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1. INTRODUCTION Lo Rt

In the literature, different approaches have been found to
study failure phenomena in comp031te materials. The two most
important approaches may be found in [2].

1.1 Micromechanical approach

In this approach, the starting point 1s the study of the fail- . ..
ure behavior of the components involved (matrix material fiber and
finally the layers or lamellae). ‘

- The failure behavior of the different layers is subsequently
combined into the failure behavior of the complete laminate.

The descriptlon of ‘the failure in a composlte materlal is a er_‘.fﬁ,;
v ifairly complex task 1n which complete computer'programs must be
S used to calculate the strength tension relatlon. To 1ncrease the
"practlcal appllcabillty of such an approach, sometimes a simpllfled
' approach 1s used in which only ‘two points on the stress- tension
¢ curve are calculated These are the points at which the flrst fall—
‘ure occurs in the composite material (comparable to the fluid ten-
sion in a metal) and the final failure stress. The: last p01nt is
determined by a so-called "netting theory" in which it is assumed
"that-the fibers can only absorb normal stresses. Even in thiS'sim-f"* o
plified case, 1t is bhardly possible to apply such fallure analyses
for practical engineering purposes. In practical engineering, it
is always'necessary to obtain, on the basis of simple relationships
between mechanical parameters, an impression of the safety of a
structure with regard to failure.

» ‘The inapplicability of the theory applles even more strongly
T ” ~ to the approaches often found in the llterature in which failure

- . mechanics ‘and statlc considerations are used. Especially for glassf
o fivers (as used in mine detectors) a static approach for the brittle




‘ally firm, here actually this study loses much of'itsfusefulness.

' ailure behav1or is inadmissible (because of the brittle failure

fibehaV1or)

“In [l], we find an overall survey of tbe study in the area of

,the micromechanical approach. .The same publication also indicatesf
. that the usefulness of the micromechanical approach resides mainly

in;the possibility of choosing between different compositions of

“the composite materials.

Since for minevdetectors the material must be considered basic-

/2

Tbe.benefit of- tbe micromechanical study must, within the

”framework of the study of the composite material for mine detectors

be sought in the poss1bilities of achieving by means of these theor-
ies an estimate of the reliability of certain types of experiments. ‘

In the micromecbanical approach tbe experiments are carried

out in such a manner that only one form of failure occurs. In the

macromechanical approach to be considered further on, much less

F:'attention_is pald to this.

' o make sure that a certain failure criterionigives‘conserva- o

tive results in all cases, however, it 1is certainly recommended to
liconduct experinents also for one failure form so that there 1is a
clear definition of the moment of appearance of ‘the "failure"

1.2 Macromechanical approach

In the macromechanical approach, the primary purpose is to

“achieve a fairly simple criterionvpresenting'the failure of the
"total laminate as a function of the load state. The number of cri-

teria formulated in the course of time 1s very large. Revilews of
such criteria may be found in [7,8,91.




A great drawback of most of the criteria (at least for the
punpose of the study of mine detectors) 1s that one proceeds a
priori from the hypothesis that the composite material is used in
an optimal manner. . This optimal use must be referred mainly to the -
stress state. Most failure hypotheses start ffom the assumption
that the material returns to a plane stress state, and in this sense
the failure hypotheses hardly differ from those formulated for the
layers (lamellae).

The best known fallure criteria in this area are:

a. Maximum stress theory (Stowell, Liu [197, Jenkins [23]

Here an arbitrary stress is decomposed into components along
the different principal axes of the material. )

Failure occurs when one of the stress components becomes bigher
than the failure iimlt corresponding to this direction.

In this connection, no difference is drawn between failures in
tension or in comoression; although the procedure itself suggests /3
this. A prob“em arising in the maximum stress theory is also the
"~ fact that in the region in which transition takes place from one
failure criterion (for example, tension strength in the direction -
: of the fiber) to another failure criterion (for intance, slip) the
'strengtb is over-estimated (see Figures 1, 2 and 3).

b. Maximum tension theory

Tt is quite similar to the maximum stress theory in which now
the tension in the different directions is considered the decisive
factor. The theory which was proposed in 1966 by General Dynamics,
Fort Worth Division [21], is nothing more than the application of
the St. Venant maximum tension theory.
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c.liDeformationfeneré§$f. s

Tne overwhelmingbmajority OfAphenOmenologicallfailure»cri4o
teria for compos1te materials are derived from deformation energy

) considerations and in particular the form changing energy.

The basis for this was obtained:by'Von Mises (1900) for. iso-

tropic materials with the formula

2 T2 2 o2 (1)
{uvx -uy)z + (oy - (;z)z + (o2 -ux)2 2B (Txy +TVZ + TZX )- 20,:, .

Although Von Mises had intended the eriterion primarily for

the,flOW'of:material; in the course of time for metals, it is only

used to describe the flow.

In the area of composite materials, nevertheless, the applica-
tion of deformation energy criteria is ' still maintained to describe

“the failure.  As long as the materials considered are brittle, this
is a reasonable starting point. A number of new: eriteria have been
- dérived from the Von Mises criterion. Strictly-speaking, most of

the criteria do not give a real deformation energy, but rather a

N relation: in stress variants. For convenience, these criteria are
also c¢alled deformation energy because they are mostly an extension

of . the Von Mises formulation.

Hi11 [6] extended subsequently the" Von Mises criterion to ani-

sotroplc materials in the form: o
Foy- uz)2 + G( uz- rrx)z + H(ux-a /) + 2L‘C2_yz + 2r'1tzzx + 2N~(Zx__-! =1

in which F, G, H, L, M and N are material parameters.

In this equation (2), it is also assumed implicitly that:

-—the material is orthotropic
~-there is no difference between tension and compression

strength; with the relation Xt = XC = X3 Yt-= YC =Y, it was
then simple to derive: -




~form:

2F = 2 o4 s sl il OF
SR L Lt e S Ponq OUALITY
1 1 1 R PN '
26 = 2, 4~ - = o1 = I
225272 -2 (3)
1 1 1
R il o= L
X ¢ 722 52

The six parameters of the fallure criterion are thus deter-
mined entirely by the three tension strengths and the three slio

strengths for the mutually perpendicular directions of the mater-

ial.

