAC,OC(CPC,NoBanks) 

fori=1:NoBanks, 
Empty(i) = (NAC(i)==CPC(i)) & (CPC(i)=OC(i)); 

end; 
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o, 

% File Name: eval_gr.m 
% Description: Evaluate the status of the Grant Request 
%> control line based on the values of the Grant Request 
% Internal controls within each CE. 
% Programmer: Raymond F. Bernstein Jr. 
% Date Mod:   6 Feb 95 
% 
% function status = evaLgr(GRI) 
% where 
%       status TRUE if MR active; FALSE otherwise 
%       GRI Grant Request Internal 
% 
function status = evaLgr(GRI) 

if min(GRI)==0, 
status = 0; 

else 
status = 1; 

end; 
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o, 

% File Name: evaLgri.m 
% Description: Evaluate the status of the Grant Request 
% Internal signal within all banks. 
% Programmer: Raymond F. Bernstein Jr. 
% Date Mod: 22 Feb 95 
% 
% function GRI = eval_gri(GRI,NAC,OC,Empty) 
% where 
Vo       GRI Grant Request Internal lines for the memory banks. 
% 1 - indicates that bank is available; 
% 0 - indicates that bank is unavailable. 
%       NAG Next Available Counter 
Vo       OC Output Counter 
%       Empty Empty flag 
% 
function GRI = eval_gri(NoBanks,NAC,OC,Empty,NoCE) 

fori=1:NoBanks, 
GRI(i) = (modulo1(NAC(i)+1,NoCE)~=OC(i)) I (Empty(i)==1); 

end; 

o, 
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% File Name: eval_rei.m 
% Description: Evaluate the status of the Request Enable 
% Internal signal within all banks. 
% Programmer: Raymond F. Bernstein Jr. 
% Date Mod: 21 Feb 95 
% 
% function REI = eval_rei(REI,ResC,lndex,OC,Ready); 
% where 
%       REI Request Enable Internal lines for the memory banks. 
% 1 - indicates bank has data available; 
% 0 - indicates bank doesn't have data available. 
%       ResC Response Counter 
%       Index Processing Index 
%       OC Output Counter 
%       Ready Ready flag 
% 
function REI = eval_rei(REI,ResC,Index.OC,Ready) 

N = length(REI); 
for i=1:N, 

REI(i) = (ResC(i)==lndex(OC(i),i)) & Ready(OC(i),i); 
end; 
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% File Name: init_rec.m 
% Description: Initializes the recording variables prior to servicing 
Vo a bank. The recording variables, MemResp, ReqAllowed, 
% DRAMResp, and DRAMIssued are used to record 
Vo simulation events and are not a part of the simulation. 
% Programmer: Raymond F. Bernstein Jr. 
% Date Mod: 23 Jun 95 Expanded ReqAllowed to include address 

o, 

o, 

% 
o, 

o, 

% Evaluate GR (Grant Request) 
% function [MemResp, ReqAllowed, DRAMResp, DRAMIssued] = 
% init_rec(NoBanks) 
% where 
%       MemResp    Two field variable used to record the memory response 
% First Field: Boolean indicating whether a memory response 
% occurred 
% Second field: Bank number of the responding field 
%       ReqAllowed Three field variable used to record whether a memory 
% request was permitted 
% First Field: Boolean indicating whether a memory request 
% occurred 
% Second field: Bank number of the responding field 
% Third Field: Memory Address 
%       DRAMResp  Boolean indicating the bulk store responded in the cycle 
%       DRAMIssued Boolean indicating the bulk store was issued during the % 

cycle 
Vo       NoBanks       Number of banks for the memory to be simulated 
°/c 
function [MemResp, ReqAllowed, DRAMResp, DRAMIssued] = ... 

init_rec(NoBanks,Addr) 

MemResp = [0 -1]; 
ReqAllowed = [0 -1 Addr]; 

DRAMResp = zeros (2, NoBanks); 
DRAMResp(1,1 :NoBanks) = zeros(1 .NoBanks); 
DRAMResp(2,1:NoBanks) = -1*ones(1,NoBanks); 

