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ABSTRACT 

This thesis addresses optimal methods for the detection of acoustic signals corrupted 

by colored noise. In achieving this we provide a study of the characteristics of ambient 

noise in the ocean and the digital techniques which can be used in the process of detecting 

known acoustic signals which are corrupted by that noise. Various techniques are studied, 

in particular the use of matrix decomposition techniques applied to the correlation matrix 

or to a data matrix, and the matched filter for colored noise. Other methods such as the 

inverse filter, the differential operator, and the adaptive prediction-error filter will also be 

looked at for their whitening properties. The theoretical foundations of those techniques are 

presented as well as the application of each method to the problem. Simulations are 

conducted for each technique in order to provide quantified performance measurements 

supporting the use of each method. 
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I. INTRODUCTION 

A. THESIS GOAL 

This thesis is concerned with the detection of periodic signals as generally emitted by 

the machinery of travelling vessels whether submerged or at the surface of the ocean. The 

goal is to provide a study of the discrete time techniques that can be used for the optimal 

detection of acoustic signals in colored noise. To achieve this goal, a comprehensive study 

of the ambient noise present in the ocean is discussed as well as the effect on this noise of 

the recording, sampling and digitization of the input data. Having identified the 

characteristics of the ambient noise presented to the detector algorithm, this thesis then 

studies various transformation techniques to process the correlated samples received in 

order to achieve an optimal detection of the desired signal. 

B. ENVIRONMENT 

The environment in which underwater signals are generated, propagated and 

intercepted is of great importance to the techniques of signal processing used in analyzing 

propagating sounds. We are concerned with the underwater properties of the world's 

oceans. The environment of our oceans in terms of ambient noise, is characterized by the 

propagating medium, namely sea water. Water in itself profoundly changes the spectral 

characteristics of any broadband sound propagating in it, in that it absorbs acoustic energy 

in a way that is highly dependent on the frequency content of those signals. Sea water is 

particular in that it contains significant amounts of dissolved salts. Some of these salts also 

have important absorptive qualities that affect signals of various frequencies differently. 

These properties have a significant effect on the ambient noise to which all signals of 

interest are subjected to. This noise is quite different from the common assumptions of 

white noise. That is, the spectral shape of the ambient noise in the ocean is frequency 

dependent. 



C. DISCRETE TIME DETECTION 

The detection aspect of this work is accomplished through the use of probability and 

statistical tools to design a receiver which provides the user the ability to discriminate 

between signal plus noise and noise only. Through the use of modern technology, these 

signals are most often sampled in order to be processed with the digital processors in use 

today. Therefore, this thesis concentrates on discrete time detection, that is, detection using 

only discrete time quantities as input and output data. The theory of detection in continuous 

time is only addressed in those areas where it is useful in order to provide the reader with 

a greater understanding of discrete time detection. The receivers to be designed are 

optimum in that they best satisfy a given criteria such as signal to noise ratio, under a given 

set of assumptions. 

D. TECHNIQUES 

Because of the spectral shape of the ambient noise corrupting the signals, the 

techniques that are investigated are concerned with whitening the noise. This may be done 

in different ways. The matched filter for colored noise inherently whitens the noise samples 

and achieves detection in one step. Other optimal techniques require the use of a 

prewhitener and a white noise detector. Since we know the power spectral density 

(spectrum) of the noise, it is possible to create a filter which acts as an equalizer. Running 

the received signal through it has the effect of whitening the additive noise allowing the use 

of an optimal white noise detection scheme. This process is known as inverse filtering. 

Other techniques use a decomposed correlation matrix or covariance matrix to transform 

the input data vector from one consisting of both correlated signal and noise samples, to 

one with uncorrelated noise samples plus the signal. Various techniques have different 

advantages in terms of performance, complexity and computational effectiveness. The use 

of a data matrix to compute the orthogonal matrices is also addressed by using the Singular 

Value Decomposition (SVD) and QR methods. 



E.    THESIS OUTLINE 

This thesis is divided into two main parts. The first part, addressed in Chapter II, 

provides a study of the processes that affect the detection of signals in the underwater 

acoustical environments. Acoustic signals in the ocean are necessarily corrupted by the 

ambient noise of the environment from which they have been recorded and in which they 

have been emitted. Furthermore, the means in which they are recorded further modifies the 

inherent characteristics of the noise corrupting the signal. In order to provide an optimal 

detection scheme for these signals, we must have a good understanding of the noise 

process, and the transmission of the noise and of the acoustic signals within the ocean. 

The second major part is dealt with in Chapter HI. This chapter provides the reader 

with basic detection theory as applied to the discrete case with colored noise as is prevalent 

in the ocean. The major obstacle to be overcome for the detection of signals in colored noise 

is that the samples of the noise are correlated. In order for most discrete time detection 

scheme to function, these samples must undergo a transformation which decorrelates the 

noise. The various procedures in which this decorrelation can be done will be documented. 

We will study the matched filter for colored noise and prewhitening of the noise using 

various factorization techniques. The correlation matrix, the covariance matrix or a data 

matrix will be factored into products of other matrices which have the required 

characteristics leading to uncorrelated noise samples. We will also address the use of the 

differential operator to whiten the noise, and, the whitening properties of the prediction- 

error filter. 

Chapter IV presents the results of simulations undertaken with each of the techniques 

presented in Chapter HI to provide comparative performance results. In each case, white 

noise discrete time detection of periodic signals is done through the use of the Fast-Fourier 

Transform (FFT) to compute averaged periodograms. First, the averaged periodogram is 

shown for the original sequence with the colored noise. Then the averaged periodogram of 

the whitened sequence is shown for the particular transformation under examination. This 



will allow for an objective view of the result and permit us to make qualified statements on 

the performance of each technique. 



II. ACOUSTIC AMBIENT NOISE SPECTRUM 

The spectral characteristics of the noise affecting the detection performance of 

modern detectors and receivers are shaped by a variety of mechanisms. Figure 2.1 shows a 

block diagram of the various causes and transformations which have a part in shaping the 

noise corrupting received signals in acoustic environments. 

Noise 
Sources 

Sea Water 
Absorption 

Transducer 
Discrete 
Time 

Sampling 

Processed 
Ambient 
Noise 

Figure 2.1: Generation and processing of ocean acoustic noise 

A.    NOISE SOURCES 

The study of the ambient noise frequency spectrum begins with a consideration of the 

individual sources of noise. These sources are divided into the following general groups: 

Thermal agitation, hydrodynamic, man-made, seismic, biological, and polar. The effect of 

these sources cannot be completely studied without considering the effects of attenuation. 

Attenuation is defined as the loss of acoustic energy from a sound beam. It is divided in two 

parts: absorption mechanisms which convert acoustics energy into thermal energy as a 

result of the compressive/decompressive effects of the sound wave, and scattering effects 

which deflect energy out of the direction of propagation of the acoustic wave [Ref. 1]. 

1.    Thermal Agitation Noise 

The minimum noise level of a medium is determined by the effects of thermal 

agitation. For the ocean, in the temperature range of 0-30° C, the equivalent thermal-noise 

sound pressure level (SPL) in dB re 2 x 1Q3 \iPa for a 1Hz bandwidth is given by [Ref. 2] 

SPLTH *-101+ 20log f. (2.1) 

The thermal noise spectral density derived from this equation is shown in Figure 2.2. 



10° 10' 
Frequency (Hz) 

Figure 2.2: Thermal agitation sound pressure level (SPL) 

According to this equation, the thermal noise spectrum has a level of -10 dB at 35 kHz 

and a positive slope of +6 dB/octave. At higher frequencies, 20-30 kHz and up, the 

observed minimum ambient noise levels are very close to the thermal noise levels shown 

on Figure 2.2. At lower frequencies (/ < 10 kHz) however, a significant difference exists 

where the observed ambient noise levels are significantly higher than those which would 

result only from thermal noise. 

2.    Hydrodynamic Noise 

This group contains the noise sources which are related to hydrodynamic processes. 

Many of these are important radiators of sound and contribute to the noise spectra in the 

ocean. 

a.   Air Bubbles 

Air bubbles affect the ambient noise spectrum in two distinct ways. Their effect 

on the attenuation properties of the medium are discussed in a later paragraph. This 



paragraph addresses the manner in which sound energy is radiated when air bubbles exist, 

and the cavitation noise resulting from their collapse. When wind effects are considered, 

substantial noise levels [Ref. 3] have been observed when air is entrained into the water by 

water droplets on the surface. However, bubbles do not only occur as a result of wind. 

Bubbles are also created as a result of biological effects such as decaying matter, sea floor 

gas seepage, fish and marine mammals. As air bubbles in the ocean are transported or 

simply rise to the surface, they are subjected to temperature and pressure fluctuations due 

to depth, turbulence, currents and waves. These variations induce oscillations in the 

bubbles causing them to emit noise at frequencies related to their diameters. It has been 

concluded [Ref. 3] that air bubbles and their cavitation produced at or near the surface as a 

result of the wind, are an important source of wind dependent noise in the frequency range 

of 50-10,000 Hz. The spectrum shape of cavitation noise is similar to that of the air bubble 

noise, and is characterized by a slope of approximately -6 dB/octave in the frequency range 

identified above. As the frequency is reduced, the noise level resulting from this effect 

drops-off with a 12 dB/octave slope due the lack of bubbles of a size large enough to 

resonate at those frequencies. Experimentation has shown that at shallow depth, both the 

noise spectrum level and its shape in frequencies between 50-10,000 Hz are likely to be 

mostly the result of resonating noise and cavitation noise from the air bubbles [Ref. 3]. 

b.   Surface Waves 

The performance of an underwater transducer is affected by the subsurface 

pressure fluctuations caused by changes in surface elevations. In the frequency range of 

500 Hz to 20 kHz, the agitation of the sea surface is the primary source of ambient noise 

[Ref. 1]. Relations between sea state, mean wave height, and representative wind speed 

have been derived and are usually given in table formats such as that given at [Ref. 1: p. 

414]. As a result, it is possible to characterize the ambient noise caused by surface waves, 

by specifying wind speed. In the range of frequencies specified above, it has been 

established that the noise spectrum level decreases at a rate of 17 dB/decade [Ref. 1]. 



c.   Turbulence 

Turbulence is defined by the instability of the water motion. It is usually created 

at boundary regions where water and solid surfaces interact or when fluid layers flow past 

one another with different velocities and directions. Turbulence between the transducer or 

the vessels containing it is generally considered to be self-noise. Turbulent effects usually 

consist of large volume fluctuations resulting in pressure variations at frequencies less than 

1 Hz. Although some noise is created at higher frequencies when large-scale eddies 

breakup into smaller scale phenomena, it has been observed [Ref. 3] that these noise levels 

are several orders of magnitude below the ambient noise level observed. It is considered 

that the radiated noise caused by turbulence is not a contributing factor to the ambient noise 

level in the ocean. However, the pressure fluctuations do affect pressure transducers when 

located in a region of turbulence. Substantial ambient oceanic turbulence has been observed 

[Ref. 3], with pressure level spectrum occurring in the frequency range below 10 Hz. In 

swift oceanic streams, the pressure level can be affected up to 100 Hz, while extreme tidal 

currents can generate pressures at even higher frequencies. It has been concluded that the 

turbulent pressure fluctuations are an important component of noise below 10 Hz, and in 

some cases below 100 Hz, but that its contribution to the ambient noise spectrum from 

radiated noise is negligible [Ref. 3]. 

3.    Man-made Sources 

Ships are important sources of underwater sounds. At any given time, it is estimated 

that there are over 1000 ships under way in the North Atlantic Ocean [Ref. 4]. Rotational 

and reciprocating machinery is required for propulsion, control, and habitability. These 

components generate vibrations which are transmitted through the hull of the ship to the 

surrounding water. The propeller of the ships is a major source of this underwater noise. At 

lower frequencies (10 Hz to 250 Hz) than those associated with surface waves, a major 

source of noise is generated by distant shipping. The shape of the noise spectra and its 

strength resulting from this oceanic traffic will be affected by a combination of the 



transmission loss, the number of ships, and the distribution of those ships. For example, a 

transducer in deep water in an open ocean may receive significant shipping noise from 

widely scattered ships because the average transmission loss will be relatively small. The 

ambient noise may be likewise considerably affected in a situation where transmission 

losses are high but ship concentration is large, in a shallow water location such as that 

occurring along coastal shipping lanes. Traffic noise may also depend on the types of ships 

involved, each of which may generate different noises. However, we assume that the 

number of ships affecting the typical acoustic location will blend the individual differences 

of the distant ships into an average source characteristics with Gaussian distribution. 

For most surface ships, the effective source of the radiated noise is the engine/ 

propeller combination where the noise is generated between three and ten meters below the 

surface. This places the source in the shallow-water channel. As a result of the surface 

reflection, the source and its image will operate as an acoustic doublets radiating noise with 

a spectrum slope of +6 dB/octave relative to the spectrum of the simple source. 

Studies of noise from surface ships have determined [Ref. 3] that the sound pressure 

level spectrum has a slope of about -6 dB/octave. However, the spectrum is highly variable 

below 1 kHz, and some tests have shown a general levelling of the spectra at the 100 Hz 

frequency. 

Industrial activities may also locally affect the ambient noise characteristics. Many 

mechanical movements related to such things as oil drilling, pile driving, mining, etc., will 

transmit sounds to the water when located in an area close to shore or at sea such as on 

drilling platforms. These noises can be accounted for in the design of fixed transducers in 

their vicinity but are generally ignored in the design of other transducers due to their highly 

localized nature. Operators however must be aware of these sources. 

4.   Seismic Noise 

The earth's crust is constantly moving as a result of volcanic and tectonic action. This 

action produces waves which are transmitted through the solid crust and eventually to the 



water. Due to the nature of the crust and of the water, even far from the point of origin of a 

disturbance, appreciable amounts of energy can find their way to the ocean waters and be 

propagated as compressional waves. The same effect can results from man-made 

explosions. The spectral characteristics of such an event will depend on the magnitude of 

the disturbance, the range, and the propagation path. This noise is typically characterized 

by one or a series of transients of relative short duration. In general, the affected frequencies 

will be less than 500 Hz with a maximum between 2 and 20 Hz [Ref. 3]. Noticeable 

underwater sound will be generated from 1 to 100 Hz [Ref. 3]. Outside of the specific effect 

of the transients themselves, a background of continuous seismic noise is also present. This 

effect is attributed to the after effects of the main transients and to the effects of storms, and 

waves and swells hitting the shores along coastal zones. It was found that seismic noise 

dominates the ambient noise spectrum at very low frequencies between 1 and 100 Hz [Ref. 

3]. However this noise spectrum level is of a transitory nature, and is highly dependent on 

time and location. Due to its nature, seismic noise is particularly important to the design 

and operation of bottom-mounted transducers. 

5.    Biological Sources 

Underwater sounds originating from marine life can be an important source of noise 

at most frequencies of interest [Ref. 3]. The wide variety of sounds are usually of short 

duration but are often repeated. Continuous noise is often observed when it is the result of 

a great number of individuals such as shrimps. As with most other sources, the ambient 

noise of biological origin varies with location, time and species involved. In some case, the 

sounds are correlated with geographical, seasonal and diurnal pattern enabling users of 

systems to improve the performance of their systems by considering the effect of these 

sources. However, because of this variance, it is generally ignored in establishing the 

ambient noise spectrum of an area of ocean. 
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6.    Polar Noise 

Polar regions cause noise spectra which are very different than those prevalent in other 

oceans because of the effect of the ice covering large portions of the water. Cracking of the 

ice as a result of thermal effects, and movements of large pieces generate cracking, 

straining, crunching, sliding and percussion sounds. Other sounds are created by icebergs 

as they melt. As the ice changes into water, numerous pressurized air bubbles which were 

trapped in the ice, burst through the thinning surface. As the air rushes out, a sharp cracking 

sound is produced. The noise produced by these pressurized air bubbles has been found to 

be the prevalent source of noise when icebergs are present. These sounds are highly 

characteristic and must be addressed differently than more typical underwater noises due 

to their impulsive nature. Some methods dealing with this environment have been devised 

and generally include a provision for removing the impulsive components of the ambient 

noise prior to the whitening and detection process [Ref. 5]. However, the level and 

character of the noise spectra vary according to ice condition, wind speed, ice pack snow 

cover, and air temperature changes [Ref. 4]. Due to the extreme variations observed, it is 

not possible to predict the spectra and amplitude distribution of the noise to be expected in 

polar regions. 

11 



7.    Estimated Noise Spectra 

The nominal shape of the noise spectrum level for the deep-water case is shown in 

Figure 2.3. 
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Figure 2.3: Deep-water ambient noise spectrum level. From Ref. [1]. 

Below 20 Hz, it has been found that ocean turbulence and seismic noise predominate. 

Above 20 Hz and until about 300 Hz, shipping noise and biological noises are the main 

contributor. From 300 Hz and above, surface noise highly dependent on wind speed 

provides most of the noise energy. Although not shown on this figure, at 50 kHz, thermal 

agitation of the water molecules overwhelms all other sources of noise and continues to 

increase with frequency at a rate of 6 dB/octave as shown in Figure 2.2. 
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8.    Distribution of the Noise 

It has been shown that the ambient noise spectra in the oceans is the result of a very 

large number of noise sources of various characteristics whose sounds propagate in and are 

affected by the underwater medium. Although some impulsive sources of underwater 

noises can be non-Gaussian and others may even have asymmetric distributions, by the 

central limit theorem, it is reasonable to assume that in general the noise distribution will 

be Gaussian in nature. 

B.    SOUND ABSORPTION IN SEA WATER 

Losses of energy in a sound wave can be grouped into two types, spreading losses and 

attenuation losses. Spreading losses results from the simple geometric effect resulting from 

waves emitted from sources projecting in all directions. These kinds of losses, although 

great (spherical spreading losses proportional to 1/range , cylindrical spreading losses 

proportional to 1/range) do not affect the spectral characteristics of the ambient noise 

because all frequencies are equally attenuated by spreading losses. The major loss affecting 

the noise spectrum is the attenuation loss. 

1.    Absorption Coefficient of Sea Water 

Any medium in which sound propagates is absorptive. This means that part of the 

sound wave energy is lost through heat as the wave propagates through the medium. By 

convention, the attenuation loss is identified as a and is expressed in dB per kilometer. 

What makes a so important in characterizing the ambient noise spectrum is that it has a 

complicated dependence on frequency. The complication arises because different loss 

processes dominate different portion of the frequency spectrum. As a result of these 

complications most of the current knowledge of the attenuation coefficient comes from 

measured data taken from various section of the ocean and from laboratory measurements. 

