
WL-TR-95-1119

AVIONICS SOFTWARE REENGINEERING
TECHNOLOGY (ASRET) PROJECT, VOLUME 1:
Project Summary, Account, and Results

D.E. WILKENING
J.P. LOYALL

TASC
55 Walkers Brook Drive
Reading, Massachusetts 01867

MAY 1995
Project Final Report for 5/1/92 - 5/1/95

Approved for public release; Distribution is unlimited.

19960319 006
AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7409

TÄLIST E

NOTICE

When Government drawings, specifications or other data are used for any purpose other
than in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility or any obligation whatsoever. The fact that the government
may have formulated or in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or
any other person or corporation; or as conveying any rights or permission to manufacture, use, or
sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

KENNETH LITT SNNETH LITTLE*
Software Concepts Section
WL/AAAF-2

oject Engineer
I a o

WILLIAM R. BAKER, Acting Chief
Avionics Logistics Branch
WL/AAAF

STEPHEN G. PETERS, Lt Col, USAF
Deputy Chief
System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization, please notify WL/AAAF, WPAFB, OH
45433-7301 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Publicreportingburdenforthiscollectionofinformationisestimatedtoaverageonehourperresponsejncludingthetimeforreviewinginstructions searchinq
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
May 1995

REPORT TYPE AND DATES COVERED
Final 5/1/92-5/1/95

4. TITLE AND SUBTITLE
Avionics Software Reengineering Technology (ASRET) Project
Volume I Project Summary, Account and Results

AUTHOR(S)
D.E. Wilkening, J.P. Loyall (TASC)

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

TASC, Inc.
55 Walkers Brook Drive
Reading, MA 01867

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Avionic Directorate
Wright Laboratory
Air Force Materiel Command
Wright Patterson AFB OH 45433-7409

11. SUPPLEMENTARY NOTES

FUNDING NUMBERS
CF33615-92-D-1052
PE 78012 F
PR 3090
TA 01
WU 14

8. PERFORMING ORGANIZATION
REPORT NUMBER

TASC:TR-06661-4

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

WL-TR-95-1119

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

The objective of the Avionics Software Technology Support (ASTS) program is to perform research and development for enhancing
Embedded Computer System (ECS) software development and post-deployment support. The Avionics Software Reengineerinq
Technology (ASRET) project is the second delivery order under ASTS. Under ASRET, we investigated existing reengineering and
reverse engineering process, techniques, and software tools. Based upon this study, we developed a process model and environment
for reengineering software from one language (FORTRAN) to another (Ada). We designed and implemented a Reengineering Tool
(RET) prototype to assist the engineer in this process. We evaluated the RET by translating FORTRAN simulation code for Block 40
of the F-16 OFP to Ada. To prove the value of the RET, we recommend that software maintainers participate in an experiment using
an enhanced RET to reengineer an application in a production environment rather than in a laboratory.

14. SUBJECT TERMS

Reengineering, Reverse Engineering, Reuse

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES
82

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

STANDARD FORM 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

MI009
1-22-92

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES v

EXECUTIVE SUMMARY vi

1. INTRODUCTION 1
1.1 Background 1
1.2 TaskStructure 2
1.3 Accomplishments 3
1.4 Findings 6
1.5 Recommendations 7
1.6 Report Organization 7

2. SOFTWARE REENGINEERING STUDY 9
2.1 Literature Survey 9
2.2 Software Survey 10

3. REENGINEERING PROCESS MODEL 12

4. REENGINEERING TOOL DEVELOPMENT 16
4.1 RET Design Overview 16

4.1.1 The User's Perspective 17
4.1.2 Representations 20
4.1.3 Architecture 21

4.2 Development Activities 25
4.2.1 Features 25
4.2.2 Views 29

5. TOOL TESTING AND EVALUATION 33
5.1 Evaluation Summary 33
5.2 Subject System 33
5.3 Analysis Process 34

5.3.1 SPAG Source Code Preprocessing 34
5.3.2 REFINE/FORTRAN Analysis 34
5.3.3 RET Prototype Analysis 35
5.3.4 Creating Packager Views 36
5.3.5 Generate DFD Views 39
5.3.6 Generate Ada Code 40

m

6. USING THE RET PROTOTYPE 43
6.1 Developing Program Structure Using the Packager 43

6.1.1 Definitions 44
6.1.2 Creating a Package Structure 46
6.1.3 Editing the Package Structure 48
6.1.4 Distributing Data Items 49

6.2 Translating Program Statements Using the Transformer 50
6.3 A Sample Application 52

7. RET PROTOTYPE IMPLEMENTATION 53
7.1 Implementation Characteristics 53
7.2 Limitations of the RET Prototype Implementation 55

8. RET PROTOTYPE PLATFORM 58
8.1 Software Files 58
8.2 DataFiles 61

9. CONCLUSIONS AND RECOMMENDATIONS 62
9.1 Project Structure Summary 62
9.2 Conclusions 62
9.3 Recommendations 68

APPENDDIA VENDOR INFORMATION A-l

APPENDIX B RECOMMENDED RET ENHANCEMENTS B-l

APPENDLXC ACRONYMS FOR VOLUME I C-l

REFERENCES R.1

IV

LIST OF FIGURES

Figure Page

1 ASRET Reengineering Process Model 12

2 Developing Ada by Reusing FORTRAN 18

3 Incorporating Macro and Micro Entities 19

4 RET Architecture 22

5 The Packager View 45

LIST OF TABLES

Table Page

1 ASRET Task Structure 2

2 Nondevelopmental Software 16

3 Reengineering Tool (RET) Views 20

4 RET Prototype Features 25

5 F-16 Block 40 OFP Subsystem Sizes 34

6 Unsupported FORTRAN Language Features 57

7 Installed Software Product Versions 58

8 Commands and Scripts Used During RET Prototype Development 61

9 RET Prototype Evaluation Data Files 61

10 RET Enhancements 69

EXECUTIVE SUMMARY

The Avionics Software Technology Support (ASTS) program is an ongoing activity
of the Software Concepts Group, Avionics Logistics Branch at Wright Laboratory (WL/
AAAF-3), Wright Patterson Air Force Base, Ohio. The objective of the ASTS program is

to perform research and development for enhancing Embedded Computer System (ECS)
software development and postdeployment support.

The Avionics Software Reengineering Technology (ASRET) project is the second de-
livery order (DO) under ASTS. This document is the final report for the ASRET project
which concluded on 1 May 1995. The ASTS program continues beyond ASRET with sever-
al active DOs which are treating complementary research topics.

Under ASRET, we investigated existing reengineering and reverse engineering
processes, techniques, and software tools. Based upon this study, we developed a process
model and environment for reengineering software from one language (FORTRAN) to
another (Ada). The approach is to engineer an Ada program by reusing portions of the
original FORTRAN design and implementation. We designed and implemented a
Reengineering Tool (RET) prototype to assist the engineer in this process. While the pro-
cess model was developed to treat the specific FORTRAN-to-Ada reengineering, it is easi-
ly extensible to other source/target language combinations.

The RET applies reverse engineering techniques that facilitate redocumenting and
recovering the design of a legacy system to help the engineer inspect and understand the
system. The RET's restructuring capabilities help the engineer develop a program using
design and implementation information recovered from the subject system.

The RET automatically translates low-level program statements, relieving the en-
gineer from the tedious syntactical minutia, i.e., differences between the source and tar-
get programming language syntax, that divert attention from the more important design
and implementation decisions requiring human judgement. By concentrating on tasks
that are well-suited to automated support, the RET reduces the resources needed to reen-
gineer avionics support software and helps the human engineer produce a more maintain-
able system.

We evaluated the RET prototype by translating FORTRAN source code, simulation
software for Block 40 of the F-16 Operational Flight Program (OFP), to Ada. We are con-
vinced after exercising the RET that the ASRET process model is sound and the top-down

VI

reengineering style that it encourages is effective. One of our goals for the RET prototype
was that it help the engineer capture as much of the existing design from the original pro-
gram as possible, and we accomplished this with the RET.

The RET is a prototype that we developed to evaluate reengineering technology
and we recommend certain improvements that would allow production software main-
tamers who are not experts in language processing to achieve acceptable productivity. To
prove the value of the RET, we recommend that software maintainers participate in an
experiment, i.e., a Beta test, using an enhanced RET to reengineer an application in a pro-
duction environment rather than in a laboratory.

vn

1. INTRODUCTION

This report presents the findings of the Avionics Software Reengineering Technolo-
gy (ASRET) project. The ASRET project is the second DO issued to TASC under the Avion-
ics Software Technology Support (ASTS) program.

1.1 BACKGROUND

Context — The ASTS program is an ongoing activity of the Software Concepts
Group, Avionics Logistics Branch at Wright Laboratory (WL/AAAF-3), Wright Patterson
Air Force Base, Ohio. The objective of the ASTS program is to perform research and devel-
opment for enhancing Embedded Computer System (ECS) software development and
postdeployment support. The main objective of ASRET was to develop an automated
Reengineering Tool (RET) prototype for avionics support software.

The reengineering of software from one language to another is becoming a neces-
sity as Air Force organizations strive to modernize and improve the maintainability of
their systems while avoiding the excessive costs of new development. Systems that have
been in use for years often incur large maintenance costs (Ref. 1) for a number of reasons.

• Continual maintenance has made the current implementation and original de-
sign inconsistent, the code harder to understand and error-prone, and the doc-
umentation out-of-date.

• They are written in languages that have fallen out of favor. The limited selec-
tion of support tools for these languages, the corresponding expense of these
tools, and the shrinking pool of qualified programmers to maintain the soft-
ware adds to the expense of maintenance.

• They were developed without modern software engineering practices, result-
ing in code that lacks structure and is difficult to understand.

• Employee turnover has reduced the staff's understanding and "intimate"
knowledge of the system.

Wright Laboratory initiated the ASRET project to help reduce maintenance costs for
legacy systems and to assist in the evolution to Ada. To this end, we developed an environ-
ment for reengineering software from one language to another. We concentrated on the
reengineering of avionics simulation software written in FORTRAN to Ada, and designed
the RET so that it could support additional languages in the future.

1.2 TASK STRUCTURE

The objective of the ASRET project was to develop an automated Reengineering
Tool (RET) prototype for avionics support software. The specific goals included investigat-
ing existing reengineering and reverse engineering processes, techniques, and software
tools, defining a reengineering process model, and building a RET prototype that supports

• Translating avionics simulation software written in FORTRAN to Ada,
• Improving the software through restructuring techniques,

• Changing the design of the software so that it is consistent with modern soft-
ware engineering principles, and

• Adding documentation that is consistent with the software.

The ASRET project task structure is shown in Table 1.

Table 1 ASRET Task Structure

ASRETTASK

NUMBER NAME

1 Software Reengineering Study

2 Reengineering Process Model Development

3 Reengineering Tool Development

4 ReengineeringTool Testing and Evaluation

For Task 1, Software Reengineering Study, we conducted an extensive investigation
of software reengineering tools and methods. The goal was to collect, organize, and pres-
ent information on software reengineering tools and methods that might be relevant to
ASRET, and to record the information for use in the subsequent tasks. The results of
Taskl are documented in the Software Reengineering Study Report (Ref. 2).

During Task 2, Reengineering Process Model Development, we developed a
reengineering process model based upon the results of Task 1, and developed the Software
Requirements Specification (SRS) (Ref. 3) for the Reengineering Tool (RET) prototype.

In Task 3, Reengineering Tool Development, we designed (Ref. 4) and implemented
the RET prototype and exercised the RET by transforming the Fire Control Radar (FCR)
subsystem of the F-16 Block 40 OFP simulation software provided to us by Wright Labora-
tory for this purpose.

We executed the RET prototype and converted most of the other subsystems in the
Block 40 code to Ada in Task 4, Reengineering Tool Testing and Evaluation. The output
that we generated appears in Volume II (Ref. 5).

1.3 ACCOMPLISHMENTS

This section summarizes the activities that we performed under, and the results of
the four ASRET tasks shown in Table 1.

Software Reengineering Study

For Taskl, Software Reengineering Study, we performed an extensive investiga-
tion of existing reengineering and reverse engineering processes, techniques, and tools.
The study comprised two parts: the Literature Survey, and the Software Survey. We docu-
mented the results of the study in the Task 1 report, entitled "Avionics Software
Reengineering Technology (ASRET) Software Reengineering Study Report" (Ref. 2).

Reengineering Process Model Development

Based upon the results of the Software Reengineering Study that we conducted in
Task 1, we developed a process model that defines reengineering in terms of (nondestruc-
tive^) engineering a new program by reusing the design and implementation of the origi-
nal program. The process model is consistent with well-accepted reengineering models
(Refs. 6, 7), and improves on them by dividing automated restructuring from restructur-
ing that requires human insight and by defining restructuring tasks in terms of modern
software engineering practices.

The ASRET Reengineering Process Model is documented in the "Software Require-
ments Specification for the Avionics Software Reengineering Tool (RET) Prototype Sys-
tem RET-SRS-01" (Ref. 3). Section 3 summarizes the process model and includes various
refinements to the model that we made during Tasks 3 and 4.

Reengineering Tool Development

We designed and implemented a Reengineering Tool (RET) prototype that auto-
mates portions of the process model and incorporates selected techniques from the Soft-
ware Reengineering Study Report (Ref. 2). Using the RET, the engineer nondestructively
develops a new Ada program by reusing parts of the original FORTRAN design and imple-
mentation, as opposed to changing the original FORTRAN into Ada.

For example, an engineer can run an automatic packaging routine that extracts
FORTRAN subprograms, translates their declarations into Ada, and arranges them into
packages based upon their data usage. The engineer can then rearrange the resulting Ada

subprograms interactively. When satisfied with the package structure, the engineer can
direct the system to translate statements automatically in the bodies of the subprograms.

Most existing reengineering tools fall into one of two categories:

1. Reverse engineering and redocumentation tools (Refs. 8, 9) present different
views of the structure of a program, such as control flow and data flow graphs,
to aid in program understanding and manual reengineering.

2. Other tools (Refs. 10,11) support automatic translation from one language to
another or automated restructuring, such as the removal of GOTOs. These
tools require little human interaction, but provide little support for design re-
covery or improvement.

Our approach can be described as computer-assisted reengineering. It provides automated
reverse engineering, redocumentation, and translation of low-level program entities, and
also provides a combination of user interaction and automated analysis to reorganize pro-
gram statements and data into new modules.

The RET relieves the tedium associated with syntactic details (i.e., differences be-
tween the source and target programming language syntax), and allows the engineer to
concentrate on more important design and implementation decisions that make the reen-
gineered system more maintainable.

The RET design is documented in the "Software Design Document for the Avionics
Software Reengineering Tool (RET) Prototype System RET-SDD-01" (Ref. 4). Section 4
summarizes the RET design.

Reengineering Tool Testing and Evaluation

During the Reengineering Tool Testing and Evaluation task (Task 4), we analyzed
simulation software for the F-16 Block 40 OFP. We processed the FORTRAN source code
with a commercial control flow restructuring product and analyzed it with REFINE/FOR-
TRAN. We analyzed all but one subsystem in Block 40 separately with the RET prototype.
Using the RET, we constructed an Ada package structure, created dataflow diagrams, and
generated Ada source code.

The testing and evaluation activities that we performed under Task 4 are docu-
mented in Section 5.3. The hardcopies that we produced of the Packager and Dataflow
Diagram views appear in Vol. II (Ref. 5).

Interviews, Conferences, and Papers

We conducted requirements interviews and attended workshops to collect informa-
tion during the Software Reengineering Study task, and presented several papers during
the Reengineering Tool Development task.

1. We held discussions with Mr. Kenneth Littlejohn (WL/AAAF-3) to discuss AS-
RET requirements on 31 August 1992 in Dayton, Ohio. These discussions re-
vealed that the ability to change the functionality of the system (as opposed to
just restructuring it) was important to Wright Laboratory researchers.

2. We attended the third Reverse Engineering Forum sponsored by Northeastern
University in Burlington, Massachusetts, 15-17 September 1992, and col-
lected information on reengineering tools.

3. We gave a slide presentation on ASRET entitled Avionics Software
Reengineering Technologies and Process Model Development (Ref. 12) at the
Software Reengineering Workshop sponsored by the National Security Indus-
trial Association's Software Committee and the Embedded Computing Insti-
tute, Naval Air Warfare Center, Ridgecrest, California, 12-14 January 1993.
We obtained information on current reengineering research and software
tools, and made contacts with researchers and practitioners in the field.

4. We conducted requirements interviews with avionics software maintainers at the
Oklahoma City Air Logistics Center (OC-ALC), Tinker AFB, Oklahoma, 10
March 1993.

5. We presented a paper entitled A Reuse Approach to Computer-Assisted Soft-
ware Reengineering (Ref. 13) at the Fourth Systems Reengineering Technolo-
gy Workshop, sponsored by the Naval Surface Warfare Center, Dahlgren
Division, White Oak Detachment, Monterey, California, 2-10 February 1994.
The conference was billed as a workshop, but it was actually conducted as a
symposium with little time for discussion.

6. We presented a paper entitled An Interactive Reengineering Tool for Construc-
tive Language Translation (Ref. 14) at the Software Engineering Techniques
Workshop on Software Reengineering, sponsored by Carnegie Mellon Univer-
sity and the Software Engineering Institute (CMU/SEI), Pittsburgh, Pennsyl-
vania, 2-4 May 1994.

7. We wrote a paper entitled A Reuse Approach to Software Reengineering
(Ref. 15) which is scheduled for publication in the June 1995 issue of the Jour-
nal of Systems and Software.

1.4 FINDINGS

During Task 1, we conducted a broad review of the state of software reengineering.
An important insight that we gained during the study is that the motivations, activities,
and results that characterize the state of the practice in reengineering are not homoge-
neous. The implication is that any successful reengineering effort must be highly tar-

geted. We decided to focus the RET prototype development effort and restrict its scope
based upon the primary needs of our sponsor. The RET prototype would be a language

translation aid that automates as much of the job as is practical, leaving the rest to the
engineer.

In Task 2, we developed a reengineering process model that specifies a sequence of
tasks to reengineer a program written in FORTRAN to Ada. We developed a RET proto-
type that helps the engineer develop an Ada system by reusing parts of the existing
FORTRAN system. We built up the RET capabilities incrementally to mitigate risk by de-
vising transformations as needed for a sequence of FORTRAN programs, chosen to pro-
gressively introduce more and more elements of the FORTRAN language.

We are convinced after exercising the RET prototype that the ASRET process mod-
el is sound and the top-down reengineering style that it encourages is effective. One of our
goals for the RET prototype was that it help the engineer capture as much of the existing
design from the original program as possible, and the RET accomplishes this.

The principles embodied in the RET prototype and the techniques that it implements
are extensible to other languages, but we are now aware that it is no simple matter to
change the RET to translate between other source and target languages. This underscores
the importance of selecting reengineering techniques appropriate to the project at hand.

We explored the F-16 OFP simulation system with the RET prototype during
Task 4. We found that the RET views are of great practical value despite the technical
imperfections that we grappled with in Task 3. We found that they summarized salient
features of the subject system and focused our attention on key areas, while providing in-
formation that is not directly accessible from the source code.