DRAMIssued = zeros(3,NoBanks); 
DRAMIssued(1,1 :NoBanks) = zeros(1 .NoBanks); 
DRAMIssued(2,1:NoBanks) = -1*ones(1, NoBanks); 
DRAMIssued(3,1:NoBanks) = -1*ones(1,NoBanks); 
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% inii _sf.m 
% Initialize Save File 
% fur 
% 
%wh 

iction fid=init_sf(fname,NoBanks,NoCE,MemRatio,Level) 

ere 
% fid File id of the opened save file 
% fname File name for saved data 
% NoBanks Number of Memory Banks in the simulation 
% NoCE Number of Cache Elements in the simulation 
% Mem Ratio Ratio of dynamic to static memory cycle 
% 
% 
funct 

Level Level of detail to save for analysis 

ion fid = init. _sf(fname, NoBanks, NoCE, MemRatio, Level) 

fname = [fname, '.gr']; 
fid = fopen(fname,'wt'); 

if Level==0; 
fprintf(fid,' Number of Banks: %s ',num2str(NoBanks)); 
fprintf(fid,' Number of Cache Elements: %s\n',num2str(NoCE-1)); 
fprintf(fid,'Dynamic/Static Mem Cycle Time: %s\n\n',... 

num2str(MemRatio)); 
elseif Level==1; 

fprintf(fid,' Number of Banks: %s\n',num2str(NoBanks)); 
fprintf(fid,' Number of Cache Elements: %s\n',num2str(NoCE-1)); 
fprintf(fid,'Dynamic/Static Mem Cycle Time: %s\n\n',... 

num2str(MemRatio)); 
fprintf(fid, ClkBank# WR ReqAllowed MemResp Bank#\n'); 

elseif Level==2; 
fprintf(fid, %s\n',num2str(NoBanks)); 
fprintf(fid, %s\n',num2str(NoCE-1)); 
fprintfjfid, %s\n',num2str(MemRatio)); 

end; 
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% File Name: mem_resp.m 
Vo Description: Evaluate and process a memory response if 
% appropriate. 
% Programmer: Raymond F. Bernstein Jr. 
Vo Date Mod: 07 Mar 95 

o, 

o. 

% 
o, % Comments: 3/7: Empty modified to be a SF variable rather 
% than a flag. 
% 

% function [lndex,Address,RW,Ready,Data,OC,Empty,REI,ResC]= 
% mem_resp(lndex,Address,RW,Ready,Data,NAC,CPC, 
% OC,Empty,REI,RE,ResC,BankNo,NoCE) 
To 

% See definitions in Chapter V, Section B, Subsection 1) for definitions 
% 
function [OCN,ResCN,MemResp,OutData]= ... 

mem_resp(lndex,RW,Ready,Data,NAC,CPC, ... 
OC,REI,ResC,MemResp,BankNo,NoCE,... 
OCN.ResCN) 

OutData = -1; 
RE = max(REI); 
if(REI(BankNo)==1), 

OutData=Data(OC(BankNo),BankNo); 
ResCN(BankNo) = ResC(BankNo) + 1; 
OCN(BankNo) = modulo1(OC(BankNo)+1,NoCE); 
MemResp = [1 BankNo]; 

elseif (RE==1) 
ResCN(BankNo) = ResC(BankNo) + 1; 

end; 
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% File Name: modulol .m 
% Description: Performs the remainder operation on two numbers 
% but the result is mapped to 1 ..K for modulol (x,k) 
% Programmer:       Raymond F. Berntsein Jr. 
% Date Mod: 6 Feb 95 
% 
% function result = modulol (x,k) 
% where 
%       k Is the modulus number. 
%       x Is the number to be acted upon. 
% 
function result = modulol (x,k) 

result = rem(x,k); 
if result==0, 

result = k; 
elseif result<0, 

done = 0; 
while -done, 

result = result + k; 
done = result>0; 

end; %while 
end; 
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% File Name: pb_int.m 
% Description: generates a bank selection sequence based on a PB 
% 
% 
% Programmer: 

matrix A 

Raymond F. Berntsein Jr. 
% Date Mod: Oct95 
% Notes: 
% 
% function [ResultVect, NoDigits] = pb_int(Addr, A, fname) 
% where: 
%       ResuItVect Output vector of permuted bank numbers 
%       NoDigits Number of digits in address pattern. The return value 
%       Addr Input Address stream 
% will be the number of bits required to represent the 
% largest number in Addr. 
%       A Permutation matrix 
%       fname Name of the file to store the resulting bank selection 
% patterns. 
% 
function [ResultVect.NoDigits] = pb_int(Addr, A, fname) 

if ((nargin~=3)), 
fprintf(1,'Invalid parameters for PB conversion type\n'); 
exit(-1); 

end; 
% Assuming working with base 2 
B = 2; 
% Make it a column matrix 
s = size(Addr); 
if s(2)>s(1), 

