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NOMENCLATURE /il 

Fia pij■ second and fourth order strength tensors 

(tensor polynomial strength criterion, Tsai 

and Mu) 
X compression strength in the direction of the 

fibers (warp) 

X tension strength in the direction of the 

fibers (warp) 
Y compression strength in the plane; perpendicular 

to the direction of the fiber (woof) 

Y tension strength in the plane perpendicular to 

the direction of the fiber (woof) 

Z compression strength, in the direction perpendi- 

cular to the plane 

Z tension strength in the direction perpendicular . 

.to the plane 

0I, 02," 03        normal stress in the direction of the fibers (1) 

in the plane perpendicular to the direction of 

the fibers (2) perpendicular to the plane 

( 0, oy, oz) 

012, 023, ;0l3      slip stresses in planes 1-2, 2-3, 1-3. respect- -. 

ively (xxy, xyz, TXZ) 

04, 05, 06 "       slip stress in planes 2-3, 1-3 and 1-2 respect- 

ively (Tsai, Mu) - 

Q,Q',R,R',S,S'     repulsion strength corresponding to 0^, 05, 06 

iv 



INTRODUCTION A 

In the literature, different approaches have been found to 

study failure phenomena in composite materials.. The two most 

important approaches may be found in [2]. 

1.1 Micromechanical approach 

In this approach, the starting point is the study of the fail- 

ure behavior of the components involved (matrix material fiber and 

finally the layers or lamellae). 

The failure behavior of the different layers is subsequently 

combined into the failure behavior of the complete laminate. 

The description of the failure in a composite material is a 

fairly complex task in which complete computer programs must be 

used to calculate the strength tension relation.  To increase the 

practical applicability of such an approach,, sometimes a simplified 

approach is used in which only two points on the stress-tension 

curve are calculated.  These are the points at which the first fail- 

ure occurs in the composite material (comparable to the fluid ten- 

sion in a metal) and the final failure stress.  The last point is 

determined by a so-called "netting theory" in which it is assumed 

that-the fibers can only absorb normal stresses.  Even in this sim- 

plified case, it is hardly possible to apply such failure analyses 

for practical engineering purposes.  In practical engineering, it 

is always necessary to obtain, on the basis of simple relationships 

between mechanical parameters, an impression of the safety of a 

structure with regard to failure. 

The inapplicability of the theory applies even more strongly 

to the approaches often found in the literature in which failure 

■ mechanics and static considerations are used. Especially for glass 

fibers (as used in mine detectors) a static approach for the brittle 



failure behavior is inadmissible (because of the brittle failure 

behavior). 

In [1], we find an overall survey of the study in the area of 

the micromechanical approach. The same publication also indicates 

that the usefulness of the micromechanical approach resides mainly 

in the possibility of choosing between different compositions of . 

the composite materials. 

Since for mine detectors the material must be considered basic- 

ally firm, here actually this study loses much of its usefulness. 

11 
The benefit of the micromechanical study must, within the 

framework of the study of the composite material for mine detectors 

be sought in the possibilities of achieving by means of these theor- 

ies an estimate of the reliability of certain types of experiments. 

In the micromechanical approach, the experiments are carried 

out in such a manner that only one form of failure occurs.  In the 

macromechanical approach to be considered further on, much less 

attention is paid to this. 

To make sure that a certain failure criterion gives conserva- 

tive results in all cases, however, it is certainly recommended to 

conduct experiments also for one failure form so that there is a 

clear definition of the moment of appearance of the "failure". 

1.2 Macromechanical approach 

In the macromechanical approach, the primary purpose is to 

achieve a fairly simple criterion presenting the failure of the 

total laminate as a function of the load state.  The number of cri- 

teria formulated in the course of time is very large.  Reviews of 

such criteria may be found in [7,8,93. 



■A great drawback ,of most of the criteria (at least for the 

purpose,of the study of mine detectors) is that one proceeds a 

priori from the hypothesis that the composite material is used in 

an optimal manner.  This optimal use must be referred mainly to the 

stress state.  Most failure hypotheses start from the assumption 

that the material returns to a plane stress state, and in this sense 

the failure hypotheses hardly differ from those formulated for the 

layers (lamellae).. 

The best known failure criteria in this area are: 

a.  Maximum stress theory (Stowell, Liu [19], Jenkins [231 

Here an arbitrary stress is decomposed into components along 

the different principal axes of the material. 

Failure occurs when one of the stress components becomes higher 

than the failure limit corresponding to this direction. 

In this connection, no difference is drawn between failures in 

tension or in compression, although the procedure itself suggests  /3_ 

this.  A problem arising in the maximum stress theory is also the 

fact that in the region in which transition takes place from one 

failure criterion (for example, tension strength in the direction 

of the fiber) to another failure criterion (for intance, slip) the 

strength is over-estimated (see Figures 1, 2 and 3). 

b.  Maximum tension theory 

It is quite similar to the maximum stress theory in which now 

the tension in the different directions is considered the decisive 

factor.  The theory which was proposed in 1966 by General Dynamics, 

Fort Worth Division [21], is nothing more than the application of 

the St. Venant maximum tension theory. 
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The overwhelming majority of phenomenological failure cri- 

teria for composite materials are derived from deformation energy 

considerations and in particular the form changing energy. 

The basis for this was obtained by Von Mises (1900) for Iso- 

tropie materials with the formula 

■V-(l,x -,,y)2 + (,y -,,z)2 + ( „z W < 6(lxy2 + TVZ
Z
 + Tzx2) = Uh* . 

Although Von Mises had intended the criterion primarily for 

the flow of material, in the course of time for metals, it is only 

used to describe the flow. 

In the area of composite materials, nevertheless, the applica- 

tion of deformation energy criteria is still maintained to describe 

the failure.  As long as the materials considered are brittle, this 

is a reasonable starting point. A number of new criteria have been 

derived'from the'Von Mises criterion.  Strictly speaking, most of 

the criteria do not..give &.real deformation energy, but rather a 
relation in stress variants.  For convenience, these, criteria are 

also called deformation energy because they are mostly an extension 

of the Von Mises. formulation.  • • 

Hill [6] extended subsequently the Von Mises criterion to ani- 

sotropic materials in the form: 

F( ay- ,,z)2  + G( >rz- rrx)2 + H( „x-oy)2  + 2L-c2yz + 2fit2zx + 2\^Ky  = 1        ÜL 

in which P, G, H, L, M and N are material parameters. 