One of the goals of the ASRET project was to research and develop a prototype for
avionics support software reengineering. The RET prototype has the potential for reduc-

ing the resources needed to reengineer avionics support software. It would help human en-

gineers produce more maintainable systems if it were developed into a product.

6

1.5 RECOMMENDATIONS

To demonstrate the value of the RET prototype, we recommend that software main-
tainers participate in an experiment, i.e., a Beta test, using an enhanced RET to reengi-

neer an application in a production environment rather than in a laboratory. The RET

prototype needs some improvements before production software maintainers who are not
experts in language processing could achieve productivity with it. We have already identi-
fied some limitations of the RET prototype in Section 7.2, and we recommend addressing
these before the Beta test. We also recommend preparing the RET for the test by improv-
ing or adding certain capabilities.

The next step towards inserting the reengineering technology that we have de-
veloped is to transform the RET from a laboratory prototype to a production
tool that avionics software maintainers will evaluate on mission essential!
critical applications.

We will probably have to rely on experience reports to evaluate the RET. An engi-
neer who's goals are consistent with those of the RET should be the final arbiter and must
answer the question: "Would you use the tool again?" Based upon our experience with the
RET prototype, we would expect a qualified affirmation. The modification of large com-
puter programs will remain a most difficult undertaking, but an enhanced RET will in-
crease the value of the end product, where value is a function of quality and cost.

The RET prototype will find a niche in reengineering. It relieves the engineer from
syntactical minutia, i.e., differences between the source and target programming language
syntax, that divert attention from the more important design and implementation decisions
requiring human judgement. By concentrating on tasks that are well-suited to automated
support, the RET prototype will reduce the resources needed to reengineer avionics support
software and will help the human engineer produce a more maintainable system.

1.6 REPORT ORGANIZATION

Section 1 introduces the ASRET project goals and task structure. Section 2 summa-
rizes the results of the Software Reengineering study that we performed in Task 1. Sec-
tion 3 defines the ASRET Reengineering Process Model that we created under Task 2.
Section 4 provides an overview of the RET design and the RET development activities of
Task 3. Section 5 describes how we exercised the RET during Task 4 and narrates our pro-
duction of several RET views. Section 6 reveals RET prototype capabilities in the context

of reengineering a sample application. Section 7 explains certain characteristics of the
RET prototype implementation. Section 8 documents the development platform software
and hardware. Section 9 presents our conclusions and recommendations.

Appendix A provides vendor information for nondevelopmental software included
in the RET prototype. Appendix B describes recommended enhancements to the RET
prototype. Appendix C defines acronyms used in this document.

The Avionics Software Reengineering Technology (ASRET) Project Final Report,
Volume II, Reengineering Tool (RET) Diagrams (Ref. 5) contains hardcopies of the graph-
ical views that we created during Task 4.

8

2. SOFTWARE REENGINEERING STUDY

For Taskl, Software Reengineering Study, we performed an extensive investiga-
tion of existing reengineering and reverse engineering processes, techniques, and tools.
The study comprised two parts: the Literature Survey, and the Software Survey. We docu-
mented the results of the study in the Task 1 report, entitled "Avionics Software
Reengineering Technology (ASRET) Software Reengineering Study Report" (Ref. 2). We
briefly summarize the report below.

2.1 LITERATURE SURVEY

For the Literature Survey, we conducted a broad review of the state of software
reengineering. We identified existing reengineering tools, software products, and tech-
niques that that we thought were both relevant to ASRET and implementable. We
screened and organized reengineering literature to distinguish the most promising meth-
ods consistent with the ASRET objectives.

We were most interested in discovering results that had been demonstrated and
proven effective in improving software. We reviewed the literature in the areas of soft-
ware quality metrics, program understanding, restructuring transformations, graphical
and internal representations, and hypermedia.

The results that we presented in the Software Reengineering Study Report (Ref. 2)
are expository rather than analytic as the requirements and design decisions were to be
made during the subsequent tasks. We organized the literature into broad categories and
summarized each area. We also provided detailed notes on the literature that we re-
viewed. For each article, we provided a synopsis of those aspects of the work that we
thought were relevant to ASRET.

An important insight that we gained during the study is that the motivations, acti-
vities, and results that characterize the state of the practice in reengineering are not ho-
mogeneous. The field is bound by no more specific common interests within the
community than is, say, engineering. This is neither a detraction nor a commendation. It
is a recognition of diversity.

The implication is that any successful reengineering effort must be predicated on

a particular class of problems and the work must be tailored to the specific problem do-

main. A reengineering solution must be directed at the root cause of the problem to be ef-

fective, and must not just seek to alleviate the symptoms.

We discovered no broad spectrum reengineering nostrum for improving software.

Every method that we investigated involved tradeoffs. We resolved, then, to focus the RET

prototype development effort and restrict its scope based upon the primary needs of our

sponsor. The RET prototype would be a language translation aid that automates as much

of the job as is practical, leaving the rest to the engineer.

2.2 SOFTWARE SURVEY

Process — For the Software Survey, we identified and described a list of software

tools relevant to ASRET We developed a set of screening criteria based on our under-

standing of WL/AAAF needs in order to reduce the size of the list. We screened the tools,

and presented details on the 38 remaining tools which best fit our needs.

We classified the 38 tools into application domains according to their principle

functions or purposes. Each tool appears in as many domains as needed to describe the

tool's functionality. The application domains are:

1. Reverse Engineering

2. Implementation

3. Forward Engineering

4. Translation

5. Redocumentation

6. Restructuring

7. Reusability

8. Analysis.

We defined a set of software characteristics for each application domain to describe vari-

ous aspects of the tools. We also defined software characteristics for the following three

categories which apply to all tools regardless of their functionality:

1. Host Platforms

2. Maturity

3. Usability.

10

We defined a total of 28 distinct software characteristics and described the remaining
tools in terms of those characteristics.

Results — We identified five tools for further investigation.

1. REFINE/FORTRAN

2. Software Refinery

3. SPAG

4. Software Reengineering Environment (SRE)

5. Arch.

We would eventually include REFINE/FORTRAN, Software Refinery, and SPAG in the
RET environment during the Reengineering Tool Development task described below. The
Navy evaluated the SRE to translate CMS-2 source code to Ada. Arch is a proprietary tool
developed by Robert Schwanke of Siemens Corporate Research, Inc. We provided relative-
ly long abstracts for both SRE and Arch in the Software Survey.

We decided against pursuing SRE because the prototype was language-specific and
we would have had to tailor it for FORTRAN in order to use it in ASRET. Our experience
on ASRET has vindicated this decision; we have learned while developing the RET that
the most difficult aspects of the type of reengineering problem that we chose to address
are intimately related to specific programming language features peculiar to the source
and target languages.

Arch (Ref. 16) is a proprietary tool and, while we were very interested in its capabil-
ities, we didn't have access to it. We did contact Dr. Schwanke at Siemens, but he told us
that he could not provide additional information on Arch. Arch apparently has much in
common with the Rigi tool developed by Dr. Hausi Müller.

Rigi (Ref. 17) did not make it through the screening process of the Software Survey,
but we became more interested in it prior to the Reengineering Tool Development task. We
contacted Dr. Müller and learned that Rigi was also a proprietary tool.

Despite our lack of access to these tools, the Packager component of the RET is in-
spired by the work of Schwanke and Müller, and also by Hutchens (Ref. 18). Their projects
share a common thread of component clustering via similarity metrics and the authors
cite much of the same research.

11

3. REENGINEERING PROCESS MODEL

The reengineering process model as applied to the RET domain is illustrated in
Figure 1. Steps in the process label the boxes in the figure, and inputs and outputs for
each step label the icons between boxes.

The process model specifies a set of tasks (the steps of the process) that should be
performed and the sequence in which they should be performed to reengineer a program

written in FORTRAN to Ada. The process model also specifies the information necessary

Representation
of Program

 1_
Analyze

FORTRAN
Code

(Reverse
Engineering)

Provided
by RET

Structured
Source Code

S

Preliminary
Restructuring

Supported by
Commercial
Tools and
Provided in
the RET

Source
Code

Supported by Commercial Tools,
But Not Provided in the RET

Restructuring

Redesign
(Later Passes)

Redocumentation

Analyze Ada
Code (Reverse
Engineering)

Test
Suite

Test
Results

Coverage
Information

=¥=
Configuration Management

New Representations
of Program

Generate
Code

(Forward
Engineering)

Target
Code

Testing

Test
Results

Figure 1 ASRET Reengineering Process Model

12

and desirable to support these tasks. The process model does not specify how the tasks are
to be performed (i.e., they might be automated, as many are in the RET, or they might be
performed manually).

The first step in the process model is to perform some preliminary restructuring of
the source code of the original implementation. Preliminary restructuring improves the
layout of the source code by removing unstructured program constructs, such as GOTO
statements, dead code, and implicit types. Preliminary restructuring is separated from
the later restructuring step because it can be completely automated by commercial tools,
and placed first in the process model because the structured version of the source program
is usually easier to analyze, understand, and restructure.

After preliminary restructuring is complete, the RET analyzes the improved source
code and constructs representations of the program. Some of the representations, such as
abstract syntax graphs (ASGs) and symbol tables, are machine-readable representations
used only by automated restructuring and redesign tasks. Others, such as flow graphs and
structure charts, aid in program understanding, redocumentation, and manual restructur-
ing. For manual restructuring, the set of representations contains a source code listing.

The engineer performs the restructuring, redesign, and redocumentation steps
multiple times, each time building upon the results of the previous pass. A multipass ap-
proach is necessary because it is easier and less error-prone to reengineer a large program
in stages, verifying the program after each pass. Restructuring (i.e., changing the struc-
ture of the program without changing its functionality) is performed first, possibly in sev-
eral passes. These passes perform the following steps:

• Macro control restructuring groups statements and control structures of the
program into modules, such as procedures, functions, and packages. This in-
cludes recovering modules of the original program, generating new modules,
and specifying a declaration nesting structure for modules.

• Macro data restructuring groups data items, such as types, variables, and
constants, and associates them with modules created during macro control re-
structuring. This includes recovering data groupings of the original program,
creating new groupings, and creating abstract data types and records.

• Micro control restructuring manipulates individual control structures. This in-
cludes the translation of individual statements and functionality-maintaining
alterations, such as code lifting (Ref. 19).

• Micro data restructuring manipulates individual data items. This includes ac-
tions such as translating, changing names, changing types, creating symbolic
constants, and changing the scope of variables.

13

Macro control and data restructuring should be performed first to develop a modular
structure for the target system, followed by micro control and data restructuring to re-
structure individual components of the program.

After restructuring is complete, the RET generates code in the target language and
the program is tested to ensure that the restructuring did not introduce any errors or un-
desired functional changes. The test data of the original program can be used and the re-
sults compared with the results of testing the original program. In many cases, the test
data will need to be reengineered to work with the reengineered program.

Any differences in the results of testing indicate the introduction of an unexpected
functional change during restructuring. Coverage analysis must be performed during the

testing of the target code because restructuring can introduce or alter control and data

characteristics of the program. When an error in the target program is indicated, the pro-
gram can be corrected by amending the target code directly or by restructuring the repre-
sentations and regenerating the target code.

Once the engineer has restructured the program and created a functionally equiva-
lent program in the target language, he can perform additional restructuring and rede-
sign actions on the program. These steps use the same set of actions (i.e., macro control,
macro data, micro control, and micro data), but have different goals.

Further restructuring improves the structure of the program without changing its
functionality. The goal of redesign is to change the functionality of the program (e.g., to
correct design flaws or improve the design). If the engineer edited the target program code
to correct errors indicated during testing, the RET analyzes the code to generate represen-
tations before performing subsequent restructuring and redesign.

The RET performs redocumentation simultaneously with the restructuring and re-
design steps and can save the generated representations for documenting the program
structure and design. Volume II contains samples of documentation generated by the RET
prototype. Furthermore, the engineer can add comments and annotations during restruc-
turing and redesign as he gains insights about the code or design.

The RET reengineering process model includes modern software development pro-
cesses, such as continuous testing, iterative restructuring and redesign, and configura-
tion management. The process model is a specialization of the Chikofsky-Cross process

14

management. The process model is a specialization of the Chikofsky-Cross process model
(Refs. 7, 8). The entire Chikofsky-Cross model is represented, although there are differences:

• Program management extensions to the process model (Ref. 20) are included,
such as configuration management and testing.

• Easily automated steps, such as preliminary restructuring, are separated so
they can be addressed by commercial tools.

• Chikofsky-Cross steps are decomposed, such as restructuring into macro con-
trol, macro data, micro control, and micro data restructuring.

• Iteration steps that are implicit in the Chikofsky-Cross process are explicitly
introduced.

15

4. REENGINEERING TOOL DEVELOPMENT

This section describes Task 3, ReengineeringTool Development. Section 4.1 describes
salient features of the RET prototype design. The full design is documented in the Software
Design Document for the Avionics Software Reengineering Tool (RET) Prototype System
RET-SDD-01 (Ref. 4). Section 4.2 records the major development activities of Task 3.

4.1 RET DESIGN OVERVIEW

We implemented the RET prototype by integrating a number of Commercial Off-
The-Shelf (COTS) tools and writing transformation rules and user interface code in the
environment that they provide. Table 2 lists the nondevelopmental software products
that we included in the RET prototype and provides references to the associated documen-
tation. Appendix A contains vendor information. The RET prototype architecture is de-
scribed in Section 4.1.3.

• Software Refinery is a software development environment from Reasoning
Systems that is specialized for language processing applications. It comprises
three components: REFINE, INTERVISTA, and DIALECT. The components
provide a programming language and database, a tool kit for building user in-
terfaces, and a parser/printer generator, respectively.

• REFINE provides Software Refinery with an object-based database and a
wide-spectrum specification and programming language. It includes develop-
ment features for compiling, executing, and debugging REFINE programs,
and utilities for browsing and manipulating the object base at a low level.

Table 2 Nondevelopmental Software

REFERENCE PRODUCTNAME SUPPLIER DESCRIPTION

21 Software Refinery Reasoning Systems language processing environment

21 REFINE Reasoning Systems Software Refinery component

22 INTERVISTA Reasoning Systems Software Refinery component

23 DIALECT Reasoning Systems Software Refinery component

24 REFINE/FORTRAN Reasoning Systems language processing tool

25 REFINE/Ada Reasoning Systems language processing tool

26 plusFORT(SPAG) Polyhedron Software control flow restructurer

27 X-Windows M IT X Consortium graphical communications protocol

28 GNU Emacs Free Software Foundation extensible, customizable text editor

16

• INTERVISTA provides Software Refinery with basic Graphical User Interface
(GUI) facilities that Reasoning Systems found to be the most convenient for
developing language processing interfaces.

• DIALECT provides Software Refinery with a grammar specification language,
a grammar parser, and parser and printer generators that create parsers and
printers from grammars.

• REFINE/FORTRAN is an application built on top of Software Refinery by
Reasoning Systems. It is used to reverse engineer and redocument FORTRAN
code.

• REFINE I Ada is an application built on top of Software Refinery by Reasoning
Systems. It is used to reverse engineer and redocument Ada code.

• SPAG is a component of the plusFORT product written by Polyhedron Soft-
ware Ltd. The plusFORT product is a FORTRAN restructuring tool kit and the
SPAG component performs control flow restructuring, among other things.

• X- Windows is the ubiquitous graphical communications protocol and the de
facto standard interface for building GUI applications on Unix systems. The
protocol is supported by the MIT X Consortium, but the software that imple-
ments it is provided with the hardware platform by the hardware vendor.

• GNUEmacs is an extensible, customizable, Lisp-based display editor provided
by the Free Software Foundation.

4.1.1 The User's Perspective

The RET prototype comprises two distinct logical parts called the Left-Hand Side
(LHS) and the Right-Hand Side (RHS). The LHS provides views of the original FORTRAN
program, or subject system. The RHS provides views of the Ada program being developed
(i.e., the target system). The LHS allows the engineer to navigate and view aspects of the
subject system, but does not support changing the subject system.

The RHS supports constructing, refining, viewing, and navigating the target sys-
tem. The engineer constructs a basic structure for the RHS (macro restructuring) using
information extracted from the LHS. Once the basic structure of the RHS is established,
the engineer refines the target system (micro restructuring) on the RHS.

Semiautomated RET prototype components support construction activities; they
suggest large-scale reorganizations of the subject system and populate the RHS with the
basic structure of the target system. The components that support refinement allow the
engineer to apply knowledge, which is beyond the RET, and human insight, which is lack-
ing in the semiautomated support provided by the RET, to modify and improve the RHS
representations.

17

The RET prototype supports engineering an Ada program by reusing and trans-
forming parts of the FORTRAN program. The process is iterative as illustrated in
Figure 2.

• The engineer explores views of the original FORTRAN program that the RET
generates on the LHS.

• The engineer selects LHS entities such as subroutines, statements, or data ele-
ments of the original FORTRAN program.

• The RET transforms the LHS entities and incorporates them into the RHS.
• The engineer may explore views representing the Ada program on the RHS.
• The engineer interactively or automatically refines the RHS through the views.

The engineer repeats the cycle, exploring the LHS to select additional FORTRAN entities
to reuse in building the RHS. The graphical user interface presents the LHS and RHS
views to the engineer while the object-based database manages the underlying data struc-
tures or internal representations.

Figure 2 Developing Ada by Reusing FORTRAN

18

The RET approach to reengineering is to create a new program on the RHS, reusing

components of the LHS. Structured design and programming principles are compatible

with the RET and the ASRET Process Model described in Section 3. The specific steps that

the engineer takes to apply the ASRET Process Model when using the RET prototype are

illustrated in Figure 3.

1. The RET prototype constructs the package and subprogram structure for the
RHS. It captures the subprogram structure from the LHS, transfers it to the
RHS, and clusters the subprograms into Ada packages.

2. The engineer then refines the RHS structure so that related subprograms and
data items are grouped together into packages.

3. The RET prototype moves data items and type declarations from the LHS to the
packages and subprograms on the RHS to which they are most closely related.

4. The engineer then refines and redistributes the declarations. For example, data
items that are closely related but used by several subprograms might be in dif-
ferent packages, and thus need to be grouped together. As another example, data
items might be moved into or out of a package's private part to reflect their scope.

5. At this point, the modular structure of the program has been designed. The
RET prototype transforms statements from the LHS and moves them to the
bodies of the RHS subprograms and packages.

6. The engineer may then refine individual statements on the RHS to tune the
RHS structure.

Construct
Program

Structure
%

tr
Rearran

le Structu
3e
re
*

Add Data Item
Declarations

Redistribute
the Declarations

Add Program
Statements

Refine the
Statements

Figure 3 Incorporating Macro and Micro Entities

19

4.1.2 Representations

Internal Representations (IRs) are LHS and RHS data structures. The RET proto-
type provides two primary internal representations (PIRs): the Abstract Syntax Graph

(ASG) and the Symbol Table (ST). An ASG is a detailed representation of a program, spe-
cifically, a parse tree. It is a data structure formed from objects and attributes. The classes
of objects, types of attributes, and rules that define valid representations of FORTRAN
(Ada) programs comprise the FORTRAN (Ada) domain model. The domain model is an

augmented grammar that is input to DIALECT. It is a specification for the parser and
printer that DIALECT generates.