Addr = Addr'; 
end; 
% Make it addresses only (i.e., no read/write into) 
ifs(2)~=1, 

Addr = Addr(:,1); 
end; 
maxAddr = max(Addr); 
Count = ceil(log10(maxAddr)/log10(2)); 
NoDigits = Count; 
M = length(Addr); 
done = 0; 
i = 1; 
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while -done, 
bm(:,i) = rem(Addr,2); 
Addr = fix(Addr/2); 
if i==Count, 

done = 1; 
eise, 

i=i+1; 
end; 

end; 
bm = fliplr(bm); 

% Binary version of addr (bm) is complete. Now use only the k LSBs to 
% compute the bank (i.e., k is the number of columns in A 
As = size(A); 
bms = size(bm); 
NoColA = As(2); 
NoColbm = bms(2); 
if (bms(2)>As(2)), 

bm = bm(:,NoColbm-NoColA+1:NoColbm); 
elseif (bms(2)<As(2)), 

A = A(:,NoColA-NoColbm+1 :NoColA); 
end; 
ResultVect = A*bm'; 
ResultVect = rem(ResultVect',2); 

% Create a Powers matrix 
PowerVect = ones(size(ResultVect)); 
s = size(ResultVect); 
for i=0:s(2)-1, 

PowerVect(:,s(2)-i) = PowerVect(:,s(2)-i)*(BAi); 
end; 

ResultVect = ResultVect.*PowerVect; 
ResultVect = sum(ResultVect'); 

if fname~=0, 
fid = fopen([fname,'.bks'],'wt'); 
fprintf(fid,'%d\n,,ResultVect'); 
fclose(fid); 

end; 

239 



% File Name: sav_res.m 
% Description: Save the results of the pass for analysis. 
% Programmer: Raymond F. Bernstein Jr. 
% Date Mod: 14Jun95 
°/e o 

% Comments: 3/13: Provide for 2 cycles per page for full dump. 
% 6/14: Add address issued to calculate all latency 
%> Level 2 only °/ 
0/ /o 

% sav_res(lndex,Address,RW,Ready,Data,NAC)CPC, ... 
% OC>DCountlEmpty,PDC>GRI>REI,BS,ReqC,ResC); 
% where 
% 
% See definitions in Chapter V, Section B, Subsection 1) for definitions 
% 
function sav_res(lndex,Address,RW,Ready,Data,NAC,CPC, ... 

OC,DCount,EmptyIPDC,GRI,REI,BS,ReqC>ResC>SysClk>... 
NoBanks,BankSelNo,RWFIag,NoCE,fid,Level,MemResp,... 
ReqAllowed,DRAMResp,DRAMIssued,MemRatio) 

if Level == 0; % Full Dump 
fprintf(fid,'***************** Clk=%3d ******************\n') SysClk); 

fork=1:NoBanks, 
fprintf(fid,'Bank#: %3d\n',k); 
fprintf(fid,'***Cache Element Contents***\n'); 
fprintf(fid,'No Index AddrRW Rdy Data\n'); 
form=1:NoCE, 

%% fprintf(1 ,'m= %d\n',m); 
fprintf(fid,'%4d %5d %5d %2d %3d %8d', ... 

m, lndex(m,k), Address(m,k), RW(m,k), Ready(m.k), 
Data(m,k)); 

if (ReqAllowed(1)==1)... 
& (ReqAllowed(2)==k)... 
& (modulo1(NAC(k)-1,NoCE)==m), 

fprintf(fid,' <--CPU\n'); 
elseif (MemResp(1)==1) ... 

& (MemResp(2)==k)... 
& (modulo1(OC(k)-1,NoCE)==m), 

fprintf(fid,' ->CPU\n'); 
elseif (DRAMResp(1 ,k)==1) ... 

& (DRAMResp(2,k)==k) ... 
& (modulo1(CPC(k)-1,NoCE)==m), 

fprintf(fid,' <--DRAM\n'); 
elseif (DRAMIssued(1,k)==1)... 