As a result of the complexity of the processes and of the changing nature of the oceans, no 

theoretical curves has been found to define the attenuation losses in a specific area, rather, 
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scientists have relied on curve fits over various parts of the frequency spectrum to define 

the magnitude of the attenuation coefficient. Three main effects cause the absorption of 

sound in sea water. The first is the result of shear viscosity. This effect was studied by 

Rayleigh who derived an expression equivalent to 

16K \is   2 
« =  j-'r, (2.2) 

3pc 

where a is the intensity absorption coefficient, [ls is the shear viscosity, p is the density, c 

is the sound velocity, and / is the frequency (Hz) [Ref. 6]. 

The value of the absorption coefficient calculated using this formula which considers 

only shear viscosity, is only about one third of the attenuation actually observed in pure 

distilled water. A second kind of viscosity called volume viscosity adds to the value of the 

absorption coefficient. This occurs as a result of the time lag required for the water 

molecules to flow into lattice interstices in the crystal structure. Because of this effect, the 

absorption coefficient formula becomes 

a = ^4ls + |^/2, (2.3) 
3pc v       H   J 

where \iv is the volume viscosity coefficient [Ref. 4]. 

Figure 2.4 presents three different curves for the value of the absorption coefficient as 

a function of frequency. The first curve shows the measured values for sea water taken from 

Urick [Ref. 4]. The second curve shows the measured absorption coefficient in distilled 

water which considers both the shear and the volume viscosity factors in accordance with 

Equation (2.3). The third shows the theoretical absorption using only the shear viscosity 

calculated with Equation (2.2). 
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Figure 2.4: Comparison of absorption coefficients in sea water, due to shear and volume 
viscosity, and shear viscosity alone. 

It is evident from the figure that not all absorption is accounted for by using only the 

effects of shear viscosity and volume viscosity. This is particularly true in frequencies 

below 100 kHz which are of particular interest for the sonar detection problems. For 

example, the absorption coefficient of sea water in the frequency range of 5 to 50 kHz is 

actually about 30 times that of distilled water [Ref. 4]. It has been found that in these 

frequencies the additional absorption mechanisms are due to the different salts dissolved in 

sea water. Leonard, Combs, and, Skidmore [Ref. 7] have shown that in addition to water, 

two other components of sea water have been found to be important to the strength of the 

absorption coefficient. These are magnesium sulfate (MgSO,«) and boric acid (B(OH)3). In 

particular, in the frequencies of most interest for the detection problem, 10 to 5 kHz, the 

effect of both absorptive components is very important. The principal component of the 

salts dissolved in sea water, Sodium Chloride (NaCl), does not appear to be a significant 

absorptive constituent. Despite the fact that MgS04 constitutes only about 4.7 percent by 
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weight of the total dissolved salts in sea water, it has been found to be the dominant 

absorptive constituent in sea water for frequencies below 100 kHz [Ref. 7]. The absorption 

is due to the ionic relaxation of the MgSC>4 molecules in sea water. This is a process during 

which MgS04 ions dissociate and reassociate during a finite time interval, called the 

relaxation time, due to the pressure effect of a sound wave. Therefore, it is considered that 

sound absorption in sea water is the sum of the absorption due to water, magnesium sulfate, 

and boric acid. 

Fisher and Simmons, in [Ref. 8] show that the absorptive coefficient also has a 

dependence on pressure. However since pressure does not vary with frequency, but rather 

with depth, its effect on the spectral shape of the ambient noise is not relevant to this study. 

Figure 2.5 shows the effect of magnesium sulfate and boric acid on the absorption 

coefficient of fresh water. These curves were derived from laboratory measurements [Ref. 

8]. 

10° 10' 
Frequency (Hz) 

Figure 2.5: Sound absorption at 5°C, 1 atm, 35 ppt salinity, and pH=8.0. After Fisher and 
Simmons [Ref. 8]. 
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2.    Resonating Bubbles 

Gas bubbles in the oceans can generate extremely high sound attenuation. Although 

the concentration of bubbles in the main body of the ocean is insignificant compared to the 

other sources of attenuation, breaking waves, schools of fishes with their internal air sacs, 

and, travelling ships and submarines often create large concentrations of gas bubbles. A 

sound wave passing through an area with many gas bubbles will lose energy as a result of 

the viscous forces and heat conduction generated by the compressive/decompressive 

effects of the wave. The presence of the gas bubbles affects the physical characteristics of 

the medium by changing its sound speed and density. This will cause reflective and 

refractive effects which will further dissipated the energy of the sound. Finally, since the 

gas bubbles in the water create an inhomogeneous medium, the sound wave will also be 

scattered, meaning that some energy will be redirected in all directions as a result of 

encountering a bubble. The scattering effects is largely dependent on the resonant 

frequency of the bubbles. The resonant frequency is given by 

= J_|Ei5 
~ 2naif PO 

fR = 5^.177   • <2-4> 

where a is the bubble radius, y is the ratio of specific heat for the gas in the bubble, Ph is 

the hydrostatic pressure at the depth of the bubble, and, p0 is the density of the surround- 

ing medium [Ref. 1]. 

Frequencies in the acoustic wave at or close to the resonant frequencies of the bubbles 

can have great influence on the scattering effect while those frequencies which are further 

from the resonant frequency may not be scattered. Fish detectors can find schools offish 

and determine the size of the fishes present by extrapolating their size from the dominant 

resonant frequency created by their air sacs. The measure of attenuation of a bubble is 

determined by its effective cross section a. This value is a measure of the fraction of energy 

that the bubble will extract from a sound beam of 1 square meter cross section, ff an 
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acoustic wave contains only frequencies at the resonant frequency fR of the bubble, the 

effective cross section can be more than a thousand times greater that its actual cross 

section [Ref. 1]. When the frequencies of the acoustic wave are greater than the resonant 

frequency of the bubble, the effective cross section of the bubble affecting the wave is 

approximately the same as that of the bubbles. When the frequencies are smaller, the 

effective cross section is much less than the actual cross section of the bubble and quickly 

becomes negligible. Since bubbles rarely exist all with the same radius, those bubbles with 

the greatest scattering effect will be those whose resonant frequencies are closest to the 

frequencies contained in the acoustic wave. Since ambient noise contains all frequencies, 

the presence of bubbles in the area of interest will further change the frequency spectra of 

the ambient noise. However, there is a practical limit to the size of the bubbles in the ocean. 

Ocean conditions resulting in the creation of bubbles can be expected to generate bubbles 

with a distribution around one predominant bubble size. It can also be expected that bubbles 

can only attain a certain maximum size and therefore will only affect frequencies which are 

above the resonant frequency of the largest bubbles. Therefore, the ambient noise spectrum 

in regions affected by bubbles will have a maximum at the frequency associated with the 

predominant bubble size. Its shape will depend on the distribution of the bubbles size and 

the amplitude of oscillations in the affected frequencies. 

C.    TRANSDUCER EFFECTS 

The particular environment in which a receiver is to used is of prime importance to its 

designers. For the design of transducers, the most important considerations arise from the 

physical properties of water. In addition to these considerations, transducers must be 

designed to withstand the effects of sea water, biological activity, and, often large 

hydrostatic pressures [Ref. 9]. 

The ultimate performance of a transducer is limited by the signal to noise ratio of its 

output. The noise level at this point is the result of the ambient noise in the ocean at the 

receiving location and of the additional noise caused by the transducer itself. Turbulent 
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boundary layer pressure fluctuations, mechanical vibrations, and, electrical noise, are but 

some of the possible causes of noise. Obviously the success of the design will be in large 

part dependent on how well these noise sources have been dealt with. Each of these causes 

may affect different portions of the frequency spectrum based on their inherent 

characteristics. Hydrophones also have an inherent sensitivity which vary with frequency. 

Many different materials are used in the design of modern transducers; quartz, piezoelectric 

polymers such as polyvinylidene (PVDF), composite ceramics, etc. Each of these materials 

exhibit different characteristics and will have different frequency responses. In the design 

of the transducer, these characteristics are taken into consideration and the material selected 

is usually used in a spectral region where its frequency response is relatively constant and 

its sensitivity adequate for its mission. When the frequency response is not constant, it must 

then be "equalized" by means of calibration curves derived experimentally by the user. 

Nevertheless, this experimental "equalization" necessarily results in some distortion of the 

received signal. Notwithstanding the material chosen, many transducers perform very 

poorly at very low frequency (< 10 Hz) often as a result of having to be shielded from large 

hydrostatic pressures. 

D.    DISCRETE TIME SAMPLING 

The sampling process is the operation by which an analog signal is converted into a 

corresponding sequence of discrete time samples which are uniformly spaced in time. 

Tranducers are inherently analog sensors. The pressure information they convey must be 

processed by an acoustic processor. The modern acoustic processor is invariably a digital 

computation device, therefore requiring discretization of the captured underwater signals. 

The derivation of the sampling theorem is presented in most books on electrical 

engineering and will not be repeated here. The sampling theorem for band-limited signals 

of finite energy can be stated as follows [Ref. 8]: 
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"A band-limited signal of finite energy, which has no components higher than W Hz, 

is completely described by specifying the values of the signal at instants of time separated 

by less then 1/(2W) seconds." 

The sampling rate of 2W samples per second is known as the Nyquist rate. The 

corollary of this theorem, is that if the signal to be sampled contains frequency components 

higher than W Hz then it will not be completely described by its sampled values. This will 

result in a distortion of the signal known as aliasing. This factor refers to the effect wherein 

components of the signal which are at a frequency above W, will instead appears at a 

different frequency in the spectrum of the sampled signal. The distortion caused by aliasing 

can. be dealt with by two methods. Aliasing can be eliminated by sampling the signal at a 

greater frequency than the Nyquist rate of the highest frequency component present in the 

signal. However when frequency components are present with frequencies which are above 

the capabilities of the sampling system, an analog low-pass filter can be applied to the 

signal prior to sampling, to remove all frequencies above one half of the sampling rate. This 

last method is usually favored due the availability of good, inexpensive low-pass filters. 

Nevertheless, this process necessarily changes the power spectrum of the noise. For 

example when white noise is corrupting the signal. This noise once filtered no longer has 

equal power for all frequencies, but rather becomes a band-pass white noise process which 

has constant power within a spectral region less than one half the sampling frequency and 

is zero outside. Since perfect filters do not exist in nature, the filter will also exhibit some 

distortion especially near its cut-off frequency which will affect the spectral representation 

of the noise being passed through it. 

E.    NOISE POWER SPECTRAL DENSITY 

The ambient noise power spectral density is the result of each of the effects discussed 

above. Of course the main contribution to the shape of the ambient noise spectra is the 

attenuation of the sound waves by sea water. Nevertheless, the noise sources, their number, 

intensity, distribution and type, also have an important effect on the form of the spectral 
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shape of the ambient noise. Figure 2.6 summarizes the characteristics of the ambient noise 

spectrum (i.e., the terms spectrum and spectral density are used interchangeably) resulting 

from the noise sources and mechanism discussed in this chapter. 
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Figure 2.6: Ambient noise spectrum composite. From Ref. [3]. 

Figure 2.7 shows the ambient noise spectra of the ocean from the Point Sur SOSUS 

array. The signal was sampled at a frequency of 8 kHz resulting in a maximum frequency 

of 4 kHz. 
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Figure 2.7: Normalized average sound pressure level of ambient noise at Point Sur SOSUS 
array (sampling frequency of 8 kHz) 

As can be observed, the noise sound pressure level of the Point Sur array conforms to 

the general shape shown in Figure 2.6. At very low frequencies (10-100 Hz), shipping noise 

is clearly shown. At a frequency of approximately 200 Hz the characteristics hump caused 

by the addition of the wind dependent noise to the remaining high frequency components 

of the shipping noise is observed. At the higher frequencies shown on this figure, surface 

waves and agitation resulting from wind effects forms the general shape of the curve. In 

this case, the wind dependent noise appears to be low and the slope of the curve 

corresponds approximately to the lower limit of prevailing noise shown on Figure 2.6. 

From Figure 2.7, it can also be seen that in the frequency range shown, the slope drops-off 

approximately 52 dB for two decades or at a rate 26 dB/decade. 
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III. OPTIMAL DETECTION IN COLORED NOISE 

The concept of optimal detection addresses the problem of conceiving the best 

detector at meeting one or several criteria given a number of assumptions. An example of 

a common criteria used for detection is the signal to noise ratio (SNR). Therefore, to be 

considered optimal in the sense of the SNR, a detector must provide the maximum SNR 

possible given the assumptions. 

There are two general approaches in deriving an optimal detector for known signals in 

colored noise. Optimal solutions for signals in white noise are well known and attractive in 

their simplicity. Therefore, if a linear transformation can be applied to the received signal 

which whitens the noise while leaving the desired signal component intact, then this 

prefiltering operation can be combined with an optimal white noise detector as shown in 

Figure 3.1. 

Decision -«L*^ Whitening 
Filter 

Optimum 
Detector 

T 
Colored noise nc[n] 

Figure 3.1: Optimal detection using whitening filter 

Several methods are addressed in this chapter which can be used to whiten the colored 

noise. The noise is assumed to be Gaussian. 

Alternatively, an optimal detector can also be derived directly in the form of a matched 

filter for colored noise. This filter has the advantage of removing the prewhitening step in 

the detection process and is shown in Figure 3.2. 
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Colored noise nc[n] 

Figure 3.2: Optimal colored noise detector 

A.    DISCRETE TIME DETECTION 

Since the first form of optimal detector for colored noise uses a white noise detector, 

it is first necessary to consider the case of discrete detection of known signals in additive 

white Gaussian noise (AWGN) [Ref. 12]. The power spectrum density of white Gaussian 

noise is a constant over the complete frequency range. Since we consider both negative and 

positive frequencies its magnitude is No/2. As the probability density function of a discrete 

random process is related to its autocorrelation by a Z-transform, the corresponding 

autocorrelation function for this probability density function is a delta function given by 

N0/2 • 6(n) [Ref. 12]. 

It is presumed that the aim of this exercise is to detect if a signal is present or not. The 

two hypotheses are given by: 

Ho: r[n] = n[n] Noise only, 

Hi: r[n] = ^[/ij + nf/i]      Signal s, plus noise. 

In terms of matrix formulation, these are written as 

Ho. r = n Noise only, 

Hj: r = sl + n Signal Si plus noise, 

where the bold lower-case letters represent vectors. Bold upper-case letters are used to 

indicate that the symbol in question represents a matrix. 
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This is a binary detection scenario as shown in Figure 3.3. 

Noise[n] 

s.w^_^ Compute 
Detection 
Quantity 

Compare 
Threshold 

Ho 

H, 

Figure 3.3: Binary detection 

As shown in the figure, the optimum receiver computes the detection quantity, usually 

the likelihood ratio, and compares it to a threshold to decide which of the hypotheses 

provides the best answer. As we are dealing with discrete variables, the real life input (i.e., 

analog input) is sampled. As discussed in Chapter n, the sampling process changes the 

characteristics of the white noise to one that is bandlimited. As a result of this process, the 

correlation matrix of the noise is no longer a delta but rather takes the form of a digital sine 

function. 

In order to perform the detection using the standard likelihood ratio detector we 

require that the noise samples be uncorrelated. When the sampling frequency can be 

chosen, one way of ensuring that the noise samples are uncorrelated is to use a sampling 

procedure where the sampling interval corresponds to the distance from the origin to the 

first zero crossing of the noise correlation function. Since the noise samples are 

uncorrelated and Gaussian, they are independent. When data is provided with a set 

sampling frequency, the sampling interval can still be set by interpolation and resampling. 

The Gaussian nature of the samples allows completely statistical description using the first 

two moments. 
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Therefore, if the sampling interval is chosen to occur at the first zero crossing of the 

correlation matrix all noise samples are uncorrelated and the joint probability function 

between the signal and the noise component of the received discrete data can be expressed 

as a product of two independent terms. This then allows the use of a standard detector. 

Detectors designed to perform under the assumption of white noise are comprehensively 

addressed in [Refs. 10,11,12] and are not repeated here. 

To devise the likelihood ratio detector, the mean and variance under each hypothesis 

must be calculated. Since the signals are known, the variance under each hypothesis is due 

only to the noise and is therefore the same. This is also the basis of the whitening property 

of the prediction error filter addressed later on in this chapter. 

B.    DETECTION IN COLORED NOISE 

When the power spectral density of the noise is not a constant across the frequency 

range it is called colored noise. This means that the correlation matrix of the noise is not a 

delta function and the noise samples are correlated. In many signal processing applications, 

it is assumed that the noise samples are uncorrelated. Therefore it is often necessary to 

transform a vector of observations with correlated noise samples to one in which they are 

uncorrelated. As a result of such a transformation, the new correlation matrix of the 

observations is diagonal. 

As is the case for white noise, the detection of a signal corrupted by colored noise is 

equivalent to determining which hypothesis is true. The hypotheses are 

Ho:      r[n] = nc[n] Colored noise only, 

H,:       r[n] = £}[»] +RC[/I]     Signal sl plus colored noise, 

where r is the received signal, sx is the known signal and nc is the Gaussian colored 

noise of zero mean, having a correlation matrix denoted by Rn . Baye's detection formula- 

tion provides the general equation (i.e., Likelihood ratio function and threshold), which 

when using different detail information leads to a host of different detection criteria (i.e., 
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maximum likelihood, min-max, maximum a posteriori, etc.). Basic detection theory for 

Gaussian colored noise is addressed in the following paragraph using the maximum a pos- 

teriori criterion. 

1.    Maximum A Posteriori Probability (MAP) Criterion 

The detection technique whereas a decision must be made as to which one of binary 

or m-ary hypotheses is to be selected, is called hypothesis testing. In the case of target 

detection the two hypotheses are generally labelled as: 

Ho: Target not present, 

Hj: Target present. 

For the detection process, a decision has to be made on the basis of observed random 

variables consisting of one or more observations. Various rules can be used for the 

detection and are derived by maximizing a measure of performance. The maximum a 

posteriori (MAP) decision rule usually leads to a partition of the decision space into two 

regions R«, and R,. To illustrate the MAP decision rule, we assume that a choice must be 

made between Ho and Hx based on one observation of the random variable Y where y is its 

actual value at the time of observation. The probability density functions of Y related to 

each hypothesis are known and are /y|//0(y|//0) and fy^ftWi)- T^ a posteriori 

probability that H, is the correct hypothesis given the observation y is denoted by P(HAy), 

for J = 0,1. These are conditional probability density functions that are conditioned on 

the observation [Ref. 13]. The a priori probabilities will be denoted as P(Ht), for 

i = 0,1. These factors denote the known probabilities of each symbol being transmitted. 

With Bayes rule, P(HAy) can be written as 

It is possible to maximize the probability of correct detection by deciding in favor of 

the hypothesis with the largest a posteriori probability; 
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Choose Ho if P(HQ\y) >P(Hl\y) or 

choose H: if P(H1 \y)> P(H0\y). 