To make it possible to compare with the following failure -
criteria, it is convenient to write the Hill theory in the follow-

“ing form:

,muw=1.i=LL,@_ (4)
The repetitlon of the sub 1ndlces is reduced to the summat¢on“
conventlon in whlch the sum 1s measured over all the values of ob

sub-indices (1 to & inclusively).

The term Fij. can then be considered as a 6x6 matrix of the

Fije _
_ = 1
1 -1 1 1, 41,1 1 1
v AL Ly 2L 0 00
2x Yy 1 277 X ¥ ' R
1 _‘l(:l L1001 Yy 0 0 n
),2 2 Y2 z2 XZ (5)
\ (3)
L 0 0 0
[
1
2
LR
I ' R%’
‘ 1
L e




lmpOSSible to differentiate between tension; nd
‘ .:strengtb while it ‘was” just established for composite
;r_that there can be a great difference between the. two values,
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The greatest drawback of the" Hlll crlte“m

One of the first attempts to‘include alse‘the compressioni
forces of the material in the fallure criterlon was made by Marin -

[10]. The latter used, to this end, the Hill criterion written in
the main tensions (1ndicated for convenience here as ox, oy R cul

[¥a (ux1 - ayl }1 +[Kb(fry1 - nzl] +[lc o) <ox ]? - vavz:

To eliminate the differences in tension and compression, he
modified the relation into: '

i 1

. (r}X 1

Sl s oy - 0)P et s s

' g (u'xl - a) («iy:l» -_.b) '+>(,,‘>y1» . b)‘»'(“n.z_,1 - c).+ v : ‘ (7)

2

(rtzl - ) (4}{1 =a)y} =oxtyv :

‘ The difference from the previous Hill relation is. actually only
1 l

. that three terms have been_added, specifically, TX Ty cyl and 0z’ PIIR

i

If the failure criterion 1s considered as‘a. surface in the
six—dimensional stress space, the addition of linear terms in the
failure criterion implies tbat the origin of tbe rupture stress ’

“surface is shifted

o If we attempt to relate such a faillure criterion (with shifted
origin) with mechanical phenomena, this means that 1t 1s assumed
that an internal stress 1s the cause of the‘'difference in tension

and compression force.

from the more micromechanically directed failure investiga~
tions, it 1s known [1] that the difference 1in the two strengths is
mostly caused by a difference in the failure mechanism (in com-
pression, it is not the material stress/strength which 1is decisive, '

but the danger of cracking the fiber)

6

it
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The above illustrates the earlier remark that no attemot wasg~f~

made to describe or explain the failure mechanisms with the fail-

ure criteria.

A great drawback of the Marin theory is the fact that the
failure criterion is glven in terms of main stresses. Such a
direction of the main stress does not have to colncide with the
main directions (symmetry planes) of the material, see Grescszuk

'[2] The problem 1s that then the tension/compression strengths

must be known in other directions than the main dlrectlons of the

/6

material, to be able to determine the parameters of the failure crl—‘

terion. Practlcally, thils then raises many problems which the Marln

theory had hardly touched.

The overwhelming majority of later authors recognized the prob-
lem in the Marin theory and have, therefore, deviated from the more
general formulation of the Hill criterion [5]. o

Some of these theories are discussed below.

Tsal and Azzi proposed a simpllficatlon of the Hill criterlon

mal manner and is, therefore, in a flat stress state.

Assuming 03 = 113 = 123 = 0 (5) is converted into

oy
al® - (=
XZ

o162 +lza?2 r122-1 (8)
Ty

{r—

' 1 {
2 *2';2) 7

><

< |

A second hypothesis which is often put forward for. composite
materials is that a cross-section perpendicular to the fiber direct-
ion should behave isotropically, 1l.e., ¥ = Z.

It is apparent from the comparison that most pass through the
Tsai-Azzi criterion.

012. oule2 + _¢f22 + TAIZZ _ (9)
T TN T

by assuming that the composite material is normally used in an opt15 
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For “the glass fabric compos1te materials considered here, _
this ‘last des1gna ion cannot apply dlrectly sinCe the hypothesis
of isotropism in the cross-section is not maintained.

The more general notation (8) should basically be defensible
still.were it not that bending any slip may practically also occur
perpendicularly.

A method proposed by Tsai and Azzi [2] to solve this problem
consists in applying the criterion (9/8) by layer (lamella).

But it is very doubtful whether this approach can be imple-
mented for practical purposes. - It would specifically be necessary
to establish the stress state per layer

This m1ght be done for composite materia‘s with exact composi-
tion (w1nding technloues)(amnt from the fact tbat it would involve
an’ enormous amounc of work). . For composites with more arbitrary
structure, this approach would hardly be reasonable.' The reason
‘why the application of the Tsai-Azzi criterion is not . reasonable

/T

for the glass fabric consildered ‘here 1is the fact that i1t is not at o

'.all clear whether the failure in a layer 1s determined by a flat .
"~ stress state. Specifically, the glass fibers in sueh -a layer are
not straight so that the third stress component may also have an

effect. o o

vThe‘last drawback of the Tsal-Azzi criterionris the same as -
for the Hill criterion and concerns the fact'that no differentia—
tion is made between tenslon and compression strength.

For the sake of completeness, another simplification of the
Tsai-Azzi criterion is indicated. '

Indeed, in many investigations; 1t was found that the inter-

: action term from (9) 0lo2 may be eliminated in many cases so that
: 2
X
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':-ﬁﬁhéfTsaiFAzzi eriterion is converted into the Norris-Puck

“criterion in the form

+ 7 =1 10
K T¢ (10)

This aspect will be discussed in greater detall further on.
, A failure criterion which can avoid most of the above-men-
“tioned drawbacks was established by Hoffman [111.

v Hoffman also started from the original Hlll criterion (2) and
aoded to this relation a number of linear stress terms to be able
to eliminate the difference between tension and compression:

Cel 2 o wc2 fu3 can? 03 (0l - 02)? (11)

2

* Cd n] o+ C5‘4r2 + Ceu3 + CTu23™ Cfiu‘laz + (‘q”'l?( =1

Such a fallure criterion ‘bas thus nine material parameters' : ﬁ/8

r‘and therefore a large number of tests are needed to establish these
material parameters‘ : ‘

With the results of
--three tension tests Xt, Yt, Zt

--three compression tests Xec, Yc, Z¢ and

—-three slip tests Q, R, S the following relationships may
- be. established }




discussed below. It is also doubtful whether this extension is

Yt Z¥c - Xtke 00
PR e R Quairy
B2tZe XtXe - ovive ot S :
R 1'
€3 = - l = + - -
<2 YXtXe o Ytye ZtZc
[ L U
Xt Xc . .
(5 -1 . 1 R - (12)
Yt Yc
e i- L
L ic
; 1
C7 =
7
-1
- €8 =
€Y =

The fa;lure criterion is established completely with these-

[enine parameters/tests.,'*“

This criterion has a number of remarkable aspect5° the fact -

that no difference is made between positive and negative slip
strength. This possibility is left open in many of the criteria

proper for fhe orthotropism considered here.