& (DRAMIssued(2,k)==k)... 
& (modulo1(CPC(k),NoCE)==m), 
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fprintf(fid/ -->DRAM\rV); 
elsefprintf(fid,'\n'); 
end; % if.. elseif 

end; % for m=1 
fprintf(fid/NAC= %d',NAC(k)); 
fprintf(fid,'OC = %d',OC(k)); 
fprintf(fid,'CPC= %d',CPC(k)); 
fprintf(fid/DCount=%d\n',DCount(k)); 
fprintf(fid/Empty=%d',Empty(k)); 
fprintf(fid,'PDC= %d',PDC(k)); 
fprintf(fid,'GRI= %d',GRI(k)); 
fprintf(fid,'REI= %d\n',REI(k)); 
fprintf(fid,'ReqC= %d',ReqC(k)); 
fprintf(fid,,ResC=%d\n\n',ResC(k)); 

end; %for k=1 
fprintf(fid,'ClkBank# WR MemResp Bank# ReqAllowed\n'); 
fprintf(fid,'%4d ',SysClk); 
fprintf(fid,'%5d '.BankSeINo); 
fprintf(fid,'%2d '.RWFlag); 
fprintf(fid,'%7d ', MemResp(1)); 
fprintf(fid,'%5d', MemResp(2)); 
fprintf(fid,'%10d ', ReqAllowed(l)); 
if ~(rem(SysClk,2)), fprintf(fid,,\n\f); 
else, fprintf(fid,'\n\n\n\n'); 
end; 
%end; if Level==0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
elseif Level == 1; % Validate paper studies 

fprintf(fid,'%4d \SysClk); 
fprintf(fid,'%5d ',BankSelNo); 
fprintf(fid,'%2d \RWFIag); 
fprintf(fid,'%10d ', ReqAllowed(l)); 
fprintf(fid,'%7d ', MemResp(1)); 
fprintf(fid,'%5d ', MemResp(2)); 
fprintf(fid,'\n'); 

%end; % elseif Level==1 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
elseif Level == 2; % Data Analysis 

fprintf(fid,'%4d \SysClk); 
fprintf(fid,'%5d \BankSelNo); 
fprintf(fid,'%2d \RWFIag); 
fprintf(fid,'%10d %5d ,,ReqAllowed(1),ReqAllowed(3)); 
if ReqAllowed(l); 

fprintf(fid,'%4d ', ... 
lndex(modulo1 (NAC(ReqAllowed(2))-1 ,NoCE),ReqAllowed(2))); 

else fprintf(fid," -1'); 
end; 
fprintf(fid,'%7d ', MemResp(1)); 
if MemResp(1); 

fprintf(fid,'%4d ',... 
lndex(modulo1 (OC(MemResp(2))-1 ,NoCE),MemResp(2))); 

else fprintf(fid,' -1'); 
end; 
fprintf(fid,'%5d ', MemResp(2)); 
fprintf(fid,'\n'); 

end; % elseif Level==2 
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o, 

% File Name: ser_dmem.m 
% Description: Service dyamic memory within a bank 
% Programmer:       Raymond F. Bernstein Jr. 
% Date Mod: 08 Mar 95 
% Comments: 3/8: modified to require ReqCount cycles to complete a 
Vo DRAM cycle rather than ReqCount+1 cycles. 
% function [ReadyN,DataN,CPCN,DCountN,PDCN,DRAMResp,DRAMIssued]= 
% ser_dmem(Address,RW,Ready,Data,NAC,CPC,OC, ... 
% DCount,PDC,BankNo,ReqCount,NoCE, ... 
% ReadyN,DataN,CPCN,DCountN,PDCN, ... 
% DRAMResp.DRAMIssued); 
% 
% See definitions in Chapter V, Section B, Subsection 1) for definitions 
% 
function [ReadyN,DataN,CPCN,DCountN,PDCN, ... 

DRAMResp,DRAMIssued]= ... 
ser_dmem(Address,RW,Ready,Data,NAC,CPC,OC, ... 