These decision rules can also be written as 

1 . (3.2) 

l 
PJH^y)      > 

P(H0\y)      < 

"l 

With Equation (3.1) this becomes: 

fY\Hi(y\Hi)      >     P(HQ) 

fY\H0(y\H0)      <     PiHJ • 
(3.3) 

where the left-hand expression is called the likelihood ratio, and the right-hand term the 

decision threshold. The MAP decision rule then consists of comparing the likelihood ratio 

to the detection threshold. Since this decision is based on the conditional probabilities, 

four possibilities exists in making the determination: 

P(D0\HQ): Choose HQ when H,, is true: No target, no detection. 

/»(DJJZ/J) : Choose H, when Hj is true: Target detected. 

PiÜQ^HJ: Choose Ho when Hi is true: Target not detected. 

P(Dl \HQ): Choose Hi when Ho is true: False alarm, 

where the P(D^H.) represents the conditional probability that decision D, was taken 

given that Hi is the correct hypothesis. 

The first two probabilities denote correct decisions with P(DAH ) identified as the 

probability of detection (PD). P(D1|//()) is called the false alarm probability (PFA) and 
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P(Dl |//Q) probability of a miss (PM). Each of these regions is shown in Figure 3.4, where 

/x(y) denotes'/y^Cyl/Zj) and /0(y) denotes fYlHp\Ho)- 

/oG» 

iigsjip 

«s«Ä^^& 

Ro 

Figure 3.4: Detection regions: Gaussian probability density functions 

In the binary detection problem, the receiver makes its decision by observing a number 

of m samples and then arrives at a decision by comparing the information extracted to a 

decision threshold. The Gaussian colored noise case is different from the Gaussian white 

noise problem in that the samples of the colored noise are correlated. The noise has a non- 

constant power spectral density function Sn((o) .In thatinterval it is not constant and varies 

according to the ambient noise affecting the observations. The MAP decision rule is then: 

#, 

/r|glWl)      > 
fY\H0(y\Ho)    < 

P(H0) 
(3.4) 

H, 
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The multivariate conditional probability density functions are Gaussian with the following 

characteristics 

E{Y\H0}=s0, (3.5) 

E{Y\HX}^91% (3.6) 

and 

E{[Y - s(][Y - s/1//,-} = Rn;     i   = 0,1, (3.7) 

where s0 = 0 and Rn is the noise autocorrelation matrix. The conditional density under 

each hypothesis is 

1   rn-l 
i -*y A» y 

2nJdet(Rn) 

and 

I -ky-hfRlly-it) 
fY\HSy\H0 = -—r===e (3.9) 

2nJdet(Rn) 

Substituting these in Equation (3.4) and taking the natural logarithm on both sides, leads 

to 

g/^-b-1)^(7-..))     ^    InQ. (3,0) 

»o 

Since Rn is an m x m Toeplitz matrix, it can be decomposed into m distinct eigenvalues 

A,x, X2,.... Xm and m orthonormal eigenvectors ev e^ ..., em with the following proper- 

ties: 
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ek   e, = 
1,     k = l 

0,     k*l 

Rxet = Xiei    , and 

e^R^i = X,.. 

If we group the eigenvectors in a matrix as 

and the eigenvalues as, 

then 

and 

E = 
I    I   ...   I 

el el ■■ em 

I     I   ...    I 

Dx = 

^0 0 

0 X2 0 

0   0 k3 

0   0   0 vm 

*r 
E* E = I 

E*T*nE = **■ 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Substituting Equations (3.11), (3.12), (3.13), (3.16), and, (3.17) into Equation (3.10) 

results in 
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"l 

E^ < KmfJHEt- (318) 

«0 

where the apostrophe indicates that an orthogonalization transformation is required given 

by; 

s'i,k = ek* slt (3.19) 

and 

y'o,k = efy- (3-20) 

These transformations change the colored noise detection problem to an equivalent 

white noise detection problem. The decision rule shown in Equation (3.18), is similar to the 

white noise scheme with one exception. In the case of white noise, the noise components 

of the observations where assumed to have equal variance. In the case of colored noise, the 

orthogonal components of the noise do not have equal variance and this difference requires 

some normalization which is accomplished in the decision rule by normalizing with the 

eigenvalue associated with each eigenvector. 

2.    Basis of Whitening Transformations 

In the following sections, several whitening transformations are presented. It is shown 

that by using various characteristics of a generic process x, i.e., power spectral density or 

correlation matrix, that we can whiten the power spectral density of x. This transformation 

is identified as 

y = Ax, (3.21) 

where A is the whitening linear transformation. If x is colored noise only (i.e., H0 is true), 

the transformation can be written as 

nw = A  nc , (3.22) 
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where nc and nw are colored and white noise respectively. If * consists of signal plus 

noise we get 

y = An(s + nc), (3.23) 

or 

y = Aas + nw. (3.24) 

The sequence v now consists of a transformed version of the signal and white noise. 

Therefore the goal becomes finding a matrix An such that the noise is whitened. 

There are two fundamental ways in which a random vector with correlated components can 

be transformed into one with uncorrelated components. Because the correlation matrix of 

such a process is necessarily diagonal, this operation is often called diagonalization of the 

correlation matrix [Ref. 14]. 

The first method is through the use of an eigenvector factorization of the correlation 

matrix. The eigenvector factorization leads to a diagonal matrix of eigenvalues and a matrix 

of eigenvectors. We note that by definition the eigenvectors are orthogonal. The second 

method uses decompositions of the correlation, covariance, or data matrix by triangular 

factorization. 

Since we are dealing with optimal discrete time detection, the next section starts with 

the derivation of the discrete matched filter. The general case where the correlation matrix 

of the noise and the signal are known is derived. It is shown that a solution to the matched 

filter problem is an eigenvalue/eigenvector problem. 

C.    DISCRETE TIME MATCHED FILTER 

1.    Deterministic Signal in Colored Noise 

Let x[n] be a finite length discrete vector of data to be processed. It consists of a 

deterministic signal s[n] corrupted by additive colored noise nc[n]: 

x[n] = s[n]+nc[n]. (3.25) 
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The goal is to design a Finite Impulse Response (FIR) filter to optimally filter (in the 

sens of the matched filter) the data. We want the filter to pass the signal while rejecting the 

noise. The block diagram is shown in Figure 3.5, 

x[n]     ^        h[n]        ^ y[n] 

Figure 3.5: Matched filter 

where h[n] represents the filter impulse response and y[n] is the result of the filtering. 

The output is 

y[n] = Mn) + nc[n]}®h[n] = ys[n]+yn[n], (3.26) 

where the symbol ® identifies a convolution, ys[n] is the response due to the signal and 

yn [n] is the response due to the noise. Obviously to be successful we must maximize the 

former while trying to minimize the latter. Therefore, the filter operation is to maximize 

the output signal to noise ratio. 

An optimal solution can be obtained by the following derivation maximizing the SNR 

[Ref. 14]. By definition, 

SNRs    V"- J| (327) 

E{\yn[nf} 

Since the duration of the signal is of length P, it is assumed that the filter is of a length 

sufficient to allows it to process the complete signal. We define the following four vectors: 
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s[n0] 

s[nx] 

s = (3.28) 

s["/>_i3 

nc\-no\ 

n. (3.29) 

"c^-l] 

x[nQ] 

xlnj 

x = s + nc = (3.30) 

and 

x[nP_l] 
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h[n0] 

hin,} 

h = (3.31) 

h[nP_l] 

From Equation (3.26) and the definition of convolution, 

P-\ 
,T~ 

* = 0 
(3.32) 

p-i 
r~ 

ysinp-i] =  Yäh[k]s[np_l-k] =h~s, 
k = 0 

(3.33) 

and 

p-i 
T~ y^np-\\ = J^h[k]nc[nP_1-k] = h hc, 

Jfc = o 

(3.34) 

where the ~ indicates time reversal of the vector. With the last two expressions, the SNR 

given by Equation (3.27) can be expressed as 

SNR =     <*W»> 
E[(hThc)*(nc

Th)] 
(3.35) 

or 

SNR = h*Ts*fh 
h*TRnh 

(3.36) 
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In order to perform the optimal detection, we must find the impulse response h which 

T 
maximizes the SNR. If we set h* Rnh = 1, we can concentrate on maximizing the 

numerator. This does not affect our answer since this condition only serves to normalize 

the value of the impulse response. Therefore, the signal-to-noise ratio becomes 

SNR = h*Ts*fh. (3.37) 

The vector s is the signal, so our task is to find the correct h. We can do this by the 

use of the Lagrange multiplier [Ref. 14]. We want to maximize the quantity 

L = h*Ts*fh + M1- h*TRnh). (3.38) 

In this case, since the constraint is real, A, is a real Lagrange multiplier. To find the mini- 

mum we must then find the vector h for which the gradient of L with respect to h* is 

zero; 

VÄ*L = s*fh-XRnh = 0. (3.39) 

By restating the equality we get 

(s*f)h = XRnh, (3.40) 

which is a generalized eigenvalue problem. It follows from this that h must be a general- 

ized eigenvector of Equation (3.40). Since h is a solution to Equation (3.40), and by using 

h* Rnh = 1, then 

h*Ts*fh = Xh*TRnh = X. (3.41) 

This last result shows that the SNR related to the generalized eigenvector h is equal to the 

eigenvalue X corresponding to that eigenvector. 

It can be shown that the matrix s* s   is of unit rank [Ref. 14], therefore it is possible 

to find P-l linearly independent vectors each of which is orthogonal to the vector S* of 
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length P. Since each of these independent vectors are also orthogonal to s*, each must be 

an eigenvector with a corresponding eigenvalue of zero. Therefore, the resulting SNR 

related to these eigenvectors is also zero. We will show next that the eigenvector related to 

the largest eigenvalue is proportional to Ä~ s* [Ref. 14: p. 243]. This is done by 

transforming the generalized eigen-decomposition problem of Equation (3.40) to an 

ordinary eigen-decomposition problem. 

If the matrix Rn is expanded in terms of its eigenvalue and eigenvector matrices 

Rn = W/. (342) 

and we let 

h = En*T'lDn-
1/2g, (3.43) 

and 

~* 1/2 
*   = EnDn   t. (3.44) 

Inserting the last three Equations into Equation (3.40) results in 

(tt*T)g = Xg (3.45) 

which is an ordinary eigenvalue problem. It can also be demonstrated that the matrix 

(tt*T) is of unit rank and that it also has only one eigenvector with a corresponding eigen- 

value not equal to zero. This eigenvector must be proportional to t. Therefore 

g<*t. (3.46) 

Inserting Equations (3.43) and (3.44) into (3.46) yields 

Dl
n
/2E*Th~Dl/2Ets\ (3.47) 

which when solved for A results in 

hcc(En*T)'lDn\Eny
U

S*. (3.48) 

—1 T Since E k orthonormal, E    - E* , and 
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h<xEnD-n
lEn*TF, (3.49) 

or 

Ä<*ÄnV • (3.50) 

-i~* We can also show that Rns   is proportional to the correct eigenvector by inserting it 

in Equation (3.40) which then results in 

~s*sTRn
ls* = KRnRn

ls* = Xs*. (3.51) 

T    —1 Since the equality stands, this shows that our assumption is correct and that s Rn s* is a 

scalar equal to the eigenvalue A. as shown in the next equation: 

~s*CsTRn~s*) = s*X. (3.52) 

T     — 1 T        1 
Because Rn is Toeplitz, s Rn s* can be rewritten as s* R^s. Therefore, we can write 

the maximum SNR as 

SNRMAX = W = s*TRn*- (3.53) 

We now know that 

h = aR'^f, (3.54) 

where a is the normalizing factor that remains to be found. Inserting Equation (3.54) in 

the condition h* Rah = 1 and solving for a gives 

« = y=- (3-55) 

Using Equations (3.54) and (3.55) the optimal filter is then defined as 

* = -r==Rn^- (3.56) 
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This solution can be interpreted as applying a whitening transformation to the 

sequence and using the reversed replica of the transformed known signal to achieve optimal 

detection. 

If the noise is white, its correlation matrix is a diagonal matrix with diagonal elements 

2 
on. In this case Equation (3.40) becomes 

(s*f)h = Xo2
nh , (3.57) 

which is an ordinary eigen-decomposition problem. 

2.    Random Signal in Colored Noise 

The derivation of the previous section for a deterministic signal can be extended to that 

of random signals [Ref. 14]. Let the signal s[n] and colored noise nc[n] be random 

processes. As before, it is assumed that the signal and the noise are independent, that we 

have P samples, and that the signal is present in all samples. Starting this time from the 

signal to noise ratio for two random processes [Ref. 14]: 

™sÄf>, (3,8) 

where 

and 

£{WM2} = h*TRsh (3.59) 

E{\yn[npf} = h*TRah, (3.60) 

and, Rs and Rn are the correlations matrices of the signal and the noise respectively. As 

before, the magnitude of h is constrained so that A* Rnh = 1. The SNR relation 

becomes 

SNR = E{\ys[np]\2} = h*TRsh. (3.61) 
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Using the Lagrange multiplier again, to maximize the quantity L; 

L = h*TRsh + k(l-h*TRnh). (3.62) 

To find the minimum we must then find the vector h for which the gradient of L with 

respect to h is zero: 

VÄ*L =Rsh-XRnh = 0. (3.63) 

By restating the equality we get 

Rsh = lRnh, (3.64) 

which is a generalized eigenvalue problem which h must satisfy. From this it can be con- 

cluded that as is seen in the deterministic case, the matched filter corresponds to the gener- 

alized eigenvector (A) with the largest eigenvalue. Since Rs cannot be decomposed into 

its components when s[n] is random, a simple expression for h cannot be given analyti- 

cally and the generalized eigenvalue problem must be solved numerically to find the gen- 

eralized eigenvector relating to the largest eigenvalue. 

D.    INVERSE FILTER 

In detection problems, the goal is to detect the presence or absence of the signal. In 

underwater acoustic applications, the data consists of the signal(s) of interest which must 

be detected, and the sum total of all transformations and noises added by the ocean and 

the transducer. These effects can be viewed as a channel and can be modeled as a linear 

system. Maximization of the probability of detection of the signal requires an inverse 

filtering operation. If a perfect inversion process can be designed, the resultant signal from 

the inverse system will recover the original signal. In underwater acoustics, the major 

effects are due to the colored noise and the sea water attenuation. Therefore, the solution to 

the detection problem is to design a corrective system which when applied to the data, 

minimizes the effects of the colored noise and yield a replica of the original signal 

embedded in white (residual) noise. Then a standard detector can be used to obtain optimal 
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detection. In linear systems theory [Ref. 15], this corrective system is called an inverse 

system. In communication systems, it is called an equalizer. This inverse system will have 

a frequency response which is the reciprocal of the distortions resulting from the channel. 

This results in the use of Least-squares filter design methods. In our case, the objective is 

to remove the effects of attenuation and of colored noise sources to ensure that the power 

spectral density of the additive noise corrupting the desired signal is white. 

A colored noise process nc[n] can be represented by a white noise process nw[n] 

transformed by a linear filter that is causally invertible [Ref. 16] as shown in Figure 3.6. 

nw[n]    ^      G[0      ►nJn] 

Figure 3.6: Colored noise created by linear invertible filter G[eje>]. 

The power spectral density of the colored noise becomes 

Sc(co) = ow
2\G[eja>]\2. (3.65) 

Since the frequency response G[eJ(a] is invertible, 

G[eJW] 

ISC(OD) becomes 

2 

hol 
'S 

If the noise is to be whitened and the correct power spectral density (aw ) is achieved, 

the inverse filtering operation must take place as shown in Figure 3.7 where the noise 

nc[n] is whitened by the transformation H[ejm\ 
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nc[n]    ^      H[e"a]      ► nw[n] 

JtO-. Figure 3.7: Colored noise whitened by inverse filter H [e   ] 

If it is assumed that the power spectral density of the colored noise SC(G>) is known, 

the whitening filter H [eJ(0] can be designed. If a signal s[n] is present in the colored noise, 

the transformation will also affect it. However, because it is a linear transformation, the 

frequency of the signal is not affected. Since only the power spectral density of the colored 

noise is used in the design of the filter, the ratio of the spectral heights of the signal and 

noise at the signal frequency is preserved and the transformed noise is whitened. 

E.    WHITENING BY UNITARY TRANSFORMATION 

1.    Eigenvector Factorization 

Since the eigenvectors of the correlation matrix for the random vector x are 

orthogonal, they can be used to perform a unitary transformation which whitens, hence 

orthogonalizes, the noise components of x. To elaborate on this method, let Rx be the 

correlation matrix of generic random vector x. Rx is then related to its eigenvalues X: and 

eigenvectors e{ in the usual way 

Rxet = X[el, (3.68) 

which means that the correlation matrix multiplied by one of its eigenvector is equal to the 

same eigenvector multiplied by the corresponding eigenvalue. Since Rx (N X N) is hermi- 

tian symmetric, we can find N orthonormal eigenvectors et, for / = 1...N, each of which 

has a corresponding real valued eigenvalue A.,, for / = 1 ...N [Ref. 14]. Since the eigen- 
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vectors are orthonormal, they have the property 

ek   e, = . 
1,     k = l 

0,     k*l 
(3.69) 

*T Premultiplying Equation (3.68) by ek     results in 

and, since X, is a constant, 

ek   Rxel ~ ek   V/> 

eh* R^e, = X,e* e, 

(3.70) 

'k   Äx«/ " "i*k   *l- (3-71) 

We known that ek and ef are orthonormal from Equation (3.69), then (3.71) becomes 

ek   Rxei ~ h' • 
1,   .k-l 

0,    k*l 

If we group the eigenvectors column-wise in a matrix, 

E 
I    I   ...   I 

«1 e2 — *iV 

I     I   ...    I 

then, since all the eigenvectors are orthonormal, 

E* E = /. 

We can now write Equation (3.72) as, 

J1 

E* RxE = Dk, 

where 

(3.72) 

(3.73) 

(3.74) 

(3.75) 
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*! 0   0 ... 0 

0 A2 0 ... 0 

0 0Ä3 ... 0 

I   I   I   I I 
OOO... X m 

(3.76) 

Let y = Ax be a linear transformation of the vector x. Then, 

E[y] = E[Ax] = AE[x]. (3.77) 

Therefore the mean of the new random vector v is a scaled version of the mean of x. 

For the correlation matrix, 

*T .#r, 
*v = E[yy* ] = E[Axx* A*'], 

Ry = AE[xx*T]A*T, 

and 

*T Ry = AR;A 

Correspondingly the covariance matrix becomes 

Cy = ACXA* 

If we define the random vector y as 

and we know from (3.75) that, 

y = E* x, 

E* RXE = D,, 

then we can say using (3.82) that, 

Ry = E* RXE = D} 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

(3.84) 

where the matrix of eigenvectors E*   of R   produced the linear transformation of x. 
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This shows that the correlation matrix of the new vector v is the matrix of eigenvalues of 

x which by definition is diagonal. This is an important transformation since the samples 

of y are uncorrelated. Since the elements of Dx are always non-negative and usually pos- 

itive, Ry is at least positive semidefinite and usually positive definite. This transformation 

whitens the samples of the random vector x. 

