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ABSTRACT

A two-dimensional, geometrically and materially nonlinear shell theory applicable to

arbitrary geometries described by orthogonal curvilinear coordinates and encompassing

large displacements, moderate rotations for large strain situations has been developed.

Additionally, the theory includes Jacobian transformation matrices, based on displacement

parameters, for the Cauchy-2nd Piola-Kirchhoff stress-state and the Cauchy(Almansi)-

Green strain-state transformations, and a layered material approach is included for the

elasto-plastic analysis to allow for variation of plasticity through-the-thickness. Doubly

curved 20, 28, and 36 degree-of-freedom finite elements are defined based on specializa-

tion of the theory to spherical coordinates. The computer program includes algorithms for

linear and nonlinear problems. Post collapse nonlinear solutions are found through a dis-

placement-control incrementation scheme. The provides solutions to classical von Kar-

man flat plate and Donnell spherical shell equations, intermediate von Karman flat plate

and Donnell spherical shell equations, and large displacement and moderate rotational for-

mulation.

For deep shells that exhibited large rotations (Vi > 150) and displacements (u,w > 5h, h

= shell thickness) over 15-20% of the shell's surface, the Lagrangian constitutive relations

(including the Jacobian transformation matrices for the stress- and strain-states) should be

included to accurately reflect the variation of the material coordinate system with respect

to the structural axis system. This variation usually occurs a decrease in the shell's stiff-

ness, thereby reducing the buckling or snapping load by 10-25% in magnitude with little

or no increase in displacement. Convergence tolerances remained the same as for the gen-

eral, nonlinear, Cauchy elastic solutions. The displacement increments, and therefore the

number of iterations, were chosen to be 1/10th - 1/15th the total dispalcement desired for

the particular problem.

For those plates and shells that exhibited large strains (i > 2.25%) along with large

rotations (Vi > 150) and displacements (u,w > 5h, h = shell thickness) over 15-18% of the

outers surface, the elasto-plastic constitutive relations need to be included to accurately

xxxi



reflect the reduction in shell stiffness due to the presence of plasticity occuring along the

outer surface(s). For composite materials, and additional indicator is the ratio of (a 1 2 YI

a11 y) yield stresses which indicate the influence of the material's shear stiffness. Both Gr/

PEEK and Gr/Ep exhibit signicant dependence upon the shear stiffness and are signifi-

cantly influenced (severe reduction of shell stiffness) by the presence of small amounts of

plasticity. Peak buckling or snapping loads were reduced by 18-45% and corresponding

displacements increased by 12-27% (compared to the elastic solutions) when the elasto-

plastic material model was included in the analysis. To maintain similar convergence tol-

erances with the elastic solutions, increments of displacement were reduced by one-half to

one-fourth of the elastic solutions, with the number of iterations to achieve convergence

for each increment rising by at least an order of magnitude. Thus, the CPU times for the

elasto-plastic solutions, compared to the elastic solution, for a particular shell problem

increase by 200-500% depending upon the material properties, number of elements, and

the boundary conditions applied.

The software and user's manual is maintained by the Aeronautics & Astronautics

Department of the Engineering School (AFIT/ENY). The point of contact is Dr Anthony

Palazotto.
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NONLINEAR GEOMETRIC & MATERIAL
BEHAVIOR OF COMPOSITE SHELLS

WITH LARGE STRAINS

1. Introduction

Recent interest in composite shell analysis has been generated by the use of fiber-rein-

forced composite materials for aerospace applications. A second factor in the proliferation

of composite shell research is the use of modern digital computers. With computers, solu-

tions can now be found for problems which before were impossible to solve analytically.

In particular, problems involving geometric and material nonlinearities can be solved by

numerical methods.

In 1987, Noor and Atluri [134] indicated several compelling reasons for vigorously

developing computational structural mechanics (see also Noor and Burton [135, 137] and

Noor [138]). First, there are unsolved practical problems awaiting numerical solution.

These include impact response, dynamics of flexible structures, thermoviscoplastic

response of propulsion systems, and future flight vehicle design. Also, fundamental

mechanics concepts such as finite strain inelastic material behavior are currently being

explored. Secondly, computational structural mechanics is needed to reduce the depen-

dence on testing which is often expensive in terms of manpower and material. Noor and

Atluri also indicate the development of efficient finite elements for modelling curved shell

structures as an area of continuing research activity. Wempner states in a 1989 review arti-

cle [231], "Clearly, the theory and approximation of inelastic shells pose intellectual and

practical challenges for current investigators and engineers." Recent research on shell

structures at the Air Force Institute of Technology is actively supported by the US Air

Force Office of Scientific Research [41, 42, 48, 49, 51, 81, 82, 154 - 161, 197, 198, 207,

208, 217, 220, 223, 224]. This research on geometrically nonlinear behavior of cylindrical
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laminated composite shells is restricted to elastic material response. The extension to

include finite-strain nonlinear material response as a result of large deformations with

moderate rotations and curvatures is feasible.

Composite shell structures are used in many US Air Force and defense-related systems

because of the inherently high strength-to-weight ratios of composite shell. Historically,

thin isotropic shells have been analyzed for many years according to the linear elastic the-

ory formulated by A.E.H. Love [114] in the late 1800's. Love's theory assumes normals to

the shell's mid-surface remain straight and normal during deformation. This assumption,

like the Kirchhoff assumption for flat plates, implies transverse shear strain and stress are

zero throughout the shell. Also, since the shell is assumed to be very thin compared to its

other characteristic lengths, many terms in the equations are approximated (e.g., terms

with radius in the denominator are assumed negligible). More recently, Donnell [55],

Mushtari, and Vlasov [227] independently derived comparable theories for thin elastic

shells that included nonlinear terms (functions of transverse displacement) for the in-plane

strains. These theories, however, still ignored transverse shear and most terms with the

radius in the denominator.

In general, shell theories that ignore transverse shear effects will predict stiffer behav-

ior than experimental data show. Inclusion of transverse shear effects reduces this stiff

behavior. Like Love's theory, the newer Donnell, Mushtari,and Vlasov theories invoked

the Kirchhoff hypothesis. Thus, they also ignored transverse shear strain and stress. For

thick shells, however, the transverse shear terms can not be ignored in all cases. Likewise,

transverse shear terms become more significant with the introduction of anisotropic com-

posite materials. This is primarily due to the small transverse shear modulus of fiber-rein-

forced composite materials.

During the last two decades, many composite shell problems with transverse shear-

effects included have been solved using numerical solution techniques. Some investiga-

tors have solved these problems using fully three-dimensional models. These models,

however, generally require excessive computational times. They may also exhibit singu-

larities and other mathematical problems when used to analyze thin shells. These singular-

ities occur due to the term h/2 becoming very small as h -- 0 for a thin shell.
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Depending upon the precision of the computer, and the complexity of the equations gov-

erning normal stress (a3) and normal strain (-3) , as h - 0 quantities with (h/2) in

the denominator begin to approach infinity. Other investigators have solved these prob-

lems using shell theories, which require less computational effort, with either first-order or

higher-order transverse shear deformation.

The "order" of transverse shear deformation theories refers to the highest order poly-

nomial, in terms of the thickness coordinate, used to describe the assumed displacement

field. This does not, in general, imply that higher-order shear theories have more indepen-

dent degrees of freedom. The first-order transverse shear deformation (FTSD) theories use

shear correction factors and reduced integration. These artifices compensate for the theo-

retically incorrect distribution of transverse shear strain. The higher-order transverse shear

deformation (HTSD) theories allow normals to the shell's mid-surface to rotate from nor-

mal and also to warp. This assumption results in a transverse shear strain distribution that

is parabolic through the thickness of a flat plate. Most previous theories for geometrically

nonlinear shell problems with HTSD theory have retained some nonlinear strain-displace-

ment terms for the in-plane strain components. Most, however, have also ignored nonlin-

ear strain-displacement terms and the effect of higher-order thickness expansions for

transverse shear components.

Numerical analysis of laminated composite shells, including geometric and material

nonlinearities is relatively a recent occurrence (see [10, 28, 40, 46, 48, 62, 67, 69, 102,

118, 145 - 147, 160, 164, 189, 0207]), again due to the advent of increasingly powerful

high-speed computer work stations. The composite laminates are treated as an equivalent

single layer [32] or as a degenerated 3-D continuum [34, 37, 48, 154, 207]. The geometric

nonlinearity used in single-layer theories is analogous to the von Karman relations for

plates or the Donnell relations for shells, whereas the full nonlinearity is used in the

degenerated 3-D theories. The material nonlinearity has been approached form either

micromechanics or macromechanics points of view. In the micromechanics approach, the

matrix is considered as an elastic-plastic material while the fibers are considered to bebrit-

tle-elastic. There are a multitude of papers published regarding various theories and meth-

ods, most notably Aboudi [1, 2] and Dvorak [58]. However, since the global structural
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response of the shell is a primary interest of this research, a micromechanical model is not

appropriate. In a macromechanical approach for composites, some attempt is made in

determining the in-plane interaction of the fiber orientation and the material coordinate

system and the analysis is usually carried on an individual ply basis. Failure and yielding

are allowed to occur independently on each ply. Several methods have been published in

this area. Hahn and Tsai [73, 74] modelled nonlinear shear response of a composite by

introducing a complementary elastic energy density function which produced fair results.

The anisotropic plasticity theory of Hill [78 - 80] has led many subsequent researchers

to develop constitutive models. Hill originally proposed his theory to model weakly

orthotropic behavior typically found in cold rolled metals. Several author's have suggested

extensions to Hill's theory. Hu [85] and Jensen, et al [93] proposed work hardening rules.

Dubey and Hiller [60] developed a more general yield criterion which was an associated

flow rule based upon invariant principles. Shih and Lee [203] formulated a simple exten-

sion which allows distortion of the yield surface and variations of the anisotropic yield

parameters during deformation. Durocher and Palazotto [61], formulated a finite differ-

ence technique to analyze the buckling equations of anisotropic plates. They developed a

series of Ramberg-Osgood directionally oriented stress-strain equations to characterize the

nonlinear portion of the stress-strain curves for a particular material of interest. By incor-

porating the Ramberg-Osgood parameters into Hill's anisotropic platicity theory, they

were able to characterize either perfectly plastic or work-hardening materials quite eastily.

Chandrashekhara and Reddy [32, 176] developed a 2-D shell element that included the

transverse shear stresses and the modified von Mises yield function with the in-plane

interaction term. Most of the methods published incorporated an updated Lagrangian

approach with either a FTSD or HTSD theory while ignoring most of the in-plane nonlin-

ear strain-displacement terms. None of the published literature allowed for a large strain

formulation which implies the Eulerian coordinate system and the Lagrangian coordinate

system are no longer coincident from an experimental material point-of-view.

For this research, the full nonlinear strain-displacement relations for the in-plane strain

components with linear strain-displacement relations for the transverse strain components

of a spherical shell were developed. These relations were then incorporated into a proven
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finite element formulation to investigate the accuracy of various geometries for curvature

and displacements and the effect of a HTSD theory with a nonlinear material analysis for

large strains.

A review of related research in the areas of composite shells, transverse shear defor-

mation, and nonlinear material analysis is included in Chapter 2. Some theoretical con-

cepts are presented in Chapter 3. These concepts, common in most published literature

addressing the subject of this dissertation, were not independently developed by this

author. They are included in the dissertation to assure a common understanding of the the-

oretical background of this research. The theoretical discussion necessary to develop the

new finite element formulation, by the author, is presented in Chapter 4. Since the strain

equations for this theory are very lengthy, abridged equations are used in Chapter 4. The

unabridged equations of strain components are listed in the appendices. Typical composite

shell problems of interest to the USAF and some classical isotropic shell problems were

investigated to determine the effect of spherical geometry and nonlinear material proper-

ties with a HTSD theory. A significant tool used in the development of this theory was a

computerized symbolic manipulation code called MACSYMA [119]. Use of a symbolic

code, like MACSYMA, allows the formulation of the nonlinear HTSD theory for cylindri-

cal and spherical composite shells. The use of one "symbolic input program" to generate

the variations of theory provides reliability and confidence that the FORTRAN codes

were correctly generated. Part of the symbolic input program is included as an appendix

since it played such an important role in this research effort.
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2. Literature Review

Studying large deformation nonlinear material behavior of composite shells provides

unique data not currently published in the technical literature. Literally hundreds of

papers were published in the last several years on related topics. One of the most recent

review articles by Noor and Burton [135] reviews 400 published works on computational

models for multi-layered composite shells. Thin composite shells are becoming important

in structures due to their high strength and stiffness efficiency. However, these thin shells

are susceptible to buckling which is inherently a nonlinear phenomenon. The nonlineari-

ties are attributed to the occurrence of large rotations, and the coupling of curvatures and

large membrane forces. In addition, as the shell's thickness is increased or laminated com-

posite material is introduced, the effects of parabolic transverse shear distribution is more

important. Classical shell theories based on the Kirchhoff-Love hypothesis neglect the

transverse shear distribution. Hence, the shell element is excessively stiff as the thickness

is increased. Typical linear and simple nonlinear shell models often drastically overesti-

mate buckling loads. Conversely, these models underestimate transverse displacements

and stresses. Most advanced composites have a low ratio of transverse shear modulus to

in-plane modulus. Thus, transverse shear deformation plays an important role in reducing

effective flexural stiffness of laminated plates and shells made of composites.

Knight, Starnes, and Williams [97] investigated the postbuckling response and failure

characteristics of graphite-epoxy cylindrical panels loaded in axial compression. They

used the STAGSC-1 computer code [4] to determine postbuckling response of the cylin-

drical shells and panels and compared results with experimental data. They determined

that a severe reduction in load occurs at buckling and that failure begins near regions con-

taining severe local bending gradients. Knight et al. pointed out that many previous stud-

ies of the postbuckling behavior of composite cylindrical panels were extensions of

classical methods. These often ignored the effects of large rotations. They determined

that even low values of normalized applied load can cause high local bending gradients.

Local failures occurred in regions of large radial displacements and severe bending gradi-

ents which cause large surface strains [97:132]. They were able to predict responses that
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correlated well with experimental data up to buckling. They blame the influence of local

failures for deteriorating the correlation after buckling. They note STAGSC-1 assumes

the composite material system remains linearly elastic throughout the analysis. This

assumption is inaccurate since many composites suffer severe reduction in local stiffness

as a result of local failures. Furthermore, the local failures which occurred near regions of

large changes in curvature cannot be analytically modelled by STAGSC-1 [97:147].

Using both Tsai-Wu and a maximum strain failure criteria, they were able to predict the

load level and location of the local failures, but not the dominant failure mode. This study

points out the need to address nonlinear material response occurring with the large rota-

tions for this class of problems and materials.

Palazotto and others also used the STAGSC-l computer code [156, 197, 198]. They

compared analytical predictions of buckling response to experimental work on graphite-

epoxy cylindrical panels. Their work included the effects of rectangular unreinforced cut-

outs. They also recorded large radial displacements, large curvatures over small regions,

and severe curvature gradients for loads as low as ten percent of the critical buckling load.

As before, the assumption of linearly elastic material response is used for the STAGSC- 1

code. Under small loads, no permanent damage occurred, and thus some investigators

argue the linearly elastic material assumption is adequate. These studies and the one by

Knight suggest these severe local bendings warrant the use of a better model. A model

capable of accurately predicting both geometric and material nonlinear response should be

more suitable.

Yang and Liaw [236] studied the effects of plasticity on the dynamic buckling

response of isotropic shells. Their model used a thin-shell Kirchhoff-Love theory with a

von Mises yield criterion and the Prandtl-Reuss flow law. They determined a 50 percent

reduction in the static buckling load occurred for perfect spherical caps when plasticity is

included in the analysis [236:482]. Larger rotations and curvatures may occur as a result

of composite anisotropy for these problems. This implies the effect of an inelastic model

for composite shells may be more significant than for isotropic shells.
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2.1 Nonlinear Material Behavior

A finite element model for the nonlinear analysis of composite shells must approxi-

mate the physical phenomena occurring in an extremely complex nonlinear problem.

Some of the complexities, e.g. the coupling of membrane and bending effects due to the

curvature of the shell and the effect of transverse shear distribution, were previously con-

sidered. Other complexities, e.g. the effect of nonlinear material response and the effects

of constituent behavior under large strain, are considered in this research. Many studies

were performed after making various assumptions to simplify these complexities. For

composite shells, some studies use a first-order transverse shear theory with bi-linear elas-

tic-plastic material behavior [6, 10, 13, 16, 17, 20, 31, 36, 57, 58, 67, 88, 89, 90, 101, 102,

111, 118, 145, 146, 149, 150, 151, 215, 218, 230]. Several studies used a layered approach

to yield parabolic distribution of transverse shear strains through-the-thickness. Some

investigators used a higher-order transverse shear theory or more sophisticated nonlinear

material behavior models, but only for specific shells or isotropic materials (see [21, 22,

23, 28, 46, 48 - 51, 53, 56, 62, 71, 81, 82, 99, 162, 163, 174 - 182, 187, 188, 206] or [96,

103 - 106, 158, 164, 174, 176, 194, 195] for details).

This research will formulate material response model for a degenerated shell element

with higher-order transverse shear deformation with large strains. The first-order shear

and bi-linear formulations used in [81, 82, 102, 145] may not adequately account for the

effect of transverse shear distribution. Furthermore, their formulations allow for small

rotations only. The study by Knight et al. accounts for some rotational effects, but does

not adequately account for large local curvature and transverse shear deformation effects.

The response of the structure to loading is critically dependent upon accurate constitu-

tive modelling of material behavior. Simple material models such as linear isotropic and

linear kinematic hardening, may be inadequate for some engineering applications. Prob-

lems involving large nonlinear material deformation and failure may require rate-depen-

dent plasticity models [54, 112, 147, 172, 191]. These models are developed by using

phenomenological models of small or finite strain, plastic material behavior or by micro-

mechanical models of material behavior [1, 2, 65, 100, 113, 115, 116].
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Extensive work is devoted to micromechanical models for predicting the behavior and

failure characteristics of materials. In the context of developing a shell theory, the use of

a micromechanical model is not appropriate. Our intent is to reduce the computational

effort by modelling the shell as a quasi two-dimensional structure.

Many investigators used a form of the von Mises yield criteria to determine the onset

of nonlinear material behavior for ductile materials. This theory is effectively modified

for use with composite materials [67, 102, 145, 236]. Other yield criteria for possible

comparisons are the Tsai-Wu, Tsai-Hill, Hahn-Tsai, and Sandhu failure criteria to establish

the onset of plasticity. These are not yield criteria, i.e. they do not predict elastic-plastic

behavior. They are simply criteria that predict the initial failure of a fiber-matrix lamina.

As such, they are not particularly useful for an elastic-plastic, laminated composite shell

analysis. The first two criteria are considered linear criteria, i.e. only accurate up to the

point where the stress-strain relationship is still linear. This is not a useful assumption for

many polymeric matrix composite materials having a nonlinear stress-strain relation in

shear. The Hahn-Tsai and Sandhu criteria are nonlinear, but assume all transverse stresses

are zero. Chen compared ultimate load predictions for angle-ply laminate using Hahn-Tsai

(nonlinear) and Tsai-Hill (linear) yield criteria [40]. For fiber orientation angles of 0

degrees or 75-90 degrees, the two theories predict ultimate tensile load to within 1/2 of a

percent. However, for angles of 15-60 degrees, the linear analysis predicts a 10-20 percent

greater ultimate tensile load than the nonlinear analysis. This implies the linear analysis is

unconservative for laminates with 15-60 degree lamination angles.

Another method of analyzing composite materials is the use of the independent failure

criteria. This method assumes the failure modes of delamination, fiber breakage, and

matrix cracking are independent, but each has an effect upon the element's stiffness

matrix. This method was used by several investigators to analyze progressive failure of

composites. Ochoa and Engblom [142] used a fiber failure, matrix failure, and delamina-

tion as their failure criteria. Their matrix failure criteria is based upon those of Hashin

[75]. Hwang and Sun [91] used failure criteria based upon the Tsai-Wu theory and

Hashin's theory [91]. Their work also included fiber failure, matrix failure, and two forms

of delamination failure. Fiber or matrix failure effects are modelled by setting the appro-
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priate entries in the element stiffness matrix to zero. Reference [142] uses a two-dimen-

sional shell model and if delamination occurs, the analysis is stopped. Reference [91] uses

a full three-dimensional model. If delamination occurs, a new finite element configuration

is modelled at the free surface at the new ply interface. Singularity crack tip elements are

used at the delamination front [91:44]. Ochoa and Engblom [142], however, predict com-

posite response beyond first-ply failure.

This disparity in approach reveals the debate over how to predict progressive failure of

composites, an important analytical tool in structural design. A research program develop-

ing a theory for collapse of a composite is an area of high interest. The use of composites

in the aerospace and transportation industries, where traditionally metals are used,

requires a different outlook about residual strength. With metallic structures, adequate

analytical tools exist to predict material yielding under service loads, load transfer through

damaged structure, and residual strength. With composites however, these analytical tools

are not available nor convenient. Thus, the most common failure criteria predict only that

a failure of some type occurred in a particular finite element. This information is not

enough to determine residual strength of the structure. Composites have shown consider-

able residual strength after first ply failure (see [33, 40, 97, 121, 130, 142, 143] for exam-

ple or [155, 157, 190, 196, 211, 212, 213, 215]). The designer may choose a conservative

approach and design based upon first ply failure. For advanced high performance aero-

space vehicles however, the added weight and cost of the conservative approach may be

prohibitive. Thus, the designer should be able to predict progressive failure of the

advanced composite structure.

A paradox arises, however, when a considering shells with nonlinear material behav-

ior. The large radial displacements and curvatures occurring over a small region, as shown

by Knight et al. [97], cause severe gradients in stresses through-the-thickness. Shell theo-

ries try to exploit the thinness of the shell. Normal stresses are assumed negligible, and

various assumptions are made about the deformation of line elements normal to the shell's

mid-surface. These assumptions are made to reduce the three-dimensional problem down

to a two-dimensional problem. For a thin shell, various studies have shown the two-

dimensional shell can accurately predict the load-displacement response [48, 107, 109].
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The two-dimensional theory is acceptable for shell thickness less than 115 th the radius of

curvature [48, 207]. Since this research is directed at the load-displacement response of a

composite shell with nonlinear material behavior, the two-dimensional shell theory is ade-

quate for this study.

2.2 Curve Shell Finite Element Models

Many research efforts have been conducted in developing reliable and efficient ele-

ments for modelling complicated structures. Of particular interest is the development of

curved shell elements. According to Noor et al. [134, 135, 137], this area continues to be

an active research area. Many authors advocate the use of thin two-dimensional shell ele-

ments and "grow" the parameters in the thickness direction. They increase the number of

layers to achieve accurate through-the-thickness stress results. This process is expensive

since the number of layers could be excessively high. Other authors use two-dimensional

models with higher order approximations or even full three-dimensional models [48, 136,

154, 160, 207, 213]. Noor and Burton indicate the use of both three-dimensional and quasi

three-dimensional models for laminated anisotropic plates is expensive. Thus, these meth-

ods are not economical for practical composites plates [136]. Most two-dimensional theo-

ries are, however, adequate for predicting the gross response characteristics of medium-

thick laminated plates and shells.

There are basically two methods of formulating a finite element shell model. The tra-

ditional method is a single-field formulation where displacement is the field. A more

recent approach is the mixed field formulation. Various schemes for constructing two-

dimensional shear-deformation theories for multi-layered shells are available. One

approach, an extension of the Kirchhoff hypothesis, results in first-order shear deforma-

tion theories.

2.2.1 First-Order Transverse Shear Deformation (FTSD) Theories: These theories

assume line elements originally perpendicular to the shell's mid-surface remain straight

during deformation, but can rotate from the normal. Thus, through-the-thickness shear-

strains are constant. This assumption is closer to reality than the classical Kirchhoff-Love
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theory, but not exact. The classical theory assumes line elements normal to the unde-

formed shell mid-surface always remain inextensible, straight, and normal to the

deformed mid-surface. Hence, classical theory predicts zero through-the-thickness shear

stresses. This assumption was shown to be inaccurate for laminated composite shells. The

accepted distribution of the shear stress is some form of a parabolic function. Hence, the

FSDT must include a shear correction factor to assure the strain energy associated with the

shear deformation is accurate. For isotropic materials, the shear correction factor is a con-

stant k = 5/6. For anisotropic materials or for laminated composite materials, these factors

are typically not equal to 5/6. The shear correction factor is a function of geometry, mate-

rial, and loading conditions. For composites, some investigators assume k = 5/6 rather

than determine a better approximation. The use of k = 5/6 is justified by considering the

relationship between the predominant roles of flexural and extensional deformations ver-

sus the lesser role of transverse shear in a thin shell. If one wants to accurately determine

the through-the-thickness shear distribution, then other studies [136] have shown that for

anisotropic materials or laminated composite materials, the correct shear correction factor

in the FSDT is critical.

2.2.2 Higher-Order Transverse Shear Deformation (HTSD) Theories: These theories

overcome the difficulties of shear correction factors by assuming the line element normal

to the shell mid-surface can warp [48 - 51, 107, 160, 175, 176, 179, 198, 208, 223, 224]

This assumption allows shear strain to vary through the shell's thickness as a function of

the thickness coordinate of the shell. The HSDT still assumes the stress normal to the

shell's mid-surface is negligible. These models provide a more accurate estimate of the

shell response than the classical theory or FSDT [48, 160, 176, 208, 209].

The FSDT and HSDT are based on the assumption of the normal stress being negligi-

ble. Because of this assumption, neither of these theories accurately predict all stresses in

the shell. This is because the equilibrium and compatibility equations are not exactly satis-

fied at all points within the shell. Hence, some investigators use three-dimensional

approximations for shell problems [224, 231]. Others use a two-dimensionalshell theory

to predict gross global responses. Once these are determined, local stresses are computed

by numerically integrating the three-dimensional equations of equilibrium [38, 39, 63, 64,
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132, 133, 136, 142, 143, 152] These global/local methods efficiently predict accurate

stress distributions without resorting to the computational effort required for the full three-

dimensional finite element of the shell [64].

2.3 Literature Assessment

No study was published using the proposed theory to predict the load-displacement

behavior of composite shells with nonlinear material behavior undergoing moderate

deformations and rotations with large strains. The work by Engblom [63, 64] is restricted

to thin and moderately thick inelastic shells undergoing small deformations and rotations.

As shown by earlier references [97, 156], the collapse analysis and failure of laminated

composite shells is preceded by large deformations, rotations, and changes in curvatures.

Any analysis of progressive failure assuming linear strain is suspect.

The previous research conducted by Dennis [48, 159] will be extended by this research

to include a spherical shell element, the transformation of the constitutive relations from

the Cauchy stress-strain (Eulerian coordinates) to the second Piola stress-Green strain

(Lagrangian coordinates), and an incremental model of inelastic isotropic or orthotropic

material behavior. The results of this research on inelastic composite shells undergoing

snap-through and axial post-buckling deformation will be unique.
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3. Theoretical Background

The primary goal of this research was to consider the ability of a nonlinear material

with a higher-order transverse shear deformation (HTSD) theory to model deformation of

a composite shell undergoing large displacements, rotations, strains, and changes in curva-

ture. In particular, spherical geometry, transformation of the Cauchy stress-strain relations

to the 2nd Piola stress-Green strain relations, and elastic-plastic, through-the-thickness

material behavior were considered in this research. Many HTSD models have been devel-

oped in recent years [48, 180]. These theories are suitable for linear and nonlinear prob-

lem solving by a number of numerical solution methods. This chapter of the dissertation

includes some theoretical background material. The background material is necessary to

assure a common understanding of the concepts underlying the nonlinear HTSD theory. A

presentation of the nonlinear HTSD theory developed for this research is included in

Chapter 4.

3.1 Surface Geometric Considerations

Components of particular physical quantities, such as displacement, stress, and strain,

however, are more generally defined for arbitrary curvilinear coordinate systems as being

either covariant or contravariant. These quantities are identified in the text as being covari-

ant or contravariant when the tensorial nature of the quantity is generally accepted in the

literature. Conventional tensor notation requires that contravariant quantities be identified

by superscripts and covariant quantities be identified by subscripts. This practice is gener-

ally followed throughout this dissertation. For convenience, however, coordinates are

always identified with subscripts. The basic assumptions of a two-dimensional shell the-

ory are tied to the concepts of a reference surface, the midsurface of the shell, and a local

curvilinear coordinate system associated with this surface. When this curvilinear coordi-

nate system is based on lines of principal curvature, which by definition are orthogonal,

then the coordinate system is also orthogonal. In an orthogonal coordinate system, the

components of the metric tensor form a diagonal matrix. Thus, contravariant and covari-
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ant components of tensors are identical. For this research, the author has decided to restrict

the theoretical development to orthogonal coordinate systems based upon lines of constant

curvature. This is one of the most common coordinate systems used for analysis of shells

[126, 1391. -1

The development of nonlinear strain displacement relations generally begins with the

mathematical description of the midsurface geometry. If one considers a surface in a three-

dimensional space, then the positions of points on its surface can be defined by

4 4

r = r (01, 02) , (3.1)

4
where r is the position vector from the origin 0 to points on the surface [126, 192]. The

parameters (01,02) are defined in a closed and bounded region S in the (01,02) plane. Next,

-4
assume the unit normal vector to the surface exists and is a 3 (01,02) and the thickness of

the shell is h = h(0 1,02), where h > 0. The position vector of a point within the shell can be

4 -->-
written in terms of r and a 3 . This position vector, p (01,02 ,h), is given by

-> -> -4

p (01' 02 ' z) = r (01' 02) + za 3 (01, 02) (3.2)

where (01, 02) E S and Izi = (1/2)h (01,02). The (01,02)-plane defined by the S is called

the middle surface. The curves defined by the map of 01 = constant and 02 = constant are

called coordinate curves. These curves define a curvilinear coordinate system with covari-

-4 -4
ant base vectors a 1 and a2 given by

-4>

a I  - r, a2 =- 2r (3.3)
1 2 2

or

a = - j0r (x 12 (3.4)

An infinitesimal vector connecting two points on the surface with coordinates (01,02)

and (01 + d01,02 + dO2) is given by
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2
- - r a r

dr = j d + 5 adO aa cd c , (3.5)
c2=1

where the repeated subscripts imply summation as shown in Eq (3.5). The length of this

vector is denoted by ds and is given by
2 4- --

(ds) = dr dr = (a O a A) dO dA (3.6)

032
, 0 2 + d0 2

1 + dO1 B V 
[

a 3

ra 2 e 2

e 3

0

Figure 3.1 Base Vectors and Coordinate Curves [229]

Defining the covariant surface metric tensor as

a p = ao a = a , (3.7)
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allows one to write (ds)2 in terms of the covariant surface metric tensor as

2
(ds) = a dOad (3.8)

Equation (3.8) is called the first fundamental form of the surface.
4

Next, consider a point on the middle surface with coordinates Oa and a unit vector t

in the tangent plane at this point. The normal curvature associated with the direction deter-

4
mined by t is given by

jds =-da3 t (3.9)

or

1 da

R -ds 
(3.10)

If one substitutes Eq (3.5) and (3.6) into Eq (3.10), then one finds

4 _4 dO 1 __ dO
dr 1t -d--s= ald- + a2s (3.11)

and

da 1 2
ds a 3,ls,2+s (3.12)

where a comma in the subscripts implies differentiation with respect to the coordinate fol-

lowing the comma. Substituting Eqs (3.11), (3.12), and (3.8) into Eq (3.10) gives

2

X a3, o" aPdOAdO

1 c P,13= (3.13)

R 2

I a XdOdO

c, ]= 1
The quantity baxp can be defined, such that
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b OC = -a 3 , oa, = a a 3 , x = a 3 "aC, b = b (3.14)

The curvature can now be defined as

2

X bo dO dA6

1 ,1 = l
R 2 (3.15)

Z a (XdOXdO

x, 13 = 1

where bccdadO p is called the second fundamental form of the surface. Thus, the normal

curvature is given by the ratio between the first and second fundamental forms.

If one defines the coordinate curves of Figure 3.1 to be lines of principal curvature of

the shell, then the 01 and 02 curves are mutually orthogonal families of curves [126, 139].

In this coordinate system, the lengths Ao of the basis vectors a. are given by

A a = (3.16)

where the A. are called the Lam6 parameters of the surface.

. .-> -.
Next, define mutually orthogonal unit vectors e1 , e2 , and e3 in the directions of the

base vectors a 1 , a 2 , and the normal vector a3 , respectively. These unit vectors are given

by

a.,x
e c A (3.17)

where x= 1,2.

The derivatives of the orthonormal unit vectors are given by [126:8]
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A1,2- A1- A2, 1-->
e -- T e =- el,1 -A 2  2 R1 3 1,2 A1  2

SA1,2--> - A2,1-4 A2->
e --- e + 2e (3.18)

e2,1 A2 2,2 A1 2 3

S A-- > A2- >
e3,1 =Rllel e3,2 = 2e2

where R1 and R2 are radii of curvature for the 01 = constant and 02 = constant curves

respectively.

If one now considers a vector field v (0 , 02) on the middle surface of the shell, then

one can resolve this field in the directions of the orthonormal base vectors e1 , e2 , and e3

as follows
-- > --- ->

v (01,02) = vel +ve 2 +ve 3  (3.19)

Differentiating Eq (3.19) with respect to 01 and 02 gives

v v e + v.e. (3.20)

where repeated indices imply summation and Italicized letter subscripts have the values

1,2,3 and Greek letter subcripts have values 1,2. If one substitutes Eq (3.18) for the deriv-

4
atives of the base vectors into Eq (3.20), then the derivatives of the vector v (0 a, 0) are

given as follows

-- ~ --- A1, 2--> AI 1---- A1, 2 -4 ---- A I

V,= Vlv 1 +-'j2V 2 - Rv3 el + v2, 1-- A-vlje 2 + V3,1 +R vl) 3

-.A - -2,1 -- A 2,1 A 2-- "-- -  A 2- (3.21)

V'= V1,2- A 1 v2 el +  + V2 1 -+ -;v31 2 ) e2  + V3 2+2v 2) e3

One can show that certain relationships between A1, A2, R1, and R 2 must be specified.

These relationships are given by Codazzi's equations
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A (A2 A21
(3.22)

R ),2  A22 2 2  1

and Gauss's equation

SA A AIA1,), +(Aa,2 2 1A
R1 I R2 - R 1R 2  (3.23)

3.2 Strain Tensor Definition

In Figure 3.3, consider the displacement of a body in a three-dimensional space from

its original undeformed state to a new deformed state denoted by a superscript star. The

coordinates Y1, Y2, and Y3 are chosen to form an orthogonal curvilinear coordinate system.

This system is not the same coordinate system as the two-dimensional (01,02) system of

the shell midsurface. In the (Y1, Y2, Y3) system, the original length (ds)2 of the line M to N

is given by

2
(ds) = gijdyidyj , (3.24)

where gij is the metric tensor associated with the undeformed curvilinear coordinate sys-

tem (Y,Y2,Y3). The components of gij are given by the scalar product gi" gj.

In the deformed system of coordinates, the distance (ds*) from point M* to N* is given

by

2
(ds*) = gijdyi*dy* (3.25)

If we use a Lagrangian description of deformation, we attempt to express all variables

in terms of conditions prior to deformation [192]. From Figure 3.2, the displacement u

of point M and the derivatives of u are given by

u = r*-r , (3.26)
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au ar* ar
=yi  gi* gi (3.27)

93

9221U + dU

F e2

/// Y2

Figure 3.2 Body Before and After Deformation [192, 229]

Combining Eqs (3.24) and (3.25), yields the strain tensor Yij defined as

2,yii = (g*ij- gij )  (3.28)

Substituting Eq (3.27) into Eq (3.28), gives the strain tensor yj as
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a)u a u au au2y= g, - g1Y- + • + • (3.29)

The orthogonal base vectors { g, g2, g3 } are related to a new set of orthonormal base

vectors {e, e2, e3} by the following relationship

4 gi gi gi

ei h (3.30)
g.*g.

where the hi are called scale factors [192:118]. The displacement vector u can be

-4 -4 -4
written in terms of e 1 , e2 , and e3 at point M as follows

-4> -4- -4 -4
u = ule1 + u 2 e 2 + u 3 e3  (3.31)

Substituting Eq (3.31) into Eq (3.29) produces

> a(Ukek) - (Ule) _(Umem) _(Unen)

2yj = g + + (3.32)

Next expanding the implied summations on k, 1, m, and n over their values of 1, 2, and

3, to get the result

4 (ue) - -
2yij = gi * yj (ulel + U2 e2 

+ u 3e3) (3.33)

-) a (ule l)  --> ._> __
+ gJ. 5Yi (Ulel + u 2e2 

+ u 3e3)

@ (ue) -- - - > (unen)
+ Y (ulel1 + u 2e2

+ u 3 e 3 ) " -Yj (Ulel + u 2 e 2 
+ u 3 e 3 )

Useing the relationships of Eqs (3.17) and (3.18), the strain components y/j, for shells,

can be written in terms of the displacement components and Lam6 parameters [192:136-

1371 as follows
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aul hlu 2 ah1  hluj3 h171 2h 1 y+ -2-5-2+ -h3 aY3  (3.34)

au1  u 2 h1  u 3 A1

1( au2 ulah )2+1( au3 ulah1 ~2

+~ayjh 2y2  2ay 1  h3 y 3 )

au 2  h 2 uIA 2  h2 u3 A 2

722 -=h 2 5y2 h 1  7 i h3 a (3.35)

1 (au2 ulah 2 4 U3  2  

2~ aY2fh 5y 1 ) + T3 jY3 ~ 3

au 3  h 3 uIA 3  h3 u2 A 3

71 -- h 3 T 7 + h I ay1 + h 2 ay 2  (3.36)

+aU3 ulah 3ulah3j)

2 3 h " W I(

aul 1  2 au2 uah 32

SaY 3 ha aYyh 2 ay2 )

a23 au ~h~+ 3  a h3 (3.37)

+ l~U2 3 a 3)au2  1la 2 u3 a

aU3U2ah )r uuah 3u 2ah3

+1 (aul U2 ah 2 )aul U3 A 3 )
2 aY2 - -hTIAY3 T
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1( aUl au 3 ahl ah 3)

= hl3 +h 3 -Y-Ul -U 3 Y (3.38)

+ 2[ 0l - 2U 2 y-3 -u h2 3y---

+ -2 Fj3u h j{ ui u iy 1  h
12 =y 3  h~ 1  1  h- I y 2 - 3 ua3y 3 )

1 I(aU3  u1?Jh1 (iau3  ulah 3  U 2 ah 3
+ y - h I 3 y-3 5- + h2 1y- h 3 2y 3 )

r ( t (3.39)

712 2  h1  "25y1  1 y ~~

nal~ ~ ~ base vetr g2 of h)ai the-iesoalrhgl urvlna corint syteY

+ =A-21 - T r ) 2 12 h32134
aU2 uah1 IrU2 ulah 2 U 3 h2

+ 2 ay - h2 5 yy 2  hljay 1 h 3 ay3 )

1(u3  ulhl U U 2 ah 2

y1 - h 3 Y3 AFY2h 3 ~Y 3 )
For a shell discussed earlier, the Lam6 parameters Aoc, a = 1,2, describe the two-

dimensional relationship between the orthogonal surface base vectors a. and their

orthonormal counterparts ea (refer to Eq (3.17)). For the strains of Eqs (3.34) -(3.39), the

scale factors hi, i 1,2, describe the three-dimensional relationship between the orthogo-

nal base vectors giof the three-dimensional orthogonal curvilinear coordinate system yj

and their orthonormal counterparts ej (refer to Eq (3.30)). For a two-dimensional orthogo-

nal curvilinear coordinate system, the scale factors of Eqs (3.34) - (3.39) become [192]

h A, 3)h2=A21 Y (3.40)

where recalling Eqs (3.4) and (3.16), we have
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* 4-) 1/2 4r )1/
a ~r 1 1r 2A 1 = j01 .a-1 A 2 = j02- -02 (3.41)

Thus, for the convenient case of a cylindrical shell with radius R2 and local coordi-

nates 01 = x, 02 = s, z described in orthogonal space with global coordinates Yi = x, Y2 = S,

4

Y3 = z, the position vector r (Y1,Y2,Y3) would be given by

._ -> -4 _>
r = xe 1 +se 2 + ze 3  , (3.42)

and the Lam6 parameters reduce to A1 = A 2 = 1. For the same shell described in terms of

an angle, say 0, the circumferential coordinate s would be given by ds = Rd4). In this

4
case, dr (YI,Y2,Y3) is given by

4 -4. -4-
dr = dxe 1 + R 2d~e2 + dze 3  , (3.43)

and the Lam6 parameters would be A1 = 1 and A2 = 1. For the case of a spherical shell

with radius R2 and local coordinates 01 = S1, 02 = s2, z described in an orthogonal space

4
with global coordinates Yi = S1, Y2 = S2, Y3 = z, the position vector r (Yl ,Y2,Y3) would be

given by

4 -4 -4 4
r = s 1e 1 + s 2e2 +ze 3  , (3.44)

and the Lam6 parameters reduce to A1 = A2 = 1. For the same shell described in terms of

angles, say 01 and 02, the circumferential coordinate s(,, (x = 1,2 would be given by dsx =

4
Rd4o). In this case, dr (Y1,Y2,Y3) is given by

4 - --> ->
dr = Rd 1 el + Rd0 2 e2 

+ dze 3  ' (3.45)

and the Lam6 parameters would be A1 = A 2 = R.

At this point, it is important to realize the strain components of Eqs (3.34) - (3.39) are
-- ---.

related to the orthogonal basis vectors a 1 , a2 , and a3 , which change in magnitude and

direction. This strain tensor is called the Green-Lagrange strain tensor [229]. These tenso-
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rial strain components must be converted to physical components in order to complete the

analysis. For the infinitesimal linear problem, the linear parts of this strain tensor can be

related to the physical strain of the line from point M to N [192:129]. The change in length

of the line segment from M to N, shown in Figure 3.3, is given by

(ds*) - (ds)EMN 2 ( ds) 2 (.6

This equation can be written in terms of the curvilinear coordinates Yi, Y2, and Y3 as

follows

dyidyj

EMN = 7 ij ds ds (3.47)

The derivatives appearing in Eq (3.47) can be written in terms of the direction cosines

11, 12, and 13 of the line from M to N relative to the orthonormal base vectors e1, e2 , and

e3 . These direction cosines are given by

dy 1  dY 2  dY3 (3.48)

1 1 hlds' 2 = h2-ds 3 = r3-ds

If one substitutes Eq (3.48) into Eq (3.47) and expand the summations, then
1/1 2 +  1 2 2  13 )2

EMN = 711h1 )+ 7 22 h) + 33h3 (3.49)

+2Y 122 713( 113 )+ ( 12 1312 jh-2h 1h---3h 2 h 3)

This equation can be written interm of physical strain components 6 jj as follows

E MN = F1 2 + F,22/2 +6 33 13, (3.50)

+ 2 121112 + 2t131113 + 2F2 3 /2 /3

where
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7 11 Y22 733
ell1 2 2 2  2  -33- 2

Sh2 h3 (3.51)

Y12 Y13 Y23
612 - hh2 13 hlh3 23 h2h3

are the physical components of strain for the case of a finite displacement U defined by

Eq (3.31) [126, 192].

3.3 Composite Material Analysis

In the previous sections of this dissertation, the concept of strain for a shell in an

orthogonal curvilinear coordinate system were presented. Next, the subject of constitutive

relations are discussed. One can consider the material of a composite laminate from ami-

croscopic viewpoint or from a macroscopic viewpoint [11, 31, 94, 232]. For this research,

the macro-mechanical behavior of the laminate is assumed sufficient provided stresses are

small enough to assure no material failure occurs. Thus, the material of each lamina is

treated as a homogeneous anisotropic material. More specifically, we shall assume the

material is transversely isotropic (i.e. one plane of material property symmetry [31:35]).

First, however, consider an orthotropic material system. This means the material has prop-

erties that are different in three mutually orthogonal directions with three mutually perpen-

dicular planes of material symmetry. The Cauchy stress-strain constitutive relations for an

orthotropic material are written in matrix form as follows [94:35]
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11 Cll C 12 C13 0 0 0

o22 C12 C22 C23 0 0 0 E22

33 C13 C23 C33 0 0 0 E33= (3.52)
23 0 0 0 C44  0 0 2s 2 3

:13 0 0 0 0 C55  0 2,13

T:12 0 0 0 0 0 C66  2c 12

where, for orthotropic materials, the non-zero Cij's are given by

Cll = (1-V 2 3 V3 2 )E 1 /A

C2 2 = (1-v 13v 3 1 ) E 2 /A

C 33 = (1-v 12v 2 1) E 3 /A

C 12 = (v 2 1 -v 3 1v 2 3 ) E 1/A = (v 12-v 13 v 3 2 ) E 2 /A (3.53)

C 13 = (v 3 1 -v 2 1 v32) E 1 /A = (V 13- 12 v2 3 ) E 3 /A

C2 3 = (v 3 2 -v 12 v 3 1) E 2 /A= (v 2 3 -v 2 1v 13 ) E 3 /A

C4 4 =G 2 3, C55 = G ,13 C66 = 12

and

A =1-v 12 V2 1 -V 2 3 V3 2 -V 3 1V13 - 2v 2 1V3 2 V13  (3.54)

The terms of Eqs (3.53) and (3.54) are not all independent. The relationship between

these terms are given by

V.. V..
I.J 1 i-F = 1, 2, 3 (3.55)E. E.
I J

As a further simplification, if the material properties are the same in the 2-direction as

in the 3-direction, shown in Figure 3.3, then the material is transversely isotropic [94:35].

For this type of material there is no distinction between properties in the 2- and 3-direc-

tions. Thus, E2 = E3, v2 1 = v3 1, v 12 = V13, and V23 = v32. With this assumption, Eqs (3.53)

and (3.54) become
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1 23 E C22 = C33 (1 -v 12v 2 1 )E 2 /A

C 12 = C 13 = v 2 1 (1 +v 2 3 ) E1 /A, C2 3 = (v 2 3 -v 12 v 2 1 ) E 2 /A , (3.56)

C44 = G23 = G13, C55 = G13' C66 = G12

where, for transversely isotropic materials, A is given by

A = 1-2v1v - V2 2v1v2v (3.57)

and the relationships of Eq (3.55) apply.

3y

31

! 2

Figure 3.3 Material Axes for a Transversely Isotropic Lamina [11:20]

For a thin flat structural memeber, such as a plate, a state of plane stress is often

assumed [44] where (T13 = (Y23 -- (T33 = 0. In this research, however, the effects of linear

transverse shear deformation are considered. Thus, G13 and 0"23 are not assumed to be
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zero. The direct normal stress, G33, however, is still assumed to be zero. This assumption

is necessary to reduce the three-dimensional problem to a two-dimensional problem. If

a 3 3 = 0 is substituted into Eq (3.52), the direct transverse normal strain becomes

C13 C2 3

33 C '-11- C-3 3 -22 (3.58)

Thus, rewriting Eq (3.52) using Eq (3.58) to eliminate -33, yields

711 ['Q11 Q12 0 0 0 Ell

G22 Q12Q 2 2  0 0 0 C822

= 23 0 0 Q44 0 0 2c 23 (3.59)

T 13 0 0 0 Q44 0 2e13

IT 12 0 0 0 0 Q55  2812

where

2
Qll = Cll _ C13C3 E E/(1 -V V2 )

= C2 -123/C33 = 12/ 12 21

Q22 =v2 3C3 212v21) (.0(3.60)

Q 12 
= C 12 - C 13 C2 3 /C 3 3 

= v 2 1E 2 /( 1 - v 1 2 v 2 1 )

?44 = G 13 ' Q55 = G12

To form a structural component, the lamina are assumed to be perfectly bonded

together with their fibers oriented at a particular angle with respect to the structure's refer-

ence axis. The stiffness contribution of each lamina in the laminate can be determined.

These stiffnesses must first be transformed to a common reference system of axes. If one

assumes the kth lamina's fibers are all in the same direction (say, the 1-direction of Figure

3.3), and this direction is at an angle 0 from the reference axis (say, the x axis) then the

constitutive relations in the reference system are given by
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G Q11Q12 0 0 Q16X x

Gy Q12 Q22 0 0 Q26 y

yz = 0 0 Q 44 Q45 0 2y (3.61)

xz 0 0 Q45 Q55 0 xz

2t -
xy k Q16 Q26 0 0 Q66k xY k

where

Qii = Qll cos4 4)+2 (0 12 + 2 66 ) cos2 sin 2 + Q2 2 sin4 )

4 2 2 4Q22 = 011sin 4 + 2 (Q12 + 2Q 66 ) cos 2sin 2 + Q22sin 4

Q22= Q si 4 + (Q 2Q6CO 2 0sn2 +Q2n4 4

Q12 = (Ql +Q 22 -4Q 66) cos 2sin2 + Q 12 (cOs 4+ sin 4)

Q16 = (Q11 - Q12 - 2Q 66 ) cOs 3 sino + (Q12 - Q22 + 2Q 6 6 ) cososin 3 0

Q26 = (Q11 - 12- 2Q 66) cososin 3 0 + (Q12 - Q22 + 2Q 66) cos 3sin(.

2 2
Q44 = Q44 cOs2 + Q55 sin2

Q45 = (Q44 - Q55) cos sinO

2 2
Q55 = Q44sin n + Q55 cOs24

In Eqs (3.61) and (3.62), each lamina has a specific orientation of fibers. Thus, each

lamina can have different values of Qij given by Eq (3.62). These constitutive relations are

valid for small strains where the material behaves as a linear elastic solid. Equation (3.58)

relates the direct normal strain E33 to changes in the direct in-plane strains E 1I and 622 for

C33 = 0. The assumption that Eq (3.58) is valid for an arbitrary laminated composite shell

is important for composite shell analysis. Without this assumption, the stress state is fully

three-dimensional and the reduced computational effort of the two-dimensional model is

lost. With the assumption, however, the two-dimensional model will never accurately pre-

dict the stress distribution within the shell, since C23 generally will not be zero in the real

structure. Research in the 1960's and 1970's, by many investigators, has validated the

acceptability of this assumption for certain problems.
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3.4 Transverse Shear Deformation

When a thin body undergoes a small (infinitesimal) deformation, material points on a

line normal to the middle surface of the body will move relative to each other, as shown in

Figure 3.4. This movement results in rotation and warping of the normal. The angle

between the geometric normal to the midsurface and the warped normal is maximum at

the midsurface and zero at the upper and lower surface. For a linear elastic material under-

Zero Warp Angle

m- -Maximum Warp Angle

~Warped

~Normals

Figure 3.4 Shear Deformation of a Thin Elastic Body [167:234]

going infinitesimal displacement (i.e., linear strain displacement relation hold), this angle

of deviation is equal to the transverse shear strain. The distribution of transverse shear

strain for the infinitesimal linear case is parabolic through the thickness of a flat plate.

Under the classical Kirchhoff assumption, one assumes the normal (or cross-section of a

beam) remains normal, straight, and inexstensible. This assumption results in zero trans-

verse shear strain. For a thin shell, where hR « 1, the Kirchhoff assumption allows accu-
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rate predictions of transverse deflection versus load for small displacements. For thick

shells, where h2/R 2 < 1, or when anisotropic material properties are assumed, transverse

shear effects become more apparent. Thick shell and composite shells generally will show

greater transverse deflection for a given load when the effect of transverse shear is

included in the theoretical model.

3.4.1 First-Order Transverse Shear Deformation (FTSD) Theories. There are several

ways to include transverse shear deformation. Transverse shear effects can be included

using a first-order transverse shear deformation (FTSD) theory. In this case, material lines

originally normal to the midsurface are allowed to deviate from the normal to the shell

midsurface as shown in Figure 3.5. These lines remain straight and inextensible. Since the

angle of deviation is constant, the displacement field varies linearly. The constant angle

also implies transverse shear strain is constant, and thus, is not zero at the upper and lower

surfaces of the shell. This inconsistent distribution results in an overly stiff model of the

structure. This stiffening effect, called shear locking, becomes more pronounced as the

shell thickness approaches zero. First-order transverse shear theories can be used, pro-

vided some artificial corrections are made. The excessive strain energy resulting from the

constant shear strain assumption is usually reduced by multiplying the transverse strains

by a constant factor of 5/6 for isotropic materials. Although 5/6 is often used for compos-

ite materials, there is no generally accepted method of determining shear correction fac-

tors for anisotropic materials. The predicted response of the FTSD model is sensitive to

the values of shear correction factors. Hence, some have suggested that theories of com-

posite shells should not depend upon any numerical factors [18:698].

The derivation of transverse shear deformation theories is, generally, based on writing

the displacement vector u , of Eq (3.31), as a function of the thickness coordinate of the

shell. According to Reddy [176], this approach was pioneered in 1890 by A. B. Bassett.

According to literature cited by Dennis [48], Bassett expanded the displacment compo-

nents ui in an infinite power series as shown below
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U (y, Y" Y) (Y . Y 1 0) 3a +Y2a 1

j+ }30 3 + *. (3.63)3 /
y3  0

FTISD FITSDFigure 3.5 Deformation Of Norrnals for FT'SD and IITSD Theories
This displacement field, when substituted into Eqs (3.38) and (3.39), Wl ief~zr

transverse shear strains 713 and 723. Also, the u3 
Wopnn i ucin ofite nhocnzerocoordinate Y3- This Will result in a nonzero (T33 . cmoeti ucinO h hcns

Hidbadkeissner, 
and Thomas 17 examined the importneo h em edn

totherandre[1raceo 
h ento h e r a s v e s es tra in s fo r o rth tro p ic s h e lls . T h e y tru n c a te d th e e x p re s s io n s o f e q a( 3.6 3for ul and u2 at the second order terms, They also assumed, for the case of Eq 03withF-33  given by Eq (358), that u3 could be determined by ine rtn Eq ( 3.8 through the

thic ness of te shll. heirinve ti~ ns~ showed that the resulting linear and quadratic
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Y3 terms present in u3 could be neglected. Thus, the displacement field of Hildebrand et al.

has a u3 displacement function that does not vary through the thickness of the shell. Theo-

ries based upon the assumptions of Hildebrand et al. [77] are called first-order shear defor-

mation theories. These types of theories were extensively studied by Reissner and Mindlin

in the 1940's and 1950's [124, 186] for plates, and hence, are often called Reissner-Mind-

lin theories. For a shell, the FISD theory is given by the following displacement field:

u 1 =u(1-Y 3/R 1 ) +ly 3

2  v (1 - Y 3 /R 2 ) + W2y 3  (3.64)

U -=W3-W

where the five degrees of freedom (dof), u, v, w, I, and W2, are functions of the in-plane

curvilinear coordinates Yi and Y2.

3.4.2 Higher-Order Transverse Shear Deformation (HTSD) Theories. Higher-order

transverse shear deformation (HTSD) theories generally eliminate the need for shear cor-

rection factors. The HTSD theory allows the normal to rotate and warp as shown in Figure

3.5. Some HTSD theories also allow the normal to change length. The HTSD theory for a

flat plate produces a parabolic distribution of shear strain as shown in Figure 3.6. This dis-

tribution matches the exact distribution of shear strain for the linear infinitesimal case. The

results for curved shells, however, are different because of the curvature of the shell. Due

to curvature of the shell, the transverse shear strain is distorted as shown in Figure 3.6 by

the heavier line labeled cubic transverse shear. Since the small-strain transverse shear dis-

tribution for a shell is a cubic function of the thickness coordinate, the displacement field

should be at least quartic in the thickness coordinate. For a shell, the curvature generally

creates coupling between in-plane extension and bending activity. To include this effect,

one needs to include quartic terms in the displacement field or include nonlinear strain dis-

placement terms. Assuming a general quartic displacement field, as given in Eq (3.65), the

derivation of a quasi-nonlinear HTSD theory for a shell follows
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u1 (yly 2,y3) =U( 1- Y3 /R +'yly3 +1 3 3 3~O~
/(2 3 4U 1 RI + ) 2 Y 3 4 (3.65 )

u2 (Yl' Y2 ' Y3) V 1 - Y3 + 12 y3 + 2 + 2Y3 + 0 2Y 3

u3 (yl'y 2 ) =w

f op Surface .

f Y2

~Middle Surface

ottom Surface

+Y3

Parabolic Transverse Shear -------

Cubic Transverse Shear

Figure 3.6 Parabolic and Cubic Transverse Shear Distributions for a Curved Shell

where u = u(Yl,Y 2), v = v(YwY2), W = w(Yl,Y 2), Va = 1Ihc(Yl,Y2), O)a = %Ox(Yl,Y2), 7c =

Yo(Y1,Y2), and Oc = )o(Y1,Y2) are degrees of freedom defined only at the midsurface of the

shell. These degrees of freedom are functions of the in-plane coordinates Yi and Y2 and

will vary from point to point on the shell's midsurface. For the shell with h1 = (1 - y3/RI),

h2 = (1 - y3/R 2), and h3 = 1, along with the displacement field of Eq (3.65), the linear trans-

verse shear strains (given by the first line of Eqs (3.38) and (3.39)) are as follows
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au 3 u I (1-_Y3/IR
Y13 =(R ) ayl + (1-Y3/R1)aY3 l-y Y3 (3.66)

1 a0u3 au 2  a (1 -Y3/IR2)

Y23= (1 _y 3 /R 3 /2 ) ay3 - . (3.67)

Substituting Eq (3.65) into Eq (3.67) yields1
Y23 = (l_Y3/R2) + T 2- 202Y3 +  R2- 3 Y2 Y3 (3.68)

+ (22-402 3Y3-2Y4

For this equation to be zero at Y3 = ±h/2 and yield a parabolic distribution of 723, the

coefficients of odd powers of Y3 must cancel each other or be equal to zero. If one assumes

02 = 0 and 02 = y2IR2 these coefficients vanish and 723 is given by

1 2w 3 2 4]

23= Y3 /R 2  y+ 2-3y2Y3-r 2 Y3J (3.69)

Evaluating Eq (3.69) at Y2= h/2 and solving for 72 gives

3h2 1 h 2 ] )2

8R=a r+T '2) (3.70)

For a shell with radius R2 no smaller than five times the thickness h, the term h2/R2
2 in

Eq (3.70) is less than or equal to 1/400. If one ignores this term, then 72 is given by

2 = -3h2 y2 + W2) (3.71)

Similarly, yi can be found. If one substitutes Eq (3.71) and P2 = 02 = 0 and similar rela-

tions for 1, y1, and 01 into Eq (3.65), the final form of the displacement field of a third-

order quasi-nonlinear transverse shear deformation theory is obtained
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r Y3) 43w
ul (y l y 2,y 3 ) =U - +qPlY 3 -3h2 , y I  Y3

(yY32) 4=1 j ) 3 (3.72)u 2(Y1' Y2' Y3)  v -1 +T 2Y3  3 2( y  2 )Y

u3 (Yl'Y 2 ) = w

This third-order displacement field has two additional degrees of freedom not present

in the first-order thoery. These two degrees of freedom are the differentials of transverse

displacement w. The third-order theory allows the slopes of the elastic curve, wi, to be dif-

ferent from the bending angles, Wi. These differences are directly related to the transverse

shear strains of the structure.

3.5 The Mathematical Theory of Plasticity

The object of this section is to provide a theoretical description of the relationship

between stress and strain for a material which exhibits an elasto-plastic response. In

essence, plastic behavior is characterized by an irreversible straining which is not time

dependent and which can only be sustained once a certain level of stress has been reached.

In this section the basic assumptions and associated theoretical expressions for a general

continuum are shown. For a more complete development see [79, 83, 168]. In order to for-

mulate a theory which models elasto-plastic material deformation, three requirements

must be met:

* An explicit relationship between stress and strain must be formulated to describe

material behavior under elastic conditions, i.e., before the onset of plastic deformation.

* A yield criterion indicating the stress level at which plastic flow commences must

be postulated.

* A relationship between stress and strain must be developed for post-yield behavior,

i.e., when the deformation is made up of both elastic and plastic components.

Before the onset of plastic yielding, the relationship between stress and strain is given

by the standard linear expression. Note: Einstein's summation convention is employed.
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'tj Dijl~kl(3.73)
iiijkl k

where Tij and Skl are the stress and strain components respectively and Dijkl is the tensor of

elastic constants which for an isotropic material has the explicit form

Dijkl = i)ikl + g8 ik hl + R8il8jk (3.74)

where 1 and m are the Lam6 constants and dij is the Kronecker delta function defined by

1 if i = j( .5(3.75)

0 if i~j

3.5.1 The Yield Criteria: The yield criteria determines the stress level at which plastic

deformation begins and can be written in the general form

f (Yij) = k (K) , (3.76)

where f is some function and k a material parameter to be determined experimentally. The

term k may be a function of a hardening parameter K discussed later in Section 3.5.2. On

physical grounds, any yield criteria should be independent of the orientation of the coordi-

nate system employed and therefore it should be a function of the three stress invariants

only

J1 = cii

1
J2 = 2ijij (3.77)

1

J3 3 i ijk ki

Experimentally observations, notably by Bridgeman [27], indicate that plastic defor-

mation of metals is essentially independent of hydrostatic pressure. Consequently, the

yield function can only be of the form

f(J 2, J' 3 ) = k(K) (3.78)

where J2 and J3 are the second and third invariants of the deviatoric stresses,

1
ij3 ii kk (3.79)

Most of the various yield criteria that have been suggested for metals are now only of
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historic interest, since they conflict with experimental predictions. The two simplest

which do not have this fault are the Tresca and the von Mises criteria.

The Tresca Yield Criteria (1864)

This states that yielding begins when the maximum shear stress reaches a certain

value. If the principal stresses are s1, s2 , s3 where al a2 > a 3 > 0 then yielding begins

when

=1 - 0 3  Y (K) (3.80)

where Y is a material parameter to be experimentally determined and which may be a

function of the hardening parameter K. By considering all other possible maximum shear-

ing stress values (e.g. s2 - s1 if C2 _ T3 >_ ( 1 ) it can be shown that this yield criteria may

be represented in the sl S2S3 stress space by the surface of an infinitely long regular hexag-

onal cylinder as shown in Figure 3.7. The axis of the cylinder coincides with the space

diagonal, defined by points s1 = s2 = s3, and since each normal section of the cylinder is

identical (due to the assumption that hydrostatic stress does not influence yielding), the

yield surface is represented geometrically by projecting it onto the so-called it-plane, a 1 +

a 2 + G3 = 0 as shown in Figure 3.8 (a). When the yield function f depends on J2 and J3

alone it can be written in the formf(oyl-a 2, a 2-a 3, a3 -O1 ) and a two-dimensional plot of

the surfacef= k is then possible as shown in Figure 3.8(b). It can be shown generally [79,

168] that yield surfaces must be convex and that they must contain the stress origin.
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Figure 3.8 Two-dimensional Representations of the Tresca and von Mises yield Criteria.

(a) it-Plane Representation. (b) Conventional Engineering Representation.
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The von Mises Yield Criteria (1913)

Von Mises suggested that yielding occurs when J2 reaches a critical value, or

(j )l/2 = k(K) , (3.81)

in which k is a material parameter to be determined. The second deviatoric stress invari-

ant, J2 is explicitly written as

J 2 ij i i 6 2) + (G2- 3) + ((3-y1)
(3.82)1 2 '2 '2+'2 +i'2 + '2

= 2 y +z xy yz +xz

The yield criteria in Eq (3.81) is in alternate formS / 2
7 = F( l J JJk , (3.83)

where

3 (" ' ')1/2
i= 3Gij/1ij , (3.84)

and a is termed the effective stress. Some physical insight into the definition of y is

shown in Section 3.5.2 where the case of uniaxial yielding is considered. There are two

physical interpretations of the von Mises yield condition. Nadai (1937) introduced the

parameter octahedral shear stress roct, which is the shear stress on the planes of a regular

octahedron, the apices of which coincide with the principal axes of stress. The value of

Toc t is related to J2 by

t  = 2J 2 /3 (3.85)

Thus, yielding can be interpreted to begin when roct reaches a critical value. Hencky

(1924) pointed out that the von Mises law implies that yielding when the (recoverable)
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elastic energy of distortion reaches a critical value.

Figure 3.7 shows the geometrical interpretation of the von Mises yield surface to be a

circular cylinder whose projection onto the 2-plane is a circle of radius /2 k as shown in

Figure 3.8(a). The two dimensional plot of the von Mises yield surface is the ellipse

shown in Figure 3.8(b). A physical meaning of the constant k can be obtained by consider-

ing the yielding of materials under simple stress states. The case of pure shear (a1 = -7 2,

G3 = 0) requires on use of Eqs (3.81) & (3.83) that k must equal the yield shear stress.

Alternatively the case of uniaxial tension (C 2 = a 3 
= 0) requires that F k is the uniaxial

yield stress.

The Tresca yield locus is a hexagon with distances of ,/-(2/3) Y from origin to apex

on the it-plane whereas the von Mises yield surface is a circle of radius J2 k. By suitably

choosing the constant Y, the criteria can be made to agree with each other, and with exper-

iment, for a single state of stress. This may be selected arbitrarily; it is conventional to

make the circle pass through the apices of the hexagon by taking the constant Y = F3 k, the

yield stress in simple tension. The criteria then differ most for a state of pure shear, where

the von Mises criterion gives a yield stress 2/,F3 = 1.5 times that given by the Tresca cri-

terion. For most metals, von Mises' law fits the experimental data more closely that

Tresca's, but Tresca's criteria is simpler to use in theoretical applications.

3.5.2 Work or Strain Hardening: After initial yielding, the stress level at which further

plastic deformation occurs may be dependent on the current degree of plastic straining.

Such a phenomenon is termed work hardening or strain hardening. Thus, the yield surface

will vary at each stage of the plastic deformation, with the subsequent yield surfaces being

dependent on the plastic strains in some way. Some alternative models which describe

strain hardening in a material are shown in Figure 3.9. A perfectly plastic material is

shown in Figure 3.9(a) where the yield stress level does not depend in any way on the

degree of plasticity. If the subsequent yield surfaces are a uniform expansion of the origi-

nal yield curve, without translation, as shown in Figure 3.9(b), the strain-hardening model

is said to be isotropic. Alternatively, if the subsequent yield surfaces preserve their shape
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and orientation but translate in the stress space as a rigid body translate in the stress space

as a rigid body as shown in Figure 3.9(c), kinematic hardening is said to take place. Such a

hardening model demonstrates the experimentally observed Bauschinger effect on cyclic

loading.

For some materials, notably soils, the yield surface may not strain harden but strain-

soften instead, so that the yield stress level at a point decreases with increasing plastic

deformation. Therefore, for an isotropic model, the original yield curve contracts progres-

sively without translation. Consequently yielding implies local failure and the yield sur-

face becomes a failure criteria.

Initial yield Loading

surfac

G 0

Current
yield surface

(a) Perfectly Plastic (b) Isotropic
SLoading strain hardening

Initial yield
surface

Curent
yield surface

(c) Kinematic strain hardening
Figure 3.9 Mathematical Models for Representation of Strain

The progressive development of the yield surface can be defined by relating the yield

stress k to the plastic deformation by means of the hardening parameter K. This can be

done in two ways. First, the amount of work hardening is defined as a function of the total

plastic work, WP only. Then,
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-K = W ,(3.86)
p

where

Wp f (ij( d , (3.87)

in which (de<) are the plastic components of strain occurring during a strain increment.

Alternatively, K can be related to a measure of the total plastic deformation termed the

effective plastic strain which is defined incrementally as

-p 12(~ Y~ /2
dP = .((dZi)(dZi)) (3.88)

A physical insight of this definition is provided in Section 3.5.2 where uniaxial yield-

ing is considered. For situations where the assumption that yielding is independent of any
d~p

hydrostatic stress is valid, de"i = 0 and hence dEF' = d Consequently Eq (3.88)

becomes

-P ( p) dFp 1 / 2

Then the hardening parameter, ic, is assumed to be defined as

-p
K = 6 ,(3.90)

-p -

where F is the result of integrating de over the strain path. This behavior is termed

strain hardening. Only an isotropic hardening model is discussed.

Stress states for which f= k represent plastic states, while elastic behavior is character-

ized by f< k. At a plastic state, f = k, the incremental change in the yield function due to an

incremental stress change is

df = KdaGd i (3.91)
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Figure 3.10 Geometrical Representation of the Normality Rule of Associated Plasticity.

Then if:

df < 0 elastic unloading occurs (elastic behavior) and the stress point returns inside the

yielding surface

df = 0 neutral loading (plastic behavior for a perfectly plastic material) and the stress

point remains on the yield surface

df > 0 plastic loading (plastic behavior for a strain hardening material) and the stress

point remains on the expanding yield surface.

It can also be shown [79, 83, 168] that, for a stable material the initial and all subse-

quent yield surfaces must be convex.

3.5.3 Elasto-plastic Stress-Strain Relation: After initial yielding, the material behavior

will be partly elastic and partly plastic. During any increment of stress, the changes of

strain are assumed to be devisable into elastic and plastic components, so that
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d.. = A. . + W .  (3.92)

1i 13 'i

The elastic strain increment is related to the stress increment by Eq (3.73). One can

decompose the stress terms into deviatoric and hydrostatic components

dci (1 - 2v)A'. = 8 da(3.93)
ii 2g. E 6 iid kk

where E and v are respectively the elastic modulus and Poisson's ratio of the material.

In order to derive the relationship between the plastic strain component and the stress

increment, a further assumption on the material behavior must be made. In particular, it

will be assumed that the plastic strain increment is proportional to the stress gradient of a

quantity termed the plastic potential Q, so that

d A (3.94)

where d is a proportionality constant termed the plastic multiplier. A theoretical basis

for this assumption is developed in Ref [79]. Eq (3.94) is termed the flow rule since it gov-

erns the plastic flow after yielding. The potential Q must be a function of J 2 and J3 but as

yet it cannot be determined in its most general form. However, the relationf= Q has a spe-

cial significance in the mathematical theory of plasticity, since for this case certain varia-

tional principles and uniqueness theorems can be formulated. The identity f= Q is a valid

one since it was postulated that both are functions of J2 and J3 and such an assumption

gives rise to an associated theory of plasticity. In this case, Eq (3.94) becomes

dP E , (3.95)
ii a (Y

and is termed the normality condtion since af/a i is a vector directed normal to the yield

surface at the stress point under consideration as shown in Figure 3.10. It is seen that the

components of the plastic strain increment are required to combine vectorially in n-dimen-

sional space to give a vector which is normal to the yield surface. For the particular case of

f=J2
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af J2 '
aa ( =G. (3.96)

Then Eq (3.95) becomes

dZ. = dy.. , (3.97)

which are known as the Prandtl-Reuss equations [79] and have been extensively

employed in theoretical work. Experimental observations indicate that the normality con-

dition is an acceptable assumption for metals. Thus, using Eqs (3.92), (3.93), and (3.94),

the complete incremental relationship between stress and strain for elasto-plastic deforma-

tion becomes

d(ij (1 - 2v)A + -8 dckk +dX i. . (3.98)

ii 2gE ii kk

3.5.4 Uniaxial Yield Test on a Strain-hardening Material: Consider the uniaxial testing

of an elasto-plastic material which produces the stress-strain curve shown in Figure 3.11.

The behavior is initially elastic characterized by an elastic modulus E until yielding com-

mences at the uniaxial yield stress ay Then the material response is elasto-plastic with the

local tangent to the curve continually varying and is termed the elasto-plastic tangent

modulus, ET. The hardening law k = k (,c) could just as easily be expressed in terms of

the effective stress, overline sigma (since it is proportional to J2 ) to give, for the strain

hardening hypothesis

- "-P)

a= H (, ,(3.99)

and differentiating yields

dkG '-p
- H ( ) (3.100)
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Figure 3.11 Elasto-plastic Strain Hardening Behavior for the Uniaxial Case.

For the uniaxial case under consideration cy1 = (,1 = C2 = 0 and then from Eq (3.84)

Y= ij (iy1 = (3.101)

If the plastic strain increment in the direction of loading is dap, then dep = dep and

since plastic straining is assumed to be incompressible, Poisson's ration is effectively 0.5

and dep = = -(1/2) dep . Then from Eq (3.89), the effective plastic strain becomes

-2 3

A 1/2 = d
.

p  (3.102)

Eqs (3.101) & (3.102) explain the apparent arbitrary constants employed in the defini-

- -p
tion of cy and F, , since these terms are required to become the actual stress and strain for

uniaxial yielding. By using Eqs (3.101) and (3.102), Eq (3.100) becomes
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-P d dc 1 ET
Hes) - 1 .(3.103)

p  d - de (de/da-d Ida) T

Thus, the hardening function H' can be determined experimentally from a simple

uniaxial yield test.

3.5.5 Matrix Formulation: The theoretical expressions developed previously are now

converted into matrix form [235, 238]. The yield function, first defined in Eq (3.76), can

be rewritten as

f(a) = k(1c) , (3.104)

where aT is the stress vector and ic is the hardening parameter which governs the expansion

of the yield surface. In particular, from Eqs (3.86) and (3.87), dic = TdEP for the work

hardening hypothesis and from Eq (3.90), dRc = deP for the strain hardening hypothesis. If

Eq (3.104) is rearranged, the result is

F (a, K) = f(a) - k () = 0 (3.105)

If Eq (3.105) is differentiated, one obtains

aF aF

dF = jd + --d-K = 0 , (3.106)

or

{a} Tda-AdX = 0 (3.107)

with the definitions

T DF cF 6 F F cF dF d
a} - -- (

and

1 @F
A = -d),KdK . (3.109)

The vector {a} is termed the flow vector. Eq (3.98) is rewritten as

A = [D]-ldo + dA , (3.110)
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where [D] is the usual matrix of elastic constants. Premultiplying both sides of Eq (3.110)

with { dD }T = {a }T[D] and eliminating {a } TdcT by the use of Eq (3.107), we obtain the

plastic multiplier d to be
1 TdD

X = T {a} I d& (3.111)
[A+ {a} [D] {a}]

Or substituting Eq (3.111) into Eq (3.110), we obtain the complete elasto-plastic incre-

mental stress-strain relation to be

{da} = [D ] {dE} , (3.112)
ep

with

T
{ dD} { dD}

[D ep] = [D] - T '{dD} = [D] {a} (3.113)

A +{dDI {a}

The remaining discussion centers on determining the explicit form of the scalar term,

A. The work hardening hypothesis is more general from a thermodynamic viewpoint [25]

than the strain hardening hypothesis and is employed in this discussion. Thus,

dK = {Ju} T {dj } (3.114)

Eq (3.105) is rewritten in the form

F(T, -:) = f(a) - y (r:) = 0 , (3.115)

since the uniaxial stress, Ty = K K. Thus, from Eq (3.109)

1 aF 1 da y
A - =-dr: - A dK (3.116)

Note that the full differential may be employed in the last term since ay is a function of

-K only. Employing the normality condition in Eq (3.114) to express dsp, we have

d-K = {Y T{d } = {a}TdT{a} = dX{a}T{} T (3.117)
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-p- -p
Or, for the uniaxial case T = aY = ay and dEp = dFp where cy and E are respectively the

effective stress and plastic strain, Eq (3.117) becomes

d = {yy} {d p } = I A I{a} TJu (3.118)

Also, from Eq (3.100) we have
d - d aJ

H' = d - Y (3.119)

Using Euler's theorem [144:228] applicable to all homogeneous functions of order one,

we can write from Eq (3.115)

j' ((7) = .T (3.120)

Or, from Eq (3.108)

T
{a} { } = a (3.121)

If Eqs (3.119) and (3.121) are substituted into Eqs (3.114) & (3.116), one obtains

-pA Ad (3.122)

A=H'

Thus, A is obtained to be the local slope of the uniaxial stress/plastic strain curve and can

be determined experimentally from Eq (3.103).

3.6 Anisotropic Elastic-Plastic Theory

The formulation of the stress-strain relations for anisotropic material proceeds in a

similar manner to the isotropic case (see Ref [61] for complete development). The plastic

potential function (effective stress) is defined as [61]:
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-2 2 2
F(a..) = a = a 12 (0Y1 1 - ( 22) + 0'2 3 

( 0( 2 2 - (Y33 ) (3.123)

2 2 2 2
+ a3 1 ( 3 3 - 1 + 3a 4 4 aY23 + 3a 5 5aY1 3 + 3X66"12

where ocij's are parameters whose values are characteristic of the present state of anisot-

ropy. It should be noted that no linear terms are included in the definition of the effective

stress. This is tantamount to assuming the material exhibits no Baushinger effect and the

subsequent yield loci will be concentric with the initial yield surface. The subscripts 1,2,3

indicate that the stress tensor is referred to the principal material axes. Hill [79] has

shown, from plastic work considerations, that the plastic strain increment is found from

the equation

d P.._.
d F. d - (a Y A(3.124)

LI

in much the same manner as the isotropic case. Carrying out the differentiation and

rewriting the result, the following set of equations are obtained

dgq F = ( '11 1 - C1 2g 2 2 - 3 1a3 3 ) , (3.126a)

2= ( 2 2 2 2 - 2 3 3 3 - 12 1 1) , (3.126b)

3= (o 3 3 a 3 3 - o3 1( 1 1 - (X2 3 ( 2 2) dX , (3.126c)

p 3
d23= 4 4 2 3 d , (3.126d)

p 3

d, = 5 5 a 13 d , (3.126e)
3P 2 3

= , 66 a12 dX (3.126f)

The conditions of incompressibility, or constant volume, in plastic deformation are

applied,

d = d 2  = dA 3 = 0 , (3.125)

and the relations between the otij parameters are developed. To satisfy the condtion of
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constant volume in plastic deformation, the (xij's must satisfy the following equations

( 1 1 
= CC12 +  31

( 2 2 
= CC23 + 0X12 (3.126)

(a3 3 
= 0X3 1 + cc2 3

Experimental investigations of Hill's theory of anisotropic plasticity have been con-

ducted by several investigators [68, 95, 122]. A very thorough experimental investigation

of Zircaloy-2, which is highly anisotropic, was undertaken by Mehan [122]. The results of

this investigation are listed in Lubahn and Felgar [117]. From the results of Mehan's work

it can be seen that the anisotropic parameters are not quite constant but the variation is rel-

atively small. If the anisotropic parameters are assumed to be constants, they may be eval-

uated from Eq (3.128). Let the value of the effective stress at which the material deforms

plastically equal to K. The anisotropic parameters may be evaluated by letting all stress

components equal zero except one. Thus,

a 1 1 = 1 2 + U3 1 
= (j 2  (3.129a)

33 31 23 ) (3.129c)

cc44 = 3 Y, (3.129d)

55 1  , (3.129e)55 3Y 13

cc66 = ) (3.129f)

The Yij values are the yield stresses in each of the given directions indicated by the sub-

scripts.
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To completely define the plastic stress-strain increment relations, dA, the scalar factor

of proportionality, must be evaluated. The relation defining d may be found by investi-

gating the increment of plastic work expressions. For a plastically deformed body, the

increment of plastic work per unit volume is:

dW/' = o..dep. (3.127)

By substituting for the strain increments from Eqs (3.126a) - (3.126f), Eq (3.130), in

expanded form, becomes:

dWt  = Y11 (O'llll -ci 12 ( 2 2 -x 3 1 0 3 3 )d A (3.128)

+ 0 2 2 (C 2 2 ( 2 2 - (X23o33 - (X12 'l 1) d

+ 0 3 3 (C 3 3 0 3 3 - C'3 1 '1 1 - C2 3 ( 2 2 ) dA

+ 2y 2 3 ((3/2) cc4 4 a 2 3 ) d + 2y 13 ((3/2) c 5 5 G 13) dA

+ 2y 12 ((3/2) oX6 6 G 12 ) dA

Equation (3.131) can be simplified, reducing to

-p -2
dW = (Y A (3.129)

The increment of effective plastic strain is defined by the equation
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2 -  o12d)d I o31d ) 2  (3.130)

" a23(a3 1 P2 -a12 d -3 3 )2

" c 3 1(01 2 dE 3 - 23d 1)2

[C4_(F-23 + + dFP2
3 - a44 U55 U66

where G = X12c-2 3 + 0X23U31 + 0X3 1 0C12. Hu [85] has shown that:

-p

d - (3.131)

Substituting for d in Eq (3.134) into Eq (3.132) leads to the differential work expression

dWp = GdE (3.132)

Hill has shown that if there is a functional relationship existing between the plastic work

and the effective stress, there also exists a functional relation between the effective stress

and the effective strain. The d constant is next submitted into Eqs (3.126a) - (3.126f) giv-

ing the following incremental plastic strain equations

d Fl = (11,11-a12022-oC31 33) , (3.136a)
da

dE33 = (° 3 3 3 3 - X31 a1 1 -( 2 3 a22 ) - (3.136c)
do
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-P3 p

de 3p= 2 k 44 2 3 -s , (3.136d)

p23 d1'4 -p

3 d13 2 55 13 c (3.136e)

d13,2 2 u6 6 
12 -d- (3.136f)

The increment of plastic strain is based on the previous value of stress rather than the

incremented value of stress. Eqs (3.123), (3.128), (3.133), (3.139) & (3.136a) - (3.136f)

form a set of fundamental equations for determining the stress-strain distribution in an

anisotropic body.

To complete the anisotropic plasticity equations, the relation between effective stress

and strain must be established. For isotropic material, this relation is found from a uniaxial

tensile stress-strain curve described by a Ramberg-Osgood type of algebraic equation

[61]. The relationship between effective stress and effective strain for anisotropic material

is much more complicated since a series of uniaxial tension tests would generally yield

widely differing results depending on the orientation of the material axes with respect to

the loading axis. Hu [85] assumes that cr and s vary in the same manner as ( 11 and cll.

That is, if

11 kll (3.133)

then

- -n
6 k(F (3.134)

This would be true if all uniaxial tests yielded the same result. Since the material is

anisotropoic, by the very definition of anisotropy, different results should be expected

from a series of uniaxial tests in different directions. The results of Mehan's investigation

of Zircaloy-2 verify that Hu's assumption, that a and P are directly related to a11 and F-1,

is, in general, a poor one.
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Since we are dealing with an anisotropic material the stress-strain curve in every direc-

tion will be different. Therefore, some form of average effective stress-strain curve must

be formulated. This average effective stress-strain curve might be described by a Ram-

berg-Osgood type equation and should be based on the stress-strain curves of the material

in uniaxial tension as well as shear. If a uniaxial test in the (T11 direction yields

F = gI (T) , with similar algebraic forms in the other 5 tests. We may define an effective

stress-strain relation by averaging the uniaxial stress-strain relations in a fomr similar to

Eq (3.123) [61]. An equation of this nature fulfills the two requirements that the effective

strain is a function of the effective stress and that the effective stress-strain equation

changes as the stress ratios vary. The effective stress-strain relation may be defined as

- -l ( , 1 1 2 + 0 2 2 ( -- 3 2

E = g(G) = lg - c + 229 2  +cc339 3  .(3.135)
a G G

71 1 a 2 2  (Y2 2 03 3  (Y11 G33
-2x12912 -2 -2 2 3g 2 3  -2 -2" 3 1g 13  -2

a a a

+ 3 44 4 + 3055 5 + 30 66 6( -G

In the above equation, gij are chosen weighted average of gi and gj. The gi is the nonlin-

ear portion of the a - £ curve, shown in. The simplest way of averaging is to take gij equal

to gi or gj depending on which cii is taken as unity. With the addition of Eq (3.133),

(3.139), a complete theory of anisotropy plasticity, which is applicable to engineering

problems, is formulated.

In the formulation of the equations to be used, it is assumed that: the state of stress is

a plane state, gij = gi, K = Yl1 , and ox 1 = 1. The general form of the Ramberg-Osgood

equation for a uniaxial stress state is taken as

=, C + kan , (3.136)

E

where

E modulus of elasticity

k strength coefficient
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n strain hardening coefficient.

Stress,a

y

._ g.(a y)

Strain, -

Figure 3.12 Nonlinear aY - E Curve Demonstrating Relationship of a > aTy to gi

If this type of equation is used to describe the stress-strain relations in the C711 , a722 , and

a 12 directions, the following set of equations is obtained considering only the plastic por-

tion of the strain

-p -n

6 =kl =gl
-p -n

E =k 2 a g2  (3.137)

-p -n

E =k 3 a g 3

Therefore, the average effective stress-strain relation for plane stress becomes
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8 = g () = a + X229 2  (3.138)

~119 (-(x G110G22 G 12) 2

12 1  -2 +_3'-j6693( J

It has been tacitly implied by the use of the same exponent in Eq (3.141) that the three

stress-strain curves have somewhat the same general shape. This is by no means a neces-

sary assumption, but it does simplify the formulation of the equations somewhat. If the

basic shape of the three stress-strain curves were completely different, then the equations

should be assumed to be of the form

-p- n
8 =klG~ =gl

k2=k = g2  (3.139)

-p _n3
8 =k 3 a =g3
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4. Theoretical Development

The third-order cubic-nonlinear transverse shear deformation theory for elastic shells

is suitable for many problems of practical interest. However, there are four areas of analy-

sis that require further examination. Specific problems of interest are those that consider

spherical geometry, rotations and curvature within the element become very large, nonlin-

ear material behavior in the element, and when strains within the element becoming large.