The RET prototype uses the parsers and printers supplied by REFINE/FORTRAN
and REFINE/Ada. We have made slight extensions to the domain models to store addi-
tional analysis information produced by the RET. The RET prototype uses the REFINE/
FORTRAN symbol table, also with slight extensions for analysis information.

Secondary internal representations (SIRs) are derived from the PIRs. The SIRs are
the underlying data structures for the views presented to the engineer. The Software De-

sign Document (Ref. 4) describes the SIRs. The RET provides the views listed in Table 3.

LHS

f

Table 3 Reengineering Tool (RET) Views
RHS

V

VIEW

SCL

PACK

DED

CD

DFD

NAME

Source Code Listing

Packager Diagram

Declaration Diagram

Call Diagram

Data Flow Diagram

DISPLAYS

FORTRAN or Ada source code

Ada package structure

FORTRAN declaration nesting structure

FORTRAN subprogram calling structure

Dataflowthrough the Ada program

• The Source Code Listing (SCL) shows the FORTRAN source code (after proc-
essing by SPAG) on the LHS and the generated Ada code on the RHS.

• The Packager view (PACK) shows the package and subprogram nesting struc-
ture, and provides a graphical interface for developing the Ada package struc-
ture on the RHS.

• The Declaration Diagram (DED) documents the FORTRAN system declara-
tion structure. The PACK provides similar information for the Ada system, so
we did not create an Ada version of the DED.

20

• The Call Diagram (CD) documents the FORTRAN calling structure. The
PACK provides call diagrams for the Ada system, so we did not create an Ada
version of the CD.

• The Dataflow Diagram (DFD) documents the Ada system data flow. The PACK
provides some data flow information that is derived from the FORTRAN sys-
tem, so we didn't create a version of the DFD for the FORTRAN system.

Section 4.2.2 describes the RET prototype views in greater detail and recounts our experi-

ences in developing the views.

4.1.3 Architecture

Figure 4 shows the RET architecture. It depicts the organization of major RET

components, and indicates the data flow relationships among them. The Preliminary Re-

structurer (PR) performs control flow restructuring. The Source Code Processor (SCP)

generates the LHS PIRs.

The engineer constructs the RHS PIRs using the Packager (PACK) and Transform-

er (TRAN). The Representation Generator (RG) creates the SIRs on both sides from the

PIRs. The User Interface and Display (UID) creates the corresponding views, and pro-

vides the means by which the engineer interacts with the views on both sides and alters

the views on the RHS. The Transformer implements the changes by transforming the

RHS PIRs, and the Representation Generator propagates the changes to the RHS SIRs.

The User Interface and Display refreshes the RHS views in response to the changes.

The File System Interface (FSI) manages external persistent data and the Object

Base (OB) manages internal data in the form of data objects, attributes on these objects,

and relationships between objects.

The views, PIRs, and SIRs are thus interdependent, but the engineer need not be

aware that the PIRs and SIRs exist. Any changes that the engineer makes to the target

system through the views provided by the User Interface and Display appear to affect the

views exclusively. The components are described in more detail below.

Preliminary Restructurer — The Preliminary Restructurer (PR) restructures

the control flow of the original FORTRAN source code by eliminating branches into or out

of loops and decisions. It eliminates all GOTO statements, leaving only the structured

programming constructs: sequence, selection, and iteration. We refer to this specialized

form of restructuring as control flow restructuring to distinguish it from the more general

concept of restructuring described in Section 2.

21

- .
CO

11
CO CO

• •
\ \

x cXE

£ «I
CO c

CO 5- cu o
ZJJE tru

2*21 Julio

rflCN

* CT
CD CD

EC DC

Six!
_l a GCQ.

CO «»
xE
oca.

<
DC

5 8
CO Q)

r-a:

CD
o

co CO CO

S S 3 x cXS
o
z

x£
Co.

Ü

01

-u
•1-4

»öc
_icl

22

The Preliminary Restructurer is applied as a pre-processing step and the RET as-
sumes that the FORTRAN source code has already undergone control flow restructuring.
There are two reasons for this design. First, the subject system is not always poorly struc-
tured with respect to control flow, so the step should be optional. Second, the design allows
any control flow restructuring product to be used without integrating it into the RET.

Source Code Processor — The Source Code Processor (SCP) reads the
FORTRAN source code, performs analyses, and generates the PIRs. The PIRs represent
the structure of the program, semantic information about program components, and data
flow information.

Representation Generator — The Representation Generator (RG) creates the
LHS and RHS SIRs. The Representation Generator generates each SIR when the engi-
neer requests its corresponding view. Once the RHS SIRs are created, they may become

inconsistent with the PIRs as the latter are restructured. The engineer can request a re-
fresh, which regenerates the SIRs from the current PIRs.

The Representation Generator creates SIRs for the DFD, CD, and DED views. The
Representation Generator produces the DFD according to a method for creating Hierar-
chical Data Flow Diagrams given in (Ref. 29). It generates the CD in a straightforward
manner from information in the ST. The DED is a canonical organization of information
in the ST.

The Representation Generator does not create SIRs for the SRC views. The SRC
view is produced by the DIALECT printer (Refs. 23, 30).

Restructurer — The Restructurer (RES) component comprises the Packager
(PACK) and the Transformer (TRAN). The Restructurer helps the engineer develop an
Ada program on the RHS by transforming and reusing components of the original
FORTRAN program from the LHS. The Packager assists the engineer with macro restruc-
turing. The Transformer supports both macro and micro restructuring.

The restructuring activities that the engineer performs with the Restructurer ma-
nipulate the PIRs exclusively, by initially creating RHS symbol tables and ASGs and then
by populating and transforming them. The engineer enters the information through the
views and, once the RET transforms the PIRs, it regenerates the SIRs and refreshes the
views. Thus, the underlying PIRs and SIRs are hidden from the engineer and it appears
as if the RET is directly transforming the views.

23

Packager — The Packager constructs or initializes the RHS ASG. It recognizes
subprogram, object, and type entities from the LHS PIR and requests the Transformer to
transform them from the LHS domain model to the RHS domain model, and to insert them

into the RHS ASG. (Each domain model (Ref. 30) is an object-based database schema
specifying the objects and relationships between objects necessary to represent LHS or
RHS information.) The Packager builds an Ada ASG on the RHS and uses REFINE/Ada
for semantic analysis.

The Packager groups the entities into Ada packages on the RHS by applying inter-
active clustering techniques based upon algorithms developed by several researchers
(Refs. 16,17, and 18). The clustering techniques provide a first approximation to a reason-

able Ada package structure. Usually, the engineer needs to interactively refine the gener-
ated grouping.

Transformer — The Transformer assists the Packager with both macro and micro
restructuring. For macro restructuring, the Transformer automatically transforms low-
level entities from the FORTRAN domain model to the Ada domain model. It transforms
them by applying rules that insert subgraphs and other information into the Ada PIRs
corresponding to subgraphs and information in the FORTRAN PIRs.

For micro restructuring, the Transformer implements changes to low-level Ada en-
tities by allowing the engineer to select a portion of the Ada program under development
and change it by applying a rule or by editing, deleting, or inserting text.

User Interface and Display, File System Interface, Object Base — The RET
provides two external interfaces. The engineer communicates with the RET through the
User Interface and Display (UID). The UID shows the views, prompts the engineer for
input, receives commands and selections from the engineer, and delivers the commands
and selections to the other components.

The File System Interface (FSI) is responsible for the storage and retrieval of persis-
tent data. The FSI inputs the (FORTRAN) source code of the subject system, reads and
writes intermediate data, outputs the (Ada) source code for the target system, and outputs
other subject and target system views. The intermediate data is stored in the Object Base.

24

4.2 DEVELOPMENT ACTIVITIES

This section relates some of our experiences in developing certain features of the
RET prototype listed in Table 4. Although we started with a specific design (Ref. 4) for the
RET prototype, we identified important enhancements as we worked with the software
and analyzed the Fire Control Radar (FCR) simulation code for the F-16 Block 40 OFR

4.2.1 Features

We worked exclusively with the FCR subsystem during the Reengineering Tool Devel-
opment task, developing features that we needed to reengineer the FCR code. In this section,
we discuss the development of these features, listed in Table 4. We elaborate on some of them
in Section 6 within the context of using the RET prototype to reengineer the FCR code.

Table 4 RET Prototype Features

(1) Enhance copy-term (10) Parentheses in Source Code Views

(2) Source Code Views (11) Saving Views

(3) LHS/RHS Pointers (12) Hardcopy Output

(4) SPAG Component of plusFORT (13) Ada Code Generation

(5) Transformations (14) Data Flow Diagram

(6) Packager Algorithm (15) Intrinsic and External Subprograms

(7) Packager Editing (16) Constant Packages

(8) Type Deduction (17) Global Variable Distribution

0) Type Conversion

(1) Enhance copy-term — We used a REFINE utility called copy-term to copy
FORTRAN ASGs to the RHS before transforming them to avoid destroying the original
FORTRAN ASGs. Copy-term only copies attributes that define the tree structure of the
ASG, but some information is stored on non-tree attributes. We added a function to the
REFINE hook that copies the other attributes that the RET prototype needs.

(2) Source Code Listings — The Source Code Listing (SCL) views were among the
first views that we integrated. The RET prototype calls upon features of REFINE/FOR-
TRAN and REFINE/Ada to display the source code, so the only code that we had to imple-
ment was the so-called "glue" code to integrate them.

(3) LHS/RHS Pointers — The RET prototype maintains pointers between the LHS
and RHS representations. The RET prototype initially creates the pointers when it builds
the RHS ASG. It reconstructs the pointers when it regenerates and parses Ada code on
the RHS. The pointers are used in hyperlinking.

25

(4) SPAG Component of plusFORT — We installed the plusFORT product, including
the SPAG component. SPAG is the control flow restructurer that implements the Prelimi-
nary Restructurer (PR) component of the RET. We processed all of the FCR code with SPAG.

(5) Transformations — We first developed the simple transformations such as those
for the assignment statement. Later, we added the more complicated transformations
such as those for expressions and intrinsic functions. Lastly, we added the capability to
move comments from the LHS to the RHS.

(6) Packager Algorithm — As we were developing the algorithm for the Packager

component, we realized that an interactive view would be very helpful. We therefore im-
plemented a graphical interface for the Packager. As we worked with the Packager, we
decided that it contained all of the information necessary for a RHS Declaration Diagram

(DED) and that the graphical view was better than the text-based LHS DED. For these
reasons, we didn't implement a separate DED on the RHS.

(7) Packager Editing — After experimenting with the Packager, we decided that an
engineer would need to edit the module groupings that it creates. We then added the edit-
ing features to the Packager. As we exercised the Packager, we added additional menu
items and features that we felt were needed. Examples are the commands for selecting
several nodes in order to move them to another graph and features for arranging the
nodes and edges of the graph.

(8) Type Deduction — We implemented a feature to deduce bit-field types for the
RHS. These are needed because of differences in the FORTRAN and Ada type systems.
The details of the problem and its resolution are described in Section 7.1.

(9) Type Conversion—We generalized the support for Ada implicit and explicit type
conversions. The conversion techniques that we initially implemented only converted to
or from bit field types. The current implementation supports conversion between other
types, such as integer and real.

(10) Parentheses in Source Code Views — REFINE/FORTRAN stores parentheses
along with the comments because they aren't part of the ASG. We built menu options in
the Ada Source Code view to add and remove balanced pairs of parentheses and we en-
hanced the Transformer to recognize the parentheses in the comments and transform
them into Ada.

26

(11) Saving Views — We added support to save the Packager and Data Flow Diagram
views to disk and reload them in subsequent REFINE sessions, i.e., across logins. We im-
plemented this through the Persistent Object Base (POB) YOYO* system. The approach
that we took was to save the PACK and DFD views separately, as opposed to saving the
state of an entire session. We did not implement the capability to save an entire RET pro-
totype session because it wasn't necessary when we implemented persistent storage.

At the time that we implemented persistent storage, the RET prototype did not per-
form much initialization processing. When we moved processing for other features to the

initialization phase to improve on-demand performance for those features, we increased
the initialization processing requirements. There is now enough initialization processing
to warrant saving an entire session, but we didn't implement that enhancement. (See Sec-
tion 9.2.1, Save intermediate analysis data to disk.)

One implementation for saving the session would be to attach the Secondary Inter-
nal Representations (SIRs) to the REFINE/FORTRAN and REFINE/Ada Primary Inter-
nal Representations (PIRs) and save the PIRs and SIRs to the POB. This implementation
would require rewriting all of the information that REFINE/FORTRAN already saves in
a .analysis file, (Section 5.3.2) including the ASGs, but would obviate reanalyzing the

PIRs and speed up the RET prototype initialization.

(12) Hardcopy Output—We implemented hardcopy output by calling the Mouse Sen-
sitive Printing (MSP) and DIAGRAM window printing functions in the REFINE YOYO
hardcopy system. We initially thought that we would need to install a 4.0 Beta version of
REFINE, but we were able to use the unsupported YOYO hardcopy system in the version
that we were already running. The RET provides the capability to print any view by se-
lecting the "print" item from the pull-down menu for the window.

(13) Ada Code Generation — We implemented Ada code generation by calling the
REFINE/Ada printer, analyzing the resulting code to create an Ada ASG on the RHS, and
reestablishing the pointers with the LHS. We encountered many parsing errors initially,
but worked through them until REFINE/Ada could parse all of the code that the RET proto-
type generated. (We developed this feature by analyzing and generating code for the FCR.)

* YOYO is an acronym for You're On Your Own. The YOYO systems are unsupported re-
leases of features that Reasoning Systems typically incorporates into the supported
products in subsequent versions. The acronym derives from the fact that Reasoning
Systems does not formally support the features (although they did help us with some
of the YOYO systems when we asked).

27

Paradoxically, the REFINE/Ada printer can generate Ada code that the REFINE/
Ada parser rejects. This is possible because the printer simply prints the ASGs that the

Transformer creates, and it is possible to construct an ASG which is syntactically invalid.
REFINE/Ada is very good at checking data type and scope violations.

(14) Data Flow Diagram — The RET prototype generates the Data Flow Diagram
(DFD) from the RHS ASG created by REFINE/Ada. This is not the ASG that the Trans-
former creates. We use the ASG created by REFINE/Ada because it contains the semantic
information produced by the REFINE/Ada linker. We enhanced the DFD during the de-
velopment task as described in Section 4.2.2.

(15) Intrinsic and External Subprograms — The RET prototype translates an im-

plicit FORTRAN function that does not have an equivalent Ada primitive into an Ada
function call. The RET gives the Ada function the same name as the FORTRAN function

that it is derived from. The RET generates an Ada package named "implicitjhs" that con-
tains stubs for each Ada function translated from an implicit FORTRAN function. (The
engineer can change this package name.)

The engineer must provide bodies for the Ada functions by, for example, supplying
an existing Ada library that implements the required functions or coding the functions "by
hand." The RET prototype similarly translates external subprograms, i.e., subprograms
that are referenced, but not declared in the FORTRAN system.

(16) Constant Packages — The RET prototype generates Ada packages for constants,
derived from the FORTRAN PARAMETER statements in included files, and automatical-
ly generates context clauses for the constant packages. The engineer may view the pack-
ages from the Packager view.

(17) Global Variable Distribution — We implemented a global variable distribution
feature that identifies common blocks that should not be split up, i.e., memory-mapped
common blocks. The RET prototype recognizes common blocks that are declared in several
places or whose variables are used in EQUIVALENCE statements anywhere in the pro-
gram. Both occurrences indicate the possibility that the program is relying on the common
block residing in a contiguous block of memory.

When the RET prototype distributes the global variables, it pops up a window that
shows the common blocks and highlights those that it identifies as not being memory-
mapped. The engineer either accepts these or selects other common blocks. The RET pro-
totype then distributes the variables in the highlighted common blocks.

28

4.2.2 Views

SCL — The Source Code Listing (SCL) is a textual view that shows the FORTRAN
or generated Ada source code. The LHS SCL displays the FORTRAN code as it was for-

matted when input to the RET prototype, after it was processed by the SCR The SCP al-
ters the source code, so the output format is generally different from that of the original
unprocessed FORTRAN code. The SCL shows individual FORTRAN and Ada subpro-
grams, and Ada packages.

The RHS SCL displays the Ada code as formatted by the REFINE/Ada (RA) printer.
When the RET prototype generates an ASG, it does not insert formatting information (spe-
cifically, surface syntax that would control the appearance of the code) into the ASG; the
RET allows the RA printer to compute the surface syntax when it creates the Ada code from
the ASG. The RET prototype subsequently calls RA to parse and analyze the Ada code.

RA creates another ASG while parsing the source code, and it contains more in-
formation than the one that the RET generated. In particular, RA annotates the ASG with
sequences of characters, called surface syntax, that comprise the code. In other words, the
ASG created by RA contains (in an encoded form) an exact copy of the source code that it
represents. If something changes the Ada source code between the time the RA printer
generates it and the time RA parses it, the new ASG captures the revised code as surface
syntax.

The RET prototype uses the RA printer to create Ada code from an ASG that may
contain surface syntax. The RA printer doesn't compute the arrangement of the Ada code
that it creates from an ASG that includes surface syntax; it simply references the surface
syntax to print out an exact copy of the source code read by the parser. An external agent,
e.g., a code formatter, may thus change the appearance or arrangement of the Ada code
between code generation and parsing.

The current RET prototype does not provide an automatic code formatter. The engi-
neer may edit the generated Ada code before RA parses it, however, and the ASG and sur-
face syntax created by the RA parser preserves any changes that the engineer makes,
including those that affect the arrangement of the code.

PACK — The Packager view is a hierarchy of graphs. The hierarchy corresponds to
the nesting structure of the target system. There is one graph for the Ada library, and one
for each potential package. The nodes in each graph represent modules, i.e., subprograms
or packages, and the edges represent either data relationships or subprogram calls. Sec-
tion 6.1.1 describes the Packager view and how it is used to cluster a sample application.

29

The Packager view contains two kinds of edges. Thin, undirected edges depict the
data sharing relationships between two nodes. A thin edge between two subprograms in-

dicates that the two subprograms share data. A thin edge between a package, P, and a
package or subprogram node indicates that at least one subprogram in P shares data with

the modules that the other node represents. The edge labels list the data objects or show
the subprograms in the package that share data.

A thick edge drawn as an arrow directed from one subprogram to another represents
a subprogram call in the direction of the arrow. If the edge is drawn between a package and

another node, then the edge may represent multiple subprogram calls and its label shows
either the number of subprogram calls or the names of the called subprograms.

DED — The Declaration Diagram is a textual view that shows the declaration struc-

ture of the subject system. For the FORTRAN system, the (LHS) DED lists the subprograms
and common blocks. For each subprogram, it lists the formal parameters, local constants
and variables, and included files. For each variable, constant, and parameter, the DED

shows the data type and describes where the data object is declared and referenced.

We had anticipated creating an RHS DED for the Ada system, but found that the
Packager view served the purpose well. We referenced the DED while creating an Ada
package structure with the Packager mainly to locate and view the source code for a given
subprogram. After adding the capability to view source code directly from the Packager
view, we found that we no longer referenced the DED.