T If we premultiply Equation (3.84) by E and postmultiply by E*  , given that 

T T 
EE*   = E* E = / because of their orthonormality, then 

Rx = EDkE*T . (3.85) 

This equation gives us the correlation matrix of x in terms of its eigenvectors and eigen- 

-1 T values. Since E is orthonormal, E    = E* , and 

Rx   = EDk~lE*T. (3.86) 

Since Dk is a real element diagonal matrix with elements A,,-, for i = I...N, Dx
_1, is 

also a diagonal matrix but with elements 1 /X{,, for i = 1...N. Since the kt of Dk are 

all greater than zero when Rx is positive definite, the diagonal elements of Dx also are 

greater than zero. Therefore, this equation provides us with a simple way to invert the cor- 

relation matrix. 

2.    Singular Value Decomposition 

Eigenvector factorization works well when the correct correlation matrix of the 

process described by x is known. In practice however, the correlation matrix Rx must be 

estimated from a finite length of data or by an inverse Fourier transform of the estimated 

power spectral density. This may result in a matrix which is poorly conditioned or singular. 
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Since Rx is generally estimated, the eigenvalues and eigenvectors computed for the 

matrix may lack precision. A better way to compute the eigenvalues and eigenvectors of 

Rx is by using the singular value decomposition of the data matrix X (KxM) defined as 

X = 

x 1 
xM+\ lM + 2 

KM 

l2M 

X(K-l)M + l     x(K-l)M + 2 "■KM 

(3.87) 

The singular value decomposition theorem states that any ^xM matrix X can be decom- 

posed into the following product of matrices 

r*T 
X = ULV*\ (3.88) 

where U is K x K orthonormal matrix containing left singular vectors arranged column- 

wise, 

V = 

V is an M x M orthonormal matrix of right singular vectors, 

1 1 ... 1 

"1 u2 ... UK 

_l 1 ... Ij 
(3.89) 

V = vl v2 

I     I 

yM (3.90) 

and £ is a K x M matrix of non-negative real singular values 
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0 

0 0 
0 

E = 0 

0 

0 

0 

>M 

0 

(3.91) 

0 0 0 J 
This last matrix is written for K>M. The ot are in decreasing order and may equal zero 

for the larger values of i. Generally there are r nonzero singular values o where r is the 

rank of the matrix X (number of independent columns). If K = M we have a diagonal 

matrix. When K < M the matrix L has columns of zeros rather than having rows of zeros, 

and the rank r of X is equal to its number of independent rows. Whether the data is real 

or complex, the singular values are always real and greater than or equal to zero. 

The equivalence of this technique to the eigenvalue-eigenvector factorization method 

is given as follows. By definition, 

Rx = ±X*TX, (3.92) 

and using Equation (3.88) 

Rx = ±X*TX = ±VLTU*TUZV*T = Vfe'l-ijv^, (3.93) 

U is orthonormal, that is U*' U = /, allowing the last step in Equation (3.93). 

This represents the factorization of Rx in the same form as the standard eigenvalue/eigen- 

y*T~ 
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vector factorization, 

Rx = EDXE*T, (3.94) 

or by postmultiplying both sides by E, 

RXE = EDX . (3.95) 

Since this decomposition is unique we can make the following statements: The matrix of 

right singular vectors V is the same as eigenvector matrix E, and, the singular values of 

the matrix £ are the square roots of the eigenvalues if the number of samples are 

accounted for. 

Therefore the singular value decomposition can be used as an alternative way of 

finding the eigenvalues and eigenvectors of the correlation matrix of a function without 

having to estimate its correlation matrix. Because it provides a better evaluation of the 

eigenvalues and eigenvectors, the SVD is the method of choice for solving most linear- 

least-square problems. It provides a solution when other techniques such as Gaussian 

elimination or LU decomposition fail as a result of singular or close to singular matrices. 

The SVD can be done with a singular matrix, and provides a solution that is "almost" 

unique. Of course to be able to perform the SVD we first must have the data available to 

form the matrix, where the data must be signal free (i.e., noise only). 

3.    Mahalanobis Transformation 

The Mahalanobis transformation is another transformation which can be used for 

whitening. It is also based on the eigendecomposition of the noise correlation matrix and is 

defined as follows [Ref. 14: p. 247]: 

y = EDx
1/2E*Tx = Rn

1/2x. (3.96) 

This transformation results in a diagonal correlation matrix of the random variable y 

as shown 
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Ry = EDX~1/2E*TRXEDX~1/2E*T . (3.97) 

Inserting Equation (3.83) results in 

~ „^-1/2 „   ~-1/2 —±T 
Ry = EDX   lDxDK

wlE*  , (3.98) 

and 

Ry = EIE*T = I, (3.99) 

proving that the transformation shown in Equation (3.96) results in a unit variance white 

noise random process. 

F.    WHITENING BY TRIANGULAR FACTORIZATION 

As previously discussed, transformations that whiten colored noise must result in a 

correlation matrix which is diagonal. Another way of achieving this effect is by triangular 

factorization, also known as triangularization. The term triangularization refers to the form 

of the matrix of orthogonal vectors which is used to orthogonalize the colored noise 

component of the received samples. Otherwise this technique is similar to whitening by a 

unitary transformation. This method leads to a transformation that can be interpreted as 

causal or anticausal linear filtering of the associated signal sequence depending on the use 

of the lower-upper triangularization or the upper-lower triangularization. 

1.   Lower-Upper Factorization (LDU) 

A square matrix Rx can be expressed as 

Rx = LDLU, (3.100) 

where L is a unit lower triangular matrix, meaning that the diagonal elements are equal to 

1, and all elements above the diagonal are equal to zero, DL is a diagonal matrix, and V 

is a unit upper triangular matrix. Since the correlation matrix Rx is symmetric, this trans- 

formation takes the form 
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Rx = LDLL*' (3.101) 

The correlation of a process can be diagonalized by the following transformation: 

y = L   x. (3.102) 

To show that this transformation diagonalizes the correlation matrix of y we begin with 

the correlation function for y, 

Ry = E{yy* } 

using Equation (3.102), 

Ry    =    E\ 
-1       -1   *T 

(L   x)(L lx) 

and, 

= LlE{xx*T}{Llf, 

-l -l *T 

If Equation (3.101) is now inserted in Equation (3.106), 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

R= L\LDLL*
T

){L
1

)
7'. 

-U        , ,*T,r-U*T 

Ry = DL. 

(3.107) 

Now L   L and L* (L   )     cancel out and we are left with 

(3.108) 

Since we know that DL is a diagonal matrix this proves that the transformation does 

indeed diagonalize the correlation matrix of y. If Rx is the correlation matrix of a colored 

noise process, then the transformation of Equation (3.102) whitens it 
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When applied to a sequence of consecutive samples of a random sequence, this 

transformation is causal and results in a series of orthogonal random variables. 

2.    Upper-Lower Factorization (UDL) 

An alternative triangular decomposition factors the correlation or covariance matrix 

into a upper-lower decomposition. This decomposition of a correlation matrix has the form 

Rx = UDVU*T, (3.109) 

where U is unit upper triangular and the matrix Dv is diagonal. This last matrix is differ- 

ent than the matrix of the lower-upper decomposition. 

If   we   premultiply   the   previous   equation   by   U~l    and   postmultiply   by 

(U*T)    = (*/   )     , 

U^RJIT1)*' =DV. (3.110) 

Therefore keeping in mind in mind the definition for Rx, it can be shown that the transfor- 

mation 

v = U~lx , (3.111) 

also results in a vector with orthogonal components. Since U is upper triangular, this 

transformation is anti-causal. The matrix U can be computed with the LDU method in the 

following way [Ref. 17]: 

Taking the reversal of Equation (3.109) results in 

Rx = ÜDJJÜ* , (3.112) 

where the matrix U is lower diagonal. Equation (3.112) then has the LDU form of Equa- 

tion (3.100). Since this decomposition is unique it means that the lower triangular matrix 

resulting LDU decomposition of the matrix Rx is equal to U. The matrix U of Equation 

(3.111) is then found by reversing the lower triangular matrix achieved from Rx. 
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3.    Cholesky Factorization 

The Cholesky decomposition is a special case of the LDU decomposition [Ref. 16]. If 

Rx can be expressed as 

RX = LDLL*T, (3.113) 

and, the diagonal elements of DL are positive, the matrix Rx can then be further 

expressed as 

*x = LcLC*T> (3-114) 

where Lc is lower triangular. Therefore the correlation matrix of a process can be diago- 

nalized by the transformation 

y = Lc~lx, (3.115) 

which is causal since Lc is lower triangular. 

In the same way, starting from the UDL decomposition we can also generate a 

Cholesky factorization which results in the factorization of Rx into an upper triangular 

matrix followed by a lower triangular matrix, 

Rx = UCUC*T , (3.116) 

where 

Uc = (LC)*T> (3.H7) 

and which leads to the anti-causal transformation 

y = Uc~lx. (3.118) 

Since both transformations at Equation (3.115) and (3.118) are special cases of the 

LDU factorization it can easily be shown that they also whiten a colored noise sequence. 
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4.   QR Factorization 

The Cholesky and LDU decompositions provide a means by which the normal 

equation can be solved by performing square root decompositions of the autocorrelation 

matrix Rx. The QR factorization decomposes a data matrix X into an orthogonal matrix Q 

and an upper triangular matrix R. Since this decomposition uses the data matrix directly, 

it provides better numerical accuracy than the square root methods which are based on the 

decomposition of the autocorrelation matrix Rx which is usually estimated from a finite 

length data [Ref. 17]. 

Let's consider the following derivation from [Ref. 14]. To begin, we consider the 

KxMdata matrix 

X = 
I    I   ...    I 

xl x2 ••• XM 

I     I    ...    I 

(3.119) 

where xt = [*.[l] x.[2] ... *.[/q]   ,fori = 1...M, and the matrix is of full rank, 

meaning that the numbers of rows K is at least equal to the number of columns M and that 

these latter are independent. Since the columns are independent, the Gram-Schmidt 

orthogonalization procedure can be used to derive a set of M orthonormal vectors ql, q2, 

03'—»0Af • ^or ^e Gram-Schmidt method, we choose a normalized version of the first 

column as the first orthonormal vector: 

9l = xi (3.120) 

and normalize it, 

«mm (3121) 

To form the next orthonormal vector, we take the second column and remove from it the 
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component it contains which is in the ql direction, then normalize the result, 

q'2 = x2-(x2* qx)qv (3.122) 

and 

92 = 1L 
Ml (3.123) 

,th 
For the /   orthonormal vector, we have 

i-i 

and 

41 = **-£(*** it)* (3.124) 

(3.125) 

where / <. M. Therefore, it can be seen that each q{ lies in the subspace defined by the 

respective xt. In matrix format this can be shown as 

1  1 . 
1   1 . 

.    1 

.    1 

1    1   . 

1    1   . 

.    1 

.    1 

Pll Pl2 

0   P22 

-  PIM| 

• •     P2M 

«1 4l ■ 

1    1   . 
9M 

.    1 

= *1 *2 • 

1     1    . 
• XM 

.     1 

• ... 

J    1   • .    I_ _l     1    . .     I_ 
0    0 •••   PMM_ 

(3.126) 

where plm represent the transformation coefficients that are applied to the data vectors to 

create the orthonormal vectors ql. This equation can also be written as 

-1 
ß = XR 

If we multiply both sides of Equation (3.127) with R, 

(3.127) 
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X = QR. (3.128) 

This last equation now expresses the matrix X as a function of a rectangular matrix Q 

whose columns are orthonormal, and a matrix R which is square upper triangular. 

To show that the QR decomposition can be used to obtain the triangular 

decomposition of an estimated correlation matrix defined by 

With (3.128) this becomes 

Rx = ±X*TX. (3.129) 

Rx = ±R*TQ*TQR . (3.130) 

Since Q is an orthonormal matrix, 

Q*TQ = /• (3.131) 

Therefore Equation (3.130) becomes 

Rx = jjR*TR (3.132) 

Rx can also be factored by LDU decomposition, 

RX = LDLL*T. (3.133) 

So it follows that 

resulting in 

and, 

±R*TR = LDLL*T, (3.134) 

R*T = */NL{DL)
1/2

, (3.135) 

R = JN(DL)1/2L*T. (3.136) 

1/2 If this equation is solved for DL    , we have 
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D[
/2
 = j=(**W (3.137) 

■*T ■ Because the matrix L     is unit upper triangular its inverse also has unit diagonal ele- 

ments. Since the matrix R is upper triangular, the effect of performing the matrix multipli- 

cation (L* )   R results in a diagonal matrix which has the diagonal values of R. This is 

denoted by IR which when put in (3.137) gives us 

DY2 = j=lR. (3.138) 

When we solve Equation (3.137) for L, we get L expressed in terms of the QR factoriza- 

tion, 

L = -LR*
T

DL
1/2

, (3.139) 

1/2 
where the formula for DL    is the previous one given. Then we can do the same transfor- 

mation as for LDU, 

v = L~lx (3.140) 

Since the QR factorization directly uses the data matrix to compute the triangular 

matrix L, it is not subject to the problems resulting from using an estimated correlation 

matrix. This makes this technique less subject to errors resulting from poor conditioning 

and usually leads to better numerical accuracy. 

G.    DIFFERENTIAL FILTER 

In Chapter n, it is shown that the absorption of sound energy by sea water has an 

important effect on the ambient noise in the ocean. The intensity attenuation coefficient is 

defined as being proportional to the square of the frequency for most frequencies. This 

resulted in a sound intensity magnitude proportional to frequency squared, 
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/« 1 

/ 
2' 

(3.141) 

and the pressure magnitude, 

P<*j. (3.142) 

For the noise to be white, it is required that the magnitude of the frequency response 

be equal to a constant. The colored noise signal nc[n] is related to its frequency response 

Sn [co] by the Fourier transform 

F{nc[n]} =Sn[a>]. (3.143) 

The frequency response is equal to 

S    = A^V, 
"' CO 

(3.144) 

where A is a constant. If the random process nc[n] is differentiated with respect to time, 

in the frequency domain this has the effect of multiplying Sn [co] by a factor of /co; 

Fi 
d_ 
dt —ncM ^=if^] 

d .271 jut 
= —A—eJ 

dt   co 

AG>d?e    h 

(3.145) 

(3.146) 

(3.147) 

where co = 2TC/, resulting in 

d    r , 
dl"'™ = jlnAe 

J(Ot 
(3.148) 

This last equation shows that the frequency spectrum of the time differentiation of 

nc[n] should have a constant magnitude equal to 2nA and therefore has been whitened. 

Since the differential operator is a linear operation, at the frequency of a given signal, the 
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ratio between signal power and noise power should remain the same and the noise is 

whitened. 

H.    WHITENING PROPERTY OF PREDICTION-ERROR FILTER 

A prediction error filter (PEF) is shown in Figure 3.8. 

u[n] 

1 F 
Zd M order 

Predictor 

ü[n} 

Figure 3.8: Prediction-error filter 

The PEF combines the features of a predictor filler whose role it is to estimate the 

value of the sample u[n] based on the M previous values starting at adelay of d. The error 

between the predicted value and the real value is then calculated by the summer. Often a 

variation of this set-up is used which computes the M weights of the predictor in an 

adaptive fashion. The advantage to the adaptive filter is as its name implies is that it has the 

ability to change its behavior as the environment changes. For example in the SONAR 

processing problem, the characteristics of the ambient noise may change with variations in 

locations, weather conditions, time of day, and, movements of noise generators. The 

adaptive filter will change its weight to ensure that its error is niinimized. In those cases, 

Figure 3.8 is modified as shown on Figure 3.9. 
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Figure 3.9: Adaptive PEF 

As shown, the errors are used to update the weights of the predictor to minimize the 

difference between the real signal and its estimate. This type of filter relies on the 

correlation characteristics of the components that are being separated. In our case, the two 

components are the noise and the known signal that is to be detected. 

In the case of white noise, noise samples with a delay of one or more between them 

are uncorrelated. Therefore, the predictor can be used to effectively estimate the values of 

the known signal if the delay is chosen at a point where the correlation function of the signal 

is at a maximum. 

In the case of colored noise, the noise and the signal may have correlation function 

which are less distinctive and additional care must be taken in the design of the filter. The 

correlation function of the low-pass Butterworth noise for the first 25 delays is shown in 

Figure 3.10. 
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Figure 3.10: Correlation function of experimental first order low-pass Butterworth colored 
noise. 

As can be readily observed, the correlation function for colored noise is a relatively 

smooth function which does not oscillate around zero at predetermined delays. Different 

realizations of the noise result in different zero crossovers but the general form of the 

function is maintained and relatively strong correlation is present only at short delays. 

However, because the known signal to be detected is a periodic signal, its correlation 

function is also periodic and as such goes through zero at known delays. This may allow a 

delay to be chosen that decorrelates the signal while maximizing the correlation of the 

noise. If the signal is decorrelated, the predictor can provide a reasonable estimate of the 

colored noise. In this case, the error between the estimated noise value and the real value 

consists of the signal and a prediction error. The prediction error is based on two factors; 

the amount of decorrelation between the noise samples at the chosen delay, and, a 

quantization error. The predictor relies on the correlation between adjacent samples of the 

input process. Therefore, when the order of the filter is increased, the correlation of the 

adjacent samples of the input process is successively reduced until the filter is of an order 

where the output samples are uncorrelated and therefore white [Ref. 18: p. 216]. However, 

so that the desired signal is not whitened, the PEP requires that the delay selected be such 

that the correlation of the component to be predicted, in our case the colored noise, be as 
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large as possible while that of the signal has a correlation as close to zero as possible. Any 

amount of correlation at that delay in the desired signal causes the predictor weights to 

converge to a state where some energy of the other signal is present in the estimated 

quantity and is therefore removed from the "error" signal. Therefore, in our problem, the 

predictor estimates the noise component of the received signal. If the desired signal is 

uncorrelated at the delay chosen, then the error e[n] consists in the desired signal and a 

white noise prediction error. The filter whitens the noise corrupting the signal if the error 

is chosen as the desired output. The variance of the error depends on the magnitude of the 

learning rate parameter. To a certain extent, the smaller the parameter is, the lower is the 

variance of the prediction error but the filter weights of the predictor take longer to 

converge and are less responsive to sudden variations in the acoustic environment. 