The first problem of interest is the area of spherical shell geometry. As mentioned previ-

ously in Chapters 1 & 2, the area of cylindrical shell analysis has been thoroughly studied

in the area of geometrical nonlinearity for both isotropic and composite materials. The

area of spherical shell analysis is being studied but still offers many opportunities for

investigation. According to Dennis [48] and Librescu [107, 108], the assumptions of a

third-order displacement field of the cubic-nonlinear HTSD theory are accurate for prob-

lems where the in-plane strains and stresses are larger than transverse quantities. These

judgements are based upon Koiter's work [98] and the ratio of h/R. Dennis [48, 49, 51]

evaluated problems with various ratios of h/R, and concluded the cubic-nonlinear HTSD

was acceptable provided the criteria of h/IR < 1/5 was met. Smith [208], in developing

higher-order thickness expansions, determined that a more appropiate criteria for the

cubic-nonlinear HTSD theory is h2/R 2 « 1. Thus, the cubic-nonlinear HTSD theory is

applicable for spherical geometries.

A second area of interest is in nonlinear material analysis. The area of nonlinear mate-

rial analysis for cylindrical shells is being studied but still requires further analysis, partic-

ularly in the area of composite materials. However, little research has been accomplished

in the area of spherical shells, due mainly to the complexity of the strain-displacement

relations with the added curvature terms. The last area of interest is when strains become

large enough such that the Cauchy stress-strain (Eulerian) and the second Piola stress-

Green strain (Lagrangian) coordinate systems are no longer coincident. This has been

addressed from a theoretical aspect [229] but has not been approached from a numerical

aspect.

Some problems investigated using the cubic-nonlinear HTSD theory, however, would-
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seem to have exhibited large stresses and strains despite small values of h/R. For example,

a graphite-epoxy (AS4-350) cylindrical shell panel with clamped lateral edges and trans-

verse point load was analyzed by Tsai and Palazotto [223, 224]. This shell had a 12-inch

radius and was 0.04-inches thick, therefore, hMR was equal to 1/300. Transverse displace-

ments for this problem exceeded 65 times the panel thickness (2.5-inch displacement). A

deep circular arch problem Dennis investigated had transverse displacements of over 30

times the thickness [48:257-265]. The effects of material nonlinearity and a large strain

analysis were not determined during these studies

4.1 Spherical Geometric Behavior

From Eq (3.72), a third-order displacement field for the spherical shell shown in Fig-

ure 4.1, which includes the higher-order transverse shear deformation (HTSD) theory, is

represented by

u1 (y1VY2 ,Y3) = (1-Y 3 ) + vIY3  3kw
3

u2 (Y1 'Y2'y 3 ) =v(1-Cy 3 ) + 2y 3 +k(w ,2 +W 2 )y 3  (4.1)

u 3 (Y 1 Y 2 ) = w

where the seven degrees of freedom u, v, w, w1, w2, W1, and Wj2 are functions of the mid-

surface coordinates (yl, Y2) only. The Wji are rotations of the normals, and we define D =

1/R1, C = 1/R2 , and k = -4/(3h2). These kinematic equations give exactly zero linear

transverse shear strains at the upper and lower surface of a flat plate where y = + h/2.

However, Smith [207] showed that for a curved shell, the linear transverse shear strains

are only "approximately" zero at the upper and lower surfaces. As long as the shell meets

the criteria of hIR < 5, the error is minimized. If the shell no longer meets this criteria, the

error becomes too large, and the extensions by Smith [207: Chap 4, pp 3-9, Appendix D]

must be included to enforce the exact zero boundary conditions at the upper and lower sur-

faces. For a curved shell, Eq (4.1) yields approximately zero linear transverse shear terms
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R2

R,

Figure 4.1 Spherical Shell Domain for Derivation of the HTSD Theory

for y = +h12 [48, 207, 208]. The additional term (D) in Eq (4.1) is required to account for

curvature in the sl-direction yielding spherical geometry. The strain-displacement rela-

tions for the quasi-nonlinear HTSD theory are given by

U1, 1  U2h 1,2 u3h 1,3 1 (  U2h1,2 u3h1,3)2

1 hh 2 + hlh3 + 2  U1,l + h2  + h ) (4.2a)
u 1 h--- 1 3- --12

+ U -ulhl, 2 2 +1 uh 1 ,3)

2h2 , 13 1 h
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u22  ulh 21  u3h23  _____ u3h2j/2
2 - 2 + + + + h 2 ,1 hl + 23 , (4.2b)

+ hl 2  - h 1  + h 3  ,- h--
2 h 21hI h2  h2h 3  - 2h 2  h) 2

1 2 uh 2,1 ,h 2 l, 2, 3 )2

+2h 2 U1,2- h l 2h 2 +  h--- + 3

2+ 2 2

+2h uh2  u 32  h u + h 1 h

E = 12, 3  3 h 2  
2 2,3J (4.2c)

4 2h u3  1  h uh3 2 h

E5 = 2h 3  h 1 th 1in3- of1 h 3  (4.2d)

= 1({U13 +"3 ;U3~ h31 uh] 3 (4.2e)

+.2 2, Ma2l h ll h+ hB 3r

+ 2h 1h@ 2 1 2ju 2 + 1_ + Uh 2

+ 2h 1h 2  -2, 1 h 2 u22 1 h

The complete strain-displacement relations are given in Appendix E. The comparison

of the results based upon the kinematics of Eq (4. 1) with published results, and the results

of problems not yet published, is a significant part of this research.

4.2 Nonlinear Material Behavior

It is well established that unique relations do not exist between stress and strain in the

plastic region (when strains are large). The strain depends not only on the final state of

stress, but also the loading history. Therefore, the standard stress-strain relations in the

theory of elastiticy must be replaced by relations between increments of stress and strain

using incremental theories of plasticity. These theories are often called incremental strain

theory or flow theory of plasticity.
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In this section, of nonlinear material behavior is discussed in three parts. Initially, lay-

ered isotropic materials are discussed for nonlinear elastic and elastic-plastic consider-

ations. The approach considered incorporates a layered method to effectively consider

bending. Secondly, nonlinear elastic and elastic-plastic relations are discussed from a layer

method for laminated composite materials. Finally, a large strain formulation is discussed.

This requires transforming the constitutive relations from Eulerian coordinates to

Lagrangian coordinates for both the stress-state and strain-state relations.

4.2.1 Layered Isotropic Material: In Chapter 9 of Owen and Hinton [144], Mindlin

plate bending relations are formulated to include transverse shear strain using multiple

layers. This layered aproach is used to capture the spread of plasticity over the depth of the

plate or shell. Thus, the shell is divided into a number of layers, each of which may

become plastic seperately. As the number of layers is increased, the model provides a

more realistic representation of the gradual spread of plasticity over the shell cross-sec-

tion. References [144 - 147] suggest a total of eight layers are needed.

(a) Y (b) Y

_ _4 1 _ _ _

y y

(c) aY (d) Y____

G y y

Figure 4.2 Yielding of Layered Section [144]

4-5



It is assumed that as the stress in the middle of the outer layers reaches the yield value,

then the outer layers become plastic, while the rest of the layers remain elastic, as shown

in Figures 4.2(a) and 4.2(b). Then, as more stress is applied, more layers become plastic,

until the whole cross-section eventually becomes plastic (Figures 4.2(b)-4.2(d)). This lay-

ered approach is easily incorporated into an elastic-plastic laminated composite material

analysis. Since the analysis of elastic-plastic laminated composites is a primary thrust of

the author's work, this method is extremely important in attempting to quantify the nonlin-

ear material behavior of composites.

For elastic isotropic materials, the stress-strain relations are given by

k e

{da} = [D'] {d~e } , (4.3)

where dse is the elastic strain component, and k denotes each layer. The constitutive

matrix is given by

k
lv 0 0 0

0D1 0 0 0

DIk EF 00 200D 44
(1-v) 00 0 v) 0(4.4

(1 -v)

00 0 0 2
L 2

or with more typical notation

k
Q11 Q12 0 0 0

Q12 Q11 0 0 0

D]k = [QJ= 0 0 Q660 0 (4.5)

0 0 0 Q66 0

0 0 0 0 Q66

where
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yE

Q 12  2

E

Q66 2(1 v) G

This implies
• -kQ11 Q1 0 6k

=K Q12 Q1 0 k = 66 (4.6)
0 0 Q66j

For the layered isotropic material, we can assume a yield function F is a function of

the stresses associated with flexure Yf, but not the transverse shear stresses, (7. This

assumption is based on the thinness of the shell, which implies that transverse shear strains

remain linear. This, in turn, implies that transverse shear stresses never develop magni-

tudes that require a plasticity analysis in the transverse directions. The assumption is con-

sistent with the author's desire to develop a shell oriented analysis and not a three-

dimensional plasticity approach. The yield function F is also a function of the hardening

parameter, H'.

When yielding occurs at some point, it is assumed, unless loading occurs, the stresses

always remain on the yield surface such that

F (cy-H) = 0 (4.7)

Then the incremental elastic-plastic stress-strain relationship is written as

IdaI k = Dep] k A (4.8)

Here de = dee + dep is the sum of the elastic and plastic strain components. The consti-

tutive relations take the form of the Prandtl-Reuss flow equations (see Section 3.5.4) and

are shown below
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[D'e = p)f D (4.9)

where

T

(D'ep) = A+ k T '} d (4.10a)

A +{dD} {a}

{dD} = [D J{a} , (4. lOb)

1a' = [ (4.1Oc)

13F
A - HdH . (4.1Od)

The plastic potential function for a material following the von Mises yield criteria is given

by

-2 3
F (a) = Y2 = 2 = ij 'ij

(4.11)
3 r,2 2 21+ ( a2 +G2 +Y2

= L l1+("22+G33i +3y 2 3 + 13 + 12 )

To incorporate the strain-hardening effect, it is necessary to determine the scalar A, the

strain hardening parameter. Owen & Hinton [144] show that

A = I-f' d dUp -(4.12)
A -p

d F

Thus, by experimentally determining the material's effective stress versus effective plastic

strain relationship, it is possible to numerically quantify the strain hardening parameter A.

A straight-forward method of characterizing the nonlinear stress-strain curves is assuming

the material takes the general form of the Ramberg-Osgood equation [61] for a uniaxial
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stress state. The Ramberg-Osgood equation, for a strain-dependent formulation, is given

by

am 1  n

m - , + k n i (4.13)

where E is the modulus of elasticity, k is the strength coefficient, n is the strain hardening

characteristic, and m is the current strain interval. This implies that the plastic strain is

determined by the stress state at the previous step shown by Eq (4.14)

sp = ka n  (4.14)m m-1

or

-p -n
Em = km - (4.15)

By differentiation, we write

-p -n-1 -

dEm = knUm -I dam-1 (4.16)

Thus, in terms of the Ramberg-Osgood relations, the strain hardening parameter A = H' is

defined to be

- -p - -n- 
(4.17)

dEm knYm- I

4.2.2 Layered Composite Material: The layered approach for through-the-thickness

plasticity is again incorporated into developing the laminated composite elastic-plastic

consitutive relations. In general, the elastic laminated composite constitutive relations are

determined by integrating through-the-thickness, per lamina (see reference [61] for

details). Thus, incorporating the layered plasticity analysis is a relatively simple and

straight forward procedure. Again, an incremental approach is included to approximate

the nonlinear material effects of the laminate. In the first increment, the material is

assumed to be completely elastic. Thus,

{da} k= -e I{d} (4.18)

where
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k

Q11 Q12 Q16 0 0ek
k Q12 Q22 Q26 0 0 ( e)[,e--e i (4.19)[k Q16 Q26 Q66

0 0 0 Q44 Q45- 0  Qij (

0 0 0 Q45 Q55

are the material stiffnesses of the kt h laminate in the material axis system for the in-plane

and transverse shear portions (f and s respectively). These material stiffnesses are defined

in Eq (3.62).

After the first increment, yielding is determined for each layer. If a layer has yielded,

the stress-strain relation for the plastic range is given by

k= []k = , (4.20)

0 Qi

where

T

k ( \k {dD} Id DI

= T (4.21a)

A- {dD} {a}

{dD} = Q {a} (4.21b)

T IF_ aF JF1
a' 22' a y 12 (4.21c)

IaF
A = - ,jHdH (4.21d)

The plastic potential function, based on the modified Huber-Mises law for anisotropic

composites [67, 85, 86, 102, 144 - 146] is given by
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-2 2 2
F(a) = = a 12 (' 1 1 -a 2 2 ) +a 2 3 (a 2 2 -( 3 3 ) (4.22)

2 2 2 2

+a 3 1 (o 3 3 - 1 l1 ) +3a 4 4 2 3 + 3a 13 + 6612

In this equation, Y is called the effective stress, and the aij are anisotropic interaction

parameters determined experimentally. For the layered approach, each layer would have

its own plastic potential function. With the assumption of negligible transverse normal

stress for shell theory, the plastic potential function defined in Eq (4.22) reduces to

-2 2 2 2
F(a) = a = a 12 (" 1 1 -' 2 2 ) +a 2 3 ( 2 2 + a 3 1 '1 1  (4.23)

+3a 2 2 2
4423 + 5513 + 66 = 0

To satisfy the condition of constant volume in plastic deformation [61], the aij parameters

must statisfy the following equations

a 1 1 - a 12 + a 3 1

a22 a 23 +a 12 (4.24)

a 1 1 - a3 1 + a2 3

Experimental investigations of Hill's theory of anisotropic plasticity have been con-

ducted by several investigators [68, 95, 122]. A very thorough experimental investigation

of Zircaloy-2, which is highly anisotropic, was undertaken by Mehan [122]. The result of

this investigation are listed in Lubahn and Felgar [117]. From the results of Mehan's work

it can be seen that the anisotropic interaction parameters are not quite constant but the

variation is relatively small. If the anisotropic interaction parameters are assumed to be

constants, they may be evaluated from Eq (4.24). Let the value of the effective stress at

which the material deforms plasticity equal to K. The anisotropic parameters may be eval-

uated by letting all the stress components equal zero except one. Thus,

a- a, .) (4.25a)
a1 1 =a 12 +a 3 1  Yll
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a22 = a23 + a12 = )2 (4.25b)

a33 = a31 +a 23 =(Y 73) (4.25c)

a 4 4 = 1 3)2 (4.25d)

a5 5 = 1 , (4.25e)

a66 = )12K 2  (4.25f)

The Yqj values are the yield stresses in each of the given directions indicated by the sub-

scripts. Since transversely isotropic materials are being analyzed (implying Y22 = Y33 , Y12

= Y13, Y23 = (0.8)Y12), and allowing K = Y11, Eqs (4.25a) - (4.25f) become

a 11 = a12 +a31 Yll = 1 , (4.26a)

a 2 2 = a23 +a12 = 22) (4.26b)

(Yll)2 (Y,, 2

a3 3 = a3 1 + a 2 3 = ) = Y22 (4.26c)

ar§1 , (4.26d)
44 Y23) (0. 8 ) 1 j 3(0.64) Y 12 (

Yll1 2  Yli 2

a5  = (4.26e)

Y 11 )2

a = 1Y 21(4.26f)

The effective strain for anisotropic materials is defined as
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- 2 2o 33 2
= a +a229 2  +a , T )  (4.27)

a1 22 G22 3 CY1 a3
-2a 12g 12  -2 --23g23 22 -2a3 11 -2

+ 3 a( _2 3 2 + 3 ( --'13j2 + 3 a 1 2 ) 2a4494 4 59 69o
In the equation above, gij are a chosen weighted average of gi and gj. The gij represent

the nonlinear portion of the Y - s curve and is demonstrated in Figure 3.12. The simplest

way of averaging is to take gij equal to gi or gj depending on which aii is taken as unity.

Since the assumption is that K = Y11 and all = 1, then gij = gi. From Eq (4.15), we define

the following set of equations

-p -nF- = klT = g,

-p -n (4.2)
S= k 2 y = 2

-p -nF,=k 3G =g93

Therefore, incorporating the shell assumption of C33 0, and including the definitions of

Eq (4.28), Eq (4.27) becomes

-P llg(a 1 1 ~2 (Y22 ~2 1(2
6 = a -o +a 2 2g 2  -- 2a 12 g 12  -2 (4.29)

3 a 2 3 2 °13 2 3°12) 2

+3a 4 4 g 4  - +3a 5 5 g 5  + 6696

or
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P 2 -(n-2) 2 -(n-2)
= a1 1kl 11  + a 2 2 k 2 a 2 2 a (4.30a)

-(n-2) 2 -(n-2)
-2a 12k IG1 22+ 3a44k3 G2 3 a

2 -(n-2) 2 -(n-2)
+3a 55k313G +3a 6 6 k3 G12 a

= k 1 all'lI-2a121 1 22 +k2a22 22 (4.30b)

3 44+ a 4 423]54212

It has been tacitly implied by the use of the same exponent in Eq (4.28) that the three

stress-strain curves have somewhat the same general shape. This is by no means a neces-

sary assumption, but it does simplify the formulation of the equations somewhat. If the

basic shape of the three stress-strain curves were completely different, or if individual

curve fits were used for each stress-strain curve, then the equations are of the form

-p -nl
a=klCa =gl

P = k n 2 = (4.31)

-p -n3
e= k3 y = g 3

Then Eqs (4.30a) & (4.30b) would take the form

-P 2 - (n-2) 2 -(n2-2)
= a k1 1 k1 G1 1  + a2 2 k 2 G22  . (4.32)

-_(n- 2 )  2 -(n3 -2)
-2a 12 kI G 1 1 Ga2 2 G +3a44k 3 G2 3 G

2 - ( n3 -2) 2 -(n-2)

+ 3a 5 5 k 3 a 13 a + 3a 6 6 k 3 a 12 G

( 2 (n, - 2) 2 (n2- 2)
- k 1 ya 1 1 a1 1 -2a 12 ' 1 1 2 2 )G + k2 a 2 2 G2 2 CY

( 2 2 - (n 3 - 2 )

+3k 3 a 4 4 aT2 3 + a55 + a44Y 12) G

Referring back to Eq (4.30b), then by differentiation we have
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= (n-2) [k1 alla21-2a 12 " 1 1" 2 ) +k 2 a22 a 1 1  (4.33)

+3 ( 2 +a a F -)] (n-3) da+3k 3 a44 2 3 +a 5 5 +a44 12)] do

Thus, in terms of the Ramberg-Osgood parameters, the strain-hardening parameter H', for

anisotropic materials, is defined to be

IT = da /(dA p ) = 1 (n-2) k1 (al 1 -2a 120 22 (4.34)

+k 2a 2 2 + 3 +55 44 12)]

For the more general form, where n is no longer constant for all a - F curves, Eq (4.33)

becomes

d = (n 1 -2) k1tal 1 1-2a 12 (71 1i 2 2 ) G (4.35)

2 - (n.2- 3)

+ (n 2 - 2) k 2 a2 2 220G

( 2 2 2 ( n 3 .- 3 )

+( 3 -2k 3 a44€ 23 + 55 13 + 66Y12)

and Eq (4.34) becomes

IT = da /de = -/ (n 1 - 2) k-allall-2a 12 ( 1 1 ( 2 2 )G . (4.36)

2 -(n2 -3)
+ (n 2 - 2) k 2 a 2 2 ( 2 2 7

2 2 2 )-(n3-3)
+ (n 3 - 2) k 3 a 4 4 2 3 +a 5 5 13 +a 6612

4.2.3 Large Strain Formulation: According to Washizu [229] and Dvorak [58], when

strains are no longer assumed to be small, the rotation of the material axis system relative

to the undeformed structural axis system becomes substantial and therefore must be

accounted for. Due to the large rotations and strains, the material properties are no longer

constant when considered in a total Lagrangian coordinate system (xi). If one defines a

local Eulerian coordinate system (Xi) at a point p(O) before deformation, one can formulate

the transformation law between the Green's strain tensor and the Eulerian (Cauchy) strain
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tensor. Let the strain tensor defined with respect to the local Eulerian coordinates be

denoted by eX,. Then the Cauchy strain components defined with respect to the general

Green strain components are given by [229]

x3  (N)

I a12

p(0) -( a(11
pN(N+1)

((N+ 1)

a 12 + dal2

a 1 1 + da1 1
x 2

x 1

Figure 4.3 Definition of 2nd Piola-Kirchhoff Stress Tensor [229]

ax. ax.k 1e.. = 1 ,k ,Ik ~ Oik (4.37)

Note the Cauchy strain components is a by-product of deformation occurring by arriving

at a deformed orthogonal axis system. The Green strain components is the state of defor-

mation coming from an orthogonal coordinate system to a deformed non-orthogonal set of

axes.

In the above expression, the j= (a xi)(Xj) terms are elements of the transforma-

tion between the Cauchy (Eulerian) coordinate system (X) and the 2nd Piola stress-Green

strain (Lagrangian) coordinate system (x).

There is a similar transformation between the 2nd Piola-Kirchhoff (Lagrangian) stress
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tensor, YU, and the Cauchy (Euler) stress tensor, eii. The 2nd Piola-Kirchoff stress tensor

is defined with respect to the undeformed (Lagrangian) coordinates, after deformation has

occurred, as shown in Figure 4.3. The Cauchy stress tensor is defined with respect to the

local (Eulerian) coordinates as shown in Figure 4.4. The transformation between the

Kirchhoff stress tensor and the Cauchy stress tensor is given by

E 1
.j - D~i, k~j, I DfXXa kl ' (4.38)

where 4i is the coordinate in the deformed state and

= - x. - i, j = 8.1 + u., = 8i + a (4.39)

with

D = detYi,j = 41, 12, 23,3+41, 22, 33,1 .(4.40)

+ 41, 342, 143, 2 -1, 142, 343,2 -1, 342,243, 1- 41, 242, 143,3

We define in Eulerian coordinates the stress-strain relations to be

(T ) = [a] (F-) , (4.41)

where [a] is the Eulerian constitutive matrix. We can denote the transformation of the

stress-state from 2nd Piola-Kirchhoff stress to Cauchy stress by

(TE ) = D i ((Y) ,(4.42)

and the transformation of the strain-state from the Green to the Cauchy strain directions by

Substituting Eqs (4.29) and (4.30a) into Eq (4.41) yields

I[Tl (T) D2[a][T2]() (4.44)

or rewriting yields
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(Ta) [T, [E) :(4.45)

where [D] is the Lagrangian constitutive matrix. To generate the constitutive matrix, itis

necessary to find D, [TI] and [T'2].

x 3  ()O ) GE

P 0)P(N) 
G E
a11

~(N+ 1) (YE + aE
13 +d 13

GE + TE
a12 1d2

~(N+ 1) -
1

GE + aE
Noa 11 +d 11

x 1  x 2

Figure 4.4 Definition of Cauchy Stress Tensor [229]

To accomplish this we begin by noting

,]j +U (4.4]

and

~k k ~ = 5. ,(i~j 1-3) (4.47)
kj

which implies

Xk,j = [4i, k 1  (4.48)

or
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X1, 1 = (42, 243, 3-42, 343,2)/ID ,(4.49a)

1, 2 = -(41,243, 3 -1,343,2 ) /D (4.49b)

X1,3= (41,242,3-41,342,2) (4.49c)

X2,1 = - 13,3-42,343, 1) /D (4.49d)

X 2, 2 = (1, 143, 3-41, 33, 1) / D  (4.49e)

X2, 3 = -(1, 142, 3-41, 342, 1) / ID(4.49f)

X3, 1 = (42,143, 2-2,243, 1) O D (4.49g)

X3, 2 = -(1, 143,2-41, 243, 1) / D (4.49h)

XC3, 3 =(1, 142, 2-41, 22, 1) /I D  (4.49i)

Using the transformation law between oEij and yij, a stress-state transformation is

determined to be

E 1
1 1 = D (1, 1 1 ( 1 1 + 1, 11,2 12 + 1,11, 3 1 3  (4.50a)

*+41, 241, 10(21 + 41, 241, 2022 + 41, 241, 30(23 + 41, 3 41, 1 "31

+ 41, 341, 2 0 32 + 41, 341, 3 ( 33)

E 1
E2  (4.50b)022 = T)(42, 142, 1Ogll + 42, 142,2'a12 + 42, 142,3('13,(45b

+ 42, 242, 1( 2 1 + 42, 242, 2" 22 + 42, 242, 3 ( 2 3 + 42, 3 2, 1 a31

+ 42, 3 2, 2(32 + 2, 3 2, 3 33)

E = +4 (4.50c)

33 = ( 3, 143, 1 g1 1 +3, 13, 2 a 12 +3, 143,3(13

+ 43, 243, 1 " 2 1 + 43, 243, 2 a22 + 43, 243, 3 a 2 3 + 43, 343, 1 a3 1

+ 43, 343, 2 ( 32 + 43, 343, 3Y33 )
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E 1

E2 ~31 (4.50d)023 W4 (2, 143, 1('11 +42,143,2('12 +42, 143,301I3,(45d

+ 42, 243, 1021 + 2, 243, 2022 + 42, 2 3, 3023 + 42, 3 3, 1031

+ 42, 3 3, 2032 + 42, 3 3, 3033)

E 1O13 = D-(41, 143,111+ 41, 143,2'712+ 41,143, 3'j13,(45e

+ 1, 243, 1021 + 41, 243, 2(22 + 41,243, 323 + 41, 343, 1031

+ 41, 343, 2032 + 41, 343, 3033)

E 1
012 2 , (4.50f)

+ 1, 3 2, 2032 + 1 3 2, 3033)

Since the 2nd Piola-Kirchhoff tensor, Tij, is symmetric, we write

E 1
11 = 1, 11, 1011 + 1,2 1,2022+ 1,313033 (4.51a)

+ 241, 241, 3023 + 21, 141, 3013 + 21, 141, 2012)

E 1

022 = 2, 12, 1011 + 2,2 2,2022+ 2,323033 (4.51b)

+ 2 2, 242, 3023 + 2 2, 142, 3013 + 2 2, 142, 2012)

E 1
033 = 3, 1 3, 10'11 + 43, 2 3, 2022 + 4 3, 3033 (4.51c)

+ 2 3, 243, 3023 + 2 3, 143, 3013 + 2 3, 143, 2012)
E 1

Y3 E ID( 2,143,1(11+42,243,2(22+42,343,3'j33 ,(4.5 1d)
023 = D 45d

+ (42,243, 3 + 42, 343, 2) o23 + (42, 143, 3 + 42,343, 1) o13

+ (2, 13, 2 + 2, 243, 1) 12)
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E 1

G013 = D(1, 13,1(Y11+41, 23, 2G22+41, 33, 3333 (4.51e)

+ (41,243, 3 + 41,343,2) 1323 + (41, 143,3 +41,343, 1) 13

+ (1,143, 2 + 1, 243, 1) 12)'

E 1
0 12 = 1,142,1031 +41,242, 2G22+ 1,342, 3033 , (4.51f)

+ (41,242, 3 + 41, 342,2) (Y23 + (41, 142,3 + 41,342, 1) 13

+ (1,12, 2 + 1, 22, 1) 12)

or in matrix form

E
311 ( 1 2 (41,2)2 (41,2)2

EG322 (42,1) 2 (42,2)z2 (42,3) 2

E
C = 33 (43,1) (43,2)2 (43,3) 2 (4.52a)

(T23  
42,143,1 42,243,2 42,343,3

G013 41, 143,1 41, 243,2 41,343, 3

GE1 L 41, 1 2, 1 41,242,2 41,342,3
012

241, 2 1,3 2 1, 141, 3 24 111, 2 ('11

242,242,3 242, 142,3 22142,2 1 222

243 23, 3 23, 13, 3 23, 1 3, 2 033 (4.52b)

2, 243, 3 + 2, 343, 2 42, 1 3,3 + 42,343, 1 42, 1 3, 2 + 2, 23, 1 (23

41, 243, 3 + 41, 343, 2 41, 143, 3 + 1, 343, 1 41, 143, 2 + 41, 243, 1 013

41,242,3-+41,342,2 41, 142,3 +41,342,1 41,142,2+ 1,242,1 112

Using contracted notation (Oi1i = 01, 0Y22 = 072, 023 = C4, C013 = (Y5, 0712 = 06,) and applying

the shell theory assumption of 0Y3 = 0 to Eqs (4.52a) & (4.52b), one obtains
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Ea71  ( J )2 (4,2) 2 2412413
E

G2 1 (4 , ) (42,2 )2 2422423

4 D 2, 1 3, 1 42, 243,2 42, 243, 3 + 42, 343, 2(45a

a6

24 111,3 24114,2 a71
242142,3 242142,2 a72

42, 143,3 3+ 4233 1 42, 143, 2 + 42,243, 1 a4  (4.53b)

41, 143, 3 + 1, 33,1 41, 143, 2+1,243, 1 C5

41,142, 3+ 41, 342,1 41,1 2, 2 + 1, 242, 1 G6

We can develop a similar strain-state transformation matrix given as (in contracted nota-

tion)

e,(x 2,1) 2 (1,2)2 ( ,2
e2 (X2, 1)2(X 2, 2) 2(X2,3)2

e3 1 (X 3, 1) 2(X 3, 2) 2(X 3, 3 )2 (4.54a)

e5 ~X 2 , X 3, 1 X , 2X 3, 2 X 2 , 3X 3, 3

e6 J ~ XI, IX2, 1 X, 2X2,2 X 1, 3X2,3

2XI, 2X1, 3 2X1' IXI, 3 2Xl, IXI, 2EI
2X2, 2X2,3 2X2, IX2,3 2X2, IX2, 2 E2
2X3, 2X3, 3 2X3, 1X3,3~ 2X3, 1X3, 2 .3 (4.54b)

X2, 2X3, 3 + X2, 343 2 X2, IX3, 3 + X2, 3X3, 1 X2, IX3, 2 + X2, 243 1 F£4

XI, 2X3,3~ + XI, 3X3, 2 Xi, 1X3, 3 + XI, 343,1 XI, IX3, 2 + X1, 241 E5

XI, 2 X2,3 + X1, 3 X2 ,2 XI, 1X2 ,3 +XI, 3X2, I XI, X2 2 + XI, 2 X2,1  E6

Recall, for shell theory, aT3 =0. We assume, that none of the Eulerian strains, ej, depend

upon the Lagrangian strain, F,3. We can determine e3, by dependency, through the constitu-

tive relations. For transversely isotropic materials
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+0 = C1e + e + C33 e3  (4.55)

Solving for e3 results in

e3 - el + C23)

= C33 + C33) e 2 )

EIv2 1 (1 -zV 23 ) E2(1-vl2_)_e

E 2 (1 - V12 V2 1) E2 (1 -V 1 2V 2 1 ) 2

e ( l _ 2 1 ) V2(4 .5 6)

= C33[( 1 , I + (xI, 2 ) E2 + 2 X 1 , 2X 1 , 3E 4

+ 2C1 , XI, 3 F5 + 2X, XI, 266 ]

C33 (X 2, 1) 2P1 + (X 2 , 2)2 + 2X2 2X 2, 3

+ 2 X2, 1X2 , 315 + 2 X2, IXI, 2F6 ]

For isotropic materials, the constitutive relations yield
E

a3 =0=C 12 (e l +e 2 ) +C l l e 3  , (4.57)

and solving for e3 results in

C 12  (1-v)
e 3  -C1(e,+e 2 ) = (el+e 2 )

(1-v) + ( 1 2 2132 +2X 1 ,2X1 ,3 4

+ 2 X1l XI, 3F-5 + 2 X1, 1 X1 , 2P86 ] (4.58)

( l -v ) 2 F2 6 + 2 , C , 3 -2 (X 2, 1) 2 + (Xz 2) 282 + 2 X 2 , 2X2 , 384

+ 2 X2, 1X2 , 38F5 + 2 X2 , IX1, 286 ]

Due to the assumption of no dependency of ei with respect to s3, the strain-state transfor-

mation matrix reduces to a 5 x 5 form shown below
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( 2 ~2el ( 1,1 )  (X{I, 2)2 2X{, 2;{1, 3

e2 2 2e 1 (X2, 1) (X2, 2) 2X2,2X2,3
e4 X2 , 1 X3 , 1x 2 , 2X 3 , 2 X2 , 2 X 3,3 -+ 2, 3X3,2 (4.59a)
e5 X{ 1, I X{3, I X{ 1, 2 X{3, 2 X 1, 2 X{3, 3 +- X 1, 3 X{3, 2

e6 X{1, 1IX2, 1 X1, 2 X{2, 2 X 1, 2 X{2, 3 +  X 1, 3 X{2, 2

2 X1 , 1XI, 3 2 Xi, lxi, 2 Fl

2X2, X1 2,3  2;2, I X2,S2 F2

X2, IX3,3 + X2, 3X3, 1 X2, 1X3, 2 + X2,2X3, 1 E4 (4.59b)

Xl, 1X3 ,3+ X1,3X 3,1 Xi,1X 3 ,2+ Xi,2X3 ,1 F5

Xi, IX 2 , 3 XI, 3X 2, 1 Xi, iX 2 , 2 +Xi, 2X 2 ,1 6

If we apply the definition of k,1 given in Eq (4.46) to Eqs (4.40), (4.49a) - (4.49i), and

(4.53), and due to the shell theory assumption u3,3 = 0, we have

D = 1 +ul, 1 +u 2 ,2+U 1 , 1 U2, 2 +Ul 2 U2 3 u 3 ,1 +U 3 U21 u3 , 2  (4.60)
-U 1 , 2U 2, 1 -U1, 3 U3, 1 -U 2 , 3 U3, 2 -U 1 , 1U2 ,3U3, 2 -U 1 , 3 U2 ,2U3, 1

with

,= (1 + u 2 , 2 - u2, 3 u3, 2) /D (4.61a)

l,2= (Ul,3U3, 2 -Ul,2)/D (4.61b)

Xl, 3 
=  (Ul, 2u2,3 - Ul, 3 ( 1 + u 2, 2 ) )/D (4.61c)

X2,1 = (u 2 , 3u 3, 1 - u2, 1) ID 4.61d)

X2, 2 = (1 + Ul, 1 - ul, 3 u3, 1) ID (4.61e)

X2 , 3 = (Ul, 3u2, 1 - u 2 ,3 ( 1 + Ul, 1))/D (4.61f)

X3,1 = (u 2 , lU3, z-U3,1(1 +u 2, z)/D (4.61g)

X3 ,2 = (u 1, 2 u3 , 1 -U3, 2 (1+ul, 1 ))/D (4.61h)

3,= ((+Ul, 1 ) (1+u 2, 2 ) -ul, ZU2, 1)/D (4.61i)
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Thus, from Eqs (4.52a) and (4.52b), one obtains

(E 2 2a1  (+ U1 1 ) (Ul 2) 2u1 2U1 3
aT2  2 2

E2 (u2 , ) L+ u 2 2 ) 2 (1 + u2 2) U2 3
G4  D U2 , 1u3, 1  (+u 2,2) U3,2  (+U 2,2) + U23U3,2(46)

GE L 1+ u,1) U2 IU2,1(1 +U2 ,2) U1 2 U2 3 + U 1 3 k+U 2 ,2 )a6

2(1+ u,, 1 ) U1,3  2 (1+ u, 1 ) U1 ,2  a1

2u2 1 U2 ,3  2u2 ,(1 +U2 ,2 ) a72

2,1 + u2, 3u3 , 1 u2 , 1u3 2 + (1 +U2,2) U3,1 a74  .(4.62b)

(+ U1,1) +U1,3U3,1  (I+ u1,1) U3 2 +U1,2U3,2  a75

(+ U1,1) U2 3+U1,3U2,1 (I1+ U1 1)(1+U2 2)+ U1,2U2, a76

For the transformation between stress-states, we assume that rotations of the normal

U31or U3,2) and rotations about the normal (u1,3 or U2,3) are small for each increment.

Products of these terms are considered higher-order and are neglected. Thus, Eqs (4.60),

(4.6 1a) - (4.6 1i), (4.62a) and (4.62b) become

D=1+ u 1 1 + 22 + 11 l 2,2 -u 1,2 u2,1 (.3

+= ( 1,1) (+ U2,2) - U12U2,1 (.3

with

XI11 + U2 )/D (4.64a)

XI, / U, D ,(4.64b)

XI, / U1,D ,(4.64c)

X2, 1  _2,1 I 46d

X,2=( 1+ ul1 1)/ID (4.64e)

X2 -3 /U2, D ,(4.64f)
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X3, 1 = -u 3 , 1 /D , (4.64g)

)3, 2 = -u3, 2/D , (4.64h)

3,= ( (1+ Ul, 1)  + u 2, 2) - U1 , 2u 2, 1)/D D/D = 1 (4.64i)

E

1 +(U1 , 1)2 (U 1 , 2 )2 0

E
a 2  1 U 1) 2 + U2,2 ) 2 2u 2 , 3Y E (u4.65)2

a 4  = D 0 u3, 2 (1 + u 2, 2 ) (4.65a)
E0

5  U3, 1  0 UI 2

E U 1, 1 )U2, 1 U2, + U 2 , U1, 3
a6

2ul, 3  2(1 +u 1 , 1)u 1, 2  G1

0 2u 2 , 1 + u 2, 2 ) G2

u2, 1  U3, 1  a 4  (4.65b)

(1 +Ul, 1) U3,a2 G5
D' a

u2, 3 D " C6

where

D = (+U 1 , 1) (1+u 2,2) +U 1, 2 U2 , 1  (4.66)

If Eqs (4.63) - (4.64i) are substituted into Eq (4.59) then, in terms of displacement, a

new strain-state transformation matrix results. By applying the same assumptions as in the

stress-state relations (Eqs (4.65a) and (4.65b)) concerning rotations of the normal (U3,1 or

U3 ,2) and rotations about the normal (U 1,3 or U2 ,3 ). Multiples of these terms are higher-

order and can be neglected. Thus, Eq (4.59) becomes
S2 20

e(1 + u 2, 2) (U1, 2)

e2 (1 + U1, 1) -2U2, 3e (4.67a)2

4 -U3, 2  (l+U 1, 1)D (4.67a)

e5 -3, 1  0 -U1, 2D

e6 -(1+ U, ) U2, -U 2 , 1( + U2 , 2) -l, 3
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-2ul, 3  -2 (1 + u, 1 ) u 1 ,2 El

0 -2u 2, 1 ( 1 + u 2 , 2 ) £2

(-U 2 , 1) D -U 3 , 1 P4 (4.67b)

(1 + u 2,2) D £u3, 2 E5

--/2, 3 D 66

It should be noted the lID2 terms appears due to the products of Xk,I. The transverse

normal strain, e3, for transversely isotropic materials become

E I V2 1 (1 -v 23 ) + 21G3 =  - E2 (' 1- _ V 12V21- - -  ( +u2,2)2 1  (u1,2) 2 2 u 1,2(l +U2, 2) F-6
, (4.68)

V 2 3 V 1 2 V 2 1 U 2 - I + U 2 E1 ) U , 1 6 1- V (2V21) u2,1)2£1+ ( 1, 1 )2£ 2 -2(1+Ul )u 2 ,16

and for isotropic materials

e3- 2 (1 + u 2 , 2 ) 2E 1 + (U 1,2)2 P-2u, 2 (l+U2, 2)6
(4.69)

2 (u2,1)2 -1 + (l+u1,1) 2E2 -2(l+ul, 1)U2,1 6]

Finally, if we consider the magnitude of the terms U1 ,3 , u 2 ,3 , u 3 ,1, and u 3 ,2 with respect to

D, then the stress-state and strain-state relations become
E

G E 2 2
l+U 1 1 ) (U 1, 2 ) 0

E
22  2 + U2,2) 0

E 1 (U 2 41 )l
a 4  = D 0 0 (1 + U2,2) (4.70a)

GE 0 0 U

E (l+u 1 1 ) U2, 1 U2,1 (1 +U2, 2 ) 0
a 6
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0 2 (1+ul1, 1)ul, 2  0.1

0 2u 2, 1 1 + u 2 , 2 ) U2

u2, 1 0 0Y4  (4.70b)

(1+ u 1, 1) 0 ("5

0 Da 0"6

and

2 2

e, (1 + U2,2) (Ul, 2) 0

e2 (U2 1) (1+u 1 1)
2  0

e4 = 2 0 0 (1 +U1, 1)D (4.71a)

e5  0 0 -u, 2D

e 6 -( +u, 1) U2,1I -u2, 1 ( 1 + u2,2) 0

0 -2 (1 + u, 1 ) Ul, 2

0 -2u 2, I ( 1 + u 2, 2 ) E2

(-u2, 1) D 0 £4 (4.7 1b)

(1 + u2,2) D 0 E5

0 D' F-6

Now we can write the transformation from 2nd Piola Kirchhoff stress to Cauchy stress

coordinates as

(aj) _ [TD j(a) , (4.72)

and for the transformation from Green's strain to Cauchy strain as

(e) D [2 (2) , (4.73)

where [T1] is defined by
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(1 +U 1
)  (U1,2 )2 0 0 2(1 + U1 1) U1, 2

(u 2 , 1) (1+u 2 , 2 )2 0 0 2u 2 , 1(1 +u 2 , 2 )

IT,]o o (1 +U2,2) '2, o (4.74)

0 0 U1,2  (1 +u1, 1) 0

( +U 1 , 1) U2,1 U ,2 (1 +U2,
)  0 0 D'

and [T2] is defined by
22

( u2,2) (u1, 2) 2 0 -2u 1, 2 ( 1 + U2,2)

(u2, 1) (1 +U1 , 1) 2  0 0 -2(1 +u, 1 ) U2,
[]0 0 0+u 1 1 )D u2 ID (4.75)

0 0 -U1 , 2 D (1 +u 2,2)D 0

-U2,1 (1 + u2,2) -(1 +U1, 1 )/u 1 , 2  0 0 D'

Recall, in Eulerian coordinates, we express the Cauchy stress-strain relations as

((YE) = [A] (e) , (4.76)

where [A] is the Eulerian constitutive matrix. For a large-strain, total Lagrangian formula-

tion, we write

D

or

= A]= [T2]] [D , (4.78)

where [D] is the Lagrangian constitutive matrix required for a large-strain analysis. It

should be noted that [T1] and [T2] are inverses of each other by the definition given in Eq

(4.78). Thus, the symmetry of [D] is maintained. It should be noted that Eq (4.78) follows

the formulation of

(Ti = D ijkl k1 '(4.79)

where

1axi ax 3xk ax1
D. = (4.80)

ijkl =DX DX DX an X a nnopm n o p

Amnop is the constitutive relations of the Cauchy (Eulearian) coordinate system only.

4-29



Thus, for a total Lagrangian formulation, these relations must always be transformed into

Dijkl when the small strain assumption is no longer valid (i.e. when rotations and/or dis-

placements become significantly large). This usually occurs when rotations reach the

magnitude of 150 (0.263 rad) or if the magnitude of displacement is greater than five times

the shell's thickness (d < 5h). Results in Sections 5.1, 5.3, and 5.5 demonstrate how the

material transformations alone do not reflect greater flexibility in the shell's response.

Such problems are considered plates or shallow shells when comparing their depth (8)

versus shell thickness (h). However, Eq (4.78) incorporates the assumptions of shell the-

ory which degenerates the analysis to a quasi two-dimensional form.

It should be noted that the'se transformations relate the Cauchy constititutive relations

to the Lagrangian constitutive relations, only. The implication of this becomes more clear

for fiber-oriented materials such as laminated composites than for isotropic materials.

Since these transformations relate only the constitutive relations between 2nd Piola stress-

Green strain and Cauchy stress-strain relations, an implicit assumption is made. The

assumption is that the fiber orientation is maintained during each increment, i.e., a 450 ori-

ented fiber will always be 450 in the Cauchy reference frame, and not rotate. In order to

capture fiber movement, a second transformation is required to quantify the change in

fiber-orientation between each increment. Thus, the implied assumption is that changes in

fiber-orientation between increments of displacement are negligible. This is verfied in

Section 6.5 by comparing experimental results of a Gr/PEEK tensile coupon to the analyt-

ical model.

Once yielding occurs at a specified point in the layer, the elastic constitutive matrix is

replaced with the elastic-plastic constitutive matrix. Also, it is assumed that strains are

large enough such that the deformed and the undeformed structural axes are not co-

located. A transformation for both the stress-state and strain-state from Eulerian compo-

nents to the Lagrangian components is required to ensure the constitutive relations are in a

total Lagrangian form. Finally, for simplicity, the transformation matrices of the middle

layer of the shell is used for the remaining layers of the shell. Using this layered approach

allows for direct comparison with several published studies [67, 97, 102, 135, 137, 144 -

146, 153, 189, 205, 206].
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4.3 Element Independent Stiffness Formulation

The theory of the previous sections dealt with displacement fields, constitutive rela-

tions, and strain-displacement relations for curved shells with a nonlinear HTSD theory.

The next step required, to create a suitable research tool for the investigation of (1) spheri-

cal geometry, (2) nonlinear material effects, and (3) large-strain formulation, is the devel-

opment and solution of the governing differential equations for shell problems. Since the

author is specifically interested in the nonlinear phenomena of large displacements and

rotations, no analytical or linear solutions are desired. Furthermore, to provide a suitable

comparison to previously published methods, the author has chosen to develop the gov-

erning differential equations and solve these in a manner consistent with that of Dennis

[48]. In his development, Dennis used an "element independent" finite element formula-

tion for an incremental/iterative solution based upon the principle of stationary potential

energy of a linear-elastic laminated shell [48:78-95]. This method is employed for the

elastic and large strain formulations. However, since plasticity is unconservative, the sta-

tionary potential energy formulation is incorrect. Thus, for the elasto-plastic formulation

an incremental elasto-plastic potential energy formulation is developed.

4.3.1 Elastic Formulation: The finite element technique is a powerful numerical

method capable of solving many coupled partial differential equations over a certain

domain. In this research, the domain is a spherical shell, shown in Figure 4.1, and theequa-

tions are based upon the variation of the total potential energy, Hip, of the elastic body.

Specifically, the principal of stationary potential energy is used where 6 1Ip = 0. The poten-

tial energy expression is found by first examining the equilibrium state of the body. For a

body of volume V with prescribed forces F on part of its surface S1 and prescribed bound-

ary conditions on the remaining part of the surface S2, the equation of equilibrium for an

infinitesimal virtual displacement Au is given by

f -uS I (F u')dS = 0 , (4.81)

where

a'j_ the components of the Second Piola-Kirchhoff stress tensor (for the orthogonal
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coordinate system chosen, &J = 5)

YJ the Green strain components expressed in the body's coordinate system

Pk =components of body forces, and

Fk -components of prescribed suriace forces.

For a conservative system, one where the forces Fk do not vary during virtual displace-

ment, there exists a strain energy density function W*, such that

aW*
a Yij (4.82)

Assuming strains are small, then one can express the stress in terms of strain as

atj = Cijklykl (4.83)

where Cijkl are constants in the Eulerian elastic tensor. Thus, the strain energy density

becomes

1
W* = 2 C ijklyijkl (4.84)

The first variation of the potential energy for the case with zero body forces is given by

M = 84 W* (uk) dV- f FkukdS = 0 . (4.85)
V SI

To evaluate Eq (4.85), a suitable reference frame musts be chosen. A typical method is to

assume a total Lagrangian approach where the strain tensor, elasticity tensor, and all other

components are described in terms of coordinates of the original undeformed body.

For a laminated orthotropic material, the stress components can be written in terms of

the reduced structural stiffness of the lamina as in Eq (3.61). Substituting Eq (3.61) into

Eq (4.84) and integrating over the volume of the body, one obtains the strain energy as U1

+ U2, where

It f - 2 -- 2 ....- 2P2-6+ _662 d

U 1 = J (QI-I + Q226 2 + 2Q12ells2 + 2Q 16 6 + 2Q 2 6a 2 E6 + Q66a6) dV

1f - - 2 (4.86)

U2 =J (Q24 + 2Q45F 4E 5 + Q5565) dV
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The si in Eq (4.86) depend on the thickness coordinate and the midsurface coordinates Yi

and Y2. The Qij, defined by Eqs (3.60) and (3.62), however, depend only on the thickness

coordinate. Thus, these equations cafbe reduced to an integral over the mdisurface of the

shell. This is done by first assuming displacement components u1, u2 , and u3 vary in the

form of a series expansion with respect to the thickness coordinate. Then, one can directly

integrate the Qj expressions through the thickness of the shell. The integral through the

thickness of QiJYr defines an elasticity array, say Cij. These arrays are the familiar A Bj,

Dij , ... associated with macro-mechanical behavior of laminated composite plates [94:154-

155]. For the laminated composite, the integral is replaced by summation over the number

of plies as shown below

N

C ij = Aij = I (Qij) k(Y 3 k--Y 3 k_)

k= I

N

= k 2 2Ci'j2 = Bij = 1: (aij) k(Y3k--Y3k_- )

k= I

N (4.87)

Cij3 =Dij X (Qij) k 3 k 3

k= I

N

Cit Ti-j (aij) k (Y -5 Y5
-15 3k ik-C.=T.= k3 -Y3k_ I)

k= 1

It should be noted that even though yn3 where n = 1,15, Tij is of the same relative order of

magnitude as Aij. Recall, from Eq (4.1), the kinematics for a general spherical shell.

Notice that a y33 term appears in both uI and u2. Also note that k = -(4/3)h 2 which implies

the last term in both uI and u2 is of the same relative order of magnitude as the middle

term. Thus, Tij is of the same relative order of magnitude as Aij.
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The previous expression for the variation of total potential energy lip gives five cou-

pled nonlinear partial differential equations which govern the equilibrium of the system.

These expressions contain 18 displacement parameters: u, U,1 , U,2, V, v,1, v,2, w, w,1, w,2,

W,11, w,22, w,12, W1, '41.1, W1,2, W2, W2,1, and W2,2. The array of these terms is called the dis-

placement gradient vector, { d }. These parameters include the seven displacement param-

eters in Eq (4.72) and their derivatives. Since the equilibrium equations are nonlinear in

terms of the displacement parameters, an incremental-iterative approach is typically used

to solve a system of linearized equations which yields an equivalent solution. These lin-

earized equations are found by differentiating the expression for lip with respect to the

displacement functions. For simple theories, such as a Donnell theory or a linear FTSD

theory where relatively few terms are included, the first variation of lip and its lineariza-

tion, can be explicitly developed, term by term. For more complete theories, such as the

quasi-nonlinear HTSD theory [48] or a fully nonlinear theory, the expression of lip has

several hundred terms. Its first variation would include, perhaps, thousands of terms and

the subsequent linear equilibrium equations would be quite lengthly.

Rajasekaran and Murray [173] developed a formal procedure for finite elements,which

defines the total potential energy, its first variation, and the linear incremental equilibrium

equations in terms of three stiffness matrices. Specifically, the total potential energy is

given by

T
lip = [ [ ]{q1}1] ]]11- I q} P (4.88)

where

{ q } a column array of nodal displacement parameters

{P} a column array of nodal loads

[K] an array of constant stiffness coefficients

[N1] - an array of nonlinear coefficients with each term dependent on one of the

displacement parameters ([NI] is linear in terms of displacement), and
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[N2] an array of nonlinear coefficients with each term dependent on the product of

two displacement parameters ([N2] is quadratic in terms of displacement).

By carrying out the variation of Eq (4.88), one obtains the virtual work expression

(and the equilibrium equations, F) as shown in Eqs (4.89) & (4.90). In Eq (4.89) note that

K, NI, and N2 of Eq (4.88) are duplicated as a result of carrying out the variation of Eq

(4.88). 1 1
U1 = -TN+-N  = 0

(4.89)

= q F(q) = 0

Then, for an arbitrary and independent 8q,

F (q) = 0 (4.90)

Eq (4.90) represents the nonlinear algebraic equations in the nodal degrees of free-

dom(dof) q. Solutions to Eq (4.90) are found iteratively through the linearized incremen-

tal equations. These are derived by expandng Eq (4.90) into a Taylor series as shown in

Eq (4.91), where the higher order terms are neglected since Aq is assumed to be small.

aF
F(q+Aq) = F(q) + qAq+... = 0 (4.91)

Rearranging Eq (4.91) and letting KT = K + N1 + N2 gives Eq (4.93) where the stiffness

arrays K, N 1, and N 2 are duplicated as a result of taking partial derivatives of F.

aF
-Aq = -F (q)

[K + NI + N 2] (Aq) = -F (q) 
(4.92)

[KT]q = -F(q) (4.93)
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Eq (4.93) gives solutions in an iterative manner via a Newton-Raphson technique. The

current values of q are substituted into N, and N2 resulting in an array of constants for KT

The set of linear equations are then solved for Aq, which is then added to q giving the

updated nodal displacements. Assuming the solution is not yet converged, the right hand

side (RHS) of Eq (4.93) is nonzero. Iteration continues until F becomes arbitrarily small,

signifying equilibrium is satisfied. The equilibrium equation, then is given by

]+2 +5- = {o} , (4.94)

and the linear incremental equilibrium equation is given by

[[K]+ [N1] + [N2]] {Aq} - -AP} = {o (4.95)

According to Rajasekaran and Murray, this notation was introduced by Mallett and Marcel

in 1968 [173]. To assure the formalism of Eqs (4.88) - (4.95) holds, the stiffness matrices

[K], [Ni], and [N2] must be derived in a specific way. Rajasekaran and Murray showed

that by expressing strain components as follows
T 1 T

{gi} = {Li} {d} +g{d} [Hi] {d} , (4.96)

and then redefining the terms of [K], [N1], and [N2] the formalism of Eqs (4.88) - (4.95)

would always be valid for any finite element representation of elastic continuum. In Eq

(4.96) the terms are defined as:

gi = a particular strain component

{d} - a column array of continuum displacement parameters is the 18 x 1

displacement gradient vector

{LI} - a column array of the constant coefficients of terms in -i containing only one

displacement parameter (the terms are linear with respect to displacement), and

[Hi] - a symmetric array of constant coefficients of terms in si containing the product

of two displacement parameters (the terms are quadratic with respect todisplacement).
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Using Eq (4.96) and defining the terms for a specific si as siL + eiNL, the expression for

potential energy of an elastic material can be written as

1 t CL L L NL NLNL'dV d T
rip = Ci Ei . +2 j ' +  _ )dV-jd} {} (4.97)

where Ci1 is the symmetric array of elasticity constants and summation on i = 1, ..., 6 andj

= 1 ..... 6 is implied by the repeated subscripts. Introducing Eq (4.96) into Eq (4.97) yields

l-[= if Cij d, T Li) (L ) T + (Li) {d} T[H] (4.98)

1{ T [H

Notice at this point, Eqs (4.96), (4.97), & (4.98) are expressed in terms of {d}, the con-

tinuum displacement gradient vector. No finite element discretization has been used. Thus,

these equations represent an element independent formulation. By defining an element

approximation for the continuum displacements displacements {d} in terms of nodal dis-

placements {q}, one defines a specific formulation. To provide a general formulation,

however, the stiffness matrices of Eqs (4.88) - (4.95) can be developed in terms of the ele-

ment independent formulation of Eqs (4.96) - (4.98). In this fashion, we seek definitions

for [K], [N1], and [N21, such that Eqs (4.88) - (4.95) will hold. Rajasekaran and Murray

showed that the direct comparison of the terms of Eq (4.98) and those of Eq (4.88) will

yield arrays [K], [N1], and [N2] which satisfy Eq (4.98). Unfortunately, these arrays will

not satisfy the formalism of Eq (4.95). In some cases, they will not even satisfy Eq (4.94).

They showed that consistent representations of these arrays are given by the following

expressions

F] T
Lki = Ci {Li} { L} , (4.99)

[C12 = j Li IIdT + {d} T {Li} [H,] (4.100)

+ [H] {d} {L} T
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T[ 1 T[
[p] Cij([H] I{d} {d}T[ +'I{d} [H] d [H]j) . (4.101)

Rajasekaran and Murray's formulation was for finite elements where strains do not-

vary through the thickness of the element. This formulation is extended to account for

variation of strain through the thickness [48:79-91]. To do this, one assumes strains at a

point in the shell are represented by the following series expansion

2d+g

= +Y3 (4.102)

p=l1

where

Y3 - the distance from the midsurface in the e3 direction

XI'(Y],Y2) - the coefficients of P3 appearing in the strain expression

d the degree of the displacement field expression, and

g the degree of the series expansion approximation of shell shape factor functions

appearing in the strain tensor.

Rewriting Eq (4.102) consistent with Eq (4.96), one obtains

n
nF I ((Lfi 1 TI-~ 1  )P

i ={d} + -2 I d } ITd} y ,(4.103)

p= 0

where

(L/') -a row array of the constant coefficients of terms in ei containing only one

displacement parameter and the thickness coordinate y3 to the power p, and

[HI ]- a symmetric array of the coefficients for terms in -i containing products of

displacement parameters and the thickness coordinate Y3 to the power p.

With this power series expansion of strains, for an elastic analysis, the terms of Eq

(4.98) are written as
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n n

[.j(Lp]L (L ~ (4.104)

n n

p=Or=O

where

Ci] Q +jy3  Idy , (4.107)

are the higher order elasticity arrays and summation on i,j = 1, 2, 4-6 is implied. Notice

that these equations are a result of directly substituting definitions of (Li) and [Hi] into

Eqs (4.100) - (4.101). These expressions do not satisfy the formalism of Eqs (4.88) -

(4.95). In a fashion similar to Rajasekaran and Murray's formulation, Eqs (4.104) -

(4.106) can be manipulated to yield new definitions for arrays [K], [N1], and [N2] that sat-

isfy the formalism of Eqs (4.88) - (4.95)

n n[f.V] = _ 2Cij[ L jT Id [HrJ] (4.108)

p=r=0
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n n

IdT1 T C [( Q d [H]+ r)LI>T}[Hj] ,(4.109)

p=Or=0

+ Id T (LP) [H'r {dT(L rH~ +TH }L

+ [Hgi {d}(Lfl T ]

n n

[f 2] 1 2 idT J] (4.110)

p = 0Or = 0

+ [Hr] I jI d T [Hj + V Id Hp Hr

2

+ id} T [Hr d [ e

Equation (4.109) can be simplified and still retain the formalism of Eqs (4.88) - (4.95) (see

[48:87-89] for the exact discussion concerning this simplification). The simplified version

of Eq (4.109) is

n n

[K 1] = Z CiJ(LJ]{d.T[H (4.111)

p=Or=O

+ d} (LP)H [Hr 1 {d}l ]

With the definitions of (LP), [HP], [k], [T 1 ], and [f2 ], one can now form the ele-

ment independent stiffness arrays given by Eqs (4.108), (4.110), & (4.111). This formula-

tion requires literally hundreds of matrix multiplications to evaluate these equations.

MACSYMA, a symbolic solver/generator program, was used to accomplish this task.
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4.3.2 Large Strain Formulation: To consider a large-strain analysis, the potential

energy equations (Eqs (4.97) & (4.98)) remain in the same form. The strains are given in

the total Lagrangian form of Eqs (4.102) & (4.103). Thus, refer back to Eqs (4.108),

(4.110), & (4.111) to determine

n n
1 (pV"T

2(p)L (Lr(pT , (4.112)

p = Or = 0

n n

[] - = Z  C* J  r [tLi ){d} T[H r] (4.113)

p =Or=O0

n n

[/r2] =1 [[Hpf {d} {d} T[H~ , (4.114)

--V1 Y' Z C*ijp+r [(JP

p=Or=O

+d} ( + [ H ]+ dTI {d [H] IdT[H

c* p =0r=0

are the higher-order elasticity arrays, with the material transformation matrices (T1) and
(/'2) included, and summation ij = 1, 2, 4-6 is implied.
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4.3.3 Elastic-Plastic Formulation: Since plasticity is unconservative from a total

potential energy formulation, an alternative approach is considered. Hill [79] and Washizu

[229] showed that from an incremental formulation, plasticity is considered to be conser-

vative for the incremental since plasticity is considered to be conservative from an incre-

mental potential energy expression. Thus, recalling the form of Eq (4.86) we have, for an

orthotropic lamina

!F (-ep 2 -ep 2 -ep
AU 1  2J v Q1 1 A +Q 2 2 A 2 +2Q 12 A l AE 2  , (4.116)

-ep -ep -ep 2
+ 2Q 1 6 AF 1 Ae 6 + 2Q 2 6 A- 2 Ae 6 + Q 6 6 AE6 )dV

AU - -ep --ep-ep 2
U2  2 Q 44 AC 4 + 2Q 4 5 A 4 A5 +Q 55A 5 )dV

such that AU = AU1 + AU 2. From Eq (4.87) one develops an elasto-plastic array, CePij, of

the form
N

p e -ep

Ce 1 = A7 = ) (QiJ)k(Y3 k -Y3k_ )
k= I

N

ep ep -ep
Cie =Bf = (Q) ij k Y3k-Y3k_ )

k= I

N (4.117)
ep ep - ep
U3  D3k -Y3k-_ )

k=l

N

ep (-ep 15 15Ci 5 7= Zi= (Qij ) k(Y I-Y'~ l

k= I

The incremental strain components follow the format of Eq (4.96) and are given by

T 1 1TV
AE i = (Li) {Ad} + {Ad} [H {Ad} , (4.118)

where

Aei - a particular incremental strain component

{Ad) = a column array of incremental continuum displacement parameters
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(Li) - a column array of the constant coefficients of terms in AFi containing only

one displacement parameter (the terms are linear with respect to displacement), and

[Hi] = a symmetric array of constant coefficients of terms in As i containing the

product of two displacement parameters (the terms are quadratic with respect to

displacement).

Using Eq (4.118) and defining the terms for a specific Aei as AsLi + ACNLi, the expres-

sion for incremental potential energy of an elasto-plastic material is written as (following

the format of Eq (4.97))

A I= ifvC eA LAL+ 2ALA ENL +A A .N dv , (4.119)
p 2 i I J i

T
- {Ad} {P}

where CePij is the symmetric array of elasto-plastic coefficients, determined at each incre-

ment of displacement or load. Introducing Eq (4.118) into Eq (4.119) yields

A = 2 Cij{Ad} (Li) (L) + (Li) {Ad} ] (4.120)Ap 2v ( i

+ ' [Hj { Ad} { Ad}T[H] ] {Ad} dV- {Ad} T{P}

The incremental elasto-plastic forms of the [k], [fl 1, and [f92 ] arrays, similar to Eqs

(4.99) - (4.101) (the generalized Rajasakeren and Murray equations), are

kp] = CeP LP.(Lr)T (4.121)

eIp~ l  p

[ Cie ( Ad)TEH] + (Ad) T(Li) (4.122)

+ [Hi] (Ad) (L i) TJ

[ 4p] Cij [H {Ad} {Ad} T[] (4.123)

2 d [] I Ad [H-43
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Since the strains do vary through-the-thickness, a consistent incremental expression (fol-

lowing Eq (4.103)) is given by

n ( T1 T[/.

AE = (Li) I A Ad}L J {Ad})y , (4.124)

p=0

where

(LIP) = a row array of the constant coefficients of terms in As containing only one

displacement parameter and the thickness coordinate Y3 to the power p, and

[HP] = a symmetric array of the coefficients for terms in AFi containing products of

displacement parameters and the thickness coordinate Y3 to the power p.

To consider an elastic-plastic analysis, refering back to Eqs (4.108), (4.110), &

(4.111)determines that including Eq (4.124) in Eqs (4.121) - (4.123) yields

n n

eP 1ep (( )(Lj)T+(L(L )T)  (4.125)
2A J(p +r)

p=Or=0

n n

[e ]= X Cepp+[)(LP)I{Ad}TH j (4.126)

p = 0Or = 0

Adp I + [H ] { Ad}( A}]

n n
21;]  = £ 2C ij p +,.)1 p V p T r[~] j~p~)~ JjAd} I{AdLHr] (4.127)

p = 0Or = 0

+[Hr {Ad {Ad T[H] + { Ad} T [IHj I{Ad}I [H r]

+ {A} H]{d} 4)
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where

lJ(h) (Yl - ep T (p + r) (4.128)cj(p +r) -- D Zi Qij T~ 3 )dY3(418

are the higher-order elastic-plastic arrays, with the material transformation matrices (T1)

and (T2) included, and summation ij = 1, 2, 4-6 is implied.

4.4 Symbolic Generation of the Elemental Codes

A significant accomplishment of this research was the development of a tool to gener-

ate comparable versions of "elemental code". The results comparing various theoretical

attributes would be meaningless if undetected errors were present in some variations, or if

different finite element models or discretization schemes were used. For this research, a

reliable system of generating different, but comparable, versions of code was required. A

MACSYMA routine was developed from previous work in Smith [207] to symbolically

generate the assumed displacement field, determine the strain components, determine the

shell shape factor approximations, determine the elements of the strain definition arrays,

and finally generate the Fortran code for the elements of the [k], [ks], [f&i ], [&,, s], [V2 ],

and [f 2s ] stiffness arrays which includes spherical geometry. Development of this routine

was crucial apsect of this research. With elemental codes approaching 40,000 lines in

length, the detection of errors by "hand generation" would have been virtually impossible.

The symbolic generation of codes assures reliability and comparability not achievable by

other means. By using these codes in an element indepedent formulation, the accuracy of

each version of theory could be compared using the same finite element model and main

program (SHELL). This further assured a fair comparison of the various theoretical

attributes of each version. The only variables were the displacement field (Donnell

approximation, modified Donnell approximation with linear transverse shear, or the cubic

displacement field of Eq (3.72)), constitutive relations (elastic or elastic-plastic) and

whether the choice to include the material coordinate transformations. The theoretical

attributes of the elemental codes used for this research are summarized in Table 1.
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Table 1 Definitions of Elemental Codes for Variations of Theory

Code Displacement Constitutive Material Equations

Name Assumption Relations Coordinate Given in

GXYZ Field Analyzed Transformations Appendix

SOOO Donnell (1) Elastic Not Included C

SOOl Donnell Elastic Included C

S S01i Donnell Elastic-Plastic Included C

SIOO modified Donnell (2) Elastic Not Included D

S 5101 modified Donnell Elastic Included D

Si1l modified Donnell Elastic-Plastic Included D

S200 Cubic Nonlinear (3) Elastic Not Included E

S201 Cubic Nonlinear Elastic Included E

S211 H Cubic Nonlinear Elastic-Plastic Included E

(1) ui defined in Eq (C.2)

(2) ui defined in Eq (D.2)

(3) ui defined in Eq (E.2)

The codes are identified by a symbol "GXYZ", where

G = P for plate, C for cylindrical, S for spherical, or A for arbitrary shell geometry

Appendix A lists relations for arbitrary shells and Appendices B through D list relations

for spherical shells. The plate and cylindrical shell relations are embedded within the

spherical shell relations. They are derived by setting the parameters D and/or C to zero,

X = 0 for the Donnell approximation displacement field of Eq (B.2), 1 for the modified

Donnell approximation displacement field of Eq (C.2), or 2 for the cubic displacement

field of Eq (D.2),

Y = 0 for an elastic analysis, or 1 for an elastic-plastic analysis, and

Z = 0 for no material coordinate transformations, or 1 to include material coordinate
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transformations from Eulerian to Lagrangian coordinates.

The MACSYMA routine for generating elemental codes is included as Appendix E.

The routine includes comment statements to explain some special functions, called mac-

ros, and a few comments to explain the steps in the process. The generation of each ver-

sion of elemental code follows the same steps listed in Reference [207: Chap 4,20-24].

4.5 Finite Element Solution

The element independent stiffness matrices of Eqs (4.108), (4.110), & (4.111) depend

upon the continuum displacement gradient vector { d}. This vector includes the following

functions: U, UJ, U,2 , V, v 1 , v 2 , w, W11, w 2 , w,1 1 , w 2 2 , w,12 , l, W1J, 'VI,2, WV2 N 2 ,1, and

W2,2. Likewise, the potential energy of Eqs (4.97) & (4.98) also depend upon these func-

tions. Using a standard displacement-based finite element method, the 18 two-dimen-

sional functions of the continuum displacement gradient vector {d(y1, Y2)} are

approximated by interpolation from discrete values of nodal displacement parameters.

These nodal parameters or degrees of freedom (dof), are defined only at a finite number of

points or nodes and are denoted by { q } in Eq (4.129)

{d(y 1, Y2) } = [b(Sls 2 )] {q} , (4.129)

where [b (s1 , S2)] is an array of nodal interpolation functions and (sl, S2) are the localcoor-

dinates of a two-dimensional rectangular finite element.

4.5.1 Elastic Finite Element Solution: If one substitutes Eqs (4.108), (4.110), (4.111),

& (4.129) into Eq (4.88) and rewrites the expression in terms of {q}, the one obtains for

the elastic potential energy

rip - 2 + 3 + [N2]] {q} T{p} , (4.130)
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where

[N] = Vd V (4.131)

[N2] =fvLb]T[R2] [d dV

The finite element method generally requires the computation of the stiffness matrices of

Eq (4.131) for each element independently. These elemental stiffnesses are then assem-

bled according to their relationship to global nodes of the structure. In this manner, Eq

(4.130) represents the potential energy of a single element. The total energy of the system

is then found by summing the energies of each element.

4.5.2 Large Strain Finite Element Solution: The large strain potential energy is given

by incorporating Eqs (4.112), (4.113), (4.114), and (4.129) into Eq (4.98), and rewriting in

terms of {q}. Thus,

_{q}T iF1N] 1T2]

Hp 2 + * + N* { q} - I q} {P} , (4.132)
p 3L~

where

[K*] fV 1[]T ] [L] d V(413

N* 2] V* dV

4.5.3 Elastic-Plastic Finite Element Solution: The incremental elastic-plastic potential

energy is given by [229]

AU=Jv({A }T{Aa})dV , (4.134)

or, following the format of Eq (4.97), the incremental elastic-plastic potential energy
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becomes

A -p I - fvCe(ALAL+ 2LANL NLANLv , (4.135)

Al - 2JV Cii AFi Ei + AiA + AE i E d(415

T
- {Ad} {P}

where C1.P is the symmetric array of elastic-plastic constants and summation on ij = 1, 2,

4-6 is implied by the repeated subscripts. Introducing Eq (4.96) into Eq (4.135) yields

AJJ= if Cj{AdT (Li) (L-) T + (Li) {Ad} T[H(4.136)

[H Ad} { Ad} T[Hj] {Ad} dV- {Ad} T{P}4

Eq (4.129) must be modified to represent this incremental formulation. Thus, the

nodal dof take on an incremental formulation, and are defined by

{Ad (yl, Y2 ) 1 = I(S, S 2)]{Aq} (4.137)

Incorporating Eqs (4.125), (4.126), (4.127), & (4.137) into Eq (4.136), and rewriting in

terms of {Aq}. Thus, the final form of the incremental elastic-plastic potential energy

takes the form

1 ] [ Aq} -[AqNT[N + 6 2P]] I - {P} , (4.138)

where

[KeP] = fV[)] T[keP] []dV

= fV l Lp ] LdV (4.139)

[N;P =p Sv W&P][b] dV

Carrying out the variation of Eq (4.139), one obtains
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8(AH ) 8({Aq} T)([ ep] + 1[Nep] +~ [N;P]{q(410
( [3 1 6f q(4.140)

- {P}) =6 ({Aq} T)F(Aq) = 0

Then for an arbitrary and independent 8(Aq), and following the derivations of Eqs (4.90)-

(4.92), the solution for an iterative manner via a Newton-Raphson technique is given by

[ep] + [N;I"] + [N epj) (A (Aq)) = [KT] (A (Aq)) . (4.141)

= -F (Aq)

Thus, incremental elastic-plastic equilibrium equation is given by

ep] + 2 ] + [Aq} - P}= {0} , (4.142)

and the linearized incremental elastic-plastic equilibrium equation is given by

[Kge p] + [N ] + [N2P])JAfAqI- P} = {0} (4.143)

4.6 The 36 Degree-of-Freedom Finite Element

Defining the terms of Eqs (4.130), (4.132), and (4.138) requires definition of the spe-

cific element, since the nodal parameters {q } and the associated nodal interpolation array

[,b(s 1 , s2)] are element specific. Recall, the three stiffness arrays [k]1, [fl ], and [f2] of

Eq (4.131), the three stiffness arrays [k *], [Nr1 *], and [Al2 *] of Eq (4.133), and the three

stiffness arrays [keP], [fV1 ep], and [fA2 
ep ] of Eq (4.139) are element independent. The

choices of the number of nodes per element and the nodal degrees of freedom at each node

have not been specified at this point. In fact, virtually any two-dimensional element that

will provide values of the 18 functions of the continuum displacement gradient vector {d)

could be used.

The author's research objective is to investigate structural phenomena. Thus, an exist-
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ing, proven finite element model for laminated cylindrical and spherical shells was used

for this research. For the S 1XX and S2XX elemental codes, the element chosen was the 36

degree of freedom (DOF) quadrilateral curved shell element described in Reference

[48:95-111]. This element has been used for many investigations of static and dynamic

response of plates, arches, and cylindrical shells undergoing large displacements with an

elastic cubic-nonlinear HTSD theory [49-51, 159, 160, 197, 198, 204, 207, 208, 217, 223,

224]. In addition to these investigations, many linear problems were used to validate the

element's performance. These problems included typical flat plate and patch tests used to

show convergence as the number of elements in a mesh is increased [160]. These patch

test problems were based upon a linear analysis, not a nonlinear analysis. This is because

the patch test is based upon the mathematical theory of linear partial differential equa-

tions. Since the element stiffness array includes nonlinear terms, the element will not pass

the usual definitions of the patch test unless the nonlinear terms are eliminated. For the

nonlinear problem, convergence cannot be proven by a simple patch test. Convergence

must be demonstrated. The 36 DOF element is shown in Figure 4.5. This element has

eight nodes with seven degrees of freedom u, v, w, w1 , w2 , Wj1, and Wg2 , at each comer

nodes and two degrees of freedom, u and v, at the four midside nodes. The two degrees of

freedom at the midside nodes allow for quadratic interpolation of in-plane displacements

of u and v. This is important for shells due to the curvature-induced coupling of bending

and membrane activity in shells.

The continuum values of u and v are interpolated from the nodal values Uk and vk,

using Eq (4.144) where Qk are quadratic Lagrangian interpolation functions given in Eq

(4.145) [48:110]

(8 8

u= I QkUk j v I QkVk (4.144)

k=l k= I
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Qk= 4 (1 -nkl) (4k4+'Ikrl - 1), (k= 1-4)

1 2
Qk = ( 1  (1 + 'Ikl) , (k= 6,8) (4.145)

1 2
k= ,(1-r ) 4k) (k= 5,7)

where the kth node has natural coordinates 4k = slk/a and Ilk = S2k/b. The natural coordi-

nates correspond to global coordinates (s1, s2) is the longitudinal and circumferential

directions shown in Figure 4.5.

The continuum displacement gradient vector {d} includes rotational degrees of free-

dom Wi and W2 and the first derivatives of these parameters. The parameters iVI and 2112

are shown in Figure 4.6. Linear interpolation can be used for these parameters, since only

C0 continuity is required. The interpolation functions of W, and W2 are given by Eq

(4.146) with the linear Lagrangian interpolation functions of Eq (4.147) [48:103].

AV1 = I NkVlk , 2 = NkOV2k (4.146)

k=l k=lI

1
Nk = 4 ( 1 + k4) (+ 'Ikn) (4.147)

The continuum displacement gradient variables associated with transverse displace-

ment w, include w and it's first and second derivatives. Figure 4.6 shows w, w1 , and w 2

(for moderately large rotation theory only). Nodal parameters associated with transverse

displacement include only the values wk, W lk, and W2k at the four corner nodes where k =

1 - 4. Interpolation of w is accomplished using Eq (4.148) and the Hermitian shape func-

tions of Eq (4.149) [48:103].

4

w (s 1 , s 2 ) = 1 (HI kwk + H 2 kW,1k + H 3 kW, 2 k) (4.148)

k= 1
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1 W

2R2

R 1

Figure 4.5 36 DOF Spherical Shell Finite Element - For S 1XX & S2XX Codes

H 1 2 k 1 12
Hlk = 1(1 + 4k 4) (+n1)2

a 2

H 2k = (1+ k ) ( (1+rnkn) k (4.149)

b 2
H 3 k = §(1 +4k4) (9 k 1 ) (1 0) T1k

The approximate continuum values for derivatives of u, v, w, x, and xh2, at any point

(, ) in the element, are also found by interpolation. This is accomplished by using the

corresponding derivatives of the interpolation functions. Thus, the approximate contin-

uum displacement vector is related to the array of discrete nodal degrees of freedom as

shown below

{d(4,r )} = (, (4.150)
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-Yi Y2

/|S11W2

wI / W/

IV, + w', 1 2 + W, 2

I

Y3 Y3

Figure 4.6 Rotational DOF Definitions for the 36 DOF Spherical Shell Element

where

[Q 1] 0 0.... ... [Q 4] 0 0 [Q 5] ... ... [Q8]

= 0 [H1] 0 ...... 0 [H4] 0 0 ...... 0 , (4.151)

0o 0 [N1 ....... 0 0 [N4] 0 ...... o

and

Q 0 NO

Q4 0 NO 0

L k 0 Qk 0N (4.152)
o Q ON
0 Q 4 0 N

0 Q ON, ,
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HI H2 H3

HI H2 H3
Hiq H2 n H3q

[Hkj HI H2 H3 (4.153)

Hi H2 44 H3 4

HIlT1 H2 H3'

- I 11 H21 4qH3,

In Eq (4.151), the numerical subscripts refer to node numbers. In Eqs (4.152) &

(4.153), the Greek subscripts imply differentiation with respect to the indicated natural

coordinatevariable. The k subscript implies that natural coordinates k and 11k appearing in

each interpolation functions are to be assigned values corresponding to the natural coordi-

nates of the kth node. In Eq (4.150), notice that { q} is an 36 x 1 array of nodal displace-

ments, [,b] is an 18 x 36 array, and the resulting array {d(4, rl)I is an 18 x 1 array as

expected. Transformation of coordinates using the inverse of the Jacobian matrix, [J], as

shown in Eq (4.154), completes the definition of the element interpolation scheme

[b(s,s 2 )] = [ [b(,rj)] , (4.154)

where [j]-I is a diagonal matrix for the transformation of coordinates used in this research.

Note that [j]- is given by

1-'10 0

j 0 F 2 0 (4.155)

0 0 F1

where
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1 0 000 0

01/a 0 0 0 0

0 0 1/bO 0 0 (4.156)

0 0 .0 1 0 0
0 0 0 01/a 0

0 0 0 0 0 1/b

and

1 0 0 0 0 0
01/a 0 0 0 0
0 0 1/b 0 0 0

2 0 0 0 1/a 2  0 0 (4.157)

0 0 0 0 1/b 2  0

0 0 0 0 0 1/(ab)

where a and b are defined in Figure 4.5.

With this finite element discretization, Eq (4.95) is written for an elastic formulation as

= {p - i; [= 1 an 1)lii [i~l+ l 2111)dannl~ } ,(4.158)

where
dan the two-dimensional domain of an individual element n

[J]dAn the natural coordinate system

m -=the total number of elements in the mesh
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{ Aq } the global column array of nodal displacement parameters assembled from

elemental array { Aq In

{ q } -- the global column array of nodal displacement parameters assembled from

elemental array { q },n

{q}n = a 36 x 1 nodal displacement array for element n

{Aq} n =- a 36 x 1 incremental nodal displacement array for element n, and

{R } = the global load array which has the same dimension as the global displacement

arrays {Aq} and {q}.

The integrations of Eq (4.158) are approximated by numerical integration using Gaus-

sian quadrature. Using one of the terms of the first summation of Eq (4.158) as an exam-

ple, the integral I shown in Eq (4.159), can be transformed to natural coordinates as

shown in Eq (4.160). Next, the integration of Eq (4.160) are approximated numerically by

a double summation of weighting factors at the corresponding Gaussian integration points.

This is shown in Eq (4.161).

Ln+ + dA n (4.159)

n 
1 -

Tn= J_ [][p][z][,2][] det [J] d~dil (4.160)

p r

I= W.WI($ ' ri) , (4.161)

i = 1] = 1

where

det [J] the determinant of the Jacobian matrix

I( , r) = [b ]T{ [k] + [&1i] + [f.2 ] I [/b ]det [J]= evaluated at Gauss integra-

tion points (4, iq)

WWj = the weighting factors

p =- number of Gauss points in a-direction
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q = number of Gauss points in il-direction.

The arranged indices i andj define the order of numerical integration. When m = n the

interation is called uniform. An n x n integration will exactly integrate a polynomial inte-

grand of order 2n-1 [44:172]. For this effort, a 36-dof element would require a 7 x 7

Gauss quadrature (49 Gauss points) for an exact integration. However, Dennis [51, 160],

Smith [207, 208], and Tsai [223] have shown that a 5 x 5 Gauss quadrature (25 Gauss

points) yields accurate results for the higher-order element (see Figure 4.7). The reduced

Gauss quadrature yields a dramatic decrease (-50%) in the computational requirements

needed for the element. Thus, for this research, the reduced Gauss quadrature was incor-

porated into the formulation. It should also be pointed out that this array of integration

points are used in the determination of the appropiate Jacobian transformations, for the

entire thickness, incorporated in the Lagrangian-Eulerian relationships.

Gauss point

7 x 7 Gauss Quadrature *
Element , , , , ,

5 x 5 Gauss Quadrature
Element

Figure 4.7 7 x 7 and 5 x 5 Gauss Quadrature Elements

The solution of Eq (4.158) is accomplished by an incremental-iterative technique com-
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monly called the Newton-Raphson method [48:115-127]. The parameters to be incre-

mented are the elements of the array {q} containing global degrees of freedom. For the

first iteration of the first increment, all elements of { q I are assumed to be zero and a linear

solution of Eq (4.158), one involving only [k], is found by Gauss elimination. This solu-

tion, call it {q} 1, is used during the next iteration to compute [VT1 ] and [R2 ]. Equation

(4.158) is then solved using [k], [RI ], and [ 2] to generate a new solution, call it {q} 2.

This process continues until the solution for { q} has converged. The following criterion is

used to determine convergence

Sr 
)2 1/2 - r- 1/2

q 21/2 X 100___ V (4.162)

where {qi}r, {q}-j, and {qi) 1 are the elements of {qi} for the t h , (r-I)th, and first itera-

tions, respectively, for a given increment. The criterion is satisfied when the left hand side

of Eq (4.162) is less than or equal to V, a user specified percentage tolerance. Values of V

ranging from 0.01 to 0.5 percent were chosen for the problems investigated. For each

solution discussed in Chapter 5, values of V are specified. The increment of displacement

is chosen to be 1/ 10th 11 15th of the total displacement desired for the particular problem of

interest.

For an elasto-plastic approach, an incremental formulation is incorporated. The incre-

mental forms of Eqs (4.144), (4.146), & (4.148) are

Au= I QkAuk ,Av= I QkAVk (4.163)

k= 1 k =1

4 (4
Awl= I NAkA k  AW2 =I NkAw2 k  (4.164)

k=l k=1
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4

Aw (Sl, s 2 ) = 1 (HlkAWk + H 2 kAW,lk + H 3 kAw ,
2 k) (4.165)

k= 1

where Eqs (4.145), (4.147), & (4.149) hold for Qk, Nk, & Hk respectively. Thus, the

approximate incremental continuum displacement vector is given as

{Ad( ,)} = Aq , (4.166)

where [/]( , i)] is defined by Eq (4.151) and Eqs (4.152), (4.153), & (4.154) hold.

With this finite element discretization, Eq (4.95) is written for an elasto-plastic formu-

lation (following the form of Eq (4.158)) as

[± , [] [k P] + [ I] + ['P]] [b dA {A (Aq) }

(4.167)

LdAe + [] +[b] [b]dAn {Aq}

-n {APn

where [k], [T 1 ], and [IV2] are dependent on {Aq}.

The solution of Eq (4.167) is accomplished in the same manner as for Eq (4.158).

However, instead of iterating to a converged solution for the array {q}, the solution con-

verges for the array { Aq }. Thus, Eq (4.162) takes on the incremental form of

J(q.il { )A2i)rI2'l/2 -(j( {Aqij r- 1)2) 1/ 2

)2x1/2 A 100 <_ V , (4.168)
( {Aqi})

where {Aqi},, {Aqi},., and {Aqi}l are the elements of {Aq} for the rth, (r-l)th, and first

iterations respectively, for a given increment. The criterion is satisfied when the left hand

side of Eq (4.168) is less than or equal to V, a user specified percentage tolerance. Values

of V ranging from 0.01 to 0.05 percent were chosen for the problems investigated. For
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each solution discussed in Chapter 6, values of V are specified. For same value of V sec-

ified for the elastic solution, the increment of displacement was chosen to be the same as

the elastic solution. However, once approximately 20% of the outer surface exhibited

strains greater than 2.5%, the displacement increment was halved to maintain the same

convergence tolerance for equilibrium.