DCount,PDC,BankNo,ReqCount,NoCE, ... 
ReadyN.DataN.CPCN.DCountN.PDCN, ... 
DRAMResp.DRAMIssued) 

SDRC = -PDC(BankNo) & (CPC(BankNo) ~= NAC(BankNo)) & ... 
(RW(CPC(BankNo))==1); 

SDWC = -PDC(BankNo) & (CPC(BankNo) ~= NAC(BankNo)) & ... 
(RW(CPC(BankNo))==0); 

if(SDRC==1), 
DCountN(BankNo) = 1; 
PDCN(BankNo) = 1; 
DRAMIssued(:,BankNo) = [1; BankNo; 1]; 

elseif(SDWC==1),       ; 
DCountN(BankNo) = 1; 
PDCN(BankNo) = 1; 
DRAMIssued(:,BankNo) = [1; BankNo; 0]; 

elseif PDC(BankNo)==1, 
DCountN(BankNo) = DCount(BankNo) + 1; 
if DCountN(BankNo)==ReqCount, 

DataN(CPC(BankNo),BankNo) = 77777; 
ReadyN(CPC(BankNo), BankNo) = 1; 
CPCN(BankNo) = modulo1(CPC(BankNo)+1,NoCE); 
PDCN(BankNo) = 0; 
DRAMResp(:,BankNo) = [1; BankNo]; 

end; % if 
end; % elseif 
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o, 

% File Name: ser_memr.m 
% Description: Service memory requests from the processor. 
Vo Programmer:       Raymond F. Bernstein Jr. 
% Date Mod: 14Jun95 Added address to ReqAllowed 
% 
% function [] ser_memr(lndex,Address,RW,Ready,Data,NAC,CPC, ... 
Vo OCDCount.Empty.PDC.GRI.REI.BS.ReqCResC.NoCE); 
3/o % 
% See definitions in Chapter V, Section B, Subsection 1) for definitions 
°/c o 

function [lndexN,AddressN,RWN,ReadyN,... 
DataN.NACN.ReqCN.ReqAllowed] = ... 
ser_memr(lndex,Address,RW,Ready,Data,NAC,CPC,OC,GRI,... 

BS.ReqC.ReqAllowed.BankNo.Addr.BankSelNo.RWFlag, ... 
NoCE,lndexN,AddressN,RWN,ReadyN,DataN,NACN,ReqCN) 

if BankSelNo>=0, 
if (GRI(BankSelNo)==1) & (BankSelNo==BankNo), 

lndexN(NAC(BankNo),BankNo) = ReqC(BankNo); 
AddressN(NAC(BankNo),BankNo) = Addr; 
RWN(NAC(BankNo),BankNo) = RWFlag; 
DataN(NAC(BankNo),BankNo) = Addr; 
ReadyN(NAC(BankNo),BankNo) = 0; 
ReqCN(BankNo) = ReqC(BankNo) + 1; 
NACN(BankNo) = modulo1(NAC(BankNo)+1,NoCE); 
ReqAllowed = [1 BankNo Addr]; 

elseif GRI(BankSelNo)==1, 
ReqCN(BankNo) = ReqC(BankNo) + 1; 

end; 
end; 
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% File Name: ser_memr.m 
% Description: Service memory requests from the processor. 
% Programmer:       Raymond F. Bernstein Jr. 
% Date Mod: 14 Jun 95 Added address to ReqAllowed 
% 
% function [] ser_memr(lndex,Address,RW,Ready,Data,NAC,CPC,... 
% OC,DCount,Empty,PDC,GRI,REI,BS,ReqC,ResC,NoCE); 
% 
% See definitions in Chapter V, Section B, Subsection 1) for definitions 
% 
function [lndexN,AddressN,RWN,ReadyN,DataN,... 

NACN.ReqCN,ReqAllowed] = ... 
ser_memr(lndex,Address,RW,Ready,Data,NAC,CPC,OC,GRI,... 

BS,ReqC,ReqAllowed,BankNo,Addr,BankSelNo,RWFIag,NoCE, 
lndexN,AddressN,RWN,ReadyN,DataN,NACN,ReqCN) 

if BankSelNo>=0, 
if (GRI(BankSelNo)==1) & (BankSelNo==BankNo), 

lndexN(NAC(BankNo),BankNo) = ReqC(BankNo); 
AddressN(NAC(BankNo),BankNo) = Addr; 
RWN(NAC(BankNo),BankNo) = RWFlag; 
DataN(NAC(BankNo),BankNo) = Addr; 
ReadyN(NAC(BankNo),BankNo) = 0; 
ReqCN(BankNo) = ReqC(BankNo) + 1; 
NACN(BankNo) = modulo1(NAC(BankNo)+1,NoCE); 
ReqAllowed = [1 BankNo Addr]; 

elseif GRI(BankSelNo)==1, 
ReqCN(BankNo) = ReqC(BankNo) + 1; 

end; 
end; 
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sim_comp.m 
Evaluate if the simulation is completed 
Raymond F. Bernstein Jr. 
03 Mar 95 