In this equation (2), it is also assumed implicitly that: 

—the material is orthotropic 

--there is no difference between tension and compression 

strength; with the relation Xfc = XQ = X; Yfc. = YQ = Y, it was 

then simple to derive: 



2F  - I2 + I2 - A, 
Y'     Z'     X" 

2G 

2H = I    ±1-1 
X2      Y2      Z2 

2L 1 

Q 

2M '. ; 
R 

2N = I 
S 
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(3) 

The six parameters of the failure criterion are thus deter- 

mined entirely by the three tension strengths and the three slip 

strengths for the mutually perpendicular directions of the mater- 

ial. 

To make it possible to compare with the following failure 

criteria, it is convenient to write the Hill theory in the follow- 

ing form: 
Fi jc/i </j = 1 i = 1,2 ....6 (4) 

The repetition of the sub-indices is reduced to the summation 

convention in which the sum is measured over all the values of the 

sub-indices (1 to 6 inclusively). 

The term Fij can then be considered as a 6x6 matrix of the 

form: 

~l~2   2  V 
2 X   Y   Z 

1 

7 

:V +I -•! ) 
T(~2   2   2' 
2 Z   X   Y 

2 Y 

0 0 n 

1 

? 1 

R2 

l 

s2- 

tJ) 

(5) 
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The greatest drawback of the Hill criterion'1 IS' that ..it is-  ; / 

impossible to differentiate between tension and compression- 

strength, while it was just, established for composite materials 

that there can be a great difference between the two. values... . 

One of the first attempts to include also the compression 

forces of the material in the failure criterion was made by Marin'-: 

[10].  The latter used, to this end, the Hill criterion written in 

the main tensions (indicated for convenience here as ax , ay , az 

O (.rx1 - ay1;] 2 +[to("y1 - ,,z1)]2 ♦[iccK1 -„x\j\?- = 2<'*y2 

To eliminate the differences in tension and compression, he 

modified the relation into: 

(ax1 - a)2 * (ay1 - b)2 + («z1 -c)2 + 

g|("x' - a) (<ryl -  b) +(,/y1 - b) (»z1 - c).+     (7) 

-zl  -  c) ( <;y! - a] 
2 

= <!  X  V 

The difference from the previous Hill relation is actually only 
11      1 

that three terms have been added,  specifically, ax , ay and az . 

If the failure criterion is considered as a surface in the 

six-dimensional stress space, the addition of linear terms in the 

failure criterion implies that the origin of the rupture stress 

surface is shifted. 

If we attempt to relate such a failure criterion (with shifted 

origin) with mechanical phenomena, this means that it is assumed 

that an internal stress is the cause of tbe\difference in tension 

and compression force. 

Prom the more micromechanically directed failure investiga- 

tions, it is known [1] that the difference in the two strengths is 

mostly caused by a difference in the failure mechanism (in com- 

pression, it is not the material stress/strength which is decisive, 

but the danger of cracking the fiber). 
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The above illustrates the earlier remark that no attempt was 

made to describe or explain the failure mechanisms with the fail- 

ure criteria. 

A great drawback of the Marin theory is the fact that the 

failure criterion is given in terms of main stresses.  Such a 

direction of the main stress does not have to coincide with the 

main directions (symmetry planes) of the material, see Grescszuk 

[2].  The problem is that then the tension/compression strengths 

must be known in other directions than the main directions of the 

material, to be able to determine the parameters of the failure cri- 

terion.  Practically, this then raises many problems which the Marin 

theory had hardly touched. 

The overwhelming majority of later authors recognized the prob- 

lem in the Marin theory and have, therefore, deviated from the more 

general formulation of the Hill criterion C51. 

Some of these theories are discussed below. 

Tsai and Azzi proposed a simplification of the Hill criterion 

by assuming that the composite material is normally used in an opti- 

mal manner and is, therefore, in a flat stress- state. 

Assuming a3 = xl3 = T23 = ° (5) is converted into 

A second hypothesis which is often put forward for composite 

materials is that a cross-section perpendicular to the fiber direct- 

ion should behave isotropically, i.e., Y = Z. 

It is apparent from the comparison that most pass through the 

Tsai-Azzi criterion. 

o r   »I«2 , P2   T12 _ . 
—7T  - n— + —ö + —o~    " i 

yc        x<i   Y^  r 

/6 
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For the glass fabric composite materials considered here, 

this last designation cannot apply directly since the hypothesis 

of isotropism in the cross-section is not maintained. 

The more general notation (8) should basically be defensible 

still-were it not that bending any slip may practically also occur 

perpendicularly. 

A method proposed by Tsai and Azzi [2] to solve this problem 

consists in applying the criterion (9/8) by layer (lamella).' 

But it is very doubtful whether this approach can be imple- 

mented for practical purposes.  It would specifically be necessary 

to establish the stress state per layer. 

This might be done for composite materials with exact composi- 

tion (winding techniques)(apart from the fact that it would involve 

an enormous amount of work).  For composites with more arbitrary 

structure, this approach would hardly be reasonable.  The reason 

why the application of the Tsai-Azzi criterion is not reasonable 

for the glass fabric considered here is the fact that it.is not at 

all .clear whether the failure in a layer is determined by a flat 

stress state.  Specifically, the glass fibers in such a layer are 

not straight so that the third stress component may also have an 

effect. 

The last drawback of the Tsai-Azzi criterion is the same as 

for the Hill criterion and concerns the fact that no differentia- 

tion is made between tension and compression strength. 

For the sake of completeness, another simplification of the 

Tsai-Azzi criterion is indicated. 

Indeed, in many investigations, it was found that the inter- 

action term from (9) olo2    may be eliminated in many cases so that 

x2 

/7 



ORIGINAL  PAGr ,s 

OF POOR QUALITY 

the Tsai-Azzi  criterion is  converted  into the  Norris-Puck 

criterion  in  the   form 

4 +-4 + T-4- -i     <io> 
This aspect will be discussed in greater detail further on. 

Ä failure criterion which can avoid most of the above-men- 

tioned drawbacks was established by Hoffman [11]. 

'■■'-   Hoffman also started from the original Hill criterion (2) and 

added to this relation a number of linear stress terms to be able 

to eliminate the difference between tension and compression:      ;: 

Cl'[.-2  -"3)? + C2 (»3 -"P2 ■< C3 ("1 - <>2)2 (-11') 

A-  C4"l ->■ C5"2 + CG'3 + C7»a2 ' C!;,M3
2
 + C9"i?'' - 1 

Such a failure criterion has thus nine material parameters    /8_ 

and therefore a large number of tests are needed to establish these 

material parameters. 

With the results of 

—three tension tests Xt, Yt, Zt 

—three compression tests Xc, Yc, Zc and . 