CD — The Call Diagram (CD) is a textual view that shows the calling structure of
the FORTRAN system. The CD lists the subprograms that comprise the original system
and shows the subprograms that each one calls, and the subprograms that are called by
each one. The CD initially shows only a list of subprograms and allows the engineer to
view the additional calling information for selected subprograms.

DFD — The Hierarchical Data Flow Diagram (HDFD) (Ref. 29) is a representation
specifically designed to be created via reverse engineering. It provides dataflow informa-
tion recommended by the software development (forward engineering) methodology
known as Transform Analysis.

The ASRET Data Flow Diagram (DFD) is based on the HDFD, but the DFD is an
interactive view rather than a static diagram. We describe other differences below. The
RET prototype automatically generates the DFD via the algorithm specified in Ref. 29

from the Ada ASG.

30

The DFD view is a hierarchy of dataflow graphs. The hierarchy corresponds to the

calling structure of the target system. There is one graph for each subprogram declared

in the target system that is called. This means that there are no graphs associated with

undefined external subprograms or intrinsic functions (because we are not reengineering

their source code).

The DFD contains two kinds of nodes. Transform nodes model programs and reposi-

tory nodes model data. Three kinds of transform nodes are borrowed from the HDFD.

1. Nonterminal nodes represent subprograms that are associated with graphs
because they call other subprograms

2. Terminal nodes model subprograms that call no other subprograms and thus
have no graphs

3. Body nodes represent subprogram bodies.

Three flavors of repository nodes model data. The first two are borrowed from the

HDFD and the third is a new kind that we created for the DFD.

1. Buffer nodes represent data objects (local variables, global variables such as
those declared in Ada packages, and subprogram arguments)

2. Data store nodes represent external storage such as files

3. Repository collection nodes combine sets of repository nodes.

Arrows between the transform and repository nodes indicate the flow of data. Transform

nodes are labeled with subprogram names. Repository nodes are labeled with data item

names. Repository collection nodes representing more than a few (the engineer specifies

the threshold) data items display the total number of data items, and the engineer may

click on the collection nodes to view the individual data item names. The collections may

be nested.

We did not implement data stores because the subject system contained very few

READ or WRITE statements. We simplified the Data Flow Diagram view by combining

repository nodes, eliminating redundant transform nodes, and eliminating nodes for in-

trinsic functions and external subprograms. This reduced clutter in many of the dia-

grams, but we found that a few of the diagrams were still hopelessly complicated,

reflecting the design of the associated modules.

31

We added a capability to automatically eliminate nodes for intrinsic functions and
external procedures. Intrinsic functions are those listed in Appendix D.3 of the VAX

FORTRAN Language Reference Manual (LRM) (Ref. 31). Examples are SIN and SQRT.
External procedures are system subroutines, listed in Appendix D.4 of the LRM, that are
called from the FCR code. Examples are DATE and EXIT.

We added the capability to automatically eliminate redundant transform nodes.
Benedusi defined the Hierarchical Data Flow Diagram (HDFD) (Ref. 29) to include dis-
tinct nodes representing multiple calls to a given subroutine. For example, if module A

called module B three times, then the diagram for module A would contain three distinct
nodes, each labeled "B," representing the three calls to module B.

The three nodes would only be connected to different nodes in the diagram if differ-
ent actual parameters were used in each of the calls. For may graphs in the FCR code,
parameters are not passed, so the three "B" nodes are each connected to the same set of
nodes, i.e., two of the nodes are redundant. The FCR code happens to have many such re-
dundant nodes, so we added the capability to eliminate them. The RET only generates one
"B" node for the example cited.

We added the capability to combine sets of repository nodes into collections. This
is analogous to combining several variables into a record structure. The strategy reduces
the number of repository nodes in a graph. It is most effective if each of the repository
nodes in a collection are referenced more or less by the same set of modules. We added this
capability to explore its effectiveness in abstracting data usage relationships in an other-
wise complicated diagram.

We did not add a user interface for specifying the groupings because the capability
is experimental. The graphical results seem to indicate that the strategy is helpful if the
engineer can identify related variables. It is effective, but labor intensive because the en-
gineer must identify groups of repositories based on information not available in the DFD.
We chose to group variables with similar names, e.g., CURSORX and CURSORY.

32

5. TOOL TESTING AND EVALUATION

5.1 EVALUATION SUMMARY

During the Reengineering Tool Testing and Evaluation task, Task 4, we exercised
the RET prototype by analyzing the simulation software for all but one of the subsystems
from Block 40 of the F-16 OFP. For each one we:

1. Processed the FORTRAN source code with SPAG to restructure the control
flow and eliminate certain unstructured constructs such as arithmetic IF
statements and implied declarations

2. Executed REFINE/FORTRAN to analyze the restructured FORTRAN source
code and saved the FORTRAN ASG and symbol tables for later use by the RET
prototype

3. Fed the analysis information created by REFINE/FORTRAN to the RET proto-
type, which analyzed the FORTRAN source code indirectly by processing the
ASG and symbol table

4. Developed an Ada package structure via the Packager component of the RET
prototype and generated hardcopy versions of the Packager views

5. Generated Ada source code corresponding to the FORTRAN subprograms and
organized according to the prescribed package structure

6. Generated dataflow diagrams corresponding to the Ada code and arranged the
transform and repository nodes to clarify the graphs.

Volume II (Ref. 5) contains hardcopies of the Packager and Dataflow Diagrams that
we created during Task 4.

5.2 SUBJECT SYSTEM

The subject system that we analyzed in the Reengineering Tool Testing and Evalu-
ation task is the F-16 Block 40 OFP simulation software. It comprises the seven subsys-
tems shown in Table 5 and is written in VAX FORTRAN.

33

Table 5 F-16 Block 40 OFP Subsystem Sizes

SUBSYSTEM LOC*

FCR 16,202

GPS 3,818

INS 9,637

MFD 16,291

RLT 1,455

UFC 14,345

SMS 21,554

Total 83,302

*The figures forthe lines of code (LOC) in this
table are those reported by the unix wc utility
and include blank lines and comments.

5.3 ANALYSIS PROCESS

5.3.1 SPAG Source Code Preprocessing

We employed SPAG as the Preliminary Restructurer component of the RET proto-
type. We ran SPAG on every source code file for each of the subsystems shown in Table 5.
We stored all output, including the SPAG log files, on disk as documented in Section 8.2.

SPAG doesn't remove all of the GOTO statements, but it gets most of them. SPAG
reformats the FORTRAN source code. It indents and inserts spaces as it deems appropri-
ate. Overall, it does a good job, but there is at least one case where the formatting is incon-
sistent with our preferences.

SPAG tries to format expressions such that the white space indicates the implicit
relative binding strength or precedence of the operators (which could be made explicit by
parentheses). It never provides white space around multiplication (*), division (/), or expo-
nentiation (**) arithmetic operators, but it can surround the addition (+) and subtraction
(-) operators with spaces.

The formatting goal of SPAG is understandable, but it does not reproduce the exist-
ing FCR code formatting in which every operator is surrounded with spaces. Whether this
formatting strategy is unfortunate or not depends on the engineer's subjective prefer-
ences or the organization's coding standards.

5.3.2 REFINE/FORTRAN Analysis

We used REFINE/FORTRAN (RFT) to analyze the subject system source code files
and save the analysis results in (.analysis) files on disk. We executed RFT through its own

34

user interface, i.e., not invoking an RFT analysis function from the RET prototype, but

invoking RFT from the shell prompt. We had developed a RET prototype interface to RFT

which can be used to call the RFT parsing functions, but we found it more convenient to

execute it as a separate step.

This part of the analysis is essentially a batch process and doesn't involve the RET

prototype. The engineer may execute the RFT analysis functions through a shell script

and completely bypass the RFT user interface. The RET prototype doesn't require the use

of any RFT GUI capabilities, it only needs the .analysis file created by the RFT analysis

functions.

RFT had only one problem parsing the FCR code. RFT requires spaces around

arithmetic operators and there were two instances of operators in the FCR code that were

adjacent to their respective operands without intervening spaces. We simply edited the

source code "by hand" to add spaces where necessary.

We analyzed the subsystems shown in Table 5 separately because the RFT docu-

mentation (Ref. 23) states that the tool runs faster this way. We produced separate RFT

.analysis files for each subsystem. Each of the subsystems referenced many of the same

include files, for example to define parameters and common blocks.

5.3.3 RET Prototype Analysis

We analyzed each subsystem via the RET prototype. This entails loading the .analy-

sis file created by RFT and performing some initial processing. The engineer simply speci-

fies the .analysis file name and the RET prototype performs the analysis automatically.

The RET prototype performs analyses during the initialization phase beyond those

performed by RFT and saved in the RFT .analysis file. The RET prototype initialization

includes:

• Creating tables of program units and common blocks

• Creating symbol cross references for program units and common blocks

• Analyzing the surface syntax (embedded source text) in each file.

The analysis averages about one hour of wall clock time per subsystem. Section 4.2 de-

scribes the issues surrounding this aspect of RET prototype performance with respect to

saving the REFINE session. It is likely that we could reduce the time required for the

analysis by tuning the RET prototype code, although we did not tune the prototype.

35

After performing the initial analysis for a subsystem via the RET, we created the
Packager and DFD views for that subsystem and generated hardcopies (Ref. 5). Sec-
tions 5.3.4 through 5.3.6 describe our efforts to create the Packager and DFD views and
generate Ada source code.

We referenced the SCL, DED, and CD views that the RET prototype created for
each subsystem when we formed the Packager views. While we found the DED and CD
helpful during this process, we did not create hardcopies of them because they are very

straightforward textual views and not particularly interesting in themselves. The SCL
views are identical to the source code which we retained as per Section 8.2.

We inspected the Packager and DFD views that we created and compared portions
of the views with the FORTRAN source code. We limited our inspections to portions of the

views as opposed to systematically examining every element in every view because of
their size. We discuss in Vol. II (Ref. 5) specific elements of the views that we created.

5.3.4 Creating Packager Views

The Packager presents the engineer with a graphical view of the subprograms of the
FORTRAN system and provides an interactive mechanism for clustering the subprograms
into Ada packages. The Packager automatically distributes global data items among the
subprograms and packages, and allows the engineer to alter the distribution. Section 6 de-
scribes in detail the Packager view and narrates an example Packaging session.

The clustering algorithms (Section 6.1.2) implemented in the RET prototype iter-
ate over 0(n3) matrix operations where n is the current number of modules in a graph.
(The number of modules decreases after each iteration as the clusters form.) The REFINE
implementation of the algorithm executed a single iteration in about 10 minutes of wall
clock time for 100 nodes. We reimplemented the algorithms in Lisp, adding declarations
to avoid "consing," and an iteration now executes in about 15 seconds of wall clock time,
for a roughly fortyfold improvement in processing speed.

While 15 seconds is not a short response time for an interactive system, the engi-
neer nominally spends most of the time studying the Packager view, only intermittently
initiating clustering iterations. Amortizing the computation time over the period during
which the engineer interacts with the Packager, the delays did not seem at all unreason-
able to us, psychologically or practically.

36

The Packager pops up an SCL view or Emacs buffer containing the source code of
the program unit associated with any Packager node when it is requested by the engineer.
If the node represents a subprogram that is not a subunit, then the associated program
unit is the entire package containing the subprogram. In this case, the engineer must
scroll the view to locate the desired subprogram.

The Packager allows the engineer to specify whether each module will generate an
Ada subunit. The RET prototype generates a separate file containing the Ada code for

each module flagged as a subunit, as required by the Ada language. We chose to specify
all subprograms as subunits to facilitate browsing the source code of individual modules.

It is possible to change the RET prototype so that it automatically scrolls the SCL
view or Emacs buffer to display the appropriate subprogram, but we found it convenient
to simply flag all subprograms as subunits while developing the target system. We recog-
nize that the engineer will generally want only some of the subprograms to be subunits.
This is not a problem because the RET prototype can regenerate the Ada code at any time
with the desired subset of modules marked as subunits.

One of our goals was to capture as much of the existing design from the original pro-
gram as possible. The software that the RET prototype targets has a structured design; the
program is divided into subprograms and files representing particular software require-
ments. Reorganizing this program under a radically different design methodology, such as
object-oriented design, where subprograms are organized around data, might encumber
maintainers who are already familiar with the existing application domain model.

We therefore decided to maintain the subprogram division of the original design
and use Ada features that improve on it, e.g., packages. Even though we were not trying
to produce an object-oriented design for the target system, we thought that clustering
based upon patterns of data usage would help us discover cohesive package groupings
with few interfaces that encapsulate much of the data.

Most of the subsystems contained sets of subprograms that were amenable to clus-
tering. Many, however, contained large numbers of subprograms that formed very highly
connected, sometimes nearly complete subgraphs when viewed with the data binding
edges of the Packager. These portions required more intensive "manual" evaluation, i.e.,
source code perusal, inspection of the calling relationships, and examination of the specif-
ic data objects involved in the bindings. We found it difficult to cluster these portions of
the subsystems.

37

Part of the reason for the resistance to clustering may be due to the fact that we did
not undertake to split functions. We encountered some large sets of subprograms that

were so tightly coupled that we discerned no clear component structure. Additional re-
search might seek to determine whether splitting subprograms in these situations would
lead to a larger number of cohesive clusters with less coupling.

Our recourse during the RET prototype evaluation was to take advantage of the
calling information that the Packager view provides. When we encountered a refractory
set of subprograms for which the Packager view of the data bindings formed almost a com-
plete graph, we adjusted the Packager view to display the calling relationships instead of
the data bindings to help identify a package structure.

The automated clustering algorithms helped identify package structures for much,
but not all of the subject system. While the algorithms suggest alternative groupings and
provide recommendations, the engineer must exercise judgement in analyzing the subject
system. We felt disadvantaged in that we did not have much experience in the particular
application and we are not involved with this application domain on a day-to-day basis.
For this reason, we highly recommend a "usability testing" experiment by maintainers
familiar with the target system that is the subject of the RET experiment.

The Packager provides information to the engineer. We expect that an engineer
who is committed to understanding the application, or who has experience with the ap-
plication will be in a better position to take advantage of the information. We did not have
time during the evaluation to study the application itself as we were more focused on the
RET prototype and the reengineering process. This is one of the reasons that we recom-
mend in Section 9.3 that regular application maintainers participate in testing an en-
hanced version of the RET outside of the laboratory environment.

Additional research on the RET prototype might seek to identify how sensitive its
effectiveness is to the engineer's experience and knowledge of the application. One prob-
lem in reengineering is the difficulty of recruiting and retaining talented engineers to
work on an old application. This results in an overall decrease in the level of the maintain-
ers' familiarity with it. The RET prototype may demand some level of application domain
knowledge and experience with the subject system, but we have no experimental data by
which to define metrics to quantify or bound the critical mass for the knowledge base.

38

5.3.5 Generate DFD Views

We generated DFDs for the FCR subsystem (Section 5.2) first. While we were in the

process of creating the DFDs for the FCR, we implemented the modifications discussed in

Section 4.2 for simplifying the diagrams. We spent a lot of time arranging the diagrams by

dragging nodes with the mouse and we think that an automatic graph placement feature is

absolutely necessary for a production quality RET in a software maintenance environment.

The ability to collect repository nodes into groups helped simplify some of the dia-

grams, but others remained incomprehensible. We think that application domain knowl-

edge and a better user interface for grouping repositories may allow the engineer to

further reduce the amount of detail, allowing additional data flow relationships to

emerge. We expect that some data flow relationships will continue to be obscured by the

complexity of the most complicated DFDs, however.

It would be interesting to investigate the potential benefits of filtering repositories

in the DFDs. Individual diagrams, or the entire set of diagrams in a DFD could be filtered

to show specific kinds of repositories. For example, the DFD could show only repositories

representing global variables, or those for a specific set of variables of interest to the engi-

neer. The engineer would be able to focus in on data areas of interest, formulating specific

queries and regenerating the DFDs in response. Research on filtering criteria or classes

could identify promising domains to improve the maintainer's understanding during a re-

engineering session.

An automatic graph placement capability is essential for this feature to be practi-

cal. One difficulty that the system would need to address is the possibility that transform

nodes might appear in different locations from one generation to the next. The tradeoff is

that fixing the transform nodes' positions to maintain the engineer's frame of reference

constrains the graph placement algorithm's ability to optimize the arrangement of nodes

in the graph.

Some parts of the diagrams remained cluttered after we implemented several sim-

plifications to the DFD. These diagrams point out areas that require additional "manual"

analysis by the engineer. In these cases, the RET prototype identifies areas that may de-

mand more attention from humans during the reengineering process.

39

We produced high-level graphs for each subsystem that show the overall flow of
data among major parts of the subsystem. When arranging a newly-generated graph, we
would first try to position the nodes so that no edges crossed. Many of the graphs were
planar, or very nearly so. The notable exceptions were the highly connected graphs with
many nodes.

We realize in retrospect that disallowing editing of the generated DFDs was a mis-
take. An engineer might find it useful, for example, to combine nodes or edit the node la-

bels. The repository collections combine nodes, but the groups must be specified in

advance. The Hypertext Annotation (HA) feature that we deferred (Section 7.2) would

have allowed the engineer to add textual commentary, but DFD graph editing capabilities
would be welcome.

5.3.6 Generate Ada Code

We encountered a number of problems (that we eventually resolved) while generat-
ing Ada code and parsing the generated code with REFINE/Ada (RA). Once we successful-
ly generated and parsed Ada source code for the FCR subsystem, we generated Ada for the
other subsystems, except for the SMS subsystem.

The Transformer component of the RET prototype copies the FORTRAN ASG and
then transforms it into an Ada ASG. The first transformation rules that we wrote incre-
mentally converted the FORTRAN ASG to an Ada ASG by performing a preorder travers-
al. This proved unsatisfactory because the earliest rules to fire destroyed information
from the FORTRAN domain that was needed by subsequent rules. We switched to a post-
order traversal to circumvent the problem.

Unfortunately, the n-ary rules for transforming multiplication, addition, subtrac-
tion, and division would not work with the postorder transform technique. This is because
the rules, when applied to a node in the FORTRAN domain, would replace it with an Ada

node that had FORTRAN child nodes. This was acceptable under a preorder traversal be-
cause transformation rule application resumes with the replacement node and continues
downward, i.e., with the children. The children are then likewise transformed from the
FORTRAN domain to the Ada domain. Under a postorder traversal, however, the children
remain in the FORTRAN domain and are never converted to Ada.

40

We rewrote the rules to work under postorder traversals. The revised rules replace
each FORTRAN node with another FORTRAN node that has Ada children. The non-
exhaustive postorder traversal resumes with the replacement node, i.e., the FORTRAN
node, and resumes upward. The children, being Ada nodes, need no further transformation.

We were unhappy with RA's Ada code formatting. The Ada printer generated with
DIALECT and provided by RA doesn't support all of the formatting options listed in the
SRS (Ref. 3). We understand that the Walnut Creek Ada CD-ROM* contains four Ada
pretty printers. We did not examine the contents of the disk, but it is worth investigating
whether one of the pretty printers produces more pleasing results than RA. We recom-
mend reformatting the generated Ada code with an Ada pretty printer as a separate pass.
This can be done without integrating the pretty printer into the RET prototype.