It may also be noted that the equation (12) 1s a quadratic
equation so that the fallure surface 1in the stress space 1s ellip-
tical and convex (with origin not necessarily at zero).

With the definition of the Hoffman critérion practically, the

maximum is retained of the original Hill eriterion. But actually

10

'OR'}G'NA‘L.'@;:' ’S el
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of the Hoffman criterion it should be stated that this criterion
has no physical basis but is rather a mathematical appfoximation.
Many researchers have observed subsequently that a problem which
arises with all the criteria considered here consists in the fact
that the failure criteria are defined with regard to the princi-

pal axes of the material.

‘ This implies;thét, in the calculation of an actual structure,
the arbitrary stress state must be converted to the stress compo-

" nents in the main directions of the material.

It may also be established now that the problem is. not S0 im-"
v'portant for the orthotropic glass fabric relnforced composites ‘coni=

~sidered here. If in this connection we refer to final element cal-
culetions5 it happens in most ‘cases that the main direction of the
“material coincides with the main direction of the elements.

This can also be a problem for other anisotroplc materials.
‘For the sake of completeness, we will also dlSCUSS below the approx-
imations 1n.wh1ch the conversion of the stress aces is resolved with

respect to the tensorial algebra.

. For the purpose of comparison with other faillure criteria, con-
sequently the Hoffman eriterion 1s also written agein the matrix
form which like equation (U4) can also be written as

Fiol & Fijuing = 1
| : - S - (13)
with 1 = 1, 2...6.  Meti=lhia..f
Here we have
X I 0 R
L Xc
1 (14)
vt ove
! 1
it I

11

o~
.
(@]

|
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Fij =
...;._._ _'.]_ 1_+._1_.-._l__ :_l._.l_.t- LS 1 0 0 0
Atxc 2 |XtXc  Yt¥e Ztic 2 {Itic  XtXc  YiYc
.__l__ _'_l ——1._4- 1 - ....l... 0 0 0
YiYe 2 | ftYe Itlc | YeXt
L.
tic 0 0 0
1
02
o1
P
RS
52
"~ d. Tensor polynomials o R ' o . - /11

o The following failure criterla are purposely”no longer cal-
culated to the deformation energy approximation.

Although a number of the theories can be reduced to deforma-
tion»ehergy in the definition of the failure criteria, the start-
ing point is a purely mathematical description of the failure q;i—-
terion. . The Hoffman criterion can be consideréd as. a transition
area (no tensors are used there yet).

One of the first theories in this area was formulated by
Goldenblat and Kopnov [5] with the relation: ‘

12
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(Fioi) + [Fijerted) T (.‘-\_‘,I-‘I?](IJIIV;))V_.-'. 1

sy
in which once again the summation convention istadoptédﬁW§ﬁbf<“

regard to the subindices:

Here it was also assumed:

Fi = -strength tensor of the second order
Fij = strength tensor of the fourth order
Fijk = strength tensor of the sixth order

The conversione of the tensor in the rotations of the axes
~are known here from tensorial algebra. . The great advantage of’ ten— L
sor- polynomials ig ‘also the fact that the criterion is defined with 1”
lrespect to - an arbitrary system. Goldenblat and Kopnov have con31—=,‘

~ dered in particular a special case of eouation (15) with B

Woe 1L 5 Lre = _ G

- 80 that equation (15) is converted into

v Fiai 4\!’1*”1/73 =1 (16)

. S Tsai and Wu (4) have indicated that, the square root i fifdrmla(lof
is very 1rpractical since the result ‘is a + sign. The Goldenblat
and Kopnov criterion is, therefore, best applied in the quadracic‘%w_buﬁ
form: . el o _;ll_ B o

o Fiol + Fiduiod = (Fioi) = (17) '
" But even this form of the Goldenblat and Kopnov criterion is. not
_much used practically. A problem which arises for this criterion
pbreferS‘to the definition of the interaction term Fij. '

' If these terms are determined directly with experiments, 1t
may occur that the failure surface in the stress space 1s no longer
closed (elliptical) but 1s converted into a parabolic or hyperbolic /12 '
surface which may lead to unrealistic theoretical strength proper- ' 5
ties.

This phenomenon was also indicated by Ashkenazi [20]. The
above-mentioned problem becomes even greater if the third power
term (Fijkiocjok) is included.

.13
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" Apart from the fact that ln that case a'very:l,
often lead to a nonclosed failure surface in the stress space.'qw

To solve the above-mentioned problem Tsal and Wu [4] estab— fai;v

" 1lished a criterion which is more general than the Goldenblat Kopnov

criterion, simpler to apply and results in a closed (elliptical)

failure surface in the stress space.

The Tsai-Wu criterion has the form: o
Figi + Fioiffj =1 (i=1,..... 6) '(1 )
Here, too, the summation convention is applied with regard to
the sub-indices. To take into account the fact that the failure
surface is elliptical (in the stress state),;the following_stability
requirements are imposed: | o ' o
' ‘ i FJJ - Fijl “ 0 -(19)
“In this cohﬁectiOn, the stfiking"detail'is that the. Oriaihal
authors also accepted the equality signs in: equation (19), while
the later investigators established, on the basis of a more. graphic 3
interpretation of the failure surface (14), that the equality sign _;'”

,was not acceptable either.