—three slip tests Q, R, S the following relationships may 

be established: 



C.l 

C2 

C3 = 

1 
'" YtYc  ZtZc 

1 
. ■ 2;. XtXc 

1 -1'.  1". 1 
z ZtZc  XtXc YLY,- 

J_ I-L.-.L . 1 
2 ' XtXc  YtYc 

C4 = -L- _J_. 
Xt Xc 

15 "-X _1 
' Y.t Yc 

C6 = __i - _ l_ 

Zt 
Zc ■ 

C7 = -L 
Q 

C8 = -L 
R' 

ZtZc 

ORIGINAL PAGr R 

(12) 

C9 = 

The failure criterion is established completely with these 

nine .parameters/tests.//: .■■■>■ 

This criterion has a number of remarkable aspects:  the fact 

that no difference- is made between positive and negative slip 

strength. This possibility is left open in many of the criteria 

discussed below.  It is also doubtful whether this extension is   /9_ 

proper for the orthotropism considered here. 

It may also be noted that the equation (12) is a quadratic 

equation so that the failure surface in the stress space is ellip- 

tical and convex (with origin not necessarily at zero). 

With the definition of the Hoffman criterion practically, the 

maximum is retained of the original Hill criterion.  But actually 

10 
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of the Hoffman criterion it should be.stated that this criterion 

has no physical basis but is rather a mathematical approximation. 

Many researchers have observed subsequently that a problem which 

arises with all the criteria considered here consists in the fact 

that the failure criteria are defined with regard to the princi- 

pal axes of the material. 

This implies that, in the calculation of an actual structure, 

the arbitrary stress state must be converted to the stress compo- 

nents in the main directions of the material. 

It may also be established now that the problem is not. so im- 

portant for the orthotropic glass fabric reinforced composites con- 

sidered here.  If in this connection we refer to final element cal- 

culations, it happens in most cases that the main direction of the 

material coincides with the main direction of the elements. 

This can. also be a problem for other anisotropic materials. 

For the sake of completeness, we will also discuss below the approx- 

imations in. which the conversion of the stress aces is resolved with 

respect to the tensorial algebra. 

For the purpose of comparison with other failure criteria, con- 

sequently the Hoffman criterion is also written again the matrix 

form which like equation (4) can also" be written as 

with i = 1, 2...6. 

Fi ,;1 

mc-t i 

Ftj''i"j -; 1 

(13) 

Here we have 
Fi J_. _ J_ 

XI Xc 

I . J_ 
Yt Yc 

i 
— J_ 

It 

0 

0 

0 

Zc 

(14) /10 

11 
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FiJ   = 

■1 ! 1 

XtXc 2    XtXc      XtYc      ZtZc 

YtYc 

1 -1 1 '►  y -  i 

ZtZc 2 ZtZc     XtXc      YtYc 

-1 1    ♦      l    -      l- 

2 r't.Yc      ZtZc  .   XcXt 

ZtZc     . 

0.0 

0        0        0 

<;2 

d.     Tensor polynomials /ll 

The following failure criteria are purposely no longer cal- 

culated to the deformation energy approximation. 

Although a number of the theories can be reduced to deforma- 

tion energy in the definition of the failure criteria, the start- 

ing point is a purely mathematical description of the failure cri- 

terion.  The Hoffman criterion can be considered as,a transition 

area (no tensors are used there yet). 

One of the first theories in this area was formulated by 

Goldenblat and Kopnov [5] with the relation: 

12 
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(ri.ji'1 + ffij"i"j) ' * (fi'!'.'•■ ioj«. )  - 1 

(15) 

in which once again the summation convention is adopted with 

regard to the subindices: 

Here it was also assumed: 

Pi  = strength tensor of the second order 

Fij  = strength tensor of the fourth order 

. Fijk = strength tensor of the sixth order 

The conversions of the tensor in the rotations of the axes 

are known here from tensorial algebra.  The great advantage of ten- . 

sor polynomials is also the fact that the criterion is defined with 

respect to an arbitrary system.  Goldenblat and Kopnov have consi- 

dered in particular a special case of equation (15) with 

<> = i, .; -   \,  y =   - " 

so that equation (15) is converted into: 

r  •  xr   ■ •   ,        (l6) 

Tsai and Wu (4) have indicated that the square root in formula (16) 

is very impractical, since the result is a + sign.  The Goldenblat 

and Kopnov criterion is, therefore, best applied in the quadratic 

form: . -..  -^ — 
Ki.'i  f ri.;r;i"J - (Fi»i) - 1    (17) 

But even this form of the Goldenblat and Kopnov criterion is not 

much used practically.  A problem which arises for this criterion 

refers to the definition of the interaction term Fij. 

If these terms are determined directly with experiments, it 

may occur that the failure surface, in the stress space is no longer 

closed (elliptical) but is converted into a parabolic or hyperbolic /12 

surface which may lead to unrealistic theoretical strength proper- ' 

ties .....'■ 

This phenomenon was also indicated by Ashkenazi [20]. The 

above-mentioned problem becomes even greater if the third power 

term (Fijkiajak) is included. 

13 
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"Apart from the fact that in that case a very large, number, of ,. 

interaction terms have to be determined, such a cubic equation may. , 

often lead to a nonclosed failure surface in the stress space. 

To solve the above-mentioned problem Tsai and Wu [4] estab- 

lished a criterion which is more general than the Goldenblat-Kopnov 

criterion, simpler to apply and results in a closed (elliptical) 

failure surface in the stress space. 

The Tsai-Wu criterion has the form; 
(18) 

Fioi + Fitn'wj = 1 (i = 1, 6). 

Here, too, the summation convention is applied with regard to 
the sub-indices.  To take into account the fact that the failure 
surface is elliptical (in the stress state), the following stability 

requirements are imposed: 

Fii Fjj - Fij2 4 0        (19) 

In this connection, the striking detail is that the original 

authors also accepted the equality signs in equation (19)» while 

the later investigators established, on the basis of a more graphic 

interpretation of the failure surface (14), that the equality sign 

was not acceptable either. 

It should be noted that the general equation (16) contains alto- 

gether (basically) 42° of freedom (unknowns).  This number of 
unknowns may be reduced to a considerable extent by assuming that 

the Fij terms are symmetrical.  Such an assumption may be made if 

we start from the hypothesis that there is a so-called F(ai) failure 

potential.  Here the terms Fij are defined by: 

.:..— -?  2,::.-7 r;.  (20) 
Fij  = trf/ntiriti    =>-f/n'ym    =    Fjr 

The assumption of a failure potential implies nothing other 

than the assumption that the failure phenomenon is independent of 

the load path.  Such a hypothesis is made essentially for all the 

14 
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above-mentioned failure criteria.  How far this assumption is 

justified depends both on the type of material and the phenomenon 

described as failure criterion.  If the failure criterion is used A3 

to describe a kind of fluid limit (or the first point at which a 

break occurs anywhere in the laminate), this assumption is generally 

valid. 