* = Gauss Point A Upper Surface

* * ,i h i

* * hi

Mid-Surface - -

* * hi

hi

Lower Surface

Figure 4.8 Integration of Gauss Points Through the Element's Layers

At this time, a brief discussion regarding the through-the-thickness, elastic-plastic

analysis is presented by refering back to Figure 4.2, along with Figure 4.8 above. For

every Gauss point considered in a 5 x 5 Gauss quadrature elastic-plastic solution (refer to

Figure 4.7), it assumed that the Gauss point extends through the element and a Guass point

is given for each layer considered. Thus, at each iteration of every increment of displace-

ment, the stress-strain state is tracked for every Gauss point, at each seperate layer, within

the element. Thus, refering back to Figure 4.2, as the outer layers become plastic, the

associated Guass points' stress state within those layers exceeds the yield stress, C > ay,
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and are behaving in an elastic-plastic manner. The remaining Gauss points for the other

layers are still considered to behave in an elastic manner since they have not reach the

condition a > ay For the Gauss point(s) in the layer(s) where a > y the consitutive rela-

tions are modified to follow Eqs (4.10a) or (4.21a) for isotropic or orthotropic material,

respectively. Then, the consitutive relations are integrated through-the-thickness to gener-

ate the elasticity arrays Aij - Tij discussed in Eq (4.117). These in turn, are used to calcu-

late the stiffness arrays, [k ]eP, [fj1 ]eP, and [fV2 ]ep

4.7 The 28 Degree-of-Freedom Finite Element

4.7.1 S1XX & S2XX Codes: For the S 1XX & S2XX codes, when the in-plane contin-

uum displacement dof, u and v, are not directly coupled to the transverse displacement dof

as in a linear anlysis of a cylindrical or spherical shell, or if a flat plate is being analyzed,

then a simpler finite element may be used. By removing the additional dof, u and v, at each

of the midside nodes, a 28 DOF finite element is developed with linear approximations for

the in-plane dof u and v (see Figure 4.9). Thus, Eqs (4.144) & (4.145) become

U I Nkk  Nk Vk , (4.169)

k=l k =1

1
Nk = ( 1 + k4) (1 + r1krl) (4.170)

where Nk are linear Lagrangian interpolation functions [48:103]. Then Eq (4.151)

becomes for the linear 28 DOF element

[NI] 0 0 ...... [N4] 0 0

[= 0 [H1] 0 ... 0 [H4] 0 (4.171)

0 0 [N1] ....... 0 0 [N4]

where Nk is defined by Eq (4.152) and Hk is defined by Eq (4.153). Recalling Eq (4.150),
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notice that {qI is a 28 x 1 array of nodal displacements, [,b ] is an 18 x 28 array, and the

resulting array {d(4, rj)} is an 18 x 1 array as expected. Eqs (4.154) - (4.162) remain the

same as before.

4 litSl,4

b 3

W, w2, -_W2 s 2 ,11

W2 R 2

R
1

Figure 4.9 28 DOF Spherical Shell Finite Element - For S lXX & S2XX Codes

4.7.2 SOXX Code: To develop a quadratic element for the classical thin shell SOXX code

similar to the 36 DOF element discussed previously in Section 4.6, a 28 DOF spherical

finite element was developed (see Figure 4.10). The in-plane dof u and v are interpolated

with the quadratic Lagrangian approximations of Eqs (4.144) & (4.145). In the classical

thin shell theory, the dof yi and its derivatives are neglected. Thus, there are five dof per

comer node (u, v, w, w1 , w 2) and two dof at the midside nodes (u & v). The dof w and its

derivatives are interpolated by the Hermitian functions listed in Eqs (4.148) & (4.149).

Then Eq (4.151) becomes for the quadratic 28 DOF element
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H 1 0 0... ... 0 [H4] 0 0Q5 . . Q8

[ [ 0 ...... [H4] 0 ...... 4172

where

Q4 0

L = Q 0, (4.173)
0 Q
0 Qr1

and Hk is defined by Eq (4.153). Recalling Eq (4.150), notice that {q} is a 28 x 1 array of

nodal displacements, [b]I is an 10 x 28 array, and the resulting array {d(4, 11)} is an

10 x 1 array as expected. Eq (4.155) takes the form

IJ = (4.174)0F 2

where

1/a 0 0 0

0 1/b 0 0
1 0 0 1/a 0

0 0 0 1/b

and

10 0 0 0 0

0 1/a 0 0 0 0

0 0 1/b 0 0 0
12 0 0 0 1/a 2  0 0 (4.176)

0 0 0 0 1/b 2  0

0 0 0 0 0 1/(ab)
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where a and b are defined in Figure 4.10. Eqs (4.158) - (4.162) remain the same as before.

u4 1 7 S2

8 T 3

WW2, 21

w 2 R 2

R 1

Figure 4.10 28 DOF Spherical Shell Element - For SOXX Code

4.8 The 20 Degree-of-Freedom Finite Element

For the SOXX code a linear version of the finite element discussed in Section 4.7.2 is

given by removing the midside nodes and the in-plane dof u and v are approximated by

linear Lagrangian interpolation functions defined in Eqs (4.169) & (4.170) (see Figure

4.11). Then Eq (4.172) becomes

0N ] (4.177)

0 [ ,] 0..o .. N. 4 [H ]j
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where

NO0

[Nk =- N (4.178)0 N

O Nt

and Hk is defined by Eq (4.153). Recalling Eq (4.150), notice that {q} is a 20 x 1 array of

nodal displacements, [b] is an lOx20 array, and the resulting array {d(4, 1r)} is an

10 x 1 array as expected. Eqs (4.158) - (4.162) and (4.174) - (4.176) remain the same as

before.

4 Sl,4

w1 u al

W2 R2

Figure 4.11 20 DOF Spherical Shell Element - For SOXX Code
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4.9 The Incremental, Displacement- Control, Elastic-Plastic Algorithm

To understand the elasto-plastic formulation of the Newton-Raphson nonlinear solu-

tion algorithm, a discussion is given of the Newton-Raphson algorithm from a load-con-

trol approach, then a displacement-control approach, and finally the incremental,

displacement-control, elasto-plastic approach.

4.9.1 The Load-Control, Newton-Raphson Algorithm:

Recall from Eq (4.93)

[K T (d)] {Ad} = -F(d) (4.93)

or, in terms of the Rajasekaran & Murray formulation

E[K] + [N l (d)] + IN 2 (d 2 )]] {Ad} - (4.179)
{P -[K] + [NIl ( d ) ] I+IIN2( 2 ) jl q

}

As described in [162:Chap 3], for a given first increment in load, P1, Eq (4.179)

reduces to

[K(d)] {dl} = {P 1} (4.180)

Now d1 is subsituted into the stiffness arrays N1 and N2 and the updated tangent stiffness

array, KT, is given by

[KT] = [[K] + [NI (dl)] + [N 2 (d2)]] (4.181)

The tangent stiffness array, KT, is comprised of constants after the d substitution and repre-

sents the local slope at d, of the actual load versus displacement relationship (see Figure

4.12). After similarly subsituting d1 into the right-hand side of Eq (4.179) for the incre-

mental displacement, Ad1
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[[K] + [N1 (dl)]I + [N2 (d 2)]] {Ad1 } - (4.182)

1 1
{P11 - [K] + [Nl(dl)]+ [N2 (d 2)]{dl

The right-hand side of Eq (4.182) is the residual force vector AR1 shown in Figure 4.12.

The displacement d is updated as in Eq (4.183) and illustrated in Figure 4.12

{d 2 } = {dl} + {Adl} (4.183)

Iteration continues using the recursive relationships of Eqs (4.184)-(4.185) until the resid-

ual force vector AR n becomes small, signifying that the equilibrium equations F(dn) are

satisfied

[[K] + [NI (dn 1 )] + IN 2 (d2_ 1)]] {Adn 1 } = (4.184)

{P1}- [K + [Nl(dn~) + 1[N2 d 2n-1)] Idn 1

{dn} = {dn- 1 } + {Adnl } (4.185)

The converged displacement is the dn of Figure 4.12, and point A is the first point of the

actual load versus displacement path found.

The process is repeated for the next load increment, R2 , of Figure 4.13. Upon conver-

gence, point B is determined.

For the usual case of more than one degree of freedom, instead of only one load versus

displacement curve, there are as many curves as there are degrees of freedom. A global

convergence criterion such as that given in Eq (4.162)

J jr ) 2 ) 1/ 2 _ j dlr- 1 /2

{} ) )d~ 1/2 92 X 100 <V (4.162)

where {di} r, {dilr_1, and {di1 are the elements of {d} for the rth , (r-l)th, and first itera-
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tions respectively, for a given increment. The criterion is satisfied when the left hand side

of Eq (4.168) is less than or equal to V, a user specified percentage tolerance. Values of V

ranging from 0.01 to 0.05 % were chosen for the problems investigated.

Load (P) KT(d i)

K j A

PI

Equilibrium
Curve

Displacement (d)

d, d2  dn

Figure 4.12 Load-Control Solution Algorithm

A drawback of the preceeding method is its inability to traverse limit points. A limit

point occurs whenever the slope of the load versus displacement curve is zero. At that

point, the tangent stiffness becomes singular, and Eq (4.93) cannot be solved. Trans-

versely loaded flat plates typically do not exhibit limit points. However, transversely

loaded thin shells often do. Consequently, a variation of the previously described tech-

nique is employed which takes the form of the displacement-control Newton-Raphson

algorithm.
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Load (P)

KT(dj)

(AP2)

Equilibrium
P l Curve

Displacement (d)

d, d2

Figure 4.13 Second Increment of Load-Control Solution Algorithm

4.9.2 The Displacement-Control, Newton-Raphson Algorithm:

The displacement control solution method is very similar to the recursive relations of

Eqs (4.184)-(4.185) except a single component of displacement is prescribed and incre-

mented, and its corresponding load compenent becomes unknown. This allows traversing

the limit points as the coefficient matrix of the incremental/iterative equations is no longer

singular. A simple displacement control approach, but limited in application, only permits

stepping of certain displacement components. That is, one application is a structure that

only has a single point load acting on it. For this case, the displacement corresponding to

that single point load must be the degree of freedom that is incremented. In addition, the

simple approach solves the situation where all the edge displacements on an axially com-

pressed plate or shell are identically prescribed. This simple method does not destroy
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symmetry or bandedness of the equations as more general methods do.

Basically the simple method is described as follows. For the first iteration of a given

displacement increment, a displacement component is prescribed, dp, and Eq (4.180) is

solved

[KT(dP)] {dl} = {P 1} (4.180)

then dp - a, represents an out of balanced displacement from the prescribed displacement

component, dp. Thus, Eqs (4.184)-(4.185) take on the form of

AP n = [K] + [N 1 (dn)] +[N,((a,)J]]IdP an} (4.186)

+ { [K] + [N l (d n )]

{d} = {d} + {d} (4.187)

This technique is a simple modifications of Eqs (4.184)-(4.185), but only specific applica-

tions are effectively solved. In the load versus displacement space, for a prescribed dis-

placement degree of freedom, the method is graphically portrayed in Figure 4.14. The

displacement is incremented from that at point A, d1 , to that at point B, d2. Figure 4.14

shows the vertical line of d2 = constant, becomes a "constraint" line. In the load control

solution algorithm, a horizontal line (actually the constraint lines are general surfaces) was

the constraint (see P1 = constant in Figure 4.12). The different constraint surfaces con-

strast the solution techniques. A global convergence criterion similar to Eq (4.162) is

given by

fi l r ;2)/ 2 -i r{- 122/2 x 100 < V (4.188)

where {dI},, {di}r, and {di}1 are the elements of {d} for the r h, (r-t)th, and first itera-
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tions respectively, for a given increment. The criterion is satisfied when the left hand side

of Eq (4.188) is less than or equal to V, a user specified percentage tolerance.

Load (P)

d2) : N

.... / B Equivalent

P2  KT[( di)]

Equilibrium

A Curve

Displacement (d)

d, d2

Figure 4.14 Displacement Control Solution Algorithm

4.9.3 The Incremental, Displacement-Control, Elasto-Plastic, Newton-Raphson Algo-

rithm:

The incremental form of Eq (4.93) is given by

[KT(Ad)] {A(Ad)} = -F(Ad) (4.189)

or, in terms of the Rajasekaran & Murray formulation

[ [K] + [N 1 (Ad)] +[N 2 (Ad 2 )]I{A(Ad)}= (4.190)F1 1

{AP}-I [K] + ,[NI (Ad)] +I [N 2 (Ad2)]] {Ad}
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or in terms of Eq (4.186)

2
A (AP,) [ [K] + [N (Adn) ] + [N 2 ((Adn) {Ad - Ad, (4.191)

[ 11 2) I~"]
+ APn}  [K] + [I (Ad,) ] + 3 [N2 ( (Ad,) )]&

and Eq (4.187) takes the form

{Ad I = {Ad p} + {Adn} (4.192)

For the first prescribed increment, AdP = Ad,, solve

AP 1 = [K] {Ad 1 } (4.193)

Then calculate [K], [N1], and [N2] based on Ad, and solve a 1 from

[KT(Adl)] {Ad 1} = {API} (4.194)

The out of balance displacement term, Ad1 - Aa is determined and now Eq (4.191) takes

on the form

2
A(AP 1) = [[K] + [NI(Ad,)] + [N2 ((Ad,) )]] {Ad,-Ad} , (4.195)

[ 1 1 2]
+ {API} - [K] + 2-[NI (Ad,)] +3[N 2 ((Ad,) 2) {A1}]

and is solved for A(AP 1). AP 1 is updated and Eqs (4.194) and (4.195) are solved itera-

tively until convergence is achieved. The global convergence criterion takes on the incre-

mental form of Eq (4.188) and is given by

r {A )2)1/2 -(I( {Aai}r-)2)
1/ 2

SAd 1 1/2 , X 100 < V (4.196)

Evaluate Au for every Gauss point at each layer through

{As} = [B] {Ad}
1 -1 417

{Aa} = j[T 1] [a] [T2 ] {AF} = [D] {AF} (4.197)

where [B] represents the Green's strain-displacement relations, [a] is the Cauchy consitu-
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tive relations matrix, [T1] is the Jacobian transformation matrix for the Cauchy stress-

state, [T2] is the Jacobian transformation matrix for the Cauchy strain state, D is the deter-

minant of the Jacobian transformation matrix, and [D] is the Lagrangian constitutive rela-

tions matrix.

The global stress array is updated for each Gauss point, at each layer, by

{T} = fan- 1 1 + {A n -
1 } ' (4.198)

and then the desired yield criteria is checked for the updated stress state. If a Gauss point's

stress state exceeds the desired yield criterion, then it's flagged as behaving plastic and the

constitutive relations are then modelled as elasto-plastic for the remaining analysis.

For the second prescribed increment, AdP = Ad 2, calculate [K], [N 1], and [N2] based on

Ad2 and solve for AP 2 from

[KT(Adl)] {Ad 2} = {AP 2} (4.199)

and then solve for Ad2 from

[KT(Ad2)] {Ad 2 } = {AP 2 } (4.200)

The out of balance displacement term, Ad2 - Ad 2 is determined and now Eq (4.19 1) takes

on the form

A(AP 2 ) = [[K] + [N (Ad 2 )] + [N 2 ((Ad 2 ) )]] {Ad 2 -Ad 2} , (4.201)[ 11 2
+ {AP 2} - [K] +2[N,(Ad2 )] +1 [N 2 {Ad 2 }]

and is solved for A(AP 2). AP2 is updated and Eqs (4.200)-(4.201) are solved iteratively

until convergence is achieved. The global convergence criterion takes on the incremental

form of Eq (4.196). For each Gauss point that behaves elaso-plastically, Eq (4.201) takes

the form

A (AP 2 ) = [[Kep] + [P (Ad 2)] + [ 2 ((Ad 2 ) 2 ] (4.202)

21 ( 2+ ( (A2)] {Ad 2 (A22}

+ {AP2 } [KeP] +I [Ne(Ad 2 )I +[N )I A 2 ]

where [KP], [NleP], and [N2eP] are based on the elasto-plastic constitutive relations and
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take the form of Eqs (4.125)-(4.128). A detailed flow chart and discussion of the algo-

rithm is given in Appendix G.

4-75



5. Discussion of Elastic Shell Analysis

Chapters 3 and 4 presented the development of three basic geometrical and material

variations of theory for plates and shells. The first variation concerns the inclusion of

spherical geometry in the kinematic field and the strain-displacement relations. The sec-

ond variation addresses the transformation of constitutive relations from the Cauchy

stress-strain (Eulerian) coordinates to the 2nd Piola stress-Green strain (Lagrangian) coor-

dinate. Finally, the third variation is the inclusion of nonlinear material effects. This chap-

ter discusses the elastic analysis of plates and shells with the inclusion of the material

transformation matrices. Results for an elastic-plastic analysis of plates and shells (includ-

ing the material transformation matrices) are discussed in Chapter 6. One objective of this

research was to evaluate the accuracy of including the variations of the HTSD theory with

elastic or elastic-plastic material properties listed in Table 5.1, another objective was to

assess their limitations. The first step in achieving these objectives was the verification of

the computational tools used to achieve results. This verification process included verifi-

cation of the MACSYMA routines used to generate the elemental codes (this process is

discussed in Reference [209:Section 4.6]), verification of the finite element program, and

finally verification of numerical analysis.

Several test problems were solved to verify the MACSYMA generated Fortran codes.

These test problems were classical flat plate and thin shell problems with known solutions.

In all of these test problems, the various elemental codes should give results equivalent to

the classical von Karman plate (P000) code or the classical Donnell shell (COO & SOO)

codes. This result is expected since the additional terms of the higher-order codes include

radius in the denominator. Thus, these terms are zero for a flat plate and negligible for the

classical thin shell. In addtion, these results should correspond closely to those produced

by Dennis [48]. Investigations of the limitations of elastic quasi-nonlinear HTSD theory

were based on the shallow isotropic shell panel problems and a deep isotropic arch prob-

lem. The shallow shell problems were thin 254.0-cm radius hinged-free cylindrical shell

panels with a transverse point load, or thin 12.09-cm radius hinged-hinged spherical shell

caps with a transverse point load. The 50.8-cm x 50.8-cm cylindrical shell panels studied

were 0.64-cm thick. The 4.62-cm x 4.62-cm spherical shell cap studied was 0.04-cm thick.

The method used to solve each case was the nonlinear, displacement-controlled method.
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This method allows for convergence past the buckling or snapping phase within each

problem [162:9, 134]. The convergence tolerance, V ,unless otherwise specified, for each

problem was 0.01. All problems were run on a SUN SPARCstation 10/80 workstation.

Table 5.1 Definitions of Elemental Codes for Variations of Elastic Theory

Code Displacement Constitutive Material Equations
Name Assumption Relations Coordinate Given in
GXYZ Field Analyzed Transformation Appendix

GOOO Donnell (1) Elastic Not Included C

G001 Donnell Elastic Included C

G100 modified Donnell(2) Elastic Not Included D

G101 modified Donnell Elastic Included D

G200 Cubic Nonlinear (3) Elastic Not Included E

G201 Cubic Nonlinear Elastic Included E

where

(1) ui defined in Eq (C.2)

(2) ui defined in Eq (D.2)

(3) ui defined in Eq (E.2)

G - P for a plate, C for a cylindrical shell, S for a spherical shell, or A for an

arbitrary shell geometry. Appendix A lists relations for arbitrary shells,

Appendix B lists relation for general spherical shells, and Appendices C

through E list relations for spherical shells. The plate and cylindrical shell

relations are embedded within the spherical shell relations. They are

derived by setting the parameters D and/or C to zero.
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5.1 Flat, Quasi-Isotropic Panel with Uniform Pressure Point Load

A transversely-loaded flat plate problem was used to test the MACSYMA generated

elemental codes and the modified finite element program. The plate chosen was an 8-ply

quasi-isotropic laminated square plate with simple boundary conditions along each of its

40.64-cm long sides (see Figure 5.1 ). The plate was loaded with a uniform transverse

pressure load. The plate thickness was 4.064-cm. The plate was analyzed by discretizing

one quadrant into a 4 x 4 mesh of uniform elements. Only one quadrant was analyzed

because symmetric response is known to occur [48:221]. The problem was solved by

incrementing the load in five equal increments of 51.71 x 106 Pa. Boundary conditions and

material properties are, respectively:

s 1 = 0 v = w 2 = W2 = 0 (symmetry)

s2 = 0 u = w 1 = W 1 
= 0 (symmetry)

s 1 = ±a V = w = W2 = 0 (simple)

s 2 = +b u = w = 11 = 0 (simple)

a = b = 40.64 cm h = 4.064 cm

E1 = 41.37x 1010 Pa E 2  1.03x 1010 Pa

G23 = 5.17 x 109 Pa G12= G13 = 6.21 x 109 Pa

v = 0.3

Transverse displacements at the center of the plate, as predicted by the PXXX codes

and several other references are listed in Table 5.2. The results shown on the first line of

the table were those reported by Dennis [48:236]. The final line of the table includes the

results reported by Putcha and Reddy [172]. They used a mixed finite element model with

parabolic transverse shear deformation to solve the von Karman plate equations. The lines

labeled POOO-P201 are the three geometrical variations with or without the material trans-

formation matrices. These problems were run on the SUN SPARCstation 1OMP/80. This

workstation provided improved precision to that of the VAX 8550 that Dennis used for his
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a = b = 40.64 cm simple
h = 4.064 cm

simple

Figure 5.1 4.064 cm Thick, Hinged-Hinged Plate with Uniform Pressure Load

Table 5.2 Comparison of Flat Plate Displacement (cm) Results for Various Geometric
Nonlinear Theories

Total Load 33.34 66.68 100.03 133.37 166.71

(10' N )

Ref [48:236] 1.1212 1.9804 2.6314 3.1496 3.5865

P000 0.7882 1.4567 0.8074 2.5578 2.9947

Pool 0.7882 1.4552 0.8060 2.5527 2.9896

P100 1.1212 1.9799 2.6314 3.1496 3.5865

P101 1.1212 1.9738 2.6187 3.1318 3.5611

P200 1.1229 1.9891 2.6492 3.1826 3.6322

P201 1.1229 1.9822 2.6340 3.1598 3.5992

Ref [172:537] 1.143 2.032 2.794 3.302 3.810
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analysis. From Table 5.2, one can see that the six quasi-nonlinear codes provided nearly

identical results. This close agreement shows that the author's theories correctly degener-

ate to flat plate solutions when curvature is not a factor in the problem. Graphical results

are shown in Figure 5.2 for the six variations compared and Dennis results given in Table

5.2. Five increments of load (33.34 x 103 N) were applied. For the POOX & PlOX theo-

ries, solutions took 36.1 cpu seconds. For the P20X theories, solutions required 43.2 cpu

seconds.

W, in
1.50 (cm)
(3.81)

1.00
(2.54)

_____ Dennis
PO00 Theory
P001 Theory
P100 Theory

0.50 P101 Theory
(1.27) g P200 Theory

o o o o o P201 Theory

0 .0 0 .. . . . . . ... . . I . . . . . . . .I

0 10000 20000 30000 40000
(44.48) (88.96) (133.45) (177.93)

Total Uniform Load P, lbs (103 N)

Figure 5.2 Comparison of Flat Plate Displacement Results for Variations of Geometric
Nonlinearity

5.2 Simply Supported, Isotropic Deep Arches

Deep circular arches can be used to demonstrate a theory's ability to predict large dis-

placements and rotations. Many variations of transversely-loaded deep arch problems
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have been reported in the literature [45, 88, 202, 216]. The problem chosen here is a

254.0-cm radius istropic arch with a 2.54-cm square cross section and an opening angle of

0.92 radians (1060). The arch configuration is shown in Figure 5.3. The geometric and

material data are shown below: -

s 1 = 0 u = w,1 = = 0 (symmetry)

S2 = 0 v = W,2 = W2 = 0 (symmetry)

s 1 = ±1.27 cm (free)

s2 = ±235.94 cm u = v = w =W 1 = 0 (hinged)

E = 3.103 x 1010 Pa 0 = 0.92 radians

width = 2.54 cm R = 254.0 cm

h = 2.54 cm L = 406.4 cm

8 = 101.6 cm v = 0.0

Solutions for this problem were computed using COO - C201 codes and a 1 x 40 mesh of

elements to represent one quadrant of the arch. Data from the various geometrical theories

are shown in Table 5.3 & Table 5.4. The higher-order cubic-nonlinear theories (C200 &

C201) in this case predict a more dramatic collapse of the arch than the classical Donnell

or the psuedo-Donnell codes (COXX & ClXX). Dennis explained this difference was due

to the "many nonlinear in-plane displacement terms in the strain definitions that are not

included in the Donnell equations" [48:260]. He reasoned that these additional terms

become more important as displacements become large. A representation that measures

the movement of the Cauchy stress-strain axis with respect to the 2nd Piola stress-Green

strain axis should produce more flexible results. Figure 5.4 shows the load versus crown

displacement predicted by the COX theories. Figure 5.5 shows the load versus crown dis-

placement predicted by the C100 & C20X theories. As was expected, due to the large

movement and rotations near the arch crown, the inclusion of the material transformation

matrices created a more flexible response for the model.

Figure 5.6 shows the two-dimensional (2D) view of the arch at four points along the

load-displacement curve for the C201 analysis, as indicated in Figure 5.5. Figure 5.7

shows the rotation dof, xV2, along the meridian of the arch. It is important to note that at
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R s2

L

Figure 5.3 Hinged Transverse Point-Loaded Isotropic Cylindrical Arch

Table 5.3 Equlibrium Point Load (103 N) Predicted for Prescribed Transverse
Displacement of Isotropic Cylindrical Arch (w = 10.16 - 40.64 cm)

Disp (cm) 10.16 20.32 30.48 40.64

Donnell* 2.762 3.973 4.571 4.837

COO 2.760 3.963 4.551 4.807

Cool 2.760 3.764 4.201 4.302

C100 2.749 3.954 4.453 4.800

Clol 2.749 3.767 4.204 4.305

SLR* 2.832 4034 4.479 4.441

C200 2.819 4.018 4.463 4.429

C201 2.819 3.832 4.132 3.975

Ref [53:207]
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Table 5.4 Equlibrium Point Load (103 N)Predicted for Prescribed Transverse

Displacement of Isotropic Cylindrical Arch (w = 50.8 - 71.12 cm)

Disp (cm) 50.8 60.96 71.12

Donnell* 4.893 4.795 4.577

COOO 4.853 4.745 4.520

Cool 4.199 3.963 5.630

ClOO 4.864 4.739 4.514

Clol 4.204 3.967 3.634

SLR* 4.039 3.486 2.283

C200 4.035 3.330 2.276

C201 3.519 2.435 2.077

Ref [49:207]

1200.00
(5.336) P, lbs

(103 N)
1000.00

(4.446)

800.00
(3.557)

600.00
(2.667) _Dennis (CO Equivalent)

0 0--- C100 Theory

400.00 t~o 0 0 0 C200 Theory

(1.778)

200.00

(0.889)

Transverse Displacement W, inches (cm)
0 .0 0 T . . . . . . . . . . . .I . .. ' I I I I I I I - T 1 1 I I I

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00
(12.7) (25.4) (38.1) (50.8) (63.5) (76.2) (88.9)

Figure 5.4 Deep Arch Crown Displacement vs Load - ClOX Theory
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0.00 (12.7) (25.4) (38.1) (50.8) (63.5) (76.2) (88.9)
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(ibs)
800.00 (3.557)

i03 N)

600.00 (2.667)
Dennis (C100 Equiv)

S&Dennis (C200 Equiv)
0a000 C200 Theory

400.00 0 000 0 C201 Theory (1.778)
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Transverse Displacement, W (inches)
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Figure 5.5 Deep Arch Crown Displacement vs Load - C100 & C20X Theory

the collapse load the crown is undergoing large displacement (w = 30.48 - 71.12 cm) ver-

sus the shell thickness (h = 2.54 cm) and moderate rotations. When the prescribed trans-

verse displacement reaches 30.48-cm, the maximum rotation of V2 reached 20.30, and

over 32% of shell surface saw rotations of 9.80. The classical Donnell theory (COOO &

COO 1) does not include rotations of the normal (i.e. V2 = w 2 is assumed) in the kinematics

(see Appendix C, Eq (C.2)). While the modified Donnell theory does include rotations of

the normal, V2, in the kinematics (see Appendix D, Eq (D.2)), it ignores most of the in-

plane nonlinear strain-displacement relations (see Appendix D, Eq (D.3)). The cubic-non-

linear HTSD (C200 & C201) theory includes the cubic displacement field and all of the

nonlinear strain-displacement terms for the in-plane strains (Appendix E, Eqs (E.2) &

(E.3)). Thus, the cubic-nonlinear theory most accurately describes a shell behavior when it

undergoes large movements and rotations. When the crown displacement reaches 50.8-cm

the maximum rotation of xV2 reached 30.40, and over 38% of shell surface saw rotations of
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13.2'. At this point, the C201 theory is predicting an equilibrium load 12.8% less than

Dennis' SLR theory, and 28.1% less than Dennis' CDON theory. Clearly, with large move-

ments and moderate rotations of a deep shell structure such as in this arch, the assumption

of Cauchy stress-strain and 2nd Piob stress-Green strain axes being co-located is no

longer valid. The inclusion of the constitutive transformation matrices causes the material

properties (i.e. E, Eij, v, vij) to become increasingly flexible (increasingly anisotropic) as

displacements and rotations become relatively significant.

d

a) w = 30.48 cm, V2 = 20.30

b) w = 60.96 cm, W2 = 30.4 0

c) w = 71.12 cm, W2 = 39.0 0

d) w = 81.28 cm, W2 = 44.50

Figure 5.6 Two-Dimensional View of Deformation of Hinged Isotropic Deep Circular
Arch at Four Specified Increments of Transverse Displacement - C201 Theory

As the prescribed crown displacement is increased to 60.96-cm, the maximum rotation

of W2 reached 35. 1', and over 39.2% of shell surface saw rotations of 15.0'. At this point,

the C201 theory is predicting an equilibrium load 30.2% less than Dennis' SLR theory, and

49.2% less than Dennis' CDON theory. When the displacement is increased to 71.12-cm,

the arch has reached a point where the center of the arch is returning to tension, and resis-
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tance begins. Hence, the change in the equilibrium curve for the C201 theory. For a pre-

scribed convergence tolerance, V = 0.005, the C100 and C101 theory code required 453.3

cpu and 477.8 cpu seconds, respectively. The C200 theory codes required 11,945.3 cpu

seconds and the C201 theory required 12,207.6 cpu seconds.

25.4 50.8 76.2 101.6 127.0 152.4 177.8 203.2 228.6 254.0
0.80 0.80

S(cm)

0.70 7 0.70

0.60 60.60

0.50 0.50
8 4 48

H - -\ 0.40

W2 0.40 4 3 3 3 4 
04

W 2

(rad) 0.30 2 2 2 , 0.30

0.20 3 0.20

0.10 -0.10

-0.00 -0.00

-0.10 -- 0.10

-0.20 .' -0.20

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Circumferential Coordinate, s2 (inches)

Figure 5.7 Meridian Values of W2 for 8 Increment, 10.16-cm each, of Transverse Dis-

placement of Hinged Isotropic Deep Circular Arch - C201 Theory

5.3 Hinged-Free Cylindrical Shell Panel, 0.635-cm Thick, with Transverse Point Load

The third class of problems investigated was a thin, shallow hinged-free cylindrical

shell with a transverse point load. The first problem was a 0.635-cm thick shell of isotro-

pic material. The second problem was a 0.635-cm thick shell of quasi-isotropic material.

The 0.635-cm shell is shown in Figure 5.8. Geometric & material properties for the isotro-

pic problem are given below:
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=0 u = = W1==0 (symmetry)

S2 = 0 V = W,2 = W2 = 0 (symmetry)

s 1 = ±25.4 cm (free)

s2 = +25.4 cm u = v = w = 1 = 0 (hinged)

E = 3.103 x 1010 Pa 0 = 0.1 radians

h =0.635 cm R = 254.0 cm

L = 50.8 cm v =0.3P :s ! free
L = 50.8 cm _
h = 0.635 cm -_/--
R =254.0 cm / /_ 4
0 =0.1 rad J j - - / - '_...--

S2

/ / inged

free \/

\ I

Figure 5.8 0.635-cm Hinged-Free Transversely Point-Loaded Isotropic Cylindrical Shell

Solutions were computed using a 4 x 6 mesh of elements to model one quadrant of the

shell. Convergence studies by Dennis [48:247] showed little difference between a 4 x 6

and 8 x 8 element meshes. Significant computational savings result when the 24 element

mesh is used instead of the 64 element mesh. Table 5.5 & Table 5.5 shows the results of

equilibrium load predictions, for increments of transverse displacement from 0.254 to 2.54
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centimeters, for the various CXXX codes. The values of load shown are four times the

equlibrium load of the quarter shell. This load represents the total load on the entire shell

panel. Values were computed using 10 increments of center point transverse displacement.

One quadrant of the shell was modelled using a 24 element mesh with 4 elements in the

lateral direction and 6 elements in the circumferential direction. From this table, one

observes the cubic-nonlinear HTSD theory with material transformation (C201 code) pro-

vides the most flexibility. This is due primarily to the combination of higher-order nonlin-

ear terms in the in-plane strain-displacement relations, and the transformation of the

constitutive relations from Eulerian to Lagrangian coordinates. Figure 5.9 shows the equi-

librium curves for the CDON, the modified Donnell (C100 & C101), and the cubic-non-

linear HTSD (C200 & C201) theories. The variance between the various theories is

negligible due to the relatively small movement (maximum displacement was only four

times the shell thickness) and small rotations (less than 0.15 radians (8.590)). Figure 5.10

shows the development of the rotational dof, WV2, along the shell meridian for increments

of displacement.

Table 5.5 Predicted Load (N) for Prescribed Center Transverse Displacement (cm) of
0.635-cm Hinged-Free Isotropic Cylindrical Shell Panel (w = 0.254 - 1.27 cm)

Disp 0.254 0.508 0.762 1.016 1.270

CDON 225.0 374.4 478.9 555.8 591.3

COO 225.0 374.8 480.1 555.8 591.3

Cool 225.0 374.6 478.9 555.3 590.9

Cloo 225.0 374.7 480.1 555.8 591.3

ClOl 225.0 374.5 473.1 554.4 589.6

C200 225.0 374.2 480.1 554.0 589.6

C201 225.0 374.0 474.0 552.6 586.9
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Table 5.6 Predicted Load (N) for Prescribed Center Transverse Displacement (cm) of
0.635-cm Hinged-Free Isotropic Cylindrical Shell Panel (w = 1.524 - 2.54 cm)

Disp 1.524 1.778 2.032 2.286 2.540
=.

CDON 494.4 -385.1 -320.1 -179.2 61.8

C000 494.4 -385.1 -320.1 -179.2 62.2

C001 493.1 -385.1 -321.0 -181.0 61.1

C100 494.4 -385.1 -319.7 -179.2 62.2

C101 491.8 -386.4 -322.3 -182.3 55.4

C200 491.8 -385.1 -317.5 -176.1 65.5

C201 488.5 -386.8 -320.1 -179.6 60.7

150.00
(669.96) P, lbs

o(ooo Dennis
C101 Theory

10 *..0 C201 Theory100.00
(444.64)

50.00
(222.32)

Transverse Displacement W, in (cm)
0.00 ...

0 0.20 0.40 0.60 0.80 00
(0.508) (1.016) (1.524) (2.032) (2.54)

-50.00
(-222.32)

-100.00

(-444.64)

Figure 5.9 Equilibrium Curves for Transverse Point Loaded 0.635-cm Hinged-Free Iso-
tropic Cylindrical Shell--CDON, C101, & C201 Theories
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5.08 10.16 15.24 20.32 25.4

0.15 (cm) 10 1 15
9

0.10 / 0.10

W2

(rad)

0.00 0.00
0.00 2.00 4.00 6.00 8.00 10.00

Circumferential Coordinates, s2 (inches)

Figure 5.10 Meridian Values of W2 for 10 Increments, 0.254-cm each, of Transverse
Displacement of 0.0635-cm Hinged-Free Isotropic Cylindrical Shell - C201 Theory

For a prescribed convergence tolerance, V = 0.1 the C100 and C101 theory code

required 497.2 cpu and 523.1 cpu seconds, respectively. The C200 theory codes required

2657.9 cpu seconds and the C201 theory required 2801.1 cpu seconds.

The second problem is a 0.635-cm thick cylindrical shell of quasi-isotropic material

(see Figure 5.11). This problem was chosen to determine the effect of including the mate-

rial transformation matrices when analyzing shallow quasi-isotropic shells. Geometric and

material properties for the quasi-isotropic problem are given below:

s1 = 0 u = W l = W,1 = 0 (symmetry)

s 2 = 0 v = w 2 = W 2 = 0 (symmetry)

s! = +25.4 cm (free)

s2 = +25.4 cm u = v= w = 1 = 0 (hinged)
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E= 14.109x 1010 Pa E2 = 9.243 x 109 Pa

G12 =G13 = 5.957 x 109 Pa G23 = 2.965 x 109 Pa

V12 = 0.313 0 = 0.1 radians

h = 0.635 cm R = 254.0 cm

L = 50.8 cm Ply Layup [0/-45/45/90] s

hinged Fro lL = 50.8 cm

h = 0.635 cm
R = 254.0 cm // -_ -

0 = 0 .1 ra d / - / _ - _/

cSeS 2

/ hinged

free \

Figure 5.11 0.635-cm Hinged Free Transversely Point-Loaded Quasi-isotropic Cylindri-
cal Shell

Solutions were computed using a 8 x 12 mesh of elements to model one quadrant of the

shell. This mesh was used by Tsai and Palazotto [226] to model a deep clamped-free

quasi-isotropic shell. Palazotto and others [161 , 163, 225, 226] investigated shells of

this configuration and compared static and dynamic results for different material proper-

ties and ply lay-ups. Their work is based on a 96 element model of a quadrant of the shell.

This mesh was chosen based on the results of their convergence studies summarized in

Table 5.7. Tsai and Palazotto concluded that the 8 x 12 mesh results were acceptable
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considering the CPU consumption was about 70% less than the 11 x 16 mesh [226:69].

Another recent study by Silva, however, revealed that the quasi-isotropic panel with trans-

verse load does not deform in a symmetric manner [206:3-6]. According to Smith

[209:Chap 6:1-4], there is negligible difference between the transverse load versus dis-

placement curves for the full shell 16 x 24 mesh and the quarter shell 8 x 12 mesh. Since

this research is primarily concerned with load-displacement behavior, and due to this

being a shallow shell problem, i.e. 5/h < 1, a quarter shell mesh was chosen for the analy-

sis.

Table 5.7 Convergence Study for Quasi-Isotropic Shell Panel

Mesh Load at Onset
of Instability (N)

4x6 515.8

8x 12 249.0

11 x 16 235.7

[226:69]

Transvere load values versus prescribed increments of displacement were computed

for a [0/-45/45/90] ply layup, using the modified Donnell (C100 & C101) and the cubic-

nonlinear HTSD (C200 & C201) theories. Table 5.8 shows values of the tranverse load

predicted by the various theories. The C201 HTSD theory predicted the most flexible

results, due to incorporating the higher-order nonlinear terms for the in-plane strain-dis-

placement relations and the material transformation matrices. Figure 5.12 shows the equi-

librium curves of load versuss transverse displacement for the modified Donnell (C100 &

C101) and the quasi-nonlinear HTSD (C200 & C201) theories. As expected, the C201 the-

ory yields the greatest flexible response.

Figure 5.13 shows the development of the rotational dof, V2, along the shell's s2-axis

for increments of displacement. As in the previous problem, the displacements and rota-
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tions are small (maximum transverse displacement was only four times the shell thickness

and the rotations were less than 0.17 radians (9.74°)). These results imply that transform-

ing the constitutive relations from Eulerian to Lagrancian coordinates make negligible

contributions to the equilibrium analysis. For a prescribed convergence tolerance, V -

0.1, along with 10 increments of center point transverse displacement, the C 100 and C 101

theory code required 207.2 CPU and 233.3 CPU seconds, respectively. The C200 theory

codes required 431.4 CPU seconds and the C201 theory required 498.3 CPU seconds.

Thus, one can conclude the C100 theory is the most cost efficient, in terms of CPU usage,

for this problem of a shallow shell.

Table 5.8 Transverse Center Point Load (103 N) Predicted for Prescribed Transverse
Displacement of a 0.635-cm Hinged-Free Quasi-Isotropic Cylindrical Shell Panel

Disp C100 C101 C200 C201

0.254 2.680 2.679 2.679 2.679

0.508 4.207 4.204 4.204 4.217

0.762 5.101 5.091 5.091 5.083

1.016 5.230 5.205 5.205 5.190

1.270 4.254 4.204 4.204 4.183

1.524 2.500 2.436 2.436 2.417

1.778 0.116 0.059 0.059 0.052

2.032 -4.218 -4.042 -4.042 -4.108

2.226 -2.710 -2.605 -2.605 -2.676

2.540 0.380 0.451 0.451 0.381
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1500.00
(6.672) P, lbs

(10' N)

1000.00
(4.448)

500.00
(2.224)

00 0.20 0.4oo.60 0.80 1.00
(0.508) (1.016) (1.524) (2.032) 2.54)

..... C100 Theory /

-500.00 .a C101 Theory,C200 Theory
(-2.224) ..... C201 Theory

-1000.00
(-4.448)

Figure 5.12 Equilibrium Curves for Transverse Point Loaded 0.635-cm Hinged-Free Iso-
tropic Cylindrical Shell - ClOX & C20X Theories

5.08 10.16 15.24 20.32 25.4

0.18 (cm) 01

W2

0.13 (rad) 0.13

0.08 -0.08

0.032 0.03

-0.02 ~ Circumferential Coordinates s2 (inches -. 0
-0.02 --0.02

o.0o .. 00 4.00 6.00 8.00 10.00

Figure 5.13 Meridian Values of W2 for 10 Increments, 0.254-cm each, of Transverse Dis-

placement of 0.635-cm Quasi-Isotropic Hinged-Free Cylindrical Shell - C201 Theory
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5.4 Clamped-Free Quasi-Isotropic Cylindrical Shell Panel with Transverse Point Load

The second deep shell problem, after the isotropic cylindrical arch, was a deep com-

posite shell panel with transverse point load. This problem demonstrates a severe test of

an HTSD theory due to the shell's depth, thickness, and quasi-isotropic properties. A deep

30.48-cm radius quasi-isotropic 27.94-cm x 30.48-cm cylindrical panel was clamped on

its lateral boundaries and free on the circumferential boundaries. The shell configuration

is shown in Figure 5.14. Geometric and material properties are listed below. A transverse

point load was applied at the center of the 0.102-cm thick panel until the panel center dis-

placed over 5.72-cm. This distance is significantly greater than the 4.83-cm depth of the

shell. Results for the transversely-loaded panel are compared with the computational

results of Tsai [225]. The material properties and geometry are listed below:

si = +13.97 cm (free)

s 2 = +15.24 cm u = v = w =w I= w,2 = W 1  
= W2 = 0 (hinged)

Material AS4-3501 Graphite Epoxy

E1 = 14 .1 1 x 10r ° Pa E 2 = 9.243 x 109 Pa

G 12 = G 1 3 = 5.955 x 109 Pa G23 = 2.965 x 109 Pa

V 12 = 0.313 0 = 1.0 radians

h 0.102 cm R = 30.48 cm

A = 27.94 cm B = 30.48 cm

-- 4.83 cm Ply Layups [0/-45/45/90] s, [02/902] s5 [08], [908]

As mentioned previously, Smith [209] determined that the load versus transverse dis-

placement curves for a quarter shell mesh and a full shell mesh were negligibly different.

However, he did show the transverse displacement along the circumferential coordinate

(S2) did vary significantly between the quarter shell mesh and the full shell mesh. Since

the author is primarily concerned with shell response, and with the constitutitive relations

transformed to Lagrangian coordinates for this deep shell, a quarter mesh ( 8 X 12) instead
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of a full mesh (16 x 24) is not used. Transverse load values versus displacement of the

center of the shell were computed for [0/-45/45/90],, [02/902]s, [08], and [908] ply layups.

The cubic-nonlinear HTSD (C200 & C201) theories were considered. Table 5.8 shows

values of transverse load predicted by the various theories for the [0/-45/45/90]s ply layup.

clampedP . //

a = 27.94 cm
b = 30.48 cmh =0.102 cm

R = 30.48 cm
0= 1.0 radian
6=4.83 cm

free 
clamped

Figure 5.14 Clamped-Free Composite Shell with Transverse Point Load

Figure 5.15 shows a 2D view of the cylindrical shell for several prescribed transverse

displacements for the [0/-45/45/90], ply layup. As the shell displaces from w = 1.191-cm

to w = 1.667-cm, the deflection about the central point load has reached the lateral edges

(s1 = ±A/2). This is usually indicated in the equilibrium load-displacementcurve with the

onset of the "snap-through" phase exhibited by these shells. As the displacement is

increased to w = 5.954-cm, the shell is "softening" or usually requires smaller loads to

increase deflection. However, as displacement continues through w = 6.906-cm to w =

7.384-cm, the outer circumferential edges (s2 = +B/2) have finished the "snap-through"
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process and the shell is entering a tensile state. This requires more energy (or load) to

increase deflection and is usually represented by an increase in the equilibrium load-dis-

placement curve. Figures 5.16 & 5.17 shows a three-dimensional (3D) view of the shell as

it begins the "snap-through" and finislies in a tensile loading state. In Figure 5.16, the 3D

views of the shell clearly show the development of the central deflection that leads to the

onset of "snap-through". At this point on the load-displacement path (w = 1.429-cm), the

maximum rotation of xV2 reaches 0.15 radians (8.590), and over 15% of the shell surface

saw rotations of 0.10 radians (5.73°). Figure 5.17 shows the continued 3D shell deforma-

tion until the entire shell enters a tensile state (when w = 6.906-cm) At this point, the max-

imum rotation of W2 reaches 0.57 radians (32.660), and over 53% of the shell surface saw

rotations of 0.26 radians (14.90). Figure 5.18 shows the equilibrium values of a transverse

center point load of the modified Donnell (C 100 & C 101) theories and the cubic-nonlinear

HTSD (C200 & C201) theories for the [0/-45/45/90] s ply layup. The cubic-nonlinear

HTSD theory with material transformations predicted the most flexible shell structure.

Figure 5.19 shows the development of the rotational dof, WI2 along the shell meridian for

prescribed increments of displacement. As in the isotropic arch problem, as displacements

and rotations become significantly large, the constitutive transformation matrices reflect

the increased flexibility in the material properties with respect to the undeformed axis sys-

tem.

Figures 5.20, 5.22, and 5.24 show the equilbrium load vs transverse displacement val-

ues at the center ponit of the cubic-nonlinear (C200 & C201) theories for the [08] [02/

902]s, [908] ply lay-ups respectively. Figures 5.21, 5.23, and 5.25 show the equilbrium

load vs transverse displacement values at the center ponit of the cubic-nonlinear (C200 &

C201) theories for the [081, [02/902]s, [908] ply lay-ups respectively. It should be noted

that the constitutive transformation matrices of Eqs (4.74) and (4.75) reflect greater flexi-

bility at the onset of snapping and during the snap-through phase. In particular, the xi

terms of Eqs (4.64a)-(4.64i) become signficantly greater than unity. These transformation

matrices tend to "soften" the shells' response. This is accomplished by the constitutive

transformation matrices smoothing the transition of the shells' response from bending to

tension in the snap-through (predominantly to bending resistance) to recovery (predomi-
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nantly membrane resistance). By comparing the three-dimensional shell deformations

shown in Figures 5.16-5.17, along with the various equilibrium load-transverse displace-

ment curves shown in Figures 5.18, 5.20, 5.22, and 5.24, it is possible to observe the

shell(s)' change in response to the transverse loading from purely bending (up to the snap-

ping load), to a combination of bending and tension as the shell begins to unload (snap-

through phase), to a pure tensile response (recovery phase).

a) w = 0.239 cm f) w 5.001 cm
b) w = 1.191 cm g) w 5.594 cm
c) w = 2.144 cm h) w 6.906 cm
d) w = 3.096 cm i) w 7.381 cm
e) w = 4.049 cm j) w =7.859 cm

Figure 5.15 Two-Dimensional (2D) Profiles of Clamped-Free Laminated Composite
Cylindrical Shells at Various Prescribed Transverse Displacements
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Table 5.9 Center Point Load (N) Predicted for Prescribed Transverse Displacement (cm)
of a 0.102-cm, Clamped-Free, Quasi-Isotropic, Cylindrical Shell Panel, [0/-45/45/90]

Disp CDON* C100 C101 C200 C201

0.4763 116.3 116.3 115.5 116.6 115.9

0.9525 239.2 238.8 237.0 237.7 236.2

1.4288 225.7 225.3 216.5 216.6 208.5

1.9050 205.2 205.1 194.8 187.5 177.5

2.3813 181.5 181.5 169.7 154.6 144.8

2.8575 154.0 154.1 137.6 117.7 99.0

3.3338 125.5 125.4 113.8 93.5 80.5

3.8100 98.3 98.3 92.1 79.1 67.7

4.2863 76.0 75.9 59.1 54.4 52.9

4.7625 62.8 62.8 53.7 52.0 48.0

5.2358 67.5 67.5 60.5 54.9 53.4

2.2500 110.8 110.5 92.5 84.1 74.7

* Computed using Dennis' [48] modified Donnell theory code.
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W=0.0 CM

W= 1.191 CM

w =1.667 cm

w =3.096c

Figure 5.16 Three-Dimensional Views of 0.102-cm Clamped-Free Quasi-Isotropic Cylin-
drical Shell at Specified Transverse Displacements - C201 Theory
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w= 4.286 cm

w = 5.953 cm

w = 6.906 cm

Figure 5.17 Three-Dimensional Views of 0. 102-cm Clamped-Free Quasi-Isotropic Cylin-
drical Shell at Specified Transverse Displacements - C201 Theory
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Figure 5.18 Equilibrium Path Comparisons for Transverse Center Point Loaded 0. 102-cm
Clamped-Free Quasi-Isotropic ([0/-45/45/90]s) Cylindrical Shell - CDON, C200 & C201

Theories
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Figure 5.19 Meridian Values of XV2 for 10 Increments, 0.476-cm each, of Transverse Dis-
placement of 0.102-cm Hinged-Free Quasi-Isotropic ([0/-45/45/90]s) Cylindrical Shell -

C201 Theory
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Figure 5.20 Equilibrium Path Comparisons for Transverse Center Point Loaded 0.102cm
Clamped-Free Quasi-Isotropic ([02/902]s) Cylindrical Shell - C201 Theory
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Figure 5.21 Meridian Values of W2 for 10 Increments, 0.476-cm each, of Transverse Dis-

placement of 0.102-cm Hinged-Free Quasi-Isotropic ([02/902]s) Cylindrical Shell- C201

Theory
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Figure 5.22 Equilibrium Path Comparisons for Transverse Center Point Loaded 0.102-cm
Clamped-Free Quasi-Isotropic ([08]) Cylindrical Shell - C201 Theory
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Figure 5.23 Meridian Values of Wt2 for 10 Increments, 0.476-cm each, of Transverse Dis-

placement of 0.102-cm Clamped-Free Quasi-Isotropic ([08]) Cylindrical Shell - C201
Theory
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Figure 5.24 Equilibrium Path Comparisons for Transverse Center Point Loaded 0.102-cm
Clamped-Free Quasi-Isotropic ([908]) Cylindrical Shell - C201 Theory
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-0.25 3 -0.5
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Figure 5.25 Meridian Values of W2 for 10 Increments, 0.476-cm each, of Transverse Dis-

placement of 0.102-cm Clamped-Free Quasi-Isotropic ([908]) Cylindrical Shell - C201
Theory
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Oberving the quasi-isotopric, [0/-45/45/90],, shell's equilibirum response shown in

Figure 5.18, yields the conclusion that the material transformation matrices shown in Eqs
(4.74)-(4.75) enhance the anisotropy of the laminate. This enhancement is the "soften-

ing", or the increase in flexibility, the shell exhibits once the displacements (w > 5h) and/or

rotations (Vi >! 150) become significant. As the shell approaches a purely tensile response

to the transverse loading (when w approaches 2.3in) for the C200 theory, the shell snaps

into a purely concave position (see Figure 5.17, middle display) with significant inflection

points near the clamped boundary conditions. Due to the sharp inflection points in the

curvature being near theses boundaries, the shell exhibits an initially sharp transition to a
membrane (tensile) loading response. As the displacement is increased, the shell then

gradually transitions through the inflection points until the entire shell is in tension (recov-

ery phase). The C201 theory, with the [Ti] and [T2] arrays, softens the transition of these

inflection points from the bending-tensile loading to the pure tensile loading phase. Thus,

the sharp transition point at the bottom of the equilibrium curve is removed. This is

observed similarly for the [90g] panel, but not for the [081 or for the [02/902]s panels. The

fiber orientation of the [908] panel is in the circumferential direction resists the snapping

phenomena, whereas the stiffness of the [0g] panel is in the longitudinal direction and

therefore does nothing to inhibit the snapping process. The tensile recovery phase

observed for the [08] panel is immediate with no gradual recovery as observed in the [908]

panel.

The [02/902]s panel is mixture of the other two and this exhibited by the C20X analy-

sis. The equilibrium path at the onset of tensile recovery oscillates, partly in due to the 00

and 900 fibers conflicting in the shell's response to the added displacement. Notice in Fig-

ure 5.21 the change in W2 from the eight to the ninth displacement increment. The magni-

tude of change is significant when compared to the previous displacement increments. It

appears the panel is beginning to respond as the [0/-45/45/90] or the [908] but is inhibited

by the presence of the 0' fibers. Thus, the panels equilibrium is adjusted for the move-

ment of both 00 and 900 fibers within the shell's thickness.

For a prescribed convergence tolerance, V = 0.001, along with 25 prescribed center

transverse displacement increments of 0.2382-cm, the C100 and C101 theory code

required 8424 CPU and 9723 CPU seconds, respectively. The C200 theory codes required

65472 CPU seconds and the C201 theory required 70356 CPU seconds. A comparison of
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these results with the C211 theory will accomplished in Section 6.6.

5.5 Clamped-Free Quasi-Isotropic Cylindrical Shell Panel with Axial Compression Load

The earlier quasi-isotropic plate and shell results indicate the cubic-nonlinear HTSD

theory, with the transformation of the constitutive relations included (C201), predicted a

more flexible response than the simpler geometrical variants. Similarly, for the collapse

of thin isotropic cylindrical shells, the cubic-nonlinear HTSD theory also predicted a

slightly more flexible response than the classical Donnell or modified Donnell theories. In

both cases, the more exact geometric theory predicted responses nearly identical to those

of the simplest elemental codes. Problems combining the quasi-isotropic material and a

smaller radius of curvature with large displacements and rotations should provide more

interesting results. The deeper shells, such as those of the transversely point-loaded

hinged isotropic cylindrical arch and the transversely point-loaded clamped-free deep

cylindrical quasi-isotropic shell, demonstrate the ability of the quasi-nonlinear HTSD the-

ory with the constitutive transformations to predict more flexible structures. By accu-

rately modelling the large displacements and rotations, and correctly modelling the

rotation of the Lagrangian coordinates with respect to the Eulerian coordinates, this theory

allows the shells to collapse at lower equilibrium loads.

In addition to the transversely loaded quasi-isotropic cylindrical shells, an axially

loaded clamped-free quasi-isotropic cylindrical shell panel with and without a centrally

located cut-outs were studied. Figure 5.26 shows the shell configuration. The boundary

conditions and material properties are listed below. Panels of this general configuration

have been the subject of many AFIT reseach projects, conducted in cooperation with the

Wright Laboratory at Wright-Patterson AFB, Ohio. Panels of this material and configura-

tion were recently tested experimentally, as part of a Master's thesis by Hatfield [77]. The

experimental procedures used for these experiments were similar to those used by Becker

[19], Janisse [93], Tisler [158, 159, 222], and Schimmels [199, 200] at Wright-Patterson

AFB. Results of Tisler were used by Dennis for his comparison of the linear HTSD theory

he developed [48, 51]. According to Palazotto and Dennis [162], Tisler had problems with
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the experimental measurements and with the panels not being properly seated in the test

fixtures [51:1087]. These particular problems were avoided during later series of experi-

ments [77, 199, 200]. The geometrical and material properties are listed below:

S = 0.0 cm u=v = = = = 1  2 =0 (clamped)

s I = 27.94 cm V = w = = = 2 = 0 (clamped, u free)

s 2 = 0.0 cm (free)

s 2 = 30.48 cm (free)

Material AS4-3501 Graphite Epoxy

E1 = 14.109 x 1010 Pa E2 = 9.243 x 109 Pa

G12= G13 = 5.957 x 109 Pa G23 = 2.965 x 109 Pa

v12 = 0.301 0 = 1.0 radians

h = 0.102 cm R = 30.48 cm

A = 30.48 cm B = 30.48 cm

Ply Layup: [0/-45/45/90] s

Table 5.10 shows the results for total-applied compression load versus axial displace-

ment u computed with the ClOX and C20X theories for the quasi-isotropic cylindrical

shell panel with a cutout. Values of transverse displacement w are also shown in this table.

As shown in the table, the quasi-nonlinear HTSD (C200 & C201) theory gives more flexi-

ble results to the modified Donnell (C100 & C101) theory. Figure 5.27 shows predicted

total equilibrium axial load versus axial displacement u for the C101 and C201 theories.

Table 5.11 shows the results for total-applied compression load versus axial displacement

u computed with the ClOX and C20X theories for the quasi-isotropic cylindrical shell

panel with no cutout. Values of transverse displacement w are also shown in this table. As

shown in the table, the quasi-nonlinear HTSD (C200 & C201) theory gives more flexible

results to the modified Donnell (C100 & C1O) theory. Figure 5.28 shows predicted total

equlibrium axial load along the top edge versus axial displacement u for the C101 and

C201 theories.
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A=B=R=30.48 cm /

h =0.102 cm / clamped

O=1.Oradian /
/ I

Rt/I
/ I

\ / 0
' u (free)

free

A free

Sl

k 10. 16 cm

10.16 cm

s2 clamped

Figure 5.26 Quasi-Isotropic 30.48-cm Radius Cylindrical Composite Shell with Centered
4-Inch Cutout and Free Edges Loaded in Axial Compression
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Table 5.10 Axial Displacement vs Transverse Displacement and Load for a 30.48-cm

Radius, 30.48-cm x 30.48-cm, Quasi-Isotropic Cylindrical Shell Panel with Centered
10.16-cm Cutout under Axial Compression Load - C101 and C201 Theories

Axial C200 C200 C201 C201

Disp (cm) Wt (cm) Load (10' N) Wt (cm) Load (10' N)

0.0025 -0.0041 1.041 -0.0041 1.041

0.0051 -0.0105 2.120 -0.0105 2.074

0.0076 -0.0210 3.141 -0.0232 2.936

0.0102 -0.0620 4.110 -0.0681 4.066

0.0127 -0.1745 4.790 -0.1953 4.711

0.0254 -0.4166 6.309 -0..5004 6.153

0.0279 -0.4648 6.335 -0..5334 6.156

0.0305 -0.5004 6.235 -0.5613 6.084

tW is measured at (15.24,3.81)

Table 5.11 Axial Displacement vs Transverse Displacement and Load for a 30.48-cm
Radius 30.48-cm x 30.48-cm Quasi-Isotropic Cylindrical Shell Panel under Axial

Compression Load -C101 and C201 Theories

Axial C200 C200 C201 C201

Disp (cm) Wt (cm) Load (103 N) Wt (cm) Load (103 N)

0.0051 -0.0011 2.986 -0.0011 2.990

0.0102 -0.0045 5.968 -0.0046 5.975

0.0152 -0.0055 8.922 -0.1212 8.806

0.0203 -0.2675 11.128 -0.2685 11.151

0.0254 -0.3741 13.279 -0.3752 13.310

0.0305 -0.4663 15.072 -0.4674 14.874

0.0356 -0.1696 9.111 -0.2083 8.825

tW is measured at (15.24,3.81)
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1250.0 5.564

1000.0 4.451

P
(lbs)750.0 -3.338
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500.0 2.225

250.0 1.113

0.0 Axial Displacement, U (in)
0 .0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .0

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Figure 5.27 Total Equilibrium Load vs Axial Displacement for a Quasi-Isotropic Cylin-
drical Shell Panel with a Centered 10.16-cm Cutout.

0.000 0.005 0.010 0.015 0.020 0.025 0.031 0.036 0.041 0.046
3 5 0 0 .0 . . . . . . . . . . 1 . . 1 . . 1 . . 1 . . 1 . 1 1 . . 1 ' ' . . . .' ' 15 .578.

* ****Experimental (Hatfield) (cm)

3000.0 .... C200 Theory 13.352
C201 Theory

2500.0 11.127

p2000.0 8.902
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1500.0 6.676

1000.0 4.451

500.0 2.225

0.002 Axial Displacement, U (in) 0.0
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Figure 5.28 Total Equilibrium Load vs Axial Displacement for a Quasi-Isotropic Cylin-
drical Shell Panel without Cutout
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Figure 5.29 Quasi-Isotropic Cylindrical Shell Under Axial Load, Clamped-Free, with
10.16-cm Centered Cutout, (u = 0.02 79 cm)

Figure 5.30 Quasi-Isotropic Cylindrical Shell Under Axial Load, Clamped-Free, with
10.16-cm Centered Cutout, (u = 0.0305 cm)
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Figures 5.29-5.30 show the 30.58-cm x 30.58-cm cylindrical panel with a 10.16-cm

centered cutout just prior to collapse (u = 0.0279 cm) and just after collapse (u = 0.0305

cm). The shapes shown in Figures 5.29-5.30 are similar in orientation and magnitude to

those observed in experiments [77, 199, 200]. At collapse, the maximum rotation of W2

reached 7.8', and occurred at the middle of the free edges. Only 14.7% of the shell surface

saw rotations greater than 4' . After the shell collapsed, the maximum rotation of W2

reached 9.5' and 17.2% of the shell surface saw rotations greater than 40. Clearly, for this

problem, the inclusion of transformation matrices has a negligible improvement in the

shell's response to the loading. Considering the relative magnitude of transverse deflec-

tion, and the relation of the depth of the shell to shell thickness, these axial panels repre-

sent a rather shallow shell when compared to the previous transverse point load, clamped-

free quasi-isotropic, cylindrical shell problem. For the cylindrical shell without a cutout,

using a prescribed convergence tolerance, V = 0.0001, with 15 prescribed axial displace-

ments of 0.0254-cm, the C100 and C101 theory code required 12435 CPU and 17654 CPU

seconds, respectively. The C200 theory codes required 77403 CPU seconds and the C201

theory required 83001 CPU seconds. Further comparisons between Hatfield's experimen-

tal results and the elastic-plastic theory are made in Section 6.7 where improvement in the

analytical predictions are expected.

5.6 Hinged, Isotropic, Spherical Shell Cap

One of the tasks of this research was to incorporate spherical geometry into the classi-

cal Donnell, the modified Donnell, and the quasi-nonlinear HTSD theory. Thus, a base-

line comparison is made with the published results of Argyris et al. [6] and Parisch [150].

A spherical cap is loaded at the apex and supported on a fixed hinge at the circumference

(see Figure 5.31). Note the mesh shown in Figure 5.31 is for one quadrant only and is

included only to illustrate the mesh density used for this problem and not the actual mesh

used for this particular problem. The geometry and material properties are listed below:
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s 1 = 0 U = W'1 = 1 = 0 (symmetry)

s2 =0 v ,2= 2= 0 (symmetry)

s 1 = +2.301 cm u = v = W = 2 = 0 (hinged)

s2 = +2.301 cm u = v = w = W1 = 0 (hinged)

E = 6.90x 1010 Pa v = 0.3

h = 0.040 cm R i = R2 = R = 12.09 cm

01= 02 = 0 = 0.19024 radians a = b = 4.6002 cm

L = 4.5725 cm 6 = 2.1814 cm

a =b 4.6002 cm
R 1 = R2 = R = 12.09 cm hinged
01 = 02 = 0 = 0.19024 radians

L = 4.5725 cm
h = 0.04 cm hinged

hinged 7 (hinged

Figure 5.31 Hinged Apex-Loaded Isotropic Spherical Cap

A 12 x 12 mesh is used to model the entire shell cap. Due to the singularity at the

central node, where the transverse load is applied to the spherical shell cap, modelling just

one quadrant of the shell was impractical. Flugge [68:350-4] and Krause [100:257-8]

showed that for a linear elastic, the closed form solution of the partial differential equa-

tions (PDEs) of a spherical shell under a transvsere loading at the apex, the shear forces,
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Qi, and moments, Mi, at the apex approach infinity. While this is important to recognize, it

is not necessarily the issue at hand when considering a finite element solution. Finite ele-

ments are imperfect when compared to the closed form solutions of the PDE. In addition,

the finite elements incorporated by the author couples membrane and bending through

shell theory. This coupling, along with the imperfections of the element, should "soften"

the singularity condition noted by Flugge and Krause. However, by applying symmetry,

in both directions (sI and s2) to the element with the apex node, all degrees of freedom

(dof) are removed except for the transverse displacement, w. Since this is in the same

direction as the load that is applied, the element becomes overly stiff when predicting the

shell response due to the lack of sufficient dof to "soften" the element and remove the sin-

gularity condition.

To circumvent this singularity condition, the node requires at least four elements [68,

231, 240] to contribute enough energy to the node in the stiffness array. Table 5.12 shows

the predicted transverse equilibrium loads for prescribed transverse displacement of the

apex. The first column is taken from Reference [6]. Argyris et. al. used a four-noded

TRUMP element using classical Donnell shell equations. It is interesting to note the clas-

sical Donnell HTSD theories (S000 & SOO), which are the linear elastic theories with

Hermitian shape functions for w, agree quite well with the TRUMP element but still pre-

dict a slightly more flexible shell response. This is attributed to the Hermitian shape func-

tions approximating the transverse displacement, w. The Hermitian shape functions, first

proposed by Reddy [172, 179] for plate problems, allows the element to pass the patch test

and solve nonlinear problems. This shape functions allows coupling of membrane and

bending activity in the shell to be more flexible than the four-noded, TRUMP element.

The TRUMP element is a bi-linear element with only linear Lagrangain interpolation

functions for the dof u, v, and w. As expected, the modified Donnell HTSD (S 1OX) and the

cubic-nonlinear HTSD (S20X) theories predict a more flexible shell response. Figure

5.32 shows the predicted equlibrium load at the apex versus the prescribed transverse dis-

placement for various theories and from Argyris [6].

Figure 5.33 shows a 2D view of the spherical cap at various points along the load-dis-
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placement curve for the C201 analysis. Figure 5.34 shows the rotational dof, i 2 , along the

meridian of the shell in the s2-direction. It should be noted that the same results occur for

NV1 in the s1-direction due to symmetry of curvature in both directions. When the pre-

scribed transverse displacement, w, reaches 0.1905-cm, the maximum rotation of WV2

reaches 10.160 and over 13% of the shell surface saw rotations of 4.80. When the pre-

scribed transverse displacement reaches the collapse point of the shell (w = 0.381 cm), the

maximum rotation of i2 reaches 15.68' and over 16% of the of the shell surface saw rota-

tions of 9.7'. As was observed in Section 5.4, when the onset of snapping occurred, and

during the snap-through phase, the constitutive transformation matrices of Eqs (4.74) and

(4.75) predicted a more flexible shell response than was observed in the standard cubic-

nonlinear HTSD (S200) theory. As the transverse displacements, w, approach 1O*h, the

combinations of large displacement (w) and moderate rotations (Xvi) allow the constitutive

transformation matrices to change the isotropic material into a psuedo-anisotropic mate-

rial. In particular, the X terms of Eqs (4.46a)-(4.64i) become significantly greater than

unity.

Argyris

P, lbs S0Ol Theory
..... S101 Theory

- (N) ..... S201 Theory

45.00

(200.2)

35.00

(155.7)

25.00

(111.2)

15.00

(66.7)

5.00 Transverse Displacement W, in (cm)(22.2)

0.00 0.04 0.08 0.12 0.16 0.20
-5.2 - (0.101) (0.203) (0.305) (0.406) (0.508)
(-22.2)

-15.00
(-66.7)

Figure 5.32 Equilibrium Curves for Transverse Point Loaded 0.04-cm Hinged Isotropic

Spherical Shell Cap - Ref [6] & SXX1 Theories
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Table 5.12 Predicted Load (N) for Prescribed Center Transverse Displacement (cm) of

0.04-cm, Hinged, Isotropic, Spherical Shell Cap

Disp SOOO S001 S100 S101 S200 S201

0.0476 69.7 69.4 69.4 69.4 69.3 69.3

0.0953 87.7 87.2 85.8 85.4 85.2 84.8

0.1429 108.1 107.3 102.5 101.7 101.4 100.6

0.1905 133.1 119.8 127.0 125.9 125.2 124.0

0.2381 162.0 160.0 158.1 156.3 154.7 153.2

0.2858 189.0 186.0 190.6 187.9 185.0 182.8

0.3334 202.1 198.5 213.7 210.0 204.5 201.7

0.3810 197.0 192.6 206.9 202.8 192.3 190.0

0.4286 116.8 120.2 92.5 100.1 96.3 67.2

0.4524 -23.2 -29.8 -40.8 -48.7 -34.7 -40.6

0.4763 57.6 49.2 62.9 54.5 70.4 64.8

0.10B

0.08e. 0.4

0.02

0 .2 0. 40 0 10
-0e. 02 d a) w = 0.0 in

-0.04 -b) w = 0.092 cm
-0.06 -- c) w = 0..239 cm
-e. eB- e d) w = 0.381 cm
-oe. l e -, f e) w = 0.429 cma
-0e. 12 -, f) w = 0.478 cm
-0.114 g) w = 0.500 cm

Figure 5.33 Two-Dimensional (2D) Profiles of Hinged Isotropic Spherical Shell Cap at
Various Prescribed Transverse Displacements
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Figure 5.34 Meridan Values of qJ2 for 10 Increments, 0.0476-cm each, of Transverse Dis-

placement of Hinged Isotropic Spherical Shell - C201 Theory

For a prescribed convergence tolerance, V = 0.01, along with 20 increments of pre-

scribed transverse displacement (0.00238-cm), the SO00 and S001 theory code required

4428 CPU and 4653 CPU seconds, respectively. The S$100 theory codes required 4532

CPU seconds and the S101 theory required 4801 CPU seconds. The $200 theory codes

required 40356 CPU seconds and the $201 theory required 43178 CPU seconds.

5. 7 Hinged-Hinged Quasi-Isotropic Spherical Shell Cap

To analyzed the effect of quasi-isotropic material in a spherical geometry, the model

from Section 5.6 (Figure 5.31) is used with some minor modification. Three sample prob-

lems were conducted of various ply lay-ups. These were [08], [0 2/90 2]s , and a quasi-isotro-

pic lay-up [0/-45/45/90]s. The author determined early on that ply lay-ups of [08] and

[908] produce identical results. The same occurs for ply lay-ups [02/9021s and [902/02]s.
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The author realizes that the last problem ([0/-45/45/90],) is impractible from an experi-

mental view because of the difficulties of maintaining a true 450 fiber orientation through-

out the spherical cap. However, this analysis provides a unique comparison with the other

problems and with an isotropic model of the same geometry. The geometric and material

properties are listed below:

s 1 = 0 u = w,1 = W1 = 0 (symmetry)

s 2 = 0 v = w,2 = W2 = 0 (symmetry)

s i = +2.301 cm u = v = W = W 2 = 0 (hinged)

s2 = +2.301 cm u = V = W = W1 = 0 (hinged)

El =14.120x 1010 Pa E2 = 9.250x 109 Pa

G2 =G13 = 5.961 x 109 Pa G23 = 2.967 x 109 Pa

v12= 0.301 01 = 02 = 0 = 0.19024 radians

h = 0.04 cm RI =R 2 = R = 12.09 cm

L = 4.573 cm = 2.181 cm

Ply Layup [0/-45/45/90] S a = b = 4.6002 cm

Table 5.13 shows the predicted transverse equilibrium loads for prescribed transverse

displacement of the apex of a [08] or [908] ply layeup with the S200 and S201 theories. As

expected, the S201 theory predicts a slightly more flexible shell. Figure 5.35 shows equi-

librium path for the S200 and S201 theories. Figure 5.36 shows the rotational dof, IV2,

along the meridian of the shell in the s2-direction.

Table 5.14 shows the predicted transverse equilibrium loads for prescribed transverse

displacement of the apex of a [02/902]s or [902/02]s ply layeup with the S200 and S201

theories. As before, the S201 theory predicts a slightly more flexible shell. Figure 5.37

shows the equilibrium path for the S200 and S201 theories. Figure 5.38 shows the rota-

tional dof, W2 , along the meridian of the shell in the s2-direction.

Table 5.15 shows the predicted transverse equilibrium loads for prescribed transverse

displacement of the apex of a [0/-45/45190]s ply layeup with the S200 and S201 theories.

As before, the S201 theory predicts a slightly more flexible shell. Figure 5.39 shows the
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equilibrium path for the S200 and S201 theories. Figure 5.40 shows the rotational dof, W2,

along the meridian of the shell in the s2-direction.

In all three classes of problems (Figures 5.35, 5.37, and 5.39), once the snapping

occurs, the transverse displacements, w, become significantly large (w > 5h). Referring

back to Eqs (4.74)-(4.75), the Cauchy stress-strain constitutive transformation matrices,

[T1] and [T2], enhance the "softening" or the increasing flexibility of the composite shell

once snapping occurs. Along the same lines of discussion as previously mentioned in Sec-

tion 5.4, as the shell transitions from a purely bending response (load is increasing) to a

bending-tension response (load is decreasing), transverse displacement is increasing and

the matrices [T1] and [T2] reduce the shell's stiffness. This occurs by the "smearing" or

blending effect on the stiffness terms in Eqs (4.112)-(4.115) due to these trasnformation

arrays. Thus, in Figure 5.35, after the peak loading is reached, the S201 theory predicts a

more flexible shell as the prescribed transverse displacement is increased. Eventually, the

shell transitions into a pure tension load due to the shell becoming inverted. This phenom-

ena is observed for Figures 5.37 and 5.39 as well. Figures 5.36, 5.38, and 5.40 show that

rotations of the normal (W2) increase smoothly. This is due partly to the dual curvature

symmetry of the spherical shell and the hinged (simply supported) boundary conditions.

In addition, the spherical shell is considered shallow by the parameters specified by Muc

[129, 130]. He identified a shallowness parameter, X, for isotropic or orthotropic shells:

=412 (1-V 1 2V2 1) (5.1)

where a is the shell base radius, R is the shell radius of curvature, t is the shell thickness,

and vij are the Poisson's ratios in the 1- and 2-directions respectively. For these problems

the shallowness parameter, k, is 12.25 indictating, according to Muc, a very shallow shell.
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Table 5.13 Predicted Load (103 N) for Prescribed Transverse Displacement (cm) of
Hinged Quasi-Isotropic [08] Spherical Shell Cap

Disp S200 S201

0.0476 0.477 0.510

0.0953 0.835 0.829

0.1429 1.053 1.043

0.1905 1.209 1.170

0.2381 1.306 1.283

0.2858 1.326 1.252

0.3334 1.234 1.193

0.3810 0.973 0.914

0.4286 0.620 0.527

0.4524 0.656 0.595

0.4763 0.889 0.861

300.00 P, lbs
(1.335) (103 N)

200.00

(0.890)

0

100.00
(0.5 

0.. C200 Theory
(0.445) 0 0, 0 0 0 C201 Theory

0 .0 0 . . . . . . .., . . . . . . . . I . . . . . . . . . . . . . . .

0.05 0.10 0.15 0.20

(0.127) (0.254) (0.381) (0.508)

Transverse Displacement W, in (cm)

Figure 5.35 Equilibrium Curves for Transverse Point Loaded Hinged Quasi-Isotropic [081
Spherical Shell Cap - C200 & C201 Theories
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Figure 5.36 Meridian Values of W2 for 10 Increments, 0.01875-Inch each, of Transverse
Displacement of Hinged Quasi-Isotropic [08] Spherical Shell Cap - C201 Theory

Table 5.14 Predicted Load (103 N) for Prescribed Transverse Displacement (cm) of Quasi-

Isotropic [02/902]s Spherical Shell Cap

Disp S200 S201

0.0476 0.530 0.528

0.0953 0.859 0.854

0.1429 1.082 1.070

0.1905 1.232 1.212

0.2381 1.305 1.279

0.2858 1.281 1.246

0.3334 1.119 1.072

0.3810 0.823 0.744

0.4286 0.681 0.604

0.4524 0.786 0.728

0.4763 1.028 0.992
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100.00
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Transverse Displacement W, in (cm)

0.00 0.04 0.08 0.12 0.16 0.20
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Figure 5.37 Equilibrium Curves for Transverse Point Loaded Hinged Quasi-Isotropic [02/
902]s Spherical Shell Cap - C200 & C201 Theories
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Figure 5.38 Meridian Values of W2 for 10 Increments, 0.01875-Inch each, of Transverse
Displacement of Quasi-Isotropic [02/9021s Spherical Shell - C201 Theory
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Table 5.15 Predicted Load (103 N) for Prescribed Transverse Displacement (cm) of Quasi-
Isotropic [0/--45/45/902]s Spherical Shell Cap

Disp S200 S201

0.0476 0.552 0.553

0.0953 0.884 0.881

0.1429 1.105 1.098

0.1905 1.263 1.251

0.2381 1.361 1.344

0.2858 1.377 1.355

0.3334 1.267 1.245

0.3810 1.026 1.006

0.4048 0.917 0.895

0.4286 0.871 0.845

0.4524 0.916 0.883

400.00 P, lbs
(1.781) (10 3 N)

300.00
(1.335)

200.00 0 0

(0.890)

___C200 Theory

100.00
(0.445)

Transverse Displacement W, in (cm)
0 .0 0 . . . . . . . I . . . . . . . . . I . . . . . . . . .

0.00 0.05 0.10 0.15 0.20
(0.127) (0.254) (0.381) (0.508)

Figure 5.39 Equilibrium Curves for Transverse Point Loade Hinged Quasi-Isotropic
[0/-45/45/90], Spherical Shell Cap - C200 & C201 Theories
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Figure 5.40 Meridian Values of V2 for 10 Increments, 0.01875-Inch each, of Transverse
Displacement of Quasi-Isotropic [0/-45/45/90]s Spherical Shell - C201 Theory

It has been shown that for both isotropic and quasi-isotropic shells, the requirement for

the Cauchy stress-strain constitutive transformations matrices occurs when displacements

and/or rotations become significant. This usually occurs when the prescribed displace-

ment exceeds the von Karman plate or Donnell thin shell assumption of 5h. When rota-

tions become excessively large, such as for the deep, isotropic arch or the quasi-isotropic

clamped-free, transversely point-loaded, quasi-isotropic shell, and the classical Donnell or

the modified Donnell HTSD theories predict an overly stiff shell response, then the consti-

tutive transformation matrices of Eqs (4.74) and (4.75) must be employed for the total

Lagrangian formulation discussed herein. For those shell such as the axially loaded quasi-

isotropic, cylindrical shell or the spherical shell (isotropic or quasi-isotropic) with a point

load at the apex the determination is not so clear. In both problems, the rotations were rel-

atively insignificant. However, for the spherical shells, the transverse displacement were

relatively large, when compared to the shell thickness, and therefore indicated the use of

Eqs (4.74) and (4.75) was appropiate. The additional CPU burden of including Eqs (4.74)

and (4.75) in the analysis was relatively modest. The increase in CPU time, for a con-

verged solution to be achieved, was usually under 10%.
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6. Discussion of Elastic-Plastic Shell Analysis

As mentioned in Chapter 5, Chapters 3 & 4 presented the development of three basic

material and geometric variations of theory for plates and shells. Results for an elastic

analysis of plates and shells (including the material transformation matrices) are discussed

in Chapter 5. This chapter discusses the elastic-plastic analysis of plates and shells with

the inclusion of the material transformation matrices. One objective of this research was

to evaluate the accuracy of including the variations of the HTSD theory with the elastic-

plastic material properties listed in Table 6.1, another objective was to assess their limita-

tions. The first step in achieving these objectives was the verification of the computational

tools used to achieve results. This verification process included verification of the MAC-

SYMA routines used to generate the elemental codes (this process is discussed in Refer-

ence [209:Section 4.6]), verification of the finite element program, and finally verification

of numerical analysis.

Several test problems were solved to verify the MACSYMA generated Fortran codes.

These test problems were classical flat plate and thin shells with known solutions. In all of

the plate and shallow shell test problems, the various elemental codes should give results

equivalent to the classical von Karman plate (PO10) code or the classical Donnell shell

(CO10 & S010) codes. This result is expected since the additional terms of the higher-

order codes include radius in the denominator. Thus, these terms are zero for a flat plate

and negligible for the classical thin shell. Investigations of the limitations of elastic-plas-

tic cubic-nonlinear HTSD theory were based on the shallow isotropic shell panel problems

and a deep isotropic arch problem. For the pinched cylinder and sphere problems, the

cubic-nonlinear shell (C2 11 & S211) codes wre considered. Due to the large rotations and

based on the deep arch solution, it is expected that the classical Donnell and modified

Donnell codes were insufficient for modelling these shells. In addition, several quasi-iso-

tropic cylindrical and spherical shell problems were considered. The shallow shell prob-

lems were thin 254.0-cm radius hinged-free cylindrical shell panels with a transverse point

load, or thin 12.09-cm radius hinged-hinged spherical shell caps with a transverse point

load. The 50.8-cm x 50.8-cm cylindrical shell panels studied were 0.635-cm thick. The
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4.623-cm x 4.62-cm isotropic or quasi-isotropic spherical shell caps studied were 0.04-cm

thick. The deep shell problems included an isotropic 254.0-cm radius cylindrical arch

with hinged-free boundary conditions. Another deep shell was a clamped-free quasi-iso-

tropic shell under a transverse point load. The 27.94-cm x 27.94-cm cylindrical shell was

0.102-cm thick. The method used to solve each case was the nonlinear, displacement-con-

trolled method. This method allows for convergence past the buckling or snapping phase

within each problem [162:9, 134]. The convergence tolerance, V, unless otherwise spec-

ified, for each problem was 0.005. The increment of displacement, and the number of

increments, is specified for each problem. All problems were run on a SUN SPARCsta-

tion 10/80 workstation.

Table 6.1: Definitions of Elemental Codes for Variations of Plastic Theory

Code Displacement Material Equations
Name Assumption Coordinate Given in
GXYZ Field Transformation Appendix

G.I Donnell (1) Included C

G1ll modified Donnell (2) IncludedD

G211 Cubic Nonlinear (3. Included

where

(1) ui defined in Eq (C.2)

(2) ui defined in Eq (D.2)

(3) ui defined in Eq (E.2)

G =- P for a plate, C for a cylindrical shell, S for a spherical shell, or A for an

arbitrary shell geometry. Appendix A lists relations for arbitrary shells,

Appendix B lists relation for general spherical shells, and Appendices C

through E list relations for spherical shells. The plate and cylindrical shell

relations are embedded within the spherical shell relations. They are

derived by setting the parameters D and/or C to zero in the kinematic listed in

Eqs (C.2), (D.2), and (E.2).
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6.1 Point-Loaded, Simply Supported, Perfectly Plastic, Isotropic Plate

To validate the program, an elastic-perfectly plastic, simply supported 2.54-cm x 2.54-

cm plate with a point load at its centerjs considered to test the P2XX theories. This prob-

lem was solved by Owen and Hinton [146:370-371]. Due to symmetry, only one quadrant

of the 0.0254-cm thick plate is modelled with an 8 x 8 mesh of elements. The material

properties and geometry are listed below:

st = 0 v = w,2 = 2 = 0 (symmetry)

s2 = 0 u = W = 1 
= 0 (symmetry)

s I = +1.27 cm v = w = W2 = 0 (simple)

s2 = +1.27 cm u = w = W 1 
= 0 (simple)

a =b = 2.54 cm h = 0.0254 cm

E =7.529 x 1010 Pa v = 0.3

("= 11.032 x 106 Pa H' = 0.0

M = 275.79 Pa D = (Eh )/(12(1-v 2 )) = 11.298 N-m

Figure 6.1 shows the finite element model. The problem is solved by incrementing

transverse displacment at the center of the plate and then calculating the associated load.

The objective is to compare the shell response to the predictions of the elementary bend-

ing dominated load analysis within the context of Kirchhoff-Love kinematic hypothesis

and beyond with the cubic-nonlinear HTSD theory. Owen & Hinton [146:Chapter 9]

incorporated a stress resultant, updated Lagrangian formulation that addresses a layered

elastic-plastic analysis of Mindlin bending plates. Their model ignored large strains and

large displacements, and has no membrane capability (i.e., u and v are not included in the

element). In order to obtain results similar to those of Owen & Hinton, the membrane

stiffnesses (Aij) must be minimized. Due to the type of response by the plate for the load-

ing and boundary conditions considered, membrane activity dominates the plate's

response. The appropiate response was finally achieved by constraining the u and v

degrees of freedom from the model, for every node in each element. This constrainment

effectively removed any membrane activity from the element. The flexure stiffnesses
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(Dij) dominate the analysis, thereby allowing the plate response to be purely bending. To

model nonlinear material behavior, a von Mises yield criteria within the Prandtl-Reuss

flow theory is incorporated. Figure 6.2 shows the predicted equilibrium load for the pre-

scribed transverse displacement for the various theories and the results published by Owen

& Hinton [146]. Note that the load values shown in this figure are 1/4 of the load applied

to the corresponding full plate due to the enforcement of the symmetry conditions. As

shown in the figure, the elastic solution matches the elementary Kirchhoff-Love plate the-

ory solution identically (see [220:24]). The physical influence of the plate yield criterion

is to provide a smooth transition between the elastically dominated and plastically domi-

nated solutions.
Table 6.2: Predicted Normalized Load for Prescribed Normatlized Transverse

Displacement of Simply Supported, Perfectly Plastic, Isotropic Plate

Disp Ref [146] Poll Pill P211

2.5 6.078 6.078 6.078 6.078

5.0 11.962 11.963 11.963 11.963

7.5 17.373 17.378 17.378 17.378

10.0 20.000 20.007 20.005 20.005

12.5 21.804 21.834 21.830 21.830

15.0 22.745 22.769 22.764 22.764

17.5 23.333 23.391 23.381 23.381

20.0 23.922 23.772 23.761 23.761

22.5 24.020 24.013 24.001 24.001

25.0 24.275 24.063 24.050 24.050

The evolution of plastic zones in the plate are depicted in Figures 6.3-6.6 for increas-

ing displacement. These zones are determined by the presence of plastic strain at the

Gauss points for each element at the layer being considered. When the normalized dis-

placement reaches w* = 8.0, approximately 25% of the plate's outer surface is exhibiting

strain greater than 2.5%. This is reflected in the load-displacement curve by transition

from an elastic to an elasto-plastic response in the plate. It is interesting to note that only

8% the middle surface of the plate is only exhibiting strains greater than 2.5%. When the
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a = b = 2.54 cm/outer surface
h = 0.0254 cm /Zsl

simple a IN simple

simple /  "i S2

simple

Figure 6.1 Simply Supported Isotropic Plate with Transverse Point Load with no Work
Hardening

0.00 10.00 20.00 30.00 40.00
30 .00 - I . . . . . . . . . 1 ' . . . 30 .