It should be noted that the general’equationt(l6) eontains;alto- . :

vgether (basically) 42° of freedom (unknowns). This number of =

unknowns may be reduced to a considerable extent by assuming that
the Fij terms are symmetrical ~Such an assumption may be made if

‘we start from the hypothesis that there is a so-called F(oi) failure

potential. Here the terms FlJj are defined by:
'ri"j"!}’?zg/?;iﬂm,j i 2 feajiai = Fii (20}) ' A . ’

_ The assumption of a faillure potential implies nothing other
than the assumption that the failure phenomenon 1s independent of
the load path. Such a hypothesis is made essentially for all the

14
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aboVe—méntioned failure criteria. How far this assumptlon is
justified depends both on the type of material and the phenomenon
described as failure criterion. If the failure criterion 1s used /13
to describe a kind of fluid limit (or the first point at which a
break occurs anywhere in the laminate), this assumption is generally

valid.

If this criterion is used to describe the final total failure
of the material, the assumption with regard to the independence of
the load path is less valid. In such a case, specifically the final
failure is preceded by plastic deformations which are to. some extent
: path;dependent. Nevertheless, the failure.criterion may still be
Valid.for the so-called radial stress paths. In this connection,
radial stféss paths should be considered as paths in the stress
space in which the corresponding ratio of the stress componenﬁs

would remain the same. ‘ ’

Since the failure,criteria'fprmulated3in this report must be

~ considered primarily as a design criterion and not so much a criter--
ion in which very exact predictions must be made on the faillure
stresses occurring, such path-dependent effects may be left out of
consideration preliminarily. The simplification taken then is that
the path-dependent effects are included in the safety factors.

_With the assumption of formula (20), the number of unknown
parameters was reduced from 42 to 27 (6 for F1 and 21 for Fij). A
still~greater'reduction in the number of degrees of freedom may be
achieved by starting from orthogonal material properties which 1s
directly permissible here for the materlal considered.

With such an isotropism, it may be stated dlrectly that a con-
nection between the normal and slip stresses may not arise so that
terms such as F16 may be equal to zero. It may also be stated that
-1f the reference system of axes colncides with the materlal (strength)
main directions, we have [7]: F4 = F5 + F6 =

15
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“In tne matrix ;orm, the relation (18) is then wriften3as. S fAl
"follows ' o | o

Fl F11  F12 F13 O 0 - 0

F2 Fa2  F22 0.0

fo- P L Fis - F33. 0 0 0

Fae 0 0 (21)
0 ' F55 0
F66

The parameters in equation (21) must be obtalned agaln from

‘tension and compression tests. “"Slmple" single axis failure tests

may be used for the terms of Fi and for the dlagonal terms 1n FlJ.

As an illustration: When loading in direction 1, the following values
are found for tension and compression strength respectively

ol = Xt and ol = -Xc (let on the minus sign).

For equation (18/21), we may write

%2 F11 + Xt Fi = 1 and
| Xe? Fll - Xe Fi = 1
from which it follows that:
| D AN AP
Fi = & - = and F11 = g (222)

By a similar method, we may obtain for tbe‘oﬁher material

directions
R F22 = 1
Yt Ye , YtYc
F3 = 1.1 ’ F33 = 1 _ (22b)
It Zc : Zt2c i
Fan = -1 F55 = L Fe6 = L
Q“ pe - s
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_ ©Here Ltiﬁay"be aSsumed‘directly that for the orthotropic
- material there is no dlfference between the so- -called positive
’ and nevative slip.

A comparison of relations (22) with those from the Hoffman
riterion (14) shows that the characteristics discussed up to now
are exactly the same.

" The great difference between the Hoffman criterion and the
‘Tsai-Wu (tensor polynomial) criterion lie in the definition of the
_eross-terms Fl12, F13 and F23.

For the‘defman'criterion, the cross-terms are dependent para-
-meters which are established completely 1f the parameters -in equa-
“tion (22) are determined. \

In the Tsal Wu criterion, tbe cross—terms are 1ndependent mat—-w s

~N
=~
\J1

|

: erial parameters whlch bhave also to be determined by separate. exper—,v

o lments

The authors of the crlterlon (Tsal and Wu) consider that the
" advantage of this independence in the cross-terms resides mainly in
the greater flexibllity of the criterion to achieve a proper pre-
diction for the failure strength for multiaxial stress states also.

. In this connection, Tsal and Wu [7] state that most- failure criteria

describe well the uniaxial failure strengths, but raise problems in

. ‘the multiaxial stress state. The similarity of the form of the
Hoffman and Tsai-Wu criteria with regard to the uniaxial failure

strength seems to confirm this view. But even the more flexible

formulation of the Tsai-Wu criterion leads rather toa shift of the

pfoblem than to its solution. Specifically the problem which now
has to be solved for the Tsal-Wu criterion is the question as to

. which experiment is most sultable for determining the cross-terms.

‘The historical developments 1n this connection are sﬁfficiently
illustrative. ‘
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Tbe Russian investigators used primarily tension and com=~ -
'l press10n tests on a so—called M5° blank (tbe material axes form'.l
- an angle of 45° with regard to the main axes of the blank).

If for plane 1-2 the experimental results are 1nd1cated as
- Ut and Uec, we find for F12

. : 2 . -
2 2 '1+‘£<_1.-_L+_1_-.-j_>- .!Jg(._l.+--__-,-+ _;.)
v |- 2 \xt xc vt ove/ 4 \xwin vtve s
or PR : e T (23)
: : . Ut 1 1 1
[ER N P G R X 1) Wl L )
utt o2 A (R T | ;4 Kede YtYr '
~ In [12], Tsal and Wu .also. indicated that these experiments
were hardly sensitive for a variation in F12 (see PFigure 4). In /16

this publication, the authors also ‘say that much better results
may be expected for a positive slip test on the 450, blank. For an
exoerimentally deternined value V, Fl12 is defined by "

- R IR TS TR T 1 -
F12 = L=V e = = = = ) = V(L —)

2R : Xt Xe ¥t e CXtXe . YtYe (24)
But the practlcal results Seem to be very disapp01nting, even

for such an experiment o

In [1&], Collins and Crane explained with a purely graphic
interpretation of the Tsai- Wu criterion that the positive slip exper-
~iments on y5o blanks probably do not provide the desired results.
"This type of1slip experiment 1s indeed hardly used any longer.