If this criterion is used to describe the final total failure 

of the material, the assumption with regard to the independence of . 

the load path is less valid.  In such a case, specifically the final 

failure is preceded by plastic deformations which are to. some extent 

path-dependent.  Nevertheless, the failure criterion may still be 

valid for the so-called radial stress paths.  In this connection, . 

radial stress paths should be considered as paths in the stress 

space in which the corresponding ratio of the stress components 

would remain the same. 

Since the failure criteria formulated in this report must be 

considered primarily as a design criterion and not so much a criter- 

ion in which very exact predictions must be made on the failure 

stresses occurring, such path-dependent effects may be left out of 

consideration preliminarily.  The simplification taken then is that 

the path-dependent effects are included in the safety factors. 

With the assumption of formula (-20), the number of unknown 

parameters was reduced from 42 to 27 (6 for Fi and 21 for FiJ).  A 

still greater reduction in the number of degrees of freedom may be 

achieved by starting from orthogonal material properties which is 

directly permissible here for the material considered. 

. With such an isotropism, it may be stated directly that a con- 

nection between the normal and slip stresses may not arise so that 

terms such as Fl6 may be equal.to zero.  It may also be stated that 

if the reference system of axes coincides with the material (strength) 

main directions, we have [7]: F4 = F5 + F6 = 0. 
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In the matrix form, the relation (18) is then written as 

follows: 

Fi 

Fl 

F2 

F3 

0 

0 

0 

Fij 

J 

Fll  F12  F13  0   0   0 

F22  F22  0   0.0 

F33  0   0   0 

F44  0   0 

F55  0 

F66 

(21) 

Ä 

The parameters in equation (21) must be obtained again from 

tension and compression tests.  "Simple" single axis failure tests 

may be used for the terms of Fi and for the diagonal terms in Fij. 

As an illustration:  When loading in direction 1, the following values 

are found for tension and compression strength respectively 

a.l - Xt and al =  -Xc (let on the minus sign).    . 

For equation (18/21), we may write 

Xt2 Fll + Xt Fi = 1 and 

Xe2 Fll - Xc Fi = 1 

from.which it follows that: 

F1 " XT * YS and F11 = xtlc- (22a) 

By a similar method,  we may obtain for the other material 

directions 

F2 = J_ . J_ 
Yt Yc 

F3 = J_ _ J_ 
Zt Zc 

F44 = 1 
F55 =-• AT 

F22 = 

F33 

_1_ 

YtYc 

1 

ZtZc 

2 . F66 = -; 
1 

(22b) 
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Here it may be assumed directly that for the orthotropic 

material there is no difference between the so-called positive 

and negative slip. 

A comparison of relations (22) with those from the Hoffman 

criterion (14) shows that, the characteristics discussed up to now 

are exactly the same. 

The great difference between the Hoffman criterion and the 

Tsai-Wu (tensor polynomial) criterion lie in the definition of the /15 

cross-terms F12, P13 and F23- 

.For the Hoffman criterion, the cross-terms are dependent para- 

meters which are established completely if the parameters in equa- 

tion (22) are determined. 

In the Tsai-Wu criterion, the cross-terms are independent mat- 

erial parameters which have also to be determined by separate exper- 

iments. 

The authors of the criterion (Tsai and Wu) consider that the 

advantage of this independence in the cross-terms resides mainly in 

the greater flexibility of the criterion to achieve a proper pre- 

diction for the failure strength for multiaxial stress states also. 

In this connection, Tsai and Wu [7] state that most- failure criteria 

describe well the uniaxial failure strengths, but raise problems in 

the multiaxial stress state.  The similarity of the form of the 

Hoffman and Tsai-Wu criteria with regard to the uniaxial failure 

strength seems to confirm this view.  But even the more flexible 

formulation of the Tsai-Wu criterion leads rather to a shift of the 

problem than to its solution.  Specifically the problem which now 

has to be solved for the Tsai-Wu criterion is the question as to 

which experiment is most suitable for determining the cross-terms. 

The historical developments in this connection are sufficiently 

illustrative. 
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The Russian investigators used primarily tension and com- 

pression tests on a so-called 45° blank (the material axes form 

an angle of 45° with regard to the main axes of the blank). 

If for plane 1-2 the experimental results are indicated as 

Ut and Uc, we find for F12 

ri2 = 
0 

I + !i£ 
\xt Xc 

+ 
Yt -i> '-( 

, XtXr 
' +4 

YtYc      S* 

or 

F12   'r. .1.    1 
Ut2  j 

1 - y_t. (t Xc 
7- 

Yt -t) ■f (--■*■ UtXo  , 
1     X .1 

YtYc    'S'1 

(23) 

In [12]., Tsai and Wu also indicated that these experiments 

were hardly sensitive for a variation in F12 (see Figure 4).  In  /l6 

this publication, the authors also say that much better results 

may be expected for a positive slip test on the .45° blank.  For an 

experimentally determined value V, F12 is defined by: 

-1 
1 K '!■■ 

-vr-L- . j_ . .-LV-L) - V2(.    l ■ +      T  ) 

2VL Xt Xc Yt      Yc .XtXc      YtYc    J 
F12 = —4  J. - Vf ---—-—+ — )-V-( .-^-+ J (24 V 

2Vd Xt  Xc  Yt  Yc       XtXc:  YtYc J.       K       ' 

But the practical results seem to be very disappointing, even 

for such an experiment.... .. ,. 

In [14], Collins and Crane explained.with a purely graphic 

interpretation of the Tsai-Wu criterion that the positive slip exper- 

iments on 4"5° blanks probably do not provide the desired results. 

This type of slip experiment is indeed hardly used any longer. 

An additional problem in the experimental determination of the 

cross-terms depends on the fact that the stability criterion (19) 

has always to be satisfied.  Thus, it can happen very often that 

the experimentally determined value cannot be applied to the cross- 

terms. 

This is illustrated by the results of Pipes and Cole [13] when 

the cross-terms F12 are determined with off-axis experiments (exper- 

iments in which the material forms an angle with the main axis of the 

blank). 

18 



Of the four experimentally determined values of F12, only.one 

value seems to satisfy the stability criteria: On the basis of 

these results, the conclusion may, therefore, be drawn immediately 

that it is impossible to determine the cross-terms with these 

experiments. 

In later publications, especially by Wu [7 and 17] alternative 

procedures are proposed to determine the values of the cross-terms. 