Conversely, if the learning rate parameter is larger, the weights converge more quickly but 

the prediction errors are larger resulting in white noise of higher variance in the predicted 

error and therefore a lower output signal to noise ratio. 
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IV. COLORED NOISE DETECTION RESULTS 

This chapter presents the results achieved with the various methods addressed in 

Chapter III. Each whitening technique is addressed in the order in which it is discussed in 

Chapter IE beginning with the matched filter and inverse filter, and closing with the 

prewhiteners. 

A.    TEST PROCEDURES 

A common test sequence is used for the testing of all methods except the prediction- 

error filter which uses a different signal. This sequence consists of three sinusoids of 

different frequencies corrupted by colored noise. The sinusoids form the known signal that 

is to be detected. They are located in different areas of the spectrum to allow a simultaneous 

view of the effects at each spectral location. One sinusoid is at a very low frequency where 

the slope of the noise is greater, one is at higher frequencies where the noise spectral density 

is almost flat, and one is located at an intermediate frequency. The frequencies of the 

sinusoids are 0.05/*, 0.15/s, and, 0.3 fs. 

The noise is created by passing a white Gaussian noise through a low-pass filter. It is 

added to the signal of interest and is colored with a first order low-pass Butterworth filter 

with a cut-off frequency of 0.1 fs. The Butterworth filter is an all-pole filter. Its magnitude- 

square frequency response is given by [Ref. 19] 

l"(»)|2 = 2ÄT • (4-D 
1 + (co/co«.) 

where N is the filter order, co the digital frequency and coc the 3dB cut-off digital fre- 

quency. Therefore, a first order Butterworth filter has a frequency response proportional to 

|//(co)|2oc±, (4.2) 
CO 

which is similar to the frequency response observed for the ambient noise in the ocean. 

Since a Butterworth filter is used to create the colored noise, the theoretical power spectral 
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density and correlation function of the noise is known. The power in the signal is chosen 

so that the spectral heights of each of the sinusoids and the noise have a ratio of approxi- 

mately two at the respective spectral locations, when the white Gaussian noise used as a 

input to the Butterworth noise filter has a variance of 100. Therefore, the three sinusoids 

forming the signal have amplitudes of 0.475,0.2, and, 0.07 respectively. Different meth- 

ods require that higher input signal to noise ratios be used. For these results, the white 

noise power, i.e., its variance, used to create the colored noise, is reduced. This, in effect, 

reduces the power of the colored noise proportionally across the frequency spectrum. 

Figure 4.1 shows an averaged (100 realizations) power spectral density of the test 

sequence with the variance of the white Gaussian noise set at 100. 
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Figure 4.1: Normalized power spectral density of signal plus noise 

The power spectral density in the area of Sinusoids #2 and #3 are also plotted 

separately on each applicable figure to better illustrate the relationship between the signal 

power and the noise power at those frequencies. This is also done in all result plots where 

relative power levels are very different from one part of the frequency spectrum to the 
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other. All plots are normalized to the largest peak since our interest is in the signal to noise 

ratios resulting from the transformations. 

The power spectral density from each processing scheme is shown using averaged 

periodograms. The periodogram is a well known estimate for the power spectral density. 

Ten realizations of each method are performed and the ten results averaged. This is done 

because the periodogram is by definition an unreliable estimator due to its large variance. 

When the results of ten periodograms are averaged, the variance is reduced by a factor of 

ten, rendering a more consistent estimate. In all cases the estimated power spectral density 

of the sequence before and after whitening are shown. If the transformation effectively 

decorrelates the noise components of the samples, the three sinusoids after decorrelation 

should all have approximately the same signal to noise ratio at their respective frequency. 

In all cases the processing consists of the following steps: 

Step a: Add the signal and colored noise to create the test sequence. 

Step b: Derive the transformation vector or matrix depending on the algorithm being 

tested. 

Step c: Operate on the test sequence the applicable transformation, and create a new 

sequence in which the noise has been whitened. 

Step d. Use the fast-Fourier transform operation to form a bank of discrete detectors 

to attempt to locate the three signal components in the white, or whitened noise. The results 

are computed as periodograms. 

Step e: Run the transformation of ten different realizations of the experiment and 

compute an averaged periodogram. 

In terms of detection, the resulting power spectral density, for two signals in noise, Si 

and s2 in this example, is interpreted as shown on Figure 4.2: 
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Figure 4.2: Detection via power spectral density 

A detection threshold will not be set per se but rather we will be looking at how the 

power ratio between the signal and the noise at the respective frequencies of the three 

sinusoids are maintained by each transformation. 

1.   Estimates of the Correlation Matrix 

Many of the methods that are discussed require that the correlation function of the 

noise be known or estimated. We assume that the power spectral density of the ambient 

noise is known. 

When the power spectral density of the noise is known, its autocorrelation function can 

be estimated using the Wiener-Khintchine relation [Ref. 19]. 
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Let Sx( e   ) be the power spectral density of the wide sense stationary random vector 

x. The autocorrelation is related to the power spectral density as follow: 

oo 

Sx(eJ<°) =   £ Rx[l]e-J°l (4.3) 

which is the discrete time Fourier transform of the autocorrelation function. Since 5   and 

Rx are DTFT pairs, the latter can be given by: 

n 
RxU] = ^jSx(ej<0)ej(aldco (4.4) 

-71 

It is reasonable to assume that the noise power spectral density in a given area of ocean 

is known with a certain degree of accuracy as a result of previous data and knowledge of 

the present environmental conditions. In most of the tests, it is assumed that the power 

spectral density of the noise is known. From this power spectral density, the corresponding 

autocorrelation function can be derived using the Wiener-Khintchine relationship. 

2.    Matrix Decomposition Methods 

These methods are realized by using block transformations to filter the sequence. This 

means that the resultant sequence is formed by one matrix multiplication obtained via the 

product of a matrix of orthonormal vectors and the input sequence. One of the problems 

with using this technique is that it is usually preferable to use larger matrices allowing more 

input data. This implies that the correlation matrix to be decomposed is also larger. The 

processing resources required to factor larger matrices into its required orthonormal 

constituents becomes quickly prohibitive. To attempt to mitigate this problem, the 

correlation matrices used in these methods are limited to a size of 256 X 256. This means 

that the multiplications are also performed in blocks of 256 points. Since we want to be able 

to compare the results achieved with all methods, and we want representative results, all 

power spectral densities shown are for data lengths of 1024. For matrices factorization 

methods limited by size, four transformed block of data are then joined to form one 1024 
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length sequence. It is expected that the results may be distorted since the transformed data 

points starting at n, n+256, n+512, and, n+768, would then all be the results of the same 

orthonormal vector multiplying different input sequences. However, when only four blocks 

are used, this problem is not observed. When smaller matrices and therefore more data 

blocks are used in an attempt to reduce the processing requirements, a clear periodic pattern 

emerged based on the number of blocks used. Therefore, the use of many small block 

transforms leads to unsatisfactory results and is avoided. 

B.    RESULTS OF OPTIMAL DETECTION 

1.   Discrete Time Matched Filter for Colored Noise 

This section addresses the results for the discrete time matched filter for colored noise 

as derived in Chapter EL The figures shown were computed using the Matlab program 

given in Appendix H. The results are achieved by filtering the test sequence x with h to 

arrive at a sequence v. The transfer function h of the filter is computed using Equation 3.56. 
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Figure 4.3: Normalized power spectral density of test sequence (white Gaussian noise 
variance=100). 

Figure 4.3 shows the normalized averaged power spectral density for the input 

sequence x. As stated previously, the three sinusoids are at frequencies 0.05/s, 0.15/5, and, 

0.3 fs. The variance of the white Gaussian noise used to create the colored noise is 100. The 

power in each of the three sinusoids is selected so that the spectral heights of signal and 
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noise at each frequency have a ratio of approximately two. Figure 4.3 shows an averaged 

periodogram based on ten realizations rater than 100 realizations as in Figure 4.1. The 

variance of the periodogram is evident when comparing Figures 4.1 and 4.3. In Figure 4.3, 

Sinusoid #2 and Sinusoid #3 are not distinguishable from the noise background. Sinusoid 

#1 can be identified but other peaks at lower frequencies are clearly stronger which makes 

its detection unlikely with the periodogram. 

The matched filter is usually used to generate one number whose value is compared to 

a threshold to determine the presence or absence of a signal. Because of the equivalence of 

the matched filter and the correlator, the output of the matched filter can be interpreted as 

a correlator. Therefore, because we want to compare all results in terms of averaged 

periodograms, the results of the matched filter detection are shown in the form of a 

correlator. The averaged periodogram is computed for the sequence consisting of all 

matched filter results. The next figure shows the normalized averaged power spectral 

density of the filtered sequence y. 
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Figure 4.4: Normalized power spectral density of output of matched filter. 

Figure 4.4 clearly shows the success of the algorithm in filtering the colored noise. The 

strong relative power of each sinusoid to the noise is well shown. All three sinusoids have 

significant signal to noise ratios, far better than those in Figure 4.3. The peaks are sharp and 

precisely located at the correct frequencies. The effect of the colored noise appears to have 
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been almost completely eliminated with the exception of some residual noise around each 

sinusoid. A detection threshold could be established at a very low level with no chances of 

false alarms or of misses. These results show that the matched filter for colored noise 

applications is very successful. 

2.    Inverse Filter 

The results achieved for the inverse filter derived in Chapter m are shown here. These 

results were achieved using the Matlab program shown in Appendix I. The inverse filter is 

used as a prewhitener. The results where achieved by running the test sequence x through 

the filter point by point to arrive at a sequence v consisting in mostly signal. The transfer 

function h of the filter is computed with Equation 3.66 by assuming that the power spectral 

density of the colored noise and therefore the transfer function responsible for the 

colorations of the noise is known. 

Figure 4.5 shows the normalized averaged power spectral density for the input 

sequence. In this case, the noise power is reduced by setting the white Gaussian noise 

variance to 25. Compared to the case when the white Gaussian noise variance is set to 100, 

the use of the lower variance provides a gain of approximately 6 dB. This gain is shown 

clearly in Figure 4.5 where the signal peaks are much more clearly distinguishable than in 

Figures 4.1 and 4.3. In fact Sinusoid #1 could be reliably detected with a simple detection 

threshold despite the higher noise levels at lower frequencies. Sinusoid #2 and #3 however 

have far less power than the low frequency noise and Sinusoid #1. 
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Figure 4.5: power spectral density of signal + colored noise (white Gaussian noise 
variance=25) 

The results of filtering the sequence x with the inverse filter are shown at Figure 4.6: 
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Figure 4.6: Normalized power spectral density of whitened signal using inverse filter. 

We observe that the noise has been completely whitened as theoretically predicted. It 

can also be seen that the three components of the signal can be clearly detected and have 

approximately the same relative SNR at their respective frequency locations. Because the 

inverse filter is essentially an equalizer, the lower power sinusoids have been "raised" to 

approximately the same level as the first. Commensurately, the noise at low frequencies is 

reduced and that at higher frequency is increased. The transformation does not appear to 

produce peaks at incorrect frequencies which could lead to false alarms. Since the inverse 
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filter does not require decomposition of large matrices or matrix multiplications, the 

processing requirements for this whitener are relatively minimal. 

3.   Eigenvector Factorization 

The eigenvector factorization results are the first of the matrix decomposition methods 

that are shown. The results achieved for the eigenvector transformation derived in Chapter 

m are shown here. These results were obtained using the Matlab program shown in 

Appendix J. The results are achieved by separating the test sequence x into four blocks and 

multiplying each of these by the orthonormal matrix of eigenvectors of the theoretical noise 

correlation matrix of size 256 X 256. 

Figure 4.7 shows the normalized power spectral density for the input sequence. The 

noise power is reduced by setting the white Gaussian noise variance to 10. This is done due 

to the poor performance of the whitener as is shown on Figure 4.8. The low noise power is 

clearly apparent in Figure 4.7 by the clear unambiguous signal peaks and the relative lack 

of significant noise levels. In fact Sinusoid #1 can be reliably detected with a simple 

detection threshold despite the higher noise levels at lower frequencies. We note that 

Sinusoid #2 and Sinusoid #3 would be also be easily detected by common bandpass filters 

with predetermined detection thresholds. 
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Figure 4.7: Normalized power spectral density of signal plus colored noise (white Gaussian 
noise variance=10). 
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The result achieved with the noise matrix eigenvector transformation is shown in 

Figure 4.8: 
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Figure 4.8: Normalized power spectral density of whitened signal using 
eigendecomposition. 

Figure 4.8 shows that the transformation has whitened both the signal and the noise 

components. None of the signal remains despite low noise power, and detection would not 

be possible. The reason for this is due to the singular condition of the noise autocorrelation 

matrix. Although the rank of this matrix equals 256, its determinant equals zero. This result 

is unexpected and may be a function of the magnitudes of the values in the correlation 

matrix. The decomposition of the matrix results in eigenvalues which are less than one and 

where many are on the order of 10"8. The eigenvector decomposition method is particularly 

susceptible to this problem. The singular value decomposition technique discussed next 

provides a way to accurately compute the eigenvectors of a singular matrix. 

4.    Singular Value Decomposition (SVD) 

As stated earlier, the SVD technique provides an alternative way to compute the 

matrix of eigenvectors for a given correlation matrix without having to compute it first. It 

does so by using a matrix of data. In this experiment the data used is that of the colored 

noise. It is assumed that sequences of recorded noise have been obtained for the area in 

question and that this noise is representative of the actual conditions. The noise data matrix 
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used is of dimension 48 X 1024, and is created by using noise data of different realizations 

than that used in the input sequence x. From this noise data matrix, the SVD algorithm 

computes a matrix of eigenvectors and a matrix of singular values. The matrix of 

eigenvectors is then used in the same way as for the previous experiment to decorrelate the 

noise component of the received sequence. The figures shown were computed using the 

Matlab program given in Appendix K. 

Figure 4.9 shows the normalized averaged power spectral density for the input 

sequence whitened via the SVD decomposition. In this case the noise power is set by using 

a white Gaussian noise variance of 50. 
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Figure 4.9: Normalized power spectral density of signal+colored noise (white Gaussian 
noise variance=50). 

As can be observed, the noise power is such that the sinusoids are even difficult to 

distinguish with the averaged periodogram. Even the use of a bandpass filters around the 

frequencies of interest or a low pass filter removing the stronger noise at lower frequencies 

would make detection very difficult. 

Figure 4.10 shows the averaged power spectral density of the transformed sequence. 
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Figure 4.10: Normalized power spectral density of whitened signal with SVD. 

It can be observed that the results are far better with the SVD method than with the 

eigenvector factorization method despite the fact that both methods, in theory, should 

arrive at the matrix of eigenvector of the same correlation matrix. Sinusoid #1 and Sinusoid 

#2 are readily detectable. Sinusoid #3 however only appears as a small protrusion and 

would not be detectable. This result demonstrates the superiority of the SVD algorithm 

when the correlation matrix of the noise is poorly conditioned or singular. As stated in 

Chapter m, the SVD method is far more robust than the normal eigenvector/eigenvalue 

decomposition method and does provide the means to achieve optimal detection as a 

prewhitener. 

5.    Mahalanobis Transformation 

The Mahalanobis transformation is another transformation method based on the 

eigendecomposition of the theoretical noise correlation matrix. The results achieved for 

this transformation are shown here. These results were computed using the Maüab program 

shown in Appendix L. The results where achieved by separating the test sequence x in four 

blocks and transforming each of these according to Equation 3.96. 

Figure 4.11 shows the normalized power spectral density for the input sequence. The 

noise power is reduced by setting the white Gaussian noise variance to 25. 
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Figure 4.11: Normalized power spectral density of test sequence (white Gaussian noise 
variance=25). 

Figure 4.12 shows the power spectral density of the transformed sequence. 
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Figure 4.12: Normalized power spectral density of whitened signal using Mahalanobis 
transformation. 

It can be observed that although the noise has maintained some correlation, it has been 

considerably whitened when compared to Figure 4.11. At the higher frequencies where 

Sinusoid #3 is located, the transformation has maintained its local signal to noise ratio in a 

way in which it would be easily detected. At lower frequencies where Sinusoid #1 and #2 

are, the signal to noise ratio at that location along the frequency axis appears to have been 

maintained but since the noise floor continues rising until about 0.32 fs, and is more than 
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twice the height at that frequency than it is at 0.15/5, detection would require additional 

processing. 

6.    Lower-Upper Factorization (LDU) 

The LDU factorization is the first of the whitening transformations to use a triangular 

matrix, that is shown here. Figure 4.13 shows the normalized power spectral density for the 

input sequence. In this case the noise power is achieved by using a white Gaussian noise 

variance of 25. The figures shown were computed using the Matlab program given in 

Appendix M. 
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Figure 4.13: Normalized power spectral density of test sequence (white Gaussian noise 
variance=25). 

This sequence is then whitened with the L triangular matrix of the LDU decomposition 

of the theoretical correlation matrix, in accordance with Equation 3.102. 

Figure 4.14 presents the averaged power spectral density of the whitened sequence. 
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Figure 4.14: Normalized power spectral density of whitened sequence using LDU. 

It can be observed that the transformation has not succeeded in completely whitening 

the input sequence. From 0 to 0.02 /s there is an upwards curve followed by a steady 

descending slope from 0.025 to 0.5 fs. However, the three sinusoids are clearly 

distinguishable with few occasional peaks which could lead to false alarms. Overall the 

results show that the local signal to noise ratio has been maintained or somewhat improved 

but that the noise is not fully whitened especially at very low frequencies where the slope 

of the noise is greatest. 

7.   Upper-Lower Factorization (UDL) 

This transformation is essentially the same as above but it uses a upper triangular 

matrix. This leads to the anti-causal transformation of the theoretical noise correlation 

matrix shown at Equation 3.111. The results of this whitening on the same input sequence 

used for the LDU factorization, shown at Figure 4.13, is shown at Figure 4.15. 
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Figure 4.15: Normalized power spectral density of whitened sequence using UDL. 

It can be observed that the results achieved with the UDL transformation is very 

similar to that achieved with the LDU transformation. The anti-causality of the 

transformation seems to have no effect on the performance of the whitener. 

8.    Cholesky Factorization 

As stated in Chapter m, the Cholesky decomposition is based on the LDU and UDL 

decompositions. As such, results achieved with it are expected to be similar to those 

resulting from those methods. As is done for the LDU and UDL decompositions, a white 

Gaussian noise variance of 25 is used to create the colored noise and results in the power 

spectral density for the input sequence shown at Figure 4.16. 
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Figure 4.16: Normalized power spectral density of test sequence (white Gaussian noise 
variance=25). 

The next two figures present in turn the causal and anti-causal Cholesky 

transformation results, related respectively to the LDU and UDL factorizations. Figure 

4.17, shows the power spectral density of the transformed sequence using the Cholesky 

factor consisting of a lower triangular matrix, therefore resulting in a causal transformation. 