An additional problem'in the experimental~determination of the'
cross-terms depends on the fact that the stability criterion (19)
has always to be satisfied. Thus, it can nappen very often that

the experimentally:determined value cannot be applied to the cross-

terms.

This is illustrated by the results of Pipes and Cole [13] when
the cross-terms Fl2 are determined with off-axis experiments (exper-
iments in which the materialforms an angle with the maln axis of the
blank).

18




Of the lour'experimehtally deterﬁihed'values of Fl2, only one
value seems to satisfy the stablllty crlteria. On the basis of
these results, the conclusion may, therefore, be drawn immediately
that it is impossible to determine the cross-terms with these

experiments.

In later publications, especially by Wu {7 and 17] alternative
procedures are proposed to determine the values of the cross-terms.

"In these procedures we start from a really biaxially stressed blank

(stress ol, 02). In Wu's procedure, there must be an optimal bi-
axiality ratio B B = 0l/02) determined for which the value F1l2 can

‘be defined.

Unfortunately, the optimal value of B depends on the value of
12, so that an iteration process must be used (with the correspond-

ing number of tests).

In the same eubllcatlons; it is also 1ndlcated that a dec;51on

 _may be taken to include terms of the higher order (Pijk, Fijkl, /17
“etec.) in the failure criterion. This de01sion depends on the (ex—

permentally determined) Value of Fij W1th regard to the precision
of the solution (determined on the basis of the hypothesis that

the spread in experimental failure experiments is, for instance,
approximately 10%). -If the value of Fij 1s greater than the preci-
sion of the solution, it will be necessary to include additional
higher terms. This is not related to the‘fact fhat the situation
becomes even more complicated When'thesevterms of higher erder must
be'included Even for these'terms of higher order, optimal multi-
axial experiments must. be defined with the necessary interaction
work concerned. Moreover, the terms of higher order (Fijk) still
depend on the lower order terms Fij. According to Wu, the Fij terms
can be determined first, after which the determination of the Fijk
terms no longer affeets the values of Fij.

‘The practical calculations in [15] also show that the values
of Fij must be adjusted to a great extent after the determination




of Wigk Tennyson,. McDonald and Nanyare used in [15] AN actual
hybrid computation technlque to be able ‘to describe properly the
interaction between the. different Cross— terms. For the purpose of
the intended design (for a material not considered here), such an
effort is totally unwarranted. Therefore, it may be stated immed-
iately that terms such as Fijk must not be included.in_the faildre
criterion. This becomes even more apparent if we recall that the »
use of terms such as Fijk implies immediately that the failure sur- :
face in the stress space 1s no longer convex with all the related |
problems. To sum up, it may be_stated.tbat'the use of a (Tsai-Wu).
tensor polynomial approximation does give greater flexibility but
that this is achieved to a great extent in the form of more complex
experiments. In the experimental determination of cross-terms such
as Fl12, one should also consider thoroughly the benefit achieved in

the sense of a more exact description of failure under a multiaxial .

stress state, as compared with the much more complicated exoeriments.
The next chapter will discuss this in greater detail '

N .

2.. CHOICE OF A FAILURE CRITERION

In the last chapter, a large number of failure criteria were"

descrioed For the sake of clarity nevertheless, the number of fail-'”b
ure criteria discussed in this report 1s limited to the most import~'~-.ﬂ
ant. The llterature contains countless variants of. these fallure

criteria

v Radenkovic and Boschat (8] have, for instance, converted the
Tresca criterion by deflning the slip strength as a function depend-
ing on the direction. :

Griffith and Baldwin [8,24]‘have attempted to reformulate the
deformation energy criterion for general orthotrepid materials by
the maln stress axes coinciding with the main axes of the material.
Regarding most of the variants of the failure criteria, it may be
stated that only a more complex mathematicaliformulation is used
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‘without aobsev1nm a gain in flex1b111ty ’ The ! overwhelmxng majo;—
ity of these criterla are hardly used except for Very special com=
posite materilals.

But there are still two exceptions to this rule:

—-Franklin [8] proposed extending the Hoffman criterion by
multiplying the cross terms F12, F23, F13 in the Fij matrix by an
extra parameter (a, B, Y)-. (Also see Appendix A). This parameter
must then again be determined witb a multiaxial test and the basic
philosophy is then essentilally the same as for the Tsai-Wu criter-

ion.

~ Shu_and Rosen [18] have followed to determined the slip
t”engtbs an approach which is actually no longer part of the macr

'“mechanwcal but rather the micromechanical approach In this"
sapproach we use a llmit load analysis as known from the theory ‘of
'i,plastlclty By deflning ‘subsequéntly a kinematlcally permiss1blev.‘
dlsplacement field an upper and lower 1imit are found, respectiveWy,

for the failure load. ' .

The more consistent ‘with reality are the displacement and ‘
' stress filelds, the smaller the differences between the lower and
upper limits.

In [18], the above-indicated theory is applied to a unidirect-
ional material. For the slip strength in plane 1-2 (112), it is
apparent that the lower and upper limits can differ at maximnm by
27% (see Figure 5) which seems to be a very reasonable approxima-
tion in view of the measurement precision of failure tests. The

o -

|

~same theory seems to furnish less good solutions for the slip
strength in plane 2-3 (see Figure 6) and the applicability of the
theory to this case must be considered rather doubtful.
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< How far the results for Tl2 are’ appllcable for a glass Pabricg
is not yet quite clear. It should be possible to use basically |
the same stress and displacemént fields, so that the possibility
of determining one of the failure strengths (S) directly from the
properties of the component sections (glass fiber content, fluid.
1imit of the matrix material) should remain open. It would seem
interesting to test this in the future for a practical case.

In choosing a failurevcriterion; it must be realized that it
1s impossible to establish a failure criterion which applies to all

composite materials.

This phenomenon is actually known also in the "composite

~world", and the Tsal-Wu criterion (in which the faillure criterion

is the measure) is, for example, a direct consequence of thils.

'This choice of the failure criterion must then be associated

directly w1th the type of composite material ‘A number of general p
requirements can,in each case, be ass001ated directly with the fail— '

ure criterion:

1. The criterion must be invariant with respect to ‘the coor- - gt

dinate transformation, . Sl D e e T e

2. 1t should be flexible enough to be able to describe the ,'
experlimental results, . -
3. the criterion must provide a solution for a certain load '

path,
M,. the criterion must be'mathematically‘operational.