In these procedures we start from a really biaxially stressed blank 

(stress al, c2).  In'Wu's procedure, there must be an optimal bi- 

axiality ratio B B = ol/o2)  determined for which the value P12 can 

be defined. 

Unfortunately, the optimal value of B depends on the value of 

F12, so that an iteration process must be used (with the correspond- 

ing number of tests). 

In the same publications, it is also indicated that a decision 

may be taken to include terms of the higher order (Fijk, Fijkl,   /17 

etc.) in the failure criterion.  This decision depends on the (ex- 

permentally determined) value of Fij with regard to the precision 

of the solution (determined on the basis of the hypothesis that 

the spread in experimental failure experiments is, for instance, 

approximately 10$).  If the value of Fij is greater than the preci- 

sion of the solution, it will be necessary to include additional 

higher terms.  This is not related to the fact that the situation 

becomes even more complicated when these terms of higher order must 

be included.  Even for these terms of higher order, optimal multi- 

axial experiments must be defined with the necessary interaction 

work concerned. Moreover, the terms of higher order (Fijk) still 

depend on the lower order terms Fij.  According to Wu, the Fij terms 

can be determined first, after which the determination of the Fijk. 

terms no longer affects the values of Fij. 

The practical, calculations in [15 3 also show that the values 

of Fij must be adjusted to a great extent after the determination 

19 



of Fijk.  Tennyson, McDonald and Nanyare used in [15] an actual 

hybrid computation technique to be able to describe properly the 

interaction between the.different cross-terms. For the purpose of 

the intended design (for a material not considered here), such an 

effort is totally unwarranted.  Therefore, it may be stated immed- 

iately that terms such as Fijk must not be included in the failure 

criterion.  This becomes even more apparent if we recall that the 

use of terms such as Fijk implies immediately that the failure sur- 

face in the stress space is no longer convex with all the related 

problems.  To sum up, it may be stated that the use of a (Tsai-Wu). 

tensor polynomial approximation does give greater flexibility but 

that this is achieved to a great extent in the form of more complex 

experiments.  In the experimental determination of cross-terms such 

as F12, one should also consider thoroughly the benefit achieved in 

the sense of. a more exact description of failure under a multiaxial-'..' 

stress state, as compared with the much more complicated experiments. 

The next chapter will discuss this in greater detail. 

718 

2.... CHOICE OF A FAILURE CRITERION ■'"■  .":,..-■ 

In the last chapter, a large number of failure criteria were,.... 

described.  For the sake of clarity nevertheless, the.;number of fail- 

ure criteria discussed in this report Is limited to the most import- 

ant.  The literature contains countless variants of these failure 

criteria. 

Radenkovic and Boschat [8] have, for Instance, converted the 

Tresca criterion by defining the slip strength as a function depend- 

ing on the direction. 

Griffith and Baldwin [8,24] have attempted to reformulate the 

deformation energy criterion for general orthotropid materials by 

the main stress axes coinciding with the main axes of the material. 

Regarding most of the variants of the failure criteria, it may be 

stated that only a more complex mathematical formulation is used 

20 



without achieving a gain in flexibility.  The overwhelming major- 

ity of these criteria are hardly used except for very special com- 

posite materials. 

But there are still two exceptions to this rule: 

—Franklin [8] proposed extending the Hoffman criterion by 

multiplying the cross terms F12, F23, P13 in the Fij matrix by an 

extra parameter (a, ß, y).  (Also see Appendix. A).  This parameter 

must then again be determined with a multiaxial test and the basic 

philosophy is then essentially the same as for the Tsai-Wu criter- 

ion. 

Shu and Rosen [18] have followed to determined the slip 

strengths an approach which is actually no longer part of the macror 

mechanical but rather the micromechanical approach.  In this 

approach, we use a limit load analysis as known from the theory of 

plasticity.  By defining subsequently a kinematically permissible 

displacement field, an upper and lower limit are found, respectively, 

for the failure load. 

The more consistent with reality are the displacement and 

stress fields, the smaller the differences between the lower and 

upper limits. 

In [18], the above-indicated theory is applied to a unidirect- 

ional material. For the slip strength in plane 1-2 (xl2), it is 

apparent that the lower and upper limits can differ at maximum by 

2755 (see Figure 5) which seems to be a very reasonable approxima- 

tion in view of the measurement precision of failure tests. The  /19 

same theory seems to furnish less good solutions for the slip 

strength in plane 2-3 (see Figure 6) and the applicability of the 

theory to this case must be considered rather doubtful. 
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How far the results for xl2 are applicable for a glass fabric 

is not yet quite clear.  It should be possible to use basically 

the same stress and displacement fields, so that the possibility 

of determining one of the failure strengths (S) directly from the 

properties of the component sections (glass fiber content, fluid 

limit of the matrix material) should remain open.  It would seem 

interesting to test this in the future for a practical case. 

In choosing a failure criterion, it must be realized that it 

is impossible to establish a failure criterion which applies to all 

composite materials. 

This phenomenon is actually known also in the "composite 

world", and the Tsai-Wu criterion (in which the failure criterion 

is the measure) is, for example, a direct consequence of this. 

This choice of the failure criterion must then be associated 

directly with the type of composite material.  A number of general 

requirements can,in each case,be associated directly with the fail- 

ure criterion: 

1. The criterion must be invariant with respect to the coor- 

dinate transformation, 

2. it should be flexible enough to be able to describe the 

experimental results, 

3. the criterion must provide a solution for'a certain load 

path, 

4. the criterion must be mathematically operational. 

This means that the criterion must have a simple conversion 

between stress space and tension space. 

The criterion must also be applicable to strength analyses and 

in particular to" the method of finite elements. 

With these general requirements, a number of marginal notes 

may be made with regard to the glass fabric reinforced material con- 

sidered here. 
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For 1:  For the orthotropic material considered here and    /20 

with regard to the application of the criterion to the finite 

element methods, the requirement that the criterion should be 

invariant cannot be so important. 

For 2:  The requirement of sufficient/flexibility for the . 

failure criterion must be related mainly to the question of whether 

the criterion must be able to describe differences in tension and 

compression properties.  Since no compression tests have yet been 

carried out on the present material, no definite answer may be given 

to this question, but the results in Tables 1 and 2 for comparable 

materials indicate that the differences in tension and compression 

properties are fairly significant.  It is, therefore, stated also 

that the failure criteria to be chosen should also be able to des- :.. 

cribe differences in tension and compression:  The failure criteria 

described in the previous paragraph should now be tested for the 

'. remaining requirements 2, 3 and 4. 

2.1 Maximum stress theory and maximum tension theory 

Apart from the problem already indicated that the maximum stress 

theory gives an overestimate of the strength properties, both cri- 

teria raise very great problems with regard to the conversion of 

stress to tension space and inversely (requirement-no. 4). 