We were disappointed that RA doesn't support recompiling individual compilation
units into the Ada library, as is permitted by the Ada language. We had envisioned that
the RET Prototype would allow the engineer to generate Ada code, make some changes
to one or more of the views, and then reanalyze only the affected compilation units. The
RET prototype can regenerate the specific individual compilation units that the engineer
selects, but the RA restrictions require the RET prototype to reanalyze all of the Ada code.

We found that the process of analyzing the generated Ada code for most of the sub-
systems required about half an hour or less for any one subsystem. This is short enough
that editing the generated code to make small-scale changes and then reanalyzing it is
feasible, but long enough that the changes are only practical if made in batches.

We separated the process of generating and analyzing Ada code into several steps
to mitigate the inconvenience of RA's restriction on selective analysis. The engineer may
begin the process after running the Packager and distributing the data objects. The engi-
neer may then generate and browse select compilation units. The new Ada source code is
not linked to the other views at this point because the RET prototype relies on analysis
information that RA provides, but the engineer can still browse the views.

: The CD ROM contains various Ada software. It is available through Walnut Creek CD
ROM, Inc., Suite 260,1547 Palos Verdes Mall, Walnut Creek, CA 94596.

41

The engineer may check the syntax of generated code at any time by choosing a
menu item that causes RA to parse, but not analyze, the selected compilation unit(s). The
rest of the Ada code for the target system need not have been generated in order to parse
any compilation unit. We separated this step from the others because RA parses code
much faster than it analyzes code, and the engineer can thus find syntax errors that he
may have introduced through manual editing without waiting for RA to analyze the entire
target system.

The engineer may direct the RET prototype to generate Ada code for any select com-
pilation unit by choosing the appropriate menu item. The engineer may thus generate
Ada code for one unit without regressing any changes that he may have made through
manual editing to a different unit.

The engineer may alternatively direct the RET prototype to generate, parse, and
subsequently analyze Ada source code for all compilation units rather than select units.
The engineer may find this easier if he has made many changes.

Separating Ada code generation from analysis allows the engineer to execute an
Ada pretty printer, or other tools that read the generated Ada code, independently of the
RET prototype. The RA parser recognizes the arrangement of whitespace, tabs, and new-
lines (or carriage returns) and stores the layout in the form of surface syntax. The RA
printer that the RET prototype uses to display the Ada SCL view respects the surface syn-
tax. If the engineer reformats the generated Ada source code before RA analyzes it, the
SCL view will display the reformatted code.

We did not originally intend to support Ada code analysis in the RET prototype. The
previous version of the ASRET Reengineering Process Model (Figure 1 in this report) that
appears as Figure 6-3 in the Software Requirements Specification of the Avionics Software
Reengineering Tool (RET) Prototype System (Ref. 3) indicates that the step labeled "Ana-
lyze Ada Code (Reverse Engineering)" is "Beyond the Scope of the Current Ada Project."

Separating the code generation and analysis steps allows the RET to support Ada
code analysis as indicated in Figure 1. For example, the RET prototype produces the DFD

from information contained solely on the RHS, and the RET could be modified to create
a DFD from Ada source code for which no corresponding FORTRAN version exists.

42

6. USING THE RET PROTOTYPE

The RET helps the engineer develop an Ada system by reusing parts of the existing
system. It supports, but does not enforce, the ASRET process model by implementing mac-
ro and micro restructuring as defined in Section 3. The engineer first applies macro re-
structuring features to construct a skeleton of the Ada system. The skeleton provides the
modular structure and the distribution of variables among the modules. The engineer
then explores and refines the Ada structure, and adds program statements using micro
restructuring features of the RET.

This section describes some problems that the engineer faces when reengineering
a legacy system, i.e., a system that has undergone many modifications through years of
maintenance, and explains how the RET helps the engineer overcome those prob-
lems. Section 6.1 describes the use of the Packager component of the RET. Section 6.2 dis-
cusses the use of the Transformer component and explains some of the issues involved in
translating certain language features.

6.1 DEVELOPING PROGRAM STRUCTURE USING THE PACKAGER

The engineer learns about the FORTRAN system by navigating through several
views. The engineer may be overwhelmed with information when initially confronted
with an entire legacy system. One way to reduce the amount of information that the engi-
neer must comprehend is to examine only the large-scale constructs of the program. For
example, the engineer might first be interested in understanding the relationships be-
tween the modules that comprise the system. Then, he might turn his focus of concern to
specific subsets (clusters) of the modules.

To discover the modular structure of the FORTRAN system, the engineer directs
the Packager component of the RET to cluster subprograms into groups that will eventu-
ally become Ada packages. The Packager iteratively applies clustering techniques de-
scribed by Hutchens (Ref. 18) and Müller (Ref. 17) to analyze the FORTRAN system and
group subprograms based upon calling relationships and patterns of data usage, mea-
sured in terms of data bindings.

43

During the analysis, the engineer gains a better understanding of each subpro-
gram's purpose and why subprograms are grouped as they are. The Packager invites the
engineer to explore the most recently clustered modules after each iteration. The RET or-
ganizes the subprograms and aids the engineer in exploring groups of related subpro-

grams that are, in the sense of the clustering criteria, more closely related than others.
Note that understanding is a critical element of any software reuse or reengineering pro-
cess, as we have noted on several research efforts which were predecessors to the ASRET
project (Refs. 32-35).

6.1.1 Definitions

The Packager uses data bindings to cluster some modules. A data binding is a tuple
(p, x, q) where p and q are subprograms that reference data object x. Hutchens (Ref. 18)

describes several kinds of data bindings. The RET counts only actual data bindings, i.e.,
those in which the data object is written by one subprogram and read by the other. The
RET analyzes actual data bindings because they provide a reasonable model that is not
too computationally intensive to implement in an interactive tool.

The RET computes the Interconnection Strength (IS) and the Common Client and
Supplier (CS) sets denned in (Ref. 17) based upon the actual data bindings. The RET al-
ters Müller's IS metric slightly by adding one to it if either of the two subprograms calls
the other.

Clustering produces a tree of modules. The root module represents the Ada library,
intermediate modules represent packages, and the leaves represent subprograms. The
root is defined to be at level zero and its children are at level one.

The Packager displays one graph for the Ada library, and one for each potential
package. The Packager graph is an abstraction that enables the engineer to see relation-
ships among program modules, such as data objects shared between them. Nodes in the

graph represent nested modules, i.e., packages or subprograms, and the edges depict data
binding relationships between them.

There is exactly one graph associated with any given nonleaf module, M, in the
tree; we refer to it as the graph of M. The nodes in that graph correspond to the direct chil-
dren of M in the tree. The edges between the nodes in the graph depict the data binding
relationships between the corresponding packages or subprograms. We use the term
package structure to refer to both the tree and its graphs. For simplicity, we refer to nodes
as packages or subprograms or, when the distinction is unnecessary, as modules.

44

The graph in Figure 5 shows one subprogram (FCRjOUTPUT), five packages

(fcr_df, fcr_dr, main, modes, and dead code), nine edges, and nine edge labels. An edge

between two modules indicates that they share data bindings. An edge between a package

and another module, M, indicates that at least one subprogram in the package shares data

bindings with M. The edge labels list the data objects that comprise the bindings or show

the subprograms in the package that are involved in the data bindings.

The edge labels in the Packager view provide information about the variables shared

between the modules. The edge label between packages modes and fcr_dr lists the variable

names involved in the data bindings between them. This label lists one variable (IRSQ) that

is read and written by both packages, one variable (MDR32J) that is read by modes and

written by fcr_dr, and ten variables that are read by fcrjdr and written by modes.

The edge label between FCRJDUTPUT and fcr_dr shows that there is one data

binding between FCRjOUTPUT and each of seven subprograms nested directly under

fcrjdr (i.e., FCR_DR033 through FCRJDR009), and one data binding between

FCRJDUTPUT and each of three subprograms (FCRJWO, FCRJDR003, and

FCR_DR008) nested directly under fcr_ad, which is nested directly under fcrjdr.

-GD-

/ 0
/

* iq"i

dead
code

X

modes

dead
1 SUBXYZ

modes
1 FCRGDP

FCR_OUTPUT

FCR_DR033
FCR_DR032
FCR_DR0X3
FCR_DR012
FCR DR011
FCR_DR010
FCR_DR009
FCR_DR008 fcr_ad
FCR_DR003 fcr_ad
FCR_ADO fcr_ad

FCR_OUTPUT

fcr_dr - modes

<-> IRSQ
<— MDR32J
--> MDR33J --> MDR03J --> MDRXOJ —> MDR13J
—> MDR08J __> MDR12J
—> MDR09J
—> MDR11J
—> IFCRRQ
—> IIFCRQ

o

fcr_dr

Figure 5 The Packager View

45

The label between dead code and modes is similar, except that it is between two
packages. The label on the edge between FCRjOUTPUT and modes shows the total num-
ber of variables (1) shared between them.

6.1.2 Creating a Package Structure

Initially, every subprogram is at level one in the package structure and appears in
the level-zero graph. The edges in the graph are not shown by default because there are gen-

erally too many of them, but the engineer may view (or hide) the edges adjacent to any mod-
ule by choosing the appropriate menu option. The engineer may view the original source

code associated with any module by selecting it with the mouse. The engineer may select

specific subprograms to be grouped together, or apply an automatic clustering algorithm.

The automatic clustering algorithm is a variation of the hierarchical agglomerative
clustering technique (Ref. 18). In the RET, the technique is extended to allow for manual
alteration of the package structure. The RET provides two of the clustering metrics de-
scribed in (Ref. 17). Each metric can be defined as a function of two subprograms.

The Common Clients and Suppliers (CS) metric counts the number of other subpro-
grams that provide data to, or accept data from two subprograms. This metric is useful for
locating and grouping utility or library routines, such as math or I/O routines. The Inter-

connection Strength (IS) metric counts the number of shared data items that two subpro-
grams reference. This metric is useful in grouping subprograms that manipulate common
global variables or exchange data by parameters.

The automatic clustering process is iterative. To begin clustering, the engineer nor-
mally selects an option to perform one clustering iteration using the CS metric. We call
this strategy CS-clustering. It tends to group modules that receive data from, or pass data

to the same modules. The Packager computes the common client and supplier sets for each
pair of level-one modules and identifies the group of modules that share the greatest num-
ber of clients or suppliers. It then modifies the package structure to combine the modules
in this group.

CS-clustering should be performed one iteration at a time for several reasons. CS-
clustering only takes a few iterations to identify many of the utility subprograms, and the
RET relies on the engineer to determine when to stop clustering. The RET also relies on
the engineer to manually add or remove subprograms because the heuristic strategy is too
simple.

46

Once the engineer judges that CS-clustering is not discovering any new utility sub-
programs, he may initiate IS-clustering. With this strategy, the Packager computes the in-
terconnection strength between each pair of level-one modules; determines the maximum
IS, denoted ISmax, among all the modules; and groups those modules that are involved in
an ISmax relation. The engineer may perform IS-clustering one iteration at a time, but it is
faster to direct the Packager to iterate until only one level-one module remains in the level-
zero graph, i.e., all subprograms have been clustered into (possibly nested) packages.

The engineer should employ CS-clustering before IS-clustering because the former
identifies groups of utility subprograms that are not recognized by the latter. If IS-cluster-
ing combined a utility subprogram with other subprograms, the CS metrics for the result-
ing package would be different from the utility subprogram CS metrics and the utility
would be less likely to combine with other utilities during CS-clustering.

With either clustering strategy, when the Packager groups a set of modules, it

creates a new level-one package and moves the grouped modules to level two, i.e., under
the new package. Edges appear in the level-zero graph between the new package and any
level-one modules that share data bindings with it.

With either strategy, the engineer may inspect and/or alter the package structure
after each Packager iteration. Alternatively, the engineer may direct the Packager to iter-
ate until every module has been included in some package, automatically providing an
approximation to a reasonable package structure. The engineer must verify the resulting
package structure or modify it through the views to obtain an appropriate grouping. The
information provided by the Packager facilitates this analysis, and editing operations al-
low the engineer to easily change the structure.

The clustering strategies described above produce a hierarchical organization of
packages; there are packages nested within other packages. Although the RET can gener-
ate Ada code corresponding to a hierarchical nesting structure, it may be easier to main-
tain Ada code which consists of smaller library unit packages because such designs tend
to discourage redundancy and strengthen encapsulation. We expect that the engineer will
often want to "flatten" the generated package structure, i.e., increase its width and de-
crease its depth. The RET generates with context clauses for any package that references
a library unit.

47

The Packager tries to prevent the package structure from becoming unnecessarily

deep by maintaining a threshold on the package size. When package A is to be moved into

package B such that A would be nested within B, the Packager checks the number of mod-

ules in package A. If it is below the threshold specified by the engineer, then the modules

in A are moved to B and the package A is eliminated.

This somewhat arbitrary heuristic is only useful for preventing the formation of many

tiny packages and, in practice, the threshold must be set quite low. We have experimented

with values of four or five. Nominally, we expect that the engineer will want to intervene dur-

ing clustering and edit the package structure as it evolves in order to reduce nesting.

6.1.3 Editing the Package Structure

Packager graphs are interactive displays. The engineer opens pop-up menus by

positioning the mouse cursor over a module, an edge, or the background or window title

and clicking the right mouse button. The resulting pop-up menu shows commands for the

module, edge, background, or window. We refer to this below as issuing a module, edge,

background, or window command. The RET provides commands for navigating, browsing,

and editing the package structure.

Navigation commands allow the engineer to display different graphs by clicking on

a package or the background. The descend package command causes the RET to display

a package graph. The ascend background command causes the RET to display the parent
package graph.

Browsing commands alter the Packager display without changing the generated

package structure. The RET prototype provides browsing commands on the module, edge,

background, and window pop-up menus.

• Module commands allow the engineer to select or deselect individual modules
or modules in a region, show or hide individual or selected modules, drag and
reshape modules, and show FORTRAN and/or Ada source code.

• Edge commands allow the engineer to select or deselect individual edges, show
or hide individual or selected edges, and show global or local bindings (or both)
on edges.

• Background commands allow the engineer to arrange modules in a circle or
grid, and refresh, scroll, and zoom the display.

• Window commands allow the engineer to move, refresh, hide, reshape, and
close the Packager display.

48

Editing commands allow the engineer to edit module names and alter the Ada pack-

age structure. The engineer may move a module from the current graph to another package

in that graph via the push command, or to the parent package graph via the pop command.

The pop-to-top command moves a package all the way up to the Ada library level. The dis-

perse command eliminates a package from the current graph and moves all of the modules

that were nested in it up one level in the graph. The RET maintains the edges between the

packages and subprograms as the engineer changes the package structure.

The engineer can assign navigation and source code display commands to the

middle mouse button to reduce the number of mouse or keyboard events required to effect

a command. We have found this to be very convenient when working with a large system.

The left mouse button is always assigned to the select and deselect commands. The right

mouse button is always assigned to the pop-up-menu command.

6.1.4 Distributing Data Items

The Packager automatically distributes global data items among the modules of

the package structure. The algorithm reduces each data item scope while maintaining its

visibility as needed. It is based upon the following criteria.

• If a data item is used only by subprograms in a single package, the data item
declaration is placed in the package body.

• If a data item is used by subprograms in more than one package, but most often
by subprograms in a particular package, the data item declaration is placed in
that package specification. Other packages that use the data item specify a
context clause for the package.

• A new package is created for each common block with remaining undistributed
data items. These data items are used by subprograms in more than one pack-
age, with no package clearly using them more often. The data item declara-
tions are placed in the new package specifications, and other packages that use
the data items specify context clauses for the new packages.

The data object distribution algorithm is most effective when there are many data

objects declared in one module, such as a common block, that are referenced by few other

modules. Embedded systems may use common blocks to map variables to specific memory

locations. The FCR system, for example, has one common block with 396 variables that

are memory mapped. Distributing these variables among the packages so as to reduce the

scope of their declarations would disperse the specification of the mapping throughout the

code and make it more difficult to change the memory mapping (say, in response to an up-

grade to the processor that doesn't preserve the original address).

49

6.2 TRANSLATING PROGRAM STATEMENTS USING THE TRANSFORMER

Once the engineer has constructed and refined the package structure of the Ada

system and placed the variable declarations where desired, the Transformer helps with

micro restructuring by translating individual statements from the source to the target

programming language. The engineer may inspect the FORTRAN Source Code view for

any module and select specific statements with the mouse. The Transformer translates

these selections to Ada and inserts them into the Ada ASG. If the engineer has renamed

variable declarations, then the RET prototype generates references to those variables.

The Transformer generates Ada code for the package structure that the Packager

produces. First the Transformer creates a skeleton of the Ada system, and then it trans-

forms individual statements. The skeleton Ada code comprises package and subprogram

specifications and bodies that may include variable and constant declarations. The sub-

program bodies include a single null statement. The Transformer generates subunits as

the engineer specifies. The transformer also generates a type package that defines all of

the types and subtypes referenced in the variable declarations. The type package declares

Ada types that correspond closely with FORTRAN types, although an exact mapping is

not generally available as explained below.

Translating FORTRAN statements that map readily onto Ada language features

is straightforward. For example, the Transformer can easily translate Block IF and DO I

END DO statements into Ada IF and LOOP statements, respectively, because the seman-

tics are consistent between the languages. The fact that the control variable of a

FORTRAN DO statement remains defined after the loop is a nuisance. For these struc-

tures, we needed to account for differences in the way they are represented in the ASGs,

but did not need to implement further analyses.

There are FORTRAN constructs for which the mapping to Ada is not obvious or for

which there is a choice of translations. We have found several sources of difficulty in trans-

forming individual statements in such a way as to avoid propagating undesirable

FORTRAN constructs while taking advantage of Ada language features not present in

FORTRAN. They include the use of unstructured control constructs, the general lack of

correspondence between language features and, in particular, differences in the data type

systems.

50

Unstructured Control Constructs — Some FORTRAN code contains unstruc-

tured control forms, defined simply as branches into or out of loops or decisions

(Refs. 36, 37). While such forms do not always impede maintenance, they usually make the

code harder to understand and modify. Unstructured control forms exist in code which was

written before the benefits of structured programming (Ref. 38) were widely acknowledged.

Some FORTRAN language features encourage unstructured designs. Arithmetic

IF statements cause control to be transferred to any one of three locations based on a test.

Logical IF statements are only problematic when they are used with GOTO statements.

VAX FORTRAN extended ranges (in DO loops) are egregious examples of unstructured

constructs which might effectively confound maintenance programmers. We would not

want to reproduce such a design in the Ada system and, in any case, restrictions on Ada

GOTO statements (Ref. 39) preclude using them to transfer control into an Ada LOOP.

We implemented the Preliminary Restructurer (PR) component of the RET proto-

type by running a commercial control flow restructuring tool, SPAG (Ref. 26), to eliminate

control structures that are difficult to translate. The tool removes most of the objection-

able constructs. We apply the tool in a preprocessing step so that the RET may assume

that certain structures are not present in the FORTRAN source code.