Normalized Load,
p* (qLZ/Mp)

20.00 20.
Owen &Hinton [146]

Co-C P011 Theory
... P11 Theory

10.00 10.

Normalized Transverse Displacement,

W= (wD)/(ML 2)
0.00 .0.0

0.010.00 20.00 30.00 40.00

Figure 6.2 Load-Displacement Curves for Simply Supported Isotropic Plate with no Work
Hardening. Owen & Hinton [146:370-371] & PX 11 results.
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Figure 6.3 Evolution of Plastic Zone in Simply Supported Isotropic Plate with no Work
Hardening: w* =5.0

D Elastic

* Plastic

Outer Surface Middle Surface

Figure 6.4 Evolution of Plastic Zone in Simply Supported Isotropic Plate with no Work
Hardening: w* = 10.0
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D" Elastic

* Plastic

I #
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Figure 6.5 Evolution of Plastic Zone in Simply Supported Isotropic Plate with no Work
Hardening: w* = 15.0

DElastic
EPlastic

I I I L

Outer Surface Middle Surface

Figure 6.6 Evolution of Plastic Zone in Simply Supported Isotropic Plate with no Work
Hardening: w* = 20.0
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normalized displacement reaches w* = 15.0 (Figure 6.5) the classical plastic hinge lines

appear (exhibited by the plastic zones). Note the plate model predicts finite width plastic

zones neighboring each hinge. These plastic zones have considerable width in compari-

son to the plate thickness as is shown for displacements w* > 15.0 (Figure 6.5 through

Figure 6.6). Nevertheless, there is good quantitative agreement between the author's solu-

tion and those of Owen & Hinton [146] for the equilibrium load-displacement curve.

Owen & Hinton never displayed their plasticity regions for this particular problem. The

plastic zones, for each layer of interest, are determined by calculating the stresses at each

Gauss point, transforming them into the Cauchy reference frame, and then determining if

the yield function was exceeded for this Gauss point. If this occurs, the Gauss point was

identified as having yielded for the remainder of the analysis and the Prandtl-Reuss flow

relations were followed regarding the elastic and plastic strain increments. For a nonlin-

ear, displacement-control solution with a prescribed tolerance, V = 0.01, the P011 theory

code required 2030.7 CPU seconds, the Plll theory required 2250.3 CPU seconds, and

the P211 required 3243.9 CPU seconds. The normal displacment, w, was initially incre-

mented at 1.27-cm until

6.2 Deep, Hinged, Perfectly-Plastic, Isotropic, Cylindrical Arch with Transverse Point

Load

To determine the effect of including an elastic perfectly-plastic material analysis for

cylindrical shells, the deep isotropic arch problem from Section 5.2 is studied. It is a

254.0-cm radius arch with a 2.54-cm square cross section and an opening anige of 0.92

radians (106.0°). The arch configuration is shown is shown in Figure 6.7. The geometric

and material data are shown below:

s 1 = 0 v = w,2 = W2 = 0 (symmetry)

s2 = 0 u = w 1 = W,1 
= 0 (symmetry)

s I = +1.27 cm (free)

s2 = +234.95 cm u = v = w =W 1 = 0 (simple)
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E = 3.103 x 1010 Pa 0 = 0.92 radians

width = 2.54 cm v = 0.3

h = 2.54 cm L =406.4 cm

= 101.6 cm v = 0.0

oy = 11.032x 106 Pa H'= 0.0

' '_ /One Quadrant

Outer Surface

i s2

L

Figure 6.7 Hinged, Point-Loaded, Perfectly Plastic Isotropic Cylindrical Arch

It should be noted that the values for cy and H' are arbitrarly chosen for this problem.

They were chosen to establish an elastic-perfectly plastic isotropic cylindrical arch analy-

sis. Solutions for this problem were compared using C2XX codes and a 1 x 40 element

mesh to model one quadrant of the arch. Data from the various geometrical theories are

shown in Table 6.3. When the elastic-perfectly plastic material analysis is included, the

quasi-nonlinear theory (C21 1) predicts a more dramatic collapse than the elastic analysis.

Figure 6.8 shows the load versus crown displacement predicted by the C2XX theories.

6-9



0.00 12.7 25.4 38. (cm)5 0 .8  63.5 76.2 88.9
1200.oo0- 5.338

P_
(lbs)- " ---

1000.00 4.448

800.00

(10 3 N)

600.00 2.669

0__aa 0 Dennis CE100 Equiv)
0 111 cio o Dennis (C20 Equiv)

400.00 0 0 o 0 C200 Theory 1.779
ooooo C201 Theory
..... C211 Theory
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Figure 6.8 Deep Arch Crown Displacement vs Load - C100 & C2XX Theory

Table 6.3: Equilibrium Point Load (103 N) for Prescribed Transverse Displacement (cm)
of Perfectly Plastic Isotropic Cylindrical Arch

Disp Donnell* SLR* C200 C201 C211

10.16 2.763 2.834 2.823 2.821 2.096

20.32 3.975 4.038 4.021 3.834 2.932

30.48 4.573 4.481 4.464 4.133 3.317

40.64 4.841 4.443 4.431 3.977 3.454

50.80 4.876 4.041 4.037 3.521 3.338

60.96 4.808 3.488 3.532 2.881 2.793

71.12 4.579 2.284 2.277 2.077 2.592

81.28 N/A N/A N/A N/A 2.026

*Ref [162:207]
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Along with the large movement and rotations, the changing constitutive relations near the

arch crown creates a more flexible response for the model.

Figures 6.9-6.13 show the developement of the plastic zones along the arch surface

and mid-surface. As expected, plasticity occurs along the counter-flexure points of the

arch and at the location of the loading. By the end of the analysis, the entire outer (con-

vex) surface of the arch is behaving plastically (see Figure 6.13), along with the middle

surface. This allows for the significantly more flexible shell response observed in Figure

6.8. This is a relatively deep shell with the values of 8/b and 0 over five times larger than

a typical shallow arch [162:205]. The boundary conditions and loading result in a sym-

metric response where the arch crown displaces only radially. Previously, the results from

the elastic solutions (i.e. COOX, ClOX, and C20X) were compared with the inextensible

solution of Huddelston [88]. Huddleston provided closed-form solutions for an arch with

an extensible midsurface. He defines the extensibility of the arch by a factor, c, as shown

in the following

I
C -(6.1)

A(2b)
2

where I is the area moment of inertia, A cross-sectional area, and b is given in Figure 6.7.

The inextensible solution is represented by c = 0 since the bending E1 is very small com-

pared to the axial stiffness EA. The geometry of the arch for the present formulation gives

an exentsibility factor of c = 3.255 x 10-6.

Solutions were obtained and compared to Huddleston results for c = 0.0 and 0.01. The

collapse load for the Donnell arch (CO01) is approximately 13% below that for the inex-

tensible solution (c = 0.0), yet is much larger than the published extensible solution (c =

0.01). The extensibility of the middle is seen to increase the deflection of the arch under

the load, as is expected since the arch is in compression. The parameter c for the present

case is very small. Therefore, the results tend to follow the c = 0.0 results closely until

near the peak load.. The C001, C101, and C201 responses fall between the curves in the

postcollapse regions and gives an expected response for the extensibility factor for the

present arch geometry. The C1O collapse load is approximately 15% and the C201 col-

lapse load is approximately 20% less than the inextensible solution. Additionally, the
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a) Outer Surface

Symmetry Hinge

b) Middle Surface

Figure 6.9 Evolution of Plastic Zones for Perfectly Plastic Isotropic Cylindrical Arch:
W = 20.32 cm

a) Outer Surface

Symmetry Hinge

b) Middle Surface

Figure 6.10 Evolution of Plastic Zones for Perfectly Plastic Isotropic Cylindrical Arch:
w = 30.48 cm
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a) Outer Surface

Symmetry Hinge

b) Middle Surface

Figure 6.11 Evolution of Plastic Zones for Perfectly Plastic Isotropic Cylindrical Arch:
w = 40.64 cm

a) Outer Surface

Symmetry Hinge

b) Middle Surface

Figure 6.12 Evolution of Plastic Zones for Perfectly Plastic Isotropic Cylindrical Arch:
W = 50.8 cm
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a) Outer Surface

Symmetry Hinge

b) Middle Surface

Figure 6.13 Evolution of Plastic Zones for Perfectly Plastic Isotropic Cylindrical Arch:

w = 60.96 cm

different from that of the COOl and inextensible results in that it does not fall between the

c = 0.0 and 0.01 curves. This is attributed to the higher-order representation of the defor-

mation of the midsurface of the arch and due to the continually changing properties of the

elastic-perfectly plastic material. Recall that the C201 formulation included many nonlin-

ear in-plane displacement terms in the strain definitions that are not included in the C001

and C101 formulations. In addition, the C211 formulation allows the material to behave

nonlinearly. Therefore, one might expect a greater effect of extensibility in the C201 &

C211 formulations compared to the COOl & C101 formulations as the displacements

become large, i.e., where the additional terms become more important. Almroth & Bro-

gan [3] saw a similar effect compared to the inextensible solution of a deep arch. Their

finite element formulation allows nonzero midplane straining, and their results were con-

sistently more flexible compare to the inextensible results. The transverse shear degrees

of freedom have a small effect but also increase the displacement under the load compared
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of freedom have a small effect but also increase the displacement under the load compared

to the inextensible solution [202].

For a nonlinear, displacement-control solution, with a prescribed tolerance, V =

0.005, along with 3 prescribed transverse displacements of 10.16-cm and 10 prescribed

transverse displacements of 5.08-cm, the C211 theory required 35479.4 CPU seconds. To

ensure convergence at this prescribed tolerance, the increments of displacement were half

of those used for the C201 theory when approximately 15% of the convex surface saw

strains greater than 2.5%. The CPU time is a significant increase, for the same tolerance,

when compared to C201 theory in generating a solution.

6.3 Pinched, Perfectly Plastic, Isotropic Cylinder with Rigid Membranes and Two Trans-

verse Point Loads

To test the plasticity model for cylindrical shells, a short isotropic cylinder bounded by

two rigid diaphragms at its ends, loaded with two transverse pinching loads at the middle

section, and characterized with no kinematic hardening, is considered. Simo & Kennedy

[207] published results for this model using their total Lagrangian, large strain formula-

tion. Due to symmetry, only one octant of the cylinder is modelled. The 3-units thick cyl-

inder is 180-units in length with a 300-unit radius. Note: Simo & Kennedy used non-

dimensionalized units. The geometry and material properties are listed below. The finite

element model is given in Figure 6.14. Because of the geometry, and the difficulty of pre-

dicting stress in a displacement-based finite element formulation, a heavily refined 8 x 36

element mesh is used to model the octant with symmetry about the s2-axis and along one

edge of the sl-axis. The other edge of the sl-axis models the rigid diaphragm. The mate-

rial and geometrical properties are listed below:

S1 = 0.0 V = w = w 2  W2 = 0 (rigid membrane)
= 0.0 V = W2 = = 0 (symmetry)

s 1 = 90.0 u = W l = W1 = 0 (symmetry)

s2 = 471.24 v = w 2 = W2 = 0 (symmetry)
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a =90.0 b = 471.24 h =3.0

E = 3000.0 v = 0.3 0 = 1.57 radians

R = 300.0 (3Y = 270.0 H' = 0.0

a = 90.0
b = 471.2388
h= 3.0
0 =1.57 radians
R =300.0 P 4s1

symmetrys

(V = W,2 =uw,2 0) b

I symmetry
l/ 1" ( u = w' l = W!' l O)

rigid membrane S2

(v = w = W,2 ='Y,2 ) symmetry

(v = W,2 = Nf,2 = 0)

Figure 6.14 Pinched, Perfectly Plastic, Isotropic Cylinder Bounded with Rigid Mem-
branes under Transverse Point Loads.

Table 6.4 shows the predicted equilibrium load for the prescribed transverse displace-

ment for the C201 theories and compared to the results from Simo & Kennedy [207]. The

predicted equilibrium load versus prescribed transverse displacement is shown in Figure

6.15 for the C201 & C211 theories and compared with the results published by Simo &

Kennedy.

Simo & Kennedy noted that the step-like regions (see Figure 6.15) in their load-dis-

placement curve is due to snap-through mechanisms which arise due to the relatively

coarse mesh in comparison to the width of the indentation ridge forming about point load

upon loading [207:162-164]. In other words, such regions are due to the nature in which
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the ridge, or the point of inflection point of the cylinder, passes through the elements as the

inflection point moves outward. This inflection point, in their model, if of equal width to

or below the element width. The evolving plastic zones for the convex surface of the

pinched cylinder are shown in Figures 6.16-6.20. The corresponding evolving plastic

zones for the middle surface of the pinched cylinder, at w = 150 and w = 250, are shown in

Figures 6.21-6.22.

Table 6.4: Predicted Equlibrium Load (103 Units) for Prescribed Transverse
Displacement of Pinched, Perfectly Plastic, Isotropic Cylinder

Disp Ref [207] C201 C211

25.0 0.119 0.365 0.142

50.0 0.201 0.534 0.253

75.0 0.298 0.796 0.296

100.0 0.391 1.068 0.361

125.0 0.452 1.565 0.438

150.0 0.524 N/A 0.531

175.0 0.629 4.823 0.657

200.0 0.927 N/A 0.950

225.0 1.427 N/A 1.587

250.0 2.376 N/A 2.553

275.0 4.976 N/A 5.112

It should be noted that the stress develops along the hinge line of the cylinder (where the

cylinder develops an inflection point) and where the load is applied. By the end of the

analysis, as the cylinder undergoes pure membrane response, the entire convex surface is

behaving plastically. However, the middle surface (Figures 6.21-6.22) is still behaving

elastically (except at the load point and the point of inflection in Figure 6.22). For a non-

linear, displacement-control solution, with a prescribed tolerance, V = 0.005, and 11 pre-

scribed transverse displacements of 25.0, the C201 theory required 23663.2 CPUseconds

to generate a solution while the C211 theory required 127891.3 CPU seconds. The
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Figure 6.15 Predicted Equilibrium Load for Prescribed Transverse Displacement for
Pinched, Perfectly Plastic, Isotropic Cylinder with Rigid Membrane

Membrane

Symmetry Symmetry

Symmnetry

Figure 6.16 Evolution of Plastic Zone for Convex Surface in Pinched, Perfectly Plastic,
Isotropic Cylinder: w = 50.0

6-18



Membrane

Symmetry Symmetry

Symmetry

Figure 6.17 Evolution of Plastic Zone for Convex Surface in Pinched, Perfectly Plastic,
Isotropic Cylinder: w - 100.0

Membrane

Symmetry Symmetry

Symmetry

Figure 6.18 Evolution of Plastic Zone for Convex Surface in Pinched, Perfectly Plastic,
Isotropic Cylinder: w = 150.0
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Membrane

Symmetry Symmetry

Symmetry

Figure 6.19 Evolution of Plastic Zone for Convex Surface in Pinched, Perfectly Plastic,
Isotropic Cylinder: w = 200

Membrane

Symmetry Symmetry

Symmetry

Figure 6.20 Evolution of Plastic Zone for Convex Surface in Pinched, Perfectly Plastic,
Isotropic Cylinder: w = 250

6-20



Membrane

Symmetry Smer

Symmetry

Figure 6.21 Evolution of Plastic Zone for Middle Surface in Pinched, Perfectly Plastic,
Isotropic Cylinder: w =150

Membrane

I

Symmetry Smer

Symmetry

Figure 6.22 Evolution of Plastic Zone for Middle Surface in Pinched, Perfectly Plastic,
Isotropic Cylinder: w =250
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increase in CPU time is attributed to the significant requirement of resolving the stress

field (an eight increment step - Eq (G.4)) for each Gauss point in each layer (for an isotro-

pic shell the default is eight layers).

6.4 Hinged, Perfectly-Plastic, Isotropic, Spherical Cap with Apex Load

A logical extension of the elastic-plastic analysis is to consider a spherical shell geom-

etry. One well documented problem is the elastic-plastic model of the isotropic spherical

shell cap discussed in Section 5.6. This problem has been previously analyzed by several

authors [166,238 ], the first being Argyris et. al. [8]. It is an 0.04-cm thick isotropic spher-

ical shell cap, hinged on the boundaries with a transverse point load at the apex. The shell

is considered to be perfectly plastic and has a 12.09-cm radius of curvature with a depth of

2.181-cm. Figure 6.23 shows the spherical shell problem. The mesh shown is for one

quadrant only, to demonstrate the mesh density, not the actual mesh used. Refer to Section

5.6 for the discussion regarding the singularity condition of a point load applied at the

apex of a spherical shell. The boundary conditions and material properties are listed

below.

si = 0.0 cm u = w = = 0 (symmetry)

s2 = 0.0 cm v = = 2 = 0 (symmetry)

s 1 = +2.301 cm u = v = w =W 2 = 0 (hinged)

s2 = +2.301 cm u = v = w =W1 = 0 (hinged)

a = b = 4.60 cm R 1 = R2 = R = 12.09 cm h = 0.04 cm

E = 6.895 x 1010 Pa v = 0.3 01 = 02 = 0 = 1.57 radians

L = 4.753 cm 5 = 2.181 cm GY = 1.379x 1010 psi H' = 0.0

The spherical shell cap is modelled with a 12 x 12 element mesh for the entire shell

and eight layers are used to model through-the-thickness plasticity. The results are com-

pared to the TRUMP solution of [8]. Table 6.5 shows the predicted equilibrium loads for

prescribed increments of transverse displacement for the S2XX theories. Figure 6.24
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shows the equilibrium curves for the S200, S201, and S211 theories as compared to the

results from Argyris et. al. [8] and Parish [166]. As expected the elastic perfectly-plastic

(S211) shell exhibits a greater flexible response than the purely elastic shell. This flexibil-

ity is shown by a reduction in the snap load, and an increase in displacement during the

a = b = 4.60 cm
R 1 = R2 = R = 12.09 cm
01 =02 = 0 = 0.19024 radians hinged

L = 4.753 cm
h = 0.04 cm

hinged

h - -

-- R2

hinged sl 1 01 10 hinged

Figure 6.23 Hinged Apex-Loaded Isotropic Elastic Perfectly-Plastic Spherical Cap

snap-through and recovery phases. Figures 6.25-6.27 show the evolution of the plastic

zones on the concave surface of the spherical shell. The plastic zones are determined by

the presence of plastic strain at the Gauss points, hence the ability for part of an element to

be behaving elastically and plastically. As expected, plasticity develops early at the apex

of the shell, where the incremental displacement is applied, and at the corners due to the

hinged boundary conditions from both sides. With further displacement, bending stresses

develop and increase in magnitude as does the plasticity on the shell. At the point of snap-

ping (Figure 6.26) approximately 18% of the shell surface is exhibiting strains greater than

2.5%. However, Figures 6.28-6.29 show how little plasticity develops at the shell's mid-
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surface. For the same point of the onset of snapping, only 6% the shell's midsurface is

exhibiting strains greater than 2.5%. This correlates well with results published by Yuan

[238]. The author's equilibrium load versus transverse displacement results agree very

well with those published by Argyris and Parish. The inclusion of the transformation

matrices for the elastic-plastic constitutive relations, along with the eight-noded quadratic

element and the cubic-nonlinear HTSD theory yields a more flexible shell response than

the TRUMP element of Argyris [8] or the QUAD4 element of Yuan [238]. For a nonlin-

ear, displacement-control solution, with a prescribed tolerance, V = 0.01, along with 30

prescribed transverse displacement increments (0.0238-cm), the S211 theory required

121547.0 CPU seconds. The increase in CPU time is again attributed to the significant

requirement of resolving the stress field after plasticity occurs.

Table 6.5 Predicted Equilibrium Load (N) for Prescribed Transverse Displacement (cm)
of a Hinged Isotropic Elastic-Perfectly Plastic Spherical Shell Cap

Disp S200 S201 S211

0.0476 69.21 69.21 37.60

0.0954 85.19 84.78 46.73

0.1429 101.33 100.55 58.76

0.1905 124.84 123.93 72.51

0.2381 154.57 153.06 86.56

0.2858 184.82 182.58 102.13

0.3334 204.40 201.59 114.77

0.3810 192.12 189.85 127.08

0.4286 96.21 67.08 130.69

0.4365 -34.65 -40.52 N/A

0.4763 70.33 64.72 82.12

0.5001 N/A N/A -9.08

0.5239 N/A N/A -50.04

0.5477 N/A N/A 20.10

0.5715 N/A N/A 108.85
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0.00 0.05 0.o1 0.15 0.20 0.25

Figure 6.24 Load-Displacement Equilibrium Curves for Hinged Isotropic Elastic-Per-
fectly Plastic Spherical Shell Cap

Figure 6.25 Evolution of Plastic Zones for Concave Surface of Hinged Isotropic Elastic-
Perfectly Plastic Spherical Shell Cap: w = 0.0478 cm
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Figure 6.26 Evolution of Plastic Zones for Concave Surface of Hinged Isotropic Elastic-
Perfectly Plastic Spherical Shell Cap: w = 0.429 cm

Figure 6.27 Evolution of Plastic Zones for Concave Surface of Hinged Isotropic Elastic-
Perfectly Plastic Spherical Shell Cap: w = 0.523 cm
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Figure 6.28 Evolution of Plastic Zones for Middle Surface of Hinged Isotropic Elastic-
Perfectly Plastic Spherical Shell Cap: w = 0.0478 cm

, II I

Figure 6.29 Evolution of Plastic Zones for Middle Surface of Hinged Isotropic Elastic-
Perfectly Plastic Spherical Shell Cap: w = 0.429 cm
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6.5 Axially Loaded, Graphite Polyetherether Ketone (Gr/PEEK) Tensile Coupon

A relatively simple method of validating the theoretical and analytical models for lam-

inated composite structures is to compare against experimental tensile coupon data. Gould

[71] ran several Gr/Peek ±450 tensile coupon tests. He then compared an analytical

model's predictions with these experimental results. We are only interested in comparing

the author's analytical model with Gould's experimental data as a means of validating the

nonlinear anisotropic material characterization, including a large strain formulation. The

tensile coupon is 2.54-cm wide and 25.4-cm in length with a thickness of 2.134-cm. A ply

lay-up of [4 51-4 514s is modelled with a 2 x 20 element mesh. The finite element model is

given in Figure 6.30. Since the ply lay-up consists of only ±450 oriented plies, symmetry

cannot be used. The geometric and material properties are listed below:

s 1 = b/2 v = w=w 1  = = 2 W 2 = 0 (clamped)

s 1 = -b/2 u = v = w = w,2 = W= = =0 (clamped)

s = +a/2 in u = v = w = w1 = w 2 =11 1 =w 2  (free)

a = 2.54 cm b 25.4 cm h = 2.134 cm

E= 13.552 x 1010 Pa E 2 = 1.069 x 1010 Pa

G12= G 13 = 5.602 x 109 Pa G23 = 4.482 x 109 Pa

V 12 = 0.305 ay, = 2.199 x 109 Pa

aY2 = 8.635 x 107 Pa 1Y12 = 5.339 x 107 Pa

ki = 0.0 I/Pa k2 = 1.827 x10 - 17 1/Pa

k3 = 1.189x 10-16 I/Pa n = 2.862

The values for Y1 11, aYY 22, a1Y12, kl, k2, k3, n for the Graphite/PEEK material refer-

enced in [71] were determined from the experimental stress-strain curves shown in Fig-

ures 6.31-6.33. Predicted load versus prescribed results are shown in Table 6.6. Figure

6.34 shows the predicted equilibrium load vs prescribed axial displacement for the P200,
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IFS2

(V W =jW2V W 2 0)
clamped

b=25.4 cm
h=2.134 cm

Figure 6.30 ±45' Axially Loaded Gr/PEEK Tensile Coupon

2.758 E,= 13.583 x 1010 Pa

aY~j= 2.199 x 1010 Pa

k, =0.0 1/Pa
2.065 n = 2.674

Stress

(106 Pa)

1.379

0.689

Strain
(in/in)

0.000
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 .0616

Figure 6.31 Experimental (71 - P-1 Curves for Gr/PEEK [71]
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103.42- E2 =1.069 x10' 0 Pa

CTY 22 =8.653 x 107 Pa
k2 = 1.827 x 1047 1/Pa

68.95- n =2.674

Stress
(103 Pa)

34.47-

Strain
(in/in)

0.000 .0 0.0 04 0.006 0.008 0.010 0.012 0.014

Figure 6.32 Experimental (72 2 - 622 Curves for GrJPEEK [71]

172.37-
= 5.602 x 107 P

CY12 =5.339 x 107 Pa

137.90-k = 1.189 x 10-16 1/Pa
n=2.674

103.42-

Stress
(3O Pa)

68.95-

34.47

Strain
(in/in)

0.00
0.000 0..06506 0.1006 0.150 .200 0.250 0.0 .350 0.400

Figure 6.33 Experimental (51 2 - £-12 Curves for GrIPEEK [71]

6-30



Table 6.6 Predicted Equilibrium Load (103 N) for Prescribed Axial Displacement (cm) of

a 2.134-cm Clamped-Free Quasi-Isotropic Gr/PEEK Tensile Coupon

Disp Gould* P200 P201 P210 P211

0.254 6.222 10.699 7.257 5.931 5.931

0.508 7.281 20.204 14.489 7.908 7.739

0.762 8.246 29.221 21.650 8.969 8.703

1.016 8.945 N/A 29.211 9.810 9.568

1.270 9.567 N/A N/A 11.455 10.420

1.524 10.124 N/A N/A 12.309 11.313

1.778 11.090 N/A N/A 13.223 12.002

2.032 11.760 N/A N/A 14.198 12.979

2.286 12.558 N/A N/A 15.169 13.832

2.540 13.466 N/A N/A 16.071 14.685

2.794 14.198 N/A N/A 17.142 15.538

3.048 15.173 N/A N/A 18.158 16.513

3.302 16.026 N/A N/A 19.072 17.366

3.556 16.878 N/A N/A 20.109 18.095

3.810 17.793 N/A N/A 21.022 19.662

4.064 18.707 N/A N/A 22.363 19.682

4.318 19.438 N/A N/A 22.362 20.665

4.572 20.230 N/A N/A N/A N/A

4.826 20.657 N/A N/A N/A N/A

5.080 20.778 N/A N/A N/A N/A

5.205 20.596 N/A N/A N/A N/A

*See Ref [71].

P201, P210, P211 theores and how these various theories compared with Gould's experi-

mental data. It should be noted that the P210 theory was a purely an exercise in code

development and was never used again in this research effort. As expected, the P211 the-

ory provides the closest prediction to the experimental results from Gould. The evolving
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plastic zones of the tensile coupon model, for the middle and upper surfaces, are shown in

Figures 6.35-6.37. The solution for P211 stopped at u = 4.572-cm (Figure 6.34). This

was due to the significant reduction in stiffness by the presence of plastically behaving

Gauss points across the width of the tensile coupon (Figure 6.37). Up until this increment

of displacement, the plasticity provided a "softening" or reduction in equilibrium load for

each prescribed increment of displacement in the coupon's response. Once plasticity was

spread across the width, the loss in stiffness was so significant, for the step size of dis-

placement increment, that the code diverged. A refinement in the mesh in this region, and

a reduction in the displacement increment beyond u = 4.064-cm would provide a means of

progressing beyond this point. It is interesting to note that only 7.5% of the coupon is

exhibing strains greater than 2.125%.

(cm)
0.00 1.27 2.54 3.81 5.08 6.35

8000.00 f ,. , ,, .,,, 35.601
P

(lbs) (103 N)

6000.00 I 26.701

4000.00 17.800

/ Experimental (Gould) [7182000.00 / -- .. P211l Theory ]8.901

/¢f. _P21 0_ Pl Theoryr
/ P201 Theory

- e P200 Theory

Axial Displacement, U (inches)0 .0 0 1.. . . 1 . . . . . . T I.. . . I . . . . . . . .
0.0 0.50 1.00 1.50 2.00 2.50

Figure 6.34 Predicted Equilibrium Load for Prescribed Axial Displacement for Gr/PEEK
Tensile Coupon - Experimental [], PX11 Theories

Because of the ±450 orientation, plasticity occurs almost instantenously on the outer

and middle surfaces, with only a negligable difference in the amount of area behaving

plastically. From Figures 6.34-6.37 one would expect the load-displacement curve to be
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(a) Upper Surface

Clamped Clamped, u free

(b) Middle Surface

Figure 6.35 Evolution of Plastic Zones in Gr/PEEK Tensile Coupon: u 0.254 cm

(a) Upper Surface

Clamped Clamped, u free

(b) Middle Surface

Figure 6.36 Evolution of Plastic Zones in Gr/PEEK Tensile Coupon: u = 2.54 cm
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(a) Upper Surface

Clamped Clamped, u free

I JI I I
(b) Middle Surface

Figure 6.37 Evolution of Plastic Zones in Gr/PEEK Tensile Coupon: u = 4.572 cm

significantly altered from the elastic solution, which is observed in Figure 6.34. This

"material softening" effect allows for a significantly reduced ultimate load (predicted fail-

ure) and an increase in displacement. The "material softening" effect is attributed to the

highly nonlinear shear stress-strain curve. The yield stress for a 12 - 612 curve is 2.43%

the magnitude of the yield stress for the C 12 - £12 curve. Note: due to the restraints shown

in Figure 6.30 the stress field in non-homogeneous producing the varying stress results

shown in Figures 6.35-6.37. Thus, for a ±450 coupon, it is not unexpected to see a signfi-

cant dependence on the shear strain material properties. For a nonlinear, displacement-

control solution, with a prescribed tolerance, V = 0.001, along with 18 prescribed axial

displacements of 0.254-cm, the P201 theory required 32912.3 CPU second while the P211

theory required 78341.9 CPU seconds. The displacement increments were one-quarter to

one-half the magnitude of the displacement increments used for the P201 analysis. The

increase in CPU time is again attributed to the significant requirement of resolving the

stress field after plasticity occurs.

6-34



6.6 Clamped-Free, Quasi-Isotropic, Cylindrical Shell Panel with Transverse Point Load

The first graphite epoxy, quasi-isotropic shell problem, chosen for this research, was a

deep, cylindrical shell panel with a transverse point load. This problem demonstrates a

severe test of an HTSD theory, including large strain theory, because of the shell's depth,

thickness, and quasi-isotropic properties. A deep 30.48-cm radius quasi-isotropic 27.94-

cm by 30.48-cm cylindrical shell panel was clamped at its lateral boundaries and free on

the circumferential boundaries. The shell configuration is shown in Figure 6.38. The geo-

metric and material properties are listed below

s 1 = b/2 u = v = w = w,1 =w,2 = W 1 = 2 = 0 (clamped)

s = -b/2 u = v = w = w =w 2 = 1 = =0 (clamped)

s 2 = +a/2 u = v = w = w = w2 = = 2  (free)

a = 27.94 cm b = 30.48 cm h = 0.102 cm

R = 30.48 cm 0 = 1.0 radians

Material AS4-3501 Graphite Epoxy

E= 14.114x 1010 Pa E2 = 9.246x 109 Pa

G12 G13 = 5.958 x 109 Pa G23 = 2.966 x 1010 Pa

V 12 = 0.313 y1 I = 1.553 x 109 Pa

a ,22 =4.548 x 107 Pa GY12 = 3.932 x 107 Pa

ki = 0.0 1/Pa k2 = 7.753 x 10- 2 3 1/Pa

k3 = 1.606x 10-18 1/Pa n = 3.060

Ply Lay-ups [0/-45/45/90]s

The 0.102-cm thickness is significantly lesser than the 4.826-cm depth of the shell.

Results for the transversely-loaded shell were compared with computational results of Tsai

and Palazotto [225, 226] and those shown in Section 5.4 Palazotto and others [161-163]

investigated shells of this configuration and compared static and dynamic results for dif-

ferent material properties and ply lay-ups. Their work was typically based on a 96 ele-

ment model of a quadrant of the shell. This mesh was chosen based on the results of their
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convergence studies summarized in Section 5.4. Tsai and Palazotto [225] concluded that

the 8 x 12 mesh results were acceptable consdering the CPU consumption was about 70%

less than the 11 x 16 mesh. The finite element model is given in Figure 6.38. The values

for coyy, eFY22, CrY2, kl, k2, k3, n for AS4-3501 graphite expoxy were determined from the

experimental stress-strain curves shown in Figures 6.39-6.41.

free p Slclamped\

(U= V=W=W,1 =0)

a = 27.94 cm
b = 30.48 cm
h = 0.102 cm
R =30.48 cm
0 = 1.0 radian

6=4.826 cm

free -clamped
free(u v = w = w =0)

(W, 2 = W 1 = W2 = 0)

Figure 6.38 Clamped-Free Graphite Epoxy Shell with Transverse Point Load

Transverse load values versus displacements were computed for a ply lay-up of [0/-45/

45/90] s , using the modified Donnell (CDON), fully-nonlinear HTSD (C200), fully-non-

linear HTSD with material transformation (C201), and the fully-nonlinear HTSD with

large strain (C21 1) theories. The cubic-nonlinear HTSD elemental codes predicted identi-

cal results, comparable to those of Tsai. Figure 6.42 shows the equilibrium values of

transverse load for the CDON, C200, C201, and C211 theories. The elastic-plastic, cubic-

nonlinear HTSD theory predicted a significantly more flexible structure with a marked
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difference in the snapping and snap-through behavior as compared to the cubic-nonlinear

HTSD theories. As w increased, the fully-nonlinear codes predicted an increasingly more

flexible structure for snapping and until snap-through is achieved. In these portions of

equilibrium, the shell is primarily in bending due to the clamped boundary conditions.

Once snap-through is achived, the shell then returns to a membrane-dominated behavior

and acts under tension.

The elastic-plastic, cubic-nonlinear HTSD theory and both the elastic cubic-nonlinear

HTSD theories predicted snapping occurs at approximately w = 1.27-cm. Palazotto et.al.

[161, 225, 226] used the cubic-nonlinear HTSD theory developed by Dennis [48]. Their

results showed snapping for many variations of material and geometric parameters

[161:703-705]. The ratio of thickness to characteristic length of this problem is even

smaller than any of the problems analyzed earlier. This ratio is equal to 1/300. Therefore,

transverse shear is expected to be totally insignificant. The effect of allowing the in-plane

ei's amd at's to behave nonlinearly was expected to dramatically alter the global displace-

ment response of the shell. This is signficant when considering the effect of large rota-

tions. For the ply lay-up of [0/-4 5 /4 5 /9 0 ]S, V2 reaches a maximum of 0.57 radians

(32.66 ° ) and 53% of the shell surface saw rotations of 0.26 radians (14.90 ) . The problem

is further compounded by the predominance of a relatively weak material in the circum-

ferential direction, compared to the lateral direction. The quasi-isotropic shell with the [0/

-4 5/45/90]s ply lay-up has a ratio of E1/E2 = 15 and a transverse shear modulus less than

E2 . The primary cause of deformation for this problem is bending activity. The outer

plies of this laminated panel are the only plies oriented in the transverse direction. This

imples that 75% of the material of this shell has a stiffness in the circumferential direction

that is significantly less than the outer plies. This panel is only 0.102-cm thick, thus, the

outer plies may not be very effective in resisting bending, since they are so close to the

mid-surface of the shell. With the lateral supports of this shell clamped, the final

deformed shape of the shell exhibits both positive and negative curvatures. Thus, severity

of bending is characterized by the distance between counterflexure points of the final

deformed shape (see Figures 5.16 and 5.17). For this shell, this is a distance of about 5.08-

cm. The bending activity of the clamped composite shell is more severe than that of the
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Figure 6.39 Experimental c, - F-1 Curves for Graphite Epoxy

6.8 E2 =9.246 x 109 Pa

58.18 CYY22 =4.548 x 107 Pa
k2= 7.753 x 10-23 1/Pa

n =3.060
41.39'

(106 Pa)
27.59

13.80Strain
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0.000 0.001 00 ..03 .0 00 006 007 000

Figure 6.40 Experimental (Y22 - P-22 Curves for Graphite Epoxy
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103.47-

G12 = 5.958 x 109 Pa

(yY12 -- 3.932 x 107 Pa

68.98 k3 = 1.606 x 10 -18 1/Pa
n 3.060

Stress
(106 Pa)

34.49

Strain
(in/in)

0.000 0.020 0.040 0.060 0.080 0.100

Figure 6.41 Experimental Y12 - £12 Curves for Graphite Epoxy

66.75
**** Dennis (CDON Theory)

P/4 o....u C200 Theory
(N) o ... C201 Theory

44.5 000 0 C211 Theory
44.50

22.25 ,
0.00 -

-22.25-
j:1

Transverse Displacement -o--
W (cm)-4 4 .5 0 ....... . . . . . .. . . ., . . . . .
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Figure 6.42 Equilibrium Path Comparisons for Transverse Point Loaded 0.04-Inch
Clamped-Free Quasi-Isotropic Cylindrical Shell - CDON, C200, C201, & C211 Theories
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Table 6.7 Predicted Transverese Equilibrium Load (N) for Prescribed Displacement (cm)

of a 0.102-cm Clamped-Free Quasi-Isotropic Cylindrical Shell Panel, [0/-45/45/90] s

Disp CDON* C200 C201 C211

0.4763 116.37 87.09 86.52 76.01

0.9525 239.42 172.52 173.22 100.22

1.4288 225.67 196.08 252.44 121.40

1.9050 205.37 183.51 175.79 119.97

2.3813 181.66 169.09 151.81 101.11

2.8575 154.20 147.11 131.53 67.82

3.3338 125.50 118.71 104.57 34.71

3.8100 98.35 85.84 75.22 9.43

4.2863 75.60 50.10 45.43 -16.20

4.7625 62.79 13.00 16.48 -41.83

5.2388 67.55 -5.69 -10.78 -65.51

5.7150 110.81 -43.12 -34.80 -87.15

6.1913 N/A -101.69 -51.25 -111.43

6.6675 N/A -150.61 -47.60 -126.74

7.1438 N/A -16.86 14.92 -139.02

7.6200 N/A 77.39 109.32 -139.56

8.0963 N/A N/A N/A -121.75

8.5723 N/A N/A N/A -88.64

8.8108 N/A N/A N/A -66.40

Computed using Dennis' [51] modified Donnell theory code.

hinged isotropic shell.

The inclusion of nonlinear material behavior for the in-plane coordinates is signficant

due to the relatively low yield stress for G 12 (see Figure 6.41). The magnitude of the 712Y

is 2.53% the magnitude of clly. Again, the nonlinear shear stiffness material properties

have a signficant effect on the shell's response when plasticity is included in the analysis.

By allowing the material to behave nonlinearly, the reduction to bending stiffness is
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enhanced, thereby altering the global equilibrium curve of the shell's displacement

response toward a more flexible shell. The softening or reduction in the predicted equilib-

rium load for a prescribed transverse displacement is observed in Figure 6.42. The C211

theory presents a dramatic change to the shell's response when compared to C200 and

C201 results. In addition, this softening or load reduction effect of nonlinear material

behavior smears out the bending and tensile loadings within the shell and thereby smooths

out the transition from snap-through (unloading) to the recovery (reloading) phase. Thus,

as with the C201 theory, there is no sharp transition in the equilibrium path when the shell

enters into a fully tensile load as was observed for the C200 results. The inclusion of the

nonlinear material resulted in a reduction of the collapse load by 48.7% and an increase in

the corresponding collapse displacement of 42.9% as compared to the C200 code's results.

Figures 6.43-6.45 show the evolution of plastic zones in the cylindrical shell on the

upper surfaces. At w = 1.43-cm, plasticity is occuring at the point of load application and

due to the presence of the clamped boundary conditions. Due to the latter effect, when

observing the load-displacement curve in Figure 6.42, the decrease in load occurs due to

Free

Clamped . . Clamped

Free

Figure 6.43 Evolution of Plastic Zones in [0/-45/45/90],, Clamped-Free, Cylindrical Shell
with a Transverse Load, w = 1.43 cm

6-41



Free

SI

Clamped Clamped S2

Free

Figure 6.44 Evolution of Plastic Zones in [0/-45/45/90],, Clamped-Free, Cylindrical Shell
with a Transverse Load, w = 2.858 cm

Free

SI

Clamped Clamped S2

Free

Figure 6.45 Evolution of Plastic Zones in [01-45/45/90], Clamped-Free, Cylindrical Shell
with a Transverse Load, w = 5.715 cm
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the relaxing of the shell's stiffness at the boundary. As displacement increases, so too does

the regions of plasticity occuring at the upper surface. It is interesting to note the plasticity

is orienting along the 00 fibers. The plasticity zone occuring between the load application

point and the boundary (Figures 6.44-6.45) is in response to the change in the shell's cur-

vature (slope). When the transverse displacement reaches the onset of snap-through, w =

1.429-cm, approximately 20% of the shell's outer surface is exhibiting strains greater than

1.725% (Figure 6.44). Again due to the plasticity relaxing the shell's stiffness, the load-

displacement curve in Figure 6.42 shows a reduction in load, and increase in displacement

during the snap-through (bending) and recovery (membrane) phases. For a nonlinear, dis-

placement-control solution, with a prescribed tolerance, V = 0.001, along with 40 pre-

scribed transverse displacement increments of 0.2832-cm, the C211 theory required

173952.5 CPU seconds as compared the C201 theory requiring 70356 CPU seconds. The

increase in CPU time is attributed to the significant requirement of resolving the stress

field through-the-thickness for each layer after plasticity occured. The number of itera-

tions required for convergence on an increment of displacement rose to as high as 140 for

the C211 theory. The C201 theory usually required less than 25 iterations to reach conver-

gence for an increment of displacement.

6.7 Clamped-Free, Quasi-Isotropic, Cylindrical Shell Panel Under Axial Loading (Buck-

ling)

From Section 5.5, the results of the cubic-nonlinear HTSD theory, including the trans-

formation of constitutive relations (C201), predicted only a slightly more flexible shell

than the standard elastic cubic-nonlinear HTSD theory. Due to the relatively small magni-

tudes of transverse displacement, and the small rotations, the C201 theory provided only a

small improvement for the elastic analysis. Clearly, when comparing the analytical results

with the experimental results, there is other phenomena occurring. The inclusion of non-

linear material response should provide a more flexible shell model. The shell configura-

tion is shown in Figure 6.46. The shells were modelled with a 24 x 24 mesh (first

developed by the author for his master's thesis [199]) with the appropiate elements
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removed for the model of the shell with a cutout (Figure 6.47). This mesh provided the

greatest accuracy of predicting load for the minimum amount of CPU time required.

Greater accuracy could be achievd with a finer mesh, but the cost of computational time

becomes exponential due to the excecdingly large arrays required to track stiffness and

stress coefficients for the element's Gauss points. The geometry and material properties

for this problem are listed below. The nonlinear material properties were taken from Sec-

tion 6.6 since the laminate material properties were identical.

s 1 = 0.0 cm u = v = w = wi = w,2 = I = W 2 = 0 (clamped)

s I = 27.94 cm v = w = W I = w,2 = WI = W2 = 0 (clamped, u free)

s 2 = 0.0 cm, 30.48 cm (free)

A = 27.94 cm B = 30.48 cm h = 0.102 cm

R = 30.48 cm 0 = 1.0 radians

Material AS4-3501 Graphite Epoxy

E= 14.114x 1010 Pa E2 = 9.246x 109 Pa

G12 G13 5.958 x 109 Pa G23 2.966x 1010 Pa

v12= 0.313 Y, = 1.553 x 109 Pa

Sy22 = 4.548 x 107 Pa ay1 2 = 3.932 x 107 Pa

ki = 0.0 1/Pa k2 = 7.753 x 10- 2 3 1/Pa

k3 = 1.606x 10- 18 1/Pa n = 3.060

Ply Lay-ups [0/-45/45/90]s

Table 6.8 shows the results for the total applied compression load versus prescribed

axial displacement u computed with C200, C201, and C211 theories for the quasi-isotro-

pic shell panel without a cutout. The inclusion of material nonlinearity in the cubic-non-

linear HTSD theory (C2 11) yields a more flexible shell response than the cubic-nonlinear

HTSD (C20X) and the modified Donnell (ClOX) theories. Figure 6.48 shows the pre-

dicted total equilibrium axial load versus axial displacment u for the C200, C201, and

C211 theories and compared against experimental results from Hatfield [771. Although

there is a better approximation of the experimental results, the C211 theory predicts a

stiffer shell by 24.1% for buckling load and by 12.5% for the displacement at buckling.
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The development of plasticity, as predicted by the cubic-nonlinear HTSD theory

(C21 1), is shown in Figures 6.49-6.51 for the outer convex surface of the composite cylin-

drical shell without a cutout. As expected, plasticity develops along the free edges, and

along the clamped boundary conditions, and moves toward the center. This plasticity

development follows the buckling mode that occured for the shell along the longitudinal

center in the circumferential direction [77, 199]. Due to the compressive loading with the

coupling of bending and membrane activity in the shell surface, the plasticity develops in

the circumferential direction as the displacement increases and the shell displaces toward

the convex surface. This dominates the shell's response over the clamped boundary con-

ditions. Note: the comers at the upper and lower surfaces do not exhibit constant plastic-

ity in the circumferential direction. This is due to the intersection of the free vertical edges

with the clamped circumferential edges which reduces the effective stress function for

those particular Gauss points below the anisotropic yield criteria in Eq (4.23). This shell's

response (in terms of plasticity) is different when comparing to the previous transversely

loaded composite cylinder. For the transverse load, the matrix is carrying the majority of

the load with the fibers distributing the load away from the point of application. Thus, the

plastic strain orients itself with the fibers. For this cylindrical shell, the fibers are carrying

the load directly with the matrix distributing the energy away from the fibers. The plastic

strain was oriented to the geometry and deformation of the shell, and not the material ori-

entation. When the shell collapsed, at u = 0.356-cm, the majority of the circumferential

direction along the center of the shell was behaving in a nonlinear manner (Figure 6.51).

The inclusion of the material nonlinearity resulted in a 16. 1% reduction in collapse load

and a 28.6% increase axial displacement before collapse when comparing the results of

the C211 theory with the C201 theory. This clearly indicates the C211 theory is modelling

as a more flexible shell, and is responding similarly to the experimental results obtained

by Hatfield.

Table 6.9 shows the results for the total applied compression load versus prescribed

axial displacement u computed with C200, C201, and C211 theories for the quasi-isotro-

pic shell panel with a cutout. The inclusion of material nonlinearity in the cubic-nonlinear

HTSD theory (C21 1) yields a more flexible shell response than the cubic-nonlinear HTSD
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A B=R=30.48 cm / \
h =0.102 cm / I clamped

0 1.0 radian / \
/ I

/ I

Su (free)

free

A ,,,free

S1

10.16 cm

10. 16 cm

S2

clamped
B

Figure 6.46 Graphite-Epoxy 30.48 cm Radius Cylindrical Shell with Centered 10.16 cm
Cutout and Free Edges Loaded in Axial Compression
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(C20X) and the modified Donnell (ClOX) theories. Figure 6.52 shows the predicted total

equilibrium axial load versus axial displacment u for the C200, C201, and C211 theories

and compared against experimental results from Hatfield [77]. As was in the case of the

quasi-isotropic shell panel without a cutout, the C211 theory predicts a stiffer shell when

compared to Hatfield's experimental results. The buckling load is 12.4% higher than the

experimental results and the displacement at buckling is 33.3% less.

The development of plasticity, as predicted by the cubic-nonlinear HTSD theory

(C211), is shown in Figures 6.53-6.55 for the convex surface of the composite cylindrical

shell with a cutout. The plastic strain develops along the free edges and the cutout for this

axially loaded shell, and at the clamped boundary conditions. As the displacement

increases, the plastic zones move toward the center of each shell section around the cutout.

There are stress concentrations occurring at the discontinuous points of the cutout's cor-

ners, but from the two-dimensional anisotropic yield criteria these stresses are dominated

by the bending stresses generated through the coupling of the shell's membrane response

with the compressive loading along the free edges of the shell and the cutout. When the

shell collapsed, at u = 0.457-cm, the majority of the circumferential direction along the

center of the shell was behaving in a nonlinear manner (see Figure 6.55). Approximately

18% of the shell's surface exhibited strains greater than 1.725%. The inclusion of the

material nonlinearity resulted in a 16.1% reduction in collapse load and a 28.6% increase

axial displacement before collapse when comparing the results of the C211 theory with the

C201 theory. This clearly indicates the C211 theory is modelling as a more flexible shell,

and is responding similarly to the experimental results obtained by Hatfield.

Comparing the C211 analytical results with Hatfield's experimental results for both

the composite cylinder without, and with, a cutout yielded an interesting question. If the

seating problems in the test fixture have been addressed [1991 and if anisotropic plasticity

is included in the analysis, why is there a signficant difference between the analysis and

the experiment? There are several possible solutions to this. The first being an obvious

one, that is the cylindrical panel is not truly clamped within the test fixture. This is

unlikely since 1.27 cms of the panel at either longitudinal end are held within the text fix-

ture's clamp (see [222] for greater details on the experimental test fixture and test proce-
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Clamped

Figure 6.47 24 x 24 Element Meshes for Axially Loaded, Composite, Cylindrical Shell

Table 6.8 Predicted Total Compression Load (103 N) for Prescribed Axial Displacement
(cm) for a Clamped-Free 30.48-cm x 30.48-cm Quasi-Isotropic Cylindrical Shell Panel -

Experimental and C2XX Theories

Axial Disp Hatfield* C200 C20 1 C2 11

0.00508 1.701 2.984 2.984 2.984

0.01016 3.522 5.968 5.975 5.195

0.01524 4.544 8.916 8.805 7.399

0.02032 5.983 11.128 11.472 9.121

0.02540 7.029 15.077 13.308 10.655

0.03048 8.061 9.111 8.821 11.756

0.03556 8.893 N/A N/A 12.65 1

0.03810 9.362 N/A N/A 11.948

0.03937 9.346 N/A N/A N/A

0.04064 8.535 N/A N/A 8.465

0.04089 6.759 N/A N/A N/A

[771
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o.ooo .00508 .01524 .02540 .03556 .04572
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..... Experimental (Hatfield)
o ___o C200 Theory

0 11-0 o__o C201 Theory 3
3000.0 00000 C211 Theory .13.351

2500.0 (lbs) 11.126

2000.0 8.901
(10' N)

1500.0 6.675

1000.0 -4.450

500.0 2.225
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0 .0 1 , , 1 . . . . . .. I . .I . . .I .. .. 1 0 .0
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Figure 6.48 Predicted Compressive Load for Prescribed Axial Displacement for Compos-
ite Cylindrical Shell Panel [0/-45/45/901 without Cutout

Clamped, u free

Free Free

S2

Clamped

Figure 6.49 Evolution of Plastic Zones for Clamped-Free Composite Cylindrical Shell
Panel without Cutout. w = 0.00508 cm
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Clamped, u free

Free Free

Si

Clamped 
2

Figure 6.50 Evolution of Plastic Zones for Clamped-Free Composite Cylindrical Shell
Panel without Cutout. w = 0.0254 cm

Clamped, u free

Free Free

Clamped

Figure 6.51 Evolution of Plastic Zones for Clamped-Free Composite Cylindrical Shell
Panel without Cutout. w = 0.04572 cm
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Table 6.9 Predicted Total Compression Load (103 N) for Prescribed Axial Displacement
(cm) for a Clamped-Free 30.48-cm x 30.48-cm Quasi-Isotropic Cylindrical Shell Panel

with Centered 10.16-cm Cutout - Experimental and C2XX Theories

Axial Disp (in) Hatfield* C200 C201 C211

0.00254 0.185 1.040 1.040 0.992

0.00508 0.359 2.121 2.074 1.669

0.00762 0.579 3.141 2.875 2.111

0.01016 0.781 4.110 4.066 2.535

0.01270 0.983 4.759 4.711 2.894

0.01524 1.153 5.195 5.083 3.203

0.01778 1.323 5.509 5.437 3.468

0.02032 1.501 5.836 5.706 3.697

0.02286 1.674 6.110 5.975 3.952

0.02500 1.841 6.309 6.153 4.132

0.02794 1.996 6.335 6.156 4.302

0.03048 2.181 6.235 6.083 4.474

0.03302 2.364 N/A N/A 4.564

0.03556 2.548 N/A N/A 4.650

0.03810 2.728 N/A N/A 4.760

0.04064 2.943 N/A N/A 4.883

0.04318 3.132 N/A N/A 4.930

0.04572 3.322 N/A N/A 5.007

0.04826 3.481 N/A N/A 4.988

0.05080 3.647 N/A N/A 4.935

0.06604 4.349 N/A N/A N/A

0.06858 4.387 N/A N/A N/A

0.07112 4.383 N/A N/A N/A

0.07239 4.352 N/A N/A N/A

[77]
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Figure 6.52 Predicted Compressive Load for Prescribed Axial Displacement for Compos-
ite Cylindrical Shell Panel [0/-45/45/90]s with a 10. 16 cm Cutout

Clamped, u free

Free Free

Clamped S

Figure 6.53 Evolution of Plastic Zones for Clamped-Free Composite Cylindrical Shell
Panel [0/-45/45/90]s with a Cutout. w = 0.00254 cm
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Clamped, u free

Free Free

Ist
S2

Clamped

Figure 6.54 Evolution of Plastic Zones for Clamped-Free Composite Cylindrical Shell
Panel [0/-45/45/90] s with a Cutout. w = 0.0381 cm

Clamped, u free

I I II L

Free Free

' i !

Clamped

Figure 6.55 Evolution of Plastic Zones for Clamped-Free Composite Cylindrical Shell
Panel [0/-45/45/90]s with a Cutout. w = 0.0508 cm
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dures). However, it is concievable that in spite of this precaution, the panel is moving

within this fixture, thereby relaxing the boundary conditions and allowing the panel to

respond in a more flexible manner.

The second possibility is in the fabrication of these panels. When these panels are con-

structed, they are laid out on a mandrel as part of one very large laminate, usually 365.76-

cm x 365.76-cm. After they are cured in the autoclave, individual panel are then cut from

this large laminate. Due to the internal stresses generated in the curing process, when the

panels are cut, these stresses are then relieved altering the shape of the panel in a subtle

manner. The test fixture is fabricated for a constant 30.48-cm radius of curvature. This

dimension is fixed and cannot be altered. However, when the author inspected several of

the composite panels used for his Master's Thesis [77], he noted that the curvature of the

panels varied as much as ± 0.953-cm within the same panel. This variation leads to a

built-in imperfection due to the fabrication process when these panels are placed within

the fixed 30.48-cm radius of curvature in the test apparatus. The analytical model consid-

ers the cylindrical shell panel as perfect and the analysis proceeds from this assumption.

According to Brush & Almroth [29], an imperfection of .1% can significantly alter the

shell's response. The author noted such a response when he incorporated an imperfection

in his STAGSC-1 models [199]. The imperfection reduces the predicted buckling load by

as much as 40% depending on the dimensions of the shell, the material type, and the ply

lay-up. The third alternative is a combination of the first two. The possibility of the

boundary conditions being less than clamped (i.e. more flexible) and the imperfections

generated due to fabrications would certainly lead to a shell response that is more flexible

than is being modelled currently.

For a nonlinear, displacement-control solution, with a prescribed tolerance, V =

0.0001, along with 30 prescribed axial displacements of 0.0127-cm, the C211 theory

required 214578.1 CPU seconds as compared the C201 theory requiring 83001.0 for the

cylindrical panel without a cutout. The increase in CPU time is attributed to the signifi-

cant requirement of resolving the stress field through-the-thickness for each layer after

plasticity occured. The number of iterations required for convergence on an increment of

displacement rose to as high as 200 for the C211 theory. The C201 theory usually
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required less than 80 iterations to reach convergence for an increment of displacement

(0.0254-cm). For the cylindrical shell with a cutout, with a prescribed tolerance of V =

0.0001, with 40 prescribed axial displacements of 0.00127-cm, the C211 theory required

147022.2 CPU seconds as compared the C201 theory requiring 77802.9 CPU seconds.

6.8 Hinged, Quasi-Isotropic, Spherical Shell Cap with Transverse Point Load

The final set of problems considered spherical geometry, quasi-isotropic material, and

the nonlinear material behavior. These problems were based on the quasi-isotropic elastic

sphercal shell analysis discussed in Section 5.7. The two ply lay-ups considered were [0/-

45/45/90] s and [08]. The geometric and material properties are listed below. It should be

noted the anisotropic plasticity parameters were chosen from Section 6.6 since the mate-

rial properties were identical. The shell configuration is shown in Figure 6.56. Due to

some difficulties with the in-plane stress field oscillating near the apex, where the load

was applied, no symmetry was used, In addition, a convergence study was required to

generate the proper refined mesh needed for a stable solution.

This convergence study needed to satisfy three requirements: (1) an elastic solution

was achieved, (2) an adequate stress field was generated for the anisotropic yield criteria

(Eq (4.22)), and (3) the displacement function was satisfied. In the previous cases, the

meshes used were of an acceptable nature due to previous author's convergence studies [8,

45, 46, 49-51, 71, 129, 146, 161-163, 207, 225, 226]. However, in the spherical composite

shell, due to the singularity at the apex, the mesh was refined to generate a non-oscillating

stress field. A 12 x 12 mesh was attempted but the stress field near the apex oscillated

which did not allow for convergence. Results were obtained for a refined 18 x 18 mesh

where the stress field remained stable. This is shown in Figure 6.57. A heavily refined

24 x 24 mesh was solved to compare with the 18 x 18 mesh results. The equilibrium

curve for the heavily refined mesh showed a 3.2% drop in peak load for a significant

increase in CPU time (44.5%). Thus, the 18 x 18 mesh was deemed adequate.

These shells are relatively shallow [129], but provide a good exercise for the nonlin-
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ear material portion of the theory since they address spherical geometry and quasi-isotro-

pic material.

s 1 = 0 u = w1 = 1 = 0 (symmetry)

s2 =0 v=w2 = l 2 = (symmetry)

s 1 = ±2.301 cm u = v = w = W2 = 0 (hinged)

s2 = ±2.301 cm u = v = w = W1 = 0 (hinged)

a = b = 4.60 cm h = 0.04 cm R = 12.09 cm

L = 4.573 cm 8 = 2.181 cm 0 = 0.19024 radians

Material AS4-3501 Graphite Epoxy

E = 14.114x 1010 Pa E 2 = 9.246x 109 Pa

G12 G13 5.958 x 10 Pa G23 2.966 x 10 Pa

V12 = 0.313 = 1.553 x 109 Pa

aY22= 4.548 x 107 Pa GY12 = 3.932 x 107 Pa

ki = 0.0 1/Pa k2 = 7.753 x 10-23 1/Pa

k3 = 1.606 x 10-18 1/Pa n = 3.060

Ply Lay-ups [0/-45/45/90]s

Table 6.10 shows the predicted equilibrium loads for prescribed transverse displace-

ment of the apex of a [0/-45145190]s ply lay-up with the S200, S201, and S211 cubic-non-

linear HTSD theories. As expected, the S211 theory predicts the most flexible shell.

Figure 6.58 shows the equilibrium path for the results shown in Table 6.10. The S211

cubic-nonlinear HTSD theory predicts a more flexible shell as loading increases due to the

presence of plasticity around the apex (Figure 6.59) and at the corners due to the combined

hinged boundary conditions on both sides of the shell cap. As the displacement reaches

the peak load, around 32% of the convex shell surface is behaving plastically (Figure

6.60). Then as the shell unloads and reaches the point of pure tension and reloading, a sig-

nificant portion of the shell's convex surface is exhibiting plasticity.
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a = b = 4.60 cm
R 1 = R2 = R = 12.09 cm

01 = 02 = 0 = 0.19024 radians hinged

L =4.573 cm
h 0.04 cm hinged

L

hinged 1hinged

Figure 6.56 Hinged Apex-Loaded Graphite-Epoxy Spherical Shell Cap

Figures 6.59-6.61 show the evolution of the plastic regions for the convex surface of

the [0/-45/45/90], spherical shell. It should be noted that the plasticity favors the 00 ply

orientation following the discussion of Section 6.6. These plastic zones are determined by

analyzing the stress-state at each Gauss point, for each element, at the convex surface

layer, and determining which of the Gauss points have exceeded the yield criterion men-

tion in Section 4.2.2. Once a Gauss point exceeds the yield criterion, the Prandtl-Reuss

flow relations are followed for the remainder of the analysis for that particular Gauss point

and a plastic strain pointer is associated with the Gauss point. At the onset of snapping, w

= 0.286-cm, approximately 32% of the shell's convex surface is exhibiting strains greater

than 2.125%. When w = 0.506-cm, nearly 45% of the shell's convex surface is exhibiting

strains greater than 2.125%
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Table 6.11 shows the predicted equilibrium loads for prescribed transverse displace-

ment of the apex of a [08] ply lay-up with the S200, S201, and S211 cubic-nonlinear

HTSD theories. As expected, the S211 theory predicts the most flexible shell. Figure 6.62

shows the equilibrium path for the results shown in Table 6.11. The S211 theory predicts

a more flexible shell as loading increases due to the presence of plasticity around the apex

(Figure 6.63). As unloading occurs, the S211 theory allows the [08] shell to reduce load-

ing more quickly than the [0/-45/45/90], shell due to the lack of ±45' fibers.

Sl

S2

Figure 6.57 Refined Mesh Used for Quasi-Isotropic Hinged Spherical Shell Cap Models
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Table 6.10 Predicted Equilibrium Load (103 N) for Prescribed Transverse Displacement
(cm) of Hinged Quasi-Isotropic [0/-45/45/90] Spherical Shell Cap

Disp S200 S201 S211

0.0476 0.552 0.554 0.554

0.0954 0.885 0.881 0.763

0.1429 1.106 1.099 0.930

0.1905 1.263 1.252 1.041

0.2381 1.362 1.345 1.100

0.2858 1.377 1.354 1.132

0.3334 1.268 1.245 1.112

0.3810 1.027 1.006 1.033

0.4098 0.917 0.853 0.923

0.4286 0.872 0.845 0.793

0.4524 0.916 0.884 0.702

0.5061 N/A N/A 0.808

0.5246 N/A N/A 0.952

0.5477 N/A N/A 1.192
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Figure 6.58 Equilibrium Curves for Transverse Point Loaded Quasi-Isotropic [0/-45/45/
90], Spherical Shell Cap - C200, C201, & C21 1 Theories

S1

Figure 6.59 Evolution of Plastic Zones for Hinged [01-45145190]s Composite Spherical
Shell Panel. w = 0. 1905 cm
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SI

Figure 6.60 Evolution of Plastic Zones for Hinged [01-45145/90] s Composite Spherical

Shell Panel. w - 0.286 cm

Si

~S 2

Figure 6.61 Evolution of Plastic Zones for Hinged [01-45145190] s Composite Spherical

Shell Panel. w = 0.506 cm
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Table 6.11 Predicted Equilibrium Load (103 N) for Prescribed Transverse Displacement
(cm) of Hinged Quasi-Isotropic [08] Spherical Shell Cap

Disp S200 S201 S201

0.0476 0.512 0.510 0.510

0.0954 0.835 0.830 0.713

0.1429 1.054 1.043 0.841

0.1905 1.209 1.170 0.921

0.2381 1.306 1.284 0.970

0.2858 1.327 1.252 1.010

0.3334 1.234 1.194 1.005

0.3810 0.974 0.914 0.935

0.4098 0.621 0.528 0.672

0.4286 0.657 0.596 0.468

0.4763 0.889 0.861 0.346

0.5001 N/A N/A 0.405

0.5239 N/A N/A 0.506

0.5477 N/A N/A 0.759

6-62



0.00 0.127 0.254 (cm) 0.318 0.508 0.635
3 0 0 .0 0 . . .. ... .... ... . 1 .. .. . . .I . .-.. ... 1.335

(lbs) j (103 N)

200.00 0.890

O0C200 Theory
~ssC201 Theory

100.00 C211 Theory 0.445

0.00 ..- ... 0.00
0.0 .0 0100.15 0.20 0.25

(in)

Figure 6.62 Equilibrium Curves for Transverse Point Loaded Quasi-Isotropic [08] Spheri-
cal Shell Cap - C200, C201, & C211 Theories

s1

S2

Figure 6.63 Evolution of Plastic Zones for Hinged [081 Composite Spherical Shell Panel.

w = 0.1905 cm
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IS 2

Figure 6.64 Evolution of Plastic Zones for Hinged [08] Composite Spherical Shell Panel.

w =0.286 cm

S1

S2

Figure 6.65 Evolution of Plastic Zones for Hinged [08] CompositeSpherical Shell Panel.

w = 0.506 cm
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For the composite spherical shell with a ply lay-up of [0/-45/45/90] s, the S211 theory

reduces the snapping load by 17.8% when compared to the S200 theory, and by 16.5%

when compared to the S201 theory. For the composite shell with a ply lay-up of [08], the

S211 theory reduces the snapping loaci by 23.9% when compared to the S200 theory, and

by 19.4% when compared to the S201 theory. Although these composite spherical shells

are relatively shallow (6/b = 6/(/L2) = 0.954), they provide an excellent comparison for the

various theories developed for this research. Due to their relative shallowness, rotations

are expected to remain small. Thus, the S201 theory should have a relatively small impact

on the global displacement of the shell - a reduction of the snapping load of only 1.56%

for the [0/-45/45/90]s ply lay-up and a reduction of 5.64% for the [08] ply lay-up. How-

ever, since the prescribed displacement is relatively large when compared to the shell

thickness (w/h = 12.843), it is probable that the inclusion of nonlinear material behavior

would have a significant effect to the global displacement of the shell.

For a nonlinear, displacement-control solution, with a prescribed tolerance, V =

0.001, with 28 prescribed transverse displacements of 0.0127-cm, the S211 theory

required 104008.2 CPU seconds as compared the S201 theory requiring 44231.4 CPU sec-

onds for the [0/-45/45/90] spherical shell. The increase in CPU time is attributed to the

significant requirement of resolving the stress field through-the-thickness for each layer

after plasticity occured. The number of iterations required for convergence on an incre-

ment of displacement rose to as high as 80 for the S211 theory. The S201 theory usually

required less than 15 iterations to reach convergence for an increment of displacement.

For the [08] spherical shell, with a prescribed tolerance of V = 0.001, with 28 prescribed

transverse displacements of 0.0127-cm, the S211 theory required 103642.2 CPU seconds

as compared the S201 theory requiring 44231.2 CPU seconds for a solution.

It has been shown that for both isotropic and quasi-isotropic plates and shells, the addi-

tion of a nonlinear material model significantly alters the the global equilibrium load-dis-

placement curve. For the cases where experimental data was available, the G211 elastic-

plastic, cubic-nonlinear HTSD theory predicted a plate or shell response more accurately

than the G20X cubic-nonlinear HTSD theories. In all the problems discussed, the G211

theory accurately predicts the development of plastic behavior. That is, plasticity occurs
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at the outer surfaces first, and depending on geometry and material properties, plasticity

eventually occurs at the mid-surface. Although these regions of plasticity were never

quantitatively compared with experimental results or any results published in the literature

(primarily due to a lack of data), the author believes from a qualitative view these regions

provide some useful insight into the plate or shell's response to the increased displacement

and resultant loading.

These regions of plasticity are useful in predicting possible mesh refinement, if neces-

sary, and to demonstrate the through-the-thickness plasticity development by the theory.

When a plate or shell exhibits strains greater than 2.125% over 15-20% of the outer sur-

face, along with values of xji > 12.5-15' and displacements greater than five times the

thickness, the nonlinear material analysis should be incorporated to accurately predict the

global equilibrium curve. For composite materials exhibiting a strong dependence on

shear stiffness, G 12 , material properties, the elasto-plastic analysis is required. In the case

of the Gr/PEEK, CY1 2 Y was 2.43% the magnitude of all y For Gr/Ep, CFl2Y was 2.54% the

magnitude of cyy11 .

There is a significant computational cost associated with using the elastic-plastic,

cubic-nonlinear HTSD theory. Due to the requirement of tracking the stress-state at each

Gauss point, for every layer, in every element, the arrays developed to track this crucial

information were very large. In every problem discussed in Chapter 6, the elastic-plastic

theory code took at least 200-300% longer to run, and required 4-6 times the computer

memory previously needed to track and calculate the Gauss point stress-state and plastic-

ity strain arrays. By running this code on a SUN SPARC2 work-station, the average time

for completion of the smaller problems was on the order of 2-3 days and for the larger

problems (quasi-isotropic cylindrical shells, isotropic pinched cylinder) the average time

for completion was on the order of 5-8 days.
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7. Summary and Conclusions

The goal of the research was to develop a total Lagrangian finite element formulation

with a quasi-nonlinear higher-order transverse shear deformation (HTSD) theory includ-

ing transformations of the constitutive relations from the Cauchy stress-strain system 2nd

Piola stress-Green strain system and allowing the constitutive relations to become elastic-

plastic with work hardening. This formulation was then used in computing solutions for

isotropic and quasi-isotropic plates, cylindrical and spherical shells that allows for large

displacements, moderate rotations and large strains. The main contributions from this

research is: (1) a total Lagrangian finite element formulation with large displacements,

moderate rotations, and large strains due to the inclusion of transforming the constitutive

relations from Eulerian coordinates to Lagrangian coordinates, and (2) an incremental

elastic-plastic predictor algorithm for a total Lagrangian finite element formulation,

including composite material ply lay-ups. Based on the development from Washizu

(1982), a displacement-based transformation matrix was developed for both the stress-

states and strain-states. Using incremental Prandtl-Reuss flow theory relations, an elastic-

plastic constitutive matrix is developed for isotropic materials based on a von Mises yield

criteria. For laminated composite materials, the elastic-plastic constitutive matrix is devel-

oped using a modified von Mises criteria with anisotropic interaction parameters to

account for material anisotropy. Work hardening for both materials was accomplished by

computing the incremental effective stress versus the incremental effective plastic strain at

each increment of displacement based on the previously known stress state.

7.1 Theory

A summary of the theory developed for this research follows. Complete details are

included in Chapters 3 and 4 of the dissertation. The basic assumptions of a two-dimen-

sional (2D) shell theory are tied to the concepts of a reference surface (the midsurface of

the shell) and a local curvilinear coordinate system of principal curvature, which by defin-

tion are orthogonal, then the coordinate system is also orthogonal. For this research, the
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theoretical development was restricted to orthogonal coordinate systems based on lines of

constant curvature.

If one uses a Lagrangian description of deformation, all variables are expressed in

terms of area and volume conditions prior to deformation. In this system, the displacement

4
vector can be written in terms of orthonormal base vector, ei, (i = 1-3). For the shell, the

Lame' parameters A,, (cx = 1,2), describe the two-dimensional relationship between the

-4 4
orthogonal surface base vectors, aa, and their orthonormal counterparts, ei . The shell

shape factors, hi, (i = 1-3), describe the three-dimensional relationship between the

4
orthogonal base vectors gi of the three-dimensional orthogonal curvilinear coordinate sys-

4 4
tem, yi, and their orthonormal counterparts ei . For an orthogonal curvilinear coordinate

system based upon the lines of principal curvature of a shell, the shape factors are

h 1 =A 1 (1-Y 3 /R 1 ),h 2 =A 2 (1-Y 3 /R2),h 3 a= 1, (3.40)

where

A1 r 1/ A 2 = 2 2) (3.41)

Thus, for the case of a spherical shell with radius R1 = R 2 = R and local coordinates 01

= s 1, 02 = s2, z described in an orthogonal space with global coordinates Yi = S1, Y2 = S2 , Y3

4
= z, the position vector r (Yl,Y2,Y3) is given by

4 -> -> -4
r = sle l + S 2 e 2 + S 3e 3, (3.42)

and the Lam6 parameters reduce to A1 = A 2 = 1.

For this research, the macro-mechanical behavior of a composite lamina was assumed

sufficient provided stresses were small enough to assure no material failure occurs. Thus,

the material of each lamina was treated as a homogenous anisotropic material. More spe-

cifically, the material was assumed to be transversely isotropic. This means the material

has properties which are symmetric about two material axes. In this research the effects of
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transverse shear deformation are considered. Thus, (Y4 and (Y5 are not assumed to be zero.

The direct normal stress, 3, however was still assumed to be zero. This assumption was

necessary to reduce the three-dimensional problem to a two-dimensional problem. The

direct transverse normal strain was assumed to be given by:

C13 C23
,33 = -C 331 - C33r22 , (3.58)

where the Ci1 were functions of material properties and ply lay-up.

To form a structural component, the lamina are assumed to be perfectly bonded

together with their fibers oriented at a particular angle with respect to the structure's refer-

ence axis. The stiffness contribution of each lamina in the laminate is transformed to a

common reference system of axes. Eq (3.58) relates the direct normal strain 3 to changes

in the direct in-plane strains El and 8,2 for the case where (3 is equal to zero. The assump-

tion that Eq (3.58) is valid for an arbitrary laminated composite shell is important. Without

this assumption, the stress state would be fully three-dimensional and the two-dimensional

model's reduced computational effort would be lost. With this assumption, however, the

two-dimensional model will not accurately predict the stress distribution within the shell,

since a 3 generally is not zero in the real structure and 3 may vary considerably from that

predicted by Eq (3.58). Research in the 1960's and 1970's by many investigator has vali-

dated this assumption.

There are many ways to include transverse shear deformation. Transverse shear effects

can be included using a first-order transverse shear deformation (FTSD) theory. In this

case, material lines originally normal to the midsurface are allowed to deviate from the

normal to the shell mid-surface. These lines remain straight and inextensible. Since the

angle of deviation is constant, the displacement field varies linearly through the thickness

of the shell. The constant angle also implies transverse shear strain is constant, and is not

zero at the upper and lower surfaces of the shell. This inconsistent distribution results in a

stiff model of the structure. This stiffening effect, called shear locking,becomes more pro-

nounced as the shell thickness approaches zero. The higher-order transverse shear defor-

mation (HTSD) theory allows the normal to rotate and warp. The HSTD theory for a flat
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plate produces a parabolic distribution of shear strain. This distribution matches the exact

distribution of shear strain for the linear infinitesimal case.

For a shell, the FTSD theory is given by the following displacement field

U1 = u 1 3 + Jl y 3

S(3.64)

U2 = V 1- + W2Y3

3U =Wu3w

where the five degrees of freedom u, v, w, WI, and WV2 , are functions of the in-plane curvi-

linear coordinates (YI, Y2). The displacement field of a third-order linear transverse shear

deformation theory is given by the following equation

1 Y3 4 ( I 3u1 R ) +-1 +WlY3-3h 2 a,-y+/l Y3

+ Y) _3 w 3 , (3.72)
u2  R + W12Y3 2 y + W/2 Y3

U3 =W

The third-order displacement field has two additional degrees of freedom not present

in the first-order theory. These two degrees of freedom are the derivatives of transverse

displacement, w. These derivatives are independent degrees of freedom that represent the

slope of the elastic curve. The third-order theory allows the slope of the elastic curve to

deviate from the bending angles. This deviation is directly related to the transverse shear

strains of the structure.

Dennis (1988) used a version of Eq (3.72) to analyze linear and nonlinear plates and

cylindrical shells with elastic isotropic and quasi-isotropic materials. His third-order dis-

placement field takes the form of
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U -U+ 4 ( aw +~ WMl1 jJ3

U= V_ 1-Y)4)3 (7.1)

Three extensions of his development are the nucleus of this research effort. The first

extension is generating the strain-displacement relations based on Eq (3.72) instead of Eq

(3.40). These strain-displacement relations are given by:

u 1 1  u2 h1, 2  u3 hl, 3  1 ( u1, 1 2  u3 hl,3 2

hh + hU 1  + h) (4.2a)
hi + 12 +hlh 3  2h223

_____2_) 1 lh , 3 2

+ uh "39 1 h

F_ U2,2 1 Ul2,1 + 3h2,3 1( +T 1 h2, 1 +____ 2 (42b
+1 +2 1,.

hh2 h h )2h1 U2, 3 h2 (.

+2hj 2 2 hi 2h 2 "3, 2 Uh 23,J

22 2

= 1U2,3+U3,1 U3h3,1 Uih2,3j(.c

Ul3U, ~h,1Uh , (4.2d)
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11 U 1 , 2  U2, 1  u2h2,1 U1 h1,2(E6=12[. + -- 'l -h----l;)(4.2e)

6 2 h 2 h 1 h1h2 h1h2 )U 1h2,1l)(u +2 h l 12 u3 h1, 3

+ 2h- lh2 ,2- h 1, 1 - 2 + h-
3

1 U2hl,2)( u + lhl,2 u 3h2, 3
+2hh h2u 2 , 1 2  1U 2 ,2 h + h 3

1 Ulhl 3( u2h2 33

+2h 1 h2 y 2 31 - 3  3, ) 2  h 3 )

The complete strain-displacement relations for the quasi-nonlinear HTSD theory includ-

ing spherical geometry are given in Appendix E.

The second extension of the theory from Dennis is the modification of the constitutive

relations to include elastic-plastic material behavior with the inclusion of work hardening.

For isotropic materials, the incremental elastic-plastic constitutive relations for each layer

in the shell are given by

k

[D ]k (D' p) f 0]

where

T
F k { do} { do}

(D'ep) = k - T (4.10a)L epT
A+ {dD} {a}

{dD} = [D'k{a} , (4.1Ob)

T DF a F tF
{a}= Cyl', (22' a1 (4.1Oc)
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The von Mises yield criteria is given by

-2 1/2 ATJ
F(s) = T = 3(J2/)  = 2-G-ij oi1 (4.11)

!3 (G ,12 + 2 + ( ' 22-(11) ("' 22) + (a'33)

+ F3[(' 2 3 2+ (' 13) 2+ (' 12 )]

The strain-hardening effect is found through the scalar A. It has been shown by Owen &

Hinton (1980) that

day da
A = H' - - (4.12)dE -p

d F

By using the Ramberg-Osgood equation to characterize the stress-strain curve, the effec-

tive plastic strain can be characterized with effective stress by

-p -n
F, = kam- . (4.15)

-p
The differential, dm, can be represented as

-p -n-I -dm = knoYm-ldYm- 1 (4.16)

Thus,

H' - - -n(4.17)
dp  k n-n - 1I

A kna

The modified Huber-Mises yield criteria for laminated composite materials is given by
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-2 2 2 2
F(F) = T = a12 (a 11 -o 12) +a 23 o 22 +a 31 l 11  , (4.23)

2 2 2+3a 44 2 3 +3a 55 13 + 3a 66 12 = 0

where aij are anisotropic interaction parameters determined from experimental yield

stress values Yij. Thus, for transversely isotropic materials the anisotropic interaction

parameters are

Yl 2

all = a1 2 +a31 = 1 1 (4.26a)

a 22 = a 23 + a12 = .Y2 (4.26b)

(Yll 2 (Yll2
a33 = a31 +a 23 = Y = (4.26c)

1Yll 2 1( Yll )2  1 Yll )2

a 44 = 3Y23 =3 (0. 8 ) Y12 3 (0.64) ( (4.26d)

1 Yl)2 1 Yll 2

a55  - - = -  (4.26e)

a66 = 3 l) (4.26f)

The strain-hardening parameter H' for anisotropic materials is found to be

H' = da/dE = L(n-2)kl ( allll- 2a1 2a l2 (4.33)

(22 2 2 - (n -3)]2(a22 22+3k3 a 44 aT2 3 +a 55( 1 3 +a66 12 (Y

The third extension to Dennis' theory was allowing for a large strain formulation. This

implies the Cauchy stress-strain and the Lagrangian stress-strain relations are no longer

the same. Thus, for a total Lagrangian formulation, the constitutive relations must be
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transformed from the Eulerian coordinates to the Lagrangian coordinate axes. Washizu

(1982) developed a displacement based tranformation between Cauchy strain and Green's

strain and between Cauchy stress and Kirchhoff stress. Applying shell theory and assum-

ing rotations of the normals and about the normals to be small these transformation matri-

ces are found to be for the stress state
E i 1]

{O E } I [Ti IO ,Y (4.69)

and for the strain state

{e} = [ {1} , (4.70)

where

(1 +U 1 , 1 ) (U1 , 2 ) 0 0 2(1 +u, 1 )u 1 , 2

(U 2,1)
2  

(1 +U2, 2)
2  

0 0 2u2, 1 (1+ U2,2)

LI, 0 0 (1 + u2, 2) u2,,  0 (4.71)

0 0 U1, 2  (1 +U1 , 1) 0

(1+ U1, 1) u 2, 1 U , 2 (1 + u 2, 2 ) 0 0 D'

22

(1+ u 2, 2) (U1 , 2 )
2  0 0 -2ul, 2 (1 + u 2 , 2 )

(u 2, 1)2 (1 +U 1, 1
)  0 0 -2u 2, 1 (1 + U1, 1)

[T2] 0 0 (1 +U1, 1)D u2,1 D 0 (4.72)

0 0 U1,2D (1 +u,, 1 )D 0

-u2,1 (1 + U2,2) -(1 + U1, 1)U 1 , 2  0 0 D'

D = (1 +U 1, (1 +u 2,2) +U 1,2U2,1 ' (4.63)

and

D = (1 +u 1, 1) (1+ u2,2) -Ul,2U2, 1  (4.60)

Thus, for a large-strain total Lagrangian formulation

{T} = 1[T 1] [A] [T 2]{} = D] (4.75)

where [A] is the Eulerian constitutive matrix and [D] is the Lagrangian constitutive matrix.

The author's approach of including nonlinear material effects in the cubic nonlinear

HTSD theory incorporated several assumptions beyond those of Dennis. First, the author
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was primarily interested in problems involving large rotations, curvature changes, and

large strains for laminated composite shells. Thus, the displacement field of Dennis was

used with a minor modification to allow for spherical geometry. The author employed a

layered approach to analyzing the nonlinear material effects. This method has been effec-

tively modelled by other researchers in updated Lagrangian stress-resultant formulations.

Each layer is allowed to become individually plastic. Thus, the outer layers of the shell are

allowed to generate larger plastic strains than the inner layers at eachincrement of dis-

placement. One simplifying assumption made was to allow the constitu-tive transforma-

tion of the mid-surface be applied to each layer.

Thus, the goal of this research was to evaluate the effects of three theoretical exten-

sions not previously investigated for linear-elastic shells with large displacement, rota-

tions, and curvatures using a higher-order transverse shear deformation theory. These

three extensions were the development of spherical geometry, the transformation of the

constitutive relations from Eulerian coordinates to Lagrangian coordinates, and allowing

the constitutive relations to become elastic-plastic with strain hardening. The strain hard-

ening is characterized by using Ramberg-Osgood parameters developed from experimen-

tally derived stress-strain curves.

This previous section of theoretical discussion dealt with the development of the dis-

placement field, the strain-displacement relations, and the constitutive relations for lami-

nated composite shells. The next phase in the research was the development and solution

of the governing differential equations for shell problems. Since the author was specifi-

cally interested in nonlinear phenomena of large displacements, rotations, and strains, no

analytical or linear solutions were desired. The finite element technique is used to obtain

numerical solutions for cylindrical and spherical shells. The finite element equations are

based upon the total potential energy of the elastic body or the virtual work expression for

the elastic-plastic body. Specifically, the principal of stationary potential energy is used

where the first variation of potential energy of the system is set equal to zero. The poten-

tial energy expression was found by first examining the equilibrium state of the body. For

a body with prescribed forces on part of its surface and prescribed boundary conditions on

the remaining part of the surface, the equations of equilibrium for an infinitesimal virtual

displacement were developed in terms of the Second Piola-Kirchhoff stress tensor and the
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Green strain components expressed in the body's coordinate system. Assuming strains

were small, then the stresses could be written in terms of the strains. For a laminated

orthotropic material, the stress components could be written in terms of the reduced struc-

tural stiffness of the lamina. These quantities depended only on the thickness coordinate.

Thus, they could be written in terms of an integral over the midsurface of the shell, with

the integration in the thickness direction performed analytically.

The variation of total potential energy gave five coupled nonlinear partial differential

equations which governed the equilibrium of the system. These expressions contained 18

displacement parameters: U, U,1, U,2, V, v, 1, v,2, w, w,1, W,2, w, 11, w,22, w,12 , W1, W1,1, W1/1,2,

Vt2, W2,1, and W2,2- These parameters included seven displacement parameters of Eq

(3.72) and their derivatives. Since the equilibrium equations were nonlinear in tems of the

displacement parameters, an incremental-iterative approach is used to solve a systmem of

linearized equations which yields an equivalent solution. For simple theories, such as

Donnell's theory or a linear FTSD theory where relatively few terms are included, the first

variation of potential energy and its linearization, can be explicitly developed, term by

term. For more complete theories, such as a linear HTSD theory or the fully nonlinear the-

ory, the potential energy expression has several hundred terms. Its first variation could

possibly include thousand of terms, and the subsequent linear equilibrium equations

would be quite lengthy.