If, for instance, a maximum tension theory is converted to the 

stress theory, wrong results may occur as shown in Figure 7 (with 

arrows).  The same thing may happen if a maximum stress theory is 

converted to the tension space (Figure 8). 

Such phenomena are only to be attributed to the partly linear 

nature of the failure criterion. 

This effect can already occur for flat stress states. 

On the whole, the multiaxial stress states are even more complex. 
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■■■'■■■•■ Both criteria can be practically much more complicated than 
apparent at a first glance and additional stability requirements 

•must be imposed on the criterion. 

For a flat stress state, altogether six stability criteria 

are needed for the maximum tension theory in the form [73 /21 

S15 K X_« -ILL , Xc2 

S12      Xtl . S12 Xtl 

Sl_fi x Xc6 -ILL '■:. m. 
SI 2      Xcl S12 Xcl 

S25 r  Xt6 S22 > Xcl 

S12      Xt2      S12      Xt2 

5_25      Xc6 _ 522  -, Xtl_ 

S!2      Xt2      S12  "  Xc2 

So5 „ Xtf» _ S26 > Xtl 

S16      Xt2      Slfi      Xt2 

S6fi x U6 ._ S26 > Xcl 

S16      Xt2      S16      Xc2 

(25) 

These are the terms of the compliance matrix (flexibility 

matrix) 

. For the maximum stress theory, also stability requirements 

must be imposed in the form: 

C16 C22 

C12 C66   Xcl.  C12 *" Xtl 
etc. (26) 

Since their relations are no longer used, however, they are 

not written out in greater detail, here. Further information may be 

found in the literature [7] page 381. 

It is apparent that the number of stability requirements for. 

a real three-dimensional failure criterion becomes so large that 

there is no practical possibility of applying the criterion. 

The maximum tension and stress theories must, therefore, be 

described as practically inapplicable. 

The Hill criterion and the criteria of Tsai-Azzi and Norris- 

Puck derived from it are not applicable, since here the differences 
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between tension and stress cannot be discounted.  In the flat 

stress state, this problem is solved to some extent by formulat- 

ing the criterion concerned per quadrant in the stress space, while 

the corresponding strength numbers are used for each quadrant.  In 

the bi-dimensional case, this operation can still be considered, 

but for the three-dimensional case, this leads to very complex for- 

mulae, and there is also the problem that the surface is no longer 

convex so that both requirements 3 (clear solution for a load path) 

and k   (clear conversion from stress to tension theory) are no longer 

; satisfied. 

For these reasons, we must also abandon the inapplicable cri-  • 

teria of Hill, Tsai-Azzi and Norris-Puck. Z22 

The great drawback of the Marin criterion is that the direction 

of the main stress may coincide with the main directions of the 

material which for a structure need absolutely not be the case.  For 

this reason, the Marin criterion does not apply either. 

There remain the criteria of Hoffman, Franklin and Tsai-Wu. 

The only difference between these criteria is- the definition 

of the cross-terms Fij (i £  j).  For the Hoffman criterion, the 

cross-terms satisfy immediately the stability requirements. 

For Franklin and Tsai-Wu, extra attention must be paid to the 

stability criteria (19). 

Moreover, in the last two cases, rather complicated biaxial 

experiments are needed to determine the parameter values of the 

cross-terms. 

Before beginning such complicated experiments, we must natur- 

ally examine the gain in precision which may be expected with these 

criteria (Franklin, Tsai-Wu).  This will be considered in particular 
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on the basis of the term F12.  To simplify, the., plan-to. some extent, 

the parameter picture of the F12 values is subdivided into two par- 

tial regions while the value of F12 as follows from the Hoffman 

criterion is used as separation (designated hereafter as F12H). 

I    0<FijiF12H 

This region was studied thoroughly by Narayanaswami [16]. 

In this investigation in [16], two failure criteria are studied, 

specifically the Tsai-Wu criterion with F12 = 0 and the Hoffman cri- 

terion.  The author determined for different composite materials 

and for different load states the failure strengths with the two 

different criteria. 

On the basis of the results, it was possible to establish that 

the difference between the two criteria was never more than 10% in 

the extreme case.  Since this 10% level is taken in the literature 

as a sort of magic limit with regard to measurement precision in 

failure experiments, in the publication in question the conclusion 

is also drawn that for practical purposes it makes no difference as 

to which criterion is applied. - . . 

Fij>F12M 

Hj<0 

In this connection, no investigations are known in which the 

effect of the cross-terms on the precision of failure strengths was 

estimated.  But it is quite possible to estimate quantitatively the 

effect of the cross terms, if we limit ourselves to the composite 

material to be used in the mine detectors. 

In the first place, one may study the parameter region which 

is permissible at maximum for the composite material in question 

here.  This attempt is made in Appendix A.  The latter formulates 

the cross-terms Fij as ä function of the'Hoffman parameters in the 

form: 

26 
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F\2 ran?!! 

'2: --Yr2:;f 

F13  =3F12n ^2^) 

By applying the stability criteria, it may be found that: 

|a] < ^ 1.5 to 2 

[3] < ^ 1.1 ' 

[y] < ^ 1.1 

From these.numerical values, the conclusion may be drawn that 

the boundary values of.the cross-terms P13 and F23 are approximately 

equal to the values of the Hoffman parameters (as long as Fij has 

the same sign as the Hoffman parameters).  For practical purposes,, 

the limiting, values for the parameters F13 and F23 can be taken as 

equal to the Hoffman parameters (orlyl = 1 3 ] = 1 ) •  The exact exper- 

imental determination of the parameters F13 and F23 (in accordance 

with the Tsai-Wu or Franklin concept) should imply the biaxial exper- 

iments must be carried.out in plane 1-3 or 2-3.  These experiments 
are very difficult (see the problems in the determination of the 

interlaminate tension strength in [253) and, therefore, proportion- ; 

ately inaccurate (probably inaccuracy more than 10$). 

In view of.the results of the study by Narayanaswami [15], it 

can actually be stated also that there is no benefit in determining 

experimentally the parameter values of ,F13 and F23, and that it is 

best to use for these parameters the Hoffman formulation (14). 

For the parameter F12, there is somewhat more latitude with 

regard to the Hoffman criterion-(|a| < 1.5 to 2) and in this plane 

experiments may be conducted with somewhat higher precision.       /24_ 

But in this case also we must expect very spectacular differ- 

ences.  Indeed, Franklin [8] established that the application of 

the Hoffman criterion'may give an over-estimation of the strength 

in the order of 50? (for the case described by him), but Franklin 

corrected thereafter the value of F12 with a value a =-90.53» which 

is larger by factors than the""possible values for the present 

glass fiber material.  On the basis of the results of [2] and [16], 
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the conclusion can be drawn actually that the application of a 

Hoffman formulation gives deviations of 20-25!? for the cross-term 

F12 in the most unfavorable case. 