This transformation is performed using Equation 3.115. The Matlab program used to 

perform the transformations and generate the figures is included at Appendix N. 
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Figure 4.17: Normalized power spectral density of whitened sequence using lower 
triangular Cholesky factor. 

Figure 4.18 presents the averaged power spectral density of the transformed sequence 

using the upper triangular Cholesky matrix. This transformation is anti-causal. 
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Figure 4.18: Normalized power spectral density of whitened sequence using upper 
Cholesky factor. 

We can see that the results achieved are quite good in that the noise is whitened and 

the ratio of the spectral heights of each of the sinusoids and the noise at the respective 

spectral locations are also maintained. Some spurious peaks may cause false alarms for 

Sinusoid #2. The causality or anti-causality of the transformation seems to have no effect 

on the performance achieved. The three sinusoids are reliably detected and have maintained 

or improved their local SNR relative to the input sequence. Since the Cholesky 

decomposition differs from the LDU decomposition in that the square root of the diagonal 

matrix DL scales the matrix L, this last factor appears to allow the method to correctly 

whiten the noise. 

9.   QR Factorization 

QR factorization, like SVD makes use of a matrix of data to arrive at the lower 

triangular matrix L of the LDU factorization. In this case, a square noise only data matrix 

of dimensions 256 X 256 is used. In the same way as for the SVD method, the noise used 

in the data matrix is independent of that used in the sequence x. Four block transforms of 

length 256 are joined to form the whitened sequence of 1024 points. The Matlab program 

used to generate the results is shown at Appendix O. 
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Figure 4.19 shows the power spectral density for the input sequence. The white 

Gaussian noise variance is set to 50. 
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Figure 4.19: Normalized power spectral density of test sequence (white Gaussian noise 
variance=50. 

One point to note concerning Figure 4.19 is that Sinusoid #2 is not well resolved in 

this realization of the process. This result is also observed in the whitened output shown in 

Figure 4.20. 
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Figure 4.20: Normalized power spectral density of whitened signal using the QR 
factorization to achieve an estimate of the L matrice. (256X256) 

Figure 4.20 shows that the colored noise is successfully whitened. All three sinusoids 

are identifiable although the variance of the estimate may still lead to some false alarms 

depending on the height of the detection threshold. As stated above, the Sinusoid #2 peak 
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is not as detectable as Sinusoid #1 and Sinusoid #3 but this is also the case with the input 

sequence. The local signal to noise ratio of all three sinusoids has also been improved 

compared to the averaged periodogram shown in Figure 4.19. This result seems to indicate 

that the numerical accuracy required to perform successful whitening with the 

transformations discussed herein is important and is not achievable from the use of the 

theoretical noise correlation matrix. Overall this is the most successful whitener among 

those using matrix decomposition methods in terms of truly whitening the colored noise. 

C.    RESULTS OF OTHER NON-OPTIMUM FILTERS 

1.    Differential Filter 

This section shows the results of using the simple differentiation function to attempt 

whitening as discussed in Chapter m. The advantage in using this method, should it be 

successful, lies in its simplicity and efficiency. It does not require any matrix factorization 

process nor does it demand numerous multiplications, but it can only be used in certain 

colored noise situations (i.e., 1//, 1// noise, etc.). The figures shown were computed 

using the Matlab program given in Appendix H. 

The averaged periodogram for the input sequence of signal plus noise is shown in 

Figure 4.21. For this experiment the white Gaussian noise variance is set to 25. 
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Figure 4.21: Normalized power spectral density of test sequence (white Gaussian noise 
variance=25). 
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Three figures are shown next. They, in order, show the first, second and third order 

differentiation in time of the input sequence. As discussed in Chapter HI, it is expected that 

the first order differentiation of the sequence should provide the best prewhitening. Figure 

4.22 shows the averaged periodogram of the first order differentiation of the input 

sequence. 

Hsw-.. 
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Fraction of sampling frequency 

Figure 4.22: Normalized power spectral density of whitened sequence using first order 
differentiation. 

As with some of the other whitening techniques, it can be readily observed that 

although the noise has been equalized somewhat, it still remains colored. Nevertheless, we 

can see that the three signal peaks are distinct and detectable. However, the form of the 

noise power spectral density would lead to better detection results in using a white noise 

approximation between the frequencies of 0.075 fs - 0.2 fs. In that area, the noise spectrum 

is relatively flat and signals such as Sinusoid #2 produce sharp easily detected peaks. 

Although Sinusoid #1 and Sinusoid #3 are not in areas where the noise power has leveled 

off, the local signal to noise ratio of all three sinusoids appears to be at least as high as the 

local signal to noise ratio shown on Figure 4.21. All three sinusoids of Figure 4.22 account 

for the global peaks whereas on Figure 4.21, Sinusoid #2 and Sinusoid #3 have less power 

than the noise in the low-pass region. 

Because the noise is not completely equalized by using the first order differentiation, 

a second and third experiment are conducted to see what the effect of second order and third 
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order differentiation would have on the input sequence. Figure 4.23 shows the resulting 

averaged periodogram for the second order differentiation and Figure 4.24 contains the 

results of the third order differentiation. 

0.15 0.2 0.25 0.3 0.35 
Fraction of sampling frequency 

0.4 0.45 0.5 

Figure 4.23: Normalized power spectral density of whitened sequence using second order 
differentiation. 
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Figure 4.24: Normalized power spectral density of whitened signal using third order 
differentiation. 

The effect of the additional orders of differentiation can be readily seen on the two 

figures. In all cases the noise power forms a characteristic hump which begins and ends 

with magnitudes close to or equal to zero. For the first order differentiation, the top of the 

hump is centered at a frequency of about 0.12/s. For the second order differentiation, the 
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hump moved to higher frequencies and its summit is around 0.26 fs. In the case shown in 

Figure 4.24, the somewhat flat noise power area is in the frequency range of 0.2 fs- 0.32 fs 

and Sinusoid #3 at 0.3 fs is clearly detectable. Sinusoid #1 at 0.05 fs is far lower than the 

noise present at most frequencies and is not detectable. Sinusoid #2 is in the middle of the 

slope leading to the maximum noise power and has maintained its local signal to noise ratio 

but the noise at higher frequencies has higher power and would need to be filtered to allow 

for correct detection. For the third order differentiation, the hump moves to higher 

frequency with the top of the noise hump situated at a frequency around 0.32 fs. Sinusoid 

#2 and Sinusoid #3 remain identifiable, but Sinusoid #1 has disappeared along with the 

noise in the frequencies around 0.05 fs and lower. Because of its location in the flat portion 

of the noise spectrum Sinusoid #3 again is sharply defined and his easily detectable with a 

white noise assumption. 

This method is a very easy and inexpensive way to minimize the effects of low 

frequency noise that has spectral roll-off as is found in the ocean environment. 

2.    Prediction-Error Filter (PEF) 

This section demonstrates the whitening property of the prediction-error filter. As 

discussed in Chapter m, the success of the prediction error filter is predicated upon the 

correlation feature of the signal and of the noise. The signal used for this experiment is 

different than that used for the other experiments and is: 

S[n] = 0.475cos[27t«|] + 0.15cosr27i«|l + 0.1cosr27i«|l (4.5) 

The signal is changed to better illustrate the performance of the filter and its 

dependence upon the correlation properties of the signal and colored noise. Figures 4.25 

and 4.26 show the theoretical correlation functions of the colored noise and of the signal 

for the first 21 lags. 
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Figure 4.25: Autocorrelation function of the Butterworth low-pass noise: First 21 points. 

Figure 4.25 shows that the magnitude of the autocorrelation function of the noise 

rapidly decreases with the number of delays. The autocorrelation function of underwater 

noise is very similar because it also has high noise power for low frequencies. This means 

that if a delay must be chosen to maximize the correlation of the noise, then this delay 

should be small. If the noise is white, the magnitude would be non-zero only at a delay of 

zero. 

Figure 4.26 shows the autocorrelation function of the signal. 

Figure 4.26: Autocorrelation function of the signal: s=.475*cos(2*pi*t/8) 
+0.15*cos(2*pi*t*2/8) + 0.1*cos(2*pi*t*3/8) 

As expected, the autocorrelation function of the sinusoidal signal is also sinusoidal. 

We note that the signal is formed from three sinusoids each of which has its own correlation 
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function. The net results shown here presents the sum of all three autocorrelation functions. 

Therefore, if a delay is chosen where the autocorrelation function of the signal does not 

have a magnitude of zero as shown on Figure 4.26, each of the three sinusoids is affected 

differently based on the magnitude of their respective autocorrelation function at that delay. 

In order to demonstrate the whitening properties of the prediction-error filter, an 

adaptive order 32 LMS filter was constructed. Data is input to the filter until the weights 

have converged and all results are computed only with data obtained after convergence. 

The whitened sequence is the error between the predicted value out of the predictor, and 

the actual value of the sequence. Therefore, if the signals are to be detected in the error, the 

delay d (see Figure 3.9) must be chosen such that the correlation of the noise is maximized 

while the correlation of the signal is minimized. 

The next three figures present the results of the experiment. The Matlab code of 

Appendix Q was used to compute these results. 

Figure 4.27 shows an averaged periodogram of the input sequence. The white 

Gaussian noise variance used to create the colored noise is 100. Experimentation shows 

that the correlation of the noise samples is most sensitive to delays. A delay of one achieved 

the best whitening. We expect that this is due to the fact that the colored noise has a 

correlation function which asymptotically decreases with delay. Therefore, as the delay is 

increased, the predictor quickly loses its ability to estimate the noise and therefore remove 

it from the error sequence. The signals can be seen 0.125/*, 0.25 fs, and, 0.375 fs. 
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Figure 4.27: Normalized power spectral density of signal plus noise (white Gaussian noise 
variance=100). 

Figure 4.28 shows the power spectral density of the output of the predictor. 
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Figure 4.28: Normalized power spectral density of estimated signal. 

For a delay of one, the autocorrelation of none of the three sinusoids is zero. Because 

of this, the predictor is also able to estimate their presence as well as that of the colored 

noise. Since the delay chosen is short, it can be expected that low frequency noise 

components and signals at low frequencies would be better predicted and therefore more 

easily removed from the whitened sequence or the error sequence. In the case of signals in 

low-pass noise, this is a good feature since the noise at low frequencies has far greater 

power than the signals which are at higher spectral locations. We note that the averaged 
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periodogram of the predicted signal looks very similar to the averaged periodogram of the 

input sequence. 

Figure 4.29 shows the averaged periodogram of the error containing the whitened 

sequence. 
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Figure 4.29: Normalized power spectral density of predicted error: whitened signal. 

It can be seen that the noise has been considerably whitened by the PEF. At 

frequencies below 0.27/s, the noise is effectively whitened. At higher frequencies, the small 

delay appears to have partly decorrelated some of the noise power, and some coloration 

remains. The three signals also appear clearly despite a delay that did not completely 

decorrelate them as indicated by their presence in the predicted sequence. Comparing 

Figures 4.27 and 4.29 shows that the ratios between the spectral heights of each sinusoid 

and the noise at their respective spectral location have been preserved. Different delays 

however, have a serious effect of the performance of this whitener. As the selected delay 

increases, the noise becomes more decorrelated, and the predictor is less able to produce 

correct estimates. This then results in more of the colored noise to be part of the error. 

When this technique is used for detection in colored noise, its performance is 

dependent upon the correlation properties of the signal and noise. In the case of the noise, 

underwater ambient noise is always best predicted by choosing small delays. For the signal, 

which must be decorrelated as much as possible, a study of its correlation properties must 
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be undertaken to ensure that the delay chosen does not occur at a point where the signal 

autocorrelation function is at its maximum. Should this occur, the predictor is then 

completely able to predict the signal in its estimate and therefore none of the signal appears 

in the error sequence. 

An advantage of the method presented herein, is that it is adaptive. As sea going 

vessels are underway, the noise characteristic of the underwater environment changes. It is 

reasonable to assume that this could affect our choice of delay. However, the variations in 

the ambient noise spectra usually only minimally affect this consideration, because the 

primary effect resulting in much higher noise levels at low frequency is the sound 

attenuation in sea water. Therefore using an adaptive filter in this manner allows these 

changes to be considered in the detection process without modifying the experimental 

parameters. 
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V. CONCLUSIONS 

In this thesis, we have presented a number of techniques with which to perform 

discrete time detection of signals in colored noise. The matched filter for colored noise is 

derived and is shown to produce excellent results. When the correlation matrix of the noise 

can be estimated, the matched filter for colored noise provides the optimal detection 

solution. The derivation for the Maximum A Posteriori criterion for colored noise is also 

shown. The inverse filter is demonstrated to be a very efficient way to whiten the noise by 

effectively equalizing the colored noise by the use of its inverse power spectral density. 

This method is simple and effective with the only requirement being that the power spectral 

density of the noise be known. Several matrix decomposition techniques are addressed. 

These techniques are based on the use of a block transformation approach to whitening a 

sequence. They generally use a matrix of orthonormal vectors derived from the noise, to 

transform a data sequence in order to decorrelate the noise component of that sequence. If 

the colored noise can be decorrelated, then detection in white noise can be performed. The 

procedures to obtain a matrix of orthonormal vectors rely on a factorization of either the 

correlation, or covariance matrix of the colored noise process, or of a noise data matrix. The 

methods using the data matrix (i.e., signal free noise recording) are less susceptible to a 

poorly conditioned or singular correlation matrix which is necessarily estimated. They also 

result in better numerical accuracy which was found to be important for the whitening 

process. Some of the methods examined, for example, the LDU, UDL, Cholesky, and, QR 

factorizations, form a matrix which is triangular. Although some matrix decomposition 

methods require less processing resources than others, all of them remain very inefficient 

compared to other available techniques such as the matched filter and the inverse filter. 

Some of these techniques, although promising in theory, are sometimes unable to 

completely whiten the colored noise as predicted. For the low-pass Butterworth colored 

noise used, the eigenvector factorization method was unsuccessful in allowing for the 

detection of any of the three sinusoids. As a results of the poor conditioning of the noise 
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autocorrelation matrix, the transformation using the matrix of eigenvectors also whitens the 

signal along with the noise. Three methods work well in preserving the signal to noise ratio 

of the sinusoids while whitening the noise. The singular value decomposition computes a 

more accurate matrix of eigenvectors for the noise autocorrelation matrix and functions 

well in spite of poor conditioning of the autocorrelation matrix. It whitens the noise and 

generally maintains signal power. The QR technique also uses a noise data matrix to 

achieve a more precise estimate of the L matrix of the LDU factorization of the correlation 

matrix. \s shown in Chapter 4, the QR method effectively decorrelates the colored noise 

and allov,-s the use of an optimal white noise detector, to achieve optimal detection. The 

Cholesky factorization is able to correctly whiten the noise and maintain the appropriate 

spectral heights ratio but is not as capable as the QR factorization when the input noise 

power is greater. The differential operator can be a very efficient whitener when the colored 

noise is inversely proportional to a power of the frequency. The whitening property of the 

prediction-error filter is demonstrated and is shown to be effective. However, it is strongly 

dependent on the correlation properties of the signals to be detected. Some periodic signals 

may not be detected if the chosen delay occurs at a maximum of the signal correlation 

function. When the delay is at a point of high correlation for the noise, and at a point of low 

correlation for the signal, the prediction error filter can effectively whiten the noise and 

provide good output signal to noise ratios. 
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APPENDIX A - MATLAB PROGRAM USED TO GENERATE 

FIGURE 2.2, "THERMAL AGITATION SOUND PRESSURE LEVEL 

(SPL)". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plots thermal agitation noise levels 
% 
% Author: Capt M.A. Cloutier 
% Date:   26 Oct 95 
% Name: thermalnoiscm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
elf 

f=logspace(0,7,500);%frequency range 

SPL=-101+20*loglO(f); 

semilogx(f,SPL) 
axis([l 10*7 -100 40]) 
grid 
xlabel('Frequency (Hz)') 
ylabelCSPL (dB) re 2X10*3 uPa for a 1 Hz Bandwidth') 

print thermalfig 
!ps3epsi <thermalfig.ps >thermalfig.epsi 

%%%%%%%%%%%%%%%%%7o%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX B - MATLAB PROGRAM USED TO GENERATE 

FIGURE 2.4, "COMPARISON OF ABSORPTION COEFFICIENTS IN 

SEA WATER, DUE TO SHEAR AND VOLUME VISCOSITY, AND 

SHEAR VISCOSITY ALONE". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Thesis: Plot of viscosity absorption coefficients iaw Fisher and Simmons 
%salinity: 35 ppt 
%PH=8.0 
%ref page 104 Urick 
% 
% AuthonCapt M.A. Cloutier 
% Date:   26 Oct 95 
% Name: absorptionf21.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
elf 
f=logspace(0,7,500);%frequency range 
T=5;        %temperature in Celcius 
Po=l;      %pressure in atm 
TK=T+273;%temp in Kelvin 
fl=1.32*10A3*TK*exp(-1700/TK); %relaxation freq of boric acid 
f2=1.55*10A7*TK*exp(-3052/TK);%relaxation freq of MgS04 

% for temps and pressures in ranges 0-30jC and 1-400 atm 
A=8.95* 10A(-8)*( 1+2.3* 10A(-2)*T-5.1* 10A(-4)*T

A
2); 

B=4.88*10A(-7)*(l+1.3*10A(-2)*T)*(l-0.9*10A(-3)*Po); 
C=4.76* 10A(- 13)*(l-4* 10A(-2)*T+5.9* 10A(-4)*TA2)*(l-3.8* lO^^Po); 

%attenuation coeff in dB/m 
attboric=A*fl*f.A2./(flA2+f.A2); 
attMgS04=B*f2*f.A2./(f2A2+fA2); 
attwater=C*f A2; 

att=attboric+attMgS04+attwater; 

mus=.01;%shear viscosity 
muv=2.81*mus;%volume viscosity 
density=l;%gm/cm3 
c=1.5*10A5;%cm/s 
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%pure water 
attshearvisc=16*piA2*mus*f.A2./(3*density*cA3); 
attvisc=16*piA2*f.A2*(mus+0.75*muv)/(3*density*cA3); 

loglog(f,att,'-',f,1000*attshearvisc,'--',f,attwater,'-.') 
axis([l 1(^7 10^-10) 1(^2]) 
ylabelCAbsorption coefficient (dB/m)') 
xlabel('Frequency (Hz)') 

h=legend(' sea water',' shear and volume',' shear (theoretical)') 
axes(h) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX C - MATLAB PROGRAM USED TO COMPUTE FIGURE 