Rajasekaran and Murray (1973) developed a formal procedure for finite elements,

which defined the total potential energy, its first variation, and the linear incremental equi-

librium equations in terms of three stiffness matrices. Specifically the total potential

energy was given by

ip = q}IT-[K+I[N1] + 1N2 q _ T{p} , (4.85)

where

{ q } a column arrray of nodal displacement parameters

{ P } a column array of nodal loads

[K] an array of constant stiffness coefficients
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[N1] an array of nonlinear coefficients with each term dependent on one of the

displacement parameters ([N1] is linear in terms of displacement), and

[N2] - an array of nonlinear coefficients with each term dependent on the product

of two displacement parameters ([N2] is quadratic in terms of displacement).

The first variation of potential energy is then given by

K]+ +' [N- = {1] + (4.86)

and the linear incremental equilibrium equation is given by

[ [K] + [N 1] + [N 2]] {Aq} - {AP} = {O01 (4.87)

Rajasekaran and Murray's formulation was for finite elements in which strains did not

vary through the thickness of the element. This formulation was extended to account for

variation of strain through the thickness of the curved shell. The strain at a point in the

shell was developed in terms of a series expansion in the thickness coordinate, and new

definitions of [k], [l 1 ], and [l2 ] were developed for the theory with transverse shear

deformation. This formulation required hundreds of matrix multiplications to evaluate

these equations. A MACSYMA routine was developed to symbolically generate the

assumed displacement field, determine strain components, determine the shell shape fac-

tor approximations, determine the elements of the strain defintion arrays, form the stiff-

ness arrays, and finally generate the Fortran code for elements of the [kT], [l 1j], and [Al2 ]

stiffness arrays. Development of this routine was an important part of this research.

The element independent stiffness matrices of this theory depended upon the contin-

uum displacement gradient vector {d}. Using a standard displacement-based finite ele-

ment method, the 18 two-dimensional functions of the continuum displacement gradient

vector are approximated by interpolation from discrete values of nodal displacement

parameters. These nodal parameters, or degrees of freedom, were defined only at a finite-

number of points or nodes. The finite element method required the computation of the

stiffness matrices for each element independently. These elemental stiffnesses were then
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assembled according to their relationship to global nodes of the structure.

Defining the nodal degrees of freedom required definition for the specific element,

since the nodal parameters of { q I and the associated nodal interpolation array are element

specific. The element of choice is the 36 degree of freedom quadrilateral curved shell ele-

ment developed by Dennis (1988). This element has been used for many investigations of

static and dynamic responsed of plates, arches, and cylindrical shell undergoing large dis-

placements with linear HTSD theory (von Karman or Donnell theory with HTSD theory

included). The element has eiqht nodes with seven degrees of freedom, u, v, w, w, 1, w,2,

WI, and W2, at each of the four corner nodes and two degrees of freedom, u and v, at the

four midside nodes. The two degrees of freedom at the midside nodes allow for quadratic

interpolation of in-plane displacements u and v. This is important for shells, due to the cur-

vature-induced coupling of bending and membrane activity in shells. The continuum val-

ues of u and v were interpolated from the nodal values Uk and vk, using quadratic

Lagrangian interpolation functions. The continuum displacement gradient vector {d}

included W,1 and XV2 and the first derivatives of these parameters. Thus, linear interpolation

could be used for these parameters, since C° continuity is required. The interpolations of

W, and W2 were given linear Lagrangian interpolation functions. Nodal parameters associ-

ated with transverse displacement included the values w, w,1 , and W,2 at each of the four

corner nodes. Thus, interpolation of w was accomplished using cubic Hermitian shape

functions.

The two-dimensional integration of the finite element equations, in the plane of the

finite element, was accomplished by numerical integration using Gaussian quadrature.

Solution of the resulting equations was accomplished by an incremental-iterative tech-

nique commonly called the Newton-Raphson method, in which the solution is either dis-

placement or load controlled. The parameters to be incremented were the elements of the

array {d}, containing global degrees of freedom. A global criterion, written in terms of the

norms of all displacement parameters, used to determine convergence.
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7.2 Elastic Shell Analysis

One objective of this research was to evaluate the accuracy of the new quasi-nonlinear

HTSD theories (spherical geometry and elastic constitutive relations with material trans-

formation matrices). Another objective was to assess their limitations. Shallow shell prob-

lems included a thick flat quasi-isotropic plate with uniform transverse pressure load, a

thin, deep isotropic cylindrical arch with a transverse point load, a thin isotropic and

quasi-isotropic cylindrical shell panels with a transverse point load, a deep, thin laminated

composite cylindrical shell panels under a transverse point load with various ply lay-ups, a

thin quasi-isotropic cylindrical shell panel with and without a large cut-out and uniform

axial compression load, and thin isotropic and laminated composite spherical shells under

transverse load with various ply lay-ups.

The transversely-loaded flat plate problem was used to test the MACSYMA generated

codes. The plate chosen was an 8-ply quasi-isotropic laminated square plate with total

length of 4.064-cm which indicated transverse shear may be important. Solutions were

computed using a 4 x 4 mesh of elements to model one quadrant of the plate. For this

problem, the various HTSD elastic theories all gave results within one percent of each

other, and predicted significantly more flexible results than the classical von Karman the-

ory code. Although the difference was negligible, all the nonlinear HTSD codes predicted

a more flexible response than the linear HTSD codes predicted. This problem validated

the computational algorithms used to develop and solve the linear and nonlinear HTSD

finite element equations for laminated composite shells.

The second problem was a thin, deep isotropic cylindrical arch with hinged boundary

conditions under a transverse point load at the center of the arch. Deep circular arches can

be used to demonstrate a theory's ability to predict large displacements and rotations.

Many variations of transversely-loaded deep arch problems have been reported in the lit-

erature. The problem chosen for this research was a 254.0-cm radius isotropic arch with a

2.54-cm square cross section and an opening angle of 0.92 radians (1060). Solutions for

this problem were computed using all variations of the HTSD theory. A 1 x 40 mesh of

elements was used to represent one quadrant of the arch. The quasi-nonlinear HTSD pre-

dicts a more dramatic collapse than the linear Donnell-type solution (even though the
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Donnell theory was modified to include transverse shear deformation). The divergence

between the two theories occur when the transverse displacement, w, reaches 30.48-cm. At

this point on the equlibirum path, the maximum rotation of the normal, XV2, reaches 0.354

radians (20.30) and over 32% of the shell surface see rotations of 0.171 radians (9.8°).

This difference in predicted response was due to the many nonlinear in-plnae displace-

ment terms in the strain definitions that are not included in the Donnell equations. How-

ever, when the material transformations are included in the quasi-nonlinear HTSD theory,

a more flexible structure is predicted. This theory diverges from the quasi-nonlinear

HTSD theory when the transverse displacement, w, reaches 20.32-cm. At this point on the

equilibrium path, the maximum rotation of the normal, W2, reaches 0.244 radians (14.00)

and over 29% of the arch surface saw rotations of 0.10 radians (5.720). Due to these rota-

tions, the isotropic material properties are becoming anisotropic due to the movement of

the material coordinate system relative to the structural coordinate system. At the point of

collapse, w = 60.96-cm, W¢2 = 0.531 radians (30.4° ) and over 45% of the arch surface saw

rotations of 0.20 radians (14.70).

The third class of problems investigated were thin shallow hinged-free isotropic or

quasi-isotropic cylindrical shells with a transverse point load at the center of the panel.

The first problem was a 0.635-cm thick cylindrical shell of isotropic material under a

transverse point load with hinged boundary conditions along the axial edges. The shell has

a 254.0-cm radius with axial and circumferential lengths of 50.8-cm. Solutions were com-

puted using a 4 x 6 mesh of elements to model one quadrant of the shell. For this prob-

lem, the linear and quasi-nonlinear HTSD theories all produced the same results. In

comparison to the plate problem, the quasi-nonlinear HTSD theories for this problem

showed greater flexibility than the linear HTSD variants, but only after the collapse phase.

The quasi-nonlinear HTSD with material transformations theory predicted a load about 4

percent less than the modified Donnell theory (with HTSD included) in the range of

0.7 < w < 0.8 and about 12 percent less at w = 0.2.286-cm. This is due to the increased

coupling of membrane, bending, and transverse shear activity in the quasi-nonlinear

HTSD theory.
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Values of the rotational term, WV2, for ten increments of transverse displacement, were-

compared for the cubic-nonlinear HTSD theory with material transformations. The maxi-

mum rotation for increments 1-7 never exceeded 0.11 radians (6.30), before the shell

snaps. After the shell snaps, the maximum rotation measured is 0.15 radians (8.60). These

are considered small rotations and the material transformation matrices have a negligible

effect when included in the analysis.

The inclusion of laminated composite materials is considered in a 0.635-cm thick

quasi-isotropic shell under a transverse point load. The geometry and boundary conditions

are the same as the isotropic shell problem. An 8 x 12 mesh of elements is used to model

one quadrant of the shell. The quasi-isotropic shell exhibited a significantly different equi-

librium path than the isotropic shell. The peak collapse load is nine times the magnitude of

the isotropic problem and the shape of the equilibrium curve is not as dramatic as for the

isotropic shell. Interestingly enough, when comparisons were made in the development of

the rotational degree of freedom, WV2, the magnitudes of the rotations were similar to those

of the isotropic shell. Only the distributions of the WV2 rotations differ between the isotropic

and quasi-isotropic shells. As before, the magnitude of the rotations are small and the

effect of the material transformation matrices was negligible.

A clamped-free cylindrical shell panel with various ply lay-ups under a transverse

point load, was chosen to study the effects of material transformation matrices for deep

composite shell panels. This shell panel had a 30.48-cm radius, a thickness of 0.102-cm,

and dimensions of 27.94-cm (lateral) by 30.48-cm (circumferential). Because of the larger

circumferential dimension, this shell was significantly deeper than the previous problems.

Tsai and others (1990) investigated shells of this configuration and compared static and

dynamic results for different material properties and ply lay-ups. A one quadrant 96 ele-

ment mesh (8 x 12) was chosen for this problem. The cubic-nonlinear HTSD theory pre-

dicted results similar to those of Tsai. The cubic-nonlinear HTSD theory with material

transformation matrices predicted signficantly more flexible results than the other theo-

ries. The material transformation theory significantly altered the global displacement

response of the shell(s) in the post-snapping behavior when the shell(s)s returned to a ten-

sile load state. This is attributed to the majority of shell achieving a deformed shape

7-16



exhibited in Figure 5.17 where a significant portion of the shell, at least 30%, was under-

going rotations of 0.45 radians (25.780) or greater.

The 1/4-inch thick isotropic panel has properties that did not vary with orientation of

the material. The shear modulus for the isotropic panel was assumed to be one-half the

Young's modulus. Since the shell behaved in a flexible manner and snapped through

with a relatively low transverse load, the initial severity of bending was characterized by

the distance between the lateral supports and the depth of the shell. The quasi-isotropic

shell had a [0/-45/45/90], ply lay-up with a ratio of E1/E2 = 15 and a transverse modulus

less than E2 . For the composite shell, the primary cause of deformation was also bending

activity. The inner plies of this laminated panel were the only plies in the transverse direc-

tion. This implies that 75 % of the material of this shell has a bending stiffness [Dij] in the

circumferential direction that was significantly less than the outer plies. This panel was

only 0.04-inches thick. Thus, the inner plies may not have been effective in resisting

bending, since they were so close to the midsurface of the shell. With the lateral supports

of this shell clamped, the final deformed shape of the shell exhibited both positive and

negative curvatures. The severity of bending is characterized by the distance of about 2

inches. The bending activity of the clamped composite shelll was more severe than that of

the hinged isotropic shell.

These problems demonstrated that non-isotropic material properties have a significant

effect upon the predicted global response/behavior of shell structures. Because of the

reduced stiffness in the circumferential direction, the increased coupling of transverse

shear activity and rotations with the in-plane strains, and the significantly lower transverse

shear properties of this panel, the incorportation of the material transformations (based on

displacement terms) significantly affected the strain energy of the composite shell. This

resulted in a more flexible structure at snapping, and in the snap-through phase of the

shell's response.

A set of problems with quasi-isotropic material and similar radius of curvature, but a

significantly altered loading scheme was chosen next. These problems were axially-

loaded quasi-isotropic cylindrical shell panels with and without a 10.16-cm centered cut-

out. These panels has a radius of 30.48-cms, a thickness of 0.102-cm, and dimensions of
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30.48-cm (lateral) by 30.48-cm (circumferential). The cut-out was square, 10.16-cm sides,

and was centrally located. Due to the possibility of nonsymmetric deformation as dis-

cussed by Tisler (1986) and Palazotto & Dennis (1992), the entire panel was modelled

with 576 elements. Only the cubic-nonlinear HTSD theory and the cubic-nonlinear HTSD

theory including material transformations were evaluated.

When considering the rotations observed in both problems, it was evident that the

maximum rotational VIJ2 observed was 9.50 for the cylindrical shell without a cutout and

7.8' for the cylindrical shell with a cutout. In both analyses, less than 18% of the shell

surface observed magnitudes of V2 greater than 40. Thus, the effect of the material trans-

formations on the global displacement behavior of these shells was minimal. Considering

the relative magnitude of transverse deflection and circumferential rotation, and the rela-

tion of the depth of the shell versus shell thickness, these axial panels represent a rather

shallow shell when compared to the previous problem.

Since one of the objectives of this effort was to include spherical geometry, an isotro-

pic spherical shell cap was chosen as the next exercise. This problem was first solved by

Argyris (1980) and later br Parisch (1981). This isotropic shell is hinged on all four

boundaries and has a depth of 2.181-cm. It is 4.60-cm along each circumferential direc-

tion, has a thickness of 0.0158-inches and a radius of curvature of 12.09-cm. The shell

was modelled by a 12 x 12 mesh with the transverse displacement prescribed at the apex.

The cubic-nonlinear HTSD and cubic-nonlinear HTSD with material transformation theo-

ries compared favorably with Argyris' TRUMP element. Both theories predicted a more

flexible shell displacement response than either Argyris or Parisch reported. This is attrib-

uted to the eight-noded element used by the author which allows quadratic interpolation of

the in-plane degrees of freedom, u and v. This allowed the membrane activity of the shell

to behave in a more flexible manner than the four-noded TRUMP element.

The maximum W2 rotation observed in the shell was 15.680 at the collapse point and

over 20% of the shell surface saw V 2 rotations of 14.9'. These rotations are considered

relatively small for shell behavior. Thus, it is not surprising the inclusion of the material

transformation matrices in the cubic-nonlinear HTSD theory had minimal effect on alter-
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ing the shell's global displacement response.

The final set of problems chosen were essentially the isotropic hinged spherical shell

cap with the material changed to quasi-isotropic laminates. Three ply lay-ups were con-

sidered, [0/-45/45/90],, [02/902]s, and [08]. The author realizes the inclusion of ±450 plies

is impractical from an experimental point of view owing to the difficulties of maintaining

a true 45' fiber orientation throughout the spherical cap. However, the [0/- 4 5/ 4 5/ 9 0], does

offer a unique comparison with the other quasi-isotropic and the isotropic spherical shell

cap problems. In all three analyses, the cubic-nonlinear HTSD theory with the material

transformation matrices had a minimal effect on the shell(s)' global displacment response.

This was not surprising considering the relative small WV2 rotations (only 12% of the shell

surface saw magnitudes of W2 greater than 150). It was only in the snap-through phase of

the equilibrium curve, when W2 exceeded 11.10, that this theory predicted a more flexible

shell response than the cubic-nonlinear HTSD theory. As mentioned in the isotropic

spherical shell cap analysis, these types of shells are relatively shallow and only provided

a moderate test of the cubic-nonlinear HTSD theory with material transformation matrices

included.

7.3 Elastic-Plastic Shell Analysis

A simply-supported, elastic-perfectly plastic plate was considered to exercise and val-

idate the nonlinear material behavior of the theory. The plate is 2.54-cm square with a

thickness of 0.01-inches. The results of this problem were compared to Owen & Hinton's

published results (1980). One quadrant of the plate was modelled with 64 uniform ele-

ments. To accurately predict Owen & Hinton's results, the membrane activity of the plate

was minimized to allow bending activity to dominate the plate's response. This was

accomplished by removing the in-plane degrees of freedom u and v. This allowed the

flexure stiffnesses [Dij] to dominate the analysis, thereby allowing the plate response to be

purely bending. The nonlinear material, large strain theory accurately predicted the plate's

global displacement response when compared to Owen & Hinton's. Since there is no cur-
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vature in the plate, many of the nonlinear displacement terms become zero. In additon, the

plate is relatively thin, so transverse shear is neglible also. As expected, the nonlinear

material von Karman, nonlinear material modified von Karman, and the nonlinear materal

cubic-nonlinear HTSD theories predicted virtually the same equilibrium curve.

The next problem chosen was that of a deep, isotropic cylindrical arch. This problem

was identical to the cylindrical arch problem previously discussed in the elastic analysis,

Section 7.3. However, the material is allowed to yield and behave perfectly plastic to

determined the effect of nonlinear material behavior on a shell's global displacement

response. Comparisons between the elastic cubic-nonliner HTSD theory and the nonlin-

ear material cubic-nonlinear HTSD theories were made. As before, a 1 x 40 mesh was

used to model a quadrant of the arch. The inclusion of nonlinear material behavior signif-

icantly altered the arch's global displacement response. The collapse load was reduced by

29.4% when compared to the Donnell theory, 22.3% when compared to the cubic-nonlin-

ear HTSD theory, and 16.4% when compared to the cubic-nonlinear HTSD theory with

the material transformation matrices included. As expected, the global displacement

response of the arch became more flexible when nonlinear material behavior was included

in the analysis.

In the post-collapse response of the nonlinear material model differs from the Donnell,

modified Donnell, and Huddelston's inextensible solution (1968) for cylindrical arches.

This is attributed to the higher-order representation of the deformation of the midsurface

of the arch and the continually changing properties of teh elastic perfectly-plastic material.

Almroth & Brogan (1980) saw a similar effect to the inextensible solution of a deep arch.

Their finite element formulation allows for nonzero straining, and their results were con-

sistently more flexible compared to the inextensible solution.

To test the plasticity model for true cylindrical shells, a short isotropic cylinder

bounded by two rigid diaphragms at its ends, loaded with two transverse pinching loads at

the middle section, and characterized as elastic perfectly-plastic was chosen. This prob-

lem was published by Simo & Kennedy in 1992. The cylinder was 3 non-dimensionalized

units thick, 180 non-dimensionalized units in length longitudinally, and had a 300 non-

dimensionalized unit radius of curvature. An 8 x 36 element mesh was used to model one

octant of the cylinder. The theory accurately predicted the shell's global displacement
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response and compares favorably with Simo & Kennedy's results.

The final isotropic shell problem chosen was the spherical shell cap first published by

Argyris (1980). The shell is 4.60-cm long in both circumferential directions with hinged

boundary conditions. The spherical shell cap is 0.04-cm thick, has a depth of 2.181-cm, a

radius of curvature of 12.09-cm, and is loaded transversely at the apex. The material is

assumed to behave elastic perfectly-plastic. As expected, the author's theory predicts a

more flexible response than Argryis' 4-noded TRUMP element. This is due, primarily, to

the 8-noded element, with quadratic interplotion of the in-plane displacement degrees of

freedom, the author uses. Since rotations remain small, the only significant effect on the

shell's global displacement response was the inclusion of the nonlinear elastic-plastic

material behavior. Simply including the material transformation matrices has a minor

effect on the equilibrium path of the shell.

To exercise and validate the author's theory for composite laminas, a Graphite Poly-

etherether Ketone (Gr/PEEK) tensile coupon was chosen. Gould (1990) conducted a

series of experiments considering ±450 ply lay-ups and then compared a stress-resultant

finite element formulation to determine the effect of including material tranformation

matrices within a nonlinear material theory. The tensile coupon was 2.54-cm in width,

25.4-cm in length, and 2.134-cm thick. The ply lay-up chosen for comparison was [45/-

4 5 14s . The anisotropic nonlinear material parameters needed for the analysis were deter-

mined from the actual experimental stress-strain curves shown by Gould. The nonlinear

material cubic-nonlinear HTSD theory accurately predicted the equilibrium path for the

tensile coupon to within 10%. Due to the orientation of the fibers, the matrix appeared to

carry much of the load. Since the matrix had a very low yield stress, it was expected to

observe a distinct change in the global displacement response when nonlinear material

behavior was included in the theory.

The next quasi-isotropic shell problem chosen was a clamped-free, composite cylin-

drical shell panel under a transverse point load at the middle section. This shell panel had

a 30.48-cm radius, a thickness of 0.102-cm, and dimensions of 27.94-cm (lateral) by

30.48-cm (circumferential). Because of the larger circumferential dimension, this shell

was significantly deeper than the previous problems. Based on the previous elastic analy-

7-21



sis, one quadrant of the shell was modelled with 96 elements (8 x 12 mesh). Only the [0/

-4 5 /4 5/9 0], ply lay-up was considered. The anisotropic nonlinear material parameters

needed for the analysis were determined from the actual experimental stress-strain curves

of graphite epoxy tensile coupon tests representative of the material used by Hatfield. The

inclusion of the nonlinear material behavior significantly altered the global displacement

response of the shell. The collapse load was 46.2% when compared to the Donnell theory,

and 38.1% when compared to the cubic-nonlinear HTSD theory. The post-collapse behav-

ior is significantly more flexible due to the large regions of plasticity occuring across the

surface of the shell.

The axially loaded (buckling), clamped-free composite cylindrical shell was consid-

ered next. This problem was significant due to the availability of experimental data from

Hatfield (1991) for comparison. This shell had a 12-inch radius of curvature, was 12-

inches in length longitudinally and circumferentially. The shell's thickness was 0.04-

inches and the ply lay-up was [0/-45/45/90],. The anisotropic nonlinear material parame-

ters needed for the analysis were chosen from the previous clamped-free transversely

loaded cylindrical shell problem. The inclusion of the nonlinear material behavior in the

model did alter the global displacment response significantly. For the cylindrical panel

without a cutout, the predicted collapse load was within 24.1% of Hatfield's experimental

results. For the cylindrical panel with a 4-inch centered cutout, the predicted collapse load

was within 12.4% of the experimental results recorded by Hatfield. In both problems, the

shell's predicted response is more flexible than for the elastic solutions, and behaves simi-

larly to the experimental results observed by Hatfield.

The author proposes two possibilities for the large variance in both collapse load and

axial displacement between analysis and the experiment. The first is the possibility that

the boundary conditions are not truly clamped. This is a remote possibility considering at

least 1.27-cm of the panel is clamped at both the top and bottom, but it is possible the

panel is moving within the test fixture's clamps. The other possibility is in the fabrication

of the panels. Due to curing stresses generated in the autoclave, when the individual pan-

els are cut from the general laminate, the panels tend to warp. This was observed by the

author upon examining panels fabricated for his Master's Thesis (1989). This warping
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leads to a radius of curvature that is not constant. However, the test fixtures clamps are set

for a constant 30.48-cm radius of curvature. Thus, once the panels are seated within the

test fixture, it is possible a slight imperfection is being induced. Brush & Almroth (1975)

noted that an imperfection of 0.1% is significant and greatly alters the equilibrium path of

the shell. The author confirmed this phenomena during his Master's Thesis while using

the STAGSC-l code. Since the author's theory assumes the shell(s) have a constant radii

of curvature, it may explain why the theory predicts a stiffer shell, even when nonlinear

material behavior is considered.

The final set of problems considered were hinged, quasi-isotropic spherical shell caps.

These shells were 4.60-cm in length circumferentially with a radius of curvature of 4.76-

inches. The shell thickness was 0.04-cm and the depth was 2.181-cm. The anisotropic

nonlinear material parameters needed for the analysis were chosen from the previous

clamped-free transversely loaded cylindrical shell problem. Due to the need for accu-

rately resolving the stress-field near the apex of the spherical shell, a refined 18 x 18

mesh was used to model the entire shell. Two ply lay-ups were considered, [01-4 5/4 5/ 9 0]s

and [08]. Similarly to the transversely loaded composite cylindrical shell, the nonlinear

material theory does predict a more flexible global displacement response. For the [0/-45/

45/90], ply lay-up, the collapse load was reduced by 17.8% as compared to the elastic

cubic-nonlinear HTSD theoy. For the [08] ply lay-up, the collapse load was reduced by

23.9% as compared to the cubic-nonlinear HTSD theory.

7.4 Conclusions

This research revealed several unique findings to the limitations of a total Lagrangian

nonlinear HTSD shell theory employing material transformation matrices and nonlinear

material behavior. The magnitudes of the xi rotations and ratio of transverse displacement

to depth of the shell were found to be important factors in predicting the applicability of

the material transformation nonlinear HTSD theory. If the rotations remained small (less

than 150) the material transformation matrices had no effect on the predicted global dis-
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placement response. The plate problem and the 0.25-inch thick hinged-free isotropic shell

panel exhibited such a response. When the Donnell approximations are no longer valid

(MV2 rotations greater than 150) the material transformations have a minimal effect on the

predicted global displacement response. The cylindrical composite shell panels with and

without a 4-inch centered cutout under an axial load, and the elastic spherical shell cap

problems (isotropic and quasi-isotropic) showed only a marginal increase in flexibility in

the shell's global displacement response. If these rotations become very large (W2 rota-

tions greater than 270), then the material transformation matrices have a significant effect

in altering the shell's global displacement response. The cylindrical arch and the deep

composite cylindrical shell under a transverse load are examples of this. It should be

noted that the greatest change in the global displacement response occured at the peak

loading and during the snap-through behavior.

For nonlinear material behavior, the significant indicator was the yield stress versus

Young's modulus for isotropic materials, and the yield stress for the in-plane (a 1 2 ) param-

eter versus the largest elastic moduli, usually El for anisotropic materials. If these ratios

remained small (on the order of 10-5 to 10-3), plasticity would soon dominate the shell's

global displacement response. This was evident in all the quasi-isotropic material models.

For the graphite polyetherether ketone (Gr/PEEK) tensile coupon, the ratio is 3.97 x 10-4.

Thus, the tensile coupon behaves materially nonlinear almost from the onset of loading.

For the graphite epoxy models, the ratio is 2.79 x 10-3 . Similarly, these problems should

exhibit significantly altered global displacement responses due to the inclusion of nonlin-

ear material behavior. When the ratios are larger (on the order of 10-1), plasticity affect

the global displacement response to a lesser degree. The pinched isotropic cylinder has a

ratio of 0.9 and behaves in a manner dominated by membrane activity.

For those shells or plates exhibiting , > 0.025 over more than 15-20% of the outer

surface, the presence of plasticity dominates their response and reduces their stiffness sig-

nificantly. Comparing elaso-plastic results to elastic solutions led to a reduction in peak

snapping or buckling loads of 18-45% occurred due to plasticity while the displacement

associated with the snapping/buckling load increased by 12-27%. The combination of a
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decrease in load with an increase in the displacement associated with the peak load indi-

cates a significant "softening" effect due to plasticity which is expected.

The additional computational burden of the cubic-nonlinear strain-displacement rela-

tions is somewhat significant when spherical geometry is added. The most simple nonlin-

ear HTSD theory is C100 which has 13866 lines of code. By comparison, when spherical

geometry is included, the simplest nonlinear HTSD theory is S100 which has 18175 lines

of code by including all the curvature terms in the sl-direction. When the elastic-plastic

cubic-nonlinear HTSD theory for spherical geometry (G211) is included, the code has

37856 lines. The resulting computation burden of this additional code is significant in

terms of CPU consumption and memory requirement. The elemental independent formu-

lation of stiffness arrays, with Gauss integration in the plane of every element (for the 36

degree of freedom element usually chosen, 25 Gauss points are calculated per element for

exact integration) on ever iteration of every load/displacement increment of the nonlinear

problem(s). Clearly, this formulation of a higher-order theory is practical for specialized

research of this nature, not for routine engineering use. Since the element independent

formulation is based upon arrays of strain coefficients, the possibility of vectorizing the

code exists. In this manner, a more efficient higher-order theory may be of practical use.

Due to the total Lagrangian formulation, and the allowance of large strain/nonlinear

material behavior, the requirement of transforming the stresses and strains from

Lagrangian to Cauchy and back to Lagrangian was necessary. This is due to the assump-

tion of an incremental flow theory which is requires a Cauchy reference frame. To accu-

rately predict the stress field, which is secondary in nature for a dispalcement-based

Lagrangian formulation, requires very refined meshes. These refined meshes require a

substantial increase in computer times. For the elastic analysis, stress was not usually cal-

culated because of the additional expense in CPU time. To accurately measure the stress

at any node, the quasi three-dimensional stress field is calculated at each Gauss point, for

every layer, and then integrated to determine the stress at each Gauss point. Thus, for the

36 degree-of-freedom element, with a total of 25 Gauss points per layer, and a minimum

of eight layers, let to a total of 40 constitutive Gauss points being calculated. Comparing

the run time between an elastic and plastic analysis for the same shell model usually

resulted in an increase of CPU time by a factor of 5. This is due to updateing the [k],
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[T 1 ], and [V2 ] stiffness arrays for every iteration in terms of displacement and the consti-

tutive relations. In other words, an elastic problem may take 8 CPU hours to solve on a

SPARC10 workstation, the same problem using nonlinear material theory would take at

least 40 CPU hours on the same workstation. The author contends using a stress-resultant

based finite element formulation with an updated Lagrangian approach would be more

efficient. By solving for the stresses directly, and using a Cauchy oriented material sys-

tem, reduces the computational burden of tracking stresses and transforming them, cor-

rectly, between the Cauchy and Lagrangian material axes systems. For each problem

presented in Chapter 6, the author has specified the convergence tolerance, V, the element

mesh used, and the number of displacement increments (and the increment size) used to

achieve a solution. Depending on the geometry of the problem, the material properties

and boundary conditions, the development of plasticity varied from problem to problem.

Hence, from an elasto-plastic analysis the criteria for the numerics changed from one

problem to the next.

The theory developed and presented in this research adequately predicts the changes in

global displacement response of isotropic and quasi-isotropic plates, cylindrical and

spherical shells. It is a total Lagrangian finite element formulation that incorporates a

quasi three-dimensional material theory and models orthogonal plates and shells. The

inclusion of material tranformation matrices within the cubic-nonlinear HTSD theory

resulted in a more flexible response prediction for deep shell problems during the collapse

phase. Similarly, the nonlinear material cubic-nonlineaer HTSD theory provided a more

flexible response prediction for both deep and shallow shells, as long as the ratio of yield

stress versus modulus of elasticity was greater than 10-3 . However, due to requirement of

transforming the stress state between Lagrangian and Cauchy reference frames, to satisfy

the incremental flow theory requirement, a significant increase in CPU time occurred.
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Appendix A. Arbitrary Shell Strain-Displacement Relations

The arbitrary shell is described in terms of a curvilinear orthogonal coordinate sys-

tem aligned with lines of principal curvature. Displacement within the shell is assumed to

be of the form

U = ule 1 + u 2 e2 + u 3e3  (A.1)

where the orthonormal e1 and e2 are aligned with principal lines of curvature. The direc-
.._ .... --4

tion of e3 is deterined by the cross product of eI and e2 . The components of displace-

ment in the 1-, 2-, and 3-directions are assumed to be unspecified functions of the

curvilinear coordinates Yl, Y2, and Y3. The shell shape factors h, and h2 are general arbi-

trary functions, specifically: h1 = h1(y1 ,Y2 ,Y3), h2 = h2(Y1 ,Y2,Y3), and h3 = 1.

A.1 Midsurface Strain Components for the Arbitrary Shell

The strain equations listed below are the linear and nonlinear parts of the strain com-

ponents for the case of an arbitrary shell. The 633 component is assumed to be zero for

this shell formulation. Contracted notation is used, where E1 = Ell, £2 = -22, £4 = E23, E5 =

613, and P6 = £12.

E1L = (U1, 1 + hl, 3 u3 )/h l + (h 1, 2u2 ) / (hIh 2 ) (A.2)

62L = (u 2 , 2 + h 2, 3 u3 )/h 2 + (h 2, lul ) / (hlh2 ) (A.3)

64L = U2, 3 + (u3, 2 - h2, 3u3 ) / h 2  (A.4)

E5L = U 1, 3 + (u3, 1 - hl, 3u3 )/h, (A.5)

66L = U ,2/h2 + u2, 1/hi- (hu,2Ul + h2, lU2) / (hlh2) (A.6)
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INL = (h1 3 (u1 3 u3 -ulU 1))/( h )+h 3 [U2 +U 2 1 +u (A.7),, 2, 2,) .2 l U3 , 1 3u'2 1 3, 1
+ h, Ul+U3 / 2 +h1,(1 U2_UlU2,

+hl,3(U2U3 h2+2h3 12u l~ u 3 2/ 2,
2h 2 22

S(h U 3 -UU h2) +h3[/§2 +Ul2 +UC2 (A.8)

2NL 2 h 2, 3 3 ,2 1 2 2 3,22l 222/( 2 2+ 2,3 u3 ++h 2 +1(2223,l2

+2 3 1 2 1223 / 322

E4NL = [Ul, 2 U 1,3 + U 2, u2,U3 + U 3, u3, 3 +h2,3 (u2,3u3 (A.9)

-u 2 u 3 , 3 ) ]/h 2 + (h2, 1 (ulU2, 3 -ul,3U2 ))/(hh 2 )

F15NL = [Ul, lUl, 3 + U2 ,
1 U2 , 3 + u 3 1 u3

, 3 +h 1
,

3 (u l ,
3u 3  (A.10)

-uIu3, 3 )]/h 1 + (h 1, 2 (ul, 3u 2 -u 1 U2, 3 ))/(hlh 2 )

E6NL = [u 1 , 1u1,2 + u 2,1 u 2,2 + u 3, 1 u 3,2 (A.11)

+ h1, 3 (ul, 2u3 - UlU3, 2 ) + h2, 3 (u 2 , 1 U3 - u 2 u3 , 1 )

+ h1 , 3 h2 ,3u 1u2 ] / (hlh 2)
" (h 2, 1 (UlU2, 1-Ul, lU2 -h1, 3U2U3))/ h 2h2

(2+ (h( U2-uu2-h U))/ hlh
12,121, 1)22133 1 2

2 2 22
-(h 1,2 h 2 , 1O 1 +u 2 J(hiA 2
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A.2 Mid-Surface Strain Components for the Arbitrary Shell with a Quartic

Displacement Field Assumption

The expressions listed in the previous section represent strain componets for an arbi-

trary shell where displacement components are unspecified functions of the coordinates

(Y],Y 2 ,Y3 ). For a shear deformation theory, the displacements are assumed to be functions

of the thickness coordinate. Specifically, for a shell with radius R, in the y]-direction and

radius R2 in the y2-direction, we shall assume a quartic series expansion u1 and u2 as

shown below. The u3 component is assumed to be constant through-the-thickness of the

shell.

2 3 4u1 = ( Y3/ ) + Wly 3 + Oly3 + Yly 3 + 01Y3

2 3 4 (A.12)
2 = v(1-Y 3 /R 2 ) + W2 y3 + 0 2 y 3+Y 2 y3 + 0 2y 3

U 3= Wu3w

If one substitutes these expressions for the displacements into the previously derived

expressions for strain components, the following expressions are obtained for the strain

components XP, where

n

Xi i =)i + I X i Y p '(A. 13)

p=l

and
n

X. + p P (A.14)
LNL LNL I LNL3

p=l

0
X1L = u 1/h 1 + (hl,2v)/(h1 h2 ) (A.15)
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, = 1 u 1/R 1 /hI + (h 1 , 2 (A2- v/R 2 ) ) / (hlh 2 ) (A.16)

X1L = 1, 1/h+ (h 1,22) / (hlh 2 ) A.17

3
,L= 71, 1/h I+ (h 1, 27 2 ) / (hlh 2 ) (A.18)

1 L 01, 11hl + (h1,202) / (hlh2) (A.19)

0
X, Z v 1/h 1 + (h 1, 2 u) / (hIh 2 ) (A.20)

I1 (
X 2 L = W2, 2- v,2 /R 2 )/h 2 + (h 2 , 1 (VI - u/R 1 )) / (hlh 2 ) (A.21)

2
2L = 02, 1h2 + (h2, 101 )  (hlh2) (A.22)

3
X 2 L = 72, 2 /h 2 + (h2,17 1) /(hlh 2 ) (A.23)

4
4c2 L - 2, 2 /h 2 + (h2, 10 1) /(hlh 2 ) (A.24)

0
4L =(XV2 - v/R2) + w,2/h 2  (A.25)

1
X 4 L = 202 - (h2,3 (XV2 - v/R 2 ))/h 2  (A.26)
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2
4= (h 2, 3 2 )/h 2  (A.27)

X4/ = 40 - (h 2 3 Y2 )/h 2  (A.28)
4L 2 2A,382

4

X4L = -(h 2 3 0/h 2  (A.29)

0
0 L  (1 - u/R1) + w,1/hl (A.30)

15 = 2, - (ha 3 (N1-u/R1 ))/h a  
(A.31)

2
X5/ = 3 y, - (h 1, 30 1 )/h l  (A.32)

3
X5L = 40, - (h, 371) / h

1  (A.33)

4
X5L = -(h 1 , 3 0 1)/h 1  (A.34)

0
X6L = u, 2 /h 2 + v, 1/h 1 - (hl, 2 u + h2 , 1 v) /(hlh 2 ) (A.35)

1
X6L = (Wl, 2 -u, 2 /R 1 )/hl + (W2, 1 - v,1/R2)/h 2  (A.36)

- [hi1, 2 (V1 - u/R1) + h 2, 1 (W2 - v/R 2) ] / (hlh 2)

2

X6L = 1, 2 /h 2 + 02, 1 /hl - (h 1 , 2 0 1 + h2, 12 ) / (hlh 2 ) (A.37)
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3 = y, 2 /h 2 + 2 1 /h 1 - (h, 2 1 +h 2 1 ')/(hlh 2 ) (A.38)

6L 1, 2 2, 1 (h, 2 6 1 +h2, 2 ) / (hlh2 ) (A.39)

WL = + + (h1, 2 (U,IV - uv,1 ) ) (A.40)

+ 2 ( 2 + V 2 ) )/(2h 2h 2)

LU,1 (W1 , 1 - u/R 1 ) + (R (A.41)
X1NL + - , V,1 (W2, 1 - v,1/R2)

+ h1 , 3 (w (W1, 1 - ua/R 1 ) -w, ( 1 - u/R 1 ))

1hl3U(1-U/ 1h1+ 1h, 2z[U,I (V2-v/ 2 )

-u (W2, 1 - v,1/R 2) - v,1 (Ag1 - u/R1)

+ v (W1, 1 - u,1 /R 1 ) + h 1 , 3 w (W2 - v/R]2))/( hh 2 jh2

,2[u (1-u/R1 + v (X2 - v/R 2)1 I) hlh2)
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2

NI - [,l (, -U, 1 /R 1 ) + V,1 (2, 1 -v, 1 /R 2 ) (A.42)

-2 2 2 2 222]2

+ l, 1+ W2,1Il+ /R+/R+ hy, 1+u/R)] 2h

+ (h 1 ,2 [01, 1 (W 2 -v/R 2 ) -P1 (W2, 1 -v, 1 /R 2 )

- 02, 1 (WI-U/R 1) + 02,1 (WI, l- U,1/R 1) + 01, IV - OlV,1

-P2, 1 u+ 2u,l + (U,lV-UV,1 )/(R 1 R 2 ) +h 1 , 3 0 2 w])4h2h22)
+h 12 [u (0 1 - l / R 1) + v(0 2 -42/R 2 ) ] )( 2h2
( h2 2+ 2 -2 2hlh2 2

+ 12 Vl + + 2 + v2/RI/(2hIh 23
XINL = 1 ('1, 1 -u, 1/R 1) + 02, 1 (XV2, 1 - v,1 /R 2 ) (A.43)

+ 71, U1 + Y2, Iv, 1 +h 1 , 3 (7, 1 w-7 1w,1 )

+ 71,1v-YIV,Il- Y2 Iu+7 2 u,l +h,37 2w])/(hh 2 )

+ 2 [1 ('2 -v/R 2 ) + 72 u + 2 (2 - v/R 2 ) + y2 v] 2
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1NL = Y1 1 1 - u 1 /R 1) + ]2, 1 - v 1 /R 2 ) + 0
1 1 U,1  (A.44)

+0 2,1 V,1I+ hl, 3(01,Iw -01lw,1) + h1, 3[ l(Wl- U/R1) +01u] 1h 2

+(I 1 +h 13 /1 /(2h + (h1 2[l 1 (W22 -v/R 2 )
-71(W2, 1.-v,1/R 2 ) - Y2, l1 ( Wl - u / R 1 ) + Y2 (OV1, 1- U,1/R1)

*+01, 102 -0102, 1 +01),IV -01v,1 -02,lu + 0 2u,1

1 2
+ h1, 302 w]) /hh 2 + (h 1 2 I'1 (WI~ - u/R I) +01u

+2,1( W2 - v ,/R2 ) + 02V] 1(hh0)+ (h l 2 R +))

5 1
X1 NL 171v, 1 1+ Y22, 1 1+ 0 1, 1 OV, 1 - u, I/R 1) (A.45)

+0 2,1 M, 1-V1/ R 2 ) + h 2(Yi+0i -u/R))]/h 2

hlh 2

+ 02 ' - v/R] 'J1(h 2h~ 2+ (h? 2 (7 + 2))/( 2 2 )

6 2 2 2(2 2
X1NL = 101, 1 + 02, 1 0 2 , 1 +h 1 30 1 0 1)/h + Y 1, 1 

+ Y2, 
1  (A.46)

+ 2 2hi0 +) (h0+1, 3YI)1 1, 2h +(l,I,1]2 -(1(2,1 + 01,102_ 0102, 1

-2,101 + 0 2 0 1 ,1) /(hh 2 )+ (h22(1"1+0
+ (h + 2)/ h2h2
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7+ 2 / 2 2)(A.47)
INL 71,101,1 + 72, 1 02 , 1 + 1, 3 1 0 1)/ 2h

+(h 1, 2 1yl, 10 2 - 7 1 02 ,1 -7' 2 ,1 0 1 + 72 0 1 , 1 /h1h 2 )

+ 2 ('101 + 7202)

8 (2 2 2  2(2
NL 1,+ 0 1 2,1+h 1/,3 0 /2h 2+ (hl 2 [l, 1 0 2  (A.48)

0(1
IN 1 1 , 1,3 ,2E l 0

X 0/ = 2 w 2  2h22) (h 1 )/(hh 2 ) (A.49)
2 1 2 + ,2 h2, (u,2v- uv,2)

1 u F +iv 2vX2h2R 2

1
X2NL = [u, 2 ('41, 2 -u,2R1) + v,2 (V2,2-v,2 R 2 )  (A.50)

+ h2, 3 (w (W12 , 2 - v,2/R 2 ) - w,2 (W2 - v/R 2 ))

22
+ h2, 3 v (W2 - v/R 2 )]/h - (h1 , 2 [u,2 (v2 - v/R 2 )

- u (W2,2 - v,2 /R 2 ) - v,2 ( 1/1 - u/R 1 )
+ V~l,2-u,2 /R 1 ) + h2 3w(l-U/R 1 ) ])

+ h 2, [ U l-U/R) + v (M 2- v / R 2) ] X /  hl2h2
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X2NL = [u,2 (1,2 -u,2/R1) +v,2 (2,2 -v,2R 2 ) +h2,3 (w 2,2 (A.51)

+h [ 2 2 u2R

2, + v + 2 +u R

- 1 (W2, 1a-V,1/R 2 ) -0 2 ,1 ( -U/R1) + 02, 1 [ , 1 ( '-1/R1)

+ 1, IV/lv ,1- 2, lU+ 0 2 (u, + (U, V- UV,)/(RIR2)
+ h l , W ) h 2  12 [ ( a l / 1 + v 2

1, = ) (Ntl, 2 U2 /R 1 ) + 1 2, 2 l 2 R 2) + 2 (A.52)
+Y 2 ,2  2  h ( h 2 2 + h 2 I 2 2 - v2/R2 ) + 2 u)

+72,2v,2+hz 3(22w 12,2( 1 1,3 + 2 f2 2-v R 2 + 2 h

- (h 2 , 1,[ 1 2 ('9 2 -v/R 2 ) - 1 (0 2 , 2-V,/R2 ) - + 2,2 (1 -5u/R 1 )

+ 02 (''a, 2-u,2 /R 1 ) +y Y1 2 V-ylvZ-Y2 2u + u,

+ h2, 2 ),2 2,3 hh + 2, 2 +2[1 (01 - u/R 1 ) + 71 u+ ( 2, [0,2 2- v/R2 ) o M,2/(h2IR2)-022hW -u)

*2NL Lvi, 2 ('91 , 2 - u,2 /R 2 ) + 2, 2 (M'2 , 2 - V2, /R 2 ) + 1, 2 u 2  (A.53)

h2+02, 2 vz+h 2 ,3 (02w zW-0 2 w,2 ) + 2 ,3[Y2 (tz- v/R 2 ) + 0 2 v]]/h

+ (W 2  2 + 4, 3 242 - (h2 ,1[Y1,2( 2-v/R2 )

+- 1 ( V , 2 - , 2 ) + Y2, 2 (V1 2 - 2  + 2 1,2

+ h1, - v/R 2) + 02V2, u 1h +u 2

_( 2 2"

'41 2+ V2,2 h2,3 2 h ( 2,1 [1, (W+ R2
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5 
-+(~J u RI) (A.54)52N = [1,201,2+ -y2,202,2+()1,2(Wl,2_u2 R1 (A54

+0 /R h 2 _2 ( )2 (W 2 v/R 2))1/h2
+2, 2(W2,2 -v,2/R 2) + 2,3(2/2 +0 2 (2 v 2- (h2, 1 7 1, 20)2 -yl02,2 2- Y2,20

)1 + 201,2 2+ 01, 2 (Wl2 - / 2)

- 0 1 (W2, 2 -v,2/R2) - 02, 2 (Wl - u/R1) + 0 2 (WI 2

2m U , 1,) 2) (h 2, 3 1 202 + h + 1)'1 t,2 (.5

+ 2 (W'2 - v/ 2)]/(lhi 1 2 i 2 +I 732h 1h 2)

2NL 1 2012 +02 2 2 ,2  2,4302,22 +
,2 2,2

2 2) (20 0

-42,201 + 4 201,2]
) hh 2~ +h 2, 1 1(P202

+ h2, 1 +3' 2 _ (h2h 2h 2 +( 2 1h 2h2

7NL = ( 1 1 2+"2,202, 2+h 2 3 0)2 2 ) (A.56)
-- N ( 7 "1,2 2 1,2 1y2, 2 - 2,2 2 + 322 2  )/ ( h2  2

+ (h 1 (7101 + "7202) 27j2

2- +70)/((fo h 2

2NL  12 + 02,2 +  2,302)/( 2h2  -(h2 1 [01,2
0
2  

(A.57)

-0 h]) hlh2) + (h 2,12  + (2)/(h2h 2

0 = [u,2 ( 1-u/R
I) + v,2 (ov/R 2) ]/h 2  (A.58)

- (h 2 , 1 [v ('1 - u/R 1 ) - u (W' 2 - v/R 2 )]) / (hlh2 )
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1 4NL" = ["1, 2 (I1 -u/R 1 ) + W2,2 (W 2- v/R 2 ) (A.59)

- u,2 ('l'l - u/R 1 ) - v,2 (W 2 - v/R 2 ) + 2 (01U,2 + 02v,2)

+ 2h2, 3 02w] /h2 - (h2, 1 [2 (01V - 02 u) ] ) / (hlh 2 )

2NL = [ 1, 2 (NJ-u/R1 ) +02, 2( W 2 -v/R 2 ) +2((1 (1  (A.60)

-u/R 1 ) + 02 M - v/R 2 )) + 3 (y 1 U,2 + y2v,2) + 3h2,372w] /h2

- (h 2, 1 [01 (42 - v/R 2) - 02 (XUa - u/R1) + 3 (7j u + 72v ) ])/(hlh 2)

3 4/ ]l - u/R1I) + 7/2, 2 (W12 - v/R 2) + 2 (0)101,2 (.1

X4 NL = [7 1 2 (NJ-/ 1  72 (J-/ 2 )+(11 (A.61)

+ 2 2, 2) + 3 (71 (WI, 2 - U,2 /R 1 ) + Y2 (12, 2 - V,2 /R 2 ))

+4(0 1u,2 +0 2v,2 ) + 4h 2 , 3 02 w] /h 2 - (h 2 , 1 [2 (71 (X 2 - v/R 2 )

-y2 (iVl- u/R 1 )) + 4 (01u + 02 v) ])/(hlh2 )

x4NL = [01 2 ( -U/Ra) +02,2 (W 2 -v/R 2 ) + 2(017 1, 2 + 272, 2 .62 )

+ 3 (7101, 2 + 7202, 2) + 4(0 1 (Wl, 2 - u,2/IR1)

+ 02 - V,2 /R 2 ) ) ] /h 2 - (h 2 1 [7102- 7201 + 3 (01 (t2 - v/R 2 )

+0 02 (WI- u/R1) ) I]) / (hlh 2)

54NL = [2(0101,2+ 0202,2) +3( 71,2+7272, 2) +4(0101, 2  (A.63)

+ 022,2) ] /h 2 - (h2, 1 [2 ()02- 0201)]) / (hah 2)
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664 L =[ (7101, 2 + 7202, 2) + 4 (0171, 2 + 0272, 2 ) ]/1h2 (A.64)

- (h2, 1 [O 1y2 -y 2 ol])/(hIh2 )

7
4NL =4 (0101,92 + 202,2 ) /h 2  (A.65)

0
X50 = [u (I 1 - u/R 1 ) +v 1 (w 2 -v/R2]/h i  

(A.66)

+ (h 1, 2 [v (XV1 - u/R 1) - u (V2 - v/R2] ) / (h 1 h2 )

1

X 5 NL [Nll1 -U/R 1 ) + '9 2 , 1 (W2 -v/R 2 ) -u 1  -U/R 1) (A.67)

-V, 1 (4f 2 -v/R 2 )+2( 1 u,1 + 2 v,1 ) + 2h1, 3 01 w]/h 1

+ (h 1,2[2(Olv- 02 u)])/(h1 h 2 )

X 5 NL 1,1 ('I.'l-u/R1) + 02, 1 (42 - v/R 2 ) (A.68)

+ 2(1 (NI-U1 R 1 ) +2 (Xw/- 2-v/R2))

+ 3 ( 1u, 1 +072 v,1 ) +4h 1 3 0 1w]/h 1 + (h 1, 2 [1 (2 - v/R 2 )

A31

X5NL = 7 ,( / - / 1) +'Y2, 1 (X2- v/R 2 ) + 2 (ol 1, 1  (A.69)

+ 0202,1 ) + 3 (71 (WI, Il-U,1/R 1 ) + Y2 (4f2t, Il-v,,1/R 2) )

+ 4(0 1u, 1+0 2 v,1 ) + 4hl1, 301w ] 1 h 1I + (h1, 2 [2 (y1 (Vl2 - v/R 2)

- y2 (N1- U/Rl)) + 4 (OlU+O 2v)]) /(h Ih 2)
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4X5NL"=[1 u/R1) + 0 2, 1 (W12 - v/R 2) + 2 (o171, I (A.70)

+ 02Y2,1 ) + 3 (y,01,1 + 2 02, 1 ) +4(0 1(Wil, a - U,1/R 1)

+0 2 (Wl2,1I- v,1/R 2) )] 1h 1I + (h1, 2 [Y102-Y201

+ 3(0 1 (W2 - v/R 2) + 02 (-W1 - uR1) )  (h 1 h (a2)

(A.71)

6

X5N!L =02 11+202,1) + 3 (y11,1I + y2y2, 1) +4(0 101, 1  (A.72)

+0 02, 1]/h + (h1,2 z[2 (0102z-Oz01)])/(hlIh 2)

X6NL = [3 (y101,51+ Y202, 1) + 4 (01y1, 1 + 02Y2, 1)] /hl (A.73)

+ (hl1, 2z[0172 - Y201])(hlIh 2)

X5NL 11, 122,1) (A.74)

0
X6NL = (U,aU,2 + V,IV,2 + W,IW,2) / (hlh 2 ) - (h2, 1 [u,lv (A.75)

h2)+(hh2-

( 1 ,2 h 2 ,1 [u 2+vp2]J1(h 2h 2)
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X6NL = [U,1 I ( 1, 2 -U 2 /R 1) + u,2 (Wl, 1 - u,1/R1) + v,1 (W2,2 (A.76)

- V,2 /R 2 ) + v,2 (W2 , 1 - v,1 /R 2 ) + hl, 3 (w (I, 2 - U,2 /R 1 )

- w,2 (V1I - u/R 1 )) + h 2 , 3 (w (W2, 1 - v,1 /R 2 ) - w,1 (w2 - v/R2))

- h1,3 3h2, 3 (u (W2 -v/R 2) + v (xV1 - u/R1) ) I / (hl1h 2)

- (h2, 1 [u,1 (42 - v/IR2 ) - u ('92, 1 - v,1 /R 2 ) - v,1 (WI1 - u/IR1 )
+ V (VlI1, 3 /1) +l3(XV2- v/2)]) /(h 1h 2 )

+ (h 1, 2 [u, 2 (W12 - v/R 2 ) - u (Wt2, 2 - v,2 /R 2 ) - v,2 (w1 - u/R 1)
+(Wll, 2 - u,2/R1) - h 2,3w (Wl- U/R1) ] )/( h1h2)

- (hl, 2 h2 , 1 2 (u (2,1 - u/R 1 ) + v (W2 -v/R 2 ))]) /(hlh2

2r
Z6NL = lUa( 1 , 2 -'1, 2z/R 1 ) +U, 2 (01, 1 -l 1 /IR 1 ) +v,1(02, 2 (A.77)

- W12, 2 /R 2 ) + v, 2 (02, 1 - '2, 1 /R 2 ) + 111, 1I1, 2 + W2, 112, 2

2uu(v I 2 h-
+ (UlU 2 ) /RI + (,V, 2 ) /R 2 +h,3 (W , 2-20 1 )
"+h2,3 (w02, 1 -W,102) +hl1,3 h2, 3(u (02 - 2/IR 2 ) + v (01- WI/R1)

+ Wl2 + (uv)/(R1R2))]/(hlh2 ) - (h2, 1 [u,1 (0 2 - 2 /R 2 )
- u (02, 1 - W/2, 11R 2) - v,1 (01 - AVI/R1 ) + v (01, 1 - WI, 1/R1)

+ (W1 , 1W2 - W1 2 , 1) + (U,v - uv,1 ) / (R 1 R2 ) + hl 3 W 2] ) h

+ (h 1 , 2 [u,2 (0p2 -w 2 /R 2 ) -u(02, 2 -lt, 2 /R 2 ) -v,2 (01 - A 1/IR 1 )

+ v (0,2-Wa, /R 1 ) + (Al, 2W12-Wl11W2,2) + (U,2 v-uv,2 )/(R 1 R2 )
-2, 3Wol])/(h1h2)(hl,2, 1[2 (u (o 1 W, IR 1)

+v( 2 - 2 /R 2) ) + u2 / R +1 2 W+, + A 2 /1hlh2
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6 NL W1,1 2- u,2 /R 1) + 01, 2 (W1, 1 - u,1 /R 1 ) (A.78)

+ 02, 1 (W2, 2 - V,2 /R 2 ) + 2, 2 ("2, 1 - v,1 /R 2 ) + u,1 y1 , 2

+ U,271, 1 + V,lY 2 , 2 + V,27 2 , 1 + h1, 3 (wy 1 , 2 - w,271)

+ h2 ,3 (WY2 , 1 -wJY2) +h 1,3 h2,3 (d 1 (i 2 -v/R 2)
* 0b2 (W1 - u/R1) + u7t2 + v71)] / (hlh 2 ) - (h 2, 1 [o1, I (W12

- v/R 2 ) - P1 (V2, 1 - v,1 /R 2 ) - 02, 1 ( 1 - u/R 1 )

+ 4 2 (Wl, I - u,1 /R 1 ) + 71, 1 v- 71vl - Y2, 1 u + 7 2 u,1

+1,3w72])/(hh2+ (h 1, 2 [P 2 ( 2 -v/R 2 ) -l (2,2

- V2 /R 2 ) - 02,2 (I1 - u/R 1 ) + 02 (W1, 2- U,2 /R 1 ) + 71, 2 v

-71 v,2- Y2, 2 u + +2u,h2 , 3 wy 1])/ h 2 )

- (h1, 2 h 2, 1 [2 ( 1 (N1- u/R 1) + 02 (W2 - v/R 2)
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6 NL = [U,1 (o 1, 2-, 2 /R 1) + u,2 (01, 1 -71, R1 )

+ v, 1 (0 2 , 2 - 2 2 /R 2 ) + v,2 (0 2 ,1 -72, 1 /R 2 ) +01, 1 0 1, 2

+02, 102, 2 + '41, 1 71, 2 + 1W1, 271, 1 + 112, 272, 1 + 'V2 , 172, 2

+ h 1 , 3 (w01, 2 - w, 2 0 1 ) + h2, 3 (w 0 2 , 1 - w,1 0 2 )

+ h 1, 3 h 2 ,3 (u (0 2 - 7 2 /R 2 ) + v (0 1 -7 1/R 1 )

+ 0102 + 172 + W271) ] / (hIh 2 ) - (h2, 1 [u,1 (02- 7 2 /R 2 )

- u (02,1 - 72, l/R 2 ) - v,1 (01 - y1/R 1 ) + v (0 1, 1 -71, lR1 )

+ (01,102-0102, 1 ) +V1, 1Y2172,1- W2,171 +W271,1
+ hlw 02]/ h 2 h

12) + (h 1 , 2 [u,2 (0 2 -7 2 /R 2 ) -u()2, 2

-72, 2 /R 2 ) - v,2 (01 - 71/R 1) + v (ol,2-71, 2/R 1) + (01, 20 2

-0102, 2 ) + V1, 2 72 - '4172, 2- 2, 27 1 + V271, 2

+h w])/ h 1 h2 ( - 21 /R1 )

+v(0 2 -7 2 /R 2 ) + 1 I+W 2 72) +0 2)1 h h2)

(A.79)
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Z6NL =[1, 1 Ti, 2 ,2/R1) + 01,2 (1, - u,1/R1) (A.80)

+ 0 2, 1 (Nf2 , 2 - V,2 /R 2 ) + 02, 2 (W2, I - v,1 /R 2 ) + 0 1,1 y1, 2

+ 01,271, 1 + 02, 12, 2 + 02, 22, 1 + h1 , 3 h2,3 (0 1 (W2 - v/R 2 )

+02 (4fl-u/R 1 ) + 1Y2 + 2y 1) ]/(hh 2 )

- (h2,1 [01, 1 (W 2- v/R 2 ) -01 (42, 1 -v, 1 /R 2 )

-02, 1 ( 1 - u/R 1 ) + 02 (v1, 1 - u1 /R 1 ) + 7 1 1 2 - Y10 2 , 1

- Y2, 10)1 + Y20)1, 1] ) /(h1 2 )+(h12[1,2W2-vR)

-0 1 (W2, 2 - v, 2 /R 2 ) - 02, 2 (41 - u/R 1 ) + 0 2 (N1, 2 - u, 2 /R 1 )
+ ')', 202 - Y1 02, 2 - Y2, 201l + 7201, 2] )/(h 1h2)

- (h 1, 2 h2, 1 [2 (0 1 (V 1 - u/R 1) + 02 (N2 - v/R 2 )

710l1 + Y20 2 ) ] ) hlh 2

6X6NL = [,171,,2+72, 
1 2 2 +p 1 ,101,2+01,201,

1 +p 2, 102 , 2 (A.81)

+ 2,202,1 + h 1, 3 h2 ,3(172 + 0102 + 0201)] / (h 1 h2 )

- (h 2, 1 [ (1, 1 Y2 - 7 1 2 , 1 + 0 1, 1 02 - 0 1 0 2 , 1 - 0 2 , 1 ()l

0201,11 lh2) + (h1, 21[1, 272 - Y1Y2,2 +01, 20 2 -0102, 2

_ 2,201 +02012] )-(h 1 h 2
h22 - h 1 2
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7X6NL -- [71,191, 2 + Y"1,201,1 + 72,102,2 + '12,202,1 (A.82)

+ h 2, 3 02 + 201) ] / (hlh2) - (h 2, 1 [1, 1022- +7102, 1
-72,1 al+ y201,1])/(h1h2)+ 1h,2 [Y1, 202- 7102, 2-'Y2, 201

X6NL = [01, 1 1, 2 +2, 1  2,2 +h 1 , 3h 2 ,3 (0102) ]/(hlh 2 ) (A.83)

- (h 2 ,1[01, 1 02 -0 1 02, 1 ])/(hh 2 )+ (h 1, 2 [0 1 ,20 2

-0102 / h2h2- h 1[02 + 0] h /hh 2)

A.3 Approximation of 60 Shell Shape Factor Functions with Second Order Taylor's

Series Expansions

Most of the expressions listed in the previous section contain shape functions hI and

h2 or their derivatives. If one factors out all these functions, there are 60 different combi-

nations possible. For a shell with radius R1 in the yj direction and radius R2 in the Y2

directions, the shape factors h1 and h2 are shown below

h 1 = A 1 (1-Y 3 /R 1 ) h2 = A 2 (1-Y 3/R 2 ) (A.1)

where A l = /a , and A 2 = jafr22 are the Lame' parameters of the surface. The 60 pos-

sible combinations of the functions are listed below along with their quadratic Taylor's

series approximations.

hL =[Al21 [1,2 1 1,2]2

lAl R h2Y 3 R (A.2)
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hl,3 13 1 1,3- 1 R1,3-
f 1 = [ A 1  ] + - y3 R - 3 (A.3)

R - 2 + A 2R]Y3 + 2 Y3 (A.4)h1  LA 11 1R1-

2 21
A 2A l 2R l 2] +[R122A1, R1 2

l 1  ] (A.5)

hl2 2 2A1 A-1, A1R1,2,

5 2 1+ A (A.6)
h 2  LA 2 ] R1

A 2 AIR1,2A 2]

A1,A

3 Rj2] + I' 2 A(1A2 2A/ 2 A2R1 2 1 R
2=h_ 3 A1,_ 2 (R 1, 3 1) 2 A1, 3f6 2" A A R + - R Y (A.7)

h 1

(R1,3- 1) 2A1,3 (R1,3 -3) 2

R 3 . A1 R1 y323
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f17 h (A (A.8)

)AR
+ R1t-A 1,3 A1,3 R I

A1,3 A1R1,3 2 2+ R-- 2 Y3

8l J] AARR2  (A.9)

R 1U , Ai 1, y +  - AI( ---- )1 111

R1 2L(A 1,3 R -1) )

R 31 , R 1  Y3

fg h2  2- + [R2 R Y 3 +[ R 3 ] Y3 (A.10)

h 2, 1 A 2 1  FR 2 , 1] -R 2 - 2

= LoAh A L2]Y3 + [7 3jY 3  (A.11)

/2 - K + Y3 [A2. ]Y3 (A.12)

22 2  A2R 2
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hA12 - jLA R

R (RA

2,A1 2,1 21 2

R1A R 2 fl-AR2 3(A3 3

LA 1 2 2 2

2,1 2 , I R2, 3 1 (,3- 1 r2 2
Rh = (A.15)

( 2, 1_)2,1, ( 2,13-3)/]2R ,

f1 +

h3[A 12][ R 1R)( R223

R 2 /j15

AR2

1 r2(A 2  R 2 2AA2 1 R 2

hA-2



fl15 =h2 
2

2 , 3 -  (A2, 3 - R2(A. 16)

+ R 2R 2 - A2,3 A 23 R 2 Y3

+ R 2 Y3R2

Hi6 = F/!i1 lK IAlR 31
1L 2  A-2 h 2-2 A R 2  (A.17)

+ R 1 .L2 -R~ [A3 +  R23 -

A A2R 2

+ A2  2R2  )1 Y3

+17-h = + Y3 + Y3 
(]18

f 1 8  h [+ 2Y3 +[ Y3 (A.19)
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f219  A 2, 1 .2 1( 1  + A 2 R 2 , 1f -9 = A u + 1--R2 Y3 (A.20)

ARRA2 1 1 +A 2R2,11 2

h20  2 ] + [ -2 R R2Y3 (A.21)

2AI 2 _12 A1R1 

A--_-R-2 Y3A 2 R2  A2R1R2]

L 2 2 1A 2 I RF R 22

11R, +R2 R1 +R1R2+R2

H2= + 2 - Y3 + 1_ 12_ (A.22)
2 LArIi + L A2 R 1R2] A AR 2 R2  A.

AL 1 21_

h221,3 AI,) AI' 1_ + 31
f22 = 1,3 ) A R R (A.23)

A IR 1,3 12_ 
_

A2 R1 R( 1 R 2 )]

A 2 R 1R 2 R 1  Y3
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2 h3 A 1 2 3 2] + (A.24)

A2  r A23  1 A 2,1_1
+ I I, Y

A 2y R 2 R 1 )j1A 1RRJR 2)

A 1 -R1R2 , -R2 -R1  Y3

h€2 1,2 2h 1,2 A1,2 2A1,2 - 1,2 2A2, 1 1 1

24  h12 KA12 + A Rll- R2  (A.25)

___ _ 1 1 __ _ _ __ 1

A2,R l + ,2 2 ,] [A l 2A 2, 1( 11 12
+ R 2-- 2 R 2 -2 R R R

AIR 1  A 2  11

A2,1R1,2 2 1 A 2A1,2R2,1(A,2 R1 , 2 )- 2

+ A 
2  Rh 1 R 2 2 R 2 A 1 - Y3

2 122 [A 2 2 + A 2 2 ( 1)

1,2 h2,1 A1,2,1R1 2 A1,2A2,1( 1 1

+-_A2R2 
+  2-2R1][+LA22/2-1 )

+ 2 A 2 2 R 2 Y3

222

2R2  2R1R 2
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A A1A2,3 A2A1,3 A1A2[

fi26 = h, 3h2, 3 1, 3A2, 3- R 1 - R2  + RR2] (A.27)

[A IA2 Rl R Z R1,3 2 R

A2 A 1 3 ( R 2
'

3 1 A1 A 2 1 ,3 R2,3/1R2 ~R-- ) +  + IR 1 
+ R2 )jY3

1RR RR 22 2 2
+ R1R2 R2R2 R1R 2

A AR R 122
1 2 1,3 2,3 2

+ R2R 2 Y3

12

,hl'3h2, 1 A2' IAI'3 I A '3A2'I1 I
P27 2 = (A.28)

1 A1

+- A1 3A2(A2,2R, 3 -3) R 3 )A2R R A R 21 / R
AR2 2 , 3 3-____ 2)) 2

A1R1R A1 R j
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fT h1 2 h2 3 -AAA2 R2 +1

h2  A 2

A 1,2((R 2,3 -2) 1 /  A 1R 1 2(A2-- 3  1 1
2AR2 R + R1 A2 2R1 ( A 2  R2 Y3

A1,2A2,3( I A1,2((2R2,3-3) (R2,3-2)

LA2R2  2 1 2R2 R2 2 R 1
A 2)2

A 1 R12 1,3 2
+ . . ...2(A + R1Y3

A

hl'2 _A1,2 2 A 12 RI12 1 2

[29 - h- h =  + L+ + (A.30)RA1A2 A 2 2 R2 Y3 A2A1R2

+ R--1.l-R2 Y31 -

+ R 1,2( +

hl 2 AjA2A 2 + 2 -R1 Y3 (A.31)

R 1 1

A2

Ah A 2 R A2
f _3_=__12 1, , 1,2 +__ 1,2(A31

AA2 1, 2 +1,2 1'1 AR2
A1A2!A R 2(1 72 i
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1 A1, 2 A 1,2 A 1,2( 2 1 2R1,

132 ] + A R _ R (A.32)

L 2 l R2 R 2 R) R 1 R 2 )y3

2 A 4R A 

1,32 12 ( 3 A-+] , + [1AI ' fl
R R(2.343)

A 1  1 A ll 2 A2

+-(1-2R1, 3 ) Y3 + ( -R1,3) Y3

h 1,2 A 1,2A 2 R 1,2/ + (A 1,2
[A 1 233 hi,_ 1 , + Y3 2  (A.34)

h 1 LA1J R WRIA 1 YR LAR A 1

+ 2]
+ R-- - Y3

h 1,3 1 AI1,3 1 ]f34 - -h -- Ll A -R (A.35)

h 1 1

+ (A,,_ + (R1,3 -2)

A R A1 R1 Y3

1.__ (A1,3 + (2R 1,3-3)/ 2
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5 h 1, 3 1, 3_ A 1 , 3  1 + A 1 ,2  AA1 3
hh 2  A 1  R1 +A 1 A2 AR (A.36)

(Rl 1 3 -1) 1, R 2_ Ax' 31

2 R- j +AR A -R 1 Y 3
R1

-A_ 1,2 __1_ (R 1 3 - (R 1 3 - 1) 1

A1 2  A 1 2  R 1 R2

R1,2A1,3( 1+1 (R 13-1) _ 2

2-1 R R y23

h2,1 rA 1 2  (A 2,1  R2 ,"136 =--2 LAA 2i + -lA2 1  +Y3 (A.37)

2

+Al ,A2 R1 + R2 ,R I+2 Y3

h2 [A2] A2,1 A2,1 2R 2,1
2,1 = + 2, 2 (A.38)

f 137 h2 LA A A 2 2 Rl R2 3

L 1 211 R21

+ A 2, 1 A 2,1 2R 2,1 1Ri- R 2 ,--4Y

R2R
1A 2 R2 A12
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2 2
h 2,1 2,1 A2,1 A2,1 2 1 2R2,11 3 8 2 R - Y3 (A.39)

1A 2 A 211 A2 - I 1/

A2,1 A 2,1(3 2 4R2' A 2 R 22, 1 1 2+ 2 'AR R +_R - + y3

2R2 A - R
h2, 3  A 2,3 2 + 2 A2,3]2R2,3 A2,3f/39 h1 2,3 A 2 R/2 R 2 + R 1R (A.40)

2

+ 3(1- 2,3) Y3+  R 1-R2,3) Y3
R2 2

f40 = h 2,1 = A2,1 + 1  (A 2,1 + R 2, l  + 1- (A 2, 1

S[2 A 2  A 2R 2 y A 2  R jy3 [A 2  A2  (A.41)

2 2 2

+ R21
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h2,1 h2,3 A2 1 A2 3  1 + A2 1  A2 1
h LIA 2  A 2  2 + A1A 2 A 2 R1  (A.42)

+ 2- -: -R +A2 A-2 _t 2 Y3(R2 -11___ _ _

2 1R 2R2)
-A 2,1 A 2, 3  (R2, 3 -1) (R2, 3 -1) 1

+ AA 2 + + 2

- h 2 1= 2 1 .1

+ CA2,2 "  2) +RRj1Y3

+ [AR2 R + 3R2 2
hI , 2 1 -2) R2 1 2

h_2,3 2,3
2 1

14 A 4 + rA- T - -Y (A.44)
h2 [A 2  21

+ 2R ( 3 2 2AR 2) 2Y3

+ LAR 2 A1, 2 R21 R
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f1/44  h2 1 2  +1 A 2, R Y3 (A.45)

3 2+ 2R1 1A2R2,

hil 1 i) (A.46)

+ A l, 3 19+ (R ,3

+ 2R A2l -Rll A+ 2 Y

i_ AI, 3 1 (R1,3- 1) 2

+ 42 A -R +- + Y3

A2 R1

f,46 h2, 3A2,3 1

/4 = lh2 = A[ 1 A2 -R2) (A.47)

+, A2,3 R 2 + (R23-1)]

A A2 R 2 +  -- 32A1R 2
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hl,2h2,1 [A1,2A2,1 A2,1rA1,2 R1, 2,f47 - h2h A AA + AA2-RI Al + R (A.48)AI1 2 1 2 -
+~~~ ~ ~ A12R21+A2, A2 +2 A12 R2,1 1 1 2Y+A1 2 R 2 Y3 [A 2

R  A I R 1  A 12 R 2 1 R 2

1 2 2 1 1 2A2,1 2_

f -4 28  = 1,2 1 A12 2 + R 1 (A.49)hh A2  A A2 11 2R2A1  2 1
A 2 R2 Y3+LA1A2R2-'12 +R2 2  2 }1+I2 Y3

+ 1p3 [ 1 2 A RA2R 1 ]A2R 1RjA

hf,3 h 3 h2 , 1  A2, 1 A1, 3  1 +[ A 2 , 1A1 3h2 h A1A+ R A1A2R1, (A.50)
h + 1

(R 1 3 -2)R 2 1 (A 3 -tI1 A 2 1 A 1 3
+ R, )AR2t Al R I) Y3+LAA2YAl

1 2 12

(2R, 3 3 R 2 ,1A 13 1 R 2 , (A,, 3 1

R 1,3 R 2,1 2

A 1 R 1 R22 Y3

A-33



ht50  h 1, 2 h2 , 3  A 1, 2  A 21 A 1 ,2  (A 2, 3  (A.51)t0h 2  A A- A 2  R + 2 AA 2 R 2 A-2 (A.
1 2

+ (R2,3-2) + R 1-2 A2, 3  1 - A 1,2 (A2,3

2 +A1R2 2 Y3 + A1 A2 R -A2

(2R 23- 3) R, 2  A2,3 R 1,2 A2 ,3
R 2 A11R2R A2 -2)A 2 R31,A- 2 -R2)

R1,2 R2,3 2

A2 R 1 R2 2 Y3

hx,3h2,3 I/AlIJ (A2,3 2, ] [ A13
h A 1, 3 - Rl A 2 -R (A.52)

AI1,x3 (A 2,3 1 A--Rl 2,- 1)

R2 A. A2 -R2 3 - R 1 R

+ 2

R2  R1 2____R 1 +___Y

-/5 hL'3h 23 A A2(Al' 1, A] I 23

A R2, 1,3 A 2 (R 1,3-1)

R 2 A1 - A 2 , 3 -R2 R2 Y3

R2  1(A 23(Rl'3-1))( 2 (A 2(Rl'3-1)) R 23 - 3 2

R 2 (RI- +2R R- R -'2 + R1 Y32R1 R R 2
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1 , 2 - 121,2 1,2 j],2f5 h 2h 2 A2 A 2 AA 2 A 1R 2 3(A.54)

3A 2R

+ h1,2 1I 1,2 -2A1,2(A2 +1,2 2

A A 2[ A22 + R 2 
(RR

2
A).Y3

54= hl1 2  -A1,2] + A 1 2( 1 ]+R1,2

h[ 2 h A= 2 1 AR) 2 R 21

-A 1 2 2  
2 1-[A1A2( A 2 ] [A A 2R a RJJ

A l,2  1 a 1 A1 , 22 
2

2 1 + + 2 ( .3

A1, A2 R1 +1~R 1 AR1,2 2 1 2

+ A2A2R1 R24 A1A2R~C1 ~JY

2 2 +
f'55- 2 2 =  2-2-2' +  - 2 Y3

hlh 2  A1A2- A21A2A2R1+ 2

A3A 2

+ A2,1 3 2,1 +2R2,1(2 1 R2,11 2

+ 2A-" A ?T + R] + Y3A IA2 A 2R 1  R 2  1AI4

/'/5 h2' a2,1l a2,1( + 1 )+ R2,1hl2= lA +L l2,.l+-2 +A -R y3 (56

f156 22 = R---2 - 2 +AAR ,R1  Y3 (.6

-A2 1 I IR 2  ,

1 l' 2 A 1, 2 - I A 1, 2  R 1,2/R57 - 2= LA ; / | -A-2 - - ] 3 ,. L - --- 2Rl (A.57)

+ 3A1, 2 R1,2 1 2)

A1A 2 R2  A2R (R ."1'_ R' '+ Y3
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- 2 ,1[ A 2 ] +  2 , 1 2 ,+  1- R 2A . 8 )
5 8 - 2 h2A22 A 3 2(R.28)2 K~AI[AA 2 RA 1R2J

3A R

h, 2h 2,2 hA1, 2 A2 , A 1, 2 A2,1( 1 1
5922 + (A.59)

h h2 A 2A iL A12A 2 kRIR21,2 2,1 2 2 aa2_
+AI1,2 R2,1 + A2,1Rl1,2 -Aa1,2 2A2,1/ 1 122

A+ 22Y 2 2 2
A 1A 2 R 2  1 2 1R 2

+ A1 2 R1 (lA1A2 R 1  R 2 ]

A1,2R2,1 1 2 A2,1R1,2( 2 1 R1, 2 R2,1 2R ' 1 2 1 + 2 ) + - -'A -R 1- R+ 2 +  A -A ---- R 2 Y3

1A2R1 1A21 1 2 A A2

h I 3 h2 ,3 [A A1,3 A2,3  11
f 6 0 = hlh 2  A1,3A2,3AR AR+ (A.60)

(R 2,3- 1) A1 (R 1)2" A2 2,3 Y3

2 R 1

(R2, 3 - 1) Al ,3 1 L(R1, 3 - 1) a23 2,

R2  1

(R1,2R2,1-R1,3-R2,3 + l) 2
+ 2 2 Y3R1R1

If the standard assumption of no warping through the thickness for shell theory is
applied, then A1,3, A2,3 , R1,3, and R2,3 are all zero. Thus, the 60 independent A- functions
reduce to:
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1l2 _ A1 2] R1 2  ~ R 1 2 2  (A.61)

h + + 2 (A.62)

f 3 =h2= A j+ A2R Y3 + AR] Y3 (A.63)

h2 1R

1, A 1 2A 1,2 1,
f!4 h 2 12 Y3  (A.64)

1  1R1

+ Ri 2(2Ai 12 + R ,2+ [ 1  A'--- + R ,

h2 [21 2h2 A12 J 1,2A 1I'2
f5 2 + 1, (A.65)A2-1 2 1
+ 1 2+ 12 2 1,1 ) + A 1 R 1,2 Y2

A 2 R 1

h 2] 3 ]
_ 1,3 1 + 2 + (A.66)

h R 1_ R 1  R7
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h1, 3 LR (A.67)
[R1]

18 2 3 - A[ 1 + 1,+2 ,2y 3  (A.68)
A8 2 R3 Y

h 1  A A1 R1 R1 j

A1,2 2R1,22

h 23 2 --T[A 1R 1  R 1~

2h2 + [ 1J Y3 + -  3 (A.69)

- h2 1  A-[2 1  R 2,1 - 2 (A.70)

fll L- 2 L 4]Y3 + LA- Y3 (A.71)h 2  A 2  A 2 1 A2R 2

h2- A 2 221 i2 2 1

12- 2 [A21 + AR 2 Y3  (A.72)

2  2 R2
82, 1 ]

+ 3F A + 2Y
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2 A2 2 A

2,( 1 2 21 +A2 ,

hA1R2 1R R 2Y
h

A 2 (2 A R A YR R 2

- 2, 1 ) Y32 +  2, (A34

h 2 R 2 1

A1 I 2, 1 2(A2A.75_)2

R2

fl2 = 2,3 + 2 R 3 2J (A.74)
h -h2 R + Y3 + 3 Y3

ft1 = h 2LiIA75

F! 2

h?1 21  h 2, A 21A 2, R2 1

A RA
A2,1 R2,1 2

f,7 h22 (A.77)

f118 +112
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h, =1 [A, ] + [- 2i( 1) 1A2 ] RA.792

f-19A R

LA A 1- ) A "I R1 2+AR2A L 2

[~2chl' h+A 1 1 2]

-2 1 = 2 [A 1, - Y3,2-(Y (A.80)!f/ 2 21 A 2 l R 21+ A R Y

2

,2 ( h 2 31 - AA- I ) I -l 1 2 2

+ h 22 A RR 2  2 1 21

fh21 [ 12 , 2 [ ,2 ,1  1 21) A.81
1/24 h A 1 'A 2 A R2Y R R 2 (134

h A 1 1 2

hA 311,3[ A, + A+1 A 1 2
h - A 2  + ARRAY3 + (A.82)

2

hA23 A 2  A21 [ A2_ 2-F2 [=A~ 2  + = ~ ~ AR)Y + j 2J (A.83)
h A1R 21 A 1 AR2 31AR12R1

11 1

A2 ,1R 1 ,2 A 2A 1 ,2 R + 2[ A 1 2  1A82

2 Y3  A i2R lT
A1-R 2 "\, .,/#- f-+ '1 -2 _ j + ,A "1 2I)

1 112 [ 1 1
+ 2,1 1, ( 2- 1 A 2  A1 2 R 2 1 ( A ,2 R1 2) 2

A 2  R1 R2  AA2 R R K-A1 1 23A 1R 1  112
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h1 2 h 11__1__1

=2 h222 2 -A, (A.85)
2  2 2] 2

1,2 R2,1 A 1A 2 ,1 R1,2 -Al,2A2,1(211 R 21
2R 2 AR 1  ]2(2

A1,2 R2, R_1,2 A 2 , 1  R 2 , l11y2
+ 2 1 2  1 A 1 A 2 ,1 R 1, +

A R2 R R-A+ AR -R 2 +3
2R2 2R1R2

IA1A

ft2 6 = h, 3 h 2  3  [RAj (A.86)

h1,3 h 2,1 r (A2,11 A2'l( 1 2-27 2 [ ] + ARlR (A.87)

A_2R_21_- 2,1(2 3 22R2,1 ]2
A 2 R 2  J[A,1A2

A.R.R 2 Y 3 +  AR 2R 2S _ R| Y3
AR1R2J~'

1 1 2 1 11 1 2]

f/28 =  _-2 [A)]+ L R$ - (A.88)
h 2  2 2 A2R A2 2

1 A 1,2 _2 2A 1R 1,2 ] 2
A2 R 1Ry 3

+ A2R 2 ,R1 2 ) A2RIR 2-

f 1 2 [A 1,2] 1 ,2 R1,2(A

h h- 2h2 LA1A2 - + X 1 2 lR + R Y3(A.89)
R1R

+ A l + 1,2(1 +A L2 A1IR 2+ -rR + R1 Y3

1
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h12 A12 -12 A12 2R1,AP130- I 2 LAA + L--Nk;- + (A90
h2h 2 [:A] A [ui2!A1R2 R 2)]1__ r 12- _ 1 2AA1, 2 A1,2 2R1,2 1 1,22"" + " - +t + -- -2 Y3

A1 A2 2A1 R 2 R1 R A 2 R1.Y3
2 1-

L 2 - 1,21 A1,2(A1,2( 2 1 + R1,2 ( .1/31 l 2] 22 A R R 2 _3

h1 2 1A2(Al R2 - A R1

A1,2Aa1,2( 3 2 4R A1R 2

2)+ 1 + -A2 Y3

L 21 2412R

2

h h1 3  [A ] [- A 1] AK 2 (.2f1/32 = h + R Y3 + 4 Y3 (A.92)

h1)]
f1/33- = 2 A +' (A.93)

r_R 12 ]22 [A1 R A A + R y 3

[-34h i 3 F ( 1 )] rr(2 1 F(3 31]2
h 2 AR1  + A 1 R A 1 R1Y]9
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h1,2hl3 [,3A1,2J] A 2  1C 1+- -2 - A LAR1- LA 1( + J(A.95)
R 1,2- A- A1,2 f1 1 R12 1 1") 2

+ 3 R Y3 (A96A 36 - h _1 A 2 R IAR2R 2) R 2 2 ) 3

1 1-2R 2 R1 R + 2 Y

h2, _ ' [A 1 2 '1A 2,1 R1 2R2 Y3 (A.96)R €367 2 = A A1 l;2R

22

R R(A 2, 1 R 2, 1 1 2 ,1 2
A1]A2 [ 1 R 2 C 2 C]

A2 AR

2,11 2 1  2, 1  ,1- 2 (A.97)hlh 2  [A-A 2 J + A A A2 R 2 Y3

A _2,1 _ 2, R 2 1

+ - -t ) + 21 2

A I A2 R2 R 1 2

2 1 2

2 1 2,1 + A2 1  2R l (A.97)

2 1 h-2 (3 2 + L 2 ,A + 2 2,1 j2

A21 A 2 1 R 2  R 2 Y

1 2 _ 12 A1  2 RIR_2

F 21A-A-
2+ R 2 , 2, + 24

A29 A 2  C 3Y 4 3(.91 RR R 2

439~ 2- [2j+ (.
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+2  [A2 ] 2} 3 (A.100)h2 A A2 [A 2R 2 A 2  R--2 )Y

2 2R+[A2R22.A 2 + R1  Y

h 2,1 h2,3 
A [ 12,1I 2 (A.101)

Shh 2  [ A 2 R 2 ). 12R2( 2)

R2,1 A 2,1 R 1 R 1 1 )] 2
+ 3 Y3] A R2RR + R- + A - - + - Y3

A 1/42 2'3 1 2 1 2( [l 2 2R32 R I R23

h2 [- A2R2] + -A]3 + - A2]3 (A.102)

f43 hl 2 [A 2] [i (22 + A 1 RI' 2 ]

fh43 + R 2 (A.103)

2R 1

2 12 2Y]

h A A R2+ _A 1212 R 1- R2 Y3
2R2 1 R 2

444 =_ _ -2 A2] [ 1  2 _-j] (A.104)

3__2 2AR2 1  2
+_AT_ 2 2, )j + 2 Y3
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i3 [(1>] ____
k= h h A- + 2Y3145 - hlh2  A 2R 1  12 AR2  R

A1R 2

- A1RR2+A R -Rl -2 Y3
2+ ~ A 1

1R 2

2 _ _ _ A2 2 1_

hh 2  r 2 ] + A A2R 1  1 + I;RJ (A.106)

+ 2 2+ 2 + 2R R-Y3

A 1 R 2  1 2

h AA A R

t,48  l22,1 A+ [ + A2 ,1 R2 1(A.10)

k4/- hl 2 = A1 2 +[ A 2  2R + R(107

+ A2R1 2 Y3 1A R1 .2 -- -

+ 22 +

A21 1 2- 121

A2R 1

A24

h 12 h2,1 [A ,2 2, - + A 125, +R



h1 , h 2,1 2A 2 1 R 1R21

h2 h{A 1 A 2 R 3 1- 2+A 1 2|y 3  (A.108)

3A2,1 R2,1 R2,1 2

A 1A2R3 1 + 2A1R2 A1R 1R]3y3

h 1, 1,212 12

h 1,2 h2 , 3  A2 I [ _ 2A 1,2  R 1 2 j (A.109)
110= 2 AA AR 2 2- hh22=L-,A1K22)J[A1222+A1R12 y

3A1,2  R1,2 R1,2  2

[A1A2R 2 +1 A2R3R2] y3

115 1  hx'3h 2,3 A I ARI A 2

h = [ j+ JRjY3 + [R 3 (A.11)

52-= h 1,3 h 2 A3 A 2 A 2 A 2

h 1  R + [ Y 3 + L 3 (A.111)
2 2 ( _ _

h5 h 2  A__ 2  2A 1A2 R I"R13 22 22 + [ ,2 A + ,2]3 (A.112)
h 2h 2=A2A2 AA2y 2 R2Y
[ l2 A12- 1 2 1

A1,2 3A1,22 R1,2( 1 ) 1,2 2

2 1 2 2+ 2
A1A22 AIR22+ 2 R1 +2 A 2-- Y
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f l ,2 1,2 [-1,2( 1 IR 1,2

.54 - h 2 h [A2A2  i1 R2 A A2  R (A.13)
A 1 1 -- 1 2RR1 y3 13)

+ A1,2 1 1 1 1,2 (2 1 2

[A +RR- R 2 j R 1+ Y3
1 2  1 2 1A2 R1

h5 2 2 =  2 2A ---- Y

2LA1A2[A121 A21 R2

hh A 221A2-A-2 A2 R 1R 2 R3

2 A1  12 2
A2K 3A 2R R2

2 l 1 122,1 2+ A 2 -2 + 1 R-- + I- l+ - A Y3
_AA ,AR 1 R2 1 2A2R

21fl6hh1 2 [$A ] + A A 2 Ri(R2 AA ]Y (A. 114)

AR1( R1 2 2  R 2 1 2 ]2-

2,15 1, 2 A1 2  1_ 2

h- h 2
=  LA1A2  A2R2 + AR Y] (A.115)2 2l2 +

_3A 1 2 R, 1 2)1 2

+ a A1A2R2 2+

- 2 + (A.115)

12 1A 2 LA1A2R 2  2 1- (.16
3A~~~~~ 1,21R2 - 2JAA2R , 2 R )]R Y

+ 1 2 [2] 2
+ A 1 A 2,1 + y 1,11

A12A 1-4
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h1  2h 1 A12A2 1 A12A2 1(
ft 5 9 - 2 2 2A22 2 R[ R (A.117)

21 2 1 2  A1 2+A1,22,1 +A2,1 R1,2 -A1,2A 2,1
A 2 A R2 A A- 2-R 2|Y3 + A 2 A2 R +kRR'---- 2

+ 2 2 1 22 2
A1A2R2  A 1A 2R 1

A 2R 1  21 R1 1

+R1,2 R2,1 12+ - -A _--- R 2 Y 3
A 1A 2R 1R 2

hl1,3 h2,3= R--2 R 1 )
h(60 - hlh2  LRR]++Y3 (A.118)

h [ 1 H i (R1 2R21+1)

R+R2 + R2 R2 Y3+ 1R 1 R 2  R1R 2
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Appendix B. Strain-Displacement Relations for a General Spherical Shell
Elemental Code

The strain-displacement relations of this appendix are for the case of a spherical

shell with a radius of R1 = R2 = R. The. yl coordinate is the circumferential distance dy1 =

RldO1 = RdO and the Y2 coordinate is the circumferential distance dy2 = R2dO2 = RdO. The

kinematic displacements within the shell are assumed to be of the form

U = ule l +u 2 e 2 +u 3 e 3 , (B.1)

where

3
u 1 (y 1 ,y 2,y 3 ) = u(1-DY 3) +W lY 3+k(W'l+1)Y3

3
u2 (Y1 Y2' Y3 ) = v (1 - CY3 ) + W2 y 3 +k (w 2 + X2 ) Y3 (B.2)

u 3 (Y 1' Y2 ) = w

The seven degrees of freedom u, v, w, w1, w2, W1, and W2 are functions of midsurface

coordinates (Yl, Y2) only. The yi are rotations about the normal and D = 11R 1 = 1/R, C = 1/

R, = 1/R, and k = -4/(3h2 ). The full in-plane nonlinear spherical shell strain-displacement

relations with transverse shear flexibility are shown in Eqs (B.3a)-(B.3e).