Thereby, this precision may, if desired, be fairly simply 

doubled by carrying out a slip test on a material sample under 45° 

in the plane 1-2 (see Figure 9).  This is then a positive slip test, 

of which it was already stated earlier that the test is probably 

not exact enough to determine exactly F12.  The test should be 

amply sufficient to establish the sign of the F12 term. 

To correct the Hoffman parameter F12 for this sign (this does 

not affect the stability criteria), the precision is brought back 

to within 10$. 

To summarize, it may be stated that the stability criteria 
impose strength limitations on the cross-terms, such that the inclu- 

sion of the test precision is amply sufficient to use the Hoffman 

criterion. 

V A possible exception to this is the cross-term F12, but for 

this term the precision can be brought rapidly within 10$ limits 
through a slip test on a 45° blank.  The following tests are needed 

to determine the failure criterion: 

Hoffman criterion:  tension tests) —~~      —  — ) in directions 1, 2 and 3 
compression tests) 

slip tests in directions 1, 2 and 3 

determination of the sign of F12:  slip tests on 45° blanks in 

the plane 1-2 

/26 

EXPERIMENTS 

A number of researchers have applied for purely theoretical 

reasons boundary conditions on the type of experiments needed to 

determine the failure criteria [1,3»7].  For the sake of completeness 
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a number of these boundary conditions are indicated.  In [4], Wu 

imposes two main requirements on the experiments: 

- the stresses in the blank must be calculated under the 

boundary conditions taken in the experiment 

- the stresses in the blank must be uniform. 

Here Wu stated that in the determinations of the parameters 

which are defined by overall material properties, this second 

requirement is not so important.  But if the parameters are deter- 

mined by local properties as is the case for the failure, this 

second requirement must immediately be satisfied.  This implies 

practically that experiments with notched blanks are not permissible.:, 

Another aspect which must be considered in the determination 

of the failure criterion is the fact that the criteria to be deter- 

mined are valid only for radial stress paths (if there are of 

course inelastic deformations before the failure, which should very 

certainly be the case here).  But this implies that the stress in 

the structure must remain the same in regard to the form until the 

moment of the total failure, since otherwise a too favorable picture 

would be obtained with regard to the failure strength.  Practically, 

this is due to the fact that one has to test one type of failure per 

experiment. For example, it is not desirable that-when a failure 

occurs in a test-bar, the stress distribution should change in such 

' a manner that another failure, type is indicated (where the material 

is for example much more resistant).  It is then useful also after 

conducting the test to check whether a type of failure has indeed 

occurred.  In this connection, tests in the form of bending tests 

are advised against most strongly. 

The number of possible types of experiments is limited too 

strongly by the previous boundary conditions.  Lenoe [26] and 

Whitney [27] have published extensive reviews on the possibility 

of accomplishment and'the limitations of the different types of 
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experiments.  Although most of the authors arrived at the conclu- 

sion that the cylindrical blank is the only one which gives reason- 

able results, this conclusion is nevertheless inspired too much by 

the desire to be as flexible as possible in the choice of multiaxial   ./26 

stress states.  As is apparent from the above, this is also vital 

in the application of the Tsai-Wu criterion.  But if we limit our- . 

selves to a Hoffman criterion, this requirement is much less signi- 

ficant . 

A last aspect to be discussed here is the thickness effect 

mentioned by a number of authors (see for example [3]).  This thick- 

ness effect is explained by the fact that for a plate material the 

outermost fibers experience much less support from the matrix mat- 

erial than the central fibers.  This effect should occur whenever 

the fibers are curved (just as for. a fabric).  The effect should be -' 

clearly noticeable when the plate thicknesses are lower (less 

fibers in. the thickness direction) and will lead from thinner plates 

to a reduction in the.failure strength -(see Figure 10).  Although 

in the mine detector research will be damped for the .plate thick- 

nesses.,, it can be important if thinner plates are removed from the 

original plate to undergo tests subsequently. 
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Figure  1.     Comparison between the maximum stress  theory and 
experimental results   [13] 

F'TJ'O G 18     M.nimum Sttr« Theory (01  Fiilu'.; of  Fihrnus Uni. 
<l-".X!ion,il .in<! Aivjl.vplv Cimipn'.iliv h.«|imini"nl;-i points ,nu shown 
,'nr  compression  an'J tension MKHi'tths of  non-.vovcn-ijta« i:po*y 

composites (Met: 44) ' 

Figure 2.     Comparison between maximum stress theory and experimental 
results reference   [3] 
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Figure ">. Oil-axis uniaxial and shear strengths o! graphite- 
epoxy composite. Solid line: represent our theory; dashed 
lines, the maximum stress theory; and dots, experimental data 
Iron tubular specimens 

Figure  3.     Comparisons between maximum stress  theory 
Tsai-Wu theory and experimental results,, reference  [4] 
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Figure  4.     Sensitivity of the  cross-terras with respect 
to  different  types  of experiments 

u) 

u') 
)  tension/compression on 45° blank 

v) 

V) 
)   slip on 45° blank 

P) 

P') 
)  hydrostatic experiments 
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Figure 5.  Lower (1) and upper (u) limits of the slip strength 
T12 (by limit load analysis) as a function of the glass fiber 
content and the flow limit k of the matrix material 

(TZ,
L)UA* 

,(r,:
L)L/i 

0.5 
V, 

Figure 6. Lower (1) and upper (u) limit of the slip strength 
T23 (by load limit analysis) as a function of the glass fiber 
content Vf and the flow limit k of the material of the matrix 
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Figure 7.  Maximum tension theory in the stress space 

Figure 8. Maximum stress theory in the tension space 
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/3S 

Figure 9. Material sample (in the plane 1-2 plane) 
to determine the F12 cross-terms with regard to the 
slip test 
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APPENDIX A  Stability for the Franklin criterion /Al 

Stability for the Franklin Criterion 

The starting point may be the Hoffman criterion, which may 

be written in its simplest form as follows (as regards the quad- 

ratic terms) 

C2 + C3   -C3    -C2   0   0   0 
Cl + C3 ., -Gl • '■■0..;,.;   , 0 .._ ,. 0- 

Cl ■+ C2  0   0   0 

.■■'in'-''  0    0 

n   0 

n 

FU (a-1) 