This means that the criterion must have a Simple conversion

between stress space and tenslon space.

' The criterion must also be applicable to strength analyses and
in particular to the method of finite elements.,

With these general requirements, a number of marginal notes

_may be made with regard to the glass fabric reinforced material con-

sidered. here.
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f e For 1: For the orthotropic material considered here and /20
» with regard to the'application of the criterion tc the finite

eiemént methods, the requirement that the criterion should be

: invariant cannot be so ilmportant.

For 2: The requirement of sufficient flexibility for the
failure criterion must be related mainly to the question of whether
" the criterion must be able to describe differences in tension and
~compression properties. Since no compression tests have yet been
carried out on the present material, no definite answer may be given
to this question, but the results in Tables 1 and 2 for comparable
‘materials indicate that the differences in tension and compression
properties are fairiy significant. It is, therefore, stated also
" £hat the fallure criteria to be chosen should also be able to des- .
eribe differences in tension and compression: The failure criteria
described in the previous paragraph should now be tested for the
pemaining requirements 2, 3 and 4. L s

2.1 Maximum streés theory and maximum tension theory

Apart from the probiem already indicatéd that the maximum stress
ﬁheory gives an overestimate of the strength properties, both eri-"
teria raise very great problems with regard to the conversion of
stress to tension space and inversely (requirement no. uy,

If, for instance, a maximum tension theory is converted to the

~ stress theory, wrong results may occur as shown in Figure 7 (with
arrows). The same thing may bappen if a maximum stress theory is
converted to the tension space (Figure 8). ‘

. : " ‘'Such phenomena are only to be attributed to the partly linear
‘nature of the failure criterion.

This effect can already occur for flat stress states.

On the whole, the multiaxial stress states are even more complex.
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Both crlteria can be practlcally much more complicated fhan
apparent at ‘a frrst glance and additional stabillty requlrements

mqu be imposed on the criterion.'

For a flat stress state, altogether six stablllty criteria

are needed for the maximum tension theory in the form [7] /21
; o S15 , Xt5 811, %2 ©825 . o6 522 . Xl
; ‘ - Ly = e e (25)
i o . Sz Ytl S12 - xtl S12 Xt2 Si2  xc2
! ’ : . ) : .
f S16 , Xc6 _ S11 . Xt2 585, Xt6 _ S2h 5 Xtl

$12 el S12 Xcl ¥t2  S16  X%2
S26 , Xt6 S22 yXel S66 , Xt6 _ 526 5 Xcl

S12 . X2 Si2 Xt2 S16 - Xtz S16 - ¥c2

These are the terms of the compliance matrix (flexibility

matrix).

S .. For the maximum stress theory, also stability'requirements
| : ~ must be imposed In the form: ‘ o '
: S Cl6 €22 j Xch _ C22 5 #e2

12 66 Xcl“i' cz ol "‘Etc-‘ (@8

, Slnce their relations are no longer used however, they are
"not written out in greater detail here. Further information may be
found in the literature [7] page 381.

It is apparent that the number of stability requirements for.
a real three-dimensional failure criterion becomes so large that

there 1s no practical possibility of applying the criterion.

‘The maximum tension and stress theories must, therefore, be
described as practically‘inapplicable.

The Hill eriterion and the criteria of Tsai-Azzl and Norris—
Puck derived from 1t are not applicable, since here the differences
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between*tension‘andjstreeSfcénnot'be:dieconnted. Tn the flat
stress state, this problem 1s solved to some extent by formulat-
.-1ng the criterion concerned per quadrant in the stress space, while
‘the corresponding strength numbers are used for each quadrant.  In
the bil- dimen51onal case, this operation can still be considered,

but for the three-dimensional case, this leads to very complex for-
mulae, and there is also the problem that the surface is no longer
convex so that botb requirements 3 (clear solution for a load path)
and 4 (clear conversion from stress to tension theory) are no longer

satisfied.

For these reasons, we must also abandon the inapplicable cri-

<
N
n

teria of Hill, Tsai-Azzi and Norris-Puck.

“'The great drawback of the Marin criterion is that the direction
of the main stress may coincide with the main directions of tbe

""ﬂ’material which for a structure need absolutely ‘not be the case. 3Fori’

., this reason, the Marin criterion does not apply either

There'remein the criteria of Hoffman; Franklin and Tsai-Wu.

- The only difference between tbese criteria is—the definition
of the cross—terms Fij (1 # j) - For ‘the Hoffman criterion, the.
_cross—terms“satisfy immediateiy the stability requlrements '
- For. Franklin and Tsai Wu, extra attention must be paid to the
‘stability criteria (19).

‘MOreover, in the last two cases, rather complicated biaxial
experiments are needed to determine the parameter values of the
;cross-terms. ' '

‘Before beginning such complicated experiments, we must natur-

ally examine the gain in precision which may be expected with these
criteria (Franklin, Tsai-Wu). This will be considered in perticular'
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~on the basvs of the term Fl2 N To simpllfy1 he,plan to some extent,
the: parameter picture of the F12 values is subdivided into two par-
“tial regions while tbe value of P12 as follows from the Hoffman
'criterion is used as separation (designated hereafter as F12 )

I 0SFijSFizy

This region was studiedvthoroughly by Narayanaswami [16].

In this investigation in [16], two fai1Ure1criteria are studied,

specifically the Tsal-Wu criterion with F12 = 0 and the Hoffman cri-
terion. The author determined for different composite materlals:
and for different load states the failure strengths with the two

.different eriteria.

On the basis of the results, it was possible to. establisb that

the difference between the two eriteria Was never more than 10% in

. the extreme case Since this 10% level is taken in the 11terature

asa sort of magic linit with regard to measurement precision in

‘failure experiments, in the publication in question the conclusion -
~is also drawn that for practical purposes "1t ‘makes no" difference as’
;to which criterion is applied : 13,Lj_;,j_e,, a:ﬁf, ‘

F1J>F12,
Fij<0 -

In this connection, no investigations are known in which the
effect of the cross-terms on the precision of failure strengths'was'
estimated. But 1t 1s quite possible to estimate quantitatively the.
effect of the cross terms, if we limit ourselves to the composite v
‘material to be used in the mine detectors.