1 = 18U +f1 2 9 u + f12U3 + (U11  + 1 9 u + Du 3) 2 (B.3a)

+ f (u2,1--!19l) + 2) (u3, 1-DUl)

2 = I17u + f136Ul + + 1 (u 2  + 120 Ul + Cu3 ) (B.3b)

2221 32 2,21 3

u1 , 2 -2u 2  + 2 3 ,2 2)
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S: 7  Cu 3 2+ Cy 3) u 2 3 +Cu2]

5= ft 18 [Cu3 1 + (1-DY3 ) Ul, 3 +Dul] (B.3d)

6 f17Ul,2 + f18u2 , 1 - f136u 2 - f12 9 UI (B.3e)

+ -2 (Ul, 2 -f 20 u 2 ) (U 1 + f 1 9 u2 + Du 3 )

+(- (u 2 , 1 -t 1 9 U1 ) (u 2 ,2 +f 2 0 Ul + Cu3 )

* -2 (u3,1-DUl) (u 3 , 2 -Cu 2 )

where u1, u2, and u3 are given in Eq (B.2). For this case, the 60 shell geometric functions

f/i are simplified, because h3 = 1 and the quadratic terms of the expansions are neglected.

The simplified nonzero functions of Appendix A are listed in Eq (B.4).

The strain equations listed below are the parts of the linear and nonlinear strain com-

ponents for the general spherical elemental codes. Contracted notation is used, where E1 =

F-11, E2 = -22, E3 = -33, £-4 = £23, -5 = F13, and £-6 = F12. The strain components £-i are given

by the series expansion shown in Eq (B.5).
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ft 2 -- D (1 + DY 3 ) fH13 = 1 + 2Dy3

t6 =D 2 (1 + 2DY3 ) H17 = D 2

fi 9 = -C(1 + CY 3 ) /Ill = 1+2Cy3

f 14 = C2 (1 + 2CY3 ) AI 15 
= C 2

f/17 = 1 + Cy 3  f/118 = 1+ Dy3

f21 =1 + (C+D)y3  112 2 = -D(1 + CY3 )
(B.4)

R 2 3 =-C (1 + DY 3 ) f1 2 6 
= CD

13 2 =D 2(1 + DY3 ) f/ 2 4 
= -D(1 + 2DY3 )

)739= C 2 (1 + CY 3 ) f142 = -C (1 + 2CY3 )

f 4 5 =-D(1 + (C+D)y3 ) fI 4 6 =-C(1 + (C+D)y3 )

115 1 =CD (1 + CY3 ) f 5 2 
= CD (1 + DY3 )

NO = CD(1 + (C+D)Y3 )

n

E Y3 (B.5)

p=0

The nonzero XP are listed below for each component of the general spherical shell the-

ory code. The general cylindrical shell theory is given by setting R1 = cc thereby causing

D = 0. Thus, all terms containing D are neglected. The general plate theory is given by

setting R1 = c and R 2 = cc, thereby D = 0 and C = 0 result. Thus, all terms containing D

and C are neglected. Note: for shell theory, F3 = 0
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SD 2 2
X T=(u +w +D[uw1 - (1+ u1 )w] (B.6)21 2 [2w1 ,

+ U,+1 + , + +U,

1 3w2 2
1 D w +D [u (w, 1 + W1 ) -(1 + u,1 )w] (B.7)

+ D [wI (w, + wI) - w/l, ] + (D - C) v 1

+ ++~~ (1+u1 ) I1, I + V,l W/2, 1

2 342 3
- 2D u +D [2(u,lw-uwl) +U IVI] (B.8)

1 2+OD 2 (W,lx,- wvl, 1) - ( 1 + U,x) U,1 2+ 1 u 2

++ ,

+2(C+-D4D)2v2 + D+[((1.+)

2 ,vI(C-4) ,1 2D ( ~ , ) 1

+ (2D- C)V,lXV2 ' 1 + 2 1, 1 + W2,

3 5 2D4u ( 22 + W2 +1 C 2 v 2 1

X= D u D ug + D D 1 1 ,l_ (B.9)

- 2D (Dul',1v + Cv 2' 1) + D ku (w, 1 + WI)

SD 2 1 j+Dk[w, l (w ,
1 + x 1) -w(w, 1 1 +iJ1 1)(W1, 1 + W2, +1+

+ k[ (1 + u,1 ) (w,11 + I1, 1) + v,1 (w, 12 + 2

4 3 2

4, = D k [u (w,1 + Wj1 )] + Dk [ (2w,1 + 1 ) (w,1 + 1 ) (B.10)

-2w(w, 11 +I,1 ) +Dk[ ( + u 1 ) (w, 11 + ,1 )

-+ (2D-C) k[v,1 (W, 12 +'2, 1) +k[W, 1(w, 11 +,1, 1)

+ W2, 1 (w, 12 + W'2, 1) ]
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5 4 3
I = -2D ku (w,1 + 1 ) + 2D k[y, (w,1 +  (B.11)

+ 2Dk [ (V1, 1- Du,1 ) (w,l1 + Nf1, 1)

+ (W2, 1 - Cv, 1) (w, 12 
+ '92, 1) 1

6 (Dk) 2 k2  2
XI = 2 (w, 1 + W1) + fL(W, i + 1, 1)  (B.12)

+ (w, 12 + W2, 1)2]

7 32 2 2 2
= D k (W, 1  xV) +DkZ(Wl+x1,1) (B.13)

+ (w,12 + V2, 1) 2]

2
SC 2 2
S (v + w +C [vw 2 -(1+ V2 )w] (B.14)

+2 u 2 +vv,2 v,2)

+ ,2 +V, 2 + ,2 ) +V ,2

1 =3w2 C2

2 + [v (w2 + 2 ) -(1 +v2 )w] (B.15)

+C[w,2 (w 2 +V 2 ) -w1 2 ,2 ] + (C-D)u,22

+ u, 2 WI, 2 + (1 + v,2) -W2,2
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2 342 3
X2 = C v + C [2 (v,2 w- vw, 2 ) +vW 2] (B. 16)

+ C 2 [2 ( w I'I' ( wW 2 2 ( . 2  -V2 2 ]I 2W - W2,2 + ,2) ,2 1 22 2

D 2
+ (D-4C)u,2 + C[ (1 + v,2) W2,2]

" (2C -D) u,2 l 1+ 2 1 2
+ 2W,2+2WI 22

3 C5v2 2C4222 22
2 = - 2 + -2 cVCC 2 +  ,D2J (B.17)

- 2C(Cv,2W2, 2 + Du,2 WI, 2) + C 2kv (w,2 + W2)

+D 1 2 + I 2 2 +Ck[w2 (w 2 +IJ 2 )

- w(w 2 2 + V2,2)] + k [u,2 (w,12 + J1 2)

+ (1+v 2 ) (w, 2 2 + 12, 2 )]

4= C k [v (w2 + 2)] +Ck ( (2w 2 + 2 ) (w 2 +W 2 ) (B.18)

- 2w (w 2 2 + I2,2)] + Ck[ (1 + v,2 ) (w, 2 2 + W 2,2)

+ (2C-D)k[u2 (w,12+ 1,2] +k[qi1,(W 1 2 +y 1 2 )

+ W2,2 (w, 2 2 + W2,2) ]

2 = -2C 4kv (w,2 + W 2 ) +2C 3k [W2 (w,2 + W2 ) ] (B.19)

+ 2Ck [ (V 2 2 - Cv,2) (w,22 + W 2)

+ (I',2- Du,2) (w,12 + W 1, 2)

B-6



6 (Ck) 2  2k 2  2
X2 - 2 2 + 2) +  (w,12 + 1,2 ) (B.20)

+ (w, 22 + 2 2 ) 2]

7 C3k222

= C k (w2 +2 + Ck2 (w 1 2 
+ W1 2 ) (B.21)

+ (w, 2 2 + W2,2) 2]

0
X4 = w,2 + W2  (B.22)

2
X4 = 3 k (w,2 + A 2 ) (B.23)

0
X5 = Wl+ Wl

2
5 = 3k (w, 1 + xtl) (B.24)

0
6 = CDuv + D (uw, 2 - u, 2w) + C (vw,1 -V,W) (B.25)

+ (uU 2 +v v 2 +w w 2 ) + u 2 +v 1

6= CD [u (w 2 + W2 ) + v (w,1 + x 1) - w (u 2 + v,1 )] (B.26)

+ (C-D) [(1 +u, 1) U,2 -V,1 (1 + v,2)] + (C+D)w llw,2

+ D (w, 2W1 - W1, 2) + C (W,lW2 - wW2 1)
+ (1+u, 1l, 2+U,Z , 1+Vl 2,2+ (I +v,2) 2, 1
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2 C22
= -CD(C +CD+D2 )uv+ (C+D) [D(uw -u w) (B.27)

X6,2 , 2
+ C (vw,1 - V,lW ) ] +CD (CuW 2 + Dvll )

+ (C + D) [D (U,lU, 2 + w,2W 1 - WW1 2) + C (V,lV, 2 + W,l 2

- wii 2 ' 1)] - CD I(1 + u,1 ) u,2 + v,1 (1 + v,2 ) ]

+C[du1)l, 2 + u ,2 W1, 1] +D[V1l2, 2+ (1+ v,2) 12,1

+ W , 1M'1, 2 + W2 , 1'4 2

3 =2D2 F

= cD (C+D)uv+ (C+D) Du u2 +C v v (B.28)X6I , 1 u2 ' ,1 v,21(.8

-CD[ (C 2 + D 2 ) (uv 2 +vwl)] - (C + D) [D(ul091, 2

+ u, 2 VI, 1) + C (V,lW 2 2 + V,2l 1 , 2) ] + CD (C + D) XVlIij 2

+ CDk u (w 2 + 2 ) + v (w, 1 + W 1 )] + (C+ D) (Wl, 1AV 1 , 2

+ W2,14f2, 2 ) + (C + D) k(W,lW 2 -wwl, 2 )

+ Ck (w, W2 - wW2 1) + Dk (w,2Wl - W '1 2)

+k[ (1 + u 1) (w, 12 +41, 2 ) + u,2 (w,1 + i1, 1)

+V,1(w,22 +W2,2 ) + (1+V,2) (w,12+W2,I)]
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4= CDk [Cu (w 2 + 2 ) +Dv(w 1 + .1l)] (B.29)
+ (C+D)2 k(W,lW 2 -ww 1 , 2 ) + (C+D)k[C(wIlW2

-wJ2, 1 ) +D(w, 2 l-WXI, 2 ] +CDk[W1 (w, 2 +W 2 )

+ N 2 (w, 1 +w1)] +Ck [(1 +u, 1 ) (w, 12 + l, 2 )

+u2 (W,ll + f 1, 1) ] + Dk[v 1 (w, 2 2 
+ V2, 2 )

+ (1 +v, 2 ) (w,1 2+ W2,1) ] +k[WI 1 (w,12+W1, 2 )

+ W1,2 (W,ll + 1V, 1 ) +W 2 , I (w,22 +  2, 2 )

+ 'V2, 2 (w, 1 2 + W.12, 1) ]

5 = -CD(C+D)k[Du(w2 +1 2 ) +Cv(w 1 + F 1 )] (B.30)

+ CD (C + D) k [V 1 (w,2 + W2 ) +#.2 (w,1 + W)]

-DC+[(~, 1) (w,12 +W1, 2) + U,2z(W,11 +VI, 1) ]

-C(C+ D)k[v 1 (w, 2 2 + W2, 2 ) + (1 +v, 2 ) (w, 1 2 + W2, 1) ]

+ (C+D)k [ir, 1 (W,1 2 +l ,2 ) +1,2 Z(W, 11 + 1 ,1 )

+ W2, 1 (w,2 2 + '2, 2) + 'V2, 2 (w, 12 + W2, 1) ]

6
6 = CDk [ (w,1 + W1 ) (w,2 + ' 2 )] (B.31)
k2

+ k (w,12 + W, 2) (W,l1 + W.1, 1)

+ (w, 2 2 + V.12 2 ) (w, 12 + W2, 1) ]

6 = CD (C + D) k [ (w, 1 + xtl) (w,2 + V 2 )] (B.32)

+ (C+D)k 2[(w1l+Ml 2 ) (w 1 1 +11 )

+ (w 2 2 + 12, 2) (w, 1 2 + 2, 1)]
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Appendix C. Strain-Displacement Relations for Classical Donnell (SOXX)
Elemental Codes

The strain-displacement relations of this appendix are for the case of a spherical
shell with a radius of R, = R2 = R. The yj coordinate is the circumferential distance dy1 =

RjdO1 = RdO and the Y2 coordinate is the circumferential distance dy2 = R2dO2 = RdO. The

kinematic displacements within the shell are assumed to be classical Donnell relations

with a first-order transverse shear deformation theory (FTSD) and of the form

U = u1e1 +u 2 e2 +u 3 e 3 , (C.1)

where

U1 (Y1 Y2' Y3) = u (1 - DY3 ) + w'lY3

u 2 (Y'1 Y2' Y3
) = v (1 - CY 3 ) + W,2 Y3  (C.2)

u 3 (Y1 Y2) = w

The five degrees of freedom u, v, w, w1 , and w2 are functions of midsurface coordinates

(YI, Y2) only. There are no yi (rotations about the normal) due to the classical theory, and

D = UR1 = IR and C = IR 2 = 11R. The classical Donnell spherical shell strain-displace-

ment relations are shown in Eq (C.3).

2
61 = U1, 1 -Du3 + u3, 1/2

82 = U2, 2 -Cu 3 
+ u3 2/2 (C.3)

66 = Ul,2 + u 2, 1 +  3 , 1 u 3,2

where uI , u2, and u2 are given in Eq (C. 16). For this case, the 60 shell geometric functions

fi are simplified, because h3 = 1 and the quadratic terms of the expansions are neglected.

The simplified nonzero functions of Appendix A are listed in Eq (C.4).
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/)2 =-D (1 + DY3) 13 =1+ 2Dy3

f16 =D2 (1 + 2DY3 ) R 7 
= D2

fi 9 = -C(1 + CY3) 1 1 = 1 +2Cy3

f 14 = C2 (1 +2CY3) f115 = C2

f117 
= 1 + Cy3  f118 

= 1 +Dy 3

f 2 1 = 1 + (C + D) Y3  f122 = -D (1 + CY3)
(C.4)

123 =-C (1 + DY 3) £126 
= CD

£ 32 =D2(1 + DY3) f124 = -D (1 + 2DY3 )

f 39 = C2 (1 + CY3) f142 = -C (1 + 2CY3 )

f145 =-D(1 + (C+D)Y3) f146 =-C(1 + (C+D)Y3 )

F 5 1 
= CD (1 + CY3) f152 

= CD (1 + DY3)

60 = CD(1 + (C+D)Y3)

The strain equations listed below are the parts of the linear and nonlinear strain com-

ponents for the SOXX elemental codes. Contracted notation is used, where £1 = Ell, E2 =

£22, -3 = £33, -4 = £23, P5 = E13, and £6 = E12. The strain components £i are given by the

series expansion shown in Eq (C.5).

n

F_ P P(C.5)Ei X i Y3(C5

p=0

The nonzero XP are listed below for each component of the SOXX classical Donnell

spherical shell theory code. The COXX general cylindrical shell theory is given by setting
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R= o thereby causing D = 0. Thus, all terms containing D are neglected. The POXX

classical von Karman plate theory is given by setting R1 = o and R2 = 00, thereby D = 0

and C = 0 result. Thus, all terms containing D and C are neglected. Note: for shell theory,

83 = 0 and due to classical FTSD theory, transverse shear is ignored. Thus, -4 0 and

E5=0.

o 2
0 = u 1 -Dw+w 1 /2 (C.6)

1 = w 1 1 -Du, 1  (C.7)

o 2-= v Cw +w,2/2 (C.8)

1
= - Cv 2  (C.9)

0
= u 2 

+ v 1 
+  wW 2  (C.10)

1
X = 2w, 12 - Du,2 -Cv, 1  (C.11)
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Appendix D. Strain-Displacement Relations for Modified Donnell (S1XX)
Elemental Codes

The strain-displacement relations of this appendix are for the case of a spherical

shell with a radius of R, = R 2 = R. The.y coordinate is the circumferential distance dy1 =

RjdO1 = RdO and the Y2 coordinate is the circumferential distance dy2 = R2dO2 = RdO. The

kinematic displacements within the shell are assumed to be a modified Donnell relations

with a higher-order (parabolic) transverse shear distribution (HTSD) theory, and take the

form

U = ule l +u 2 e2 +u 3 e 3 , (D.1)

where

u 1 (Y1,Y 2 'Y 3) = u(1-DY3) + lWy 3 +k(w l+ 3)y3

3u2 (Y 1 Y2' Y3 ) = v (1 - CY3 ) + W2y 3 + k (w,2 + V2) Y3 (D.2)

u3 (Y1 Y2 ) = w

The seven degrees of freedom u, v, w, w,1, w,2, W1, and xV2 are functions of midsurface

coordinates (YI, Y2) only. The Vi are rotations about the normal and D = UR1 = l/R, C =

I/R 2 = 11R, and k = -4/(3h 2). The modified Donnell spherical shell strain-displacement

relations with transverse shear flexibility are shown in Eqs (D.3a)-(D.3e).

E = f/ 1 8 Ul, 1 112 9 U  + f12U +  f U, 1 + /19u + Du32 (D.3a)

1 1 ft1 u 2 + ~ 3 + 1(u1  F 9 2  D 3 )

+(ft)3 U ffgl 2 +(f3' 2
+ (u2 ,-f/ 19 u1 ) + (u 3 , 1-DU)
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Th7 + f136u + t19u3 + f 2l+Cu3 2 (D.3b)2 2," 3 2(2,2 + R0l+C3

2 2+ 2 (Ul1, 2 - f/120U2) + 2 (u 3,2- Cu2)2

F-4 -I17 ICu 3 , 2 + (1 - CY3) u2, 3 + Cu2] (D.3c)

5 =f 18 [CU3,1+ (1-DY3 ) ul,3 +Dul] (D.3d)

E6 = f-/17 ul, 2 + H1/
18 u2 , 1 -f 36 u 2 - f12 9 U1  (D.3e)

+ 2 (U1,2 _-!20u 2) (U 1 , 1 +f19u2 +Du 3 )

+ (u 2 , 1 -f 19ul) (u 2 , 2 +fk 20 u 1 +Cu 3 )

+K( u 3 , 1-DUl) (u 3 , 2 -Cu 2 )

where u1 , u2, and u3 are given in Eq (D.2). For this case, the 60 shell geometric functions

f/i are simplified, because h3 = 1 and the quadratic terms of the expansions are neglected.

The simplified nonzero functions of Appendix A are listed in Eq (D.4).

The strain equations listed below are the parts of the linear and nonlinear strain com-
ponents for the S1XX elemental codes. Contracted notation is used, where a1 = P11, F2 =

£22, -3 = £33, £4 = £23, £-5 = £13, and 66 = £12. The strain components £i are given by the

series expansion shown in Eq (D.5).
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R 2 =-D (1 +DY3 ) f13 1 + 2Dy3

6 D D2(1 + 2DY3) ft 7 
= D 2

f 9 = -C(1 + CY3 ) 11 - 1 +2Cy3

/714 C2 (1 +2CY3) 1115 = C2

f/ 17 
= 1 + Cy 3  / 18 

= 1 +Dy 3

J72 1 = 1 + (C + D) Y3  f122 
= -D (1 + CY3)

(D.4)
// 23 =-C(1 +DY3) /126 = CD

13 2 =D 2(1 + DY3 ) f12 4 
= -D(1 + 2DY3 )

39 = C2 (1 + CY3 ) J742 = -C (1 + 2CY3 )

/ 45 =-D(1 + (C+D)Y3) f146 =-C(1 + (C+D)Y3)

115 1 
= CD (1 + CY3) 1 52 

= CD (1 + DY3 )

f160 = CD(1 + (C+D)Y3)

n

i, I 4Y3 (D.5)

p=0

The nonzero XPi are listed below for each component of the S1XX modified Donnell

spherical theory code. The C1XX modified Donnel cylindrical shell theory is given by set-

ting R1 = ,, thereby causing D = 0. Thus, all terms containing D are neglected. The P1XX

modified von Karman plate theory is given by setting R1 = - and R 2 = -o, thereby D = 0

and C = 0 result. Thus, all terms containing D and C are neglected. Note: for shell theory,

3 0
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0 2
i= u,1 - Dw + w,1  (D.6)

1
X1= Wi, 1 -Du 1 (D.7)

3
=- k(w, 11 +iV1, 1 ) (D.8)

o 2
= v 2 -Cw+w 2  (D.9)

1
= 2,(D.1)

3

X2 = k(w,2 2 + i2,2) (D.11)

0
X4 = w,2 + 'V2  (D.12)

2
X4 = 3k (w,2 + X 2) (D.13)

0
X5 =w, + 1 (D.14)

2
5= 3k (w, 1 + xg1) (D.15)

0
U + v + w W (D.16)

1
=Du Cv (D.17)
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3 k(2(D18
X6 12+D1,21V2)1
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Appendix E. Strain-Displacement Relations for a Full Nonlinear (S2XX)
Elemental Codes

The strain-displacement relations of this appendix are for the case of a spherical

shell with a radius of R1 = R 2 = R. The Yi coordinate is the circumferential distance dy1 =

RdO1 = RdO and the Y2 coordinate is the circumferential distance dy2 = RdO2 = RdO. The

kinematic displacements within the shell are assumed to be of the form

U = ule l +u 2 e 2 +u 3 e3 , (E.1)

where

u I (y 1 , Y 2 , Y3 ) = u(1 -DY 3 ) + iWlY 3 +k(w 1 + l)y 3

3
u2 (Yl' Y2' Y3 ) = v ( 1 - CY3 ) + W2 y3 + k (w,2 + W2 ) Y3  (E.2)

u3 (Y1 Y2) = w

The seven degrees of freedom u, v, w, w,1, w,2, I1, and W2 are functions of midsurface

coordinates (Yl, Y2) only. The Wi are rotations about the normal and D = 11R 1 = lIR, C = 1/

R2 = 1/R, and k = -4/(3h 2). The full in-plane nonlinear spherical shell strain-displacement

relations with a higher-order (parabolic) transverse shear theory (HTSD) are shown in Eqs

(E.3a)-(E.3e).

61 = 1 8U, 1 + f- 29 u2 + f12 u3 + (Ul, 1 + f:/1u2 + Du 3 ) (E.3a)

+ jf (u 2 1 -H 19 u 1)+ fj(u 3, 1 -Dul)
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ft 1 7u 2 2 + 36u1 + 9 3 2 + 20u, + Cu 3) (E.3b)

2 2+ l)(Ul,2-ft20Iu2) + u32 -C2)2

E 4 = 1117 ICU 3,2 + (1 -CY3) U2,3 + Cu2 (E.3c)

E 5 = ftI18 ICU3, 1 + (1 -D Y3) Ul, 3 +Dull1 (E.3d)

E6 = f-/17Ul, 2 + f-/18u2, 1 - f1/36u2 - f129ul 1(E.3e)

+ 2 (U1, 2 -I/2ou 2 ) (U, 1 +I 1 9 u2 +Du 3 )

+ (u2, 1 -!19Ul) (u 2 , 2 +/2u 1 + Cu3 )

+j-j J(u 3 , 1 -Dul) (u 3 , 2 -Cu 2 )

where u1, u2, and u3 are given in Eq (E.2). For this case, the 60 shell geometric functions

ki are simplified, because h3 = 1 and the quadratic terms of the expansions are neglected.

The simplified nonzero functions of Appendix A are listed in Eq (E.4).

The strain equations listed below are the parts of the linear and nonlinear strain com-

ponents for the S2XX elemental codes. Contracted notation is used, where 61 = ell, 62 =

£-22, F-3 = -33, £-4 = £-23, 65 = 613, and £6 = £-12. The strain components F-i are given by the

series expansion shown in Eq (E.5).
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12 =-D (1 + DY3 ) f3 =1+ 2Dy3

16 =D2 (1 + 2DY3) ft 7 
= D 2

/ 9 =-C(1 + CY3) 111= 1 +2Cy3

f/ 14 = C2 (1 +2CY3 ) f 15 
= C2

// 17 
= 1 + Cy 3  f/ 18 

= 1 +Dy 3

f21 =1+ (C+ D) y 3  f122 = -D (I + CY3 )
(E.4)

f123 =-C (1 + DY 3 ) f12 6 
= CD

132 D D2 (1 + DY 3 ) f12 4 
= -D (1 + 2DY3 )

39 = C2 (1 + CY3) fI42 
= -C (1 + 2CY3 )

fI45 =-D(1 + (C+D)Y3 ) £146 =-C(1 + (C+D)Y3 )

f15 1 
= CD (1 + CY3 ) f152 

= CD (1 + DY 3)

60 = CD(1 + (C+D)Y3 )

n

i, I xY3 (E.5)

p=0

The nonzero XPi are listed below for each component of the S2XX general spherical

shell theory code. The C2XX general cylindrical shell theory is given by setting R1 = ,

thereby causing D = 0. Thus, all terms containing D are neglected. The P2XX general

plate theory is given by setting R, = -, and R2 = ,-, thereby D = 0 and C = 0 result. Thus,

all terms containing D and C are neglected. Note: for shell theory, -3 = 0
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SD 2 2
X0=f (u +w+ D [uw 1- + u) w] (E.6)

+ ( 2 U +<V~ + W,1 +u,

1 =32 D2
1= D w +D [u(w 1 +W11) -(1 +u,1 )w] (E.7)

+ D [w,1 (w 1 + I1) - w 1, 1] + (D -C) v 12

V , 1 + (1 + u,1 ) 1 , 1

2 3 2 -- 2 -2 v1(.8

2 3 ( 2 2c 2 2
X1= D uI+D-1 1+ w 1.+-4wWl, 1 ) + 2 lV, l-2CDv1  (E.8)

+ v 1 (w, 12 + W2 , 1)]

4 =D3 k[(w2

41= D, 1[u (w 1 + 1 )] -Dk [2w (w,1 1 + w1, 1) (E.10)

- (2w, 1 +IVl) (w, 1 +WI)] +Dk[ (1 + u 1 ) (w, 1 1 +IV,, 1)]

+ (2D - C) k [v,1 (w, 12 + 12, 1

+ k [iVl, 1 (wll + '1, 1) + V2 , 1 (w, 12 + '2, 1) ]

5 3
51 = 2D k [xVl (w,1 

+ 
1 )] + 2Dk [W1, 1 (W,ll + W1 , 1) (E.11)

+ '2, 1 (w ,
12 + '2, 1)]
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6 (Dk) 2  2 k
X1- 2 (w, 1 + W1) + 1 + 1, ) + (w,12 + W2, 12 (E.12)

7 D3k2 2 2 [ 2 21
= 1 (w, 1 ++) +WDk2 [(Wll + i, 1) + (w, 12 

+
2 1)]

o C 2 2
0 =  2 + w ) +C [vw 2 - (1+Vz)W] (E.14)

+ u 2 + v 2 + v ,2

1 =32 2
Cw +C [v (w 2 +/v 2 ) -(1 +v 2 )w] (E.15)

+C[w,2 (W,2 + IW2 ) -wJ2, 2 ] + (C-D) u2

+u 2 W11, 2 + (1 + v, 2 ) W 2,2

2 3 C2( 2 )D2 2
2 C2-2CDu (E.16)X 2 = c vW2 + T-2x.2 + 4w,242 - 4wW2, 2 + T2 , 2C~

+C[( +v)W2, 2] + (2C-d) u 2 2

3 32(2 2
2= C 2 +C 1 , 2 

+ W , 2) + k[(1 + v,2) (w,2 2 + 12, 2 ) (E.17)

+u 2 (w, 12 + W1 , 2) ]

4 = 3 kv(w2

2= C [v (w 2 + 2 )] - C k [2w (w, 2 2 + W2,2) (E.18)

- (2w 2 + W2) (W,z+ XV2)] + Ck[ (1 + v,2 ) (w, 2 2 + W2,2)]

+ (2C-D) k [u,2 (W,12 + , 2 )]

+ k [Wl, 2 (w, 12 + "l, 2) + W2,2 (w,2 2 + W 2,2) ]
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X= 2C [X2 (w ,2 + 1 2)] +2Ck[1, 2 (w, 12 
+  1, 2 ) (E.19)

+ W/2,2 (w, 22 + W2,2 ) ]

2222
6 (Ck) 2 k 2 2]2 2 (w 2 + X2)  + 2 (w, 12 + W1, 2) + (w,22 + W2 ,2 )  (E.2)

7 c3 k2 (W2 +x W2 ) 2 + Ck2 [ (w 1 +J2 2] (E.21)

0
X4 = w,2 + 

2  (E.22)

2
X4 = 3k (w,2 + X 2) (E.23)

0
X5 = w,1 

+ 1 (E.24)

2
X5 = 3k (w, 1 + x 1 ) (E.25)

0
X6 = CDuv + D (uw,2 - u, 2w) + C (vw,1 - V,lw) + U,lU,2 +V,lV, 2 (E.26)

+ 1 W 2 + u,2 +v 1

1

X6 = CD [u (w, 2 + NY'2) + v (w,1 + X1 ) - w (u,2 + v,1 )] (E.27)

+D [wZ(W, + VI)] + C [W,l (W,2 +2)

- (C + D) [w (W1, 2 + W2 , 1)
] + (D-C) [(1 + u,1 ) u,2

11 + v,2 ) ]+ (1 + u,1) 1, 2 + ( ,2)W2, 1
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2 _2 C2

6 (w, - Wl, 2) +C (w,1N 2 - wW2 , 1)  (E.28)

+ CD (w,2W1 - WWl ' 2 + W1l' 2 - wJ2, 1 + W1N'2 )

+D[(1 +v 2 )W'2, 1 + V,l2, 2 ] +C[ (1 + u,1 ) W 1 , 2 + u,2W1, 1]

+ V'1 1 NW1, 2 + W2, 1N'2 , 2

3
6 = (C+D)k(W,lW,2 -ww, 12 ) + (C+D) (Wl, lyl, 2  (E.29)

+ 2, I W2, 2) + Dk (w,2 1 1 - WW'I 2) + Ck (w,1 2 -wW 2 1 )

+ k [ (1 + u, 1 ) (w,12 + l, 2) + u,2 (w,11 +WI, 1)

+v, 1 (w, 2 2 +N'2 ,2) + (1 +v 2 ) (w,1 2 + W2, 1) ]

4 2

= (C+D) k (WlW 2  WW 12 ) (E.30)

+D(C + D) k (w,2 41 - WW'1 2 )

+ C(C+D)k(w1 W2 - wW2 1)

+ CDk [W 1 (w,2 + W2 ) + W2 (w,1 + W1)]

+Dk[ (1 +v 2 ) (w, 12 + W2, 1) ]

+ Ck[ (1 + u,1 ) (w, 12 + W1, 2 ) ]

+ k[W1 , 1 (W,1 2 + 'l1 , 2 ) + N11, 2 (w, 1 1 + N 1, 1)

+ N'2 , 1 (w, 2 2 + W'2 , 2) + 2,2 (w, 12 
+ W2, 1 )]

6 = (C + D) k [N'1, 1 (w, 12 + W1 , 2) + W'1, 2 (W, 1 +I 1, )  (E.31)
+ N'2 , 1 (w, 2 2 + N'2 , 2) + N'2 ,2 (w, 1 2 + W2, 1) ]
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= k + 2 w1  (E.32)

+ (w,2 2 +W 2,2 ) (w,1 2 +iW2 1)]

76 = (C+D)k2[ (w1 2 i~ 2  w 1 ~~ (E.33)

+2 (w~+W2 2 ) (w, 1 2 + 'V2 1)]
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Appendix F MA CSYMA Routine for Elemental Code Generation

F1 SPHSTRN.MAC Input Deck

The MACSYMA input deck, SPHSTRN.MAC, accomplishes several steps: (1) sym-

bolically generating the appropiate strain-displacement relations, (2) symbolically gener-

ating the Taylor series approximations for the 60 shell shape functions (He), (3) inserting

the shell shape functions into the strain-displacement relations, and (4) determining the

i components for each strain-displacement relation

/ * ......................................................................* /
/ * ......................................................................* /

/* MACSYMA ROUTINE FOR ELEMENTAL CODE GENERATION BY S. A. SCHIMMELS */

/* CREATED AS A PART OF AN AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) */
/* PhD PROGRAM IN AERONAUTICAL ENGINEERING (MATERIAL AND GEOMETRIC */

/* NONLINEARITY OF COMPOSITE SHELL STRUCTURES) ---- MARCH 1993

/* MACSYMA IS A REGISTERED TRADEMARK OF */
THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

/* PROGRAM SPHSTRN.MAC: FOR A SPHERICAL SHELL. CREATES THE */
/* STRAIN-DISPLACEMENT RELATIONS BASED ON THE PRESCRIBED

/* DISPLACEMENT FIELD AND THEN GENERATES AND SAVES THE APPROPIATE */

/* CHI COMPONENTS FOR EACH STRAIN TERM.

/ * ................... ...................................................* /

/ * ......................................................................

I * ......................................................................* I

/* INITIALIZE THE MACSYMA PARAMETERS AND DECLARE THE VARIABLE */

/* PROPERTIES

/* ... .. .... ... ... .. ..... .... .. .. ... .. .. ... ... ... .. .. ... ... ... ... .. .... ..* /

[DYNAMALLOC :TRUE, DISKGC :TRUE, DERIVABBREV: TRUE, POWERDISP :TRUE];

DEPENDS([UID,UIR,U2D,U2R,P1,P2,RI,R2,MI,M2,HI,H2],[YI,Y2,Y3]);

DEPENDS([PSI1,PSI2,PHI1,PHI2,GAMMA1,GAMMA2],[YI,Y2]);

DEPENDS( [THETA1,THETA2,U,V,W,U3], [YI,Y2]);

DECLARE([R,C,D,AR1,AR2,AR3,AR4,H3],CONSTANT);

I * ... ................ ................ ..................................* I

/* SET THE THEORETICAL ATTRIBUTES FOR A SPECIFIC ELEMENTAL CODE

/ * .....................................................................* /
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/ * ... .. ... ... .. .. .. .... .. ... .. .. .. ..... ... .. .. .. *

/* H3 = 1 FOR A SHELL

I* ............................................... *1

H3:1;

I* .. .. .. ... .. ... .. ..... .. .. .. .. ... .... ... ... .. ..*1

/* ARI = 0 FOR A INCOMPLETE CUBIC KINEMATICS */

/* ARI = I FOR THE COMPLETE QUARTIC KINEMATICS */

/ * ................... ...........................

AR1:0;

/* ... ... ... ... .. .. ... .... .. .. .. .. ..... ... ... ....*1

/* AR2 = 0 FOR A LINEAR H1/H2 APPROXIMATIONS */

/* AR2 = 1 FOR THE QUADRATIC APPROXIMATIONS */

I* ............................................... *I

AR2:0;

/* ............................................... */

/* AR3 = 0 FOR LINEAR TRANSVERSE STRAIN */
/* AR3 = 1 FOR NONLINEAR TRANSVERSE STRAIN */

I* ............................................... *1

AR3:0;

/ * ...................................................................... /

/* SUBLIST IS A VARIABLE CONTAINING THE DEFINITIONS OF DISPLACEMENT */

/* PARAMETERS Q(1) THROUGH Q(18). ALL SYMBOLIC MANIPULATION OF STRAIN */

/* COMPONENTS IS DONE WITH THE NAMES TO THE LEFT OF THE EQUAL SIGNS IN */

/* THE SUBLIST. THE Q(XX) DEFINITIONS ARE REQUIRED ONLY FOR GENERATION */

/* OF ELEMENT INDEPENDENT STRAIN DEFINITION ARRAYS LO THROUGH SS12,

/* ETC. *
I * ......................................................................

SUBLIST:[DIFF(U,Y)=Q(2),DIFF(U,Y2)=q(3),U=Q(1),DIFF(V,YI)=Q(5),

DIFF(V,Y2)=Q(6),V=Q(4),DIFF(W,Y1,2)=Q(10),DIFF(W,Y2,2)=Q(11),

DIFF(W,YI,I,Y2,1)=Q(12),DIFF(W,YI)=Q(8),DIFF(W,Y2)=Q(9),W=Q(7),

DIFF(PSI1,Y1)=Q(14),DIFF(PSI1,Y2)=Q(15),PSI=Q(13),

DIFF(PS12,YI)=Q(17),DIFF(PSI2,Y2)=Q(18),PSI2=Q(16)];

I * ................................... ...................................* I

/* BEGIN GENERATING THE DISPLACEMENT FIELD COMPONENTS Ul, U2, U3 THESE */

/* NEXT STEPS HAVE BEEN SPECIALIZED FOR A SPHERICAL SHELL R1 = l/D,

/* R2 = 1/C, K = -4/(3*H^2). THE VALUES OF D, C, AND K WILL BE INPUT */

/* AS PART OF THE FORTRAN PROGRAM. THEY ARE UNSPECIFIED CONSTANTS AS */

/* FAR AS MACSYMA IS CONCERNED */
I * ......................................................................* I

PI:U*(I-Y3*D);
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P2:V*(1-Y3*C);

PIl:DIFF(U,Y)*(I-Y3*D);

PI2:DIFF(U,Y2)*(-Y3*D);

P21:DIFF(V,Yl)*(1-Y3*C);

P22:DIFF(V,Y2)*(I-Y3*C);

LII:DIFF(PSIl,Yl);

L12:DIFF(PSIl,Y2);

L21:DIFF(PSI2,Y);

L22:DIFF(PSI2,Y2);

M1:K*(DIFF(W,Y1)+PSI);

M2:K*(DIFF(W,Y2)+PSI2);

/* ... .. .. ... .. ... .. .. .. ... .. .. .. ...... * /

/* INCOMPLETE CUBIC Ul DISPLACEMENT */

/* OF DENNIS.

/* ... .. ... .. .. ... .. .... ... .. .. .. ...... * /

UlD:Pl+Y3*PSIl+Y3^3*Ml;

I* .................................... * I

/* INCOMPLETE CUBIC U2 DISPLACEMENT */

/* OF DENNIS. */
/ * ................................... .*

U2D:P2+Y3*PSI2+Y3^3*M2;

/ * ................... ................ ...................................* /

/* COMPLETE QUARTIC U1 & U2 OF SMITH IS GIVEN BY Ul = UlD + UIR & U2 =

/* U2D + U2R, WHERE UIR & U2R ARE THE CURVATURE CORRECTION TERMS.

/ * ................................... ...................................* /

UIR:(-M1*(1+K*Y3^2)*Y3^2/(K/D));

U2R:(-M2*(1+K*Y3^2)*Y3^2/(K/C));

Ul:UlD+UIR*ARI;

U2:U2D+U2R*ARl;

U3:W;

/ * ......................................................................* /

/* SYMBOLICALLY THE DERIVATIONS OF Ul, U2, AND U3.

/* .... ... ... .. ... .. ..... .. .. .. .. .. .... ... ... .. ... .. ... .. .. ... ..... .... ..*/

DUI1:PI1+Y3*L11+Y3^3*DIFF(MI,YI)+AR1*DIFF(UR,YI);

DU12:PI2+Y3*L12+Y3^3*DIFF(M1,Y2)+AR1*DIFF(UIR,Y2);

DU21:P21+Y3*L21+Y3^3*DIFF(M2,Y)+AR1*DIFF(U2R,YI);

DU22:P22+Y3*L22+Y3A3*DIFF(M2,Y2)+AR1*DIFF(U2R,Y2);

DU31:DIFF(U3,Y1);

DU32:DIFF(U3,Y2);
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/ * ................... ...................................................

/* SYMBOLICALLY GENERATE THE LAGRANGIAN GREEN-STRAIN COMPONENTS */

/* DIVIDED BY THE APPROPIATE SHELL LAME' PARAMETERS HI, H2, TO GIVE THE */

/* PHYSICAL STRAINS EPSILONII, EPSILON22, EPSILON12, EPSILON23, */

/* EPSILON13, EPSILONJ3 *
* . ... .. .. .. ... .. ... ... ... .. .. ... ... ... .. ... ... .. ... ... .. .. ... .. .. ... .. .*1

* . .. ... .. .. .. ... ... .. ... ... .. ... ... ... .. ... .. ... .. ... ... .. .. ... .. .. .. .. *1

/* EPSILONII COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 *

/* THROUGH 4 ARE THE NONLINEAR TERMS *

/*.....................................................................*

ER[1]:((HI*DU11+DIFF(H,Y2)*HI*U2/H2+DIFF(HI,Y3)*HI*U3/H3)+

1/2*(DU11+DIFF(HI,Y2)*U2/H2+DIFF(HI,Y3)*U3/H3)^2+

1/2*(DU21-DIFF(H1,Y2)*U1/H2)^2+

1/2*(DU31-DIFF(HI,Y3)*U1/H3)^2)/H1A2;

/ * ................... ...................................................*/

/* EPSILON22 COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 4 ARE THE NONLINEAR TERMS

I * ......................................................................*1

ER[2]:((H2*DU22+DIFF(H2,Y1)*H2*U1/H1+DIFF(H2,Y3)*H2*U3/H3)+

1/2*(DU22+DIFF(H2,YI)*UI/HI+DIFF(H2,Y3)*U3/H3)A2+

1/2*(DU12-DIFF(H2,YI)*U2/H1)^2+

1/2*(DU32-DIFF(H2,Y3)*U2/H3)A2)/H2A2;

/ * ......................................................................*

/* EPSILON12 COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 4 ARE THE NONLINEAR TERMS */
/ * ......................................................................*!

ER[6]:((HI*DU12+H2*DU21-DIFF(H2,YI)*U2-DIFF(HI,Y2)*U1)+

(DU12-DIFF(H2,YI)*U2/HI)*(DU11+DIFF(HI,Y2)*U2/H2+DIFF(HI,Y3)*U3/H3)+

(DU21-DIFF(H1,Y2)*Ul/H2)*(DU22+DIFF(H2,Y)*UI/H+DIFF(H2,Y3)*U3/H3)+

(DU31-DIFF(H1,Y3)*U1/H3)*(DU32-DIFF(H2,Y3)*U2/H3))/(H1*H2);

!* ... ... ... .... ... ..... ... .. .. .. ... .. ... ... ... ... .. ... .. .. .. .... .... .. ..* !

/* EPSILON23 COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 8 ARE THE NONLINEAR TERMS. FORCING FUNCTION F(Z)=I+ 3*K*Y3^2 */

/* IS USED. THIS PARABOLIC FORCING FUNCTION APPLIED ONLY TO NONLINEAR */

/* TERMS.
l * ......................................................................

ER[4]:(DU32+(1-C*Y3)*DIFF(U2,Y3)-U2*(-C))/(H2*H3);

ERNL[4]:(1+3*K*Y3^2)*(

(DIFF(U2,Y3)-DIFF(H3,Y2)*U3/H2)*

(DIFF(U2,Y2)+DIFF(H2,Y1)*Ul/H1+DIFF(H2,Y3)*U3/H3)+
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(DIFF(U3,Y2)-DIFF(H2,Y3)*U2/H3)*

(DIFF(U3,Y3)+DIFF(H3,Y1)*Ul/H1+DIFF(H3,Y2)*U2/H2)+

(DIFF(UI,Y2)-DIFF(H2,YI)*U2/HI)*

(DIFF(UI,Y3)-DIFF(H3,YI)*U3/HI))/(H2*H3);

ER[41 :ER [4] +ERNL [4] *AR3;

.*........................................................................*1

/* EPSILON13 COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 8 ARE THE NONLINEAR TERMS. FORCING FUNCTION F(Z) =1+3*K*Y3^2 */

/* IS USED. THIS PARABOLIC FORCING FUNCTION APPLIED ONLY TO NONLINEAR */

/* TERMS.

/ * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .* /

ER[5]:(DU31+(I-D*Y3)*DIFF(UI,Y3)-U1*(-D))/(H*H3);

ERNL[5]:(1+3*K*Y3^2)*(

(DIFF(UIY3)-DIFF(H3,YI)*U3/H1)*

(DIFF(UlYI)+DIFF(HI,Y2)*U2/H2+DIFF(HI,Y3)*U3/H3)+

(DIFF(U3,YI)-DIFF(HI,Y3)*UI/H3)*

(DIFF(U3 ,Y3)+DIFF(H3,YI)*U1/HI+DIFF(H3,Y2)*U2/H2)+

(DIFF(U2,YI)-DIFF(HI,Y2)*UI/H2)*

(DIFF(U2,Y3)-DIFF(H3,Y2)*U3/H2))/(HI*H3);

ER[5]:ER[5]+ERNL[5]*AR3;

/ * ......................................................................

/* EPSILON33 COMPONENT OF STRAIN IS ZERO. IT IS, HOWEVER, INCLUDED IN */

/* THE CONSTITUTIVE RELATIONS THROUGH THE ELASTICITY SUBROUTINE OF THE */

/* CODE WRITTEN BY DENNIS. *

/ * ................... ...................................................* /

ER[3]:0;

/ * ................................... ...................................* /

/* SUBSTITUTE THE Q(1) THROUGH Q(18) DEFINITIONS OF SUBLIST AND DISPLAY */

/* THE STRAIN COMPONENTS INDIVIDUALLY. */
/ * ................................... ...................................* /

FOR I THRU 6 DO (ER[I]:EXPAND(ER[I]),

ER[I] :EXPAND(SUBST(SUBLIST,ER[I])),DISPLAY(ER[I]));

I * ......................................................................

/* THE NEXT 60 EXPRESSIONS ARE THE POSSIBLE COMBINATIONS OF THE LAME' */

/* PARAMETERS APPEARING IN THE STRAIN EXPRESSIONS FOR AN ARBITRARY */

/* SHELL, WHERE H3 = 1, AND HI, H2 DEPEND UPON YI, Y2, AND Y3.

/ * ......................................................................

HREXP[1]:(DIFF(HI,Y2)/HI);

HREXP[2] :(DIFF(HIY3)/HI);

HREXP[31:(I/(HI^2 );

HREXP[4]: (DIFF(HI Y2)^2/(HI^2));
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HREXP[5]:(DIFF(HIjy2)A
2 /(8 2A 2 ));

HREXP[6] (DIFF(H1,y3) A2/ (H1A2))

HREXP[7]:(DIFF(H1,y3) A2);

HREXP[8] (DIFF(H1,Y2)*DIFFCHlY3)/(H
1 A 2 ));

HREXP[9] (DIFF(H2,Y3)/w2);

HREXP[1O) (DIFF(H2,Y1) /H2);

HREXP[11] (1/ (H2A2));

HREXP[12]:(DIFF(H2,Y1)A2/(H
2A 2 ));

HREXP[13]:(DIFF(12,y1)A2/ew
2 A 2 ));

HREXP[14] (DIFF(H2,y3)A2/(H2A2))

HREXP[151 (DIFF(H2,Y3)A2);

HREXP[161:(DIFF(H2,y3) *DIFF(H2,y1) /(H2A2))

HREXP [17] (1/112);

HREXP[18] (1/Hi);

HREXP[19] (DIFF(H2,Y1)/H1);

HREXP[20] (DIFF(H1,y2) /H2);

HREXP [21] (1/ (111*12));

HREXP[22] (DIFF(H1,Y3)/H2);

HREXP[23] (DIFF(H2,y3) /H1);

HREXP[2 4]:(DIFF(H2,Y1)*DIFF(uly
2 )/(HaA 2 ));

HREXP[25] (DIFF(H2,y1) *DIFF(H1 ,Y2) /(H2A2))
HREXP[26] (DIFF(H1,y3) *DIFF(H2,y3));

HREXP[27]:(DIFF(H1,Y3)*DIFF(u2,Yl)/(H
1 A 2 ));

HREXP[28J:(DIFF(H2,Y3)*DIFp(flY
2 )/(H 2A 2 ));

HREXP[29] (DIFF(H1.y2) / (1H*H2) )
HREXP[30] (DIFF(H1,y2) A2/ (1112*H2))

HREXP[31]:(DIFF(H1,Y2)A2/(u2A2*HL));

HREXP[321:(DIFF(H1,y3)A2/Hl);

HREXP[33J (DIFF(H1,Y2) /(H1A2))
HREXP[34] (DIFF(H1,y3) /(H1A2))
HREXP[35] (DIFF(H1,y2) *DIFF(H1,y3) /(H1A2*H2))
HREXP[36]:(DIFF(I12,Y1)/ena*H

2 ));

HREXP[37] (DIFF(H2,yl)A2/(H1*H2A2))

HREXP[38]:(DIFF(a2,y1)A2/(H
2 *u1 A2 ));

H-REXP[39:(DIFF(H2,Y3)A2/H
2 );

HREXP[40] (DIFF(H2,y1) /(H2A2))

HREXP[41] (DIFF(H2,y3) *DIFF(H2,y1) /(H1*H2A2))

HREXP[42] (DIFF(H2,y3) /(H2A2))

HREXP[43] (DIFF(H1,y2) /(H2A2))
HREXP[44] (DIFF(H2,y1) /(H1A2));

HREXP [ 45] (DIFF (H2, Y3) / (H1*H2) );

HREXP[47] (DIFF(-2,y1) *DIFF(H1 Y2) /(H1A2*H2) )
RREXP[4B1:(DIFF(Hl1Y2)*DIFF(H2,Y)/(

2 2 *Hjl))
HREXP[49] (DIFF(Iil,y3) *DIFF (H2,Y1) /(H1A2*H2) )
HREXP[5Q] (DIFFU(12,Y3)*DIFF(H1,Y2)/(W2A2*Hl));
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HREXP[51]:(DIFF(H,Y3)*DIFF(H2,Y3)/H2);

HREXP[52]:(DIFF(H1,Y3)*DIFF(H2,Y3)/HI);

HREXP[53]:(DIFF(HI,Y2)^2/(H1^2*H2^2));

HREXP[54] (DIFF(H1,Y2)/(H1^2*H2));

HREXP[55J:(DIFF(H2,YI)^2/(HI^2*H2^2));

HREXP[56]:(DIFF(H2,Y1)/(H2^2*H));

HREXP[57]:(DIFF(H1,Y2)/(H1*H2^2));

HREXP[58]:(DIFF(H2,Y)/(H2*H1^2));

HREXP[59]:(DIFF(H2,Y1)*DIFF(H1,Y2)/(H1^2*H2^2));

HREXP[60]:(DIFF(HI,Y3)*DIFF(H2,Y3)/(HI*H2));

I * ................................... ...................................*1

/* THE MACRO HRTAY(X,I)::= GENERATES THE COEFFICIENTS F, G, AND H OF THE*/

/* TAYLOR'S SERIES EXPANSION OF THE EXPRESSION X ABOUT THE POINT Y3 = 0 */

/* FOR A SPHERICAL SHELL WITH HI = 1 - Y3/R1 AND H2 = 1 - Y3/R2. *
I * ......................................................................* 1

HRTAY(X,I)::=BUILDQ([X,I],(

PRINT(" THE TAYLOR SERIES EXPANSION OF "),DISPLAY(X),

PRINT(" IS EQUAL TO F + G*Y3 + H*Y3^2 + H.O.T., WHERE '),

(X:TAYLOR(FACTOROUT(EXPAND(RAT(EV(X,HI=(I-Y3*D),

H2=(I-Y3*C),DIFF))),C,D),Y3,0,3)),

F[I]:EXPAND(COEFF(X,Y3,0)),DISPLAY(F[I]),

G[I]:EXPAND(COEFF(X,Y3,1)),DISPLAY(G[I]),

H[I]:EXPAND(COEFF(X,Y3,2)),DISPLAY(H[I])));

/ * ......................................................................*

/* COMPUTE THE COEFFICIENTS F, G, AND H FOR ALL 60 HREXP EXPRESSIONS. */
/ * ......................................................................

FOR I THRU 60 DO HRTAY(HREXP[I],I);

/ * ......................................................................* /

/* THE MACRO HRSUB(X)::= TAKES ANY ONE-TERM EXPRESSION X, (PRODUCTS ARE */

/* OK, BUT [+-] OPERATORS ARE NOT) AND SUBSTITUTES THE APPROXIMATE */

/* SERIES EXPANSION F + G*Y3 + H*Y3^2 FOR THE FUNCTION OF LAME' *

/* PARAMETERS. */
/ * ... .. ... ... ... ... .... ... ... .. .. .. .. ... .. ... ... ... ... ... .. .. ... ...... ..* /

HRSUB(X) ::=BUILDQ([X],(

XO:X,

X:NUM(X)/SUBST(D[1],H1,DENOM(X)),

X:NUM(X)/SUBST(D[2],H2,DENOM(X)),

X:NUM(X) /RATSUBST(D[3],D[I]*D(1],DENOM(X)),

X:NUM(X) /RATSUBST(D[4],D[2]*D[2],DENOM(X)),

X:NUM(X) /RATSUBST(D[5],D[1]*D[2],DENOM(X)),

X:NUM(X) /RATSUBST(D[6],D[1]*D[4],DENOM(X)),

X:NUM(X)/RATSUBST(D[7],D[2]*D[31,DENOM(X)),

X:NUM(X) /RATSUBST(D[8],D[3]*D[4] ,DENOM(X)),
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XD:X

X:NUM(X) /HATSUBST(1/D[1J ,D[1J ,DENOM(X)),

X:NUM(X)/RATSUBST(1/D[2],D(2],DENQM(x)),

X:NUM(X)/RATSUBST(1/D[3],D[3],DENoM(x)),

X.NUM(X) /RATSUBST(1/D[4] ,D[4] ,DENOM(X)),

X:NUM(X) /RATSUBST(1/D[5] ,D[5] ,DENOM(X)),

X:NUM(X) /RATSUBST(1/D[6J ,D[6) ,DENOM(X)),

X:NTJM(X) /RATSUBST(1/D[7) ,D(7] ,DENOM(X)),

X:NUM(X) /RATSUBST(1/D[8J ,D[8] ,DENOM(X)),

XN:X

X:RATSUBST(F[59]+Y3*G[59]+y32*AR2*{[59], DIFF(H2,Y1)*IDIFF(H1,y2)*D[8),x),

X:RATSUBST(FF55]+y3*G(55]+y3A2*AR2*H(55],IDIFF({2,yl)A2*DrS],X),

X:RATSUBST(F[53]+Y3*G[531+Y3A2*AR2*H[53],SDIFF(H1,Y2)A2*D[s],x),

X:RATStJBST(F[50]+y3*G[50J+y3A2*AR2*H[50] , DIFF(H2,Y3)*IDIFF(H1,y2)*D[6] ,X),

X:RATSUBST(F[49]+y3*G[49]+y3A2*AR2*HF49J , DIFF(H1,Y3)*IDIFF(H2,y1)*D[7] ,X),

X:RATSUBST(F[48J+y3*G[48] y3A2*AR2*H[48]I DIFF(H1,Y2)*'DIFF(H2,y1)*D[6] ,X),

X:RATSUBST(F[47J+Y3*G[47]+Y32*AR2*H[47],IDIFF(H2,Y1)*sDIFF(a1,Y2)*D[7]X),

X:RATSUBST(F[41]+y3*G[41]+y3A2*AR2*w[41], DIFF(H2,y3)*IDIFF(H2,y1)*D[6J ,X),

X:RATSUBST(FF381 y3*G[38]+y3A2*AR2*n[38],,DIFF(a2,yl)A2*Dr7,X),

X:RATSUBST(F[371+Y3*G[37] y3A2*AR2*Ht371,SDIFF(H2,yl)A2*D[sJ,X),

X:RATSUBST(F[35]+Y3*G[35J+y3A2*AR2*w[35] , DIFF(H1,Y2)*'DIFF(H1,y3)*D[7] ,X),

X:RATSUBST(F[31]+Y3*G[31]+Y3A2*AR2*HF31],IDIFF(H,y2)A2*D[6],X),

X:RATSUBST(F(30]+Y3*GEJO]+y3A2*AR2*H[30],IDIFF(H,Y2)A2*D[7],X),

X:RATSUBST(F[58]+Y3*GE58]+y3A2*AR2*H[58],IDIFF(H2,yl)*D[71,X),

X:RATSUBST(F[57]+YJ*Gf57]+Y3A2*AR2*H[57],<DIFF(a1,y2)*DG],X),

X:RATSUBST(F[561+Y3*C[56]+YJA2*AR2*H[561,,DIFF(H2,yl)*D[6],X),

X:RATSUBST(F[54]+Y3*GE54]+Y3A2*AR2*H[54],buIFF(H1,Y2)*D[7J,X),

X:RATStJBST(F[6O]+y3*G[6O]+y3A2*AR2*HF6o] , DIFF(H1,YJ)*'DIFF(H2,y3)*D[5) ,X),

X:RATSIJBST(F[28J+Y3*G[28]+y3A2*AR2*H[281,IDIFF(H2,y3)*IDIFF(Hly2)*D[4] ,X)I

X:RATStJBST(F[24]+y3*G[24]+y3A2*AR2*H(24] , DIFF(H2,Y1)*IDIFF(H1,y2)*D[3] ,X),

X:RATStBST(F[16JY3*G[1]±y3A2*AR2*H[16,IDIFF(H2,y3)*'DIFF(w2,yl)*D4],X),

X:RATStBST(F[14]+Y3*G[14]±y3A2*AR2*H[14],IDIFF(H2,y3)A*D[4](H,), D3]X

X:RATSUBST(F[13]+.Y3*G[13fl-Y3A2*AR2*H[13,IDIFF(H2,Y1)A*D[3](H,x), D41X

X:RATSUBST(F[1]+Y3*G[1]±y32*AR2*[12,DIFF(H,2,y)AD[4](H,x)*D3,

X:RATSUBST(F[6]+Y3*G[J+Y32*AR2*H[],IF1,y3))2*DJX)

X:RATSUBST(F[3]+Y3*[]+y32*AR2*H[],IF F(y)2*Dr,)^2 3,X

X:RATSUBST(F[4J]+Y3*G[]+y32*AR2*H[],DIFFH,Y)2*DJX)

X:RATSUBST(F[6]+Y3*G[6]+y3A2*AR2*H[6,DIFF(H,Y3)*D[]X),

X:RATSUBST(F[5]+Y3*G[5]+Y32*AR2*H[5],DIFF(H,Y)*D[5],X),

X:RATSUBST(F[44] Y3*G[44]+y3A2*AR2*H[441,'DIFF(H2,Y)*D3],X),

X:RATSUBST(FF43]+Y3*Gt43]+y3A2*AR2*H[43),'DIFF(H1,Y2)*D[4],X),

X:RATSUBST(F[42]+y3*G[42]+Y3A2*AR2*H[42JJIDIFF(B12,y3)*D[4,X),

X:RATSUBST(F[4O].iY3*G[4O]+Y3A2*AR2*H[4O1,'DIFF(I2,Y1)*Dr4],X),

F-8



X:RATSUBST(F[36]+Y3*G[36]+Y3A2*AR2*H[36],IDIFF(H2,Y)*D5],X),

X:RATSUBST(F[34]+Y3*G[34J+YJA2*AR2*H[34],4DIFF(H,Y3)*D3],X),

X:RATSUBST(F[33J+Y3*G[33]+Y3A2*AR2*H[33],'DIFF(H,Y2)*D[3],X),

X:RATSUBST(F[29]+Y3*G[29]+Y3A2*AR2*H[29),,DIFF(H,Y2)*D[5],X),

X:RATSUBST(F[3]+Y3*G[3)+Y3A2*AR2*H[3],1*D[3],X),

XRATSUBST (F [21] +Y3*G[21]+Y3 A2 *AR2 *H [21]11D [5] X),

X:RATSUBST(F[11]+Y3*G[11]+Y3A2*AR2*H[11],1*D[4],X),

X:RATSUBST(F[52]+Y3*G[52]+Y3A2*AR2*H[52] , DIFF(H1,Y3)*IDIFF(H2,Y3)*D[1] ,X),

X:RATSUBST(F[51]+Y3*G[511+Y3A2*AR2*H[51], IDIFF(H1,Y3)*IDIFF(H2,Y3)*D[2] ,X),

X:RATSUBST(F[39fl+Y3*G[39]+Y3A2*AR2*H[39],IDIFF(H2,Y3)A2*D[2],X),

X:RATSUBST(F[32J+YJ*G[321+Y3A2*AR2*H[32],OIFF(H,Y3)A2*D[1,X),

X:RATSUBST(F[23]+Y3*G[23] Y3A2*AR2*H[23],<DIFF(H2,Y3)*D[1],X),

X:RATSUBST(F[22]+Y3*G[22]+Y3A2*AR2*H[22],4DIFF(H,Y3)*D[2],X),

X:RATSUBST(F[201+Y3*G[20]+Y3A2*AR2*H[20],QDIFF(H,Y2)*D[2flX),

X:RATSUBST(F[19]+Y3*G[19]+Y3A2*AR2*H[19],JDIFF(H2,Y)*D[1],X),

X:RATSUBST(F[10]+Y3*G[1O]+Y3A2*AR2*H[1O],IDIFF(H2,Y)*D[21,X),

X:RATSUBST(F[9]+sY3*G[9+YA2*AR2*H[9],'DIFF(H2,Y3)*D[2],X),

X:RATSUBST(F[1]+IY3*G[1]+Y3A2*AR2*H[1],IDIFF(H1,Y2)*D[1],X),

X:RATSUBST(F[2]+Y3*G[2]+Y3A2*AR2*H[2],JDIFF(H,Y3)*D[1],X),

X:RATSUBST(F[17]+Y3*G[17]+Y3A2*AR2*H[17fl1*D[2],X),

X:RATSUBST(F[181+Y3*G[18]+Y3A2*AR2*H[18h1l*D[1],X),

X:RATSUBST(F[15] +Y3*G[15] +Y3A2*AR2*HE1S] , DIFF(H2,Y3) A2,X),

X:RATSUBST(F[7]+Y3*G[7]+Y3A2*AR2*H[7] ,'DIFF(H1,Y3VA2,X),

X:RATSUBST(F[26]+Y3*G[26]+Y3A2*AR2*H[26],IDIFF(H1,Y3)*IDIFF(H2,Y3),X)));

/*........................................................................*

/* THE MACRO PICK(XXX)::= TAKES ANY EXPRESSION XXX (PREVIOUSLY EXPANDED)*/

/* AND SEPARATES IT INTO SINGLE EXPRESSIONS LABELED E(I). IT THEN CALLS*/

/* MACRO HRSUB(X) TO FIND THE APPROPIATE LAME' PARAMETERS APPROXIMATION *

/* FOR EACH EXPRESSION AND THEN SUMS ALL THE EXPRESSIONS TO YIELD THE ~
/* EXPRESSION XXX WITH ALL THE TERMS FULLY APPROXIMATED.
/*........................................................................*

E(I) :=CONCAT(E,I);

PICK(XXX) ::=BUILDQ([XXX], (I1:LINENUM,NT:NTERMS(XXX),I2:I1+NT-1,

PRINT(" THIS EXPRESSION HAS ",NT," TERMS TO BE RESOLVED ")

PICKAPART(XXX,1),FOR K:I1 THRU 12 DO EXH[K]:EV(E(K),EVAL),

FOR K:I1 THRU 12 DO HRSUB(EXH[K]),XXX:SUM(EXH[K),K,I1,I2),

DISPLAY(XXX)));

/*. . . . .............................................................. *

/* USE THE MACRO PICK(XXX) TO APPROXIMATE LAME' PARAMETER FUNCTIONS OF ~
/* THE STRAIN COMPONENTS. *

ERR4:ER[4];

ERRS :ER [5]

PICK(ERR4);



PICK(ERR5);

ER[4] :ERR4;

ER[5] :ERR5;

ERR1: ER [1]

ERR2:ER[2];

ERR6:ER[6J;

PICK(ERR1);

PICK(ERR2);

PICK(ERRE);

ERfi] :ERR1;

ER[2] :ERR2;

ER[6] :ERRE;

SAVE('SPH-ER.SV" ,ER);

/*.....................................................................*

/* THE MACRO, CHIFORM(XX,YY,K)::= EXPANDS A 6x1 VECTOR CALLED XX, THEN ~
1* DETERMINES AND DISPLAYS THE COEFFICIENTS OF Y3 UPTO THE Kth POWER.~

/* THESE ARE CALLED YY[I,KJ.

/*.....................................................................*

CHIFORM(XX,YY,K)::=BUILDQ([XX,YY,K],(FOR I THRU 6 DO FOR JJ THRU K+1 DO

(XY[I] :FACTOROUT(EXPAND(RAT(XX[I])), [H1,H2]),

YY[I,JJ-1] :COEFF(XY[I] ,Y3,JJ-1) ,DISPLAY(YY[I,JJ-1]))));

POWERDISP:TRUE;

CHIFORM(ER,XR, 12);

KILL (ER);

SAVE("SPH-XR.SV",XR);

CLOSEFILE O;

QUITO
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F2 SPHINITMAC Input Deck

The MACSYMA input deck, SPHINIT.MAC, generates the (Lip) column arrays

and the [Hi] matrices for each strain component, j.

WRITEFILE ("SPH-INIT .WF");
/************************************************************************/*
/************************************************************************/*

/* MACSYMA ROUTINE FOR ELEMENTAL CODE GENERATION BY S. A. SCHIMMELS */

/* CREATED AS A PART OF AN AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) */

PhD PROGRAM IN AERONAUTICAL ENGINEERING --- MARCH 1993

MACSYMA IS A REGISTERED TRADEMARK OF

1* THE MASSACHUSETTS. INSTITUTE OF TECHNONLOGY */

/* PROGRAM SPHINIT.MAC: FOR A SPHERICAL SHELL. CREATES THE LHMAT, */

/* LSMAT, HMAT, & SSMAT ARRAYS. */

/* INITIALIZE MACSYMA PARAMETERS AND DECLARE VARIABLE PROPERTIES */
/*************************************************************************/*

[DYNAMALLOC :TRUE, DISKGC :TRUE, DERIVABBREV: TRUE, POWERDISP :TRUE] $

/* THE MACRO DECOMPOSE(XR)::= DETERMINES AND DISPLAYS THE COEFFICIENTS OF */

/* DISPLACEMENT VARIABLES Q(1) THROUGH Q(18) AND CREATES A 6x13x18 ARRAY */

/* CALLED LMAT OF THE CONTANT COEFFICIENTS OF LINEAR DISPLACEMENT TERMS, */

/* AND A 6x13x18x18 ARRAY CALLED HMAT OF THE CONSTANT COEFFICIENTS OF THE */

/* CONSTANT COEFFICIENTS OF THE QUADRATIC DISPLACEMENT TERMS.

LOADFILE( "SPH-XRNEW.SV");

FOR I THRU 6 DO FOR JJ THRU 13 DO (DISPLAY (XR[I,JJ-1]))$

DECOMPOSE (XR) ::=BUILDQ( [XR],

(FOR I THRU 6 DO (PRINT ("DECOMPOSING STRAIN COMPONENT" ,I),

(FOR J:O THRU 12 DO (FOR K THRU 18 DO

(IF HIPOW(XR(I,J],Q(K))=2 THEN

XQUAD[I,J,K]:RATCOEFF(XR[I,J],Q(K),2)*Q(K)*2+RATCOEFF(XR[I,J],Q(K),1) ELSE

XQUAD[I,J,K]:RATCOEFF(XR[I,J],Q(K),i),

FOR L THRU 18 DO HMAT[I,J,K,L]:RATCOEFF(XQUAD[I,J,K],Q(L),I),

LMAT[I,J,K]:EXPAND(XQUAD[I,J,K]-SUM(HMAT[I,J,K,L]*Q(L),L,1,18))))))))$

DECOMPOSE (XR);
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KILL (XR) $

SAVE( "SPH-LHMAT.SV" ,LMAT,HMAT);

/* GENERATE ELEMENT-INDEPENDENT STRAIN DEFINITION ARRAYS LX AN HXX FOR ~
/ * IN-PLANE STRAINS AND SX AND SSXX FOR TRANSVERSE SHEAR STRAINS. X AND* /

/* XX REPRESENT THE POWER OF Y3 FOR WHICH THE COEFFICIENTS APPLY. NOTE ~
/* LX HAS 3 COLUMNS. COLUMN 1 CONTAINS COEFFICIENTS OF THE EPSILON11 *

/* TERMS WHICH ARE LINEAR IN DISPLACEMENTS Q(1)-Q(18). COLUMN 2

/* CONTAINS EPSILON22 TERMS AND COLUMN 3 CONTAINS EPSILON12 TERMS. *
/* LIKEWISE HXX HAS 3 PARTITIONS. COLUMNS 1-18 CONTAINSS COEFFICIENTS *

/* OF EPSILON11 TERMS WHICH ARE QUADRATIC IN DISPLACEMENT. COLUMNS 19- *

/* 36 CONTAIN THE EPSILON22 TERMS AND COLUMNS 37-54 CONTAIN THE

1* EPSILON12 TERMS. SIMILARLY, SX CONTAINS 2 COLUMNS PERTAINING TO THE *

/* COEFFICIENTS OF LINEAR TERMS OF EPSILON23 AND EPSILON133, *
/* RESPECTIVELY. SSXX HAS 2 PARTITIONS. COLUMNS 1-18 CONTAIN *
/* COEFFICIENTS OF THE QUADRATIC TERMS OF EPSILON23 AND COLUMNS 19-36 ~
/* CONTAIN THE QUADRATIC TERMS OF EPSILON13. *

FOR MN THRU 18 DO

LO[MN,1]:LMAT[1,O,NN],LO[NN,2J:LMAT[2,O,NN],LO[NN,3D:LMAT[6,O,NN],

L1[NN,1] :LMAT[1,1,MN],L1[MN,2] :LMAT[2,1,NN],L1[NN,3] :LMAT[6,1,NN],

L2[MN,1D:LMAT[1,2,NN,L2[NN,2DLMAT[2,2,NN],L2[NN,3:LMAT[6,2,NN,

L3[NN,1]:LMAT[1,3,NN],L3[NN,2]:LMAT[2,3,NNJ,L3[NN,3]:LMAT[6,3,NNJ,

L4[NN,1J:LMAT[1,4,NN],L4[NN,2]:LMAT[2,4,NNJ,L4[NN,3D:LMAT[6,4,MNJ,

LS[NN,1D:LMAT[1,5,NN,L5[N,2:LMAT[2,5,NN,L5[NN,3]:LMAT[6,5,NN,

L6 [NN,1] :LMAT[1, 6,NN] ,L6 [NN,2] :LMAT[2, 6,MN] ,L6 [MN, 3]:LMAT[6, 6,MN]I

L7[MN,1]:LMAT[1,7,MN],L7[MN,2] :LMAT[2,7,MN],L7[MN,3] :LMAT[6,7,MN],

SO[NN,1]:LMAT[4,O,MN],SO[MN,2J:LMAT[5,O,MN],

S1[MN,1] :LMAT[4,1,MNJ,S1[MN,2] :LMAT[5,1,MN],

S2[MN,1]:LMAT[4,2,NN],S2[NN,2]:LMAT[5,2,NN],

S3[NN,1]:LMAT[4,3,MN],53[MN,2]:LMAT[5,3,MN],

S4[NN,1]:LMAT[4,4,NN],S4[NN,2]:LMAT[5,4,MN],

S5[MN,1]:LMAT[4,5,MN],S5[MN,2]:LMAT[5,5,NN],

56[NN,1]:LMAT[4,6,NN],S6[MN,2J:LMAT[5,6,MN],

57 [MN, 1]:LMAT[4,7,MN],57 [MN, 2]:LMAT[5,7,NN],

FOR MM THRU 18 DO(

HO [MN,MM] :HMAT[1, O,MN,MM] ,HO [NN,MM+18J :HMAT[2, O,NN,MM],

HO[MN,IMM+36]:HMlAT[6,O,MN,MM],

Hi [MN,MM] :HMAT[1, 1,MN,HM] ,H1[NN,DAM+18] :HMAT[2, 1,NN,MM],

Hi [MN, MM+36]:HMAT [6, 1,MN, MM],

H2[MN,MM]:HMAT[1,2,N,MM],H2[MN,MM+18]:HMAT[2,2,MN,MM],

H2 [NN,MM+36] :HMAT[6,2,NN,MM],

H3[MN,MM]:HMAT[1,3,NN,MM],H3[MN,MM+18]:HMAT[2,3,MN,mm],

H3 [MN,MM+36] :HMAT [6,3, NN,MM]I
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114[NN,MM] :HMAT[1, 4,NN, MM] ,H4 [NN,MM+18] :HMAT[2, 4,NN,mm],

114[NN,MM+36]:HMAT[6,4,NN,MM],

15 [NN,MM] :HMAT[1, 5,NN,MM] 15 [NN,MM+18] :HMAT[2, 5,NN,MM],

115 [NNMM+ 36] 11MAT [6,5, NN ,MM],

116 NN,MM] :HMAT[1, 6,NN,MM] ,16[NN,MM+18] :HMAT[2, 6,NN,MM],

116[NN ,MM+36]:HMAT [6, 6, NN ,MM],

17[NN,MM~]:HMAT[1,7,NN,MM],H7[NN,MM+18]:HMAT[2,7,NN,MM],

H7[NN,MM+36]:HMAT[6,7,NN,MM],

H8 [NN,MM] :HMAT[1, 8,NN,MM] ,H18[NN,MM+18J :HMAT[2, 8,NN,MM],

H8[NN,MM+36]:HMAT[6,8,NN,MM),

H9[NN,1M]:HAT[1,9,NN,MM],H9[NN,MM+18]:HMlAT[2,9,NN,MM],

119[NN,MM+36] :1MAT[6, 9,NN,MM],

1110[NN,MM:11MAT[1,10,NN,MM],1110[NN,MM+18]:HMAT[2,10,NN,MM],

1110[NN ,MM+36]:HMAT [6, 10, NN ,MM]

1112[NN,MM:HMAT[1,1,NN,MM,112[NN,MM+18]:HMAT[2,11,NN,MM],

1112[NN,MM+36] :HMAT[6,11,NN,MM],

SSO[NN,MM]:HMAT[,12,NN,MM],SS0[NN,MM+18]:HMAT[2,1,NN,MM,

S12[NN,MM+3] :MAT[, 1M Sl[NMM1]:MT5,NN,MM],
SS2[NN,MM:HMAT[4,0,NN,MM],SSO[NN,MM+18]:HMAT[5,,NN,MM],

SS3[NN,MM]:HMAT[4,1,NN,MM],5SS[NN,MM-s18]:HMAT[5,3,NN,MM],

SS2[NN,MM]:HMAT[4,4,NN,MM],SS2[NN,MM+18]:11MAT[5,4,NN,MM],

SS3[NN,MM]:IHMAT[4,5,NN,MM],5SS[NN,MM+18]:HMAT[5,5,NN,MM],

SS4[NN,MM]:HMAT[4,6,NN,MM],SS6[NN,MM+18]:HMAT[5,6,NN,MMI,

S5[NN,MM]:HMAT[4,7,NN,MM],S5[NN,MM+18]:HMAT[5,7,NN,MK],

SS6[NN,MM:HAT[4,,NN,MM,SS[NN,MM+18]:HMAT[5,8,NN,MM],

S9[NN,MM]:HMAT[4,9,NN,MM],5S9[NN,MM+18]:HMAT[5,9,NN,MM],

SS1[NN,MM:HMAT[4,1,NN,MM],SS1[NN,MM+18]:MAT[5,0,NN,MM,

SS1[NN,MM:IHMAT[4,1,NN,MM,SS[NN,MM+18:HMAT[5,1,NN,MM,

SS10[NN,MM] :HMAT[4,10,NN,MM],SS12[NN,MM+18] :HMAT[5,10,NN,MM]))

1* FORM MACSYMA MATRICES FROM THE ABOVE DEFINED ARRAYS. *

LO:GENMATRIX(LO,18,3);

L1:GENMATRIX(Ll, 18, 3);

L2:GENMATRIX(L2,18,3);

L3:GENMATRIX(L3,18,3);

L4:GEMMATRIX(L4,18,3);

L5:GENMATRIX(L5,18,3);

L6:GENMATRIX(L6,18,3);

L7:GENMATRIX(L7,18,3);

SO :GENMATRIX(S0, 18, 2);

S1:GENMATRIX(S,18,2);

52 :GENMATRIX(S2 ,18, 2);
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53 :GENMATRIX(S3,18, 2);

S4:GENMATRIX(S4,18,2);

S5:GENMATRIX(S5, 18, 2);

S6:GENMATRIX(S6,18,2);

57 :GENMATRIX(S7 ,18, 2);

HO:GENMATRIX(HO,18,54);

H1:GENMATRIX(H1, 18,54);

H2:GENMATRIX(H2,18,54);

H3:GENMATRIX(H3,18,54);

H4:GENMATRIX(H4,18,54);

H5:GENMATRIX(H5,18,54);

HG :GENMATRIX(H6 ,18, 54);

H7:GENMATRIX(H7,18,54);

H8:GENMATRIX(H8,18,54);

H9:GENMATRIX(H9, 18, 54);

H1O :GENMATRIX(H1O, 18, 54);

H11:GENMATRIX(H11, 18, 54);

H12 :GENM~ATRIX(H12, 18, 54);

SSO:GENMATRIX(SSO, 18, 36);

SS1:GENMATRIX(SS1,18,36);

SS2 :GENMATRIX(SS2, 18, 36);

553 :GENMATRIX(SS3 ,18, 36);

554 :GENMATRIX(SS4, 18, 36);

S55:GENMATRIX(SS5, 18, 36);

556 :GENMATRIX(5S6, 18, 36);

SS7:GENMATRIX(SS7,18,36);

SS8:GENMATRIX(SS8,18,36);

SS9 :GENMATRIX(SS9, 18, 36);

SS1O :GENMATRIX(SS1O, 18, 36);

SS11:GENMATRIX(SS11, 18, 36);

5512 :GENMATRIX(SS12, 18, 36);

SAVE("SPH-LSMAT.SV,LO,L,L2,L3,L4,L5,L6,L7,SO,S1,S2,3,4,5,6,7);

SAVE("SPH-HMAT.SV",HO,H1,H2,H3,H4,H5,H6,H7,H8,H9,H1O,H11,H12);

SAVE("SPH-SSMAT.SV,SSO,SS1,SS2,S3,554,S55,5S6,SS7,558,5S9,SS1O,SS11,SS12);

KILL (ALL) $

CLOSEFILE O;

QUITO;
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E3 SPHK.MAC Input Deck

The MACSYMA input deck, SPHK.MAC, generates all the nonzero entries of the

[k] matrix for a spherical shell, including transverse shear effects.

WRITEFILE("SPH-STK.WF");

/* MACSYMA ROUTINE FOR ELEMENTAL CODE GENERATION BY S. A. SCHIMMELS */

/* CREATED AS A PART OF AN AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) */

PhD PROGRAM IN AERONAUTICAL ENGINEERING --- MARCH 1993

/* MACSYMA IS A REGISTERED TRADEMARK OF

/* THE MASSACHUSETTS INSTITUTE OF TECHNONLOGY */
/* *

/* PROGRAM SPH-STK.MAC: FOR A SPHERICAL SHELL. CREATES ELEMENT */

/* INDEPENDENT STIFFNESS ARRAYS K & KS. */

* INITIALIZE MACSYMA PARAMETERS AND DECLARE VARIABLE PROPERTIES */

[DYNAMALLOC:TRUE,DISKGC:TRUE,DERIVABBREV:TRUE,POWERDISP:TRUE]$

/* GENERATE THE LINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY K.