Without such a tool, the presence of constructs such as those discussed above would

have forced us to implement our own control flow analysis to avoid generating Ada code

that is as difficult to understand as that in the FORTRAN system. Although we identified

formal techniques for control flow restructuring (Refs. 36, 37, and 40) in our literature

survey, we found it less costly to apply the SPAG component of plusFORT

Language Features — The RET prototype generates code for Ada language fea-

tures that have no counterpart in FORTRAN, but which produce programs that are sub-

stantially easier to maintain. For example, the RET does take advantage of Ada packages

because we feel that they are useful for encapsulating code and help to reduce the ripple

effect (Ref. 41) of modifications. On the other hand, the RET prototype does not generate

Ada code which uses exceptions because we believe that they make the code more difficult

to understand and, except in select situations, are of limited value in simulation software.

51

Data Type Systems — FORTRAN has fewer types than Ada and it allows implicit
conversions which must be made explicit in Ada. Data types that seem to serve the same

purpose may have different implementations across languages. The application may even
rely upon compiler implementation details or undocumented language features. This fact
is often an important consideration when translating embedded systems. The example in
Section 7.1 illustrates some complications we faced in converting data types.

6.3 A SAMPLE APPLICATION

During the Reengineering Tool Development task, we exercised the Packager on
the FCR subsystem of the F-16 OFP simulation code. The FCR subsystem comprises 98
subprograms and 17,641 lines of code as measured by the Unix wc utility. Section 5 de-
scribes the analysis that we performed on the F-16 OFP simulation code to exercise the
RET prototype during the Reengineering Tool Testing and Evaluation task.

We found that by first performing a few CS-clustering iterations, we were able to
identify groups of subprograms that simply assigned values to related sets of data. In sub-
sequent IS-clustering iterations, we grouped subprograms that perform processing for the
various FCR modes. We grouped the remaining subprograms based upon their calling
structure and identified the overall organization of the system. We examined the calling
structure by viewing the Call Diagram, automatically generated by the RET for the
FORTRAN system.

The FCR code has three common blocks containing 422 global variables. We di-
rected the Packager to automatically distribute those global variables throughout the
packages. The Packager moved 333 variable declarations into packages and created three
new packages, one for each common block, to hold the remaining global variables.

We recognized by browsing the include files that the variables in one of the common
blocks were memory-mapped via EQUIVALENCE statements. Under the assumption
that every variable for which such an equivalence exists is memory-mapped, we moved
them to their own data package. The validity of our assumption could easily be verified,
or alternative clustering heuristics could be suggested, by maintainers familiar with the
FCR code. These individuals were not available during this phase of the RET prototype
development.

52

7. RET PROTOTYPE IMPLEMENTATION

This section describes both characteristics of the RET prototype implementation that
involve tradeoffs and flat limitations. The former result from decisions that evolved during
prototype development in recognition of the scope and goals of the ASRET project. The latter
simply reflect features that we did not implement due to resource constraints and the cur-

rent state of the practice in language reengineering technologies. The absence of any capa-
bility in the current RET prototype should not be construed as discommendation. We believe
that the deferred capabilities are worth pursuing in a next generate of the tool.

7.1 IMPLEMENTATION CHARACTERISTICS

Type Deduction — VAX FORTRAN provides a LOGICAL data type to represent
the boolean values .TRUE, and .FALSE.. It also provides logical operators that operate on
values ofthat type. Some examples of the logical operators are .AND., .OR., and .XOR. At
the machine architecture level, the least significant bit determines a LOGICAL value and
the other bits are undefined. The VAX FORTRAN language (Ref. 31) guarantees that the
logical operators affect the least significant bit in variables that are declared type LOG-
ICAL. A particular compiler, however, may implement the logical operators such that they
affect all bits.

Depending upon the compilers, it may be possible to define an Ada type which re-
produces the behavior of the FORTRAN LOGICAL type. For example, an Ada type may
be derived from the predefined enumeration type BOOLEAN. If an enumeration repre-
sentation clause is provided and the appropriate size specification is given in a length
clause, then the Ada logical operators and, or and xor may be substituted for the corre-
sponding FORTRAN logical operators.

An embedded system which uses memory-mapped I/O may take advantage of com-
piler implementation details that are not specified by the language. If the FORTRAN log-
ical operators affect all bits of LOGICAL variables, and if the application relies upon a
compiler implementation that operates on all bits, then converting LOGICAL to BOOL-
EAN will not suffice to reproduce the behavior of the original program because the bit pat-
terns in memory will be different.

53

The VAX FORTRAN logical operators also may operate on variables of type IN-
TEGER, in which case they operate on all corresponding pairs of bits. This is convenient
for implementing memory-mapped I/O in FORTRAN. The RET must not translate
FORTRAN variables of type INTEGER into Ada variables of any integer type if they are

to be used in logical expressions because the Ada logical operators are only defined over
type BOOLEAN.

The VAX Ada package SYSTEM defines subtypes of positive integers that are in-
tended to be used in bit operations. It also overloads the Ada logical operators for these
bit subtypes so that they have the same effect on memory as the FORTRAN logical opera-
tors (when applied to INTEGER variables). The bit types defined in the VAX SYSTEM

package would seem to be a suitable replacement for the FORTRAN INTEGER type, ex-
cept that FORTRAN INTEGER variables may be used as signed integers in arithmetic
expressions as well as in logical expressions. Although the VAX Ada bit subtypes are inte-
gers, they are unsigned.

The RET could have defined a new type, derived from universal integer, that in-

cludes negative integers and overloads the logical operators. Transforming all INTEGER
object declarations in the FORTRAN system to Ada object declarations that reference the
new type would simply propagate the loose typing to the target system. This would be an
unfortunate result when the target system has a very complete type system as does Ada.

Instead, the RET takes advantage of the fact that while a FORTRAN integer vari-
able may appear in both arithmetic and logical expressions, it isn't likely to. The RET only
declares such a variable as an Ada bit subtype if it is used in logical expressions, but not
in arithmetic expressions.

Actually, there are two forms of arithmetic expressions which are allowed for bit
subtypes. They are V*C and VIC, where Vis a variable and C is a constant that is a power
of two. In our sample FCR FORTRAN code, no variables are used in both logical expres-
sions and in disallowed forms of arithmetic expressions. The resulting code is easier to
understand because the type marks correctly indicate whether the variables contain bit
fields or integers.

Transforming Comments — We were not very pleased with the way that REFINE
supports comments. REFINE/FORTRAN attaches comments to the (LHS) ASG as text
fields that Reasoning Systems refers to (Ref. 21) as "surface syntax." REFINE/FORTRAN

54

frequently attaches the surface syntax to the parent of the (LHS) ASG node that it de-
scribes. The Transformer recognizes this and attempts to copy the surface syntax to the ap-

propriate node in the RHS ASG. Unfortunately, REFINE/Ada moves the surface syntax
back up to the parent of the node in the RHS ASG when it analyzes the generated code.

In spite of this problem, the RET prototype does transform FORTRAN comments
into Ada comments. We generated Ada code for the FCR subsystem that apparently con-
tains all FORTRAN comments present in the FORTRAN FCR code. The RET always

places the comments in the right location in the generated Ada code.

Hidden Implementations — The RET prototype implements some of the views
defined in the Software Requirements Specification (Ref. 3) indirectly or in nonobvious
ways. The RET prototype does not directly provide a LHS DFD, RHS DED, or RHS CD.
The information in the LHS DFD is present in the Packager view. The information in the
RHS DED is also present in the Packager view. Specifically, the Packager lists all pack-
ages and subprograms and a window that the engineer can pop-up from the Packager
view shows the data objects defined in the selected package. The calling information in the

RHS CD is presented in the call edges of the Packager view.

7.2 LIMITATIONS OF THE RET PROTOTYPE IMPLEMENTATION

We recognized three possible approaches to prototyping the RET during the
Reengineering Tool Development task. The first was to systematically identify all
FORTRAN language features and develop capabilities to address specific features. The
second was to devise and implement individual capabilities, each targeted towards specif-
ic elements of a formal FORTRAN syntax. The third was to devise transformations as
needed for a sequence of FORTRAN programs, chosen to progressively introduce more

and more elements of the FORTRAN language.

The approaches based upon systematically identifying FORTRAN language features
or enumerating elements of a formal syntax seem attractive because they promise a means
to measure the coverage of the reengineering capabilities with respect to the FORTRAN
language. A number of considerations belie the apparent expedience, however.

FORTRAN became popular before formal language theory was well established
and the REFINE/FORTRAN grammar does not capture every aspect of the language. The
formal grammar does not represent the semantics or pragmatics of the language. The se-
quence of states of an avionics simulation system, i.e., the bit configurations of memory-
mapped variables and the state of the machine in general is an essential characteristic

55

that the target system must reproduce. The target system must do much more than just
reimplement the logic and formulas encoded in the subject system. The essential behavior
is sometimes dependent on the compiler implementation.

A list of language features, such as the VAX FORTRAN LRM (Ref. 31), is a canoni-
cal organization invented to preserve and arguably to transfer knowledge on the syntax
and semantics of the language. We did not set out to organize the transformations accord-
ing to the LRM because we didn't think the structure would help us conceive the trans-
formation techniques or implement the rules. Indeed, we found that the transformations

are highly order dependent, and the order is prescribed by the techniques and follows from

the implementation details and practical considerations. We did attempt to cover the lan-

guage features enumerated in the FORTRAN LRM when developing the transformations,
but we didn't follow the LRM as a guide to developing the RET.

We viewed the third alternative as the most practical given the great uncertainty
that we faced in applying the selected methods to reengineering. We started by writing
transforms for code fragments and then small subprograms. We later built more trans-
forms and translated the subprograms of the FCR subsystem. We then modified the trans-
forms to overcome type conversion problems and allow REFINE/Ada to parse and accept
the target system. Eventually, we translated the other subsystems and once again cor-
rected the Transformer as needed to parse the target code.

A benefit of this spiral-model approach is that we did not develop a large body of
transforms only to find out that the predetermined strategies would not work. On the con-
trary, each transform was written to transform a particular sample of the subject system.
One limitation of this approach in prototyping is that the RET now supports only those lan-
guage features that are employed by the FCR, UFC, MFD, GPS, INS, and RLT subsystems.
The RET prototype does not support the FORTRAN language features listed in Table 6, and
described in the indicated sections of the VAX FORTRAN LRM (Ref. 31).

Limitations in Ada code formatting due to the DIALECT printers are discussed in
Section 4.2. The RET prototype does not provide the following capabilities, which are de-
fined in the RET SRS (Ref. 3).

• DFD Anomaly Detection

• DFD Data Store Nodes

• Hypertext Annotations.

56

Table 6 Unsupported FORTRAN Language Features

FEATURE DESCRIPTION VAX FORTRAN LANGUAGE
REFERENCE MANUAL SECTION

COMPLEX types and constants 2.2.1

INTRINSIC statements 4.9

NAMELIST statement 4.10

RECORD Statement 4.13

SAVE Statement 4.14

Structure Declaration Block 4.15

VOLATILE Statement 4.16

PAUSE Statement 5.8

STOP Statement 5.10

ENTRY Statement 6.2.4

I/O Statements 7,8,9

Compiler Directives 10

The level of effort for writing transformations that produce correct Ada syntax was
roughly consistent with our predictions. The effort involved in enhancing the transforma-
tions so that the REFINE/Ada parser and analyzer would accept the generated code was
greater than we expected. We did not implement all of the features of the RET prototype
that we had originally planned, primarily because we spent more time on the Transformer

component than we expected.

Most of the Transformer problems arose from the great differences between the
FORTRAN and Ada type systems, the type perversions that FORTRAN supports in the
name of programming convenience, and our goal of reproducing sequences of bit patterns
for memory-mapped variables where necessary, as described in Section 7.1.

57

8. RET PROTOTYPE PLATFORM

The RET prototype runs on a Sun SPAKCstation 10/40 under the Sun OS 4.1.3
Unix operating system. The ASRET hardware includes a SPARCclassic X-Terminal in
addition to the SPARCstation console. The engineer may run the RET prototype from ei-
ther seat. Table 7 provides the release numbers for the software products installed on the
SPARCstation hard disk. The remainder of this section documents the RET prototype
software platform including the directory structure and files on the hard disk.

Table 7 Installed Software Product Versions

VERSION PRODUCTNAME

3.1 REFINE

1.1 INTERVISTA

1.0 DIALECT

1.2 REFINE/FORTRAN

1.0 REFINE/Ada

4.5.2 plusFORT(SPAG)

X11R5 X-Windows

18 GNU Emacs

8.1 SOFTWARE FILES

In all references to files that begin with a tilde (~), the tilde represents the directory
/usr/dew.

Reasoning Systems Files — The Reasoning Systems software products are
installed in /usr / local /reasoning. This directory contains the loadable code and data
files for Software Refinery, REFINE/FORTRAN, and REFINE/Ada. These products may
be loaded after starting REFINE, but it is inconvenient to load the individual products on
a daily basis. We created a "REFINE image" that the engineer can alternatively load to
quickly establish a REFINE session after logging in.

The process of creating the image consists of starting REFINE, loading the prod-
ucts, compacting or forcing garbage collection, and saving the session to a binary file, as
explained in the REFINE User's Guide (Ref. 21). We needed to create the image from the
SPARCstation console, not the SPARCclassic X-Terminal, to make it usable from either
seat. We also needed to set the *refme-start-switches* variable by entering the command

58

(setq *refine-start-switches* (append *refine-start-switches*
' ("-qq"))) into the *scratch* Emacs buffer before starting REFINE as instructed in the
release notes (Ref. 42).

We begin every login by executing the initialization-script file (Table 8-2).
The REFINE image may be loaded by entering the "M-x run-a-ref ine" command in
Emacs and replying 7usr/local/reasoning/asret/all.sys," the name of the REFINE image
file that we saved. It is not necessary to recreate the image file to run the RET prototype.

After loading the image, we load the RET by cutting the following commands from
the file ~/asret/ref ine-commands . re and pasting them into the *REFINE* buffer:

(progn
(setq *default-pathname-defaults* "~/asret/ret/")
(setq ada::*null-library-source*

"/usr/local/reasoning/asret/dev/data/standard.ada")
(load "~/asret/ret/initialize-session")
(in-package 'scp))

The standard.ada file defines the Ada package standard for REFINE/Ada. We
added the following VAX Ada extensions from Appendix F of the VAX Ada LRM (Ref. 43):

type UNSIGNED_BYTE is range 0 .. 255;
for UNSIGNED_BYTE'size use 8;

function "not" (LEFT : UNSIGNEDJBYTE) return UNSIGNEDJBYTE;
function "and" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "xor" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNEDJBYTE;
function "or" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;

type UNSIGNED_WORD is range 0 .. 65535;
for UNSIGNED_WORD'size use 16;

function "not" (LEFT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "and" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "xor" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "or" (LEFT, RIGHT : UNSIGNEDJWORD) return UNS1GNED_W0RD;

type UNSIGNED_LONGWORD is range MIN_INT .. MAX_INT;
for UNSIGNED_LONGWORD'size use 32;

function "not" (LEFT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "and" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "xor" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "or" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNEDJLONGWORD;

59

We set several options in the REFINE/FORTRAN initialization file (-/ . refine-for-

tran) by specifying the following statements in it. The RET prototype assumes that the

REFINE/FORTRAN analysis was performed with these options set.

(setf *RETAINING-AST* "T)(setf *SAVE-ANALYSIS* "T)
(setf *DISPLAY-PERFORMANCE-ONLINE?* 'NIL)
(setf *DO-SET-USE-ANALYSIS* 'T)
(setf *COMPUTE-TRANSITIVE-WHO-CALLS-WHO* 'T)
(setf *KEEP-CONSTANTS-EVEN-IF-NOT-SET-OR-USED* 'T)
(setf *DO-RECORD-PARAMETER-DEFINITION-AS-SET* 'NIL)
(setf *DO-COMPLEX-ARGUMENT-USE-PROPAGATION* 'T)
(setf *USE-DEEP-SET-USE-FOR-CALL-ARGUMENTS* 'T)

Revision Control System Files — The Revision Control System (RCS) is

installed in ~/gnu/rcs5 . 6 . 0 .1. All of the RET prototype REFINE source code files are

maintained in the RCS directory /usr/local/reasoning/asret/dev/src.

GZIP Files — GZIP is a freeware compression program installed in directory
~/gnu/gzip-l. 2 . 4. We used it to install RCS.

SPAG Files — The plusFORT product from Polyhedron Software Ltd. is installed

in directory /usr/local/reasoning/asret/plusFORT. We made several modifica-

tions to the SPAG configuration file to tailor processing as required for the SCP compo-
nent of the RET prototype.

Development Working Directory — We developed the RET prototype by check-

ing the REFINE source code files (called .re files) out from RCS and placing them into the

~/asret/ret working directory. Loading the initialize-session file noted above causes

REFINE to load the source code files and compile them resulting in files with the same

names, but ending in the suffix .fasl4. We then start the RET prototype by evaluating the
form (ret).

The development directory /usr/local/reasoning/asret/dev/ contains sev-
eral subdirectories:

• data: REFINE/Ada definitions of the Ada package standard

• log: backup log files created by the backup commands listed below

• ref: reference versions of the RCS files

• src: RCS source code directory containing the .re files

• bin: various scripts and commands listed below

60

The commands in /usr/local/reasoning/asret/dev/bin are listed in
Table 8.

Table 8 Commands and Scripts Used During RET Prototype Development

COMMAND/SCRIPT DESCRIPTION

aci, faci check in a file and update the reference copy and the associated .fasl4 file

aco, faco check out a file and copy the associated .f asl4 file

acou check out a file without locking it

acou-all,facou-all get copies of all files without locks, including the associated .fasl4 files

arcs issue the res command

backup*, bkup*, and restore various backup and restore scripts

include-files-to-lower-case,
include-files-to-upper-case

used to rename include files

initialization-script define environment variables and aliases

insert-headers.el elisp (Emacs Lisp) file used to edit .re files

rcs-header.re template forthe RCS data in .re files

unlock script to unlock RCS files

8.2 DATA FILES

We created the data files listed in Table 9 while exercising the RET prototype dur-
ing the Reengineering Tool Testing and Evaluation task.

Table 9 RET Prototype Evaluation Data Files

DIRECTORY DESCRIPTION

~/asret/ada small sample ada programs

-/asret/fortran small sample FORTRAN programs

~/asret/temp/ada RET prototype generates Ada code to this directory

~/block40/original-source original FORTRAN source code

~/block40/spag-source FORTRAN source code processed by SPAG

~/block40/spag-source/ada archive of Ada code that we generated with the RET prototype

-/fcr/original-source the FCR subsystem

~/fcr/spag-source the FCR subsystem processed with SPAG

61

9. CONCLUSIONS AND RECOMMENDATIONS

9.1 PROJECT STRUCTURE SUMMARY

For the Software Reengineering Study task, we conducted an extensive investiga-
tion of software reengineering tools and methods. We studied software reengineering

tools and methods relevant to ASRET and recorded the information for use in the subse-
quent tasks.

During the Reengineering Process Model Development task, we developed a
reengineering process model based upon the results of the first task, and developed the
software requirements for the RET prototype.

In the Reengineering Tool Development task, we designed and implemented the
RET prototype and exercised it by transforming part of the Fire Control Radar (FCR) sub-
system from Block 40 of the F-16 OFP simulation software.