2.5, "SOUND ABSORPTION AT 5°C, 1 ATM, 35 PPT SALINITY, AND 

PH=8.0 (ACCORDING TO FISHER AND SIMMONS)". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Thesis: Plot of absorption coefficients according to Fisher and Simmons 
%salinity: 35 ppt 
%PH=8.0 
%ref page 158 KFCS 
% For second figure Chap 2 
% 
% AuthonCapt M.A. Cloutier 
%Date:   26 0ct95 
% Name: absorptionf22.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

elf 
clear 
f=logspace(0,7,500);%frequency range 
T=5;%temperature in Celcius 
Po=l;%pressure in atm 

TK=T+273;%temp in Kelvin 
fl=1.32*10A3*TK*exp(-1700/TK); %relaxation freq of boric acid 
f2=1.55*10A7*TK*exp(-3052/rK);%relaxation freq of MgS04 

% for temps and pressures in ranges 0-30 jC and 1-400 atm 

A=8.95*10A(-8)*(1+2.3*10A(-2)*T-5.1*10A(-4)*TA2); 
B=4.88*10A(-7)*(l+1.3*10A(-2)*T)*(l-0.9*10A(-3)*Po); 
C=4.76*10A(-13)*(l-4*10A(-2)*T+5.9*10A(-4)*TA2)*(l-3.8*10A(-4)*Po); 

%attenuation coeff in dB/m 

attboric=A*f 1 *fA2./(f 1 A2+f .A2); 
attMgS04=B*f2*f.A2./(f2A2+f.A2); 
attwater=C*f.A2; 

att=attboric+attMgS04+attwater; 
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loglog(f,att,'-' ,f.attwater,'-- \f,attboric,': ',f,attMgS04,'-.') 
axis([l 10*7 10^-10) 10*2]) 
ylabel('Absorption coefficient (dB/m)') 
xlabel('Frequency (Hz)') 
h=legend(' sea water',' fresh water',' boric acid',' magnesium sulfate') 
axes(h) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX D - MATLAB PROGRAM USED TO GENERATE 

FIGURE 2.7, "NORMALIZED AVERAGE SOUND PRESSURE 

LEVEL OF AMBIENT NOISE AT POINT SUR SOSUS ARRAY 

(SAMPLING FREQUENCY 8 KHZ)". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%PSD of ocean noise from surnoise file taken at 8 kHz on a log scale 
% From surnoise.au 
% 
% AuthonCapt M.A. Cloutier 
%Date:   26 0ct95 
% Name: noisesurPSDlogpad.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
elf 
orient tall 
acnoise=auread('surnoise.au'); 
%nacnoise=acnoise-mean(acnoise); %remove DC 
index=l; 
fori=l:2048:40960 

PSD(:,index)=20*logl0(abs(fft(acnoise(i:i+2047),8192))); 
index=index+l; 

end 
PSDave=sum(PSD')./(index-1); 
%plot in semilog space 
elf 
subplot(211) 
point=logspace(0,logl0(4096),500); 
semüogx(point*8000./8192,PSDave(point)-max(PSDave(point))) 
xlabel('Frequency (Hz)') 
ylabel('Magnitude (dB)') 

axis([10Al 10M min(PSDave(point)-max(PSDave(point))) 0]) 

print fsurnoisePSD 
!ps3epsi <fsurnoisePSD.ps >fsurnoise.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX E - MATLAB PROGRAM USED TO GENERATE 

FIGURE 3.4, "DETECTION REGIONS: GAUSSIAN PROBABILITY 

DENSITY FUNCTIONS". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7o%%%% 
% Program that plots detection regions 
% 

% AuthonCapt M.A. Cloutier 
% Date:   26 Oct 95 
% Name: gauss.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
orient tall 
i=-15:. 1:25; 
m=10; 
var=4; 
pl=l/(sqrt(2*pi*varA2))*exp(-(i-m).A2./(2*varA2)); 
pO=l/(sqrt(2*pi*varA2))*exp(-(i).A2./(2*varA2)); 

T=linspace(0,0.75/(sqrt(2*pi*varA2)),20); 
j =5 *ones(size(T)); 

subplot(311) 

plot(i,pUpO,j,T) 

hold on 

fiU([i(202) i(202:401)],[0 pl(202:401)],'m'); 
fill([i(202) i(202:401)],[0 p0(202:401)],'g'); 

fill([i(l:200) i(200)],[p0(l:200) 0],'c*); 
ffll([i(l:200) i(200)],[pl(l:200) OL'y'); 

axis('off') 
print gaussfig 

!ps3epsi <gaussfig.ps >gaussfig.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX F - MATLAB PROGRAM USED TO GENERATE 

FIGURE 3.10, "CORRELATION FUNCTION OF FIRST ORDER 

LOW-PASS BUTTERWORTH COLORED NOISE". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program to compute the theoretical autocorr of noise from the PSD 
% 
% AuthonCapt M.A. Cloutier 
%Date:   2 Dec 95 
% Name: wienerk.m 
%7o%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
elf 
orient tall 

1=1024; 
t=l:l; 
s= l*sin(2*pi*t*l/4);%f is at 0.25 fs 

%varia=input('What is the variance of the white noise? '); 
varia=l; 
w=sqrt(varia)*randn( 1 ,length(s));%white noise 

[B,A]=butter(l,0.1);%color the white noise 
n=filter(B,A,w); 

x=s+n; 

PSD=abs(fft(n,2048)).A2./2048;%PSD of the noise 

[H,P]=freqz(B,A,2047);%H contains the transfer function 

Rnt=real(ifft(abs([H.'fliplr(H.')]).A2));%with   Wiener-Khinchine    theorem    find 
correlation matrix 

Rn=xcorr(n); %has length 2*1-1 
Rnl=Rn.';%form row vector instead of column vector 
%form new Rn with peak at zero instead of centered 
Rn2=[Rnl(1024:2047) Rnl(l:1023)]; 
impulse=dimpulse(B, A, 1024); 
Rnti=xcorr(impulse); 
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Rnmat=Rnti( 1024:2047); 
subplot(411) 
plot(0:1023,Rn2(l:1024)/1024,'-\ 0:1023,Rnt(l:1024),V) 
tiÜe('Plots of Rn with XCORR vs Rn with Wiener-Khinchine') 

subplot(412) 
plot(0:19,Rn2(l:20)/1024,0:19, Rnt(l:20),0:19,Rnti(1024:1043)) 
titie('Plots of first 20 points of correlations') 

subplot(413) 
plot(abs(fft(Rn2/2047))) 
tiÜeCPSD with Rn2') 

subplot(414) 
plot(abs(fft(Rnt))) 
tiÜe('PSD with Rnt') 
print figwk 
pause 
elf 

%for thesis chap4 
subplot(411) 
plot(0:25,Rn2(l:26)/1024,'-',0:25,zeros(l,26),V) 
axis([025-.05.15]) 
xlabel('Delay') 
ylabelCAmplitude') 
print figcorr 
!ps3epsi <figcorr.ps >figcorr.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX G - MATLAB PROGRAM USED TO GENERATE 

FIGURE 4.1, "NORMALIZED AVERAGE POWER SPECTRAL 

DENSITY OF SIGNAL PLUS NOISE". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This will create the signal plus noise signal 
% and will produce the thesis figure in Chap 4 
% 
% AuthonCapt M.A. Cloutier 
%Date:   26 0ct95 
% Name: signalf.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
clear 
elf 
orient landscape 

% generate data 
numb=100;%number of realizations for the averaging 
l=numb*1024; 
t=l:l; 
s= .475*cos(2*pi*V20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10 + pi/3); 
%varia=input('What is the variance of the white noise? '); 
varia=100; 
w=sqrt(varia)*randn( 1 ,length(s));%white noise 

[B,A]=butter(l,0.1);%color the white noise 
colored=filter(B,A,w); 

x=s+colored; 

PSD=zeros(numb,2048); 
index=l; 
fori=l:numb 

PSD(i,:)=abs(fft(x(index:(index+1023)),2048)).A2./2048; 
index=dndex+1024; 

end 

PSDxave=sum(PSD)./numb; 
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PSDxave=PSDxave./max(PSDxave);%normalize 

%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output results 

plot(( 1:1024)/1024/2,PSDxave(l: 1024)); 
xlabel('Fraction of sampling frequency') 
ylabel('Average(abs(fft(x,2048)).A2)') 

text(.08,.95*max(PSDxave),'Sin #1') 

axes('position',[.4 .35 .15 .5]) 
plot((261:360)/1024/2,PSDxave(261:360)) 
title('Sin#2') 
axis([261/2/1024 360/2/1024 0 .2]) 
grid 

axes('position',[.7 .35 .15 .5]) 
plot((571:670)/1024/2,PSDxave(571:670)) 
tiÜe('Sin#3') 
axis([571/2/1024 670/2/1024 0 .025]) 
grid 

print sigffigl 
!ps3epsi <sigffigl.ps >sigffig.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX H - MATLAB PROGRAM IMPLEMENTING THE 

DISCRETE TIME MATCHED FILTER FOR COLORED NOISE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Discrete Matched Filter for colored noise 
% 
% AuthonCapt MA. Cloutier 
%Date:   5 Dec 1995 
% Name: mffin.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
orient tall 

% generate data 
numb=10;%number of realizations for the averaging 
l=numb*1024; 
t=l:l; 
s= .475*cos(2*pi*t/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10 + pi/3); 
%varia=input(<What is the variance of the white noise? '); 
varia=100; 
w=sqrt(varia)*randn(l,length(s));%white noise 

[B A]=butter(l,0.1);%color the white noise 
colored=filter(BA,w); 

x=s+colored; 

x=reshape(x, 1024,numb)'; 
colored=reshape(colored,1024,numb)'; 

% Find correlation matrix of the noise from PSD 

[H,P]=freqz(B A,2047);%H contains the transfer function 

Rn=real(ifft(abs([H.'fliplr(H.')]).A2));%with    Wiener-Khinchine    theorem    find 
correlation matrix 

Rntoep=toeplitz(Rn(l: 128)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%calculate h 
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h=inv(Rntoep)*fliplr(s(l: 128) ')./sqrt(s(l: 128)*inv(Rntoep)*s(l: 128)'); 
y=zeros(numb,1024); 
PSDy=zeros(numb,1024); 
PSDx=zeros(numb, 1024); 
fori=l:numb 

forj=l:(1024-127) 
y(ij)=h.'*fliplr(x(i,j:a+127)))'; 

end 
PSDy(i,:)=(abs(fft(y(i,:),1024)).A2); 
PSDx(i,:)=(abs(fft(x(i,:),1024)).A2); 

end 

PSDyave=sum(PSDy)./numb; 
PSDyave=PSDyave/max(PSDyave); 

PSDxave=sum(PSDx)./numb; 
PSDxave=PSDxave/max(PSDxave); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%output the estimates 
elf 
subplot(311) 

plot((0:511)./1024, PSDxave(l :512)) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 

axesCposition',[.45 .78 .15 .12]) 
plot((130:180)/1024,PSDxave(130:180)./max(PSDxave(130:180))) 
axis([130/1024 180/10240 1]) 

axes('position\[.7 .78 .15 .12]) 
plot((285:335)/1024,PSDxave(285:335)/max(PSDxave(285:335))) 
axis([285/1024 335/10240 1]) 

print mffigx 

!ps3epsi <mffigx.ps >mffigx.epsi 

elf 
subplot{311) 
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plot((0:511)./1024,PSDyave(l:512)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

print mffigy 
!ps3epsi <mffigy.ps >mffigy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX I - MATLAB PROGRAM IMPLEMENTING THE 

INVERSE FILTER 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Program to compute coloring and whitening of a sequence with white noise 
% using an inverse filter 
% 
% AuthonCapt M.A. Cloutier 
% Date:   26 Oct 95 
% Name: invfin.m 
%%%%%%%%%%%%%%%%%%%%%%%%7o%%%%%%%%%%%%%%% 
clear 
orient tall 

numb=10; 
P=zeros(numb,512); 
Pxa=zeros(numb,512); 

forind=l:numb 

1=1024; 
t=l:l; 
s=.475*cos(2*pi*t/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10); 
varia=25; 
w=sqrt(varia)*randn(l,length(s));%white noise 

[B,A]=butter(l,0.1);   %color the white noise 
n=filter(B,A,w); 

x=s+n; 

white=filter(A,B,x); 

PSDn=abs(fft(x)).A2; 

PSDw=abs(fft(white)).A2; 

P(ind,:)=PSDw(l:512); 
Pxa(ind,:)=PSDn(l:512); 

end 
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Py ave=sum(P) ./numb; 
Pxave=sum(Pxa) ./numb; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output results 

elf 
subplot(311) 
plot((0:51 l)./1024,Pxave./max(Pxave)) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 

axes('position',[.45 .78 .15 .12]) 
plot((130:180)/1024,Pxave(130:180)./max(Pxave(130:180))) 
axis([ 130/1024 180/10240 1]) 

axes('position\[.7 .78 .15 .12]) 
plot((285:335)/1024,Pxave(285:335)/max(Pxave(285:335))) 
axis([285/1024 335/1024 0 1]) 

print invfigx 

!ps3epsi <invfigx.ps >invfigx.epsi 

elf 
subplot(311) 
plot((0:51 l)./l,Pyave./max(Pyave)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

print invfigy 
!ps3epsi <invfigy.ps >invfigy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX J - MATLAB PROGRAM IMPLEMENTING THE 

EIGENVECTOR FACTORIZATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Diagonalization of the Correlation matrix of the noise 
%refp50,2.6.1 
% do transformation y=E*T*x with E*T of the noise 
% Use theoretical Rn estimated from PSD 
% 
% AuthonCapt M.A. Cloutier 
% Date:   2 Dec 95 
% Name: eigfactfin.m 
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
clear 
elf 
orient tall 
% 
% generate data 
numb=10; 
PSDxa=zeros(numb,512); 
PSDya=zeros(numb,512); 

for ind2=l:numb 
1=1024; 
t=l:l; 
s= .475*cos(2*pi*t/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10); 

%varia=input('What is the variance of the white noise? '); 
varia=10; 
w=sqrt(varia)*randn( 1 ,length(s));%white noise 

[B,A]=butter(l,0.1);%color the white noise 
n=filter(B,A,w); 

x=s+n; 

%%%%%%%%%%%%%%%%%%%%%%%%% 
%calculate autocorrelation sequence of the noise 

117 



[H,P]=freqz(B,A,2048);%H contains the transfer function 

Rnt=real(ifft(abs([H.'fliplr(H.')]).A2));%with  Wiener-Khinchine  theorem  find 
correlation matrix 

Rnmat=toeplitz(Rnt(l :256)); 

[V,D]=eig(Rnmat);% D:diagonal matrix of eigenvalue,V eigenvectors x*V=V*D 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
index=l; 

%do transformation of x in blocks of 256 points 

for i= 1:4 
y(index:index+255)=V'*x(index:index+255).'; 
index=index+256; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Calculate average PSD for x and y 

PSDx=abs(fft(x,1024).A2); 
PSDxa(ind2,:)=PSDx(l :512); 

PSDy=abs(fft(y, 1024)) A2; 
PSDya(ind2,:)=PSDy(l:512); 

end 

PSDyave=sum(PSDya)./numb; 
PSDxave=sum(PSDxa)./numb; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Output results 

elf 
subplot(311) 
plot((0:511)/1024,PSDxave(l:512)./max(PSDxave(l:512))); 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 

axes('position',[.45 .78 .15 .12]) 
plot((130:180)/1024,PSDxave(130:180)./max(PSDxave(130:180))) 
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axis([130/1024 180/10240 1]) 

axes('position',[.7 .78 .15 .12]) 
plot((285:335)/1024,PSDxave(285:335)/max(PSDxave(285:335))) 
axis([285/1024 335/1024 0 1]) 

print eigfactfigx 

!ps3epsi <eigfactfigx.ps >eigfactfigx.epsi 

elf 
subplot(311) 
plot((0:511)/1024,PSDyave(l:512)./max(PSDyave(l:512))); 
ylabel(«Averaged(abs(fft(y)).A2)') 
xlabelCFraction of sampling frequency') 

print eigfactfigy 
!ps3epsi <eigfactfigy.ps >eigfactfigy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX K - MATLAB PROGRAM IMPLEMENTING THE 

SINGULAR VALUE DECOMPOSITION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Single Value Decomposition:  From singvdbigN.m 
% 
% AuthonCapt M.A. Cloutier 
%Date:   15Nov95 
% Name: svdfin.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
elf 
% generate data 
1=1024; 
t=l:l; 
s=.475*cos(2*pi*t/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10 + pi/3); 
varia=50; 
PSDy=zeros(10,1024); 
PSDx=zeros(10,1024); 
average=20; 

forj=l:average 
w=sqrt(varia)*randn(l,l);%white noise 
[B,A]=butter(l,0.1);   %color the white noise 
n=filter(B,A,w); 

x=s+n; 

%Define matrix of sample vectors of the noise: Use 48 vectors 1024 pts long 

fori=l:48 
N(i,:)=n(l:1024); 
w=sqrt(varia)*randn(l, 1024);%white noise 
n=filter(B,A,w); 

end 
%Perform the SVD on the noise data matrix N 
% N=UEVh: where V is the matrix of eigenvectors 

[U,S,V]=svd(N); 

%do transformation in one block of 1024 points 
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index=l; 
y(index:index+1023)=V'*x(index:index+1023).'; 

PSDy(j,:)=abs(fft(y,1024)).*2; 
PSDx(j,:)=abs(fft(x,1024)).A2; 

end 

PSDyave=sum(PSDy(:, 1:512))./average; 
PSDxave=sum(PSDx(:,l:512))./average; 

elf 
subplot(311) 
plot((0:511)./1024,PSDxave./max(PSDxave)) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 

axes('position',[.45 .78 .15 .12]) 
plot((130:180)/1024,PSDxave(130:180)./max(PSDxave(130:180))) 
axis([130/1024 180/1024 0 1]) 

axes('position\[.7 .78 .15 .12]) 
plot((285:335)/1024,PSDxave(285:335)/max(PSDxave(285:335))) 
axis([285/1024 335/1024 0 1]) 

print svdfigx 

!ps3epsi <svdfigx.ps >svdfigx.epsi 

elf 
subplot(311) 
plot((0:51 l)./UPSDyave./max(PSDyave)) 
ylabel('Averaged(abs(fft(y))A2)') 
xlabel('Fraction of sampling frequency') 

print svdfigy 
!ps3epsi <svdfigy.ps >svdfigy.epsi 

%%%%%%%%%%%%%%%%%%%%%%7o%%%%%%%%%%%%%%%%% 
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APPENDIX L - MATLAB PROGRAM IMPLEMENTING THE 