/ W***************We****/

/* ASSEMBLE MATRIX KO */

/**************************
LOADFILE("SPH-LSMAT.SV");

L0:SUBST([K=KI,C=PI,D=P2],LO);

LI:SUBST( [K=KI,C=PI,D=P2],LLI);

L2:SUBST([K=KIC=PID=P2],L2);

L3:SUBST([K=KIC=PID=P2],L3);

L4:SUBST([K=KIC=PID=P2],L4);

L5:SUBST( [K=KIC=PID=P2],L5);

L6:SUBST( [K=KIC=PID=P2],L6);

L7:SUBST ([K=KI C=P, D=P2],L7);

LOT:TRANSPOSE(LO);

LIT:TRANSPOSE(L1);

L2T:TRANSPOSE(L2);
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L3T:TRANSPOSE(L3);

L4T:TRANSPOSE(L4);

L5T:TRANSPOSE(L5);

L6T:TRANSPOSE(LG);

L7T:TRANSPOSE(L7);

KM:ZEROMATRIX(18, 18) $

FOR II THRU 3 DO FOR JJ THRU 3 DO (PRINT(II,JJ),

KM:KM+A[II,JJJ*(COL(LO,II).ROW(LOT,JJ))+

DD[II,JJ]*(COL(L1,II).ROW(L1T,JJ)+

COL(LO,II).ROW(L2T,JJ)+COL(L2,II).ROW(LOT,JJ))+

F[II,JJ]*(COL(L2,II).ROW(L2T,JJ)+

COL(L1,II).ROW(L3T,JJ)+COL(L3,II).ROW(L1T,JJ)+

COL(LOII).ROW(L4T,JJ)+COL(L4,II).ROW(LOT,JJ))+

H[II,JJ]*(COL(L3,II).ROW(L3T,JJ)+

COL(L2,II).ROW(L4T,JJ)+COL(L4,II).ROW(L2T,JJ)+

COL(L1,II).ROW(L5T,JJ)+COL(LS,II).ROW(L1T,JJ)+

COL(L0,II).ROW(LET,JJ)+COL(L6,II).ROW(LOT,JJ))+

J[II,JJJ*(COL(L4,II).ROW(L4T,JJ)+

COL(L3, II) .ROW(L5T,JJ)+COL(L5, II) .ROW(L3T,jj)+

COL(L2,II).ROW(LGT,JJ)+COL(L6,II).ROW(L2T,jj)+

COL(L1.II).ROW(L7T,JJ)+COL(L7,II).ROW(L1T,JJ))+

L[II,JJ]*(COL(L5,II).ROW(L5T,JJ)+

COL(L4,II).ROW(LGT,JJT)+COL(L6,II).ROW(L4T,JJ)+

COL(L3,II).ROW(L7T,JJ)+COL(L7,II).ROW(L3T,JJ))+

R[II,JJ]*(COL(LG,II).ROW(L6T,JJ)+

COL(L5,II).ROW(L7T,JJT)+COL(L7,II).ROW(L5T,JJ)));

SAVE('SPH-K.SV',KM);

/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH

/* NONZERO ELEMENT OF STK(I,J). THESE STATEMENTS ARE OF THE FORM

/* STK(2,2)=A(1,1). EACH STATEMENT IS WRITTEN TO A SEPERATE FILE CALLED ~
/* TT2XXX, WHERE XXX STARTS AT 001 FOR THE FIRST NONZERO ENTRY AND

/* CONTINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH STK(18,18) *

/* ARE GENERATED. THE MACSYMA FUNTION GENTRAN WILL ALSO BREAK *

/* STATEMENTS EXCEEDING 800 INTO SHORTER EXPRESSIONS TO AVOID TOO MANY '

/* CONTINUATION LINES. MACSYMA AUTOMATICALLY MAKES CONTINUATION LINES *

/* COMPLETE WITH A LEGAL CHARACTER IN COLUMNB 6. *

(0: ZEROMATRIX (18,18) $

FOR III THRU 18 DO FOR JJJ:III THRU 18 DO

KO[III,JJJ] :KM[III,JJJ);

FRAME(I,J) :rCONCAT(TK,EV(18*(I-1)+J+1000))$

FOR I THRU 18 DO FOR J:I THRU 18 DO

(IF K0[I,J]#0 THEN (PT:1,GENTRAN(PCSTK[EVAL(I),EVAL(J)J:EVAL(KO[I,J]),

F- 16



[EVAL(FRAME(I,J) ) ))) $
IF PT#1 THEN GENTRAN(PT:EVAL(PT), [TT20003)$

/* GENERATE THE LINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY KS.

/* ASSEMBLE MATRIX KS ~

LOADFILE("SPH-LSMAT.SV");

SO: SUBST ([K=K1, C=P1, D=P2 ISO);

51: SUBST ([ K=K1 C=P1, DP2 1, 5);
S2 :SUBST ([K=K1 CP1 D=P2] ,S2);

S3 : StJST ([K=K1 C=P1,DP2] ,53);

54:SIJBST( [KK1,C=P1,D=P2),S4);

S5:SUBST([K=K1,C=P1,D=P2],S5);

S6:SUBST( [K=K1,C=P1,D=P2J,S6);

37:SUBST ([K=K1, C=P1 ,DP2] ,57);

SOT :TRANSPOSE (SO);

SiT :TRANSPOSE ( 1);

52T:TRANSPOSE(52);

53T:TRANSPOSE(53);

54T:TRANSPOSE(54);

55T:TRANSPOSE(SS);

SET :TRANSPOSE ( 6);

57T:TRANSPOSE(57);

KS: ZEROMATRIX(18, 18) $

FOR II THRU 2 DO FOR JJ THRU 2 DO (PRINT(II,JJ),

KS:KS+AS(II,JJ]*(COL(SO,II).ROW(SOT,JJT))+

DS[II,JJ]*(COL(S1,II).ROW(S1T,JJ)+

COL(SO,II).ROW(52T,JJ)+COL(52,II).ROW(SOT,JJ))+

FS[II,JJI*(COL(52,II).ROW(52T,JJ)+

COL(S1,II).ROW(S3T,JJ)+COL(S3,II).ROW(S1T,JJ)+

COL(SO,II).ROW(S4T,JJ)+COL(S4,II).ROW(SOT,JJ))+

HS[IIJJI*(COL(53,II).ROW(53T,JJ)+

COL(S2,II).ROW(S4T,JJ)+COL(S4,II).ROW(S2T,JJ)+

COL(S1,II).ROW(SST,JJ)+COL(55,II).ROW(S1T,JJ)+

COL(SO,II).ROW(56T,JJ)+COL(56,II).ROW(SOT,JJ))+

JS[II,JJI*(COL(54,II).ROW(54T,JJ)+

COL(53,II).ROW(55T,JJ)+COL(55,II).ROW(53T,JJ)+

COL(52,II).ROW(SGT,JJ)+COL(S6,II).ROW(52T,JJ)+

COL(S1,II).ROW(S7T,JJ)+COL(S7,II).ROW(S1T,JJ))+

LS[II,JJ]*(COL(55,II).ROW(55T,JJ)+

COL'(S4,II).ROW(SGT,JJ)+COL(S6,II).ROW(S4T,JJ)+
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COL(S3,II).ROW(S7T,JJ)+COL(S7,II).ROW(S3T,JJ))+

RS[II,JJ]*(COL(S6,II).ROW(S6T,JJ)+

COL(S5,II).ROW(S7T,JJ)+COL(S7,II).ROW(S5T,JJ)));

SAVE("SPH-KS.SV",KS);

/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH

/* NONZERO ELEMENT OF STKS(I,J). THESE STATEMENTS ARE OF THE FORM */

/* STKS(2,2)=A(1,1). EACH STATEMENT IS WRITTEN TO A SEPERATE FILE

/* CALLED TT2XXX, WHERE XXX STARTS AT 001 FOR THE FIRST NONZERO ENTRY */

/* AND CONTINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH

/* STKS(18,18) ARE GENERATED. THE MACSYMA FUNTION GENTRAN WILL ALSO */

/* BREAK STATEMENTS EXCEEDING 800 INTO SHORTER EXPRESSIONS TO AVOID TOO */

/* MANY CONTINUATION LINES. MACSYMA AUTOMATICALLY MAKES CONTINUATION */

/* LINES COMPLETE WITH A LEGAL CHARACTER IN COLUMN 6. */

KO:ZEROMATRIX(18,18)$

FOR III THRU 18 DO FOR JJJ:III THRU 18 DO

KOEIII,JJJ]:KS[III,JJJJ;

FRAME(I,J):=CONCAT(TKS,EV(18*(I-1)+J+2000));

FOR I THRU 18 DO FOR J:I THRU 18 DO

(IF KO[I,J]*0 THEN (PT:1,GENTRAN(PCSTKS[EVAL(I),EVAL(J)]:EVAL(KO[I,J]),

[EVAL(FRAME(I,J))])))$

IF PT#1 THEN GENTRAN(PT:EVAL(PT),[TT2000])$

CLOSEFILE (;

QUITO;
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F4 SPHN1.MAC Input Deck

The MACSYMA input deck, SPHN1.MAC, generates all the nonzero entries of the

[N1 ] matrix for a spherical shell, including transverse shear effects.

WRITEFILE( "SPHN1.,F");

/ MACSYMA ROUTINE FOR ELEMENTAL CODE GENERATION BY S. A. SCHIMMELS */

* CREATED AS A PART OF AN AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) */

PhD PROGRAM IN AERONAUTICAL ENGINEERING --- MARCH 1993

MACSYMA IS A REGISTERED TRADEMARK OF

1* THE MASSACHUSETTS INSTITUTE OF TECHNONLOGY */
1* */

/* PROGRAM SPHNi.MAC: FOR A SPHERICAL SHELL. CREATES ELEMENT */

/* INDEPENDENT STIFFNESS ARRAYS N1 & NIS. */

/* INITIALIZE MACSYMA PARAMETERS AND DECLARE VARIABLE PROPERTIES *

[DYNAMALLOC:TRUE,DISKGC:TRUE,DERIVABBREV:TRUE,POWERDISP:TRUE]$

/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY NI.

/************************/*
/* ASSEMBLE MATRIX N1 */

/************************/*
TQ:MATRIX([Q(1) ,Q(2),Q(3) ,Q(4) ,Q(5) ,Q(6),Q(7),Q(8),Q(9),Q(10),

Q(II),Q(12),Q(13),Q(14),Q(15),Q(16),Q(17),Q(18)]);

Q:TRANSPOSE(TQ);

LOADFILE("SPH-LSMAT.SV");

LOADFILE ("SPH-HMAT. SV");

LO:SUBST([K=K,C=P,D=P2],LO)$

LI:SUBST([K=K,C=P,D=P2],LI)$

L2:SUBST([K=KI,C=PI,D=P2],L2)$

L3:SUBST([K=KI,C=PI,D=P2],L3)$

L4:SUBST([K=KI,C=PI,D=P2],L4)$
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L5 :SUBST ([K=K1, C=P , D=P2] ,L5) $

L6:SUBST([K=K1,C=P1,D=P2],L6)$

L7:SUBST ([K=K1, C=P , D=P2] ,L7) $

LOT:TRANSPOSE (LO) $

L1T:TRANSPOSE(L1) $

L2T:TRANSPOSE(L2) $

L3T:TRANSPOSE(L3)$

L4T:TRANSPOSE(L4) $

L5T:TRANSPOSE(L5) $

L6T:TRANSPOSE(L6) $

L7T:TRANSPOSE(L7) $

HO: SUBST ([K=K1, C=P , D=P2]J,HO) $

Hi:SUBST( [K=K1,C=P1,D=P2] ,H1)$

H2:SUBST ([K=Ki, C=P ,D=P2] ,H2) $

H3:SUBST([K=K1,C=P,D=P2],H3)$

H4:SUBST( [K=K1,C=P1,D=P2] ,H4)$

H5 :SUBST ([K=Ki, C=P1, DP2] ,H5) $

H6:SUBST([K=Kl,C=P1, D=P2],H6)$

H7 :SUBST ([K=K1, C=P1, DP2] ,H7) $

H8:SUBST([K=Ki,C=P,D=P2],H8)$

H9 :SUBST ([K=Ki, C=P1,DP2] ,H9) $

H1O :SUBST ([K=K1, C=P1, D=2] ,H1O) $

H11:StIBST((K=K1,C=P1,D=P2] ,H11) $

H12 :SUBST ([K='K1, CP1, DP2] ,H12) $

Ni: ZEROMATRIX (18, 18) $

FOR Il THRtJ 3 DO FOR JJ THRU 3 DO (PRINT(II,JJ),

(11:3*(-9*II1^2+33*I1-12), J2:3*(9*JJ^~2-39*JJ+48),

Ji:3*(-9*JJ^~2+33*JJ-12), 12:3*(9*II1^2-39*11+48),

SUBI : SUBI4ATRIX (HO,Ii, 1-i, 11-2, 11-3, 11-4,11-5, 11-6, 11-7, 11-8, 11-9,

Il-la, 11-li, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJO :SUBMATRIX (HO, J , J1-1 , J-2 , J-3 , J-4, j1-5 , J-6 ,Ji-7 ,Ji-8 , J-9,

i-1O,j1-11,j1-12,Ji-13,Ji-14,Ji-15,J71-16,Ji-17,

J2 ,J2-1,J2-2 ,J2-3, J2-4, J2-5, J2-6 ,J2-7, J2-8 ,J2-9,

J2-1 , J2-11, j2-12 ,J2-13 ,J2-14 ,J2-15, j2-16 ,J2-17),

PRINT("HO',II,JJ),

SUBIl SUBMATRIX (Hi, Ii, 1-i, 11-2,11-3, 11-4, 11-5, Ii-6, 11-7, 11-8, 11-9,

11-10, 11-il, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJI :SUBMATRIX (Hi, Ji, J1-1, J-2 , J-3 , j-4, Ji-5 , J-6 ,Ji-7 ,J1-8, J1-9,

J1-1O,ji-11,j1-12,Ji-13,J1-14,Ji-15,j1-16,Ji-17,

J2 ,J2- , J2-2 ,J2-3 ,J2-4, J2-5 ,J2-6 ,J2-7 ,J2-8 ,J2-9,
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J2-10,J2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,j2-17),

PRINT("H1',II,JJ),

SUBI2:SUBMATRIX (H2, i, Il-l, 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9,

Il-la, Il-il, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12, 12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8, 12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ2:SUBMATRIX(H2,J1,J1-1,J1-2,J1-3,J1-4,J1-5,J1-6,J1-7,J1-8,J1-9,

J1-10,J1-11,J1-12,J1-13,J1-14,J1-15,J1-16,J-17,

J2,J2-l,j2-2 ,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-10,J2-11,j2-12,j2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('H2',II,jj),

SUBI3:SUBMATRIX(}13,I1,I1-1,I1-2,I1-3,I1-4,I1-5,I1-6,I1-7,I1-8,I-9,

11-10, 1-l1, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ3:SUBMATRIX (13, Ji, J1-1,J1-2 ,J1-3 ,J1-4,J1-5 , J-6, J1-7 , J-8 ,J1-9,

Ji-l , Ji-li, J1-12 ,J1-13 , j-14 , Ji-iS, J-16 , J-17,

J2 ,J2-1,J2-2 ,J2-3 ,J2-4,J2-5 ,J2-6 ,J2-7 ,J2-8, J2-9,

J2-10,J2-11,j2-12,J2-13 ,j2-14,J2-15,j2-16,j2-17),

PRINT("H3" ,II,JJ),

SUB14:SUBMATRIX(H4,Il1,Il-l,Il-2,Il-3,I1-4,I1-5,Il-6,Il-7,I1-8,Il-9,

11-10, Il-ll, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ4:SUBMATRIX (H4 ,J , J1-1 ,J1-2 , J-3 ,J1-4 , J-5 ,J1-6 , J-7 , J-8 , J-9,

Ji-lO, Ji-l , J1-12 , J-13 , j-14, Ji-iS, J1-16 , J-17,

J2,j2-1,j2-2,j2-3,J2-4,j2-5,J2-6,J2-7,J2-8,j2-9,

J2-10, J2-11,J2-12 ,J2-13 ,J2-14, J2-15 ,J2-16 ,J2-17),

PRINT('H4',II,JJ),

SUBIS SUBMATRIX (H5, Il, 1-1, 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9,

11-10, 1-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ5:SUBMATRIX (15, Ji, J1-1,J1-2 , J-3 , J-4,J1-5 ,J1-6 ,J1-7 ,J1-8 ,J1-9,

Ji-lO, Ji-il , J-12 , J-13 , j-14, Ji-iS, J1-16 ,J1-17,

J2 ,J2-1, j2-2 ,J2-3 ,J2-4,J2-5, J2-6, J2-7 ,J2-8 ,J2-9,

J2-10,J2-11,j2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT(VH5',II,JJ),

SUBI6:SUBMATRIX (H6, Il, 11-i, 1-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9,

11-10,11-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12, 12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ6:SUBMATRIX({6 ,Ji,J1-1, j1-2 ,J1-3 ,J-4,j1-5, J1-6 ,J1-7,J1-8, J1-9,

Ji-lO ,J1-1 , J1-12 ,J1-13 , j-14, j1-15 ,J1-16 ,J1-17,

J2,J2-1,j2-2,J2-3,J2-4,J2-5,JT2-6,J2-7,J2-8,J2-9,

J2-10,J2-11,J2-12 ,J2-13,j2-14,J2-15,J2-16,J2-17),
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PRINT("H6",II,JJ),

SUB17:SUBMATRIX (H7, II,1-l,Il1-2,Il1-3,Il1-4,Il1-5,Il1-6,Il1-7,Il1-8, 11-9,

11-10, 1-11, 11-12,11-13, 11-14, 11-15, 11-16, 11-17,

12,I12-1,I12-2, 12-3,I12-4,I2-5,I2-6,I2-7,I2-8,I2-9f

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ7:SUBMATRIX(H7,J1,J1-l,J1-2,dl-3,J1-4,J1-5,J1-6,J1-7,J1-8,J1-9,

J1-10,j1-11,j1-12,j1-13,j1-14,J1-15,J1-16,J1-17,

J2,J2-1,j2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-10,J2-11,J2-12,j2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('H7",II,JJ),

SUB18:SUBMATRIX (H8, Il,Il-l,1l-2, 11-3,I11-4,Il1-5,I11-6,I11-7,I11-8,Il1-9,

11-10, 1-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5, 12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ8:SUBMATRIX (H8 ,Ji, J1-1,J1-2 , J-3 , J-4 , J-5 , J16, J17 ,J1-8 , J19

i-lO ,J1-11,J1-12 ,J1-13 , j-14,j1-15 , j-16 ,J1-17,

J2 ,J2-1, J2-2, J2-3 ,J2-4,J2-5 ,J2-6, J2-7 ,J2-8,J2-9,

J2-10 ,J2-11,J2-12 ,J2-13 ,J2-14,J2-15 ,J2-16 ,J2-17),

PRINT("H8%,II,JJ),

SUB19:SUBMATRIX (H9, Il,1-1,1-2,I11-3,I11-4,Il1-5,I11-6,I11-7,I11-8,I11-9,

12, 12-1, 12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ9:SUBMATRIX (H9 ,Ji, J1-1 ,J1-2 , J-3 , J-4 ,J1-5,J1-6 ,J1-7 , J-8, J1-9,

i-lO,Ji-il , j-12, j1-13 , J-14 ,J1-15 , j-16 , J-17,

J2 ,J2-l,j2-2 ,J2-3 ,J2-4, J2-5, J2-6 ,J2-7,J2-8 ,J2-9,

J2-10,J2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('H9",II,JJ),

SUBIlO SUBMATRIX (H1O, Il, 11-1, 1-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9,

11-10, 11-11, 1-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-11,I2-12,I2-l3,I2-14,I2-15,I2-16,I2-17),

SUBJ1O:SUBMATRIX(H1O,J1,Jl-1,J1-2,J1-3,J1-4,J1-5,jl-6,J1-7,J1-8,j1-9,

i-l, Ji-il , j-12 , j-13 ,jl-14, Ji-15i J-16, J1-17,

J2 ,J2-1,J2-2 ,J2-3 ,J2-4, J2-5, J2-6,J2-7,J2-8 ,J2-9,

J2-10,J2-11,J2-12,J2-13 ,J2-14,J2-15,j2-16,j2-17),

PRINT("HlO",II,JJ),

SUBIll SUBMATRIX(H11, Il, 11-1,11-2,11-3,11-4,11-5,11-6,11-7,11-8,11-9,

11-10, Il-il, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-11,I2-12,I2-13,I2-14,I2-15,I2-16fI2-17),

SUBJ11:SUBMATRIX(H11,J1,Jl-1,J1-2,J1-3,J1-4,J1-5,jl-6,j1-7,J1-8,J1-9,

i-l , Ji-1il -12 , j-13 , j-14, jl-15 , j-16 , J-17,

J2 ,J2-1,J2-2, J2-3 ,J2-4, J2-5, J2-6 ,J2-7 ,J2-8, J2-9,

J2-10 ,j2-11,J2-12 ,J2-13 ,J2-14, J2-15 ,J2-16 ,J2-17),

PRINT('H11',II,JJ),
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SUBI12:SUBMATRIX(Hl12,I,I1-1,I1-2,I1-3,I1-4,I1-5,I1-6,I1-7,I1-8,I1-9,

11-10,Il11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ12:SUBMATRIX(H2 , J1, J1-1, J-2 ,J1-3 , J-4, J1-5 , j-6 ,J-7 , J18 , J-9,

J1-10,J1-11,J1-12,J1-13,Jl-14,J1-15,J1-16,Jl-17,

J2 ,J2-1,J2-2 ,J2-3 ,J2-4, J2-5 ,j2-6,J2-7 ,J2-8,J2-9,

J2-10,J2-11,J2-12,J2-13,J2-14,J2-15,J2-16,j2-17),

PRINT('H12%,II,JJ),

N1:N1+A[II,Jj]*(

COL(LO,II) .TQ.StBJO+(TQ.COL(LO,II))*StJBJO+SUBIO.Q.ROW(LOT,JJ)),

PRINT ("NiA' ,II, JJ)

N1:N1+DD[II,JJ *(

COL(LO,II) .TQ.SUBJ2+(TQ.COL(LO,II))*SUBJ2+SUBI2.Q.ROW(LOT,JJ)+

COL(L1,II) .TQ.StBJ1+(TQ.COL(L1,II))*StBJ1+SUBI1.Q.ROW(L1T,jj)+

COL(L2,II) .TQ.SUBJO+(TQ.COL(L2,II))*SUBJO+SUBIO.Q.ROW(L2T,JJ)),

PRINT("N1DD" ,II,JJ),

N1:N1+F[II,Jj *(

COL(LO,II) .TQ.SUBJ4+(TQ.COL(LO,II))*SUBJ4+SUBI4.Q.ROW(LOT,JJ)+

COL(L1,II) .TQ.StBJ3+(TQ.COL(L1,II))*StBJ3+SUBI3.Q.ROW(L1T,JJ)+

COL(L2,II) .TQ.StBJ2±(TQ.COL(L2,II))*StBJ2+SUBI2.Q.RQW(L2T,JJ)+

COL(L3,II) .TQ.SUBJ1+(TQ.COL(L3,II))*SUBJ1+SUBI1.Q.ROW(L3T,JJ)+

COL(L4,II) .TQ.SUBJO+(TQ.COL(L4,II))*SUBJO+SUBIO.Q.ROW(L4T,JJ)),

PRINT('N1F',II,JJ),

N1:N1+H[II,Jj *(

COL(LO,II) .TQ.SUBJ6+(TQ.COL(LO,II))*StJBJ6+SUBI6.Q.ROW(LOT,JJ)+

COL(L1,II) .TQ.SUBJ5+(TQ.COL(L1,II))*STJBJ5+SUBI5.Q.ROW(L1T,JJ)+

COL(L2,II) .TQ.SUBJ4+(TQ.COL(L2,II))*StJBJ4+SUBI4.Q.ROW(L2T,JJ)+

COL(L3,II) .TQ.SUBJ3+(TQ.COL(L3,II))*StJBJ3+SUBI3.Q.ROW(L3T,JJ)+

COL(L4,II) .TQ.SUBJ2+(TQ.COL(L4,II))*SUBJ2+SUBI2.Q.ROW(L4T,JJ)+

COL(L5,II) .TQ.SUBJ1+(TQ.COL(L5,II))*SUBJ1+SUBI1.Q.ROW(L5T,JJ)+

COL(L6,II) .TQ.SUBJO+(TQ.COL(L6,II))*SUBJO+SJBIO.Q.ROW(L6T,JJ)),

PRINT("Nl",II,JJ),

N1:N1+J[II,Jj *(

COL(LO,II) .TQ.StBJ8+(TQ.COL(LO,II))*StBJ8+SUBI8.Q.ROW(LOT,jJ)+

COL(Ll,II) .TQ.SUBJ7+(TQ.COL(L1,II))*SUBJ7+SUBI7.Q.ROW(L1T,JJ)+

COL(L2,II) .TQ.SUBJ6+(TQ.COL(L2,II))*SUBJ6+SUBI6.Q.ROW(L2T,JJ)+

COL(L3,II) .TQ.SUBJ5+(TQ.COL(L3,II))*SUBJ5+SUBI5.Q.ROW(L3T,JJ)+

COL(L4,II) .TQ.SUBJ4+(TQ.COL(L4,II))*SUBJ4+SUBI4.Q.ROW(L4T,JJ)+

COL(L5,II) .TQ.SUBJ3+(TQ.COL(L5,II))*SUBJ3+SUBI3.Q.ROW(L5T,JJ)+

COL(L6,II) .TQ.SUBJ2+(TQ.COL(L6,II))*SUBJ2+SUBI2.Q.ROW(L6T,JJ)+

COL(L7,II) .TQ.SUBJ1+(TQ.COL(L7,II))*STJBJ1+SUBI1.Q.ROW(L7T,JJ)),

PRINT('N1J' ,II,JJ),

N1:N1+L[II,JJ] *

COL(LO,II) .TQ.SUBJ1O+(TQ.COL(LO,II))*SUBJ1O+SUBI1O.Q.ROW(LOT,JJ)+

COL(L1,II) .TQ.StBJ9+(TQ.COL(L1,II))*StBJ9+SUBI9.Q.ROW(L1T,JJ)+
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COL(L2,II) .TQ.StBJ8+f(TQ.COL(L2,II))*SUBJ8+SUBI8.Q.ROW(L2T,JJ)+

COL(L3,II) .TQ.SUBJ7+I(TQ.COL(L3,II))*SUBJ7+StJBI7.Q.ROW(L3T,JJ)+

COL(L4..II) .TQ.SUBJ6+(TQ.COL(L4,II))*SUBJ6+StJBI6.Q.ROW(L4T,JJ)+

COL(L5,II) .TQ.SUBJ5+(TQ.COL(L5,II))*SUBJ5+StJBI5.Q.ROW(L5T,JJ)+

COL(L6,II) .TQ.SUBJ4+(TQ.COL(L6,II))*SUBJ4ISUBI4.Q.ROW(L6T,JJ)+

COL(L7,II).TQ.SUBJ3+(TQ.COL(L7,II))*SUBJ3+SUBI3.Q.ROW(L7T,JJ)),

PRINT (--NiL" ,II, JJ),

N1:N1+R[II,JJ *(

COL(LO,II) .TQ.SUBJi2+(TQ.COL(LO,II))*SUBJi2±StJBIi2.Q.ROW(LOT,JJ)+

COL(L1,II) .TQ.SUBJi1+(TQ.COL(Li,II))*StJBJi1+SUBIi1.Q.ROW(LIT,JJ)+

COL(L2, II) .TQ.SUBJiO+(TQ.COL(L2,II))*SUBJ1O+SUBIIO.Q.ROW(L2T,jj)+

COL(L3,II) .TQ.SUBJ9.s(TQ.COL(L3,II))*SUBJ9+SUBI9.Q.ROW(L3T,jj)+

COL(L4,II) .TQ.SUBJ8+(TQ.COL(L4,II))*SUBJ8+StJBI8.Q.ROW(L4T,JJ)+

COL(L5,II) .TQ.SUBJ7+(TQ.COL(L5,II))*SUBJ7+SUBI7.Q.ROW(L5T,JJ)+

COL(L6,II) .TQ.SUBJ6+(TQ.COL(L6,II))*SUBJ6+SUBI6.Q.ROW(L6T,JJT)+

COL(L7,II) .TQ.SUBJ5+(TQ.COL(L7,II))*SUBJ5+SUBI5.Q.ROW(L7T,JJ)),

PRINT("NiR,II,JJ),

N1:Nl+T[II,jj] *

COL(L2,II) .TQ.StBJ2+(TQ.COL(L2,II))*SUBJ12+SUBIi2.Q.ROW(L2T,JJ)+

COL(L3,II) .TQ.SUBJ11 (TQ.COL(L3,II))*SUBJi1+SUBIli.Q.ROW(L3T,JJ)+

COL(L4,II) .TQ.SUBJiO+(TQ.COL(L4,II))*SUBJiO+SUBI1O.Q.ROW(L4T,Jj)+

COL(L5,II).TQ.SUBJ9+(TQ.COL(L5,II))*SUBJ9+SUBI9.Q.ROW(L5T,JJ)+

COL(L6,II) .TQ.SUBJ8+(TQ.COL(L6,II))*SUBJ8+SUEI8.Q.ROW(L6T,JJ)+

COL(L7,II) .TQ.SUBJ7+(TQ.COL(L7,II))*SUBJ7+SUBI7.Q.ROW(L7T,JJ)),

PRINT("-NlT",II,JJ),

Ni:N1+XH[II.JJ]*(

COL(L4,II) .TQ.SUBJi2+(TQ.COL(L4,II))*SUBJ12+StJBI12.Q.ROW(L4T,JJ)+

COL(L5,II) .TQ.SUBJii+(TQ.COL(L5,II))*StJBJ1i+SUBIii.Q.ROW(L5T,Jj)+

COL(L6,II) .TQ.SUBJiO+(TQ.COL(L6,II))*SUBJ10fSUBIiO.Q.ROW(L6T,JJ)+

COL(L7,II) .TQ.SUBJ9+(TQ.COL(L7,II))*SUBJ9+SUBI9.Q.ROW(L7T,JJ)),

PRINT (--N1XH' ,IJJ),

Ni:Ni+XJCII,JJ] *

COL(L6,II) .TQ.SUBJi2+(TQ.COL(L6,II))*SUBJ12+SUBIi2.Q.ROW(L6T,JJ)+

COL(L7,II) .TQ.SUBJii+(TQ.COL(L7,II))*SUBJi1+StJBI11.Q.ROW(L7T,JJ))L

PRINT("NiXJ",II,JJ),

KILL(SUBJ12,SUBI12,SUBJii,SUBI1i,SUBJ1O,SUBIIO),

KILL (SUBJO, SUBJi, SUBJ2 ,SUBJ3, SUBJ4, SUBJ5, SUBJ6, SUBJ7 ,SUBJ8, SUBJ9),

KILL(SUBIO,SUBI1,SUBI2,SUBI3,SUBI4,SUBI5,SUBE,SUBI7,SJBI8,SUBI9)))$

SAVE( "SPH-Ni.SV" ,N1);

KILL(LO,L1,L2,L3,L4,L5,L6,L7,LOT,LIT,L2T,L3T,L4T,L5T,L6T,L7T)$

KILL (HO ,Hi, H2 ,H3 ,14,H5 ,H6 ,H7 ,H18,19,HiO, Hil , H2) $

NiSYM: ZEROMATRIX(18,18) $

FOR II THRU 18 DO FOR JJ:II THRU 18 DO N1SYM[II,JJ]:NI[II,JJ]$

PRINT ("SYMMTETRIC Ni FORMED" )$

F-24



KILL (Ni) $

N1:ZEROMATRIX(18, 18) $

KILL (Q, TQ) $

/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH

/* NONZERO ELEMENT OF SN1(I,J). THESE STATEMENTS ARE OF THE FORM

/* SN1(2,2)=A(1,1). EACH STATEMENT IS WRITTEN TO A SEPERATE FILE CALLED*/

/* TT2XXX, WHERE XXX STARTS AT 001 FOR THE FIRST NONZERO ENTRY AND

1* CONTINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH SN1(18,18) *

/* ARE GENERATED. THE MACSYMA FUNTION GENTRAN WILL ALSO BREAK

/* STATEMENTS EXCEEDING 800 INTO SHORTER EXPRESSIONS TO AVOID TOO MANY ~
/* CONTINUATION LINES. MACSYMA AUTOMATICALLY MAKES CONTINUATION LINES ~
/* COMPLETE WITH A LEGAL CHARACTER IN COLUMN 6. *

FOR II THRU 18 DO FOR JJ:II THRU 18 DO

N1[II,JJ]:FACTOROUT(N1SYM[II,JJ],Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),Q(8),

Q(9) ,Q(10) ,Q(11) ,Q(12) ,Q(13) ,Q(14) ,Q(15) ,Q(16) ,Q(17) ,Q(18)) $

FRAME(I,J) :CONCAT(TN,EV(18*(I-1)+J+1000) )$

FOR I THRU 18 DO FOR J:I THRU 18 DO

(IF N1[IJ]#0 THEN (P1:1,GENTRAN(PCSN1[EVAL(I),EVAL(J)]:EVAL(N1[I,J]),

[EVAL(FRAME(I,J) ) )) )$

IF PU1l THEN GENTRAN(PT:EVAL(PT), [TT2000])$

/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY NiS.

/* ASSEMBLE MATRIX NiS ~

TQ:MATRIX( (Q(1) ,Q(2) ,Q(3) ,Q(4) ,Q(5) ,Q(6) ,Q(7) ,Q(8) ,Q(9) ,Q(10),

Q(11) ,Q(12) ,Q(13) ,Q(14) ,Q(15) ,Q(16) ,Q(17) ,Q(18) ];

Q:TRANSPOSE(TQ);

LOADFILE ("SPH-LSMAT .SV

SO:SUBST ( [K=K1, C=P1, DP2]SO) $

S1:SUBST([K=K1,C=P,DP2]S1)$

S2:SUBST ([K=K1, C=P1,DP2] ,52) $

S3:SUBST ([K=K1 C=P1 D=P2] ,S3) $

54:SUBST( [K=K1,C=P1,D=P2] ,54)$

55:SUBST([K=K1..C=P1,D=P2],55)$

S6:SUBST([K=K1,C=P,DP2],6)$

S7: SUBST ([K=K1, C=P1 D=P2] ,57) $
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SOT:TRANSPOSE(SO) $
SlT:TRANSPOSE(Sl) $

S2T:TRANSPOSE(S2) $

S3T:TRANSPOSE(S3) $

S4T:TRANSPOSE(S4) $

S5T:TRANSPOSE(S5)$

S6T:TRANSPOSE(S6) $

S7T:TRANSPOSE(S7) $

LOADFILE ( SPH-SSMAT. SV');

SSO:SUBST([K=K1,C=P1,D=P2],SSO)$

SSI:SUBST([K=Kl,C=P1,D=P2],SS1)$

SS2:SUBST([K=K1,C=Pl,D=P2],SS2)$

SS3:SUBST([K=K1,C=Pl,D=P2],SS3)$

SS4:SUBST([K=K1,C=Pl,D=P2],SS4)$

SS5:SUBST ([K=K , C=Pl, D=P2] ,SS5) $

SS6:SUBST([K=K1,C=Pl,D=P2] ,SS6)$

SS7:SUBST( [K=Kl,C=Pl,D=P2] ,SS7)$

SS8:SUBST( [K=Kl,C=Pl,D=P2) ,SS8)$

SS9:SUBST( [K=Kl,C=Pl,D=P2] ,SS9)$

SSIO:SUBST ([K=K1 C=PlDP2] ,SS1O) $

SS11:SUBST( [K=K1,C=Pl,DP2] ,SS11)$

S512:SUBST ([K=K , C=P1, D=P2] ,SS12) $

N1S:ZEROMATRIX(18, 18) $

FOR II THRU 2 DO FOR JJ THRU 2 DO (PRINT(II,JJ),

J2:3*(9*(JJ 1)^2-39*(JJ+1)+48),

SUBISO:SUBMATRIX(SSO,I2,I2-1,I2-2,I2-3,2-4,2-5,2-6,I2-7,I2-8,I2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJSO:SUBMATRIX(SSO,J2,j2-1,J2-2,J2-3,J2-4,J2-5,j2-E,J2-7,j2-8,j2-9,

J2-1O,J2-ll,j2-12 ,J2-13 ,J2-14,J2-15,J2--16,J2-17),

PRINT( "SSO" ,II,JJ),

SUBIS1:SUBI4ATRIX(SS1,I2,I2-1,I2-2,12-3,I2-4,I2-5,12-6,I2-7,I2-8,2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS1:SUBMATRIX(SS1,J2,J2-1,J2-2,J2-3,J2-4,J2-5,j2-6,j2-7,J2-8,J2-9,

J2-1O,J2-l1,j2-12,j2-13,J2-14,J2-15,j2-16,J2-17),

PRINT ("SS1 , II, JJ),

SUBIS2:SUBMATRIX(SS2,I2,I2-1,2-2,2-3,I2--4,I2-5,I2-6,I2-7,I2-8,I2-9,

12-10,12-11,12--12,12-13,12-14,12-15,12-16,12-17),

SUBJS2:SUBMATRIX(SS2,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,j2-7,J2-8,J2-9,

J2-1O,J2-11.j2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT("SS2",II,JJ),
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SUBIS3:SUBMATRIX(SS3,I2,I2-1,I2-2,I2-3,I2-4,I2-5,I2-6,I2-7,12-8,I2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS3:SUBMATRIX(SS3,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,j2-7,J2-8,J2-9,

J2-1O,J2-1l,J2-12,j2-13,j2-14,J2-15,J2-16,J2-17),

PRINT("SS3",II,JJ),

SUBIS4:SUBMATRIX(SS4,I2,I2-1,I2-2,2-3,12-4,I2-5,I2-6,I2-7,I2-8,2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS4:SUBMATRIX(SS4,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-1O,J2-11,J2-12 ,j2-13,j2--14,J2-15,J2-16,J2-17),

PRINT("SS4",II,jj),

SUBIS5:SUBMATRIX(SS5,I2,I2-1,2-2,2-3,I2-4,I2-5,I2-6,2-7,12-8,I2-9,

12-10,12-11,12-12,12-13,12-14,12--15,12-16,12-17),

SUBJS5:SUBMATRIX(SS5,J2,J2-1,J2-2,j2-3,j2-4,j2-5,J2-6,J2-7,J2-8,J2-9,

J2-1O.,J2-l1,j2-12 ,j2-13 ,J2-14,J2-15,J2-16,j2-17),

PRINT (SSS5" ,II, JJ),

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS6:SUBI4ATRIX(SS6,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,j2-7,J2-8,J2-9,

J2-1O,J2-11,J2-12,j2-13 ,j2-14,J2-15,J2-16,J2-17),

PRINT("SS6',II,jj),

SUBIS7:StJBMATRIX(SS7,I2,I2-l,I2-2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,I2-9,

12-10,12-11,.12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS7:SUBMATRIX(SS7,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,j2-9,

J2-lO,J2-ll,j2-12,j2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT("SS7",II,JJ),

SUBIS8:STJBDATRIX(SS8,I2,I2-1,I2-2,I2-3,12-4,I2-5,I2-6,I2-7,2-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS8:SUBMATRIX(SS8,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-1O, J2-11, J2-12,j2-13, j2-14, J2-15 ,J2-16, j2-17),

PRINT("SS8',II,JJ),

SUBIS9:StJBMATRIX(SS9,I2,I2-1,I2-2,I2-3,12-4,2-5,I2-6,I2-7,12-8,2-9,

12-10,12-11,12-(12,12-13,12-14,12-15,12-16,12-17),

SUBJS9:SUBMATRIX(SS9,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,j2-9,

J2-1O,J2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT("SS9',II,JJ),

SUBISlO:SUBMATRIX(SS1O,I2,I2-1,I2-2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS1O:SUBMATRIX(SS1O,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-1O,J2-11,J2-12,j2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('SS1O',II,JJ),

SUBIS11:SUBMATRIX(SS11,I2,I2-1,12-2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS11: SUBMATRIX(SS11, J2 ,J2-1, J2-2 ,J2-3 ,J2-4,J2-5 ,J2-6,J2-7 ,J2-8, J2-9,

J2-lO,J2-l1,J2-12 ,j2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT ("SS11S. IJJ),

SUBIS12:SUBMATRIX(SS12,I2,I2-1,I2--2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,12-9,
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12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS12:SUBMATRIX(SS12 ,J2 ,J2-1, J2-2 ,J2-3 ,J2-4,J2-5, J2-6, J2-7,J2-8,J2-9,

J2-lO,J2-ll,J2-12 ,J2-13, j2-14,J2-15, J2-16 ,J2-17),

PRINT("SSl2",II,jj),

N1S:NlS+AS(II,JJ] *

COL(SO,II).TQ.SUBJSO+(TQ.COL(SO,II))*SUBJSO+SUBISOQROW(SOTJ)),

PRINT("N1AS",II,JJ),

N1S:N1S+DS [II, JJ] *

COL(SO,II) .TQ.StBJS2+(TQ.COL(SO,II))*SUBJS2+SUBIS2.Q.ROW(SOT~jj)+

COL(S1,II) .TQ.SUBJSl+(TQ.COL(Sl,II))*SUBJSl+SUBISl.Q.ROW(S1T.JJ)+

COL(S2 ,II).TQ.SUBJSO+(TQ.COL(S2,II))*STBJSO+SUBISOQROW(S2T~jj)),

PRINT("N1DS',II,JJ),

NlS:N1S+FS[II,JJ] *

COL(SO,II).TQ.SUBJS4+(TQ.COL(SO,II))*SUBJS4+SUBIS4QROW(SOT~jj)+

COL(Sl,II) .TQ.SUBJS3+(TQ.COL(Sl,II))*SUBJS3+SUBIS3.Q.ROW(SlT,Jj)+

COL(S2 ,II).TQ.SUBJS2+(TQ.COL(S2,II))*SUBJS2SUBIS2QROW(S2TJJ)+

COL(S3,II).TQ.SUBJS1+(TQ.COL(S3,II))*SUBJS+SUBIS.Q.ROW(S3TJJ)+

COL(S4,II).TQ.SUBJSO+(TQ.COL(S4,II))*SUBJSO+SUBISOQROW(S4TJJ)),

PRINT ( NlFS",II, JJ),

NlS:NlS+HS[II,JJ] *(

COL(SO,II).TQ.SUBJS6+(TQ.COL(SO,II))*SUBJS6+SUBIS.Q.ROW(SOTJJ)+

COL(Sl,II).TQ.SUBJS5+(TQ.COL(Sl,II))*SUBJS5+SUBIS5QROW(SITJJ)+

COL(S2,II) .TQ.StBJS4+(TQ.COL(S2,II))*SUBJS4+SUBIS4.Q.ROW(S2TJJ)+

COL(S3,II) .TQ.StBJS3+(TQ.COL(S3,II))*SUBJS3 SUBIS3.Q.ROW(S3T,JJ)+

COL(S4,II).TQ.SUBJS2+(TQ.COL(S4,II))*SUBJS2+SUBIS2QROW(S4TJJ)+

COL(S5,II).TQ.SUBJSl+(TQ.COL(S5,II))*SUBJS1+SUBIS.Q.ROW(S5TJJ)+

COL(S6,II).TQ.SUBJSO+(TQ.COL(S6,II))*SUBJSO+SUBISOQ.ROW(S6TJJ)),

PRINT('NlHS",II,JJ),

N1S:N1S+JS[II,Jj *(

COL(SO,II).TQ.SUBJS8+(TQ.COL(SO,II))*SUBJS8+SUBIS8.QROW(SOTJJ)+

COL(Sl,II).TQ.SUBJS7+(TQ.COL(Sl,II))*SUBJS7+SUBIS7QROW(SITJJ)+

COL(S2,II).TQ.SUBJS6+(TQ.COL(S2,II))*SUBJS6+SUBIS6QROW(S2TJJ)+

COL(S3 ,II).TQ.SUBJS5+(TQ.COL(S3,II))*SUBJS5+SUBIS5QROW(S3TJJ)+

COL(S4 ,II).TQ.SUBJS4+(TQ.COL(S4,II))*SUBJS4+SUBIS4QROW(S4TJJ)+

COL(S5,II).TQ.SUBJS3+(TQ.COL(S5,II))*SUBJS3+SUBIS3QROW(S5TJJ)+

COL(S6,II).TQ.SUBJS2+(TQ.COL(S6,II))*SUBJS2+SUBIS2QROW(S6TJJ)+

COL(S7,II).TQ.SUBJS1+(TQ.COL(S7,II))*SUBJS1+SUBIS1.Q.ROW(S7T,JJ)),

PRINT("NlJS",II,JJ),

NlS:NlS+LS[II,JJ *(

COL(SO,II) .TQ.SUBJSlO+(TQ.COL(SO,II))*SUBJSlO+SUBISlO.Q.ROW(SOT,JJ)+

COL(Sl,II) .TQ.SUBJS9+(TQ.COL(S1,II))*SUBJS9+SUBIS9.Q.ROW(SlT,JJ)+

COL(S2,II).TQ.SUBJS8+(TQ.COL(S2,II))*SUBJSSUBIS8QROW(S2TJJ)+

COL(S3 ,II).TQ.SUBJS7+(TQ.COL(S3,II))*SUBJS7+SUBIS7QROW(S3TJJ)+

COL(S4 ,II).TQ.SUBJS6+(TQ.COL(S4,II))*SUBJS6+SUBIS.Q.ROW(S4TJJ)+

COL(S5,II).TQ.SUBJSS+(TQ.COL(S5,II))*SUBJS5+SUBIS.QROW(S5TJJ)+

COL(S6,II) .TQ.SUBJS4+(TQ.COL(S6,II))*SUBJS4+SUBIS4.Q.ROW(S6T,JJ)+
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COL(S7,II).TQ.SUBJS3+(TQ.COL(S7,II))*SUBJS3+SUBIS3.Q.ROW(S7T,,JJ)),

PRINT("NlLS",II.JJ),

NlS:NlS+RS[II,Jj] *

COL(SO,II) .TQ.SUBJSl2+(TQ.COL(SO,II))*SUBJS12+SUBIS12.Q.ROW(SOT,JJ)+

COL(Sl,II) .TQ.SUBJS11+(TQ.COL(Sl,II))*SUBJS11+SUBISll.Q.ROW(S1T,JJ)+

COL(S2,II) .TQ.SUBJS1O+(TQ.COL(S2,II))*SUBJSlO+StJBISlO.Q.ROW(S2T,JJ)+

COL(S3,II).TQ.SUBJS9+(TQ.COL(S3,II))*StJBJS9+SUBIS9.Q.ROW(S3T,Jj)+

COL(S4,II).TQ.SUBJS8+(TQ.COL(S4,II))*SUBJS8+SUBIS8.Q.ROW(S4T,jj)+

COL(S5,II).TQ.SUBJS7+(TQ.COL(SS,II))*SLJBJS7+SUBIS7.Q.ROW(S5T,ij)+

COL(S6,II).TQ.SUBJS6+(TQ.COL(S6,II))*StJBJS6+SUBIS6.Q.ROW(S6T,JJ)+

COL(S7,II).TQ.StJBJS5+(TQ.COL(S7,II))*SUBJS5+SUBIS5.Q.ROW(ST,jj)),

PRINT("NlRS",II,JJ),

NiS :NlS+TS [II,JJ *(

COL(S2,II).TQ.SUBJSl2f+(TQ.COL(S2,II))*SUBJSl2+SUBIS12.Q.ROW(S2T,JJ)+

COL(S3,II) .TQ.SUBJS1l+(TQ.COL(S3,II))*StJBJSl1+SUBIS11.Q.ROW(S3T,JJ)+

COL(S4,II).TQ.SUBJS1Os+(TQ.COL(S4,II))*SUBJS1O+SUBIS1O.Q.ROW(S4T,JJ)+

COL(SS,II) .TQ.SUBJS9+(TQ.COL(S5,II))*SUBJS9+StJBIS9.Q.ROW(S5T,JJ)+

COL(S6,II).TQ.SUBJS8+(TQ.COL(S6,II))*SUBJS8+StJBIS8.Q.ROW(S6T,JJ)+

COL(S7,II).TQ.SUBJS7+(TQ.COL(S7,II))*SUBJS7+ISUBIS7.Q.ROW(S7T,JJ)),

PRINT('-NlTS-,II,JJ),

NlS :NlS+XHS [II, JJ] *

COL(S4,II).TQ.SUBJSl2+I(TQ.COL(S4,II))*SUBJS12+SUBIS12.Q.ROW(S4T,JJ)+

COL(S5,II) .TQ.SUBJSll+(TQ.COL(S5..II))*SUBJS11+SUBISl.Q.ROW(S5T,JJ)+

COL(S6,II) .TQ.SUBJSlO+(TQ.COL(S6,II))*SUBJS1O+SUBIS1O.Q.ROW(S6T,JJ)+

COL(S7,II).TQ.SUBJS9+(TQ.COL(S7,II))*SUBJS9+SIBIS9.Q.ROW(S7T,jj)),

PRINT( "NiXHS , II,JJ),

NlS:NlS+XJS [II, JJ *(

COL(S6,II).TQ.SUBJS12 (TQ.COL(S6,II))*SUBJS12+SUBIS12.Q.ROW(S6T,JJ)+

COL(S7,II) .TQ.SUBJS1i+(TQ.COL(s7,II))*SUBJSll+SUBISll.Q.ROW(S7T,JJ)),

PRINT( 'NlXJS",II,JJ),

KILL(SUBJS12,SUBIS12,SUBJS1l,SUBIS1,SUBJSO,SJBIS1O),

KILL (SUBJSO, SUBJS1, StBJS2 , StBJS3, SUBJS4, SUBJS5, StBJS6),

KILL (SUBJS7, SUBJS8, SUBJS 9),

KILL(SUBISO,SUBISl,SUBIS2,SUBIS3,SUBIS4,SUBIS5,SJBIS6),

KILL (SUBIS7, SUBIS8, StBIS9)) $

SAVE("SPH-NlS.SV",N1S);

KILL (SSO, SS1, SS2, SS3, SS4, 555, SS6, SS7, SS8, SS9, SSlO, SS1, SSl2) $
KILL(SQ,Sl,S2,S3,S4,S5,S6,S7,SOT,S1T,S2T,S3T,S4T,S5T,S6T,S7T)$

NlSYM:ZEROMATRIX(18, 18) $
FOR II THRU 18 DO FOR JJ:II THRU 18 DO N1SYM[II,JJ]:NlS[II,JJI$

PRINT ("SYMMETRIC Ni FORM4ED") $

KILL (N1,N1S) $

Nl:ZEROMATRIX(18, 18)$

KILL(Q,TQ) $
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/ ******************************************************WW/

/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH */

/* NONZERO ELEMENT OF SNIS(I,J). THESE STATEMENTS ARE OF THE FORM

/* SNIS(2,2)=A(I,I). EACH STATEMENT IS WRITTEN TO A SEPERATE FILE CALLED*/

/* TT2XXX, WHERE XXX STARTS AT 0i FOR THE FIRST NONZERO ENTRY AND

/* CONTINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH SNIS(18,18) */
/* ARE GENERATED. THE MACSYMA FUNTION GENTRAN WILL ALSO BREAK

/* STATEMENTS EXCEEDING 800 INTO SHORTER EXPRESSIONS TO AVOID TOO MANY */

/* CONTINUATION LINES. MACSYMA AUTOMATICALLY MAKES CONTINUATION LINES */

/* COMPLETE WITH A LEGAL CHARACTER IN COLUMN 6. */

FOR II THRU 18 DO FOR JJ:II THRU 18 DO

NI[II,JJ]:FACTOROUT(NISYM[II,JJ],Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),Q(8),

Q(9),Q(10),Q(11),Q(12),Q(13),Q(14),Q(15),Q(16),Q(17),Q(18))$

FRAME(I,J):=CONCAT(TNS,EV(18*(I-1)+J+1000))$

FOR I THRU 18 DO FOR J:I THRU 18 DO

(IF NI[I,J]#0 THEN(PT:1,GENTRAN(PCSNIS[EVAL(I),EVAL(J)]:EVAL(NI[I,J]),

[EVAL(FRAME(I,J))])))$

IF PT#1 THEN GENTRAN(PT:EVAL(PT), [TT2000])$

CLOSEFILE (;

QUITO;
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E5 SPHN2.BJ Input Deck

The MACSYMA input deck, SPHN2.B 1, generates all the nonzero entries of the

[N2] matrix for a spherical shell. Because the [N2] is fully populated, and due to lim-

ited disk space on the SPARC2 workstations, this input deck calculates entries for rows 1

through 6 (out of a total of 18) of this matrix.

WRITEFILE( "SPHN2 .WF");
/************************************************************************/*
/************************************************************************/*

/* MACSYMA ROUTINE FOR ELEMENTAL CODE GENERATION BY S. A. SCHIMMELS */

/* CREATED AS A PART OF AN AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) */

/* PhD PROGRAM IN AERONAUTICAL ENGINEERING --- MARCH 1993

/* MACSYMA IS A REGISTERED TRADEMARK OF

/* THE MASSACHUSETTS INSTITUTE OF TECHNONLOGY */
/* */

/* PROGRAM SPHN2.B1: FOR A SPHERICAL SHELL. CREATES ELEMENT */

/* INDEPENDENT STIFFNESS ARRAY N2, ROWS 1-6.
/************************************************************************/*

/************************************************************************/*

/* INITIALIZE MACSYMA PARAMETERS AND DECLARE VARIABLE PROPERTIES *

[DYNAMALLOC :TRUE, DISKGC : TRUE, DERIVABBREV: TRUE, POWERDISP : TRUE] $

/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY N2.

*************************

/* ASSEMBLE MATRIX N2 */
/*************************

TQ:MATRIX([Q(1) ,Q(2),Q(3),Q(4) ,Q(5),Q(6) ,Q(7) ,Q(8) ,Q(9) ,Q(10),

Q(11) ,Q(12) ,Q(13) ,Q(14),Q(15) ,Q(16),Q(17) ,Q(18) );

Q:TRANSPOSE(TQ);

LOADFILE("SPH-HMAT.SV");

HO :SUBST ( [K=KI, C=PI,D=P2 ], HO) $

HI: SUBST ( [K=KI, C=P, D=P2 ], HI) $

H2:SUBST([K=KI,C=P1,D=P2],H2)$

H3:SUBST([K=KI,C=P,D=P2],H3)$
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H4:SUBST( [K=K1,C=P1,D=P2] ,I-4)$

H5:SUBST( [K=K1,C=P1,D=P2] ,H5)$

H6:SUBST ([K=K1, C=P1, D=P2] ,H6) $

H7 :SUBST ([K=K1, C=P , D=P2] ,H7) $

H8:SUBST([K=K1,C=P1,D=P2],H8)$

H9:StJBST([K=K1,C=P1,D=P2],H9)$

H10 SUBST ([K=K1, C=P , D=P2] , HO) $

Hl1:SUBST( [K=K1,C=P1,D=P2] ,H11) $

H12:SUBST([K=K1,C=P1,D=P2J,H12)$

N2 :ZEROMATRIX(18, 18) $

CA: 1 /2;

CB: 1/3;

CC:2/3;

FOR II THRU 3 DO FOR JJ THRU 3 DO (PRINT(II,JJ),

(I1:3*(-9*II^~2+33*II-12), J2:3*(9*JJ'^2-39*JJ+48),

J1:3*(-9*JJ^~2+33*JJ-12), 12:3*(9*11^~2-39*11+48),

SUBIO :SUBMATRIX (HO, Il, 1-l, 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9,

11-10, 11-li, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJO :SUBMATRIX (HO,Ji, J1-1, J1-2 , J-3 , J-4, j1-5 , J-6, J1-7 , j-8 , J-9,

Ji-lO, Ji-l , J1-12, J1-13 , j-14 , Ji-i, J1-16, j1-17,

J2, j2-1, J2-2 ,J2-3 ,J2-4,J2-5, J2-6 ,j2-7 ,J2-8, J2-9,

J2-1O,J2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('HO",II,JJ),

SUBI1:SUBMATRIX(H1,Il,I1-1,I1-2,I1-3,I1-4,I1-5,I1-6,I1-7,I1-8,I1-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ1:SUBMATRIX(H1,J1,J1-1,J1-2,Jl-3,J1-4,J1-5,J1-6,Jl-7,J1-8,j1-9,

Ji-l , Ji-li, J1-12 ,J1-13 , J-14, Ji-i , J1-16 , j-17,

J2,J2-1,J2-2,J2-3,J2-4,J2-5,j2-6,J2-7,J2-8,J72-9,

J2-10, J2-11,J2-12 ,J2-13 ,J2-14, J2-15 ,J2-16, j2-17),

PRINT("H1',II,JJ),

SUB12 :SUBMATRIX (H2,11,Il-l,1-2,Il1-3,I11-4,I11-5,I11-6,I11-7,Il1-8,Il1-9,

11-10, 1-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ2:SUBMATRIX (H2 ,Ji , J1-1,J1-2 , J-3 , J-4 , J-5 , J-6, J1-7 ,J1-8 ,J1-9,

J1-10,J1-11,J1-12,J1-13,J1-14,J1-15,J1-16,j1-17,

J2,J2-1,J2-2,J2-3,j2-4,J2-5,j2-6,j2-7,J2-8,J2-9,

J2-10, J2-11,J2-12 ,J2-13 ,J2-14,J2-15 ,J2-16 ,J2-17),

PRINT("H2",II,jj),

SUB13 :SUBMATRIX (H3 ,Il,Il-l,I11-2,I11-3,Il-4,I11-5,I11-6,I11-7,Il1-8,Il1-9,

11-10, 1-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,
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12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,129,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

J1-1O,j1-11,Jl-12,jl-13,j1-14,Jl1,J1-16,J1-17,

J2,J2-1,J2-2,j2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-10,J2-11,J2-12,j2-13 ,j2-14,J2-15,J2-16,J2-17),

PRINT("H3",II,JJ),

SUB14:SUBMATRIX(H4, Il, Il-l,Il1-2,Il1-3,Il1-4,Il1-5,Il1-6,Il1-7,Il1-8,I11-9,

11-10, 1-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ4:SUBMATRIX (H4 ,Ji , J1-1,J1-2, J-3 ,j1-4, J1-5 , J-6 , J-7 , J-8 , j-9,

i-10, Jl-li, J1-12 , j-13 , J-14, J1-15 , J-16 , J-17,

J2,J2-1,j2-2,J2-3,j2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-10,j2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT("H4' ,II,JJ),

SUB15:SUBMATRIX (H5, Il,Il-l,1-2,I11-3,Il1-4,I1l-5,I11-6,I11-7,I11-8,I11-9,

11-10, 1-l1, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12, 12-1,12-2,12-3,12-4,12-5, 12-6, 12-7, 12-8, 12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ5:SUBMATRIX (H5 ,Ji, J1-1 ,J1-2 , J-3 ,J1-4 , J-5 ,J1-6, J1-7 , J-8 ,J1-9,

J1-10,J1-11,Jl-12,J1-13,j1-14,J1-15,J1-16,Jl-17,

J2,J2-l,j2-2,J2-3,j2-4,j2-5,J2-6,J2-7,J2-8,J2-9,

J2-10,j2-11,J2-12,j2-13 ,J2-14,J2-15,J2-16,j2-17),

PRINT ( H5", II, JJ)

SUB16:SUBMATRIX (H6, Il,Il-l,11-2,I11-3,Il1-4,I11-5,I11-6,I11-7,I11-8,I11-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ6:SUBMATRIX (H6 ,Ji, J1-1 ,J1-2 ,J1-3 ,J1-4 ,J1-5 ,J1-6 ,J1-7 ,J1-8 ,J1-9,

Ji-l , Ji-il , j-12 , J-13 ,J1-14 ,Ji-i , J1-16 , J-17,

J2 ,J2-1,j2-2 ,J2-3 ,J2-4, J2-5 ,J2-6, J2-7 ,J2-8 ,J2-9,

J2-10,J2-11,J2-12,J2-13,J2-14,J2-15,J2-16,J2-17),

PRINT("H6',II,jj),

SUB17:SUBMATRIX (H7, Il,Il-l,1-2,I1l-3,I11-4,I11-5,Il1-6,I11-7, 11-8,I11-9,

11-10, 1-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ7:SUBMATRIX (H7 ,Ji, J1-1 ,J1-2 , J-3 , J-4 , J-5, J1-6,J1-7 ,J1-8, J1-9,

Ji-l , Ji-il, j1-12, J1-13 , J-14 ,Ji-iS, J1-16 ,J1-17,

J2 ,J2-1,J2-2 ,J2-3 ,J2-4,J2-5 ,j2-6, J2-7 ,J2-8 ,J2-9,

J2-10,J2-11,J2-12,J2-13 ,J2-14,J2-15,j2-16,J2-17),

PRINT("H7',II,JJ),

SUBI8:SUBMATRIX (H8, Il, 1-1, 11-2,11-3,11-4,11-5,11-6,11-7,11-8,11-9,

11-10, 1-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
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12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ8:SUBMATRIX(N8,J1,J1-1,J1-2,J1-3,J1-4,J1-5,Jl-6,J1-7,J1-8,J1-9,

Ji-lO,Ji-ill, J1-12, J1-13, J1-14, Ji-i , Ji-l , J1-17,

J2,J2-1,J2-2,J2-3,J2-4,J2-5,j2-6,J2-7,J2-8,J2-9,

J2-10,J2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('N8',II,JJ),

SUB19:SUBMATRIX (H9, Il,Il-I,1l-2,Il-3,11-4,Il-5,Il1-6,I11-7,Il1-8,Il1-9,

I1-10,I1-11,I1-12,I1-13,I1-14,I1-15,I1-16, 11-17,

12, 12-1, 12-2, 12-3, 12-4, 12-5, 12-6, 12-7, 12-8, 12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ9:SUBMATRIX (19, Ji, J1-1,J1-2, J1-3 ,J1-4, J1-5, J1-6 ,J1-7, J1-8, J1-9,

Ji-l , Ji-ill,J1-12, J1-13, J1-14, J1-15 , Ji- , J1-17,

J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-10,J2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('N9",II,JJ),

SUBI1O:SUBMATRIX(1-11,I11-1,11-2,I1-3,I1-4,I1-5,I1-6,I1-7,11-8,I1-9,

11-10, 1-11, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12, 12-1,12-2,12-3,12-4,12-5, 12-6,12-7, 12-8, 12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ1O:SUBMATRIX(N1O,J1,j1-1,J1-2,J1-3,J1-4,J1-5,J1-6,J1-7,J1-8,J1-9,

Ji-l , Ji-li, J1-12 ,J1-13 ,J1-14, Ji-i , J1-16, J1-17,

J2 ,J2-1,J2-2 ,J2-3 ,J2-4,J2-5 ,J2-6, J2-7 ,J2-8 ,J2-9,

J2-10,J2-11,J2-12,J2-13,J2-14,J2-15,J2-16,J2-17),

PRINT('H1O',II,JJ),

SUBI11:SUBMATRIX(H11,I1,I1-1,I1-2,I1-3,I1-4,I1-5,I1-6,I1-7,I1-8,I1-9,

Il-la, Il-11-12, 11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJil: SUBMATRIX (Nil,J , J1-1, J1-2, J1-3 ,J1-4,J1-5, J1-6, J1-7 ,J1-8 ,J1-9,

Ji-l , Ji-li, J1-12 ,J1-13 ,J1-14, Jl-i , J1-16 ,J1-17,

J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-10,J2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT ('l' ,II, JJ),

SUBI12 :SUBMATRIX (N12, Il, 1-1, 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9,

Il-la, 1-11, 11-12,11-13, 11-14, 11-15, 11-16, 11-17,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ12 :SUBMATRIX (N12, Ji, J1-1, J1-2, J1-3 ,J1-4 ,J1-5 ,J1-6 ,J1-7, J1-8 ,J1-9,

i-l , Ji-l , Jl-12 ,J1-13, J1-14 ,Ji-iS, Ji-l , J1-17,

J2 ,J2-1, J2-2, J2-3 ,J2-4, J2-5,J2-6,J2-7 ,J2-8 ,J2-9,

J2-10,J2-11,J2-12,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('H12',II,JJ),

N2:N2+ A[II,JJ]*(SUBIO.Q.TQ.SUBJO+CA*(TQ.SUBJO.Q)*SUBIO),

PRINT('N2A' ,II,JJ),

N2:N2+DDEII,JJ]*(CB*(SUBIO.Q.TQ.SUBJ2+CA*(TQ.SUBIO.Q)*SUBJ2+

SUB12.Q.TQ.SUBJO+CA*(TQ.SUBI2.Q)*SUBJO)+
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SUBII.Q.TQ.SUBJ1+CA*(TQ.SUBJ1.Q)*SUBII),

PRINT("N2D",II,JJ),

N2:N2+ F[II,JJ]*(CB*(SUBIO.Q.TQ.SUBJ4+CA*(TQ.SUBIO.Q)*SUBJ
4 +

SUBI4.Q.TQ.SUBJO+CA*(TQ.SUBI4.Q)*SUBJO)+

CC*(SUBII.Q.TQ.SUBJ3+CA*(TQ.SUBII.Q)*SUBJ3+

SUBI3.Q.TQ.SUBJ1+CA*(TQ.SUBI3.Q)*SUBJ1)+

SUBI2.Q.TQ.SUBJ2+CA*(TQ.SUBJ2.Q)*SUBI2),

PRINT("N2F",II,JJ),

N2:N2+ H[II,JJ]*(CB*(SUBIO.Q.TQ.SUBJ6+CA*(TQ.SUBIOQ)*SUBJ6+

SUBI6.Q.TQ.SUBJO+CA*(TQ.SUBI6.Q)*SUBJO)+

CC*(SUBII.Q.TQ.SUBJ5+CA*(TQ.SUBII Q)*SUBJ5+

SUBI5.Q.TQ.SUBJ1+CA*(TQ.SUBI5 .Q)*SUBJ1)+

CC*(SUBI2.Q.TQ.SUBJ4+CA*(TQ.SUBI2 Q)*SUBJ4+

SUBI4.Q.TQ.SUBJ2+CA*(TQ.SUBI4.Q)*SUBJ2)+

SUBI3.Q.TQ.SUBJ3+CA*(TQ.SUBJ3.Q)*SUBI3),

PRINT("N2H",II,JJ),

N2:N2+ J[II,JJ]*(CB*(SUBIO.Q.TQ.SUBJ8+CA*(TQ.SUBIO.Q)*SUBJ8+

SUBI8.Q .TQ.SUBJO+CA*(TQ.SUBI8.Q)*SUBJO)+

CC*(SUBII.Q.TQ.SUBJ7+CA*(TQ.SUBII.Q)*SUBJ7+

SUBI7.Q.TQ.SUBJ1+CA*(TQ.SUBI7.Q)*SUBJ1)+

CC*(SUBI2.Q.TQ.SUBJ6+CA*(TQ.SUBI2.Q)*SUBJ6+

SUBI6.Q.TQ.SUBJ2+CA*(TQ.SUBI6.Q)*SUBJ2)+

CC*(SUBI3.Q TQ.SUBJ5+CA*(TQ.SUBI3.Q)*SUBJ5+

SUBI5.Q.TQ.SUBJ3+CA*(TQ.SUBI5.Q)*SUBJ3)+

SUBI4.Q.TQ.SUBJ4+CA*(TQ.SUBJ4.Q)*SUBI4),

PRINT("N2J",II,JJ),

N2:N2+ L[II,JJ]*(CB*(SUBIO.Q.TQ.SUBJ1O+CA*(TQ.SUBIO.Q)*SUBJIO+

SUBI1O.Q.TQ.SUBJO+CA*(TQ.SUBIl.Q)*SUBJO)+

CC*(SUBII.Q.TQ.SUBJ9+CA*(TQ.SUBII.Q)*SUBJ9+

SUBI9.Q.TQ.SUBJI+CA*(TQ.SUBI9.Q)*SUBJ1)+

CC*(SUBI2.Q.TQ.SUBJ8+CA*(TQ.SUBI2.Q)*SUBJ8+

SUBI8.Q.TQ.SUBJ2+CA*(TQ.SUBI8.Q)*SUBJ2)+

CC*(SUBI3.Q.TQ.SUBJ7+CA*(TQ.SUBI3.Q)*SUBJ7+

SUBI7.Q.TQ.SUBJ3+CA*(TQ.SUBI7.Q)*SUBJ3)+

CC*(SUBI4.Q.TQ.SUBJ6+CA*(TQ.SUBI4.Q)*SUBJ6+

SUBI6.Q.TQ.SUBJ4+CA*(TQ.SUBI6.Q)*SUBJ4)+

SUBI5.Q.TQ.SUBJ5+CA*(TQ.SUBJ5.Q)*SUBI5),

PRINT("N2L",II,JJ),
N2:N2+ R[II,JJ]*(CB*(SUBIO.Q.TQ.SUBJ2+CA*(TQ.SUBIO.Q)*SUBJ12+

SUBI12.Q.TQ.SUBJO+CA*(TQ.SUBI12.Q)*SUBJO)+

CC*(SUBII.Q.TQ.SUBJ11+CA*(TQ.SUBII.Q)*SUBJ11+

SUBIII.Q.TQ.SUBJ1+CA*(TQ.SUBIll.Q)*SUBJI)+

CC*(SUBI2.Q.TQ.SUBJ1O+CA*(TQ.SUBI2.Q)*SUBJ10+

SUBIIO.Q.TQ.SUBJ2+CA*(TQ.SUBI10.Q)*SUBJ2)+

CC*(SUBI3.Q.TQ.SUBJ9+CA*(TQ.SUBI3.Q)*SUBJ9+

SUBI9.Q.TQ.SUBJ3+CA*(TQ.SUBI9.Q)*SUBJ3)+
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CC*(SUB14.Q.TQ.SUBJ8+CA*(TQ.SUBI4.Q)*SUBJ8+

StBI8.Q.TQ.SUBJ4+CA* (TQ.SUBI8.Q) *SUBJ4)+

CC* (SUB15 .Q.TQ. SUBJ7+CA* (TQ. SUBI5 .Q) *SUBJ7+
SUB17 .Q.TQ. SUBJ5+CA* (TQ. SUBI7.Q) *SUBJ5) +

SUB6.Q.TQ.SUBJ6+CA*(TQ.SUBJ6.Q)*SUBI6),

PRINT("N2R",II,JJ),

N2:N2+ T[II,JJ]*(CC*(SUBI2.Q.TQ.SUBJ12+CA*(TQ.SUBI2.Q)*SUBJ12+

SUBI12.Q.TQ.SUBJ2+CA*(TQ.SUBI12.Q) *SUBJ2)+

CC* (SUB13 .Q.TQ.SUBJ11+CA* (TQ.SUBI3 .Q)*SBJ1

SUBI11.Q.TQ.SUBJ3+CA* (TQ.SUBI11.Q) *SUBJ3) +

CC*(SUB14.Q.TQ.SUBJ10+CA*(TQ.SUBI4.Q) *SUBJ10+

SUBIlO.Q. TQ.SUBJ4+CA* (TQ. SUBIlO Q) *SUBJ4) +
CC* (SUB15 .Q .TQ. SUBJ9+CA* (TQ. SUBI5 .Q) *SUBJ9+

SUB19.Q.TQ.SUBJ5+CA* (TQ.SUBI9.Q) *SUBJ5)+

CC* (SUB16.Q.TQ. SUBJ8+CA* (TQ. SUBI6 .Q) *SUBJ8+
SUB18.Q.TQ.S1JBJ6+CA* (TQ.SUBI8.Q) *SUBJ6)+

SUB17.Q.TQ.SUBJ7+CA*(TQ.SUBJ7.Q)*SUBI7),

PRINT("N2T',II,JJ),

N2 :N 2+XH(II,JJ)*(CC*(SUBI4.Q.TQSUBJ12+CA*(TQSUBI4.Q)*SUBJ12+

SUBI12.Q.TQ. SUBJ4f+CA* (TQ. SUBI12 .Q) *SUBJ4) +
CC*~(SUB15 .Q.TQ. SUBJ11+CA* (TQ. SUBI5 .Q) *SUBJ11+

SUBI11.Q.TQ.suBJ5+CA* (TQ.SUBIl1.Q) *SUBJ5)+

CC*(SUB16.Q.TQ.SUBJ10+CA*(TQ.SUBI6.Q) *SUBJ10+

SUBI1O.Q.TQ.SUBJ6+CA*(TQ.SUBIIO.Q) *SUBJ6)+

CC*(SUB17.Q.TQ.SUBJ9+CA*(TQ.SUBI7.Q)*SUBJ9+

SUB19.Q.TQ.SUBJ7 CA* (TQ.SUBI9.Q) *SUBJ7)+

SUBI8.Q.TQ.SUBJ8+CA*(TQ.SUBJ8.Q)*SUBI8),

PRINT("N2XH",II,JJ),

N2 :N2+XJ[II,JJ]*(CC*(STBI.Q.TQ.SUBJ12+CA*(TQSUBI6.Q)*SUBJ12+

SUBI12 .Q.TQ. SUBJ6+CA* (TQ. SUBI12.Q) *SUBJ6) +
CC*(SUB17.Q.TQ.SUBJ11+CA*(TQ.SUBI7.Q)*SUBJ11+

SUBI11.Q.TQ.SUBJ7+CA*(TQ.SUBIll1Q) *SUBJ7)+

CC*(SUBI8.Q.TQ.SUBJlO+CA* (TQ.SUBI8.Q) *SUBJ1O+

SUBI1O.Q.TQ.SUBJ8+CA*(TQ.SUBIlO.Q) *SUBJ8)+

SUB19.Q.TQ.SUBJ9+CA*(TQ.SUBJ9.Q)*SUBI9),

PRINT("N2XJ' ,II,JJ),

N2 :N 2+XL[II,Jj]*(CC*(STBI8QTQ.SUBJ12+CA*(TQ.SUBI8.Q)*SUBJ12+

SUBI12.Q.TQ.SUBJ8+CA* (TQ.SUBI12.Q) *SUBJ8)+

CC*~(SUB19.Q.TQ. SUBJ11+CA* (TQ. SUBI9.Q) *SUBJ11+

SUBI11.Q.TQ.SUBJ9+CA*(TQ.SUBIll.Q) *SUBJ9)+

SUBI1O.Q.TQ.SUBJ1O+CA*(TQ.SUBJ1O.Q)*SUBIIO),

PRINT("N2XL' ,II,JJ),

N2 :N 2+XR[II,jj]*(CC*(SUBIO.Q.TQSUBJ12+CA*(TQSUBIlO.Q)*SUBJ12+

SUBI12.Q.TQ.SUBJ1O+CA*(TQ.SrBI12.Q)*SUBJ10)+

SUBI11.Q.TQ.SUBJ11+CA*(TQ.SUBJ11.Q)*SUBIll),

PRINT("N2XR" ,II,JJ),
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N2:N2+XT[II,JJJ]*(SUBI12.Q.TQ.SUBJ12+CA*(TQ.5UBJ12.Q)*SUBI12),

PRINT("N2XT",II,JJ),

KILL(SUBJ12,SUBI12,SUBJ11,SUBI11,SUBJ1O,SUBI1O),

KILL (SUBJO, SUBJ1, SUBJ2, SUBJ3 ,SUBJ4, SUBJ5, SUBJG, SUBJ7, SUBJ8, SUBJ9),

KILL(SUBIO,SUBI1,SUBI2,SUBI3,SUBI4,SUBI5,SUBI6,SUBI7,SUBI8,SUBI9) ))$

KILL (HO,Hi, H2 ,H3 ,H4 ,H5 ,H6 ,H7, H8 ,HS ,H10,Hil ,H12) $

N2SYM:ZEROMATRIX(18, 18) $

SAVE ("SPH-N2 .SV" ,N2) $

FOR II THRU 18 DO FOR JJ:II THRU 18 DO N2SYM[II,JJ]:N2[II,JJ]$

PRINT ("SYMMETRIC N2 FORMED") $

KILL (N2) $

NTEMP1:ZEROMATRIX(18, 18) $

KILL(Q,TQ) $

/ * THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH*/

/* NONZERO ELEMENT OF SN2(I,J). THESE STATEMENTS ARE OF THE FORM

/* 5N2(2,2)=A(1,1). EACH STATEMENT IS WRITTEN TO A SEPERATE FILE CALLED*/

/* TT2XXX, WHERE XXX STARTS AT 001 FOR THE FIRST NONZERO ENTRY AND *
/* CONTINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH 5N2(18,18) *
/* ARE GENERATED. THE MACSYMA FUNTION GENTRAN WILL ALSO BREAK

/* STATEMENTS EXCEEDING 800 INTO SHORTER EXPRESSIONS TO AVOID TOO MANY ~
/* CONTINUATION LINES. MACSYMA AUTOMATICALLY MAKES CONTINUATION LINES ~
/* COMPLETE WITH A LEGAL CHARACTER IN COLUMNh 6. *

FRAME(I,J):=CONCAT(TN,EV(18*(I-1)+J+1OOO))$

FOR II:1 THRU 2 DO FOR JJ:II THRU 18 DO

NTEMP1[II,JJ]:FACTOROUT(N2SYM[II,JJJ,Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),

Q(8) ,Q(9) ,Q(10) ,Q(11) ,Q(12) ,Q(13) ,Q(14) ,Q(15) ,Q(16) ,Q(17) ,Q(18)) $

SAVE("NTEMP1.SV" ,NTEMP1);

FOR I:1 THRU 2 DO FOR J:I THRU 18 DO

(IF NTEMP1[I,JJ#0 THEN (PT:1,GENTRAN(5N2(EVAL(I),EVAL(J)]:EVAL(NTEMP1[I,JD),

[EVAL(FRAME(I,J) ) )) )$

KILL (NTEMP1) $

NTEMP2 :ZEROMATRIX(18, 18) $

FOR 11:3 THRU 4 DO FOR JJ:II THRU 18 DO

NTEMP2 [II,JJ] :FACTOROUT(N2SYM[II,JJ] ,Q(1) ,Q(2) ,Q(3) ,Q(4) ,Q(5) ,Q(6) ,Q(7),

Q(8) ,Q(9) ,Q(10) ,Q(11) ,Q(12) ,Q(13) ,Q(14) ,Q(15) ,Q(16) ,Q(17) ,Q(18)) $

SAVE ("NTEMP2 .SV" ,NTEM[P2);
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FOR 1:3 THRU 4 DO FOR J:I THRU 18 DO

(IF NTEMP2[I,J]#O THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)):EVAL(NTEMP2[I,J]),

[EVAL(FRAME(I,J) ) )) )$

KILL (NTEMP2)$

NTEMP3 :ZEROMATRIX(18, 18) $

FOR 11:5 THRU 6 DO FOR JJ:II THRU 18 DO

NTEMP3[II,JJ] :FACTOROUT(N2SYM[II,JJ] ,Q(1) ,Q(2) ,Q(3) ,Q(4) ,Q(5) ,Q(6) ,Q(7),

Q(8) ,Q(9) ,Q(10) ,Q(11) ,Q(12) ,Q(13) ,Q(14) ,Q(15) ,Q(16) ,Q(17) ,Q(18) )$

SAVE("NTEMP3.SV" ,NTEMP3);

FOR 1:5 THRU 6 DO FOR J:I THRJ 18 DO

(IF NTEMP3[I,J)#O THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)J:EVAL(NTEMP3[I,J]),

[EVAL(FRAME(I,J) ) )) )$

KILL (NTEMP3) $

CLOSEFILEOf;

QUITO;
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F6 SPHN2.B2 Input Deck

The MACSYMA input deck, SPHN2.B2, generates all the nonzero entries of the

[N2] matrix for a spherical shell. Because the [N2] is fully populated, and due to lim-

ited disk space on the SPARC2 workstations, this input deck calculates entries for rows 7
through 12 (out of a total of 18) of this matrix. The only difference between the

SPHN2.B 1 and the SPHN2.B2 input decks is shown below.

FOR II THRU 18 DO FOR JJ:II THRU 18 DO N2SYM[II,JJ]:N2[II,JJ]$

PRINT("SYMMETRIC N2 FORMED")$

KILL (N2) $

NTEMP4:ZEROMATRIX(18,18) $

KILL(Q,TQ) $

/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH */

/* NONZERO ELEMENT OF SN2(I,J). THESE STATEMENTS ARE OF THE FORM

/* SN2(2,2)=A(1,1). EACH STATEMENT IS WRITTEN TO A SEPERATE FILE CALLED*/

/* TT2XXX, WHERE XXX STARTS AT 001 FOR THE FIRST NONZERO ENTRY AND

/* CONTINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH SN2(18,18) */

/* ARE GENERATED. THE MACSYMA FUNTION GENTRAN WILL ALSO BREAK

/* STATEMENTS EXCEEDING 800 INTO SHORTER EXPRESSIONS TO AVOID TOO MANY */

/* CONTINUATION LINES. MACSYMA AUTOMATICALLY MAKES CONTINUATION LINES */

/* COMPLETE WITH A LEGAL CHARACTER IN COLUMN 6.

FRAME(I,J) :=CONCAT(TN,EV(18*(I-1)+J+1000))$

FOR II:1 THRU 2 DO FOR JJ:II THRU 18 DO

NTEMP4[II,JJ]:FACTOROUT(N2SYM[II,JJ],Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),

Q(8),Q(9) ,Q(10) ,Q(11),Q(12) ,Q(13) ,Q(14) ,Q(15) ,Q(16) ,Q(17),Q(18))$

SAVE( "NTEMP4.SV',NTEMP4);

FOR I:1 THRU 2 DO FOR J:I THRU 18 DO

(IF NTEMP4[I,J]#0 THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)]:EVAL(NTEMP4[I,J]),

[EVAL(FRAME(I,J))])))$

KILL(NTEMP4) $

NTEMP5 :ZEROMATRIX (18,18) $

FOR 11:3 THRU 4 DO FOR JJ:II THRU 18 DO

NTEMP5[II,JJ]:FACTOROUT(N2SYM[II,JJ],Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),

Q(8),Q(9) ,Q(10) ,Q(11),Q(12) ,Q(13) ,Q(14) ,Q(15) ,Q(16) ,Q(17) ,Q(18))$

SAVE( "NTEMP5.SV",NTEMP5);
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FOR 1:3 THRU 4 DO FOR J:I THRU 18 DO

(IF NTEMP5[I,J]#O THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)]:EVAL(NTEMP5[I,J]),

[EVAL(FRAME(I,J) )])) ))$
KILL (NTEMP5)$

NTEMP6:ZEROMATRIX (18,18) $

FOR 11:5 THRU 6 DO FOR JJ:II THRU 18 DO

NTEMP6[II,JJ] :FACTOROUT(N2SYM[II,JJ] ,Q(1) ,Q(2) ,Q(3) ,Q(4) ,Q(5) ,Q(6) ,Q(7),

Q(8) ,Q(9) ,Q(1O) ,Q(11) ,Q(12) ,Q(13) ,Q(14) ,Q(15) ,Q(16) ,Q(17) ,Q(18)) $

SAVE ( 'NTEMP6.SW' ,NTEMP6);

FOR 1:5 THRU 6 DO FOR J:I THRtJ 18 DO

(IF NTEMP6[I,J]#O THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)]:EVAL(NTEMP6[I,J]),

[EVAL(FRAME(I,J) )]J)) )$

KILL (NTEMP6) $

CLOSEFILE O;

QUITO;
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F7 SPHN2.B3 Input Deck

The MACSYMA input deck, SPHN2.B3 generates all the nonzero entries of the

[N 2] matrix for a spherical shell. Because the [N2] is fully populated, and due to lim-

ited disk space on the SPARC2 workstations, this input deck calculates entries for rows 13
through 18 (out of a total of 18) of this matrix. The only difference between the

SPHN2.B 1 and the SPHN2.B3 input decks is shown below.

FOR II THRU 18 DO FOR JJ:II THRU 18 DO N2SYM[II,JJ]:N2[II,JJ]$

PRINT ( "SYMMETRIC N2 FORMED" ) $

KILL (N2) $
NTEMP7 :ZEROMATRIX(18,18) $
KILL(Q,TQ) $

/ ***W******************************W*WW*****************WW****/

/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH

/* NONZERO ELEMENT OF SN2(I,J). THESE STATEMENTS ARE OF THE FORM */
/* SN2(2,2)=A(1,1). EACH STATEMENT IS WRITTEN TO A SEPERATE FILE CALLED*/

/* TT2XXX, WHERE XXX STARTS AT 001 FOR THE FIRST NONZERO ENTRY AND

/* CONTINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH SN2(18,18) */

/* ARE GENERATED. THE MACSYMA FUNTION GENTRAN WILL ALSO BREAK

/* STATEMENTS EXCEEDING 800 INTO SHORTER EXPRESSIONS TO AVOID TOO MANY */

/* CONTINUATION LINES. MACSYMA AUTOMATICALLY MAKES CONTINUATION LINES */

/* COMPLETE WITH A LEGAL CHARACTER IN COLUMN 6. */

FRAME(I,J):=CONCAT(TN,EV(18*(I-1)+J+1000))$

FOR II:1 THRU 2 DO FOR JJ:II THRU 18 DO

NTEMP7[II,JJ]:FACTOROUT(N2SYM[II,JJ],Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),

Q(8),Q(9) ,Q(10),Q(11) ,Q(12) ,Q(13),Q(14) ,Q(15),Q(16) ,Q(17) ,Q(18))$

SAVE( "NTEMP7.SV",NTEMP7);

FOR I:1 THRU 2 DO FOR J:I THRU 18 DO

(IF NTEMP7[I,JI#0 THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)]:EVAL(NTEMP7[I,J]),

[EVAL(FRAME(I,J)) ])))$

KILL (NTEMP7) $

NTEMP8 :ZEROMATRIX(18,18) $
FOR 11:3 THRU 4 DO FOR JJ:II THRU 18 DO

NTEMP8[II,JJ] :FACTOROUT(N2SYM[II,JJ],Q(1),Q(2) ,Q(3),Q(4),Q(5) ,Q(6) ,Q(7),

Q(8),Q(9) ,Q(10) ,Q(11) ,Q(12) ,Q(13),Q(14) ,Q(15),Q(16) ,Q(17),Q(18))$

SAVE ( "NTEMP8. SV" ,NTEMP8);
FOR 1:3 THRU 4 DO FOR J:I THRU 18 DO

(IF NTEMP8[I,J]#0 THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)]:EVAL(NTEMP8[I,J]),

[EVAL(FRAME(I,J)) ])))$

F-41



KILL (NTEMP8)$

NTEMP9:ZEROMATRIX(18, 18) $

FOR 11:5 THRU 6 DO FOR JJ:II THRU 18 DO

NTEMP9[II,JJ] :FACTOROUT(N2SYMtII,JJ] ,Q(1) ,Q(2) ,Q(3) ,Q(4) ,Q(5) ,Q(6) ,Q(7),
Q(8) ,Q(9) ,Q(1O) ,Q(11) ,Q(12) ,Q(13Y',Q(14) ,Q(15) ,Q(16) ,Q(17) ,Q(18)) $

SAVE("NTEMP9.SV' ,NTEMP9);

FOR 1:5 THRU 6 DO FOR J:I THRU 18 DO

(IF NTEMP9[I,J]#O THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)]:EVAL(NTEMP9[I,JJ),

[EVAL(FRAME(I,J) )] )) )$
KILL (NTEMP9) $

CLOSEFILE O;

QUITO;
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F8 SPHN2S.MAC Input Deck

The MACSYMA input deck, SPHN2S.MAC generates all the nonzero entries of

the [,&2,] matrix for a spherical shell for transverse shear effects.