In the first place, one may study the parameter region which
is permissible at maximum for the composite material in questlon
bere. This attempt is made in.Appendix A. The latter formulates
the cross-terms Fi1j as a function of the Hoffman parameters in the

form:

26
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rlc = Fl12y .
_YFB,K‘ ] . . .
FIJ_=BF17|( . (27)

By applying the stability criteria, it may be found that:

[a] < v 1.5 to 2
[B] <~ 1.1
[yl <~ 1.1
Fromvthese.numerical values, the conclusion may be drawn that
the boundary values of the cross-terms F13 and F23 are approximately‘

~equal to the values of the Hoffman parameters (as long as Fij bas
.the same sign as the Hoffman parameters). For practical purposes, .

the limiting values for the parameters F13 and F23 can be taken as
equal to the Hoffman parameters (or{y) =I8]=1). The exact exper-

-imental determination of the parameters F13 and F23 (in accordance

w1th the Tsal- Wu or Franklln concept) should imply the biaxial exper-

‘ 1ments must be carried out in plane 1-3 or 2-3. These experiments

are very dlfflcul*'(see the problems in the determlnatlon of the
1nterlam1nate ten51on ‘strength in [25]) and ‘therefore, proport1op—"

”ately 1naccurate (probably inaccuracy more than 107)

In view of the results of the study by Narayanaswami [15], it
can actually be stated also that there is no benefit in determining
experimentally the parameter ‘values of F13 and F23, and that 1t is
best to use for these parameters the Hoffman formulation (14).

For the parameter Fl12, there is somewhat more latitude with

‘regard to the Hoffman criterion(|a] < 1.5 to 2) and in this plane

experiments may be conducted with somewhat higher precision. f/zu

But in this case also we must expect very spectacﬁlar differ—

‘ences. Indeed, Franklin [8] established that the application of

the Hoffman criterion may give an over-estimation of the strength

in the order of 50% (for the casevdescribed'by him), but Franklin

corrected thereafter the value of F12 with a value a =-90.53, which
is larger by factors than the possible values for the present -
glass fiber material. On the basis of the results of [2] and [16],
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the conclu51on can be drawn actually that the application oi-a‘ -
Hoffman formulation gives deviations of 20 25 for the ceross- term &ﬂﬁﬂ

P12 in the most unfavorable case

Thereby, this preci51on may," if desired be fairly simply
doubled by carrying out a slip test on a material sample under 45°
in the plane 1-2 (see Figure 9). This 1s then a positive slip test,
of which it was already stated earlier that the test is probably
not exact enough to determine exactly F12. The test should be
amply sufficient to establish the sign of the Fl12 term.

To correct the Hoffman parameter F12 for this sign (this does

"-not affect the stability criteria), the precision 1is brought back

to within 10%.

To summarize; it may be stated that the'stability criteria
impose strengtb limitations on the cross terms, such thau the inclu-
sion of the test precision is amply sufficient to use the Hoffman -

v criterion

Y possible exception to this 1s the croéé-term Flé"bﬁt.fer‘ P
this term the precision can be brought rapidly within 10% limits.

through a slip test on a U45° blank. The following tests are needed

to.determine the failure criterion:

Hoffman criterion: tension tests) - R :
) in directions 1, 2 and 3

compression tests)

- 8lip tests in directions 1, 2 and 3
determination of the sign of F12: slip tests on 45° blanks in
the plane 1-2 '

N
3. EXPERIMENTS

A number of researchers have applied for purely theoretical
reasons. boundary conditions on the type of experiments needed to

~ determine the failure criteria [1,3,7]. For the sake of completeness
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a number of these boundary conditions are indicated. \Ih:{hjé*wu‘

-~ imposes two main requirements on the experiments

- the stresses in the blank must be calculated under the
poundary conditions taken in the experiment
- the stresses in the blank must be uniform.

Here Wu stated that in the determinations of the parameters
which are defined by overall material properties, this second :
. requirement is not so important. But if the parameters are deter—
mined by local properties as ‘is the case for the faillure, this
second requirement must immediately be satisfied This implies
"_practically that experiments with notched blanks are not permissible;;

» - Another aspect which must be considered in the determination
iof the failure criterion is the fact that tbe criteria to be deter—
: mined are valid only for radial stress paths (if ‘there are of v
-icourse inelastic deformations before the failure, which should ‘very
~'certainly be the .case here). “But this: implies that the stress in
‘the structure must remain the same in regard to the form until ‘the _
. moment of the total failure, since otherwise a too favorable picture

would be obtained with regard to the failure strength. Practically,.._
"»;this is due to the fact that one has to test one type of failure per -

“experiment. For example, it is not desirable that when a failure’;;j,pp

occurs in a test-bar, the stress distribution should change in such
N a ‘manner that another failure type 1is indicated (where the material
is for example much more resistant). It is then useful also after
conducting the test to check whether a type of failure has indeed
_occurred In this ‘connection, tests in the form of bending tests

- are advised against most strongly.

‘The number of possible types of experiments 1is limited too
v strongly by the previous boundary conditions. Lenoe [26] and
 Whitney [27] have published extenslve reviews on the possibility
of accomplishment and the limitations of the different types of
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“sion that the eylindriCal blank is the only one which gives reason-
~able results, this'éonclusioﬁ is nevertheless inspired too much by
the desire to be as flexible as possible in the cholce of multiaxial
stress states. As is apparent from the above, this is also vital
1n the application of the Tsal- Wu criterion. But if we limit our-

cxperiments. Although most of the authors arrived at the comelu= -«

/26

‘selves to a Hoffman criterion, this requirement is much less signi- "~

ficant.