We executed the RET prototype and converted all but one of the subsystems in
Block 40 FORTRAN code to Ada in the Reengineering Tool Testing and Evaluation task.

9.2 CONCLUSIONS

For the Literature Survey, we conducted a broad review of the state of software re-
engineering. We identified existing reengineering tools, software products, and tech-
niques that that we thought were both relevant to ASRET and implementable. We
screened and organized reengineering literature to distinguish the most promising meth-
ods consistent with the ASRET objectives. We were most interested in discovering results
that had been demonstrated and proven effective in improving software.

An important lesson that we learned during the study is that the motivations, acti-
vities, and results that characterize the state of the practice in reengineering are not ho-
mogeneous. The field is bound by no more specific common interests within the
community than is, say, engineering. The implication is that any successful reengineering
effort must be predicated on a particular class of problems and the nature of the work
must be tailored to the specific problem domain. A reengineering solution must be di-
rected at the root cause of the problem to be effective, and must not just seek to alleviate
the symptoms.

62

We discovered no broad spectrum reengineering nostrum for improving software.
Every method that we investigated involved tradeoffs. We resolved, then, to focus the RET
prototype development effort and restrict its scope based upon the primary needs of our
sponsor. The RET prototype would be a language translation aid that automates as much
of the job as is practical, leaving the rest to the engineer.

With that goal in mind, we developed a reengineering process model that specifies

a sequence of tasks to reengineer a program written in FORTRAN to Ada. The reengineer-
ing process model includes modern software development processes, such as continuous
testing, iterative restructuring and redesign, and configuration management. The engi-
neer performs redocumentation and macro and micro restructuring and redesign steps
multiple times, building upon the results of the previous pass during each iteration.

We developed a RET prototype that helps the engineer develop an Ada system by
reusing parts of the existing system. It supports, but does not enforce, the process model
by implementing macro and micro restructuring. The engineer first applies macro re-
structuring features to construct a skeleton of the Ada system. The skeleton provides the
modular structure and the distribution of variables among the modules. The engineer
then explores and refines the Ada structure, and adds program statements using micro
restructuring features of the RET.

We built up the RET capabilities incrementally to mitigate risk by devising trans-
formations as needed for a sequence of FORTRAN programs, chosen to progressively
introduce more and more elements of the FORTRAN language. We found that the trans-
formation rules are highly order dependent, and the order is prescribed by the trans-
formation techniques and follows from the implementation details and practical
considerations. The incremental approach allowed us to contain the impact of such discov-
eries to the most recently developed components.

We are convinced after exercising the RET prototype that the ASRET process mod-
el is sound and the top-down reengineering style that it encourages is effective. One of our
goals for the RET prototype was that it help the engineer capture as much of the existing
design from the original program as possible, and the RET accomplishes this.

A successful reengineering effort must be predicated on a particular class of prob-
lems and the nature of the work must be tailored to a specific problem domain. A reengi-
neering solution must be directed at the root cause of the problem to be effective, and must
not just seek to alleviate the symptoms. These two very important points merit further
discussion because they are often ignored in reengineering efforts.

63

The root cause of the problem may be, for example, that the legacy system is so diffi-
cult to maintain that enhancements to provide additional capability are impossible be-
cause corrective maintenance consumes all the resources. This is a very different
situation than, say, a rehosting effort impelled by the fact that the hardware platform is

obsolete and parts are no longer available, or the software development environment is
no longer supported; here time is of the essence.

The first problem could be addressed by revisiting the design, and perhaps even the
requirements for the system, and generally requires substantial time and labor. The second
problem may take advantage of a more automated approach, leaving the overall design in-
tact and focusing on the implementation. Porting the first legacy system to a new environ-
ment while preserving its decrepit design achieves no benefits at great cost. Taking time to
redesign the second application could result in a crisis before it is implemented.

The work must be tailored to a specific domain. The principles embodied in the RET
prototype and the techniques that it implements are extensible to other languages, but we
are now aware that it is no simple matter to change the RET to translate between other
source and target languages. Many of the technical challenges are borne of fundamental
differences between the source and target programming language models and imple-
mentation details, such as those between the FORTRAN and Ada type systems.

The programming language dependencies are not isolated to RET front and back
ends, but are systemic and essential to the transformation strategies that it employs. This
serves as a metaphore for the multifarious nature of reengineering in general; it repre-
sents the underlying reasons why it is so important to select reengineering techniques ap-
propriate to the project at hand. It also controverts development of general purpose
reengineering tools for broad markets and is consistent with the lack of a standard tool
or abstraction, or a universal formula for success. The state of the practice is to craft cus-
tom tool suites and develop proficiency in them within the organization.

The Task 1 study revealed that developing the techniques for dissecting legacy sys-
tems is difficult, so in Task 3 we were not surprised by the moderate level of comprehen-
sion that we initially achieved through the RET views, the resistance of some subsystems
to clustering via the Packager, the complexity of some Dataflow Diagrams, or the number
of type conversions in the generated Ada code. While immersed in the development pro-
cess, we accepted these with the understanding that even moderate advances are useful.

64

As we explored the F-16 simulation system during Task 4, relieved of the pressure
to produce code and free to explore what we had already created, we began to see past the

design tradeoffs and implementation constraints and we gained a greater appreciation of

the potential power of the interactive views and transformation capabilities of the RET
prototype.

Once we stepped back from the RET development effort and the mechanical/process
of composing the RET views and studied the output, we more fully realized the utility of
the information they provide and recognized that they are of great practical value despite
the technical imperfections that we grappled with in Task 3. We found that they summa-
rized salient features of the subject system and focused our attention on key areas, while
providing information that is not directly accessible from the source code.

One of the goals of the ASRET project was to research and develop a "RET prototype

for avionics support software reengineering. The RET prototype that we have developed

has the potential for reducing the resources needed to reengineer avionics support software.

It would help human engineers produce more maintainable systems if it were developed

into a product.

We built the prototype to examine promising reengineering techniques. We identi-
fied relevant techniques in Task 1 and we selected the ones that we thought were imple-
mentable and efficacious in Task 2. The techniques that we selected had been
demonstrated in various prototypes, but there was little or no hard evidence available to
prove that they were effective in improving avionics support software.

Our experiences in exercising the RET prototype to translate the F-16 OFP simula-
tion code during Task 4 convinced us that the RET can be effective. It remains for indepen-
dent practitioners to test this conjecture and to help focus continued technology insertion
efforts in areas that are likely to yield the greatest payoff.

We discuss important aspects of the RET prototype implementation and our experi-
ence with the RET throughout this report. We suggest numerous alternatives for improv-
ing the RET while leaving open other questions because more research is needed. We
review the most significant of these issues below.

65

While the Packager generally works well, some of the subsystems that we analyzed
were resistant to the RET's clustering techniques and demanded more of our attention.

We encountered some large sets of subprograms that were so tightly coupled that we dis-
cerned no clear component structure. Additional research might seek to determine wheth-

er splitting subprograms in these situations would lead to a larger number of cohesive
clusters with less coupling, or to identify how sensitive the Packager's effectiveness is to
the engineer's experience and knowledge of the application.

The RET prototype generates Ada source code that the REFINE/Ada parser and
analyzer accept. The Transformer could be more robust. The generated Ada code must be

run through an Ada pretty printer. Deficiencies in Ada code generation are easily circum-

vented by editing the source code before REFINE/Ada parses it. With very little help from
the engineer, the RET prototype generates almost all of the Ada source code needed to re-
implement the subject system.

We are concerned about the large number of type conversions in the target system,
but we suspect that the number can not be greatly reduced because of the inherent differ-
ences between the FORTRAN and Ada type systems. We didn't spend much time overrid-
ing the data type deductions made by the RET prototype during the Reengineering Tool
Testing and Evaluation task, but it is possible to do so. We expect that an engineer would
question some of the type decisions that the RET prototype made. It would be interesting
to examine how many of the type conversions could be eliminated by overriding types or
making modifications to the source code by hand.

Some of the DFDs that the RET prototype generated are extremely complicated. We
would like to know if those complications reflect inherent limitations in the DFD or an
unfortunate subject system design. If they signal application areas that require more hu-
man intervention during reengineering, then even the incomprehensible graphs in the
DFD serve a useful purpose and the DFD concept doesn't necessarily need to be reconsid-
ered. If the corresponding parts of the applications are well designed yet necessarily com-
plex, then we would judge that the DFD poorly represents those parts.

We do not argue that the overpopulated DFD graphs are actually desirable. The
ideal representation is one that decomposes even the most horrendous application into
simple and clear abstractions in which the base processes are manifest. The DFD doesn't
achieve the ideal; only some of the graphs are clear. The unresolved question is whether

the unclear graphs convey a useful message about the remainder of the subject system,

66

viz. that the design is unacceptable. Specifically, should we develop DFD complexity met-
rics to predict risk or guide decisions such as where to focus additional resources during
reengineering?

We would like to exercise the RET prototype on other applications, perhaps in dif-
ferent application domains to investigate whether the DFD views are more appropriate
to certain classes of applications. The simulation code for Block 40 of the F-16 OFP con-
tains a very large common block that is shared by almost every subprogram in the system,

while parameters are rarely passed. Not all applications share these design characteris-
tics. We would like to compare the DFDs that we created for the Block 40 code with DFDs

representing applications where data is primarily exchanged via parameter passing rath-
er than through shared memory.

We had very little trouble with Software Refinery environment or tool anomalies,
e.g., abnormal termination. The RET provides a stable reengineering environment. We
were not surprised by the lack of modern GUI features available through INTERVISTA
because we investigated the product before selecting it, but we were nevertheless disap-
pointed that we could not create a more sophisticated user interface for some features.
This is not a problem for the prototype, yet users may perceive limitations if the RET is
developed into a product. The RET should be updated to take advantage of enhancements
provided in current releases of INTERVISTA.

Limitations inherited from INTERVISTA include the lack of text clipping in the
hardcopy versions of the graphical views, and the lack of control in specifying the absolute
size or scale of the hardcopy views. There are too few icon styles available to distinguish
different kinds of nodes. For example, the package and subprogram nodes in the Packager
view are indistinguishable except by the labels that the RET prototype adds. Neverthe-
less, the content and substance of the interactive graphical views outweigh any defects in
the static representations.

The DFD and Packager are complementary views that display some similar in-
formation. While exercising the RET prototype, we found it useful to examine both views.
The RET prototype creates the DFD from the generated Ada code which means that the
engineer must work with the Packager view to generate Ada before the DFD view is avail-
able. We think that an engineer might find an LHS DFD view useful while building the
Packager view.

67

9.3 RECOMMENDATIONS

How do we prove that the RET prototype is valuable? Hypothetically, we could per-

form an experiment to evaluate the tool where the test project employs it and a simulta-

neous "control" project doesn't. The maintenance costs for the resulting parallel target

systems over several years might correlate with the RET's effectiveness. After all, isn't mea-

suring the desired variable (cost) directly more reliable than observing possible indicators?

A fundamental defect in this approach is that uncontrollable, if not unknown, vari-

ables are at play. We could not, for example, objectively adjust for differences in the staff's

experience, technical and managerial talent, methodology, or culture. Correlation of the

use of the RET with cost would not imply causality. A great practical impediment is that

such luxurious "fly-offs" are rare because reengineering plans are motivated, at least in

part, by an anticipated reduction in the cost of the program rather than an increase.

We recommend instead that software maintainers participate in an experiment,

i.e., a Beta test, using an enhanced RET to reengineer an application in a production envi-

ronment rather than in a laboratory. The RET is a prototype that we developed under AS-

RET to evaluate reengineering technology and it needs some improvements before

production software maintainers who are not experts in language processing could

achieve productivity with it.

The next step towards inserting the reengineering technology that we have de-
veloped is to transform the RET from a laboratory prototype to a production
tool that avionics software maintainers will evaluate on mission essential I
critical applications.

We have already identified some limitations of the RET prototype in Section 7.2,

and we recommend addressing these before the Beta test. We also recommend preparing

the RET for the test by improving or adding capabilities as summarized in Table 10 and

detailed in Appendix B.

The recommendations summarized in Table 10 include three types of improve-

ments. 1) Corrective changes are indicated by differences between the anticipated func-

tionality and actual behavior of the RET prototype that we encountered during Task 4. 2)

Perfective modifications cohere the RET software design, e.g., by reimplementing some

experimental capabilities that evolved during the project and taking advantage of hind-

sight. 3) True extensions to the RET represent revelations or observations resulting from

our research that the few experience reports available on the techniques identified in

Task 1 did not portend.

68

Table 10 RET Enhancements

Install Software Refinery Version 4.0

Support I/O statements

Recognize PARAMETER statements

Save intermediate analysis data to disk

Enhance DFD clustering

Eliminate DFD anomalies

Ada parameter modes

Graph layout

Improve hyperlink performance

DFD editing

Ada pretty-printer

Error reporting

Multi-dimensional character arrays

Packager algorithm

DFD repository nodes

FORTRAN DFD

Packager object ordering

Enhance type deduction

Subprogram visibility

Clip DFD labels

Performance

The problem of quantifying the results of the experiment remains open. Fiscal real-

ity and theoretical defects preclude a fly-off that involves comparing the actual develop-

ment and subsequent maintenance cost of two versions of the reengineered application.

On the other hand, it is difficult to identify a set of software quality metrics with demon-

strable predictive power. Much to the chagrin of software producers and consumers alike,

an element of mystery remains, and it confounds attempts to devise comprehensive, for-

mulaic, and constructive definitions of "good" software.

Software quality metrics may be used to predict changes in software quality over

time within a given organization and environment and may thus form the basis for valid

internal quality controls, but they fail to provide instantaneous measurements on any

universal, absolute scale of software quality. The implication is that any known metrics

computed for two arbitrary software systems can not be used to reliably predict which one

will suffer a greater defect rate or cost an arbitrary organization more to maintain.

69

We may have to make do with inferences drawn from experience reports on the ex-
periment by competent software engineers familiar with the application. The target sys-
tem that they produce with the RET must submit to whatever subjective or objective
measures of software quality the maintainers previously applied to the subject system.

The maintainers must interpret the results to determine the RET's effectiveness within
their organization because the subject and target system environments are different; the
metrics are invalid out of context. In short, we must rely on their judgement.

The RET was conceived and designed with a cost-based definition of quality in
mind, but for some systems measures of quality derived from, say, formal specifications
and proofs of correctless are more apt. We must accept the definition of quality established

by the organization responsible for the application, provided that the RET is not misap-
plied. An engineer whose goals are consistent with those of the RET should be the final

arbiter and must answer the question: "Would you use the tool again?" Or better yet,
"Would you use the products of the tool?"

Based upon our experience with the RET prototype, we would expect a qualified
affirmation to both questions. The modification of large computer programs will remain
a most difficult undertaking, with or without tools. The quality of a reengineered product
will still be related to the level of the reengineering effort, with or without tools. An en-
hanced RET, however, will increase the value of the end product, where value is a function
of quality and cost.

The RET prototype will find a niche in reengineering. It relieves the engineer from
syntactical minutia, i.e., differences between the source and target programming language
syntax, that divert attention from the more important design and implementation decisions
requiring human judgement. By concentrating on tasks that are well-suited to automated
support, the RET prototype will reduce the resources needed to reengineer avionics support
software and will help the human engineer produce a more maintainable system.

70

APPENDIX A
VENDOR INFORMATION

Table A-1 Vendor Information

VENDOR CONTACT

Reasoning Systems Reasoning Systems, Inc.
3260 Hillview Avenue
Palo Alto CA 94304
USA
Tel. 415-494-6201
Fax. 415-494-8053
e-mail: reasoning@reasoning.com

Polyhedron Software Polyhedron Software Ltd.
Linden House
93 High Street
Standlake
WITNEYOX87RH
United Kingdom
Tel. (+44) 0865-300579
Fax. (+44) 0865-300232
CompuServe 100013,461

MIT X Consortium Bob Scheifler
MIT X Consortium
Laboratory for ComputerScience
545 Technology Square
Cambridge MA 02139
USA

Free Software Foundation Free Software Foundation
675 Mass Ave.
Cambridge MA 02139
USA

A-l

APPENDIXE
RECOMMENDED RET ENHANCEMENTS

The RET is a prototype and it needs some improvements before production software
maintainers who are not experts in language processing could achieve acceptable productiv-
ity levels. This section critiques the RET prototype and recommends some enhancements
to it that would transform it from a laboratory prototype into a production tool.

Some of the improvements are indicated by differences between the anticipated
functionality and actual behavior of the RET prototype that we encountered during
Task 4, but most represent discoveries or observations that are a natural part of the re-
search given the dearth of experience reports on the techniques identified in Task 1.

B.l HIGH PRIORITY

Install Software Refinery Version 4.0 — This version provides better user in-
terface features and is supported by Reasoning Systems. The installation would require
modifying some of the RET source code because Reasoning Systems typically moves some
functions between packages with each release as they change from officially unsupported
to officially supported status.

Support I/O statements — This affects the RG (Ada code generator), Transform-
er, and DFD. I/O statements weren't very prominent in the sample of FCR source code that
we relied upon during RET prototype development because most of the I/O is performed
through memory-mapping. Consequently, they received little attention in Task 3. The
RET prototype should be modified to recognize READ and WRITE statements.

Recognize PARAMETER statements — An example is the statement that de-
fines MUX_MASK in the MFD subsystem.

Save intermediate analysis data to disk — The RET prototype takes about an
hour to read and analyze the REFINE/FORTRAN analysis output file for the FCR subsys-
tem during initialization. This would only need to be done once if the RET could save and
reload the intermediate data.

B-l

Currently, the RET prototype must reanalyze the REFINE/FORTRAN file whenev-
er it is restarted instead of just reading the intermediate results from disk. REFINE

crashes once in a while under normal use. The ability to restart the RET quickly may miti-

gate the inconvenience to a point where a one week mean-time-between-failure (MTBF)
would not decrease productivity to unacceptable levels.

Enhance DFD clustering—We would like to implement repository clustering by
name and support manual editing of the DFD to cluster repositories. The DFDs can be so
complicated that they are sometimes of little use. We have already made enhancements
to the DFD to reduce clutter, but the most complicated diagrams are still too busy.

Allowing the engineer to group repositories by pointing and clicking the mouse
would help. The current method of specifying a mapping of repositories to groups before

DFD generation worked well on an experimental basis, but is unsuitable for a production
tool. The enhanced RET would provide an interactive user interface for this.

Eliminate DFD anomalies — This includes those documented by Benedusi
(Ref. 29).

Ada Parameter Modes — Generate "in" and "out" Ada parameter modes based
on a data flow analysis in order to generate a simplified DFD. This would very much im-
prove the quality of information in the DFDs. Using "in out" for all parameter modes pro-
duces usable Ada code, but the DFDs are either incorrect or inaccurate depending upon
the definition of dataflow selected. The DFDs contain bidirectional arrows where they
should be unidirectional. The unnecessary bidirectional arrows are misleading, and they
increase the number of repository nodes in a DFD.