% File Name: 
% Description: 
% Programmer: 
% Date Mod: 
% 
% function done = sim_comp(l_astAddr,Empty) 
% where 

done 1 - Indicates the the simulation is complete 
0 - Indicates it is not complete 

LastAddr       1 - Indicates more than one more memory references are 
to come 

0 - Indicates the last memory reference is being requested 
1 - Indicates no more memory references will be requested 

Empty          Cache Element array indicating whether a memory bank 
is empty (i.e., no memory requests are pending to be 
processed. 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
function done = sim_comp(LastAddr,Empty) 

AIIEmpty = min(Empty); 
done = AIIEmpty & (LastAddr<0); 
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% File Name: m_anal.m 
% Description: 
% 

Organize data in graphical form for analysis of memory 
data from stm. 

% Programmer: 
% Date Mod: 

Raymond F. Bernstein Jr. 
29 Oct 95 

% fname 
% ASCII 
% 
% 
% Apattern 
% WinLen 
% PlotFlag 
% 
% 
% Length 
% PrintFlag 
% 
% 

% 
% function [TP,S,MaxL,AvgL,StdL,SSTP,TR] = 
% m_anal(fname,ASCII,Apattem,WinLen,PlotFlag,Length,PrintFlag) 
% where 

Name of the file containing data produced by stm 
Indicates whether fname is stored as ASCII or binary 
0 - Binary 
1 - ASCII 
Short description of the Address pattern 
Length of the smoothing window for throughput 
Specifies the number and types of plots 
0 No plot 
1 One plot 
Specifies # pts used in a plot 
0 - Print to Screen 
1 - Print to postscript file 
2 - Print directly to default printer 

function [TP,S,MaxL,AvgL,StdL,SSTP,TR] = ... 
m_anal(fname,ASCIi,Apattem,WinLen, PlotFlag, Length, PrintFlag) 

if (ASCII<0)l(ASCII>1)l(WinLen<0)l(PlotFlag<0)l... 
(PlotFlag>1)l(Length<0)l(PrintFlag>2)l(PrintFlag<0), 

fprintf(1 ,'m_anal::lncorrect parameters!!!\n'); 
exit; 

end; 

% Read data in from the file 
if ASCII, 

fnamel = [fname, '.gr']; 
fid = fopen(fname1 ,'rt); 
NoBanks = fscanf(fid,'%d',1); 
NoCE=fscanf(fid,'%d',1); 
Mem Ratio = fscanf(fid,'%d',1); 

[Data.COUNT] = fscanf(fid,'%d,,inf); 
fclose(fid); 
NoRows = COUNT/9; 
for i=1:NoRows, 
DAry(i,1:9)= Data((i-1 )*9+1 :(i-1 )*9+9)'; 

end; 
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else 
fnamel = [fname, '.gr1']; 
fid = fopen(fname1 ,'r'); 
Tmp = fread(fid,3,'long'); 
NoBanks = Tmp(1); 
NoCE = Tmp(2); 
MemRatio = Tmp(3); 
fclose(fid); 
fnamel = [fname, '.gr2']; 
fid = fopen(fname1 ,'r'); 
[Data, COUNT] = fread(fid,inf,'long'); 
fclose(fid); 
NoRows = COUNT/9; 
for i=1:9, 

DAry(1:NoRows,i) = ... 
Data((i-1 )*NoRows+1 :(i-1 )*NoRows+NoRows); 

end; 
end; 