Franklin attempted to achieve a better consistency for a 

multiaxial stress state by introducing three additional parameters 

a  3 Y through which the relation (a-1) is converted into: 

c. .   <*r -iC3 -.;C2 0 0 0 

Cl  + C3 -!C1 0 0 0 

Cl  + C2 0 

n 

0 

0 

n 

0 

0 

0 

p 

Fij 
(a-2) 

To have a closed convex failure surface in the  stress  state, 
the Franklin theory must also satisfy the  stability criteria as 
defined in the Wu theory  (tensor polynomials) 

TnFjj-Fij^O >"3) 

This stability criterion is used to have an estimate of the 

magnitude of the new parameters introduced- 
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1    parameter a 

oÄAl w<* IS 

Fll ["22  - Fir 0 

(C2 * C3)   (Cl   t- C3)  - ..S"C3C > 0 

C2''   i- C2C.1 + C1C3  +  C1C2  - ..T.j''.0 

(1  -a ")  C3? + C2C3 4  C1C3  >■ 'HC?  .. 0 (a-4) 

To be able to state something more about the above criterion 

is tested on the composite material used in mine detectors.  Here 

we may state that 

(a-5) 

so that 

XtXc 'tYc 

Zed at 

Cl  = = C2 
Zt Zc 

C3 = 
2 

1     *- 1 

ZtZc | XtXc 

(a-6) 

/A2 

With   (a-6),   relation  (a-^j'may be written as 

(1- ,.2) C32 + 2C1C3 + Cl2 
(a-7) 

The order of magnitude now depends on the relationship between 

Cl and -C3, it may be established directly from equation (a-7) that a 

must be limited at the top by the stability requirement. 

Since no compression tests have -been carried-out yet in the 

present circumstances, it is still difficult to estimate realistic- 

ally the real maximum value of a;-. To obtain a first idea, it is fur- 

ther stated that Zc (illegible) Xc (also see Tables 1 and 2) and .Xt 

(illegible) 10 Zt (the latter is derived from the measurements by 

Tegelaar). 

Thus   Cl  =   z£gc 

C3 
2 

2 

lOZtZc 

_J_ 
ZtZc 

= 1 

2 H 
l 

ZtZc 
Cl (a-8) 
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Substituting   (a-8).in  (a-7),  we■find 

(a-2.)  5uh-.titL.eren  in  (o-7)  levert 

1  - 2 r      .      ?S 

2.   i   C2C + —   C3\- 0 
2 4 ... (a-9) 

.1 

9  . 
■0 

7 0 i .» i ■:   ± 
A '1 2 

When choosing the relation between Xt and Zt, we must start 

from the maximum value of Zt as shown in the paper by Tegelaar 

(Experimental Determination of the Material Properties of Glass 

Fiber Reinforced Polyester; IWECO Report no. 5072020-78-1).  To 

study the effect of these relations on the value of a, a second 

case is considered: 

Xt ^ 20 Zt 

so  that   anc"C3 = - 
ZtZc 2 

?.  

20ZtZc ZtZc 

.0 
— Cl 
20 

(a-9) 

The  substitution of   (a-9)   in   (a-7)   gives 

.   (I-,.2) C32 + 2zl°-   C32 + M   C32>0 

or 
81 

l+<°    -a2>0 

81 

10C 

81 

81 

*'•<   ill 
81 

(a-10) 

Thus the value of a is lower in this case. 

In the preceding, very little attention was paid (necessarily) 

to the compression strengths. 

It may be established directly that Xc<Zc since the pressure 

in the X-direction possibly causes the failure mechanism to be 
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determined by the cracking of the fibers, while for the pressure 

in the Z direction, the failure of the matrix material will pre- 

dominate.  The consequence of this difference between Xc and Zc is 

that the maximum permissible value of a is again somewhat higher. 

But it may well be doubted whether Xc and Zc show a very great 

difference and in this sense, it may be expected that the shifts in 

the maximum will not be spectacular for a.  It may be said prelimin- 

arily that -2 < a < 2 seems to be most applicable for the material 

in question here for a. 

II Parameter ß 

Fil r 33 

(C2 . r.: 

■vw --0 

(Cl + C2) - :l 2 rj   , 0 
-,?. cr     :2C3   < c.n + cic? -  /s' cr >o 

(l - ,'i ) C2J ■•■ t.?;:."1. *■ nn i nr.2 >o 

(a-ll) 

If we use once again the relations (a-6) equation (a-ll) is con- 

verted into 
(a-ll)  over in 
(1 -.i2) C22 + 2C2C3 + C22-- 0 

(2 - :.2)  C22 + 2C2C3   • 0. (a_12) 

/A4 

The  substitution of   (a-8)  gives 

? ? -7 ? 
(2 -.',   )  C2': + 2 —   C2^-0 

2-;;2  ±   >o 

.2  .   6 
U!  <l\ 

The  substitution of   (a-9)   gives 

(a-13) 
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(2-,!?) C22
+2Zi   C22 >0 

20 

2 - ;<2 

*  1 

- 1 
10 

0. 

- 
.   1! 

i • \ - - 10 10 

(a-14) 

From  (a-13)  and  (a-l4),   it  is apparent  that  a may hardly 

be much  larger  than 1. 

Ill Parameter y 

F22 F33 - F23    >  0 

(Cl  + C3)   (Cl + C2)  -   r2 Cl2 >0 

Cl2 + C1C3 + C2C3 + C1C2 -   ,• 2 Cl2 -0 

(1- V2) Cl2 + C1C3 + C2C3 + C1C2 -0 

(a-15) 

The substitution of the relations (a-6) gives 

(l-i2) Cl2 ♦ 2C1C3 + Cl2 --0 
(2 - f2) Cl2 + ?C1C3 > 0  or a130 

(2-»2) C22 + 2C.2C3 >0 
(a-16) 

A comparison of relations (a-l6) and (a-12) shows that y  has 

;he same value as $,  specifically: 

| ri<!\- i and- I v I < I \ ^ (a-17) 

46 



ORIGINAL PAGE J3 

......   , •■...■'.■■ ■-,..■'-.'-r. .-■. v   ;.'.■.■■..-.-. •.■..; ,.Q^.PQORQUMSP(,:: 

Consequently., it cannot be stated that for the Hoffman cri- 

terion a = ß = Y ,= 1- 

These values thus satisfy directly the stability criteria. 

It may also happen that the maximum values of ß and y  are ^:1.095- 

When it is recalled also that most of the experimenters state that 

the strength values have a 10* spread (Wu also uses this percentage 

in [7] to determine the precision of the tensor polynomial),, it may 

be stated a priori that the maximum values of ß and y  can be esta- 

blished as 1 just as well. 
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