Graph Layout — Implement a graph layout algorithm for the DFD. The DFDs can
get very large, and they may be regenerated whenever the Ada source code changes — as
a result of text editing or after rearranging via the Packager. Arranging the DFDs by
pointing and clicking with the mouse is tolerable (if you can get an assistant to do it for
you) on an experimental basis, and will probably still be necessary to clean up or "fine-
tune" an automatically-arranged graph, but repeated manual alteration of graphs that
are substantially the same from one generation to the next is intolerable.

In Task 1, we identified an algorithm (Ref. 44) to format an entire graph, or to sup-
port interactive graph editing operations that create or delete nodes or edges. Dr. Roberto
Tamassia implemented the algorithm in a tool called GIOTTO, and told us that it would
be available for a "nominal" grant.

B-2

Improve Hyperlink Performance—We implemented hyperlinks (as denned by
Reasoning Systems) between several of the RET prototype views, but they were too slow
for large subprograms. In fact, they were so slow that we turned off hyperlinking. This is
unfortunate because they were so helpful.

There is an inherent tradeoff involving the granularity of Abstract Syntax Graph
(ASG) subtrees identified by hyperlinks. As smaller and more numerous syntax elements

are referenced by hyperlinks, the search time increases. Either the hyperlinks must be less
detailed or faster search strategies must be utilized. We feel that a more effective alterna-
tive implementation of hyperlinks is possible with existing technologies and justified.

DFD Editing — The DFD is missing some of the editing options provided for the
Packager, e.g., link routing. The DFD should have the same options available as the Pack-
ager and the menu items should appear in the same order (to the extent possible).

Ada Pretty-Printer — The RET prototype writes Ada source code to files and
then parses and analyzes the code in order to produce the DFD. The RET calls the RE-
FINE/Ada printer to produce the Ada files from the Ada ASGs. The printer doesn't usually
format the code in an esthetically pleasing manner. It apparently does not globally opti-
mize the insertion of "tab," "space," and "newline" characters so as to enhance readability.

An Ada pretty-printer should be bundled with the RET prototype. It would not be
necessary to integrate the pretty-printer with the RET, it could be invoked to update the
source code files after the RET generates them but before it parses them. Many such pretty
printers are commercially available or have been developed on government projects.

B.2 MEDIUM PRIORITY

Error Reporting — We spent a great deal of time correcting the transformation
rules so that REFINE/Ada would parse and accept all of the Ada code that the code genera-
tor produces. We succeeded for most of the subsystems in the Block 40 code, but some prob-
lems remain. We suspect that in a rule-based system such as the RET prototype, it will be
very difficult to guarantee that the Transformer will work for an arbitrary program.

As a practical matter, the engineer can always edit the generated code and fix the
error. The problem is typically very easy for a human to resolve. To facilitate these kinds
of corrections until the code generator is made more robust, the RET prototype should re-
port the REFINE/Ada error messages. We wrote some functions to print out the messages
and associate them with the source code, but the capability should be integrated with the
RET user interface.

B-3

Multidimensional Character Arrays — The RET prototype transforms
FORTRAN character array variables, such as those in the UFC subsystem, into Ada vari-

ables of type "string." This solution doesn't support multidimensional character arrays.
The RET could define a family of array types with elements of type character. This ap-
proach requires defining some of the standard operations as well.

Packager Algorithm — The RET prototype supports clustering by interconnec-
tion strength and by common clients and suppliers, both of which are effective. During
Task 4, we noticed many instances in the FCR code where the subprogram names suggest
groups, and we clustered them by hand (pointing and clicking on each subprogram) in

these cases. The RET prototype should support Packager clustering by name.

DFD Repository Nodes — Benedusi defines both data store and buffer nodes in
Hierarchical Data Flow Diagrams to describe two kinds of repositories. Data store nodes
represent external data such as files and buffer nodes correspond to data objects such as
variables. The RET prototype supports only buffer nodes because of the rarity of file I/O
in the FCR code. The RET should support repository nodes if it is to be used on subject
systems that perform traditional file I/O (as opposed to memory-mapped I/O).

FORTRAN DFD — The RET prototype generates the DFD view from the gener-
ated Ada source code. A DFD generated from the FORTRAN system may be useful during
packaging. There are no technical barriers to this, but it isn't clear that a LHS DFD is
needed because the Packager contains some information on data flow. The Packager

shows data bindings, and the edge labels show the direction of data flow. On the other
hand, the direction of data movement is not as obvious in the Packager view as it is in the
DFD view. The need for an LHS DFD is an open question.

Packager Object Ordering — This is purely a technical issue. The pak-node-
objects attribute is defined in the Packager domain model as a set, but it should be a se-
quence. The result is that data objects may not be generated in the correct order. This
results in Ada code that sometimes doesn't compile when objects are used to initialize oth-
er objects. This was not resolved in the RET prototype because 1) there's only one constant
(viz. PI02) in the FCR code that suffers from this, 2) the ripple effect from the change is
very large, and 3) work-around is very simple. The user just needs to edit the source code
to correct the order of declarations.

B-4

Enhance Type Deduction—The RET prototype deduces Ada data types for vari-
ables and constants based on the corresponding FORTRAN data types and the way in

which the FORTRAN data objects are used. The current implementation for type deduc-
tion applies a set of transformation rules that examine all references to each data object.
The algorithm makes one pass down each ASG and then one pass up.

This approach is inadequate for some of the more complex cases. The RET may

benefit from a multicycle, bidirectional technique. Additional research is needed to inves-
tigate whether such a technique would be more effective than the existing one, or if it
would provide greater value given that the current implementation works most of the
time. A new implementation would affect many of the transformations.

The priority of this enhancement depends on how many type conversions are gener-
ated. The RET prototype generates a large number of explicit type conversions. The new
technique may not significantly reduce the number because Ada has a much stricter type
system than FORTRAN.

Subprogram Visibility — The RET prototype generates Ada subprogram (data
object) declarations in the package specification or body as needed based on the use of the
corresponding FORTRAN subprogram (data object). The RET should allow the engineer
to override whether subprograms and data objects are denned in the body or specification.
The RET should make an initial assumption based on use, but the engineer should be able
to change it. The code generator in the RET prototype places all subprogram declarations
in package specifications.

B.3 LOW PRIORITY

Clip DFD Labels — INTERVISTA clips labels on DFD and Packager nodes and
edges at the borders of the nodes and text boxes, respectively, in the RET prototype inter-
active views. When INTERVISTA prints the diagrams, it prints out the entire text of the
labels. The labels may be very long, causing the text to overlap the nodes and edges. The
RET views are intended as interactive displays and are less effective in hardcopy form,
so we did not make this a high priority. The RET prototype should be changed to clip, trun-
cate, or summarize the text.

We don't recommend relying on hardcopies of the RET views instead of the on-line
interactive views because the views were designed to be interactive. Much of their power
derives from the ability to alter their contents dynamically in order to control the level of
detail and the type of information shown.

B-5

Performance — The initial analysis phase of the SCP may benefit from some tun-
ing. We don't know how much performance could be improved because we have never run

the profiler, but the initial analysis takes a long time. We could only tune those parts of
the SCP that we implemented, not those which REFINE/FORTRAN implements. These
performance enhancements would be less important if the RET prototype were capable
of saving and reloading the intermediate analysis results.

Data Binding — We decided to add one to the count of data bindings between two
subprograms involved in a subprogram call for the purpose of clustering in the Packager.
We wanted to produce a package structure with good coupling and cohesion characteris-

tics, but we were not trying to achieve an object-oriented design. We recognized that the

RET would not be used to drastically split and recombine subprograms, but would be used

to create components based upon functional decomposition, and we wanted to give some
weight to the fact that one subprogram called the other.

We don't know if this change produces better clusters because we have never mea-
sured this. In any case, the incremented data binding count should not appear in the dis-
play because it is confusing. The Packager views for the FCR show many edges that have
a data binding count of one, indicating that no data bindings exist between the subpro-

grams, and that one subprogram calls the other. This is distracting when trying to inspect
and compare the data binding relationships depicted in a view.

Subprogram Stubs — The RET prototype generates package specifications corre-
sponding to FORTRAN intrinsic functions and external subprograms, i.e., subprograms
that are referenced, but not defined. To recognize intrinsic subprograms, the RET proto-
type maintains a table of all FORTRAN intrinsic function names and the allowable formal
parameter types. The particular implementation of this table-driven approach requires
multiple table entries for a given subprogram that accepts a variable number of formal
parameters. That is, one entry for the subprogram with one argument, another for the
subprogram with two arguments, etc.

The implementation is simple, but it doesn't scale well. We have only populated the
table with up to three entries for each subprogram. This solution is not elegant, but it cov-
ers all cases in the FCR code. The RET prototype could be enhanced to recognize an arbi-
trary number of actual parameters.

B-6

APPENDIX C
ACRONYMS FOR VOLUME I

ALC - Air Logistics Center
ASG - Abstract Syntax Graph
ASRET - Avionics Software Reengineering Technology Project
ASTS - Avionics Software Technology Support Program
CD - Call Diagram (A RET View)
CMU/SEI - Carnegie Mellon University/Software Engineering Institute
CS - Common Client and Supplier Metric
DED - Declaration Diagram (A RET View)
DFD - Data Flow Diagram (A RET View)
DO - Delivery Order
FCR - Fire Control Radar
FSI - File System Interface (A RET Component)
GUI - Graphical User Interface
HA - Hypertext Annotation
HDFD - Hierarchical Data Flow Diagram
IR - Internal Representation
IS - Interconnection Strength
LHS - Left-Hand Side (subject system in RET context)
LOC - Lines of Code
LRM - Language Reference Manual
MSP - Mouse Sensitive Printer (A Component of REFINE)
MTBF - Mean-Time-Between-Failure
OB - Object Base (A RET Component)
OC-ALC - Oklahoma City Air Logistics Center
OFP - Operational Flight Program
PACK - Packager View (A RET View and Component)
PIR - Primary Internal Representation
POB - Persistent Object Base (A Component of REFINE)
PR - Preliminary Restructurer (A RET Component)
RA-REFINE/Ada
RCS - Revision Control System
RES - Restructurer (A RET Component made up of PACK and TRAN Components)

C-l

RET - Reengineering Tool
RFT - REFINE/FORTRAN
RG - Representation Generator (A RET Component)
RHS - Right-Hand Side (target system in RET context)
SCL - Source Code Listing (A RET View)
SCP - Source Code Processor (A RET Component)
SDD - Software Design Document
SIR — Secondary Internal Representation
SRE - Software Reengineering Environment
SRS - Software Requirements Specification
ST-Symbol Table
TRAN - Transformer (A RET Component)
UID - User Interface and Display (A RET Component)
WL - Wright Laboratory
WL/AAAF - Avionics Logistics Branch, Wright Laboratory
WL/AAAF-3 - Software Concepts Group, Avionics Logistics Branch, Wright Laboratory
YOYO - You're On Your Own

C-2

REFERENCES

1. Corbi, T.A., Program Understanding: Challenge for the 1990s, IBM Systems Jour-
nal 28(2), 294-306 (1989).

2. Wilkening, D.E., Kreutzfeld, R.J., and Loyall, J.R, Avionics Software Reengineer-
ing Technology (ASRET) Software Reengineering Study Report, Technical Report
TR-6661-1, TASC, Reading, Massachusetts, 17 February 1993, to be published as
a Wright Laboratory Technical Report.

3. D.E. Wilkening, J.R Loyall. Software Requirements Specification for the Avionics
Software Reengineering Tool (RET) Prototype System, RET-SRS-01. TASC Techni-
cal Report TR-6661-2, TASC, Reading, Massachusetts, May 1993, to be published
as a Wright Laboratory Technical Report.

4. D.E. Wilkening, J.R Loyall. Software Design Document for the Avionics Software
Reengineering Tool (RET) Prototype System, RET-SDD-01. TASC Technical Report
TR-6661-3, TASC, Reading, Massachusetts, August 1993, to be published as a
Wright Laboratory Technical Report.

5. D.E. Wilkening, Avionics Software Reengineering Technology (ASRET) Project Fi-
nal Report, Volume II, TASC Technical Report TR-6661-4, TASC, Reading, Massa-
chusets, 5 May 1995, to be published as a Wright Laboratory Technical Report.

6. Byrne, E.J. and Gustafson, D.A., A Formal Process Model for Software Reengineer-
ing: The Analysis Phase, Technical Report TR-CS-91-12, Kansas State University,
12 November 1991.

7. Chikofsky, E.J. and Cross II, J.H., Reverse Engineering and Design Recovery: A
Taxonomy, IEEE Software, 13-17 January 1990.

8. Cross II, J.H., Chikofsky, E.J., and May Jr, C.H., Reverse Engineering, Advances
in Computers 35, 199-254,1992.

9. Sittenauer, C, Olsem, M. and Murdock, D., Reengineering Tools Report, Technical
Report, Software Technology Support Center (STSC), Hill Air Force Base, Utah,
15 July 1992.

10. Scandura, J.M., Cognitive Approach to Systems Engineering and Reengineering:
Integrating New Designs with Old Systems, Software Maintenance: Research and
Practice 2,145-156,1990.

11. Xinotech Research, Inc., Minneapolis, Minnesota, The Design of the Xinotech Lan-
guage Translator - Jovial to Ada, Second Revision Edition, Xinotech Technical Re-
port XRI 8911_04.

12. D.E. Wilkening. Avionics Software Reengineering Technologies and Process Model
Development. National Security Industrial Association Software Committee and
the Embedded Computing Institute, Naval Air Warfare Center Software
Reengineering Workshop Proceedings, Ridgecrest, California, 12-14 January 1993.

13. D.E. Wilkening, J.R Loyall, M.J. Pitarys, K. Littlejohn. A Reuse Approach to Com-
puter-assisted Software Reengineering. Proceedings of the Fourth Systems
Reengineering Technology Workshop, APL Research Center Report RMI-94-003.
Monterey, California, 8-10 February 1994.

R-l

14. D.E. Wilkening, J.P. Loyall, M.J. Pitarys, K. Littlejohn. An Interactive
Reengineering Tool for Constructive Language Translation. Proceedings From the
First Annual Software Engineering Techniques Workshop: Software Reengineering
(Draft), Pittsburgh, Pennsylvania, 8-10 February 1994.

15. D.E. Wilkening, J.P. Loyall, M.J. Pitarys, K. Littlejohn. A Reuse Approach to Soft-
ware Reengineering, Journal of Systems and Software, to appear June 1995.

16. Schwanke, R.W., An Intelligent Tool for Reengineering Software Modularity, Pro-
ceedings of the 13th International Conference on Software Engineering, Austin,
Texas, 13-17 May, 1991, pp. 83-92.

17. Müller, H.A., Orgun, M.A., Tilley, S.R., and Uhl, J.S., A Reverse Engineering Ap-
proach to Subsystem Structure Identification, Journal of Software Maintenance:
Research and Practice, 5(4), 181-204, December 1993.

18. Hutchens, D. and Basili, V.R., System Structure Analysis: Clustering with Data
Bindings, IEEE Transactions on Software Engineering SE-11(8), 749-757, Au-
gust 1985.

19. Aho, A.V., Sethi, R., and Ullman, J.D., Compilers - Principles, Techniques, and
Tools, Addison-Wesley, Reading, MA, 1988.

20. Byrne, E.J., Gustafson, D.A., A Formal Process Model for Software Reengineering:
The Analysis Phase, Kansas State University Technical Report TR-CS-91-12,
12 November 1991.

21. Reasoning Systems, REFINE User's Guide, 1990.

22. Reasoning Systems, Inc., Palo Alto, CA, INTERVISTA User's Guide.

23. Reasoning Systems, Inc., Palo Alto, CA, DIALEXT User's Guide.

24. Reasoning Systems, Inc., Palo Alto, CA, REFINE/FORTRAN User's Guide.

25. Reasoning Systems, Inc., Palo Alto, CA, REFINE/ADA User's Guide.

26. plusFORT Reference Manual, Revision B, Polyhedron Software Limited, Stand-
lake, Witney, UK, 1993.

27. Scheifler, R.W., X Window System Protocol, Version 11, supplied in machine-read-
able form on the X Window System distribution tape.

28. GNU Emacs Manual, Seventh Edition, Version 18, Free Software Foundation, Sep-
tember 1992.

29. Benedusi, P., Cimitile, A., and De Carlini, U., A Reverse Engineering Methodology
to Reconstruct Hierarchical Data Flow Diagrams for Software Maintenance, Pro-
ceedings of the Conference on Software Maintenance, Miami, Florida, October 1989,
pp. 180-189.

30. Burson, S., Kotik, G.B., and Markosian, L.Z., A Program Transformation Approach
to Automating Software Reengineering, Proceedings of the IEEE Computer Soci-
ety's International Software and Applications Conference, 1990, pp. 314-322.

31. VAX FORTRAN Language Reference Manual, Digital Equipment Corporation,
Maynard, Massachusetts, Order Number: AA-D034E-TE.

32. Neese, R.E., and German, C.S., "Modular Embedded Computer Software (MECS)
Interim Report: Executive Overview," Vol. 1, Technical Report WL-TR-92-1098,
Wright Laboratory, Wright-Patterson AFB, OH, 15 April 1991.

R-2

33. Neese, R.E., German, C.S., and Giuffre, M.S., "Modular Embedded Computer Soft-
ware (MECS) Interim Report: Executive Overview," Vol. 2, Technical Report WL-
TR-92-1099, Wright Laboratory, Wright-Patterson AFB, OH, 15 April 1991.

34. Blais, R.R. Neese, R.E., and Nohalty, K.L., "Modular Embedded COmputer Soft-
ware (MECS) Final Report: Executive Overview," Vol. 1, Technical Report WL-
TR-92-1100, Wright Laboratory, Wright-Patterson AFB, OH, 15 April 1991.

35. Blais, R.R. Neese, R.E., and Nohalty, K.L., "Modular Embedded COmputer Soft-
ware (MECS) Final Report: Executive Overview," Vol. 2, Technical Report WL-
TR-92-1101, Wright Laboratory, Wright-Patterson AFB, OH, 15 April 1991.

36. Oulsnam, G., Unraveling unstructured programs. The Computer Journal. Vol. 25,
No. 3, pages 379-387, 1982.

37. Oulsnam, G., The algorithmic transformation of schemas to structured form. The
Computer Journal, Vol. 30, No. 1, pages 43-53,1987.

38. Linger, R.C., Mills, H.D., Witt, B.I., Structured Programming, Theory and Practice,
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1979.

39. Ada Programming Language. ANSI/MIL-STD-1815A.

40. Sturman, J.N., Achieving software reuse by conversion and reorganization of soft-
ware systems. IEEE Proceedings of the National Aerospace and Electronics Confer-
ence. Vol. 2, pages 606-612, 1990.

41. Yau, S.S., A metric of modifiability for software maintenance, Proceedings of the
Conference on Software Maintenance. Scottsdale, Arizona. IEEE Computer Society
Press. Washington, DC, October 1988.

42. Reasoning Systems, Release Notes for REFINE 3.1 on Sun Computers, 1991.

43. VAX Ada Language Reference Manual, Digital Equipment Corporation, Maynard,
Massachusetts, Order Number: AA-EG29B-TE.

44. Tamassia, R., Battista, G., Batini, C, Automatic Graph Drawing and Readability
of Diagrams, IEEE Transactions on Systems, Man and Cybernetics, Vol. SE-18,
January/February 1989.

R-3