WRITEFILE("SPHN2S.WF");
/ **********************WWWW*******W*W*WW*****************W*W***WW/

/ *************************W**********W************************WW**WWW**W/

/* MACSYMA ROUTINE FOR ELEMENTAL CODE GENERATION BY S. A. SCHIMMELS */

/* CREATED AS A PART OF AN AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) */
PhD PROGRAM IN AERONAUTICAL ENGINEERING --- MARCH 1993 */

/* MACSYMA IS A REGISTERED TRADEMARK OF

/* THE MASSACHUSETTS INSTITUTE OF TECHNONLOGY */
/ * *1

/* PROGRAM SPHN2S.B3: FOR A SPHERICAL SHELL. CREATES ELEMENT */

/* INDEPENDENT STIFFNESS ARRAY N2 & N2S. */

/* INITIALIZE MACSYMA PARAMETERS AND DECLARE VARIABLE PROPERTIES */

[DYNAMALLOC:TRUE,DISKGC:TRUE,DERIVABBREV:TRUE,POWERDISP:TRUE]$

/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY N2S. */

/*************************/*

/* ASSEMBLE MATRIX N2S */
/***************************
TQ:MATRIX([Q(1) ,Q(2),Q(3) ,Q(4) ,Q(5),Q(6) ,Q(7) ,Q(8) ,Q(9) ,Q(10),

Q(11),Q(12),Q(13),Q(14),Q(15),Q(16),Q(17),Q(18)]);

Q:TRANSPOSE(TQ);

LOADFILE ("SPH-SSMAT.SV");

SSO:SUBST([K=KI,C=P1,D=P2] ,SSO);

SSI:SUBST( [K=KI,C=P1,D=P2] ,SS);

SS2:SUBST([K=KI,C=PI,D=P2],SS2);

SS3:SUBST([K=KI,C=PI,D=P2],SS3);

SS4:SUBST([K=KI,C=PI,D=P2],SS4);

SS5:SUBST([K=KI,C=PI,D=P2],SS5);

SS6:SUBST( [K=KI,C=PI,D=P2] ,SS6);
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SS7:SUBST( [K=Kl,C=P1,D=P2] ,SS7);

SS8:SUBST( [K=Kl,C=Pl,D=P2] ,SS8);

SS9:SUBST( [K=K1,C=P1,D=P2] ,SS9);

SS1O:SUBST([K=K1,C=P1,D=P2],SS1O);

SS11:SUBST([K=Kl,C=Pl,D=P2],SS11);

SS12 :SUBST ([K=Kl, C=P , D=P2] ,SS12);

N2S:ZEROMATRIX(18, 18) $

CA: 1 /2;

CB:1/3;

CC: 2/3;

FOR II THRU 2 DO FOR JJ THRU 2 DO (PRINT(II,JJ),

(J2:3*(9*(Jj+l)^~2-39*(JJT+1)+48),

12:3*(9*(11+1)^2-39*(11+1)+48),

SUBISO :SUBMATRIX(SSO, 12,12-1,12-2, 12-3, 12-4,12-5, 12-6, 12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJSO:SUBMATRIX(SSO,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-1O,J2-11,J2-12 ,J2-13,J2-14,J2-15,J2-16,J2-17),

PRINT("SSO" ,II,JJ),

StBIS1:SUBMATRIX(SSI,I2,I2-1,I2-2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17).

SUBJS1:SUBMATRIX(SS1,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,j2-9,

J2-1O,J2-ll,j2-12 ,j2-13,j2-14,J2-15,J2-16,J2-17),

PRINT("SS1",II,JJ),

SUBIS2 :SUBMATRIX(SS2, 12, 12-i, 2-2, 12-3, 12-4, 12-5, 12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS2:SUBMATRIX(SS2,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,j2-9,

J2-1O ,J2-11, J2-12, j2-13, j2-14, J2-15 ,J2-16,J2-17),

PRINT ("SS2",II, JJ),

SUBIS3:SUBMATRIX(SS3,I2,I2-1,I2-2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

StBJS3:SUBMATRIX(SS3,J2,J2-1,j2-2,J2-3,j2-4,J2-5,j2-6,J2-7,J2-8,J2-9,

J2-1O,j2-11,J2-12,j2-13,J2-14,J2-15,J2-16,J2-17),

PRINT("SS3',II,JJ),

SUBIS4:SUBMATRIX(SS4,I2,I2-1,I2-2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,I2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

StBJS4:SUBMATRIX(SS4,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,j2-9,

J2-1O,J2-11,J2-12,j2-13 ,j2-14,J2-15,J2-16,J2-17),

PRINT ("SS4", II,JJ),

SUBISS:SUBMATRIX(SS5,I2,I2-1,I2-2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,I2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS5:SUBMATRIX(SSS,J2,J2-1,J2-2,J2-3,J2-4,J2-5,j2-6,J2-7,j2-8,J2-9,

J2-1O,J2-11,J2-12 ,j2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT('SS5',II,JJ),

SUBIS6:SUBMATRIX(SS6,I2,I2-1,I2-2,I2-3,I2-4,I2-5,I2-6,I2-7,I2-8,I2-9,

12-10,12-11,12--12,12-13,12-14,12-15,12-16,12-17),
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SUBJS6:SUBMATRIX(SS6,J2,J2-,j2-2,j2-3,j2-,2-,J2-,J2-6,j2J8J29,

J2-lO,J2-l11J2-12 ,J2-13 ,J2-14,J2-15,J2-l6,J2-17),

PRINT("SSG",II,JJ),

SUBIS7:SUBMATRIX(SS7,12,2-1,2-2,2-3I2-42-5,2-6,2-7,I-8>9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS7:SUBMATRIX(SS7,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J27,J-8J-9,

J2-1O,J2-1l,J2-12,J2-13,J2-14,J2-l5,J2-16,J2-17),

PRINT (" SS7" ,II, JJ),

SUBIS8:SUBMATRIX(SS8,I2,I2-1,I2-2,I2-3I2-4,I2-5,I2-GjI2-7,I2-8I29,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS8:SUBMATRIX(SS8,J2,J2-l,J2-2 ,J2-3 ,J2-4,J2-5, J2-6,J2-7,42-8, J2-9,

J2-lO,J2-ll,J2-12,J2-13 ,J2-14,J2-15,,J2-16,J2-17),

PRINT ("SS8" ,II, JJ),

SUBIS9:SUBMATRIX(SS9,12,12-1,12-2,12-3,I2-4,I2-5,I2-6,I2-7,I2-8,I2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJS9:SUBMATRIX(S59,J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-lO, J2-1l,J2-12,J2-13 ,J2-14,J2-15 ,J2-16 ,J2-17),

PRINT("SS9",II,JJ),

SUBISlO:SUBMATRIX(SS1O,I2,I2-1,I2-2,I2-3,I2-4I2-5,I2-6,I2-7I2-8,2-g,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJSlO:SUBMATRIX(SSlO,J2,J2-l,J2-2,J2-3,J2-4,J2-5,j2-6,J2-7,J2-8,J2>9,

J2-1O,J2-11,J2-12 ,J2-13 ,J2-14,J2-15,J2-16,J2-17),

PRINT("SSlO",II,JJ),

SUBIS1l:SUBMATRIX(SS11,12,12-1,12-2,12-3,12-4,2-5,2-6,2-7I2-8,I2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12--16,12-17),

SUBJS1. StBMATRIX(SS1l,J2 ,J2-1, J2-2 ,J2-3 ,J2-4,J2-5 ,J2-6,J2-7 ,J2-8,J2-9,

J2-lO, J2-1ll J2-12 ,J2-13,J2-14,J2-15 ,J2-l6 ,J2-17),

PRINT("SS1l",II,JJ),

SUBISl2:SUBDATRIX(SS12,2,I2-lI2-2,I2-3,I2-4,I2-5,I2-6I2-7,I2-8,I2-9,

12-10,12-11,12--12,12-13,12-14,12-15,12-16,12-17),

SUBJSl2:SUBMATRIX(SSl2,J2,J2-l,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-lO.J2-l1,J2-12 ,J2-13 ,J2-14,J2--15,J2-16,j2-17),

PRINT("SSl2",II,JJ),

N2S:N2S+ AtII,JJ]*(SUBISO.Q.TQ.SUBJSO+CA*(TQ.suBrsO.Q)*suBIso),

PRINT("N2SA%-II,JJ),

N2S:N2S+DD[II,JJ]*(CB*(SUBISO.Q.TQ.SUBJS2+cA*(TQ.SUBISO.Q)*suBJs2+

SUBIS2 .Q.TQ. SUBJSO+CA* (TQ.SIJBIS2.Q) *SUBJSO) +

SUBISl.Q.TQ.SUBJS1+cA*(TQ.SUBJSl.Q)*SUBIs1),

PRINT("N2SD',II,JJ),

N2S:N2S+ F[II,JJ]*(CB*(SUBISO.Q.TQ.SUBJS4+CA*(TQ.suBIsO.Q)*suBJs4+

StJBIS4 .Q.TQ. SUBJSO+CA* (TQ. SUBIS4 .Q) *SUBJSO) +
CC*(STJBISl.Q.TQ.SUBJS3+cA*(TQ.suBIS1.Q) *SUBJS3+

5UB1S3 .Q.TQ.StTBJSl+CA* (TQ.SUBIS3 .Q) *SUBJS1) +
SUB1S2.Q.TQ.SUBJS2+CA*(TQ.SUBJS2.Q)*sUBIs2),

PRINT("N2SF",II,JJ),

N28:N2S+ H[II,JJI*(CB*(SUBISO.Q.TQ.SJBJsE+CA*(TQ.STJBISO.Q)*SUBJsG
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SUBIS6.Q.TQ.SUBJSO+CA*(TQ.SUBIS6.Q)*SUBJSO)+

CC*(SUBIS1.Q.TQ.SUBJS5+CA*(TQ.StJBIS1.Q)*SUBJS5+

SUBIS5 .Q.TQ. StBJS1+CA* (TQ. StBIS5 .Q) *SUBJS1) +
CC- (SUBIS2 .Q.TQ. StBJS4+CA* (TQ. StBIS2 .Q) *SUBJS4+

SUBIS4.Q.TQ.SUBJS2+CA*(TQ.SUBIS4.Q)*SUBJS2)+

SUBIS3.Q.TQ.SU-BJS3+CA*(TQ.SUBJS3.Q)*SUBIS3),

PRINT ("N2SH"4,IJJ),

N2S:N2S+ J[II,Jj]*(CB*(SUBISO.Q.TQ.suBJS8+CA*(TQ.SUBIso.Q)*suBJs8+

SUBIS8.Q.TQ. SUBJSO+CA* (TQ. SUBIS8 .Q) *SUBJSO) +
CC* (SUBISi .Q .TQ. SUBJS7+CA* (TQ. SUBISi .Q) *SUBJS7+

SUBIS7.Q .TQ. SUBJS1+CA* (TQ. SUBIS7 .Q) *SUBJS1) +
CC* (SUBIS2 .Q .TQ. SUBJS6+CA* (TQ. SUBIS2.Q) *SUBJS6+

SUBIS6.Q.TQ.SUBJS2+CA*(TQ.SUBIS6.Q)*SUBJS2)+

CC* (SUBIS3 .Q.TQ.SUBJS5+CA* (TQ.SUBIS3 .Q) *SUBJS5{
SUBIS5.Q.TQ.SUBJS3±CA*(TQ.SUBIS5.Q)*SUBJS3)+

SUBIS4.Q.TQ.SUBJS4+CA* (TQ.SUBJS4.Q) *SUBIs4),

PRINT("N2SJ',II,JJ),

N2S:N2S+ L[II,JJ]*(CB*(SUBISO.Q.TQ.SUBJS1O+CA*(TQ.SUBISO.Q)*SUBJSIO+

SUBIS1O.Q.TQ.SUBJSO+CA*(TQ.SUBIS1O.Q) *SUBJSO)+

CC* (SUBISi .Q.TQ. SUBJS9+CA* (TQ. SUBIS1.Q) *SUBJS9+

SUBIS9 .Q.TQ. SUBJS1 CA* (TQ. SUBIS9.Q) *SUBJS1) +

CC*(SUBIS2.Q.TQ.SUBJS8+CA*(TQ.SUBIS2.Q)*SUBJS8+

SUBIS8.Q.TQ.SUBJS2+CA*(TQ.SUBIS8.Q) *SUBJS2)+

CC* (SUBIS3 .Q.TQ.SUBJS7+CA* (TQ.SUBIS3 .Q) *SUBJS7+
SUBIS7.Q.TQ.SUBJS3+CA*(TQ.SUBIS7.Q)*SUBJS3)+

CC*(SUBIS4.Q.TQ.SUBJS6+CA*(TQ.SUBIS4.Q)*SUBJS6+

SUBIS6.Q .TQ.SUBJS4+CA* (TQ. SUBIS6 .Q) *SUBJS4) +
SUBIS5.Q.TQ.SUBJS5+CA*(TQ.SUBJS5.Q)*SUBIS5),

PRINT("N2SL",II,JJ),

N2S:N2S+ R[II,JJ]*(CB*(SUBISO.Q.TQ.SUBJS12+CA*(TQ.SUBISO.Q)*SuBJSl2+

SUBIS12.Q.TQ. SUBJSO+CA* (TQ. SUBIS12.Q) *SUBJSO) +

CC*(SUBISl.Q.TQ.SUBJS11+CA*(TQ.SUBISl.Q)*SUBJSll+

SUBISl1.Q.TQ.SUBJS1+CA*(TQ.SUBIS11.Q)*SUBJS1)+

CC* (SUBIS2 .Q.TQ.SUBJS1O+CA* (TQ.SUBIS2 .Q) *SUBJS1Q+
SUBISlO .Q .TQ.SUBJS2+CA* (TQ. SUBISlO .Q) *SUBJS2) +

CC*~(SUBIS3.Q.TQ. SUBJS9+CA* (TQ. SUBIS3 .Q) *SUBJS9+
SUBIS9 .Q.TQ. SUBJS3+CA* (TQ.SUBIS9 .Q) *SUBJS3) +

CC* (SUBIS4 .Q .TQ. SUBJS8+CA* (TQ. SUBIS4 .Q) *SUBJS8+
SUBIS8 .Q.TQ. SUBJS4+CA* (TQ. SUBIS8 .Q) *SUBJS4) +

CC*(SUBIS5.Q.TQ.SUBJS7+CA*(TQ.SUBIS5.Q)*SUBJS7+

SUBIS7 .Q.TQ. SUBJS5+CA* (TQ. SUBIS7.Q) *SUBJS5) +

SUBIS6.Q.TQ.SUBJS6+CA*(TQ.SUBJS6.Q)*SUBIS6),

PRINT ("N2SR 'II, JJ),

N2S:N2S+ T[II,JJ]*(CC*(SUBIS2.Q.TQ.SUBJS12+CA*(TQ.SUBIS2.Q)*SUBJS12+

SUBIS12.Q.TQ.SUBJS2+CA*(TQ.SUBISl2.Q) *SUBJS2)+

CC*(SUBIS3.Q.TQ.SUBJS11+CA*(TQ.SUBIS3.Q)*SUBJS11+
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SUBISl1.Q.TQ.SUBJS3+CA* (TQ.SUBISl1.Q) *SUBJS3)+

CC*(SUBIS4.Q.TQ.SUBJS1O+CA*(TQ.SJBIS4.Q)*SUBJS1O+

SUBISlO.Q.TQ.SUBJS4+CA*(TQ.,SUBISlO.Q)*SUBJS4)+

CC* (SUBIS5 .Q .TQ. SUBJS9+CA* (TQ. SUBIS5.Q) *SUBJS9+
SUBIS9 .Q .TQ. SUBJS5+CA* (TQ. SUBIS9.Q) *SUBJS5) +

CC*~(SUBISG .Q .TQ. SUBJS8+CA* (TQ. SUBIS6.Q) *SUBJS8+
SUBIS8 .Q .TQ.SUBJS6+CA* (TQ. SUBIS8 .Q) *SUBJS6) +

SUBIS7.Q.TQ.SUBJS7+CA*(TQ.SUBJS7.Q)*SUBIS7),

PRINT("N2ST' II,JJ),

N2S:N2S+XH[II,jj]*(CC*(SUBIS4.Q.TQ.SUBJS12+CA*(TQ.SUBIS4.Q)*SUBJS12+

SUBISl2 .Q.TQ.SUBJS4+CA* (TQ.SUBIS12.Q) *SUBJS4) +

CC* (SUBIS5.Q .TQ. SUBJSl1+CA* (TQ. SUBIS5 .Q) *SUBJSl1+
SUBISl1.Q.TQ.SUBJS5 CA*(TQ.SUBIS1l.Q)*SUBJS5)+

CC* (SUBISG .Q .TQ. StBJS1O CA* (TQ. SUBIS6.Q) *SUBJS1O+
SUBISlO .Q.TQ. SUBJS6+CA* (TQ. SUBISlO.Q) *SUBJS6) +

CC* (SUBIS7 .Q .TQ. SUBJS9+CA* (TQ. SUBIS7.Q) *SUBJS9+
SUBIS9 .Q .TQ. SUBJS7+CA* (TQ. SUBIS9.Q) *SUBJS7) +

SUBIS8.Q.TQ.SUBJS8+CA*(TQ.SUBJS8.Q)*SUBIS8),

PRINT ("N2SXH" ,II, JJ),

N2S:N2S+XJ[II,Jj]*(CC*(SUBIS6.Q.TQ.SUBJS12+CA*(TQ.SUBIS6.Q)*SUBJSl2

SUBIS12.Q.TQ. SUBJS6+CA* (TQ. SUBIS12.Q) *SUBJS6) +

CC* (SUBIS7 .Q.TQ. SUBJS11+CA* (TQ. SUBIS7 .Q) *SUBJS11+
SUBIS11.Q.TQ.StJBJS7+CA*(TQ.SUBIS11.Q)*SUBJS7)+

CC* (SUBIS8.Q.TQ. SUBJS1O+CA* (TQ. SUBISB .Q) *SUBJSlO+
SUBIS1O.Q.TQ.SUBJS8+CA*(TQ.SUBISlO.Q) *SUBJS8)+

SUBIS9.Q.TQ.SUBJS9+CA*(TQ.SJBJS9.Q)*SUBIS9),

PRINT('N2SXJ",II,JJ),

N2S:N2S+XL[II,JJ]*(CC*(SUBIS8.Q.TQ.SUBJS12+CA*(TQ.SUBIS8.Q)*SUBJS12+

SUBISl2 .Q.TQ.SUBJS8+CA* (TQ.SUBISl2 .Q) *SUJS) +
CC* (SUBIS9 .Q. TQ. SUBJS11+CA* (TQ. SUBIS9.Q) *SUBJS11+

SUBIS1l.Q.TQ.SUBJS9+CA* (TQ.SUBIS11.Q) *SUBJS9) +

SUBISlO.Q.TQ.SUBJS1O+CA*(TQ.SUBJSlO.Q)*SUBIS1O),

PRINT('N2SXL",II,JJ),

N2S:N2S+XR(II,JJ]*(CC*(StJBISlO.Q.TQ.SUBJS12+CA*(TQ.SUBISlO.Q)*SUBJS12+

SUBIS12.Q.TQ. SUBJS1O+CA* (TQ. SUBIS12 .Q) *SUBJS1O) +
SUBIS11.Q.TQ.SUBJS11+CA*(TQ.SUBJS11.Q)*SUBIS11),

PRINT ("N2SXR", II, JJ),

N2S:N2S+XT[II,JJ] *(SUBISl2 .Q.TQ.SUBJS12+CA* (TQ.SUBJS12 .Q)*SBS1)

PRINT("N2SXT',II,JJ),

KILL(SUBJS12,StJBIS12,SUBJS11,SUBIS11,SUBJS1O,SUBISIO),

KILL (SUBJSO, SUBJS1, SUBJS2 ,SUBJS3 ,SUBJS4, SUBJS5, SUBJS6),

KILL (SUBJS7 ,SUBJS8, SUBJS 9),

KILL(SUBISO,SUBIS1,SUBIS2,SUBIS3,SUBIS4,SUBIS5,SUBIS6),

KILL(SUBIS7,SUBIS8,SUBIS9) ))$
KILL(SSO,SS1,SS2,SS3,SS4,SS5,SS6,SS7,SS8,SS9,SS1Q,SS1,SS12)$
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SAVE("SPH-N2S.SV",N2S);

N2SYM:ZEROMATRIX(18,18)$

FOR II THRU 18 DO FOR JJ:II THRU 18 DO N2SYM[II,JJ]:N2S[II,JJ]$

PRINT ("SYMMETRIC N2S FORMED") $

KILL(N2S)$

N2:ZEROMATRIX(18,18)$

KILL(Q,TQ)$

/ ***W*W********************************************W**WW*W*************/

/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH NONZERO */

/* ELEMENT OF SN2S(I,J). THESE STATEMENTS ARE OF THE FORM

/* SN2S(2,2)=A(1,1). */

/* EACH STATEMENT IS WRITTEN TO A SEPERATE FILE CALLED TT2XXX, WHERE XXX */

/* STARTS AT 001 FOR THE FIRST NONZERO ENTRY AND CONTINUES SEQUENTIALLY */

/* UNTIL ALL NONZERO ENTRIES THROUGH SN2S(18,18) ARE GENERATED. THE

/* MACSYMA FUNTION GENTRAN WILL ALSO BREAK STATEMENTS EXCEEDING 800 INTO */

/* SHORTER EXPRESSIONS TO AVOID TOO MANY CONTINUATION LINES. MACSYMA

/* AUTOMATICALLY MAKES CONTINUATION LINES COMPLETE WITH A LEGAL */

/* CHARACTER IN COLUMN 6. */

FOR II THRU 18 DO FOR JJ:II THRU 18 DO

N2[II,JJ] :FACTOROUT(N2SYM[II,JJ],Q(1) ,Q(2) ,Q(3),Q(4) ,Q(5) ,Q(6) ,Q(7) ,Q(8),

Q(9),Q(10),Q(11),Q(12),Q(13),Q(14),Q(15),Q(16),Q(17),Q(18))$

FRAME(I,J):=CONCAT(TNS,EV(18*(I-1)+J+1000))$

FOR I THRU 18 DO FOR J:I THRU 18 DO

(IF N2[I,J]#0 THEN(PT:1,GENTRAN(SN2S[EVAL(I),EVAL(J)]:EVAL(N2[I,J]),

[EVAL(FRAME(I,J))])))$

IF PT#1 THEN GENTRAN(PT:EVAL(PT),[TT2000])$

CLOSEFILE( ;

QUITO;
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E9 PLASTRN.MAC Input Deck

The MACSYMA input deck, PLASTRN.MAC, accomplishes several steps: (1) sym-

bolically generating the appropiate incremental strain-displacement relations, (2) symboli-

cally generating the Taylor series approximations for the 60 shell shape functions (fti),

(3) inserting the shell shape functions into the strain-displacement relations, and (4) deter-

mining the incremental ' components for each incremental strain-displacement relation

* .

/* ......................................................................

/ IMACSYMA ROUTINE FOR ELEMENTAL CODE GENERATION BY S. A. SCHIMMELS */

/* CREATED AS A PART OF AN AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) */

/* PhD PROGRAM IN AERONAUTICAL ENGINEERING (MATERIAL AND GEOMETRIC */

/* NONLINEARITY OF COMPOSITE SHELL STRUCTURES) ---- MARCH 1993

MACSYMA IS A REGISTERED TRADEMARK OF */

/* THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY */
/* */

/* PROGRAM PLASTRN.MAC: FOR A SPHERICAL SHELL. CREATES THE */

/* INCREMENTAL STRAIN-DISPLACEMENT RELATIONS BASED ON THE

/* PRESCRIBED DISPLACEMENT FIELD AND THEN GENERATES AND SAVES

/* THE APPROPIATE INCREMENTAL CHI COMPONENTS FOR EACH STRAIN TERM. */

/* ...................................................................... *

/ * .................................................... ..................* I

/* ............................................................

/* INITIALIZE THE MACSYMA PARAMETERS AND DECLARE THE VARIABLE

/* PROPERTIES */
I * ......................................................................* I

[DYNAMALLOC :TRUE, DISKGC :TRUE, DERIVABBREV: TRUE, POWERDISP :TRUE];

DEPENDS([UID,UIR,U2D,U2R,P1,P2,RI,R2,M1,M2,H1,H2],[YI,Y2,Y3]);

DEPENDS([PSI1,PSI2,PHIPHI2,GAMMA1,GAMMA2],[Y,Y2]);

DEPENDS([THETA1,THETA2,U,V,W,U3], [Y1,Y2]);

DECLARE([R,C,D,ARI,AR2,AR3,AR4,H3],CONSTANT);

I * ................... ..................................................* I

/* SET THE THEORETICAL ATTRIBUTES FOR A SPECIFIC ELEMENTAL CODE */
/ * .................................................................... .* /

/* ............................................... */
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/* H3 = 1 FOR A SHELL *
/*................................................*

H3:1;

/* ... .. ... ... ... ... .. ... .. ... .. ... ..... .. .. ... ..* /

/* ARI = 0 FOR A INCOMPLETE CUBIC KINEMATICS */

/* ARI = 1 FOR THE COMPLETE QUAITIC KINEMATICS */

/* ... .. ... . .. . .. ...... .. .. .. ... .... .... .. .. ... ..*

AR1:0;

/* ... .. ... ... .... ..... .. .. ... .. .... .. .. .. ... ... .* /

/* AR2 = 0 FOR A LINEAR HI/H2 APPROXIMATIONS */

/* AR2 = 1 FOR THE QUADRATIC APPROXIMATIONS */

/* .. .. .. ... ... .. .. ... .. .. ... .. ... ..... .. ... ... ..* /

AR2:0;

/* ... ... .... .. ... ...... .... ... ... .... ... .. .. ....* /

/* AR3 = 0 FOR LINEAR TRANSVERSE STRAIN */
/* AR3 = 1 FOR NONLINEAR TRANSVERSE STRAIN */

/ * ... .. .. ... .. .. ... ... ... ... .. ... ... ... .. ... ... .*

AR3:0;

/ * ......................................................................* /

/* SUBLIST IS A VARIABLE CONTAINING THE DEFINITIONS OF INCREMENTAL */

/* DISPLACEMENT PARAMETERS DQ(1) THROUGH DQ(18). ALL SYMBOLIC MANIP- */

/* ULATION OF STRAIN COMPONENTS IS DONE WITH THE NAMES TO THE LEFT OF */

/* THE EQUAL SIGNS IN THE SUBLIST. THE DQ(XX) DEFINITIONS ARE REQUIRED */

/* ONLY FOR GENERATION OF ELEMENT INDEPENDENT STRAIN DEFINITION ARRAYS */

/* LO THROUGH SS12, ETC. */
/ * ......................................................................* I

SUBLIST:[DIFF(U,YI)=DQ(2),DIFF(U,Y2)=DQ(3),U=DQ(1),DIFF(V,YI)=DQ(5),

DIFF(V,Y2)=DQ(6),V=DQ(4),DIFF(W,Y1,2)=DQ(10),DIFF(W,Y2,2)=DQ(11),

DIFF(W,YI,I,Y2,1)=DQ(12),DIFF(W,YI)=DQ(8),DIFF(W,Y2)=DQ(9),W=DQ(7),

DIFF(PSI1,YI)=DQ(14),DIFF(PSI1,Y2)=DQ(15),PSI1=DQ(13),

DIFF(PSI2,YI)=DQ(17),DIFF(PSI2,Y2)=DQ(18),PSI2=DQ(16)];

/ * ................... ...................................................* /

/* BEGIN GENERATING THE DISPLACEMENT FIELD COMPONENTS Ul, U2, U3 THESE */

/* NEXT STEPS HAVE BEEN SPECIALIZED FOR A SPHERICAL SHELL R1 = 1/D, */

/* R2 = 1/C, K = -4/(3*H^2). THE VALUES OF D, C, AND K WILL BE INPUT */

/* AS PART OF THE FORTRAN PROGRAM. THEY ARE UNSPECIFIED CONSTANTS AS */

/* FAR AS MACSYMA IS CONCERNED */
I* . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .* I

PI:U*(I-Y3*D);

P2:V*(I-Y3*C);

PII:DIFF(U,YI)*(I-Y3*D);
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Pl2:DIFF(U,Y2)*(l-Y3*D);

P21:DIFF(V,YI)*(l-Y3*C);

P22:DIFF(V,Y2)*(l-Y3*C);

Lll:DIFF(PSI1,Y);

L12:DIFF(PSI1,Y2);

L21:DIFF(PSI2,Yl);

L22:DIFF(PSI2,Y2);

M1:K*(DIFF(W,Yl)+PSIl);

M2:K*(DIFF(W,Y2)+PSI2);

/ * .... .. .... .. ... ..... .. ... .. ... .. ....* /

/* INCOMPLETE CUBIC Ul DISPLACEMENT */

/* OF DENNIS. *
/* ... .. .. .... ... .. ... ... .. .. ... ... ....* /

UlD:P1+Y3*PSII+Y3^3*M;

/* .. .. .. ... ... ... ..... .. ... ... .. ... ...* I

/* INCOMPLETE CUBIC U2 DISPLACEMENT */

/* OF DENNIS. *
/* .. ... .. ... ... .... .. ... ... .. ... ... ...* I

U2D:P2+Y3*PSI2+Y3^3*M2;

* .... .... ... .. ... ..... .. .... .. .. .... ... .. ... .. ... .. .. .. .. .. ... .. ..... ..* 1

/* COMPLETE QUARTIC Ul & U2 OF SMITH IS GIVEN BY Ul = UlD + UIR & U2 =

/* U2D + U2R, WHERE U1R & U2R ARE THE CURVATURE CORRECTION TERMS.

/ * .................................................... ..................*I

U1R:(-MI*(l+K*Y3^2)*Y3^2/(K/D));

U2R:(-M2*(l+K*Y3^2)*Y3^2/(K/C));

Ul:UlD+UlR*ARI;

U2:U2D+U2R*ARI;

U3:W;

I * .... .. ..... .. ... ...... .. ... .. ... .... .. ... ... .. .. .. ... ... .. ... ... .. .. ..* I

/* SYMBOLICALLY THE DERIVATIONS OF Ul, U2, AND U3. /

I * ................... ...................................................* I

DU1:Pll+Y3*LlI+Y3^3*DIFF(M,Y)+ARI*DIFF(UIR,YI);

DU12:P12+Y3*LI2+Y3^3*DIFF(M1,Y2)+ARI*DIFF(U1R,Y2);

DU21:P21+Y3*L21+Y3^3*DIFF(M2,Yl)+ARI*DIFF(U2R,Yl);

DU22:P22+Y3*L22+Y3^3*DIFF(M2,Y2)+AR1*DIFF(U2R,Y2);

DU31:DIFF(U3,Y1);

DU32:DIFF(U3,Y2);
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/* SYMBOLICALLY GENERATE THE LAGRANGIAN GREEN-STRAIN COMPONENTS */

/* DIVIDED BY THE APPROPIATE SHELL LAME' PARAMETERS HI, H2, TO GIVE THE */

/* PHYSICAL STRAINS EPSILONlI, EPSILON22, EPSILON12, EPSILON23, */

/* EPSILON13, EPSILON33

* ......................................................................*1

* ......................................................................*1

/* EPSILONI COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 4 ARE THE NONLINEAR TERMS

I* .... ... .... ... ... .... .. .. ... .. ..... ... ... .... ... ..... .. ... .. ... ... ... .* I

ER[l]:((Hl*DU11+DIFF(Hl,Y2)*H1*U2/H2+DIFF(Hl,Y3)*H1*U3/H3)+

1/2*(DU1+DIFF(Hl,Y2)*U2/H2+DIFF(Hl,Y3)*U3/H3)^2+

1/2*(DU21-DIFF(H,Y2)*U1/H2)^2+

1/2*(DU31-DIFF(H1,Y3)*U1/H3)^2)/H1^2;

/ * ......................................................................* /

/* EPSILON22 COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 4 ARE THE NONLINEAR TERMS

/ * ......................................................................* /

ER[2]:((H2*DU22+DIFF(H2,YI)*H2*UI/HI+DIFF(H2,Y3)*H2*U3/H3)+

1/2*(DU22+DIFF(H2,YI)*UI/HI+DIFF(H2,Y3)*U3/H3)A2+

1/2*(DU12-DIFF(H2,Y)*U2/H1)^2+

1/2*(DU32-DIFF(H2,Y3)*U2/H3)A2)/H2A2;

/ * ......................................................................* /

/* EPSILON12 COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 4 ARE THE NONLINEAR TERMS */

I * .................................................... ..................* I

ER[6]:((HI*DU12+H2*DU21-DIFF(H2,Y1)*U2-DIFF(HI,Y2)*UI)+

(DU12-DIFF(H2,Y)*U2/H1)*(DU11+DIFF(H1,Y2)*U2/H2+DIFF(H1,Y3)*U3/H3)+

(DU21-DIFF(HIY2)*UI/H2)*(DU22+DIFF(H2,Y1)*U1/H+DIFF(H2,Y3)*U3/H3)+

(DU31-DIFF(H1,Y3)*U1/H3)*(DU32-DIFF(H2,Y3)*U2/H3))/(H1*H2);

/* . ... ... . .. ... ... ..... .. ... .. .. ..... .... ... ... . .. .. ... .. .. .. . ... ... ... .* /

/* EPSILON23 COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 8 ARE THE NONLINEAR TERMS. FORCING FUNCTION F(Z)=1+ 3*K*Y3^2 */

/* IS USED. THIS PARABOLIC FORCING FUNCTION APPLIED ONLY TO NONLINEAR */

/* TERMS. */

/* .... ..... .. .... ...... ... .. ... ... .... .... ... ... ... ... .. .. .. ... ... .... ..* /

ER[4]:(DU32+(I-C*Y3)*DIFF(U2,Y3)-U2*(-C))/(H2*H3);

ERNL[4] :(1+3*K*Y3^2)*(

(DIFF(U2,Y3)-DIFF(H3,Y2)*U3/H2)*

(DIFF(U2,Y2)+DIFF(H2,YI)*UI/H1+DIFF(H2,Y3)*U3/H3)+
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(DIFF(U3,Y2)-DIFF(H2,Y3)*U2/H3)*

(DIFF(U3,Y3)+DIFF(H3,Y1)*U1/HI+DIFF(H3,Y2)*U2/H2)+

(DIFF(U1,Y2)-DIFF(H2,Y)*U2/H1)*

(DIFF(Ul,Y3)-DIFF(H3,Y1)*U3/H))/(H2*H3);

ER[4] :ER[4]+ERNL[4]*AR3;

/ * ... .. ... ... .. .. ..... ... .... .. ... ..... ... .. ... ... .... ... ... ... ... .. .. ..* /

/* EPSILON13 COMPONENT OF STRAIN. LINE 1 IS THE LINEAR TERMS. LINES 2 */

/* THROUGH 8 ARE THE NONLINEAR TERMS. FORCING FUNCTION F(Z) =1+3*K*Y3^2 *1

/* IS USED. THIS PARABOLIC FORCING FUNCTION APPLIED ONLY TO NONLINEAR */

/* TERMS.

I * ......................................................................* I

ER[5]:(DU31+(I-D*Y3)*DIFF(Ul,Y3)-U1*(-D))/(HI*H3);

ERNL[5]:(1+3*K*Y3^2)*(

(DIFF(UI,Y3)-DIFF(H3,Y1)*U3/H1)*

(DIFF(U1,Y1)+DIFF(H1,Y2)*U2/H2+DIFF(H1,Y3)*U3/H3)+

(DIFF(U3,Y1)-DIFF(HI,Y3)*U1/H3)*

(DIFF(U3,Y3)+DIFF(H3,YI)*U1/HI+DIFF(H3,Y2)*U2/H2)+

(DIFF(U2,YI)-DIFF(HI,Y2)*UI/H2)*

(DIFF(U2,Y3)-DIFF(H3,Y2)*U3/H2))/(H1*H3);

ER[5] :ER[51+ERNL[5]*AR3;

/ * ................................. .....................................* /

/* EPSILON33 COMPONENT OF STRAIN IS ZERO. IT IS, HOWEVER, INCLUDED IN */

/* THE CONSTITUTIVE RELATIONS THROUGH THE ELASTICITY SUBROUTINE OF THE */

/* CODE WRITTEN BY DENNIS. *
l * ......................................................................

ER[3]:0;

/ * ......................................................................* /

/* SUBSTITUTE THE Q(1) THROUGH Q(18) DEFINITIONS OF SUBLIST AND DISPLAY */

/* THE STRAIN COMPONENTS INDIVIDUALLY.

l * ......................................................................

FOR I THRU 6 DO (ER[I]:EXPAND(ER[I]),

ER[I] :EXPAND(SUBST(SUBLIST,ER[I])),DISPLAY(ER[I]));

* .... ... .. ... ... ...... .. .. ... .. ... .. .. .... .. ... .. .. .. .. .. ... .... ... .. ..* l

/* THE NEXT 60 EXPRESSIONS ARE THE POSSIBLE COMBINATIONS OF THE LAME' */

/* PARAMETERS APPEARING IN THE STRAIN EXPRESSIONS FOR AN ARBITRARY

/* SHELL, WHERE H3 = 1, AND HI, H2 DEPEND UPON Y1, Y2, AND Y3.

1* ................... ...................................................* l

HREXP[1]:(DIFF(H,Y2)/H);

HREXP[21 : (DIFF(H1,Y3)/H1);

HREXP[3] : (1/(H1^2));

HREXP[41:(DIFF(HI,Y2)^2/(H^2));
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HREXP[5]:(DIFF(H1,Y2)"2/(H2"2));

HREXP[7] (DIFF(Hl,Y3)^2);

HREXP[8) (DIFF(Hl,Y2)*DIFF(H1,Y3)/(Hl 2));

HREXP[9] (DIFF(H2,Y3) /H2);

HREXP[1O]:(DIFF(H2,Yl)/H2);

HREXP[11] (1/ (H2'^2))

HREXP[14] (DIFF(H2,Y3)'^2/(H2^2))

HREXP[15]:(DIFF(H2,Y3)^2);

HREXP[16b:(DIFF(H2,Y3)*DIFF(H2,Y1)/(H2^2));

HREXP[17):(1/H2);

HREXP[18] (1/Hi);

HREXP[19] (DIFF(H2,Yl) /H1);

HREXP[20]:(DIFF(Hl,Y2)/H2);

HREXP[21] (1/ (H1*H2))

I-REXP[221:(DIFF(Hl,Y3)/H2);

HREXP[231:(DIFF(H2,Y3)/Hl);

HREXP[24]:(DIFF(H2,Yl)*DIFF(Hl,Y2)/(Hl 2));

HREXP[25]:(DIFF(H2,Yl)*DIFF(H,Y2)/(H2 2));

HREXP[26] (DIFF(Hl,Y3) *DIFF(H2,Y3))

HREXP[27] (DIFF(Hl,Y3) *DIFF(H2,Y1) /(Hl^2))

HREXP[28] (DIFF(H2,Y3) *DIFF(H1,Y2) /(H2 2))

HREXP[29] (DIFF(H1,Y2) /(Hl*H2))

HREXP[3O]:(DIFF(H,Y2)^2/(H'^2*H2));

HREXP[31]:(DIFF(Hl,Y2)/(H2));l))

HREXP[34]:(DIFF(H1,Y3)^/H');

HREXP[33] (DIFF(Hl,Y2) *I(H ,3) /(1*

HREXP[36]:(DIFF(Hl,Y3)/(H1*H2));

HREXP[37] (DIFF(Hl,Y2)*DI/(H*H23)/H2*);

HREXP[38] (DIFF(H2,Y1/ (H*H2)

HREXP[37]:(DIFF(H2,Y)^2/H); )

HREXP[40]:(DIFF(H2,Yl)/(H2*H)); )

HREXP[91]:(DIFF(H2,Y3)*DIFFH2y (1*22)

HREXP[42] :(DIFF(H2,Y3)/(H2"2));

HREXP[411:(DIFF(H1,Y3)/(H2"(2); /H*H^2)

HREXP[421:(DIFF(H2,Y3)/(H2'2));

HREXP[45] (DIFF(I-I,Y3) /(H1*2) )

HREXP[44] (DIFF(H2,Y3) /(H1*H2) )

HREXP[47] :(DIFF(H2,Y1)/D(H1,H~*H2));

HREXP[48]:(DIFF(H1,Y2)*DIFF(H2,Y)/(H2^2*Hl));

HREXP[49] (DIFF(-{,Y3) *DIFF(H2,Y1) /(H1^2*H2) )

HREXP[50] (DIFF(H2,Y3) *DIFF(H1,Y2) /(H2-2*H1) )
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HREXP[51]:(DIFF(HI,Y3)*DIFF(H2,Y3)/H2);

HREXP(52]:(DIFF(HIY3)*DIFF(H2,Y3)/HI);

HREXP[53]:(DIFF(HI,Y2)^2/(HI^2*H2^2));

HREXP[54]:(DIFF(HI,Y2)/(HI^2*H2));

HREXP[55]:(DIFF(H2,Y)^2/(HI^2*H2^2));

HREXP[56]:(DIFF(H2,YI)/(H2^2*HI));

HREXP[57]:(DIFF(HI,Y2)/(HI*H2^2));

HREXP[58] :(DIFF(H2,YI)/(H2*HI^2));

HREXP[59]:(DIFF(H2,YI)*DIFF(HI,Y2)/(HI^2*H2^2));

HREXP[60]:(DIFF(HI,Y3)*DIFF(H2,Y3)/(HI*H2));

I * ......................................................................

/* THE MACRO HRTAY(X,I)::= GENERATES THE COEFFICIENTS F, G, AND H OF THE*/

/* TAYLOR'S SERIES EXPANSION OF THE EXPRESSION X ABOUT THE POINT Y3 = 0 */

/* FOR A SPHERICAL SHELL WITH HI = 1 - Y3/RI AND H2 = 1 - Y3/R2. *
/* ......................................................................* /

HRTAY(X,I) ::=BUILDQ([X,I],(

PRINT(" THE TAYLOR SERIES EXPANSION OF "),DISPLAY(X),

PRINT(" IS EQUAL TO F + G*Y3 + H*Y3^2 + H.O.T., WHERE "),

(X:TAYLOR(FACTOROUT(EXPAND(RAT(EV(X,HI:(I-Y3*D),

H2 (I-Y3*C),DIFF))),C,D),Y3,0,3)),

F[I]:EXPAND(COEFF(X,Y3,0)),DISPLAY(F[I]),

G[I]:EXPAND(COEFF(X,Y3,1)),DISPLAY(G[I]),

H[I] :EXPAND(COEFF(X,Y3,2)),DISPLAY(H[I])));

/ * ......................................................................* /

/* COMPUTE THE COEFFICIENTS F, G, AND H FOR ALL 60 HREXP EXPRESSIONS. */
I * ......................................................................* I

FOR I THRU 60 DO HRTAY(HREXP[I],I) ;

/ * ................................... ...................................* /

/* THE MACRO HRSUB(X)::= TAKES ANY ONE-TERM EXPRESSION X, (PRODUCTS ARE */

/* OK, BUT [+-] OPERATORS ARE NOT) AND SUBSTITUTES THE APPROXIMATE */

/* SERIES EXPANSION F + G*Y3 + H*Y3^2 FOR THE FUNCTION OF LAME' */

/* PARAMETERS. *

I* ... .... ... ... .. .... .. ... .. ... ... .... ... ... ... .. .. ... .. .. ... ... ... .... .* I

HRSUB(X) ::BUILDQ([X],(

XO:X,

X:NUM(X)/SUBST(D[1],HI,DENOM(X)),

X:NUM(X)/SUBST(D[2],H2,DENOM(X)),

X:NUM(X)/RATSUBST(D[3],D[I]*D[I],DENOM(X)),

X:NUM(X)/RATSUBST(D[41,D[2]*D[21,DENOM(X)),

X:NUM(X)/RATSUBST(D[5],D[1]*D[21,DENOM(X)),

X:NUM(X)/RATSUBST(D[6],D[1]*D[4],DENOM(X)),

X:NUM(X)/RATSUBST(D[7],D[21*D[3],DENOM(X)),

X:NUM(X)/RATSUBST(D[8],D[3]*D[4],DENOM(X)),
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XD:X

X:NUI4(X) /RATSUBST(1/D[1] ,D[1] ,DENQM(X)),

X:NtJM(X) /RATStJBST(1/D[2] ,D[2] ,DENOM(X)),

X:NUM(X) /RATSUBST(1/D[3] ,D[3] ,DENOM(XH),

X:NUM(X) /RATSUBST(1/D[4] ,D[4] ,DENQM(X)) /

X:NUM(X) /RATSUBST(1/D[5] ,D[5] ,DENOM(X)),

X:NUM(X) /RATSUBST(1/D[6] ,D[6] ,DENOM(X)),

X:NUM(X) /HATSUBST(1/D[7] ,D[7] ,DENOM(X)),

X:NUM(X) /RATSUBST(1/D[8] ,D[8] ,DENOM(X)),

XN:X

X:RATSUBST(F[59]+Y3*G[59]+Y3A2*AR2*H[59],IDIFF(H2,y1)*IDIFF(H1,y2)*D[8J ,X),

X:RATSUBST(F[55]+y3*G[55]+Y3A2*AR2*H[55],'DIFF(H
2 ,Yl)A2 *D[B],X),

X:RATSUBST (F [53 ]+Y3*G[53] +Y3A2*AR2*H[53],'DIFF (Hi, Y2 ) 2*D[8] ,X),

X:RATSUBST(F[50]+Y3*G[50]+Y3A2*AR2*H[50], DIFF(H2,Y3)*IDIFF(H1,y2)*D[6] ,2O

X:RATSUBST(F[49]+Y3*G[49]+Y3A2*AR2*H[49] , DIFF(H1,Y3)*IDIFF(H2,Y1)*D[7] ,X),

X:RATSUBST(F[48]+Y3*G[48]+Y3A2*AR2*H[48] , DIFF(H1,Y2)*'DIFF(H2,Yl)*D[6] ,20

X:RATSUBST(F[471+Y3*G[47]+Y3A2*AR2*H[47] , DIFF(H2,Y1)*IDIFF(H1,Y2)*D[7] ,X),

X:RATSUBST(F[41]+Y3*G[41]+y3A2*AR2*Ht41],'DIFF(H2,Y3)*IDIFF(H2,Y)*D[],X),

X:RATSUBST(F[38]+Y3*G[38]+y3A2*AR2*H[38],'DIFF(H2,Y1)A
2 *D[ 7],X),

X:RATSUBST(FE37]+Y3*G[371+y3A2*AR2*H[37],'DIFF(H
2,yl)A2 *DE],X),

X:RATSUBST(F[35]+y3*G[35]+y3A2*AR2*H[35],'DIFF(H1,Y2)*IDIFF(H,Y
3 )*D 7 ],X)t

X:RATSUBST (F [31] +Y3*G [31] +Y3A2*AR2*H [31] ,'DIFF (Hi, Y2 ) 2*D [6], x),

X:RATSUBST(F[57]+y3*G[57]+y3A2*AR2*H[57],'DIFF(Hl,Y
2 )A*D[],X),

XRATSLIBST (F[56] +Y3*G [56] +Y3A2*AR2*H [56] ,'DIFF (12,Fl) *D[76], X),

X:RATSUBST(F[54]+Y3*G[54]+y3A2*AR2*H[54],'DIFF(Hl,Y
2 )*D[7 ],X),

X:RATStJBST(F[60]+Y3*G[6]+Y3A2*AR2*H[61IDIFF(H1,y3)*DIFF(,y3*D5],X

X:RATSUBST(F[28]+y3*G[28]+Y3A2*AR2*H[28],'DIFF(H2,Y3)*DIFF(], )*D
4 ]X

X:RATStJBST(F[27]+Y3*G[27]+Y3A2*AR2*H[27] , DIFF(H1,Y3)*.DIFF(H2,Y1)*D[3] ,20

X:RATSUBST(F[25]+Y3*G[25]+Y3A2*AR2*H[25] , DIFF(H2,Y1)*,DIFF(H1,Y2)*D[4] ,X),

X:RATSUBST(F[24]+Y3*G[24]+y3A2*AR2*H[24],'DIFF(H2,Y1)*'DIFF(H2,Yl)*D[
3],X),

X:RATSUBST(F[16]+Y3*G[16]+Y3A2*AR2*H[16] ,'DIFF(H2,Y3)*IDIFF(H2,Y1)*D[4] ,X),

X:RATStJBST(F[84]+Y3*G[8]+Y32*AR2*H[] , DIFF(H,Y)*DIFF(HY)*D[3 ,X),

X:RATSUBST(F[14]+Y3*G[14]+y3A2*AR2*H[14],'DIFF(11
2 ,Y3 )*DIF

4 ]H,X), D4]

X:RATSUBST(F[1]+y3*G[813+y3A2*AR2*H[3],DIFF(H,
2,y)A 2IF(l*D[

3 ],X),

X:RATSUBST(F[12J+y3*G[12]+y3A2*AR2*H[12],IDIFF(H
2 ,Y3)A2 *D[

4],X),

X:RATSUBST(F[3]+Y3*G[613+Y32*AR2*H[],IFF1,y3)A
2 *D[ 3 ,X),

X:RATSUBST(F[412+Y3*[]+Y3A2*AR2*H[]IFFF(H1,ylA
2 *D[ 3),X)

X:RATSUBST(F[6+y3*C[6]+Y3A2*AR2*H[6],DIFF(11,Y
3 )*D[3],X),

X:RATSUBST(F[4]+Y3*G[5]+Y3A2*AR2*H[5],DIFF(H,Y)*D[4],X),

X:RATSUBST(F[44+y3*G[4]+Y3A2*AR2*H[4],DIFF(11,Y)*D[
3 ],X),

X:RATSUBST(F[43]+Y3*G[43]+Y3A2*AR2*H[43],'DIFF(H2,Y
2 )*D[4],X),

X:RATSUHST(F[421+Y3*C[42]+Y3A2*AR2*H[42],'DIFF(Hl,Y
3 )*D[4 ],X),

XRATStJBST (F [40] +Y3*G [40] +Y3A2*AR2*H[40],'DIFF (112 ,l) *D [4] ,X),
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X:RATSUBST(F[36]+Y3*G[36]+Y3A2*AR2*H[36],IDIFF(H2,Yl)*D[5],X),

X:RATSUBST(F[341+Y3*G[34]+Y3A2*AR2*H[34],'DIFF(Hl,Y3)*D[3J,X),

X:RATSUBST(F[33]+Y3*G[33]+Y3A2*AR2*H[33],JDIFF(Hl,Y2)*D[3],X),

X:RATSUBST(F[29]+Y3*G[29]+Y3A2*AR2*H[29JJ'DIFF(Hl,Y2)*D[5],X),

X:-RATSUBST(F[3]+Y3*G(3]+y3A2*AR2*Ht3],l*D[3],X),

X:RATSUBST(F[21]+Y3*G[21]+Y3A2*AR2*H[21],1*D[5],X),

X:RATSUBST(F[l1]+Y3*G[1l]+Y3A2*AR2*H[l1],l*D[4],X),

X:RATSUBST(F[52]+Y3*G[52]+Y3A2*AR2*H(52],'DIFF(H1,Y3)*'DIFF(H2,Y3)*D[J,X),

X:RATSUBST(F[51]+Y3*G[51+Y3A2*AR2*H[51],'DIFF(H1,Y3)*'DIFF(H2,Y3)*D[2],X),

X:RATSUBST(F[39]+Y3*G[39]+Y3A2*AR2*H[39],'DIFF(H2,Y3)A2*D[2J,X),

X:RATSUBST(F[32]+Y3*G[32]+Y3A2*AR2*H[32],JDIFF(H,Y3)A2*D[1J,X),

X:RATSUBST(F[23]+YJ*G[23]+Y3A2*AR2*H[23],IDIFF(H2,Y3)*D[1],X),

X:RATSUBST(F[22]+YJ*G[22]+Y3A2*AR2*H[22],JDIFF(H,Y3)*D2],X),

X:RATSUBST(F[20]+Y3*G[20]+Y3A2*AR2*H[20],IDIFF(Hl,Y2)*D(2],X),

X:RATSUBST(F[19]+Y3*G[19]+Y3A2*AR2*H[19], DIFF(H2,Yl)*Dt1],X),

X:RATSUBST(F[lO]+Y3*G[1O]+Y3A2*AR2*H[1O)J'DIFF(H2,Yl)*D[2],X),

X:RATSUBST(F[9]+Y3*G[9]+YJA2*AR2*H[9KI'DIFF(H2,Y3)*D[2],X),

X:RATSUBST(F[1J+Y3*G[l]+YJA2*AR2*H[1]J'DIFF(H,Y2)*D[l],X),

X:RATSUBST(F[2]+sY3*[2]+Y3A2*AR2*H[2],<DIFF(Hl,Y3)*D[l],X),

X:RATSUBST(F[17]+Y3*G[17]+Y3A2*AR2*H[17],1*D[21,X),

X:RATSUBST(F[l8]+Y3*Gt181+Y3A2*AR2*H[l8],1*D[lflX),

X:RATSUBST(F[15] +Y3*G[15]+Y3A2*AR2*H[15] , DIFF(H2,Y3)A2,X),

X:RATSUBST(F[7I+Y3*O(7]+Y3A2*AR2*Ht7] , DIFF(Hl,Y3) A2,X),

X:RATSIBST(F[26]+Y*G[26]+Y32*AR2*H[26],JDIFF(H1,Y3)*'DIFF(H2,Y3),X)));

/*........................................................................*

/* THE MACRO PICK(XXX)::= TAKES ANY EXPRESSION XXX (PREVIOUSLY EXPANDED)*/

/* AND SEPARATES IT INTO SINGLE EXPRESSIONS LABELED E(I). IT THEN CALLS*/

/* MACRO HRSUB(X) TO FIND THE APPROPIATE LAME' PARAMETERS APPROXIMATION *

/* FOR EACH EXPRESSION AND THEN SUMS ALL THE EXPRESSIONS TO YIELD THE *

/* EXPRESSION XXX WITH ALL THE TERMS FULLY APPROXIMATED.*
/*........................................................................*

E(I) :CONCAT(E,I);

PICK(XXX)::=BUILDQ([XXX], (Il:LINENUTM,NT:NTERMS(XXX),12:Il+NT-1,

PRINT(" THIS EXPRESSION HAS ",NT," TERMS TO BE RESOLVED ")

PICKAPART(XXX,1),FOR R:I1 THRU 12 DO EXH[K]:EV(E(K),EVAL),

FOR K:I1 THRU 12 DO HRSUB(EXH[KI),XXX:SUM(EXH[KLK,I1,I2),

DISPLAY(XXX)));

/*........................................................................*

/* USE THE MACRO PICK(XXX) TO APPROXIMATE LAME' PARAMETER FUNCTIONS OF ~
/* THE STRAIN COMPONENTS.*
/*........................................................................*

ERR4:ER[4];

ERR5:ER[5];

PICK(ERR4);
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PICK(ERR5);

ER[4] :ERR4;

ER[5] :ERRS;

ERR1:ER[1];

ERR2:ER[2];

ERRE:ER[6];

PICK(ERR1);

PICK(ERR2);

PICK(ERRG);

ERil :ERR1;

ER[2] :ERR2;

ER[6] :ERRE;

SAVE( "SPH-ER.SV" ,ER);

/*........................................................................

/* THE MACRO, CHIFORM(XX,YY,K)::= EXPANDS A Exi VECTOR CALLED XX, THEN *

/* DETERMINES AND DISPLAYS THE COEFFICIENTS OF Y3 UPTO THE Kth POWER. *

/* THESE ARE CALLED YY[I,K]. *
/ .. . . . . . . ....................................................... *

CHIFORM(XX,YY,K)::HBUILDQ([XX,YY,K],(FOR I THRO 6 DO FOR JJ THRO K+1 DO

(XY[I] :FACTOROUT(EXPAND(RAT(XX[IJ)), [H1,H2]),

YY[I,JJ-1] :COEFF(XY[I] ,Y3,JJ-1) ,DISPLAY(YY[I,JJ-1]))));

POWERDISP:TRUE;

CHIFORM(ER,XR, 12);

KILL (ER);

SAVE( "SPH-XR.SV" ,XR);

CLOSEFILE U;

QUITO

F-58



E1O PLASINITMAC Input Deck

The MACSYMA input deck, PLASINIT.MAC, generates the (LiP) column arrays

and the [Hi ,] matrices for each incremental strain component, 8j.

WRITEFILE( "SPH-INIT.WF");
/ ***************************************W***WW*W**W*WWW************W/

/ ****************************************WW*******WW***W**WW*W*******/

/* MACSYMA ROUTINE FOR ELEMENTAL CODE GENERATION BY S. A. SCHIMMELS */

/* CREATED AS A PART OF AN AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) */

PhD PROGRAM IN AERONAUTICAL ENGINEERING --- MARCH 1993

/* MACSYMA IS A REGISTERED TRADEMARK OF

/* THE MASSACHUSETTS INSTITUTE OF TECHNONLOGY */
/* */

/* PROGRAM PLASINIT.MAC: FOR A SPHERICAL SHELL. CREATES THE LHMAT, */

/* LSMAT, HMAT, & SSMAT ARRAYS. */

/* INITIALIZE MACSYMA PARAMETERS AND DECLARE VARIABLE PROPERTIES */

[DYNAMALLOC:TRUE,DISKGC:TRUE,DERIVABBREV:TRUE,POWERDISP:TRUE)$

/* THE MACRO DECOMPOSE(XR)::= DETERMINES AND DISPLAYS THE COEFFICIENTS OF */

/* DISPLACEMENT VARIABLES DQ(1) THROUGH DQ(18) AND CREATES A 6x13x18

/* ARRAY CALLED LMAT OF THE CONTANT COEFFICIENTS OF LINEAR DISPLACEMENT */

/* TERMS, AND A 6x13x18x18 ARRAY CALLED HMAT OF THE CONSTANT COEFFICIENTS */

/* OF THE CONSTANT COEFFICIENTS OF THE QUADRATIC DISPLACEMENT TERMS.

LOADFILE("SPH-XRNEW.SV");

FOR I THRU 6 DO FOR JJ THRU 13 DO (DISPLAY (XR[I,JJ-1]))$

DECOMPOSE(XR) ::=BUILDQ([XR],

(FOR I THRU 6 DO (PRINT("DECOMPOSING STRAIN COMPONENT",I),

(FOR J:O THRU 12 DO (FOR K THRU 18 DO

(IF HIPOW(XR[I,J],DQ(K))=2 THEN

XQUAD[I,J,K]:RATCOEFF(XR[I,J],DQ(K),2)*DQ(K)*2+RATCOEFF(XR[IJ],DQ(K),

1) ELSE XQUAD[I,J,K]:RATCOEFF(XR[I,J],DQ(K),1),

FOR L THRU 18 DO HMAT[I,J,K,L]:RATCOEFF(XQUAD[I,J,K],DQ(L),i),

LMAT[I,J,K] :EXPAND(XQUAD[I,J,K]-SUM(HMAT[I,J,K,L]*DQ(L) ,L,1,18))))))))$

DECOMPOSE(XR);
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KILL (XR) $

SAVE( "SPH-LHMAT.SV" ,LMAT,HMAT);

/* GENERATE ELEMENT-INDEPENDENT STRAIN DEFINITION ARRAYS LX AN HXX FOR ~
/ * IN-PLANE STRAINS AND SX AND SSXX FOR TRANSVERSE SHEAR STRAINS. X AND* /

/* XX REPRESENT THE POWER OF Y3 FOR WHICH THE COEFFICIENTS APPLY. NOTE ~
/* LX HAS 3 COLUMNS. COLUMN 1 CONTAINS COEFFICIENTS OF THE EPSILON11 *

/* TERMS WHICH ARE LINEAR IN DISPLACEMENTS Q(1)-Q(16). COLUMN 2

/* CONTAINS EPSILON22 TERMS AND COLUMN 3 CONTAINS EPSILON12 TERMS. *

/* LIKEWISE HXX HAS 3 PARTITIONS. COLUMNS 1-18 CONTAINSS COEFFICIENTS *

/* OF EPSILON11 TERMS WHICH ARE QUADRATIC IN DISPLACEMENT. COLUMNS 19- ~
/* 36 CONTAIN THE EPSILON22 TERMS AND COLUMNS 37-54 CONTAIN THE

/* EPSILON12 TERMS. SIMILARLY, SX CONTAINS 2 COLUMNS PERTAINING TO THE ~
/* COEFFICIENTS OF LINEAR TERMS OF EPSILON23 AND EPSILON133, *

1* RESPECTIVELY. SSXX HAS 2 PARTITIONS. COLUMNS 1-18 CONTAIN '

1* COEFFICIENTS OF THE QUADRATIC TERMS OF EPSILON23 AND COLUMNS 19-36 ~
/* CONTAIN THE QUADRATIC TERMS OF EPSILON13. *

FOR NN THRU 18 DO

LO[NN,1]:LMAT[1,O,NN],LO[NN,2]:LMAT[2,O,NN],LOtNN,3]:LMAT[6,O,NN],

L1[NN,1]:LMAT[1,1,NN],L1[NN,2]:LMAT[2,1,NN],L1[NN,3]:LMAT[6,1,NN],

L2[NN,1]:LMAT[1,2,NN],L2[NN,2]:LMAT[2,2,NN],L2[NN,3]:LMAT[6,2,NN],

L3[NN,1]:LMAT[1,3,NN],L3[NN,2]:LMAT[2,3,NN],L3[NN,3]:LMAT[6,3,NN],

L4[NN,1J:LMAT[1,4,NN3,L4[NN,2]:LMAT[2,4,NN,L4[NN,3]:LMAT[6,4,NN,

L5[NN,1]:LMAT[1,5,NN],L5[NN,2]:LMAT[2,5,NN],L5[NN,3]:LMAT[6,5,NN],

L6[NN,1]:LMAT[1,6,NN],L6[NN,2D:LMAT[2,6,NN,L6[NN,3]:LMAT[6,6,NN,

L7[NN,1]:LMAT[1,7,NN],L7[NN,2]:LMAT[2,7,NN],L7[NN,3]:LMAT[6,7,NN],

SO[NN,1]:LMAT[4,O,NN],SO[NN,2]:LMAT[5,O,NN],

S1[NN,1]:LMAT[4,1,NN],S1[NN,2]:LMAT[5,1,NN],

S2(NN,1]:LMAT[4,2,NN],S2[NN,2]:LHAT[5,2,NN],

S3[NN,1]:LMAT[4,3,NN],S3fNN,2]:LMAT[5,3,NN],

S4[NN,1]:LMAT[4,4,NNJ,S4[NN,2]:LMAT[5,4,NN],

S5[NN,1]:LMAT[4,5,NN],S5[NN,2D:LMAT[5,5,NN],

S6[NN,1]:LMAT[4,6,NN],S6[NN,2]:LMAT[5,6,NN],

57[NN,1] :LMAT[4,7,NN],57[NN,2] :LHATE5,7,NN],

FOR MM THRU 18 DO(

HO [NN,MM] :HMAT[1, O,NN,MM] ,HO[NN,NM+18] :HMAT[2, O,NN,MM],

HO [N , MM+36]:HMAT [6, 0 ,N,MM],

H1[NN,MM] :HMAT[1,1,NN,MM] ,H1[NN,MM+18] :HMAT[2,1,NN,MM],

H1[NN,NM+36] :HMAT[6, 1,NN,MM],

H2 [NN,MM] :HMAT[1, 2,NN,MM] ,H2 [NN,MM+18] :HMAT[2,2,NN,NM]I

H2 [N, MM+36]:HMAT [6,2 ,N,M],

H3[NN,MM] :HMAT[1,3,NN,MM],H3[NH,MM+18]:HMAT[2,3,NN,MM],

H3 [N , MM+36] -HAT [6,3 ,N,MM],
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E4[NN,MM] :HMAT[1,4,NN,MM] ,R4[NN,bEM+18] :HMAT[2,4,NN@Mt]

H4[NN,MM+36]:HMAT[6,4,NN,MMh],

H5[NN,MM]:HMAT(1,5,NN,M],H5[NN,Md+18]:HMAT[2,5,NN,mm],

E5[NN,D'fl+36]:EMAT[6,5,NNMMI],

HG (NN,MM] :HMAT[1, 6,NNJ@&] ,H6 [NN,WxT-i18) :HMAT[2, 6,NN,mm],

HE [NN,NM+36] :HMAT[6,6,NN,MM),

H7 [NN ,MM+ 36]:HMAT [6,7 ,NN ,MM],

HE [NN,MM] :HMAT[1, 8,NN,r14],H8 [NN,Ixff+18] :HMAT[2, 8,NN,mmTh4

HE [NN,NM+36] :HMAT[6,8,NN,My],

H9 [NN,MM] :HMAT[1, 9,NN,bT4],H9 [NN,I*I+18] :HMAT[2, 9,NN,MM]

H9[NNJO4+36]:HMAT[6,9,NN,Id,

HlO[NN,MM:HMAT[1,1O,NN,MM~],HlO[NN,MM+18]:HmAT[2,1O,NN,Nm],

HiC [NN,IMff+36] :HMAT[6, 1O,NN,MM],

H11[NN,M]IHAT[1,11,NN,M],H1[NN,M+18]:HMAT[2,11,NN,NM],

Hli [NN , M+36]:HMAT [6, 11, NN , 1v11

H12[NN,MM]:HMAT[1,12,NN,MM,H2[NN,MI-s18]:HMAT[2,12,NN,mfl4,

H12[NN,MM+36] :HMAT[6,12,NN,MM],

SSO[NN,MM]:HAT[4,O,NNdM],SSONN,MM+18]:HMAT[5,O,NN,MM],

SS1[NN,MM]:HMAT[4,1,NN,MM],SS1[NN,MM+18]:HMAT[5,1,NNJ'fl],

552[NN,MM4]:HMAT[4,2,NNMMh],SS2ENN,MM+18]:HMAT[5,2,NN,MM],

SS3[NN,MM:HMAT[4,3,NN,MM],SS3[NN,MM-i1S]:HMAT[5,3,NN,M24,

554[NN,MM]:HAT[4,4,NN,MM],554[NN,M+18]:HMAT[5,4,NN,MM],

SS5[NN,NM]:HMAT[4,5,NN,HE],SS5[NN,rMh+18]:HAT[5,5,NN,O4],

556[NN,MM]:HAT[4,6,NN,MM,S6NN,MM+18]:HMAT[5,6,NN,MM],

SS7[NN,MM]:HAT[4,7,NN,E],57[NN,M+18]:HMAT[5,7,NN,MM],

S58[NN,N141:HMAT[4,8,NN,NM],558[NN,MMs18]:HMAT[5,8,NNMII,

S59[NN,M14]:HMAT[4,9,NN,MM],SS9[NN,MM+18]:HMAT[5,9,NN,MM],

5510 [NN,M4] :HMATI[4, 10,NN,M2] , SS1O [NN,bIM+18) :HMAT[5, l0,NN,xh],

SS12[NN,MMJ:HAT[4,12,NN,MMJ,S12[NN,MM+18]:HMAT[5,12,NN,rMh]))$

/~FORM MACSYMA MATRICES FROM THE ABOVE DEFINED ARRAYS. *

/ ***********************************************

LO:GENMATRIX(LO,18,3);

L1:OENMATRIX(L1, 18, 3);

L2:GENNATRIX(L2,18,3);

L3:GENEATRIX(L3,18,3);

L4:GENMATRIX(L,1,3);

L5:GENMATRIX(L5,18,3);

L6:CENMATRIX(L,1,3);

L7:GENMATRIX(L7,18,3);

S0:GENMATRIX(SO,18,2);

51:GENMATRIX(51, 18,2);
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S3:GENMATRIX(S3,18,2);

S4:GENMATRIX(S4,18,2);

S5:GENMATRIX(S5, 18,2);

S6:GENMATRIX(S6,18,2);

S7:GENMATRIX(S7, 18,2);

HO :GENMATRIX(-O ,18, 54)

Hi:GENMATRIX(H1, 18, 54);

H2:GENMATRIX(H2,18,54);

H3:GENMATRIX(H3,18,54);

H4:GENMATRIX(H4,18,54);

H5:GENMATRIX(H5,i8,54);

H6GENMATRIX(H6, 18,54);

H7:GENMATRIX(H7,i8,54);

H8:GENMATRIX(H8,18,54);

H9:GENMATRIX(H9,18,54);

HiG :GENMATRIX(HiO, 18, 54);

H11:GENMATRIX(Hil1i8,54);

Hi2 :GENMATRIX(Hi2, 18, 54);

SSO:GENMATRIX(SSO,18,36);

SS1:GENMATRIX(SSi, 18, 36);

SS2:GENMATRIX(SS2,18,36);

SS3:GENMATRIX(SS3,18,36);

SS4:GENMATRIX(SS4,18,36);

S55:GENMATRIX(SS5, 18, 36);

SS6 :GENMATRIX(SS6, 18, 36);

SS7 :GENMATRIX(SS7, 18, 36);

SS8:GENMATRIX(SS8,18,36);

SS9:GENMATRIX(SS9,18,36);

SSiO :GENMATRIX(SSiO, 18, 36);

SS1i:GENMATRIX(SS11, 18, 36);

SS12:GENMATRIX(SS12, 18,36);

SAVE ("SPH-LSMAT. SV , LO,Li, L2 ,L3 ,L4, L5 ,L6 ,L7,SO, Si,S2,S3, S4, S5, S6, S7);

SAVE("SPH-HMAT.SV",HO,Hi,H2,H3,H4,H5,H6,H7,H8,H9,HO,Hi,Hi2);

SAVE("SPH-SSMAT.SV,SSO,SS1,SS2,SS3,SS4,SS5,SS6,SS7,SS8,SS9,SSiO,SSii,SS12);

KILL (ALL) $

CLOSEFILE O;

QUITO;
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Appendix G. The Elasto-Plastic Algorithm

In order to conduct an incremental elastic-plastic analysis from a total Lagrangian

finite element formulation, a predictor-corrector model is incorporated. Each Gauss point

is checked to see if yielding is occuring or has occurred. If yielding has occurred previ-

ously, then the gauss point is checked to determine if unloading or loading is occuring. For

those gauss points that yielded or are still loading, they are analyzed from an elastic-plas-

tic approach. This is done by first incrementing the strain elastically and then correcting

for the plastic contribution. All other gauss points are analyzed elastically. The algorithm

is explained below (refer to Figures G. 1-G.3):

1. Read in the input file deck parameters. These determine the type of analysis, the
finite element mesh, shell geometry, boundary conditions, load versus displace-
ment incremental approach, material properties, and whether strain-hardening is
included.

2. Calculate the elastic constitutive matrix for the in-plane, [Df], and the transverse

shear, [Ds]. Then calculate the higher order elasticity arrays, [Af] - [Tf] and [As] -
[T], based upon Eq (4.87).

3. Initialize the global displacement vector arrays for increment n, {dTOT}In, n -1, and

{dTOT}n1 the incremental global displacement vector for increment n, {AdToT n.

4. Initialize the global stress matrix array, [GTOT], and the global effective plastic

strain vector, { EPTOT}.

5. Initialize the global stiffness array, [KT] shown below
In r S

[KT] b] TX [k +,R1 R][] d (G. 1)
n= 1I= lj 1
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INPUT:
Geometry,aadf h
Boundary Conditions,o o R nLoads, & Material Properties

MESH:

IF'E Generate Finite Element Mesh from Input

ELAST: _$

Generate Elasticity Arrays [A] thru [T] based on [D]

STIFF:
_.,, ~Calculate [KT and [Kui]orecElmn

-"'Depending on ID] orlleoRelations for
Each Gauss Point in tac ayer

ASSEM: Assemble the Global[KT] and [K quiL]
BOUND: Apply the Specified Boundary 6onditions
CONVER: Apply the Specified Convergence Tolerance

CONVERGENCE?

No

Ye s

RESIDU:
Calculate Residual Forces (If Specified) from"
Converged Solution

Continue on Next [STRESS:

Displacement Incrementi Calculate Current Global Stress State [(YTOT]

Until Complete For Every Gauss Point, Thru the Layer,

in each Element

Figure G. 1 Master Flow Chart of Elasto-Plastic Algorithm
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Load {AqToT} with Increment of Displacement

lIterate over Element Ii
Iterate over Gauss Points in Direction

*SIterate over Gauss Points in ri Direction I

Calculate {d( ,rl)) and {Ad(4,Tl)i from {q} and {Aq}

Iterate over each Layer

First Iteration? No Calculate Effective Stress

Yes

No0 Does Yielding Occur?]

I Yes

.dX I Compute ((YgTOT) and {Ao}

¢z Loop Over Stress Reduction

Calculate I{a} {dD}1, and d?,]

Calculate [D] and Load it Calcalute [D P] and Load it

into [Q*] for the LayerI into [Q*] for the Layer

LAMM with Layer?' 1-4

* Yes

Figure G.2 Flow Chart of the STIFF Subroutine for the Elasto-Plastic Algorithm, Part I
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' . Calculate [Q*] for the Entire Layer for Gauss Point ( ,Tl

C

'-S Calculate [A] - [T] for new [Q*]

E

,- N2

, Calculate Gauss Point (4,71) Contribution to [K], [NI], & [N]

ECalculate Contribution for [K] and [Keuil] for the Gauss Point (x,h)

No

Done with Gauss Points for the Element?
N Y es

No

Done with Element for the

SYes

Go to ASSEM

Figure G.3 Flow Chart of the STIFF Subroutine for the Elasto-Plastic Algorithm, Part 2

(the left-hand side of Eq (4.133) with Eq (4.136) included), the global equilibrium
array, [Kequil],

m r S

[K1 [b d w R2 (G.2)
[Kequil =  

(W j[](E 2 3//2)/] J

n= 1i= lj= 1

(the right-hand side of Eq (4.133) with Eq (4.136)), and the global force vector,
{R}.

6. Initialize the Gauss point counter, KGA US.
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7. Begin looping over the elements:

a. Calculate the elemental displacement gradient vector, { d}, from the global dis-
placement vector {dTOT}n, and the incremental elemental displacement gradi-

ent vector, { Aq}, from the global incremental displacement vector { AdToT} n .*

b. Begin looping over the Gauss points in the 4 direction:

1.) Begin looping over the Gauss points in the TI direction:

a.) Calculate the interpolation functions for the matrix [b ( , rj)] (see Eq
(4.129)).

b.) Calculate the elemental continuum displacement vector, { d(4, 11) }, (see
Eq (4.129))

{d(4,r)} = [iP( ,rl)] {q} (4.129)

c.) Calculate the incremental elemental continuum displacement vector,
{Ad(4, TI)1, (see Eq (4.137))

{Ad(4,r) } = [ib(4,r)] {Aq} (4.137)

d.) Increment over the layers of the shell (refer to Figure 4.8)

(1). KGAUS = KGAUS + 1

(2).Calculate the incremental Lagrangian strains, {AP}, based on {Ad}
in Step 7.b.1).c). These strains are transformed into Eulerian
strains, { Ae }.

(3). Calculate the yield surface for the Guass point at the present layer.

(4).Calculate the incremental Eulerian stress array, {Aa}, using [D]
and {Ae}.

(5).Update the temporary stress array, {}, with the global stress array,
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[CYTOT], and the incremental stress array, { Ac} .

(6).Calculate the effective stress, Cy, using {} for the Gauss point.

9

(7). Check to see if the Gauss point has yielded in the previous iteration.
If it has, go to Step 7.b. 1).d).(9). Otherwise, go to Step 7.b. 1).d).(8).

(8). If the Gauss point is previously elastic, check to see if it has yielded
in this iteration. If it has not yielded, then go to Step 7.b. 1).d).(19).
For a Gauss point which yields during the iteration calculate

--r
Ge - (y

R= -r r- (G.3)
CYe - (T

(9). Check to see if a previously yielded gauss point is unloading. If it is
unloading, go to Step 7.b.1).d).(19). Otherwise, set R = 1 and go to
Step 7.b. 1).d).(10).

(10).Evaluate the number of steps into which the excess stress, RdPe is
to be divided according to

M = 8 (TY (G.4)

(11).Calculate (1 - R).

(12).Compute

(T = TO + (1-R) {AG} (G.5)

and

R{MO}
{M } - M (G.6)

(13).Loop over the stress reduction step.
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[a].Calculate the effective stress, y, using (agTOT) for the Gauss-
point.

[b]. Calculate the plasticity flow vector, {a } = { (a F)/(a (Yj) }, the
combined plasticity flow vector, { dD } = [Df] { a }, and the work-
hardening parameter, H', (if required) for the Gauss point.

[c]. Compute d according to

T{a} {dD} {Ae}

d = T (3.111)

H'+ {dDI {a}

[d]. Compute ((g TOT) according to

yag){M}~R{A4_dX,{ dD}

= TOT + (l-R) A A (G.7)

[e]. Compute the effective plastic strain according to

-r -r-1 dX{a} a I) T TT
{Ep} {Ep } + -r (G.8)

[f]. Return to Step 7.b. 1).d).(13).

(14).Compute the effective stress, a, using the new (TgTOT) for the
Gauss point.

(15).Evaluate the current yield surface.

(16).Factor (agTOT) to ensure they lie on the yield surface, according to
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GOT) =, (G.9)

and store in the global stress array, [aYToT].

(17).Store the effective stress, a, in the global effective stress array,
[aYTOT]. For elastic-plastic gauss points, go to Step 7.b. 1).d).(20).

(18).For elastic Gauss points, compute the updated global stress array,
[(YToT], according to

[aTO T]r= LTO T]r+ {A } , (G.10)

where r is the current iteration.

(19).Load the effective stress, y, into the global effective stress arrray.
For elastic Gauss points, go to Step 7.b. 1).d).(23).

(20).Reload the stress array, {a}, with the corrected stresses from the
global stress array, [aToT].

(21).Calculate the effective stress, (a, using {y} for the Gauss point.

(22).Calculate the plasticity flow vector, { a } = { (a F)/(a aij) }, the com-
bined plasticity flow vector, { dD } = [Df] { a}, and the work-harden-

ing parameter, H', (if required) for the Gauss point.

(23).Calculate the in-plane constitutive matrix, [DfP], according to

T
{ dD} { dD}

[D7P] = [D I- T (4.10a)

H'+ {dD} {a}

for the Gauss point. It should be noted that for elastic gauss points,
the plastic flow vector, { a }, the combined plasticity flow vector,
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{dD}, and the work-hardening parameter, H', become zero.

(24).Load the constitutive matrix, [DfP], into the constitutive array [Q]
for this layer.

(25).Return to Step 7.b. 1).d).

e.) Calculate the transformed constitutive array,[ Q ]*, according to

I = Q] [T2] (G.11)

f.) Update the elasticity arrays, [Af] - [Tf] and [As] - [Fs], with the trans-

formed elastic-plastic relations for the layers at the present Gauss posi-
ton.

g.) Calculate [keWp], [fl eP], and [Nr2 ep] using the elasticity arrays defined
in Step 7.b.1).d).(26) and the {d(4, ri)} from Step 7.b.1).b).

h.) Calculate [KTm] and [Kequilm ] (except for first iteration of first incre-

ment) for each gauss point.

i.) Update the KTm and Kequilm (except for first iteration of first increment)
for the element.

j.) Return to Step 7.b.1).

2.) Return to Step 7.b.

c. Assemble the global [KTm] and [Kequilm].

d. Return to Step 7.

8. Apply prescribed boundary conditions.

9. Solve Eq (4.133).
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10. Load global displacement vector of increment n, { d' I TOT, into the global displace-

ment vector of increment n-1, {dn'l)}TOT. Update {dn}TOT with solution of Eq

(4.33). Calculate the incremental global displacement vector of increment n,

{ Adn } TOT.

11. Check for convergence based upon Eq (4.137).

a. If no convergence return to Step 6.

b. If convergence achieve, continue to Step 12.

12. Reinitialize KGA US.

13. Begin looping over the elements:

a. Calculate the elemental displacement gradient vector, {d}, from the global dis-
placement vector {dror}n, and the incremental elemental displacement gradi-

ent vector, fAq }, from the global incremental displacement vector { AdToT} n .

b. Begin looping over the Gauss points in the direction:

1.) Begin looping over the Gauss points in the il direction:

a.) Calculate the interpolation functions for the matrix [b ( , T1)] (see Eq
(4.129)).

b.) Calculate the elemental continuum displacement vector, {d(4, 1)}, (see
Eq (4.129))

{d=(, TI) [/b (4, TI) ] {q} (4.129)

c.) Calculate the incremental elemental continuum displacement vector,
IAd(4, q)}, (see Eq (4.137))

{Ad(9,11)} = [h (4, j) ] {Aq} (4.137)
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d.) Increment over the layers of the shell (refer to Figure 4.8)

(1). KGAUS = KGAUS + 1

(2). Calculate the plasticity flow vector, {a} = {( F)/(a ij) }, the com-
bined plasticity flow vector, { dD } = [Df] { a }, and the work-harden-

ing parameter, H', (if required) for the Gauss point.

(3).Determine if the Gauss point is still elastic by checking if { £P} is
zero.

[a.]If { ,P} is zero, go to Step 13.b.1).d).(7).

[b].If {I P} is not zero, go Step 13.b. 1).d).(4).

(4).Load up the temporary stress array, {a}, from the global stress
array, [cToT].

(5). Calculate the effective stress, a, using { 1} for the Gauss point.

(6). Calculate the plasticity flow vector, { a } = { (D F)/(a aij) 1, the com-
bined plasticity flow vector, { dD } = [Df] { a}, and the work-harden-
ing parameter, H', (if required) for the Gauss point.

(7). Calculate the in-plane constitutive matrix, [DfP], according to

T
F] ] { dD} { dD}

[Df; = LD- T (4.10a)
H' + f{dD} I {a}

for the Gauss point. It should be noted that for elastic gauss points,
the plastic flow vector, { a}, the combined plasticity flow vector,
{dD}, and the work-hardening parameter, H', become zero.
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(8).Load the constitutive matrix, [DfP], into the constitutive array [Q]
for this layer.

(9). Return to Step 7.b. 1).d).

e.) Calculate the transformed constitutive array,[ Q ] *, according to

[Q]* [1 IQ] [p1] (G. 11)

f.) Update the elasticity arrays, [Af] - [Tf] and [As] - [Fs], with the trans-

formed elastic-plastic relations for the layers at the present Gauss posi-
ton.

g.) Calculate [keP], [fl 1 eP] & [V2 eP] using the elasticity arrays defined in

Step 7.b.1).d).(26) and the {d(4, r1)} from Stepl3.b.1).b).

h.) Calculate [KTm] and [Kequilm ] (except for first iteration of first incre-

ment) for each gauss point.

i.) Update the KTm and Kequilm (except for first iteration of first increment)

for the element.

j.) Return to Step 13.b.1).

2.) Return to Step 13.b.

c. Assemble the global [KTm ] and [Kequilm].

d. Return to Step 13.

14. Calculate the required residual forces.

15. Output the elastic and plastic stress components.

G-12



16. Check to see if maximum number of increments achieved.

a. NO: Return to Step 5.

b. YES: STOP.

The algorithm and theory are validated by comparing against known solutions pub-

lished in the literature and against availiable experimental data. Specifically, the plate

problem by Owen & Hinton [144: Chapter 9], the isotropic spherical shell by Argyris [8],

the pinched, isotropic cylinder by Simo & Kennedy [205], and the experimental results by

Gould [70] on a Gr/PEEK tensile coupon and by Hatfield [76] on Gr/Ep cylindrical shells

with and with out a cutout.
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