MAHALANOBIS TRANSFORMATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7o%%%%% 
% Mahalanobis Transformation using the Correlation matrix of the noise 
%refp247,eq5.63 
% do transformation y=RnA-.5*x with Rn of the noise 
% 
% AuthonCapt M.A. Cloutier 
%Date:   5 Dec 95 
% Name: mahafin.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
elf 
orient tall 
numb=10; 
PSDx=zeros(numb,512); 
PSDy=zeros(numb,512); 

for ind=l:numb 
% generate data 
1=1024; 
t=l:l; 
s= .475*cos(2*pi*l/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10); 
varia=25; 
w=sqrt(varia)*randn( 1 ,length(s));%white noise 
[B,A]=butter(l,0.1);   %color the white noise 
n=fdter(B,A,w); 

x=s+n; 

[H,P]=freqz(B A,256);%H contains the transfer function 
Rnt=real(ifft(abs([H.,fliplr(H.,)]).A2));%with  Wiener-Khinchine  theorem  find 

correlation matrix 
Rnmat=toeplitz(Rnt( 1:256)); 

index=l; 
%do transformation in blocks of 256 points 
fori=l:4 

y(mdex:mdex+255)=inv(sqrt(Rnmat))*x(index:index+255).'; 
index=index+256; 
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end 

Py=abs(fft(y,1024)).A2; 
Px=abs(fft(x,1024)).*2; 
PSDy(ind,:)=Py(l:512); 
PSDx(ind,:)=Px(l:512); 

end 
Pyave=sum(PSDy)./numb; 
Pxave=sum(PSDx)./numb; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output results 
elf 
subplot(311) 
plot((0:51 l)./1024,Pxave./max(Pxave)) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 
axes('position\[.45 .78 .15 .12]) 
plot((130:180)/1024,Pxave(130:180)./max(Pxave(130:180))) 
axis([130/1024 180/1024 0 1]) 
axes('position',[.7 .78 .15 .12]) 
plot((285:335)/1024,Pxave(285:335)/max(Pxave(285:335))) 
axis([285/1024 335/1024 0 1]) 
print mahafigx 
!ps3epsi <mahafigx.ps >mahafigx.epsi 

elf 
subplot(311) 
plot((0:511)./1024,Pyave./max(Pyave)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 
axesCposition',[.17 .78 .12 .12]) 
plot((25:75)/1024,Pyave(25:75)/max(Pyave(25:75))) 
axis([25/1024 75/1024 01]) 

print mahafigy 
!ps3epsi <mahafigy.ps >mahafigy.epsi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX M - MATLAB PROGRAM IMPLEMENTING THE LDU 

AND UDL TRIANGULAR FACTORIZATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Diagonalization by triangular decomposition using LDU and UDL decomp 
% LDL: y=inv(L)*x; UDL: y=inv(Lu)*x 
% 
% Author:Capt M.A. Cloutier 
% Date:   5 Dec 95 
% Name: LDLfin.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%refp64,2.7.1 
% 
clear 
elf 
orient tall 

numb=10; 
PSDx=zeros(numb,512); 
PSDy=zeros(numb,512); 

forind=l:numb 

% generate data 
1=1024; 
t=l:l; 
s= .475*cos(2*pi*t/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10); 
varia=25; 
w=sqrt(varia)*randn(l,length(s));%white noise 

[B,A]=butter(l,0.1);   %color the white noise 
n=filter(B,A,w); 

x=s+n; 

[H,P]=freqz(B,A,2047);%H contains the transfer function 

Rnt=real(ifft(abs([H.'fliplr(H.')]).A2));%with  Wiener-Khinchine  theorem  find 
correlation matrix 

Rnmat=toeplitz(Rnt( 1:256)); 
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[L,U,P]=lu(Rnmat);%for LDU 

[Lu,Uu,Pu]=lu(fliplr(flipud(Rnmat)));%UDL:LDU or reversed Rn 

%do transformation y=inv(L)x 

index=l; 

fori=l:4 
y(index:(index+255))=inv(L)*x(index:(index+255)).'; 
yh(index:(index+255))=inv(fliplr(flipud(Lu)))*x(index:(index+255)).'; 

index=index+256; 
end 

Py=abs(fft(y,1024)).A2; 
Pyh=abs(fft(yh, 1024)) .^2; 

Px=abs(fft(x,1024)).A2; 

PSDy(ind,:)=Py(l:512); 
PSDyh(ind,:)=Pyh(l:512); 
PSDx(ind,:)=Px(l:512); 

end 

Pyave=sum(PSDy)./numb; 
Pyaveh=sum(PSDyh)./numb; 

Pxave=sum(PSDx)./numb; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output results 

elf 
subplot(311) 
plot((0:51 l)./1024,Pxave./max(Pxave)) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 

axes('position',[.45 .78 .15 .12]) 
plot((130:180)/1024,Pxave(130:180)./max(Pxave(130:180))) 
axis([130/1024 180/10240 1]) 
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axes('position',[.7 .78 .15 .12]) 
plot((285:335)/1024,Pxave(285:335)/max(Pxave(285:335))) 
axis([285/1024 335/1024 0 1]) 

print ldlfigx 
!ps3epsi <ldlfigx.ps >ldlfigx.epsi 

elf 
subplot(311) 
plot((0:511)./1024,Pyave./max(Pyave)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

print ldlfigy 
!ps3epsi <ldlfigy.ps >ldlfigy.epsi 

elf 
subplot(311) 
plot((0:51 l)./1024,Pyaveh./max(Pyaveh)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

print ldlhfigy 
!ps3epsi «ddlhfigy.ps >ldlhfigy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX N - MATLAB PROGRAM IMPLEMENTING THE 

CHOLESKY FACTORIZATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Diagonalization by triangular decomposition: Cholesky 
% y=inv(L)*x (upper) and y=inv(fliplr(flipud(Ru')))*x (lower) 
% 
% AuthonCapt M.A. Cloutier 
%Date:   5 Dec 95 
% Name: cholfin.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
clear 
elf 
orient tall 

numb=10; 
PSDx=zeros(numb,512); 
PSDy=zeros(numb,512); 

forind=l:numb 
% generate data 
1=1024; 
t=l:l; 
s= .475*cos(2*pi*t/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10 + pi/3); 
varia=25; 
w=sqrt(varia)*randn(l,length(s));%white noise 

[B,A]=butter(l,0.1);   %color the white noise 
n=filter(B,A,w); 

x=s+n; 

[H,P]=freqz(B,A,2047);%H contains the transfer function 

Rnt=real(ifft(abs([H.'fliplr(H.')]).A2));%with  Wiener-Khinchine  theorem  find 
correlation matrix 

Rnmat=toeplitz(Rnt( 1:256)); 

R=chol(Rnmat); % for lower-upper 
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Ru=chol(fliplr(flipud(Rnmat)));% for upper lower 

%do transformation y=inv(R')x 

index=l; 
%The matiab chol produces an upper triangular 

fori=l:4 
y(index:(index+255))=inv(R')*x(index:(index+255)).'; 
yh(mdex:(mdex+255))=inv(fliplr(flipud(Ru')))*x(index:(index+255)).'; 
index=index+256; 

end 

Py=abs(fft(y,1024)).A2; 
Pyh=abs(fft(yh, 1024)).A2; 
Px=abs(fft(x,1024)).A2; 

PSDy(ind,:)=Py(l:512); 
PSDyh(ind,:)=Pyh(l:512); 
PSDx(ind,:)=Px(l:512); 

end 

Pyave=sum(PSDy)./numb; 
Pyaveh=sum(PSDyh)./numb; 

Pxave=sum(PSDx)./numb; 

%%%%%%%%%%%%%%%%%%%%%%%%% 

% Output results 
elf 
subplot(311) 
plot((0:511)./1024,Pxave./max(Pxave)) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 

axes('position\[.45 .78 .15 .12]) 
plot((130:180)/1024,Pxave(130:180)./max(Pxave(130:180))) 
axis([ 130/1024 180/10240 1]) 

axes('position',[.7 .78 .15 .12]) 
plot((285:335)/1024,Pxave(285:335)/max(Pxave(285:335))) 
axis([285/1024 335/1024 0 1]) 
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print cholfigx 
!ps3epsi <cholfigx.ps >cholfigx.epsi 

elf 
subplot(311) 
plot((0:51 l)./1024,Pyave./max(Pyave)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

print cholfigy 
!ps3epsi <cholfigy.ps >cholfigy.epsi 

elf 
subplot(311) 
plot((0:51 l)./1024,Pyaveh./max(Pyaveh)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

print cholbfigy 
!ps3epsi <cholhfigy.ps >cholhfigy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX O - MATLAB PROGRAM IMPLEMENTING THE QR 

FACTORIZATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Diagonalization by triangular decomposition 
% 
% QR: y=inv(L)*x 
% QR uses a data matrix:The QR factorization provides the factors in the 
% triangular decomposition of the correlation matrix. 
% X=QR: data matrix X is expressed as the product of a rectangular matrix 
% whose columns are orthonormal and a square upper triangular matrix. 
% 

% This version uses a 256X256 noise data matrix 
% 
% AuthonCapt M.A. Cloutier 
%Date:   26 0ct95 
% Name: QRbigfin.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
clear 
elf 
orient tall 

numb=10; 
PSDx=zeros(numb,512); 
PSDy=zeros(numb,512); 

for ind=l: numb 

% generate data 
1=1024; 
t=l:l; 
s= .475*cos(2*pi*t/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10 + pi/3); 
varia=50; 

w=sqrt(varia)*randn( 1,256*256);%white noise 

[B,A]=butter(l,0.1);   %color the white noise 
n=filter(B,A,w); 

x=s+n(l:1024); 
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%Define matrix of sample vectors of the noise: Use 256 vectors 256 pts long 

N=zeros(256,256); 

index=l; 
fori=l:256 

N(i,:)=n(index:(index+255)); 
index=index+256; 

end 

[Q,R]=qr(N); 

Dhalf=(l/sqrt(256))*diag(diag(R)); 

L=(l/sqrt(256))*R'*inv(Dhalf); 

%do transformation y=inv(L)x 
%do transformation in blocks of 256 points 
index =1; 
fori=l:4 

y(index:index+255)=inv(L)*x(index:index+255).'; 
index=dndex+256; 

end 

Py=abs(fft(y,1024)).A2; 
Px=abs(fft(x,1024)).A2; 

PSDy(ind,:)=Py(l:512); 
PSDx(ind,:)=Px(l:512); 

end 

Pyave=sum(PSDy)./numb; 
Pxave=sum(PSDx)./numb; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output results 

elf 
subplot(311) 
plot((0:51 l)./1024,Pxave./max(Pxave)) 
ylabel('Averaged(abs(fft(x)).A2)') 
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xlabel(Traction of sampling frequency') 

axes('position',[.45 .78 .15 .12]) 
plot((130:180)/1024,Pxave(130:180)./max(Pxave(130:180))) 
axis([ 130/1024 180/10240 1]) 

axes('position',[.7 .78 .15 .12]) 
plot((285:335)/1024,Pxave(285:335)/max(Pxave(285:335))) 
axis([285/1024 335/1024 0 1]) 

print QR2figx 
!ps3epsi <QR2figx.ps >QR2figx.epsi 

elf 
subplot(311) 
plot((0:51 l)./1024,Pyave./max(Pyave)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

print QR2figy 
!ps3epsi <QR2figy.ps >QR2figy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX P - MATLAB PROGRAM IMPLEMENTING THE 

DIFFERENTIAL WHITENING FILTER 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Noise Whitener based on differentiation 
% 
% AuthonCapt MA. Cloutier 
%Date:   29Nov95 
% Name: differefin.m 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
elf 
orient tall 

numb=10; 
PSDx=zeros(numb,512); 
PSDy=zeros(numb,512); 
PSDy2=zeros(numb,512); 
PSDy3=zeros(numb,512); 

%%%%%%%%%%%%%%%%%%%%%%% 

for ind=l: numb 

1=1024; 
t=l:l; 

s= .475*cos(2*pi*t/20) + 0.2*cos(2*pi*t*3/20) + 0.07*cos(2*pi*t*3/10 + pi/3); 
varia=25; 

w=sqrt(varia)*randn(l,length(s));%white noise 

[B,A]=butter(l,0.1);   %color the white noise 
n=filter(B,A,w); 

x=s+n; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% First order differentiation 

y=diff(x); 
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Py=abs(fft(y,1024)).A2; 
Px=abs(fft(x,1024)).A2; 

PSDy(ind,:)=Py(l:512); 
PSDx(ind,:)=Px(l:512); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Second order differentiation 

y2=diff(x,2); 

Py2=abs(fft(y2,1024)) *2; 

PSDy2(ind,:)=Py2(l:512); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Third order differentiation 

y3=diff(x,3); 

Py3=abs(fft(y3,1024)).A2; 

PSDy3(ind,:)=Py3(l:512); 

end 

Pyave=sum(PSDy)./numb; 
Pxave=sum(PSDx)./numb; 

%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Output results 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% First order 

elf 
subplot(311) 
plot((0:51 l)./1024,Pxave./max(Pxave)) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 

axesCposition'.t^S .78 .15 .12]) 
plot((130:180)/1024,Pxave(130:180)./max(Pxave(130:180))) 
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axistf 130/1024 180/10240 1]) 

axes('position',[.7 .78 .15 .12]) 
plot((285:335)/1024,Pxave(285:335)/max(Pxave(285:335))) 
axis([285/1024 335/1024 0 1]) 

print difffigx 

!ps3epsi <difffigx.ps xlifffigx.epsi 

elf 
subplot(311) 
plot((0:51 l)./1024,Pyave./max(Pyave)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

print difffigy 
!ps3epsi <difffigy.ps xlifffigy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%% 
% Second order 

Pyave2=sum(PSDy2)./numb; 

elf 
subplot(311) 
plot((0:51 l)./1024,Pyave2./max(Pyave2)) 
ylabelCAveraged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

axes('position',[.17 .78 .12 .12]) 
plot((25:75)/1024,Pyave2(25:75)/max(Pyave2(25:75))) 
axis([25/1024 75/1024 01]) 

print diff2figy 
!ps3epsi <diff2figy.ps >diff2figy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%% 
% Third order 

Pyave3=sum(PSDy3)./numb; 

elf 
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subplot(311) 
plot((0:51 l)./1024,Pyave3./max(Pyave3)) 
ylabel('Averaged(abs(fft(y)).A2)') 
xlabel('Fraction of sampling frequency') 

axes('position\[.17 .78 .12 .12]) 
plot((25:75)/1024,Pyave3(25:75)/max(Pyave3(25:75))) 
axis([25/1024 75/1024 01]) 

print difßfigy 
!ps3epsi <diff3figy.ps XiifBfigy.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX Q - MATLAB PROGRAM IMPLEMENTING THE 

WHITENING PREDICTION ERROR FILTER 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Whitening property of prediction error filter 
% 
% Author: Capt M.A. Cloutier 
%Date:   16Nov95 
% Name: adaptfin.m 
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
clear 
figure(l) 
elf 
orient tall 
1=18432; % length of the data 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Generate the data 
% 
t=l:l; 
s= .475*cos(2*pi*t/8) +0.15*cos(2*pi*t*2/8) + 0.1*cos(2*pi*t*3/8 + pi/3);% 
varia=100; %variance of the AWGN to be colored 

w=sqrt(varia)*randn( 1 ,length(s));%white noise 

[B,A]=butter(l,0.1);%color the white noise Butter 1st order 
n=filter(B,A,w); 

x =s+n; % x is the signal + noise 

a=input('What filter size is required ?'); 
mu=0.00005;      %size of the learning parameter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 

w = ones(l,a);    % Initialize filter weights to 1 

x = [zeros(l,a-l),x]; %pad input to start data 
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nest        = zeros( 1 ,l);%initialize the predicted error vector 
skest       = zeros(l,l);%initialize the estimated signal vector 

%Estimate the correlation matrix of the noise based on its PSD 

[H,P]=freqz(B,A,2047);%H contains the transfer function 

Rnt=abs(ifft(abs(H).A2));%with Wiener-Khinchine theorem find Rn 

Rs=xcorr(s(l: 1024))./1024;%calculate autocorrelation of signal 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plot both autocorrelation functions to identify maxs and zero crossings 

elf 
subplot(311) 
plot(0:20, Rnt(l:21)) 
grid 
ylabel('Amplitude') 
xlabel('Delay') 
print adapfigRn 
!ps3epsi <adapfigRn.ps >adapfigRn.epsi 

elf 
subplot(311) 
plot((0:20),Rs(1024:1044)) 
grid 
xlabel('Delay') 
ylabel('Amplitude') 
print adapfigRs 
!ps3epsi <adapfigRs.ps >adapfigRs.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Run adaptive LMS algorithm on all data 

delay=input('What delay? ');%choose delay based on correlation functions 

fori=l:l-delay 
skest(i) = w*flipud(x(i:i+(a-l))');% compute signal est 
nest(i) = x(i+a+delay-l)-skest(i);% compute predicted error 
w = w+mu.*nest(i).*fliplr(x(i:(i+(a-l)))); 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute averaged periodograms for the input signal, predicted error 
% and estimated signal. 

PSDl=zeros(10,1024); 
PSD2=zeros(10,1024); 
PSD3=zeros( 10,1024); 
index=8193; 
for i= 1:10 

PSDl(i,:)=abs(fft(x(index:index+1023),1024)).A2; 
PSD2(i,:)=abs(fft(nest(index:index+1023),1024)).A2; 
PSD3(i,:)=abs(fft(skest(index:index+1023),1024)).A2; 
index=index+1024; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output average PSDs 

elf 
subplot(311) 
PSDx=sum(PSDl)./10; 
PSDx(l :512)=PSDx(l :512)./max(PSDx(l :512)); 
plot((0:51 l)./1024,PSDx(l:512)) 
ylabelCAveraged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 
axis([0.5 0 1]) 

axes(<position',[.59 .78 .3 .12]) 
plot((241:400)/1024,PSDx(241:400)./max(PSDx(241:400))) 
axis([241/1024 400/10240 1]) 

print adapfigx 
!ps3epsi <adapfigx.ps >adapfigx.epsi 

elf 
subplot(311) 
PSDer=sum(PSD2)./10; 
plot((0:51 l)./1024,PSDer(l :512)./max(PSDer(l :512))) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 
axis([0.5 0 1]) 
print adapfigerr 
!ps3epsi <adapfigerr.ps >adapfigerr.epsi 
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elf 
subplot(311) 
PSDsig=sum(PSD3)./10; 
plot((0:511)./1024,PSDsig(l:512)./max(PSDsig(l:512))) 
ylabel('Averaged(abs(fft(x)).A2)') 
xlabel('Fraction of sampling frequency') 
axis([0.5 0 1]) 

axes('position',[.59 .78 .3 .12]) 
plot((241:400)/1024,PSDsig(241:400)./max(PSDsig(241:400))) 
axis([241/1024 400/10240 1]) 

print adapfigsh 
!ps3epsi <adapfigsh.ps >adapfigsh.epsi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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