% Calculate the Latency 
% Handle the first one seperate 
CAddr=DAry(1,6); 
k = 1; 
while DAry(k,8)~=CAddr, 

k = k+1; 
end; %while 
OAry(1,1) = k; 
LastLatency = OAry(1,1); 
% Now do the remaining rows 
for i=2:NoRows, 

if DAry(i,5)==-1, 
OAry(i,1) = LastLatency; 

elseif DAry(i,5) == DAry(i-1,5), 
OAry(i,1) = LastLatency; 

else 
k=i; 
while (DAry(k,6)==-1), 

k = k+1; 
end; 
Clndex = DAry(k,6); 
while DAry(k,8)~=Clndex, 

k = k+1; 
end; %while 
OAry(i,1) = k-i+1; 
LastLatency = OAry(i,1); 

end; 
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OAry(i,2)=DAry(i,4); % Request Allowed 
OAry(i,3)=DAry(i,7); % Memory Response 

end; %for 

MaxL=max(OAry(:, 1)); 
Avgl_=mean(OAry(:,1)); 
StdL=std(OAry(:,1)); 

%%% Throughput %%% 
SmoothWin = ones(Winl_en,1); 
Throughput = conv(SmoothWin,OAry(:,3))/Winl_en; 
OAry(:,4) = ThroughPut(1 :length(OAry)); 
TotalThroughPut = sum(OAry(:,3))/length(OAry); 
TP = TotalThroughPut; 

%%% Calculate length of effective response %%% 
%%%%%%%%%%%%%%%%%%%%%%%%% 
if Length==0 I Length>length(OAry), 

Length = length(OAry); 
XAxisLbl = 1:Length; 

else 
XAxisLbl = 1:Length; % Use user specified length 

end; 

%%% Steady State Throughput %%% 
%%% Transient Time %%%%%%%% 
SSTP = OAry(1,4); 
TR=1; 
for i=2:Length, 

if OAry(i,4)~=SSTP, 
SSTP = OAry(i,4); 
TR = i; 

end; 
end; 
TR = TR - WinLen+1; 

%%% Check validity of SSTP %%% 
if (TR>=0.5*Length) 

SSTP = mean(OAry(0.50*Length:0.75*Length,4)); 
end; 
if Length==0 I Length>length(OAry), 

Length = length(OAry); 
XAxisLbl = 1:Length; 

else 
XAxisLbl = 1:Length; % Use user specified length 

end; 
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%%% Speed Up %%% 
S = TotaiThroughPut*MemRatio; 

%%% Clean Up %%% 
0Ary(:,2) = OAry(:,2)*0.25; % Request Allowed (GR) 
OAry(:,3) = OAry(:,3)*0.50; % Memory Response (RE) 

%%% Graphics Plot %%% 
if Length==0 I Length>length(OAry), 

Length = length(OAry); 
XAxisLbl = 1:Length; 

eise 
XAxisLbl = 1:Length; % Use user specified length 

end; 

if (PlotFlag==0), 
% Do nothing 

else % Plot one figure 
if (PrintFlag==0), 

figure; 
end; 
subplot(3,1,1); 
plot(XAxisLbl,OAry(1:Length,1));grid; 
ylabel('Latency'); 
title(['Plot ID: \Apattem, ... 

'# Banks=,,num2str(NoBanks), ... 
' #CEs=',num2str(NoCE), ... 
' Mem Ratio=',num2str(MemRatio)]); 

axis([0 Length 0 MaxL*1.2]); 
subplot(3,1,2); 
plot(XAxisLbl,OAry(1:Length,4));grid; 
ylabel(Throughput'); 
title(['S=',num2str(S),... 
'Avg TP=',num2str(TotalThroughPut), ... 
'MaxL=',num2str(MaxL), ... 
'AvgL=',num2str(AvgL), ... 
'StdL=',num2str(StdL)]); 
axis([0 Length 0 1.2]); 
subplot(3,1,3); 
plot(XAxisLbl,OAry(1:Length,2:3));grid; 
xlabel(Time (Cycles)'); 
ylabelj'STM Status'); 
title(['SSTP=',num2str(SSTP), ... 
TR=,,num2str(TR)]); 
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end; 

axis([0 Length 0 0.6]); 
ah = gca; 
settah.'YTick'.tO; 0.25; 0.5]) 
se^ah/YTickLabels'.r VGR'i'RE']); 
If (PrintFlag==1), 

se^gcf/PaperPosition'^O^S 2.5 5.8 8.2]); 
eval(['print ',fname,' -deps2']); 
title(['S=',num2str(S),... 

'AvgTP=',num2str(TotalThroughPut), 
'MaxL=',num2str(MaxL), ... 
'AvgL=',num2str(AvgL), ... 
'StdL=',num2str(StdL)]); 

end; 
if (PrintFlag==2), 

orient tal! 
print; 

end; 
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