A last aspect to be discussed here is the thickness effect
mentioned by a number of authors (see for example [3]). This thick-
‘ness effect 1is explained by the fact that for a plate material the
outermost fibers experience much less support from the matrix mat-
erial than the central fibers. This effect should occur whenever

“the fibers are curved (just as for . a fabric). The effect should be "

_clearly notlceable when the plate thlcknesses are lower (less-

fivers in the thiokness direction) and will lead from thlnner plates
_to a reduction in ‘the failure strength (see Flgure 10). - Although
‘in the mvre detector research w111 be damped for the plate tbick—
nesses, it can be 1mportant if thinner plates are removed from the
“‘soriginal plate to undergo tests subsequently ' DA
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Figure 8, Maximum stress theory in the tension space
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Stability for the Franklin Criterion

- The starting point may be the Hoffman criterion, which may ,_tif\”
be written in its simplest form as follows (as regards ‘the quad- R

ratic terms) . : _ S e
€2 +C3 -C3 €2 0 0 0
I S B B SO
T tisc2 0 00 |
oo oo | FU (a=1)
n -0
SRR

Franklin attempted to achieve a better consistency for a
multiaxial stress state by introducing three additional parameters .

o By througn which the relation (a-1 ) is converted into'

Cl'+ €3 Sl b 0. S0 SURPL
BRI I S

To have a closed convex failure surface in the stress state;
the Franklin theory must also satisfy the stability criteria as
defined in the Wu tbeory (tensor polynomials)

Fii FJJ - Fl‘)2 2 B ’ (a-3) -

This stability criterion is used to have an estimate of the

‘magnitude of the new parameters ‘introduced
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1 parameter @

F11r22 - F12f

> 0
(C2 +C3) (€1 +C3) - o 23l _
€35 v C7C3 + C103 + CiC2 - o fl -0
(L -a") €3 + €263 + C1C3 + THC2 - 0 (a=l)

To be able to state something more about the above criterion
is tested on the composite material used in mine detectors. Here

we may state that

(a=5)

......

so that

1
= (2
toc

__LH'
With (a-6), relation (a-4) may be written as:

Itic
(a-7)

~(a-6)

2

(1- w2y ¢3?

M

20103 + 612

The order of magnitude now depends on the relationship between

C1 and C3, it may be established directly from equation (a-T7) that a‘

'must be limited at the top by the stability requirement.

Since no compression tests have been carried-out yet in the
present circumstances, it 1s still difficult to estimate realistic-
‘ally the real maximum value of a. To obtain a first idea, it is fur-
ther stated that Zec (illegible) Xc (also see Tables 1 and 2) and Xt
(illegible) 10 Zt (the latter is derived from the measurements by
Tegelaar). ' ' '

1
ZtZc

2

\m

Thus Cl =

C3 = l - (a—,8)
2 tlc Ltic
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" 'sSubstituting (a-8) in (a=7), we find

C{a-2) substituéren in (a-7) levert
. . el e . Y- .
(=28 i s 2.2 32+ 8 32y :
o 2 “oo L (a=9)
L
a
REN 0 - '1?'.2 “’l;i
4 q 2

When choosing the relation between Xt and Zt, we must start
. from the maximum value of Zt as shown in the péper by Tegelaar
(Ekperimental Determination of the Material Properties'of Glass
Fiber Reinforced Polyester; IWECO Report no. 5072020-78-1). To
study the effect of these relations on the value of o, a second

case 1s considered:
Y

Xt ~ 20 Zt
o _ R . 4 1 -9 .
so that _ Ui anct3 = 1 -—%—— - -1 o= —Cl - (a=9)
‘ itic - 2| 20Itic  Itlc 20 - .
The substitution of (a-9) in (5-7) gives
Al esf e 2720 32, 800 (2 o '
or L ofvel 1»n2:@9+ ﬂ&;‘o
i 8 81 :
1B L2 |
81 a-10)
. \ , _ a-
a‘“ ¢ 121 ol el< _1_1_= 1,22 ) N

Thus the value -of o 1s 1oWer in this case.

In the preceding, very little attention was paid (necessarily)
~. to the compression strengths.

It may be established directly that Xc<Zc since the pressure
in the X-direction possibly causes the fallure mechanism to be

TR
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kuﬁdetermlned by the cracklng of the fibers, while for the oressuﬂe
o in tbe 7 direction, the failure of the matrix materlal will pre-
' domlnate. The consequence of this difference between Xc and Zc is

that the maximum permissible value of a is again somewhat higher.

But it may well be doubted whether Xc and Zc show a very great
difference and in this sense, i1t may be expected that the shifts in
the maximum will not be spectacular for a. It may be said prelimin-

‘ ﬁafﬁi&'that'-Z < & < 2 seems to be most applicable for the material
in question here for o.

| iiﬁ?éfametér'B

F11e33-F132s0

(€2 £3) (€1 + c2) - 3% 2l >0 : (a=-11)

4
2¢ . n2C3 4 CIC3 + C1C2 - 8 - C? >0
IR 2040202 ¥ CICT o CIc2 0

If we use onbe again the relations (a-6) equation (a-11) is cor-

a-11) over in : ‘ a » o - ,
( 2y o2 2. ‘ » : ééi
(1 -a?) e+ 2c2c3 + €255 0 L | _

, R B v
, v(zf‘f)cg_f2cn3 Q. B (a-12)

The substitution of (a-8) gives

2-afycf v 22 %o
L s
2-5% 2 s
5 .
2.6 X - (a-13)
R Psl <INV T
5 ' 5

The substitution of (a-9) gives
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(a-18)
- Al 1T

From (a-l3) and (a-lu), 1t is apparent that a may hardly

be much larger than 1

‘IIT Parameter y -

Fo2 £33 - F232 5 0

| (61‘+ c3) (C1 + ce) - Sy c12 20 , v
et s s cacs + c1c¢ il 2 cil-0 . (a-15)
ety s CICY + €263 + C1C250 - '

f The substltution of the relations (a-6) gives

(1 =¥ ) Cl + 2CIC‘! v 12
(2= ) Cl 1<2c1c3>o or also
{2-1" %y 2 4 2c2c3 0 s

A comparison of relations (a—16) and (a-12) shows that vy has
4'he same value as B, specifically '

i'l“\

‘ 3

mlm

1 and: |»l<l\ (a=1T)

16
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Consequently, it Canhot be stated that for the Hoffman cri-

terion o = B = vy = 1.

These values thus satisfy directly the stability criteria;

~ It.may also bappen that the maximum values of B and y are 2:1.095.
When it is recalled also that most of the experimenters state that
the strength values have a 10% spread (Wu also uses this percentage
in [7] to determine the precision of the tensor polynomial), it may.
be stated a priori that the maximum values of 8 and y can be estaQ
blished as 1 just as well.
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